201
|
Wang HX, Cheng JS, Chu S, Qiu YR, Zhong XP. mTORC2 in Thymic Epithelial Cells Controls Thymopoiesis and T Cell Development. THE JOURNAL OF IMMUNOLOGY 2016; 197:141-50. [PMID: 27233961 DOI: 10.4049/jimmunol.1502698] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 05/04/2016] [Indexed: 01/15/2023]
Abstract
Thymic epithelial cells (TECs) play important roles in T cell generation. Mechanisms that control TEC development and function are still not well defined. The mammalian or mechanistic target of rapamycin complex (mTORC)2 signals to regulate cell survival, nutrient uptake, and metabolism. We report in the present study that mice with TEC-specific ablation of Rictor, a critical and unique adaptor molecule in mTORC2, display thymic atrophy, which accompanies decreased TEC numbers in the medulla. Moreover, generation of multiple T cell lineages, including conventional TCRαβ T cells, regulatory T cells, invariant NKT cells, and TCRγδ T cells, was reduced in TEC-specific Rictor-deficient mice. Our data demonstrate that mTORC2 in TECs is important for normal thymopoiesis and efficient T cell generation.
Collapse
Affiliation(s)
- Hong-Xia Wang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China; Division of Allergy and Immunology, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710
| | - Joyce S Cheng
- Division of Allergy and Immunology, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710; Pre-Med (BS/MD) Health Scholar Program, Temple University, Philadelphia, PA 19222
| | - Shuai Chu
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China; Division of Allergy and Immunology, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710
| | - Yu-Rong Qiu
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China;
| | - Xiao-Ping Zhong
- Division of Allergy and Immunology, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710; Department of Immunology, Duke University Medical Center, Durham, NC 27710; and Hematologic Malignancies and Cellular Therapies Program, Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
202
|
Keating R, McGargill MA. mTOR Regulation of Lymphoid Cells in Immunity to Pathogens. Front Immunol 2016; 7:180. [PMID: 27242787 PMCID: PMC4862984 DOI: 10.3389/fimmu.2016.00180] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 04/25/2016] [Indexed: 12/15/2022] Open
Abstract
Immunity to pathogens exists as a fine balance between promoting activation and expansion of effector cells, while simultaneously limiting normal and aberrant responses. These seemingly opposing functions are kept in check by immune regulators. The mechanistic target of rapamycin (mTOR) is a serine/threonine kinase that senses nutrient availability and, in turn, regulates cell metabolism, growth, and survival accordingly. mTOR plays a pivotal role in facilitating immune defense against invading pathogens by regulating the differentiation, activation, and effector functions of lymphoid cells. Here, we focus on the emerging and sometimes contradictory roles of mTOR in orchestrating lymphoid cell-mediated host immune responses to pathogens. A thorough understanding of how mTOR impacts lymphoid cells in pathogen defense will provide the necessary base for developing therapeutic interventions for infectious diseases.
Collapse
Affiliation(s)
- Rachael Keating
- Department of Immunology, St. Jude Children's Research Hospital , Memphis, TN , USA
| | | |
Collapse
|
203
|
Gaubitz C, Prouteau M, Kusmider B, Loewith R. TORC2 Structure and Function. Trends Biochem Sci 2016; 41:532-545. [PMID: 27161823 DOI: 10.1016/j.tibs.2016.04.001] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/30/2016] [Accepted: 04/05/2016] [Indexed: 12/21/2022]
Abstract
The target of rapamycin (TOR) kinase functions in two multiprotein complexes, TORC1 and TORC2. Although both complexes are evolutionarily conserved, only TORC1 is acutely inhibited by rapamycin. Consequently, only TORC1 signaling is relatively well understood; and, at present, only mammalian TORC1 is a validated drug target, pursued in immunosuppression and oncology. However, the knowledge void surrounding TORC2 is dissipating. Acute inhibition of TORC2 with small molecules is now possible and structural studies of both TORC1 and TORC2 have recently been reported. Here we review these recent advances as well as observations made from tissue-specific mTORC2 knockout mice. Together these studies help define TORC2 structure-function relationships and suggest that mammalian TORC2 may one day also become a bona fide clinical target.
Collapse
Affiliation(s)
- Christl Gaubitz
- Department of Molecular Biology, and Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, 30 quai Ernest Ansermet, CH1211 Geneva, Switzerland
| | - Manoel Prouteau
- Department of Molecular Biology, and Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, 30 quai Ernest Ansermet, CH1211 Geneva, Switzerland
| | - Beata Kusmider
- Department of Molecular Biology, and Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, 30 quai Ernest Ansermet, CH1211 Geneva, Switzerland
| | - Robbie Loewith
- Department of Molecular Biology, and Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, 30 quai Ernest Ansermet, CH1211 Geneva, Switzerland; National Centre of Competence in Research "Chemical Biology", University of Geneva, Geneva CH-1211, Switzerland.
| |
Collapse
|
204
|
Pollizzi KN, Sun IH, Patel CH, Lo YC, Oh MH, Waickman AT, Tam AJ, Blosser RL, Wen J, Delgoffe GM, Powell JD. Asymmetric inheritance of mTORC1 kinase activity during division dictates CD8(+) T cell differentiation. Nat Immunol 2016; 17:704-11. [PMID: 27064374 PMCID: PMC4873361 DOI: 10.1038/ni.3438] [Citation(s) in RCA: 173] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 03/15/2016] [Indexed: 12/15/2022]
Abstract
The asymmetric partitioning of fate determining proteins has been shown to contribute to the generation of effector and memory CD8+ T cell precursors. Here, we demonstrate the asymmetric partitioning of mTORC1 activity upon activation of naïve CD8+ T cells. This results in the generation of one daughter T cell with increased mTORC1 activity, increased glycolytic activity and increased expression of effector molecules. The other daughter T cell inherits relatively low levels of mTORC1 activity, possesses increased lipid metabolism, expresses increased anti-apoptotic molecules and subsequently displays enhanced long-term survival. Mechanistically, we demonstrate a link between TCR-induced asymmetric expression of amino acid transporters and RagC-mediated translocation of mTOR to the lysosomes. Overall, our data provide important insight into how mTORC1-mediated metabolic reprogramming affects the fate decisions of T cells.
Collapse
Affiliation(s)
- Kristen N Pollizzi
- Sidney-Kimmel Comprehensive Cancer Research Center, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Im-Hong Sun
- Sidney-Kimmel Comprehensive Cancer Research Center, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Chirag H Patel
- Sidney-Kimmel Comprehensive Cancer Research Center, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ying-Chun Lo
- Sidney-Kimmel Comprehensive Cancer Research Center, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Min-Hee Oh
- Sidney-Kimmel Comprehensive Cancer Research Center, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Adam T Waickman
- Sidney-Kimmel Comprehensive Cancer Research Center, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ada J Tam
- Sidney-Kimmel Comprehensive Cancer Research Center, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Richard L Blosser
- Sidney-Kimmel Comprehensive Cancer Research Center, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jiayu Wen
- Sidney-Kimmel Comprehensive Cancer Research Center, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Greg M Delgoffe
- Sidney-Kimmel Comprehensive Cancer Research Center, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jonathan D Powell
- Sidney-Kimmel Comprehensive Cancer Research Center, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
205
|
Eleftheriadis T, Pissas G, Antoniadi G, Liakopoulos V, Tsogka K, Sounidaki M, Stefanidis I. Differential effects of the two amino acid sensing systems, the GCN2 kinase and the mTOR complex 1, on primary human alloreactive CD4⁺ T-cells. Int J Mol Med 2016; 37:1412-20. [PMID: 27035541 DOI: 10.3892/ijmm.2016.2547] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 03/11/2016] [Indexed: 11/06/2022] Open
Abstract
Amino acid deprivation activates general control nonderepressible 2 (GCN2) kinase and inhibits mammalian target of rapamycin (mTOR), affecting the immune response. In this study, the effects of GCN2 kinase activation or mTOR inhibition on human alloreactive CD4+ T-cells were evaluated. The mixed lymphocyte reaction, as a model of alloreactivity, the GCN2 kinase activator, tryptophanol (TRP), and the mTOR complex 1 inhibitor, rapamycin (RAP), were used. Both TRP and RAP suppressed cell proliferation and induced cell apoptosis. These events were p53-independent in the case of RAP, but were accompanied by an increase in p53 levels in the case of TRP. TRP decreased the levels of the Th2 signature transcription factor, GATA-3, as RAP did, yet the latter also decreased the levels of the Th1 and Th17 signature transcription factors, T-bet and RORγt, whereas it increased the levels of the Treg signature transcription factor, FoxP3. Accordingly, TRP decreased the production of interleukin (IL)-4, as RAP did, but RAP also decreased the levels of interferon-γ (IFN-γ) and IL-17. Both TRP and RAP increased the levels of IL-10. As regards hypoxia-inducible factor-1α (HIF-1α), which upregulates the Th17/Treg ratio, its levels were decreased by RAP. TRP increased the HIF-1α levels, which however, remained inactive. In conclusion, our findings indicate that, in primary human alloreactive CD4+ T-cells, the two systems that sense amino acid deprivation affect cell proliferation, apoptosis and differentiation in different ways or through different mechanisms. Both mTOR inhibition and GCN2 kinase activation exert immunosuppressive effects, since they inhibit cell proliferation and induce apoptosis. As regards CD4+ T-cell differentiation, mTOR inhibition exerted a more profound effect, since it suppressed differentiation into the Th1, Th2 and Th17 lineages, while it induced Treg differentiation. On the contrary, the activation of GCN2 kinase suppressed only Th2 differentiation.
Collapse
Affiliation(s)
| | - Georgios Pissas
- Department of Nephrology, Medical School, University of Thessaly, 41110 Larissa, Greece
| | - Georgia Antoniadi
- Department of Nephrology, Medical School, University of Thessaly, 41110 Larissa, Greece
| | - Vassilios Liakopoulos
- Department of Nephrology, Medical School, University of Thessaly, 41110 Larissa, Greece
| | - Konstantina Tsogka
- Department of Nephrology, Medical School, University of Thessaly, 41110 Larissa, Greece
| | - Maria Sounidaki
- Department of Nephrology, Medical School, University of Thessaly, 41110 Larissa, Greece
| | - Ioannis Stefanidis
- Department of Nephrology, Medical School, University of Thessaly, 41110 Larissa, Greece
| |
Collapse
|
206
|
Raïch-Regué D, Fabian KP, Watson AR, Fecek RJ, Storkus WJ, Thomson AW. Intratumoral delivery of mTORC2-deficient dendritic cells inhibits B16 melanoma growth by promoting CD8(+) effector T cell responses. Oncoimmunology 2016; 5:e1146841. [PMID: 27471613 DOI: 10.1080/2162402x.2016.1146841] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 01/19/2016] [Accepted: 01/21/2016] [Indexed: 12/24/2022] Open
Abstract
Dendritic cells (DC) play a pivotal role in the induction and regulation of immune responses. In cancer, DC-based vaccines have proven to be safe and to elicit protective and therapeutic immunological responses. Recently, we showed that specific mTORC2 (mechanistic target of rapamycin complex 2) deficiency in DC enhances their ability to promote Th1 and Th17 responses after LPS stimulation. In the present study, bone marrow-derived mTORC2-deficient (Rictor(-/-)) DC were evaluated as a therapeutic modality in the murine B16 melanoma model. Consistent with their pro-inflammatory profile (enhanced IL-12p70 production and low PD-L1 expression versus control DC), intratumoral (i.t.) injection of LPS-activated Rictor(-/-) DC slowed B16 melanoma growth markedly in WT C57BL/6 recipient mice. This antitumor effect was abrogated when Rictor(-/-) DC were injected i.t. into B16-bearing Rag(-/-) mice, and also after selective CD8(+) T cell depletion in wild-type hosts in vivo, indicating that CD8(+) T cells were the principal regulators of tumor growth after Rictor(-/-) DC injection. I.t. administration of Rictor(-/-) DC also reduced the frequency of myeloid-derived suppressor cells within tumors, and enhanced numbers of IFNγ(+) and granzyme-B(+) cytotoxic CD8(+) T cells both in the spleens and tumors of treated animals. These data suggest that selective inhibition of mTORC2 activity in activated DC augments their pro-inflammatory and T cell stimulatory profile, in association with their enhanced capacity to promote protective CD8(+) T cell responses in vivo, leading to slowed B16 melanoma progression. These novel findings may contribute to the design of more effective DC-based vaccines for cancer immunotherapy.
Collapse
Affiliation(s)
- Dàlia Raïch-Regué
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine , Pittsburgh, PA, US
| | - Kellsye P Fabian
- Department of Dermatology, University of Pittsburgh School of Medicine , Pittsburgh, PA, US
| | - Alicia R Watson
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine , Pittsburgh, PA, US
| | - Ronald J Fecek
- Department of Dermatology, University of Pittsburgh School of Medicine , Pittsburgh, PA, US
| | - Walter J Storkus
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, US; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Angus W Thomson
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, US; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
207
|
Nguyen HD, Chatterjee S, Haarberg KMK, Wu Y, Bastian D, Heinrichs J, Fu J, Daenthanasanmak A, Schutt S, Shrestha S, Liu C, Wang H, Chi H, Mehrotra S, Yu XZ. Metabolic reprogramming of alloantigen-activated T cells after hematopoietic cell transplantation. J Clin Invest 2016; 126:1337-52. [PMID: 26950421 DOI: 10.1172/jci82587] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 01/21/2016] [Indexed: 12/13/2022] Open
Abstract
Alloreactive donor T cells are the driving force in the induction of graft-versus-host disease (GVHD), yet little is known about T cell metabolism in response to alloantigens after hematopoietic cell transplantation (HCT). Here, we have demonstrated that donor T cells undergo metabolic reprograming after allogeneic HCT. Specifically, we employed a murine allogeneic BM transplant model and determined that T cells switch from fatty acid β-oxidation (FAO) and pyruvate oxidation via the tricarboxylic (TCA) cycle to aerobic glycolysis, thereby increasing dependence upon glutaminolysis and the pentose phosphate pathway. Glycolysis was required for optimal function of alloantigen-activated T cells and induction of GVHD, as inhibition of glycolysis by targeting mTORC1 or 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) ameliorated GVHD mortality and morbidity. Together, our results indicate that donor T cells use glycolysis as the predominant metabolic process after allogeneic HCT and suggest that glycolysis has potential as a therapeutic target for the control of GVHD.
Collapse
|
208
|
Herrero-Sánchez MC, Rodríguez-Serrano C, Almeida J, San-Segundo L, Inogés S, Santos-Briz Á, García-Briñón J, SanMiguel JF, Del Cañizo C, Blanco B. Effect of mTORC1/mTORC2 inhibition on T cell function: potential role in graft-versus-host disease control. Br J Haematol 2016; 173:754-68. [PMID: 26914848 DOI: 10.1111/bjh.13984] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 12/21/2015] [Indexed: 12/17/2022]
Abstract
The mechanistic target of rapamycin (mTOR) pathway is crucial for the activation and function of T cells, which play an essential role in the development of graft-versus-host disease (GvHD). Despite its partial ability to block mTOR pathway, the mTORC1 inhibitor rapamycin has shown encouraging results in the control of GvHD. Therefore, we considered that simultaneous targeting of both mTORC1 and mTORC2 complexes could exert a more potent inhibition of T cell activation and, thus, could have utility in GvHD control. To assess this assumption, we have used the dual mTORC1/mTORC2 inhibitors CC214-1 and CC214-2. In vitro studies confirmed the superior ability of CC214-1 versus rapamycin to block mTORC1 and mTORC2 activity and to reduce T cell proliferation. Both drugs induced a similar decrease in Th1/Th2 cytokine secretion, but CC214-1 was more efficient in inhibiting naïve T cell activation and the expression of T-cell activation markers. In addition, CC214-1 induced specific tolerance against alloantigens, while preserving anti-cytomegalovirus response. Finally, in a mouse model of GvHD, the administration of CC214-2 significantly improved mice survival and decreased GvHD-induced damages. In conclusion, the current study shows, for the first time, the immunosuppressive ability of CC214-1 on T lymphocytes and illustrates the role of CC214-2 in the allogeneic transplantation setting as a possible GvHD prophylaxis agent.
Collapse
Affiliation(s)
- Ma Carmen Herrero-Sánchez
- Servicio de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain.,Centro de Investigación del Cáncer, Universidad de Salamanca, Salamanca, Spain
| | - Concepción Rodríguez-Serrano
- Servicio de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain.,Centro de Investigación del Cáncer, Universidad de Salamanca, Salamanca, Spain
| | - Julia Almeida
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain.,Servicio de Citometría, Centro de Investigación del Cáncer, Universidad de Salamanca, Salamanca, Spain
| | - Laura San-Segundo
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain.,Centro de Investigación del Cáncer, Universidad de Salamanca, Salamanca, Spain
| | - Susana Inogés
- Laboratorio de Inmunoterapia, Clínica Universidad de Navarra, Pamplona, Spain
| | - Ángel Santos-Briz
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain.,Departamento de Patología, Hospital Universitario de Salamanca, Salamanca, Spain
| | - Jesús García-Briñón
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain.,Departamento de Biología Celular y Patología, Facultad de Medicina, Salamanca, Spain
| | - Jesús F SanMiguel
- Clínica Universidad de Navarra, Centro de Investigación Médica Aplicada, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Consuelo Del Cañizo
- Servicio de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain.,Centro de Investigación del Cáncer, Universidad de Salamanca, Salamanca, Spain
| | - Belén Blanco
- Servicio de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| |
Collapse
|
209
|
Abstract
The excitement surrounding checkpoint inhibitors in the treatment of patients with cancer exemplifies a triumph of the long-term value of investing in basic science and fundamental questions of T-cell signaling. The pharmaceutical future actively embraces ways of making more patients’ cancers responsive to these inhibitors. Such a process will be aided by elucidation of signaling and regulation. With thousands of articles spread across almost 30 years, this commentary can touch only on portions of the canonical picture of T-cell signaling and provide a few parables from work on mammalian (or mechanistic) target of rapamycin (mTOR) pathways as they link to early and later phases of lymphocyte activation. The piece will turn a critical eye to some issues with models about these pathways in T cells. Many of the best insights lie in the future despite all that is uncovered already, but a contention is that further therapeutic successes will be fostered by dealing with disparities among findings and attention to the temporal, spatial, and stochastic aspects of T-cell responses. Finally, thoughts on some (though not all) items urgently needed for future progress will be mooted.
Collapse
Affiliation(s)
- Mark Boothby
- Department of Pathology, Microbiology & Immunology, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
210
|
Harnessing the plasticity of CD4(+) T cells to treat immune-mediated disease. Nat Rev Immunol 2016; 16:149-63. [PMID: 26875830 DOI: 10.1038/nri.2015.18] [Citation(s) in RCA: 358] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
CD4(+) T cells differentiate and acquire distinct functions to combat specific pathogens but can also adapt their functions in response to changing circumstances. Although this phenotypic plasticity can be potentially deleterious, driving immune pathology, it also provides important benefits that have led to its evolutionary preservation. Here, we review CD4(+) T cell plasticity by examining the molecular mechanisms that regulate it - from the extracellular cues that initiate and drive cells towards varying phenotypes, to the cytosolic signalling cascades that decipher these cues and transmit them into the cell and to the nucleus, where these signals imprint specific gene expression programmes. By understanding how this functional flexibility is achieved, we may open doors to new therapeutic approaches that harness this property of T cells.
Collapse
|
211
|
Arriola Apelo SI, Neuman JC, Baar EL, Syed FA, Cummings NE, Brar HK, Pumper CP, Kimple ME, Lamming DW. Alternative rapamycin treatment regimens mitigate the impact of rapamycin on glucose homeostasis and the immune system. Aging Cell 2016; 15:28-38. [PMID: 26463117 PMCID: PMC4717280 DOI: 10.1111/acel.12405] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2015] [Indexed: 12/23/2022] Open
Abstract
Inhibition of the mechanistic target of rapamycin (mTOR) signaling pathway by the FDA-approved drug rapamycin has been shown to promote lifespan and delay age-related diseases in model organisms including mice. Unfortunately, rapamycin has potentially serious side effects in humans, including glucose intolerance and immunosuppression, which may preclude the long-term prophylactic use of rapamycin as a therapy for age-related diseases. While the beneficial effects of rapamycin are largely mediated by the inhibition of mTOR complex 1 (mTORC1), which is acutely sensitive to rapamycin, many of the negative side effects are mediated by the inhibition of a second mTOR-containing complex, mTORC2, which is much less sensitive to rapamycin. We hypothesized that different rapamycin dosing schedules or the use of FDA-approved rapamycin analogs with different pharmacokinetics might expand the therapeutic window of rapamycin by more specifically targeting mTORC1. Here, we identified an intermittent rapamycin dosing schedule with minimal effects on glucose tolerance, and we find that this schedule has a reduced impact on pyruvate tolerance, fasting glucose and insulin levels, beta cell function, and the immune system compared to daily rapamycin treatment. Further, we find that the FDA-approved rapamycin analogs everolimus and temsirolimus efficiently inhibit mTORC1 while having a reduced impact on glucose and pyruvate tolerance. Our results suggest that many of the negative side effects of rapamycin treatment can be mitigated through intermittent dosing or the use of rapamycin analogs.
Collapse
Affiliation(s)
- Sebastian I. Arriola Apelo
- Department of Medicine University of Wisconsin‐Madison Madison WI USA
- William S. Middleton Memorial Veterans Hospital Madison WI USA
| | - Joshua C. Neuman
- William S. Middleton Memorial Veterans Hospital Madison WI USA
- Interdisciplinary Graduate Program in Nutritional Sciences University of Wisconsin‐Madison Madison WI USA
| | - Emma L. Baar
- Department of Medicine University of Wisconsin‐Madison Madison WI USA
- William S. Middleton Memorial Veterans Hospital Madison WI USA
| | - Faizan A. Syed
- Department of Medicine University of Wisconsin‐Madison Madison WI USA
- William S. Middleton Memorial Veterans Hospital Madison WI USA
| | - Nicole E. Cummings
- Department of Medicine University of Wisconsin‐Madison Madison WI USA
- William S. Middleton Memorial Veterans Hospital Madison WI USA
- Endocrinology and Reproductive Physiology Graduate Training Program University of Wisconsin‐Madison Madison WI USA
| | - Harpreet K. Brar
- Department of Medicine University of Wisconsin‐Madison Madison WI USA
- William S. Middleton Memorial Veterans Hospital Madison WI USA
| | - Cassidy P. Pumper
- Department of Medicine University of Wisconsin‐Madison Madison WI USA
- William S. Middleton Memorial Veterans Hospital Madison WI USA
| | - Michelle E. Kimple
- Department of Medicine University of Wisconsin‐Madison Madison WI USA
- William S. Middleton Memorial Veterans Hospital Madison WI USA
- Interdisciplinary Graduate Program in Nutritional Sciences University of Wisconsin‐Madison Madison WI USA
- Endocrinology and Reproductive Physiology Graduate Training Program University of Wisconsin‐Madison Madison WI USA
| | - Dudley W. Lamming
- Department of Medicine University of Wisconsin‐Madison Madison WI USA
- William S. Middleton Memorial Veterans Hospital Madison WI USA
- Interdisciplinary Graduate Program in Nutritional Sciences University of Wisconsin‐Madison Madison WI USA
- Endocrinology and Reproductive Physiology Graduate Training Program University of Wisconsin‐Madison Madison WI USA
- University of Wisconsin Carbone Cancer Center Madison WI USA
| |
Collapse
|
212
|
mTORC signaling in hematopoiesis. Int J Hematol 2016; 103:510-8. [PMID: 26791377 DOI: 10.1007/s12185-016-1944-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/07/2016] [Accepted: 01/07/2016] [Indexed: 01/08/2023]
Abstract
mTOR is a serine/threonine (Ser/Thr) protein kinase that responds to multiple signals, including growth factors, amino acids, energy status, stress, and oxygen, regulates cell survival, cell growth, the cell cycle, and cell metabolism, and maintains homeostasis [1]. Increased or decreased mTORC1 activity can alter HSC function and cause hematological disorders [2, 3]. Therefore, a comprehensive knowledge of mTOR is critical to understanding how HSCs function and maintain homeostasis in the hematopoietic system. In this review, we summarize recent advances in the understanding of the mTOR signaling pathway and its roles in hematopoiesis and leukemia. We also discuss pharmacological approaches to manipulate mTOR activity.
Collapse
|
213
|
Regulation of IL-4 Expression in Immunity and Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 941:31-77. [PMID: 27734408 DOI: 10.1007/978-94-024-0921-5_3] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
IL-4 was first identified as a T cell-derived growth factor for B cells. Studies over the past several decades have markedly expanded our understanding of its cellular sources and function. In addition to T cells, IL-4 is produced by innate lymphocytes, such as NTK cells, and myeloid cells, such as basophils and mast cells. It is a signature cytokine of type 2 immune response but also has a nonimmune function. Its expression is tightly regulated at several levels, including signaling pathways, transcription factors, epigenetic modifications, microRNA, and long noncoding RNA. This chapter will review in detail the molecular mechanism regulating the cell type-specific expression of IL-4 in physiological and pathological type 2 immune responses.
Collapse
|
214
|
Patsoukis N, Bardhan K, Weaver J, Herbel C, Seth P, Li L, Boussiotis VA. The role of metabolic reprogramming in T cell fate and function. CURRENT TRENDS IN IMMUNOLOGY 2016; 17:1-12. [PMID: 28356677 PMCID: PMC5367635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
T lymphocytes undergo extensive changes in their metabolic properties during their transition through various differentiation states, from naïve to effector to memory or regulatory roles. The cause and effect relationship between metabolism and differentiation is a field of intense investigation. Many recent studies demonstrate the dependency of T cell functional outcomes on metabolic pathways and the possibility of metabolic intervention to modify these functions. In this review, we describe the basic metabolic features of T cells and new findings on how these correlate with various differentiation fates and functions. We also highlight the latest information regarding the main factors that affect T cell metabolic reprogramming.
Collapse
Affiliation(s)
- Nikolaos Patsoukis
- Division of Hematology-Oncology, Harvard Medical School, Boston, MA 02215
- Department of Medicine Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
- Beth Israel Deaconess Cancer Center, Harvard Medical School, Boston, MA 02215
| | - Kankana Bardhan
- Division of Hematology-Oncology, Harvard Medical School, Boston, MA 02215
- Department of Medicine Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
- Beth Israel Deaconess Cancer Center, Harvard Medical School, Boston, MA 02215
| | - Jessica Weaver
- Division of Hematology-Oncology, Harvard Medical School, Boston, MA 02215
- Department of Medicine Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
- Beth Israel Deaconess Cancer Center, Harvard Medical School, Boston, MA 02215
| | - Christoph Herbel
- Division of Hematology-Oncology, Harvard Medical School, Boston, MA 02215
- Department of Medicine Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
- Beth Israel Deaconess Cancer Center, Harvard Medical School, Boston, MA 02215
| | - Pankaj Seth
- Department of Medicine Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
- Beth Israel Deaconess Cancer Center, Harvard Medical School, Boston, MA 02215
- Division of Interdisciplinary Medicine and Biotechnology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Lequn Li
- Division of Hematology-Oncology, Harvard Medical School, Boston, MA 02215
- Department of Medicine Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
- Beth Israel Deaconess Cancer Center, Harvard Medical School, Boston, MA 02215
| | - Vassiliki A. Boussiotis
- Division of Hematology-Oncology, Harvard Medical School, Boston, MA 02215
- Department of Medicine Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
- Beth Israel Deaconess Cancer Center, Harvard Medical School, Boston, MA 02215
| |
Collapse
|
215
|
Shi JH, Sun SC. TCR signaling to NF-κB and mTORC1: Expanding roles of the CARMA1 complex. Mol Immunol 2015; 68:546-57. [PMID: 26260210 PMCID: PMC4679546 DOI: 10.1016/j.molimm.2015.07.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 06/07/2015] [Accepted: 07/19/2015] [Indexed: 12/25/2022]
Abstract
Naïve T-cell activation requires signals from both the T-cell receptor (TCR) and the costimulatory molecule CD28. A central mediator of the TCR and CD28 signals is the scaffold protein CARMA1, which functions by forming a complex with partner proteins, Bcl10 and MALT1. A well-known function of the CARMA1 signaling complex is to mediate activation of IκB kinase (IKK) and its target transcription factor NF-κB, thereby promoting T-cell activation and survival. Recent evidence suggests that CARMA1 also mediates TCR/CD28-stimulated activation of the IKK-related kinase TBK1, which plays a role in regulating the homeostasis and migration of T cells. Moreover, the CARMA1 complex connects the TCR/CD28 signals to the activation of mTORC1, a metabolic kinase regulating various aspects of T-cell functions. This review will discuss the mechanism underlying the activation of the CARMA1-dependent signaling pathways and their roles in regulating T-cell functions.
Collapse
Affiliation(s)
- Jian-hong Shi
- Central Laboratory, Affiliated Hospital of Hebei University, 212 Yuhua East Road, Baoding 071000, China
| | - Shao-Cong Sun
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX 77030, USA; The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA.
| |
Collapse
|
216
|
Castro C, Freitag J, Berod L, Lochner M, Sparwasser T. Microbe-associated immunomodulatory metabolites: Influence on T cell fate and function. Mol Immunol 2015; 68:575-84. [DOI: 10.1016/j.molimm.2015.07.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 06/29/2015] [Accepted: 07/21/2015] [Indexed: 01/30/2023]
|
217
|
Sasaki CY, Chen G, Munk R, Eitan E, Martindale J, Longo DL, Ghosh P. p(⁷⁰S⁶K¹) in the TORC1 pathway is essential for the differentiation of Th17 Cells, but not Th1, Th2, or Treg cells in mice. Eur J Immunol 2015; 46:212-22. [PMID: 26514620 DOI: 10.1002/eji.201445422] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 09/24/2015] [Accepted: 10/12/2015] [Indexed: 12/24/2022]
Abstract
The TORC1 pathway is necessary for ribosomal biogenesis and initiation of protein translation. Furthermore, the differentiation of Th1 and Th17 cells requires TORC1 activity. To investigate the role of the TORC1 pathway in the differentiation of Th1 and/or Th17 cells in more detail, we compared the differentiation capacity of naïve T cells from wild type and p70(S6K1) knockout mice. Expression of many of the genes associated with Th17-cell differentiation, such as IL17a, IL17f, and IL-23R, were reduced in p70(S6K1) knockout mice. In contrast, the development of Th1, Th2, and Treg cells was unaffected in the absence of p70(S6K1) . Furthermore, expression of the major transcription factor in Th17-cell differentiation, retinoic acid receptor-related orphan receptor gamma T, remained unchanged. However, the acetylation of histone 3 at the promoters of IL17a and IL17f was reduced in the absence of p70(S6K1) . In accordance with the in vitro data, the kinetics, but not the development, of EAE was affected with the loss of p70(S6K1) expression. Collectively, our findings suggested that both in vitro and in vivo differentiation of Th17 cells were positively regulated by p70(S6K1) .
Collapse
Affiliation(s)
- Carl Y Sasaki
- Laboratory of Genetics, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Gang Chen
- Laboratory of Genetics, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Rachel Munk
- Laboratory of Genetics, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Erez Eitan
- Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Jennifer Martindale
- Laboratory of Genetics, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Dan L Longo
- Laboratory of Genetics, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Paritosh Ghosh
- Laboratory of Genetics, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| |
Collapse
|
218
|
Herek TA, Shew TD, Spurgin HN, Cutucache CE. Conserved Molecular Underpinnings and Characterization of a Role for Caveolin-1 in the Tumor Microenvironment of Mature T-Cell Lymphomas. PLoS One 2015; 10:e0142682. [PMID: 26566034 PMCID: PMC4643970 DOI: 10.1371/journal.pone.0142682] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 10/26/2015] [Indexed: 12/02/2022] Open
Abstract
Neoplasms of extra-thymic T-cell origin represent a rare and difficult population characterized by poor clinical outcome, aggressive presentation, and poorly defined molecular characteristics. Much work has been done to gain greater insights into distinguishing features among malignant subtypes, but there also exists a need to identify unifying characteristics to assist in rapid diagnosis and subsequent potential treatment. Herein, we investigated gene expression data of five different mature T-cell lymphoma subtypes (n = 187) and found 21 genes to be up- and down-regulated across all malignancies in comparison to healthy CD4+ and CD8+ T-cell controls (n = 52). From these results, we sought to characterize a role for caveolin-1 (CAV1), a gene with previous description in the progression of both solid and hematological tumors. Caveolin-1 was upregulated, albeit with a heterogeneous nature, across all mature T-cell lymphoma subtypes, a finding confirmed using immunohistochemical staining on an independent sampling of mature T-cell lymphoma biopsies (n = 65 cases). Further, stratifying malignant samples in accordance with high and low CAV1 expression revealed that higher expression of CAV1 in mature T-cell lymphomas is analogous with an enhanced inflammatory and invasive gene expression profile. Taken together, these results demonstrate a role for CAV1 in the tumor microenvironment of mature T-cell malignancies and point toward potential prognostic implications.
Collapse
Affiliation(s)
- Tyler A. Herek
- Department of Biology, University of Nebraska at Omaha, Omaha, Nebraska, United States of America
| | - Timothy D. Shew
- Department of Biology, University of Nebraska at Omaha, Omaha, Nebraska, United States of America
| | - Heather N. Spurgin
- Department of Biology, University of Nebraska at Omaha, Omaha, Nebraska, United States of America
| | - Christine E. Cutucache
- Department of Biology, University of Nebraska at Omaha, Omaha, Nebraska, United States of America
- * E-mail:
| |
Collapse
|
219
|
Singh Y, Garden OA, Lang F, Cobb BS. MicroRNA-15b/16 Enhances the Induction of Regulatory T Cells by Regulating the Expression of Rictor and mTOR. THE JOURNAL OF IMMUNOLOGY 2015; 195:5667-77. [PMID: 26538392 DOI: 10.4049/jimmunol.1401875] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 10/09/2015] [Indexed: 01/12/2023]
Abstract
CD4(+) regulatory T cells (Tregs) are essential for controlling immune responses and preventing autoimmunity. Their development requires regulation of gene expression by microRNAs (miRNAs). To understand miRNA function in Treg development, we searched for important miRNAs and their relevant target genes. Of the more abundantly expressed miRNAs in Tregs, only miR-15b/16, miR-24, and miR-29a impacted the production of in vitro-induced Tregs (iTregs) in overexpression and blocking experiments. miRNA mimics for these significantly enhanced the induction of iTregs in Dicer(-/-) CD4(+) T cells. Furthermore, the overexpression of miR-15b/16 in conventional CD4(+) T cells adoptively transferred into Rag2(-/-) mice increased the in vivo development of peripheral Tregs and diminished the severity of autoimmune colitis. In searching for targets of miR-15b/16, we observed that the mammalian target of rapamycin (mTOR) signaling pathway was enhanced in Dicer(-/-) CD4(+) T cells, and its pharmacological inhibition restored induction of iTregs. Suppression of mTOR signaling is essential for induction of iTregs from naive CD4(+) T cells, and the mTORC2 component, Rictor, contained a functional target site for miR-15b/16. Rictor was more abundantly expressed in Dicer(-/-) T cells as was mTOR, and their expression was downregulated by the overexpression of miR-15b/16. This led to a reduction in mTOR signaling, as measured by phosphorylation of the downstream target, ribosomal protein S6. Finally, knockdown of Rictor by small interfering RNAs enhanced Treg induction in Dicer(-/-) CD4(+) T cells. Therefore, an important mechanism of miRNA regulation of Treg development is through regulation of the mTOR signaling pathway.
Collapse
Affiliation(s)
- Yogesh Singh
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, London NW1 0TU, United Kingdom; Institute of Physiology I, Eberhard Karls University of Tübingen, D-72076 Tübingen, Germany; and
| | - Oliver A Garden
- Department of Clinical Sciences and Services, The Royal Veterinary College, London NW1 0TU, United Kingdom
| | - Florian Lang
- Institute of Physiology I, Eberhard Karls University of Tübingen, D-72076 Tübingen, Germany; and
| | - Bradley S Cobb
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, London NW1 0TU, United Kingdom;
| |
Collapse
|
220
|
Ray JP, Staron MM, Shyer JA, Ho PC, Marshall HD, Gray SM, Laidlaw BJ, Araki K, Ahmed R, Kaech SM, Craft J. The Interleukin-2-mTORc1 Kinase Axis Defines the Signaling, Differentiation, and Metabolism of T Helper 1 and Follicular B Helper T Cells. Immunity 2015; 43:690-702. [PMID: 26410627 PMCID: PMC4618086 DOI: 10.1016/j.immuni.2015.08.017] [Citation(s) in RCA: 233] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 06/26/2015] [Accepted: 08/19/2015] [Indexed: 01/10/2023]
Abstract
The differentiation of CD4(+) helper T cell subsets with diverse effector functions is accompanied by changes in metabolism required to meet their bioenergetic demands. We find that follicular B helper T (Tfh) cells exhibited less proliferation, glycolysis, and mitochondrial respiration, accompanied by reduced mTOR kinase activity compared to T helper 1 (Th1) cells in response to acute viral infection. IL-2-mediated activation of the Akt kinase and mTORc1 signaling was both necessary and sufficient to shift differentiation away from Tfh cells, instead promoting that of Th1 cells. These findings were not the result of generalized signaling attenuation in Tfh cells, because they retained the ability to flux calcium and activate NFAT-transcription-factor-dependent cytokine production. These data identify the interleukin-2 (IL-2)-mTORc1 axis as a critical orchestrator of the reciprocal balance between Tfh and Th1 cell fates and their respective metabolic activities after acute viral infection.
Collapse
Affiliation(s)
- John P Ray
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Matthew M Staron
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Justin A Shyer
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Ping-Chih Ho
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Heather D Marshall
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Simon M Gray
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Brian J Laidlaw
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Koichi Araki
- Emory Vaccine Center and Department of Microbiology and Immunology, Atlanta, GA 30322, USA
| | - Rafi Ahmed
- Emory Vaccine Center and Department of Microbiology and Immunology, Atlanta, GA 30322, USA
| | - Susan M Kaech
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, MD 20815-6789, USA.
| | - Joe Craft
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Medicine (Rheumatology), Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
221
|
Abstract
The mechanistic target of rapamycin (mTOR) signaling integrates diverse environmental cues, including growth factors, nutrients and immunological signals. Activation of mTOR signaling stimulates protein synthesis and anabolic metabolism and coordinates cell growth, proliferation and fate decisions. In recent years, mTOR signaling has been linked to the entire spectrum of T cell biology, ranging from T cell development and activation to lineage specification and memory formation. Mechanistically, mTOR activation profoundly affects the expression and activity of many immunologically relevant transcription factors to propagate immune signaling and mediate effector functions. These transcription factors orchestrate cell metabolism (MYC, SREBPs and HIF1), lineage differentiation (T-bet, GATA3, RORγt, FOXP3 and Eomesodermin) and immune activation and functions (NF-κB, FOXOs, IRF4, STATs and GFI-1). This review discusses how mTOR signaling, through impinging upon transcriptional factors, regulates T cell development, activation, and effector and memory differentiation.
Collapse
Affiliation(s)
- Hu Zeng
- a Department of Immunology; St. Jude Children's Research Hospital; Memphis, TN USA
| | | |
Collapse
|
222
|
Salmond RJ, Brownlie RJ, Meyuhas O, Zamoyska R. Mechanistic Target of Rapamycin Complex 1/S6 Kinase 1 Signals Influence T Cell Activation Independently of Ribosomal Protein S6 Phosphorylation. THE JOURNAL OF IMMUNOLOGY 2015; 195:4615-22. [PMID: 26453749 PMCID: PMC4635570 DOI: 10.4049/jimmunol.1501473] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 09/08/2015] [Indexed: 11/19/2022]
Abstract
Ag-dependent activation of naive T cells induces dramatic changes in cellular metabolism that are essential for cell growth, division, and differentiation. In recent years, the serine/threonine kinase mechanistic target of rapamycin (mTOR) has emerged as a key integrator of signaling pathways that regulate these metabolic processes. However, the role of specific downstream effectors of mTOR function in T cells is poorly understood. Ribosomal protein S6 (rpS6) is an essential component of the ribosome and is inducibly phosphorylated following mTOR activation in eukaryotic cells. In the current work, we addressed the role of phosphorylation of rpS6 as an effector of mTOR function in T cell development, growth, proliferation, and differentiation using knockin and TCR transgenic mice. Surprisingly, we demonstrate that rpS6 phosphorylation is not required for any of these processes either in vitro or in vivo. Indeed, rpS6 knockin mice are completely sensitive to the inhibitory effects of rapamycin and an S6 kinase 1 (S6K1)–specific inhibitor on T cell activation and proliferation. These results place the mTOR complex 1-S6K1 axis as a crucial determinant of T cell activation independently of its ability to regulate rpS6 phosphorylation.
Collapse
Affiliation(s)
- Robert J Salmond
- Institute of Immunology and Infection Research, Ashworth Laboratories, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom; and
| | - Rebecca J Brownlie
- Institute of Immunology and Infection Research, Ashworth Laboratories, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom; and
| | - Oded Meyuhas
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, The Hebrew University Hadassah Medical School, 91120 Jerusalem, Israel
| | - Rose Zamoyska
- Institute of Immunology and Infection Research, Ashworth Laboratories, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom; and
| |
Collapse
|
223
|
Tan Y, AlKhamees B, Jia D, Li L, Couture JF, Figeys D, Jinushi M, Wang L. MFG-E8 Is Critical for Embryonic Stem Cell-Mediated T Cell Immunomodulation. Stem Cell Reports 2015; 5:741-752. [PMID: 26455415 PMCID: PMC4649138 DOI: 10.1016/j.stemcr.2015.09.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 09/08/2015] [Accepted: 09/09/2015] [Indexed: 02/03/2023] Open
Abstract
The molecules and mechanisms pertinent to the low immunogenicity of undifferentiated embryonic stem cells (ESCs) remain poorly understood. Here, we provide evidence that milk fat globule epidermal growth factor 8 (MFG-E8) is a vital mediator in this phenomenon and directly suppresses T cell immune responses. MFG-E8 is enriched in undifferentiated ESCs but diminished in differentiated ESCs. Upregulation of MFG-E8 in ESCs increases the successful engraftment of both undifferentiated and differentiated ESCs across major histocompatibility complex barriers. MFG-E8 suppresses T cell activation/proliferation and inhibits Th1, Th2, and Th17 subpopulations while increasing regulatory T cell subsets. Neutralizing MFG-E8 substantially abrogates these effects, whereas addition of recombinant MFG-E8 to differentiated ESCs restores immunosuppression. Furthermore, we provide the evidence that MFG-E8 suppresses T cell activation and regulates T cell polarization by inhibiting PKCθ phosphorylation through the α3/5βV integrin receptor. Our findings offer an approach to facilitate transplantation acceptance. MFG-E8 is enriched in undifferentiated but diminished in differentiated ESCs MFG-E8 promotes allogeneic engraftment of ESC-derived tissues across the MHC barrier ESC-produced MFG-E8 inhibits Th1/Th2/Th17 while promoting regulatory T cells MFG-E8 modulates T cell polarization via inhibiting PKCθ phosphorylation
Collapse
Affiliation(s)
- Yuan Tan
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Bodour AlKhamees
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Deyong Jia
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Li Li
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Jean-François Couture
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Daniel Figeys
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Masahisa Jinushi
- Institute for Advanced Medical Research, Keio University School of Medicine, 35 Shinanomachi, Shinjiku-ku, Tokyo 160-8582, Japan.
| | - Lisheng Wang
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada.
| |
Collapse
|
224
|
Klysz D, Tai X, Robert PA, Craveiro M, Cretenet G, Oburoglu L, Mongellaz C, Floess S, Fritz V, Matias MI, Yong C, Surh N, Marie JC, Huehn J, Zimmermann V, Kinet S, Dardalhon V, Taylor N. Glutamine-dependent α-ketoglutarate production regulates the balance between T helper 1 cell and regulatory T cell generation. Sci Signal 2015; 8:ra97. [PMID: 26420908 DOI: 10.1126/scisignal.aab2610] [Citation(s) in RCA: 354] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
T cell activation requires that the cell meet increased energetic and biosynthetic demands. We showed that exogenous nutrient availability regulated the differentiation of naïve CD4(+) T cells into distinct subsets. Activation of naïve CD4(+) T cells under conditions of glutamine deprivation resulted in their differentiation into Foxp3(+) (forkhead box P3-positive) regulatory T (Treg) cells, which had suppressor function in vivo. Moreover, glutamine-deprived CD4(+) T cells that were activated in the presence of cytokines that normally induce the generation of T helper 1 (TH1) cells instead differentiated into Foxp3(+) Treg cells. We found that α-ketoglutarate (αKG), the glutamine-derived metabolite that enters into the mitochondrial citric acid cycle, acted as a metabolic regulator of CD4(+) T cell differentiation. Activation of glutamine-deprived naïve CD4(+) T cells in the presence of a cell-permeable αKG analog increased the expression of the gene encoding the TH1 cell-associated transcription factor Tbet and resulted in their differentiation into TH1 cells, concomitant with stimulation of mammalian target of rapamycin complex 1 (mTORC1) signaling. Together, these data suggest that a decrease in the intracellular amount of αKG, caused by the limited availability of extracellular glutamine, shifts the balance between the generation of TH1 and Treg cells toward that of a Treg phenotype.
Collapse
Affiliation(s)
- Dorota Klysz
- Institut de Génétique Moléculaire de Montpellier, CNRS, UMR 5535, Université de Montpellier, F-34293 Montpellier, France
| | - Xuguang Tai
- Experimental Immunology Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | - Philippe A Robert
- Institut de Génétique Moléculaire de Montpellier, CNRS, UMR 5535, Université de Montpellier, F-34293 Montpellier, France. Department of Systems Immunology, Braunschweig Integrated Centre of Systems Biology, 38124 Braunschweig, Germany
| | - Marco Craveiro
- Institut de Génétique Moléculaire de Montpellier, CNRS, UMR 5535, Université de Montpellier, F-34293 Montpellier, France
| | - Gaspard Cretenet
- Institut de Génétique Moléculaire de Montpellier, CNRS, UMR 5535, Université de Montpellier, F-34293 Montpellier, France
| | - Leal Oburoglu
- Institut de Génétique Moléculaire de Montpellier, CNRS, UMR 5535, Université de Montpellier, F-34293 Montpellier, France
| | - Cédric Mongellaz
- Institut de Génétique Moléculaire de Montpellier, CNRS, UMR 5535, Université de Montpellier, F-34293 Montpellier, France
| | - Stefan Floess
- Department of Experimental Immunology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Vanessa Fritz
- Institut de Génétique Moléculaire de Montpellier, CNRS, UMR 5535, Université de Montpellier, F-34293 Montpellier, France
| | - Maria I Matias
- Institut de Génétique Moléculaire de Montpellier, CNRS, UMR 5535, Université de Montpellier, F-34293 Montpellier, France
| | - Carmen Yong
- Institut de Génétique Moléculaire de Montpellier, CNRS, UMR 5535, Université de Montpellier, F-34293 Montpellier, France. Cancer Immunology Research Program, Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Natalie Surh
- Institut de Génétique Moléculaire de Montpellier, CNRS, UMR 5535, Université de Montpellier, F-34293 Montpellier, France
| | - Julien C Marie
- Cancer Research Center of Lyon, INSERM U1052, CNRS 5286, Université Lyon 1, 69373 Lyon cedex 03, France. DKFZ German Cancer Research Center, 69121 Heidelberg, Germany
| | - Jochen Huehn
- Department of Experimental Immunology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Valérie Zimmermann
- Institut de Génétique Moléculaire de Montpellier, CNRS, UMR 5535, Université de Montpellier, F-34293 Montpellier, France
| | - Sandrina Kinet
- Institut de Génétique Moléculaire de Montpellier, CNRS, UMR 5535, Université de Montpellier, F-34293 Montpellier, France
| | - Valérie Dardalhon
- Institut de Génétique Moléculaire de Montpellier, CNRS, UMR 5535, Université de Montpellier, F-34293 Montpellier, France.
| | - Naomi Taylor
- Institut de Génétique Moléculaire de Montpellier, CNRS, UMR 5535, Université de Montpellier, F-34293 Montpellier, France.
| |
Collapse
|
225
|
Fu Y, Zhang Y, Zhang F, Liu J, Gui R. [Research on multiple myeloma cell apoptosis by inhibition of mTORC2 and chaperon pathways]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2015; 36:780-4. [PMID: 26462781 PMCID: PMC7342707 DOI: 10.3760/cma.j.issn.0253-2727.2015.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Indexed: 11/21/2022]
Abstract
OBJECTIVE To explore apoptosis of multiple myeloma (MM) cells and its mechanism by the combined inhibition of mTORC2 signaling pathway and heat shock protein 90. METHODS The effects of Rapamycin, 17-AAG and the combination on proliferation of MM cell lines U266 and KM3 were assessed using MTT at different time points (0, 8, 24, 48 hour). Cell apoptosis and cell cycle distribution were measured by flow cytometry. The specific proteins p-AKT (ser473), p-AKT (thr450), p-S6 (S235/236) and AKT were detected by Western blotting. RESULTS Rapamycin, 17- AAG and the combination suppressed the proliferation of MM cell lines U266 and KM3, especially the combination of Rapamycin and 17-AAG synergistically inhibited the proliferation (P<0.05); Rapamycin induced G1 arrest both at 24 and 48 hours, 17-AAG also induced G1 arrest, especially at 48 hours (P<0.01); Rapamycin, 17-AAG alone decreased the expression of AKT and induced MM cell apoptosis to some extent (P<0.01); Chronic rapamycin treatment inhibited mTORC2; Inhibition of both mTORC2 and chaper on pathways degraded AKT and induced MM cell apoptosis, which was significantly higher than that of any single agent (P<0.01). CONCLUSION Inhibition of both mTORC2 and chaper on pathways decreased the expression of AKT to induce apoptosis of MM cells in vitro.
Collapse
Affiliation(s)
- Yunfeng Fu
- The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Ya'nan Zhang
- The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Fan Zhang
- The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Jing Liu
- The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Rong Gui
- The Third Xiangya Hospital, Central South University, Changsha 410013, China
| |
Collapse
|
226
|
McCormick SM, Heller NM. Commentary: IL-4 and IL-13 receptors and signaling. Cytokine 2015; 75:38-50. [PMID: 26187331 PMCID: PMC4546937 DOI: 10.1016/j.cyto.2015.05.023] [Citation(s) in RCA: 230] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 05/16/2015] [Accepted: 05/21/2015] [Indexed: 12/21/2022]
Abstract
Interleukin (IL)-4 and IL-13 were discovered approximately 30years ago and were immediately linked to allergy and atopic diseases. Since then, new roles for IL-4 and IL-13 and their receptors in normal gestation, fetal development and neurological function and in the pathogenesis of cancer and fibrosis have been appreciated. Studying IL-4/-13 and their receptors has revealed important clues about cytokine biology and led to the development of numerous experimental therapeutics. Here we aim to highlight new discoveries and consolidate concepts in the field of IL-4 and IL-13 structure, receptor regulation, signaling and experimental therapeutics.
Collapse
Affiliation(s)
- Sarah M McCormick
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Nicola M Heller
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States; Division of Allergy and Clinical Immunology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States.
| |
Collapse
|
227
|
Sabbatini M, Ruggiero G, Palatucci AT, Rubino V, Federico S, Giovazzino A, Apicella L, Santopaolo M, Matarese G, Galgani M, Terrazzano G. Oscillatory mTOR inhibition and Treg increase in kidney transplantation. Clin Exp Immunol 2015; 182:230-40. [PMID: 26077103 DOI: 10.1111/cei.12669] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2015] [Indexed: 01/13/2023] Open
Abstract
Intracellular metabolic pathways dependent upon the mammalian target of rapamycin (mTOR) play a key role in immune-tolerance control. In this study, we focused on long-term mTOR-dependent immune-modulating effects in kidney transplant recipients undergoing conversion from calcineurin inhibitors (CNI) to mTOR inhibitors (everolimus) in a 1-year follow-up. The conversion to everolimus is associated with a decrease of neutrophils and of CD8(+) T cells. In addition, we observed a reduced production of interferon (IFN)-γ by CD8(+) T cells and of interleukin (IL)-17 by CD4(+) T lymphocytes. An increase in CD4(+) CD25(+) forkhead box protein 3 (FoxP3)(+) [regulatory T cell [(Treg)] numbers was also seen. Treg increase correlated with a higher proliferation rate of this regulatory subpopulation when compared with the CD4(+) FoxP3(-) effector counterpart. Basal phosphorylation level of S6 kinase, a major mTOR-dependent molecular target, was substantially maintained in patients treated with everolimus. Moreover, oscillations in serum concentration of everolimus were associated with changes in basal and activation-dependent S6 kinase phosphorylation of CD4(+) and CD8(+) T cells. Indeed, T cell receptor (TCR) triggering was observed to induce significantly higher S6 kinase phosphorylation in the presence of lower everolimus serum concentrations. These results unveil the complex mTOR-dependent immune-metabolic network leading to long-term immune-modulation and might have relevance for novel therapeutic settings in kidney transplants.
Collapse
Affiliation(s)
- M Sabbatini
- Dipartimento di Sanità Pubblica, DH di Nefrologia e Trapianto di Rene, Università di Napoli 'Federico II', Napoli, Italy
| | - G Ruggiero
- Dipartimento di Scienze Mediche Traslazionali, Università di Napoli 'Federico II', Napoli, Italy
| | - A T Palatucci
- Dottorato di Scienze.,Dipartimento di Scienze, Università della Basilicata, Potenza, Italy
| | - V Rubino
- Dipartimento di Scienze Mediche Traslazionali, Università di Napoli 'Federico II', Napoli, Italy
| | - S Federico
- Dipartimento di Sanità Pubblica, DH di Nefrologia e Trapianto di Rene, Università di Napoli 'Federico II', Napoli, Italy
| | - A Giovazzino
- Dipartimento di Scienze Mediche Traslazionali, Università di Napoli 'Federico II', Napoli, Italy.,Dipartimento di Scienze, Università della Basilicata, Potenza, Italy
| | - L Apicella
- Dipartimento di Sanità Pubblica, DH di Nefrologia e Trapianto di Rene, Università di Napoli 'Federico II', Napoli, Italy
| | - M Santopaolo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli 'Federico II', Napoli Italy
| | - G Matarese
- Dipartimento di Medicina e Chirurgia, Università di Salerno, Salerno, Italy.,Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Milano, Italy
| | - M Galgani
- Laboratorio di Immunologia, Istituto di Endocrinologia e Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), Napoli, Italy
| | - G Terrazzano
- Dipartimento di Scienze Mediche Traslazionali, Università di Napoli 'Federico II', Napoli, Italy.,Dipartimento di Scienze, Università della Basilicata, Potenza, Italy
| |
Collapse
|
228
|
Yuan LF, Li GD, Ren XJ, Nian H, Li XR, Zhang XM. Rapamycin ameliorates experimental autoimmune uveoretinitis by inhibiting Th1/Th2/Th17 cells and upregulating CD4+CD25+ Foxp3 regulatory T cells. Int J Ophthalmol 2015; 8:659-64. [PMID: 26309858 PMCID: PMC4539633 DOI: 10.3980/j.issn.2222-3959.2015.04.03] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 01/15/2015] [Indexed: 12/12/2022] Open
Abstract
AIM To determine the effects of rapamycin on experimental autoimmune uveoretinitis (EAU) and investigate of role of rapamycin on T cell subsets in the disease. METHODS EAU was induced in rats using peptides 1169 to 1191 of the interphotoreceptor binding protein (IRBP). Rapamycin (0.2 mg/kg/d) was administrated by intraperitoneal injection for a consecutive 7d after immunization. Th1/Th2/Th17 cytokines, TGF-β1, and IL-6 produced by lymphocyteswere measured by ELISA, while Th17 cells and CD4+CD25+ regulatory T cells (Tregs) from rat spleen were detected by flow cytometry. RESULTS Intraperitoneal treatment immediately after immunization dramatically ameliorated the clinical course of EAU. Clinical responses were associated with reduced retinal inflammatory cell infiltration and tissue destruction. Rapamycin induced suppression of Th1/Th2/Th17 cytokines, including IFN-γ, IL-2, IL-17, IL-4, and IL-10 release from T lymphocytes of EAU rats, in vitro. Rapamycin also significantly increased TGF-β1 production but had no effect on IL-6 productionof T lymphocytes from EAU rats in vitro. Furthermore, rapamycin decreased the ratio of Th17 cells/CD4+T cells and upregulated Tregs in EAU, as detected by flow cytometry. CONCLUSION Rapamycin effectively interferes with T cell mediated autoimmune uveitis by inhibiting antigen-specific T cell functions and enhancing Tregs in EAU. Rapamycin is a promising new alternative as an adjunct corticosteroid-sparing agent for treating uveitis.
Collapse
Affiliation(s)
- Li-Fei Yuan
- Tianjin Medical University Eye Hospital & Eye Institute, Tianjin 300384, China
- Hebei Eye Hospital, Xingtai 054001, Hebei Province, China
| | - Guang-Da Li
- Tianjin Medical University Eye Hospital & Eye Institute, Tianjin 300384, China
- Linyi People's Hospital, Linyi 276000, Shandong Province, China
| | - Xin-Jun Ren
- Tianjin Medical University Eye Hospital & Eye Institute, Tianjin 300384, China
| | - Hong Nian
- Tianjin Medical University Eye Hospital & Eye Institute, Tianjin 300384, China
| | - Xiao-Rong Li
- Tianjin Medical University Eye Hospital & Eye Institute, Tianjin 300384, China
| | - Xiao-Min Zhang
- Tianjin Medical University Eye Hospital & Eye Institute, Tianjin 300384, China
| |
Collapse
|
229
|
Park BV, Pan F. Metabolic regulation of T cell differentiation and function. Mol Immunol 2015; 68:497-506. [PMID: 26277275 DOI: 10.1016/j.molimm.2015.07.027] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Revised: 06/27/2015] [Accepted: 07/21/2015] [Indexed: 12/24/2022]
Abstract
Upon encountering pathogens, T cells mount immune responses by proliferating, increasing cellular mass and differentiating. These cellular changes impose significant energetic challenges on T cells. It was believed that TCR and cytokine-mediated signaling are dominant dictators of T cell-mediated immune responses. Recently, it was recognized that T cells utilize metabolic transporters and metabolic sensors that allow them to rapidly respond to nutrient-limiting inflammatory environments. Metabolic sensors allow T cells to find a balance between energy consumption (anabolic metabolism) and production (catabolic metabolism) in order to mount effective immune responses. Also, metabolic regulators interact with cytokine-dependent transcriptional regulators, suggesting a more integrative and advanced model of T cell activation and differentiation. In this review, we will discuss recent discoveries regarding the roles of metabolic regulators in effector and memory T cell development and their interaction with canonical transcription factors.
Collapse
Affiliation(s)
- Benjamin V Park
- Immunology and Hematopoiesis Division, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Fan Pan
- Immunology and Hematopoiesis Division, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| |
Collapse
|
230
|
Buck MD, O'Sullivan D, Pearce EL. T cell metabolism drives immunity. ACTA ACUST UNITED AC 2015; 212:1345-60. [PMID: 26261266 PMCID: PMC4548052 DOI: 10.1084/jem.20151159] [Citation(s) in RCA: 856] [Impact Index Per Article: 95.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 07/16/2015] [Indexed: 12/13/2022]
Abstract
Buck et al. discuss the role of lymphocyte metabolism on immune cell development and function. Lymphocytes must adapt to a wide array of environmental stressors as part of their normal development, during which they undergo a dramatic metabolic remodeling process. Research in this area has yielded surprising findings on the roles of diverse metabolic pathways and metabolites, which have been found to regulate lymphocyte signaling and influence differentiation, function and fate. In this review, we integrate the latest findings in the field to provide an up-to-date resource on lymphocyte metabolism.
Collapse
Affiliation(s)
- Michael D Buck
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - David O'Sullivan
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Erika L Pearce
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
231
|
mTOR and its tight regulation for iNKT cell development and effector function. Mol Immunol 2015; 68:536-45. [PMID: 26253278 DOI: 10.1016/j.molimm.2015.07.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/09/2015] [Accepted: 07/19/2015] [Indexed: 12/26/2022]
Abstract
Invariant NKT (iNKT) cells, which express the invariant Vα14Jα18 TCR that recognizes lipid antigens, have the ability to rapidly respond to agonist stimulation, producing a variety of cytokines that can shape both innate and adaptive immunity. iNKT cells have been implicated in host defense against microbial infection, in anti-tumor immunity, and a multitude of diseases such as allergies, asthma, graft versus host disease, and obesity. Emerging evidence has demonstrated crucial role for mammalian target of rapamycin (mTOR) in immune cells, including iNKT. In this review we will discuss current understanding of how mTOR and its tight regulation control iNKT cell development, effector lineage differentiation, and function.
Collapse
|
232
|
Arctigenin exerts anti-colitis efficacy through inhibiting the differentiation of Th1 and Th17 cells via an mTORC1-dependent pathway. Biochem Pharmacol 2015; 96:323-36. [DOI: 10.1016/j.bcp.2015.06.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 06/08/2015] [Indexed: 01/01/2023]
|
233
|
Abstract
Foxp3(+) Tregs are central regulators of immune tolerance. As dysregulated Treg responses contribute to disease pathogenesis, novel approaches to target the immunomodulatory functions of Tregs are currently under investigation. mTORC1 and mTORC2 are therapeutic targets of interest. Recent studies revealed that mTOR signaling impacts conventional T-cell homeostasis, activation and differentiation. Moreover, mTOR controls the differentiation and functions of Tregs, suggesting that its activity could be targeted to modulate Treg responses. Here, we summarize how Tregs suppress immune responses, their roles in disease development and methods used to alter their functions therapeutically. We also discuss the diverse effects exerted by mTOR inhibition on the development, homeostasis, and functions of conventional T cells and Tregs. We conclude with a discussion of how modulation of mTOR activity in Tregs may be therapeutically beneficial or detrimental in different disease settings.
Collapse
Affiliation(s)
- Nicole M Chapman
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | |
Collapse
|
234
|
Ito D, Nojima S, Nishide M, Okuno T, Takamatsu H, Kang S, Kimura T, Yoshida Y, Morimoto K, Maeda Y, Hosokawa T, Toyofuku T, Ohshima J, Kamimura D, Yamamoto M, Murakami M, Morii E, Rakugi H, Isaka Y, Kumanogoh A. mTOR Complex Signaling through the SEMA4A-Plexin B2 Axis Is Required for Optimal Activation and Differentiation of CD8+ T Cells. THE JOURNAL OF IMMUNOLOGY 2015; 195:934-43. [PMID: 26116513 DOI: 10.4049/jimmunol.1403038] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 05/22/2015] [Indexed: 12/19/2022]
Abstract
Mammalian target of rapamycin (mTOR) plays crucial roles in activation and differentiation of diverse types of immune cells. Although several lines of evidence have demonstrated the importance of mTOR-mediated signals in CD4(+) T cell responses, the involvement of mTOR in CD8(+) T cell responses is not fully understood. In this study, we show that a class IV semaphorin, SEMA4A, regulates CD8(+) T cell activation and differentiation through activation of mTOR complex (mTORC) 1. SEMA4A(-/-) CD8(+) T cells exhibited impairments in production of IFN-γ and TNF-α and induction of the effector molecules granzyme B, perforin, and FAS-L. Upon infection with OVA-expressing Listeria monocytogenes, pathogen-specific effector CD8(+) T cell responses were significantly impaired in SEMA4A(-/-) mice. Furthermore, SEMA4A(-/-) CD8(+) T cells exhibited reduced mTORC1 activity and elevated mTORC2 activity, suggesting that SEMA4A is required for optimal activation of mTORC1 in CD8(+) T cells. IFN-γ production and mTORC1 activity in SEMA4A(-/-) CD8(+) T cells were restored by administration of recombinant Sema4A protein. In addition, we show that plexin B2 is a functional receptor of SEMA4A in CD8(+) T cells. Collectively, these results not only demonstrate the role of SEMA4A in CD8(+) T cells, but also reveal a novel link between a semaphorin and mTOR signaling.
Collapse
Affiliation(s)
- Daisuke Ito
- Department of Immunopathology, World Premier International Research Center, Immunology Frontier Research Center, Osaka University, Suita City, Osaka 565-0871, Japan; Department of Geriatric Medicine and Nephrology, Osaka University Graduate School of Medicine, Suita City, Osaka 565-0871, Japan; Department of Respiratory Medicine, Allergy, and Rheumatic Disease, Osaka University Graduate School of Medicine, Suita City, Osaka 565-0871, Japan; Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Suita City, Osaka 565-0871, Japan
| | - Satoshi Nojima
- Department of Immunopathology, World Premier International Research Center, Immunology Frontier Research Center, Osaka University, Suita City, Osaka 565-0871, Japan; Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Suita City, Osaka 565-0871, Japan; Department of Pathology, Osaka University Graduate School of Medicine, Suita City, Osaka 565-0871, Japan;
| | - Masayuki Nishide
- Department of Immunopathology, World Premier International Research Center, Immunology Frontier Research Center, Osaka University, Suita City, Osaka 565-0871, Japan; Department of Respiratory Medicine, Allergy, and Rheumatic Disease, Osaka University Graduate School of Medicine, Suita City, Osaka 565-0871, Japan; Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Suita City, Osaka 565-0871, Japan
| | - Tatsusada Okuno
- Department of Immunopathology, World Premier International Research Center, Immunology Frontier Research Center, Osaka University, Suita City, Osaka 565-0871, Japan; Department of Neurology, Osaka University Graduate School of Medicine, Suita City, Osaka 565-0871, Japan
| | - Hyota Takamatsu
- Department of Immunopathology, World Premier International Research Center, Immunology Frontier Research Center, Osaka University, Suita City, Osaka 565-0871, Japan; Department of Respiratory Medicine, Allergy, and Rheumatic Disease, Osaka University Graduate School of Medicine, Suita City, Osaka 565-0871, Japan; Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Suita City, Osaka 565-0871, Japan
| | - Sujin Kang
- Department of Immunopathology, World Premier International Research Center, Immunology Frontier Research Center, Osaka University, Suita City, Osaka 565-0871, Japan; Department of Respiratory Medicine, Allergy, and Rheumatic Disease, Osaka University Graduate School of Medicine, Suita City, Osaka 565-0871, Japan; Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Suita City, Osaka 565-0871, Japan; Department of Clinical Application of Biologics, Osaka University Graduate School of Medicine, Suita City, Osaka 565-0871, Japan
| | - Tetsuya Kimura
- Department of Immunopathology, World Premier International Research Center, Immunology Frontier Research Center, Osaka University, Suita City, Osaka 565-0871, Japan; Department of Respiratory Medicine, Allergy, and Rheumatic Disease, Osaka University Graduate School of Medicine, Suita City, Osaka 565-0871, Japan; Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Suita City, Osaka 565-0871, Japan
| | - Yuji Yoshida
- Department of Immunopathology, World Premier International Research Center, Immunology Frontier Research Center, Osaka University, Suita City, Osaka 565-0871, Japan; Department of Respiratory Medicine, Allergy, and Rheumatic Disease, Osaka University Graduate School of Medicine, Suita City, Osaka 565-0871, Japan; Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Suita City, Osaka 565-0871, Japan
| | - Keiko Morimoto
- Department of Immunopathology, World Premier International Research Center, Immunology Frontier Research Center, Osaka University, Suita City, Osaka 565-0871, Japan; Department of Respiratory Medicine, Allergy, and Rheumatic Disease, Osaka University Graduate School of Medicine, Suita City, Osaka 565-0871, Japan; Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Suita City, Osaka 565-0871, Japan
| | - Yohei Maeda
- Department of Immunopathology, World Premier International Research Center, Immunology Frontier Research Center, Osaka University, Suita City, Osaka 565-0871, Japan; Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, Suita City, Osaka 565-0871, Japan
| | - Takashi Hosokawa
- Department of Immunopathology, World Premier International Research Center, Immunology Frontier Research Center, Osaka University, Suita City, Osaka 565-0871, Japan; Department of Respiratory Medicine, Allergy, and Rheumatic Disease, Osaka University Graduate School of Medicine, Suita City, Osaka 565-0871, Japan; Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Suita City, Osaka 565-0871, Japan
| | - Toshihiko Toyofuku
- Department of Immunopathology, World Premier International Research Center, Immunology Frontier Research Center, Osaka University, Suita City, Osaka 565-0871, Japan; Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Suita City, Osaka 565-0871, Japan; Department of Immunology and Regenerative Medicine, Osaka University Graduate School of Medicine, Suita City, Osaka 565-0871, Japan
| | - Jun Ohshima
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Suita City, Osaka 565-0871, Japan; Laboratory of Immunoparasitology, World Premier International Research Center, Immunology Frontier Research Center, Osaka University, Suita City, Osaka 565-0871, Japan; and
| | - Daisuke Kamimura
- Department of Molecular Neuroimmunology, Institute for Genetic Medicine, Hokkaido University Graduate School of Medicine, Sapporo City, Hokkaido 060-0815, Japan
| | - Masahiro Yamamoto
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Suita City, Osaka 565-0871, Japan; Laboratory of Immunoparasitology, World Premier International Research Center, Immunology Frontier Research Center, Osaka University, Suita City, Osaka 565-0871, Japan; and
| | - Masaaki Murakami
- Department of Molecular Neuroimmunology, Institute for Genetic Medicine, Hokkaido University Graduate School of Medicine, Sapporo City, Hokkaido 060-0815, Japan
| | - Eiichi Morii
- Department of Pathology, Osaka University Graduate School of Medicine, Suita City, Osaka 565-0871, Japan
| | - Hiromi Rakugi
- Department of Geriatric Medicine and Nephrology, Osaka University Graduate School of Medicine, Suita City, Osaka 565-0871, Japan
| | - Yoshitaka Isaka
- Department of Geriatric Medicine and Nephrology, Osaka University Graduate School of Medicine, Suita City, Osaka 565-0871, Japan
| | - Atsushi Kumanogoh
- Department of Immunopathology, World Premier International Research Center, Immunology Frontier Research Center, Osaka University, Suita City, Osaka 565-0871, Japan; Department of Respiratory Medicine, Allergy, and Rheumatic Disease, Osaka University Graduate School of Medicine, Suita City, Osaka 565-0871, Japan; Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Suita City, Osaka 565-0871, Japan;
| |
Collapse
|
235
|
Abstract
Components of the complement system act directly on T cells to alter conventional and regulatory T cell subsets. In this issue of Immunity, Kolev, Dimeloe, Le Friec et al. (2015) provide evidence of a mechanism by which the complement stimulates sustained mTORC1 activation and regulates cellular metabolism.
Collapse
Affiliation(s)
- Mark R Boothby
- Program in Immunology, Microbiology & Immunology, Vanderbilt University, Nashville, TN 37232-2363, USA; Department of Medicine, Microbiology & Immunology, Vanderbilt University, Nashville, TN 37232-2363, USA; Department of Pathology, Microbiology & Immunology, Vanderbilt University, Nashville, TN 37232-2363, USA.
| | - Ariel L Raybuck
- Department of Pathology, Microbiology & Immunology, Vanderbilt University, Nashville, TN 37232-2363, USA
| | - Sung Hoon Cho
- Program in Immunology, Microbiology & Immunology, Vanderbilt University, Nashville, TN 37232-2363, USA; Department of Pathology, Microbiology & Immunology, Vanderbilt University, Nashville, TN 37232-2363, USA
| |
Collapse
|
236
|
The second-generation mTOR kinase inhibitor INK128 exhibits anti-inflammatory activity in lipopolysaccharide-activated RAW 264.7 cells. Inflammation 2015; 37:756-65. [PMID: 24385238 DOI: 10.1007/s10753-013-9794-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cross-talk between the mTOR (mechanistic target of rapamycin) and NF-κB (nuclear factor kappa-B) pathways has been reported to regulate macrophage responses to lipopolysaccharide (LPS). In this study, we aimed to explore the effect of INK128, a second-generation inhibitor of mTOR, on the inflammatory cytokine production in LPS-stimulated RAW 264.7 cells. Our data showed that INK128 strikingly inhibited the phosphorylation of p70S6K, 4E-BP1 and AKTSer473 in both unstimulated and LPS-stimulated cells. Although it increased the phosphorylation levels of inhibitor kappa-B (IκB) in LPS-stimulated cells, INK128 did not significantly change the levels of NF-κB phosphorylation. In addition, LPS-induced expression of IL-1β and IL-6 was markedly suppressed by INK128 at both mRNA and protein levels. However, the expression of Tumor necrosis factor-alpha (TNF-α protein), but not its mRNA level, was suppressed by this reagent. Our results suggest that the mTOR inhibitor INK128 not only regulates the NF-κB signaling but also influences the inflammatory cytokine expression at both transcriptional and translational levels.
Collapse
|
237
|
Bao K, Reinhardt RL. The differential expression of IL-4 and IL-13 and its impact on type-2 immunity. Cytokine 2015; 75:25-37. [PMID: 26073683 DOI: 10.1016/j.cyto.2015.05.008] [Citation(s) in RCA: 206] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 05/11/2015] [Accepted: 05/12/2015] [Indexed: 01/06/2023]
Abstract
Allergic disease represents a significant global health burden, and disease incidence continues to rise in urban areas of the world. As such, a better understanding of the basic immune mechanisms underlying disease pathology are key to developing therapeutic interventions to both prevent disease onset as well as to ameliorate disease morbidity in those individuals already suffering from a disorder linked to type-2 inflammation. Two factors central to type-2 immunity are interleukin (IL)-4 and IL-13, which have been linked to virtually all major hallmarks associated with type-2 inflammation. Therefore, IL-4 and IL-13 and their regulatory pathways represent ideal targets to suppress disease. Despite sharing many common regulatory pathways and receptors, these cytokines perform very distinct functions during a type-2 immune response. This review summarizes the literature surrounding the function and expression of IL-4 and IL-13 in CD4+ T cells and innate immune cells. It highlights recent findings in vivo regarding the differential expression and non-canonical regulation of IL-4 and IL-13 in various immune cells, which likely play important and underappreciated roles in type-2 immunity.
Collapse
Affiliation(s)
- Katherine Bao
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, United States
| | - R Lee Reinhardt
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, United States.
| |
Collapse
|
238
|
Zhu J. T helper 2 (Th2) cell differentiation, type 2 innate lymphoid cell (ILC2) development and regulation of interleukin-4 (IL-4) and IL-13 production. Cytokine 2015; 75:14-24. [PMID: 26044597 DOI: 10.1016/j.cyto.2015.05.010] [Citation(s) in RCA: 300] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 05/11/2015] [Accepted: 05/12/2015] [Indexed: 12/12/2022]
Abstract
Interleukin-4 (IL-4), IL-5 and IL-13, the signature cytokines that are produced during type 2 immune responses, are critical for protective immunity against infections of extracellular parasites and are responsible for asthma and many other allergic inflammatory diseases. Although many immune cell types within the myeloid lineage compartment including basophils, eosinophils and mast cells are capable of producing at least one of these cytokines, the production of these "type 2 immune response-related" cytokines by lymphoid lineages, CD4 T helper 2 (Th2) cells and type 2 innate lymphoid cells (ILC2s) in particular, are the central events during type 2 immune responses. In this review, I will focus on the signaling pathways and key molecules that determine the differentiation of naïve CD4 T cells into Th2 cells, and how the expression of Th2 cytokines, especially IL-4 and IL-13, is regulated in Th2 cells. The similarities and differences in the differentiation of Th2 cells, IL-4-producing T follicular helper (Tfh) cells and ILC2s as well as their relationships will also be discussed.
Collapse
Affiliation(s)
- Jinfang Zhu
- Molecular and Cellular Immunoregulation Unit, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
239
|
Ci X, Kuraoka M, Wang H, Carico Z, Hopper K, Shin J, Deng X, Qiu Y, Unniraman S, Kelsoe G, Zhong XP. TSC1 Promotes B Cell Maturation but Is Dispensable for Germinal Center Formation. PLoS One 2015; 10:e0127527. [PMID: 26000908 PMCID: PMC4441391 DOI: 10.1371/journal.pone.0127527] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 04/16/2015] [Indexed: 01/10/2023] Open
Abstract
Accumulating evidence indicates that the tuberous sclerosis complex 1 (TSC1), a tumor suppressor that acts by inhibiting mTOR signaling, plays an important role in the immune system. We report here that TSC1 differentially regulates mTOR complex 1 (mTORC1) and mTORC2/Akt signaling in B cells. TSC1 deficiency results in the accumulation of transitional-1 (T1) B cells and progressive losses of B cells as they mature beyond the T1 stage. Moreover, TSC1KO mice exhibit a mild defect in the serum antibody responses or rate of Ig class-switch recombination after immunization with a T-cell-dependent antigen. In contrast to a previous report, we demonstrate that both constitutive Peyer’s patch germinal centers (GCs) and immunization-induced splenic GCs are unimpaired in TSC1-deficient (TSC1KO) mice and that the ratio of GC B cells to total B cells is comparable in WT and TSC1KO mice. Together, our data demonstrate that TSC1 plays important roles for B cell development, but it is dispensable for GC formation and serum antibody responses.
Collapse
Affiliation(s)
- Xinxin Ci
- Department of Pediatrics, Duke University Medical Center, Durham, NC, 27710, United States of America
- Key Laboratory of Zoonosis Ministry of Education, Institute of Zoonosis, College of Animal Science and Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Masayuki Kuraoka
- Department of Immunology, Duke University Medical Center, Durham, NC, 27710, United States of America
| | - Hongxia Wang
- Department of Pediatrics, Duke University Medical Center, Durham, NC, 27710, United States of America
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Zachary Carico
- Department of Immunology, Duke University Medical Center, Durham, NC, 27710, United States of America
| | - Kristen Hopper
- Department of Immunology, Duke University Medical Center, Durham, NC, 27710, United States of America
| | - Jinwook Shin
- Department of Pediatrics, Duke University Medical Center, Durham, NC, 27710, United States of America
| | - Xuming Deng
- Key Laboratory of Zoonosis Ministry of Education, Institute of Zoonosis, College of Animal Science and Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Yirong Qiu
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Shyam Unniraman
- Department of Immunology, Duke University Medical Center, Durham, NC, 27710, United States of America
| | - Garnett Kelsoe
- Department of Immunology, Duke University Medical Center, Durham, NC, 27710, United States of America
- * E-mail: (XPZ); (GK)
| | - Xiao-Ping Zhong
- Department of Pediatrics, Duke University Medical Center, Durham, NC, 27710, United States of America
- Department of Immunology, Duke University Medical Center, Durham, NC, 27710, United States of America
- * E-mail: (XPZ); (GK)
| |
Collapse
|
240
|
Abstract
The protein kinases C (PKCs) are a family of serine/threonine kinases involved in regulating multiple essential cellular processes such as survival, proliferation, and differentiation. Of particular interest is the novel, calcium-independent PKCθ which plays a central role in immune responses. PKCθ shares structural similarities with other PKC family members, mainly consisting of an N-terminal regulatory domain and a C-terminal catalytic domain tethered by a hinge region. This isozyme, however, is unique in that it translocates to the immunological synapse between a T cell and an antigen-presenting cell (APC) upon T cell receptor-peptide MHC recognition. Thereafter, PKCθ interacts physically and functionally with downstream effectors to mediate T cell activation and differentiation, subsequently leading to inflammation. PKCθ-specific perturbations have been identified in several diseases, most notably autoimmune disorders, and hence the modulation of its activity presents an attractive therapeutic intervention. To that end, many inhibitors of PKCs and PKCθ have been developed and tested in preclinical and clinical studies. And although selectivity remains a challenge, results are promising for the future development of effective PKCθ inhibitors that would greatly advance the treatment of several T-cell mediated diseases.
Collapse
|
241
|
Fu W, Cheng Y, Zhang Y, Mo X, Li T, Liu Y, Wang P, Pan W, Chen Y, Xue Y, Ma D, Zhang Y, Han W. The Secreted Form of Transmembrane Protein 98 Promotes the Differentiation of T Helper 1 Cells. J Interferon Cytokine Res 2015; 35:720-33. [PMID: 25946230 DOI: 10.1089/jir.2014.0110] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cytokines mediate the interaction of immune cells. Discovery of novel potential cytokines is of great value for both basic research and clinical application. In this study, we identified a novel immune-related molecule, transmembrane protein 98 (TMEM98), through a high-throughput screening platform for novel potential cytokines at a genome-wide level using the strategy of immunogenomics. So far, there is no characteristic and immune-related functional report about it. In this study, we demonstrate that TMEM98 exists as a type II transmembrane protein both in the ectopically and endogenously expressed systems. Interestingly, TMEM98 could also be secreted through exosomes. Moreover, the native secreted form of TMEM98 could be detected in the supernatants of activated human peripheral blood mononuclear cells and mouse CD4(+) T cells. Further expression profile analysis showed TMEM98 was upregulated during the activation and differentiation of T helper (Th) 1 cells. Function analysis showed that eukaryotic recombinant TMEM98 (rTMEM98) promoted the differentiation of Th1 cells under both antigen-nonspecific and antigen-specific Th1-skewing conditions. These findings were further confirmed in vivo as prokaryotic rTMEM98 administration significantly increased antigen-specific IFN-γ production and serum antigen-specific IgG2a in the methylated bovine serum albumin-induced delayed-type hypersensitivity model. Overall, these observations emphasize the characteristics and essential roles of TMEM98 for the first time and will be helpful in further understanding the development of Th1 cells.
Collapse
Affiliation(s)
- Weiwei Fu
- 1 Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center , Beijing, China
- 2 Peking University Center for Human Disease Genomics , Beijing, China
- 3 Tsinghua University School of Medicine , Beijing, China
| | - Yingying Cheng
- 1 Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center , Beijing, China
- 2 Peking University Center for Human Disease Genomics , Beijing, China
| | - Yanfei Zhang
- 1 Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center , Beijing, China
- 2 Peking University Center for Human Disease Genomics , Beijing, China
| | - Xiaoning Mo
- 1 Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center , Beijing, China
- 2 Peking University Center for Human Disease Genomics , Beijing, China
| | - Ting Li
- 1 Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center , Beijing, China
- 2 Peking University Center for Human Disease Genomics , Beijing, China
| | - Yuanfeng Liu
- 1 Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center , Beijing, China
| | - Pingzhang Wang
- 1 Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center , Beijing, China
- 2 Peking University Center for Human Disease Genomics , Beijing, China
| | - Wen Pan
- 1 Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center , Beijing, China
- 2 Peking University Center for Human Disease Genomics , Beijing, China
| | - Yingyu Chen
- 1 Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center , Beijing, China
- 2 Peking University Center for Human Disease Genomics , Beijing, China
| | - Yintong Xue
- 1 Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center , Beijing, China
| | - Dalong Ma
- 1 Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center , Beijing, China
- 2 Peking University Center for Human Disease Genomics , Beijing, China
| | - Yu Zhang
- 1 Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center , Beijing, China
| | - Wenling Han
- 1 Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center , Beijing, China
- 2 Peking University Center for Human Disease Genomics , Beijing, China
| |
Collapse
|
242
|
Pollizzi KN, Patel CH, Sun IH, Oh MH, Waickman AT, Wen J, Delgoffe GM, Powell JD. mTORC1 and mTORC2 selectively regulate CD8⁺ T cell differentiation. J Clin Invest 2015; 125:2090-108. [PMID: 25893604 DOI: 10.1172/jci77746] [Citation(s) in RCA: 291] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 03/12/2015] [Indexed: 12/16/2022] Open
Abstract
Activation of mTOR-dependent pathways regulates the specification and differentiation of CD4+ T effector cell subsets. Herein, we show that mTOR complex 1 (mTORC1) and mTORC2 have distinct roles in the generation of CD8+ T cell effector and memory populations. Evaluation of mice with a T cell-specific deletion of the gene encoding the negative regulator of mTORC1, tuberous sclerosis complex 2 (TSC2), resulted in the generation of highly glycolytic and potent effector CD8+ T cells; however, due to constitutive mTORC1 activation, these cells retained a terminally differentiated effector phenotype and were incapable of transitioning into a memory state. In contrast, CD8+ T cells deficient in mTORC1 activity due to loss of RAS homolog enriched in brain (RHEB) failed to differentiate into effector cells but retained memory characteristics, such as surface marker expression, a lower metabolic rate, and increased longevity. However, these RHEB-deficient memory-like T cells failed to generate recall responses as the result of metabolic defects. While mTORC1 influenced CD8+ T cell effector responses, mTORC2 activity regulated CD8+ T cell memory. mTORC2 inhibition resulted in metabolic reprogramming, which enhanced the generation of CD8+ memory cells. Overall, these results define specific roles for mTORC1 and mTORC2 that link metabolism and CD8+ T cell effector and memory generation and suggest that these functions have the potential to be targeted for enhancing vaccine efficacy and antitumor immunity.
Collapse
|
243
|
Rafii S, Roda D, Geuna E, Jimenez B, Rihawi K, Capelan M, Yap TA, Molife LR, Kaye SB, de Bono JS, Banerji U. Higher Risk of Infections with PI3K-AKT-mTOR Pathway Inhibitors in Patients with Advanced Solid Tumors on Phase I Clinical Trials. Clin Cancer Res 2015; 21:1869-76. [PMID: 25649020 PMCID: PMC4401558 DOI: 10.1158/1078-0432.ccr-14-2424] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 01/28/2015] [Indexed: 01/20/2023]
Abstract
PURPOSE Novel antitumor therapies against the PI3K-AKT-mTOR pathway are increasingly used to treat cancer, either as single agents or in combination with chemotherapy or other targeted therapies. Although these agents are not known to be myelosuppressive, an increased risk of infection has been reported with rapamycin analogues. However, the risk of infection with new inhibitors of this pathway such as PI3K, AKT, mTORC 1/2, or multikinase inhibitors is unknown. EXPERIMENTAL DESIGN In this retrospective case-control study, we determined the incidence of infection in a group of 432 patients who were treated on 15 phase I clinical trials involving PI3K-AKT-mTOR pathway inhibitors (cases) versus a group of 100 patients on 10 phase I clinical trials of single agent non-PI3K-AKT-mTOR pathway inhibitors (controls) which did not involve conventional cytotoxic agents. We also collected data from 42 patients who were treated with phase I trials of combinations of PI3K-AKT-mTOR inhibitors and MEK inhibitors and 24 patients with combinations of PI3K-AKT-mTOR inhibitors and cytotoxic chemotherapies. RESULTS The incidence of all grade infection was significantly higher with all single-agent PI3K-AKT-mTOR inhibitors compared with the control group [27% vs. 8%, respectively, OR, 4.26; 95% confidence intervals (CI), 1.9-9.1, P = 0.0001]. The incidence of grade 3 and 4 infection was also significantly higher with PI3K-AKT-mTOR inhibitors compared with the control group (10.3% vs. 3%, OR, 3.74; 95% CI, 1.1-12.4; P = 0.02). Also, the combination of PI3K-AKT-mTOR inhibitors and chemotherapy was associated with a significantly higher incidence of all grade (OR, 4.79; 95% CI, 2.0-11.2; P = 0.0001) and high-grade (OR, 2.87; 95% CI, 1.0-7.6; P = 0.03) infection when compared with single-agent PI3K-AKT-mTOR inhibitors. CONCLUSIONS Inhibitors of the PI3K-AKT-mTOR pathway can be associated with a higher risk of infection. Combinations of PI3K-AKT-mTOR inhibitors and cytotoxic chemotherapy significantly increase the risk of infection. This should be taken into consideration during the design and conduct of trials involving PI3K-AKT-mTOR pathway inhibitors, particularly when combined with chemotherapy or myelosuppressive agents.
Collapse
Affiliation(s)
- Saeed Rafii
- Drug Development Unit, Division of Cancer Therapeutics and Division of Clinical Studies, The Institute of Cancer Research and The Royal Marsden, London, United Kingdom
| | - Desamparados Roda
- Drug Development Unit, Division of Cancer Therapeutics and Division of Clinical Studies, The Institute of Cancer Research and The Royal Marsden, London, United Kingdom
| | - Elena Geuna
- Drug Development Unit, Division of Cancer Therapeutics and Division of Clinical Studies, The Institute of Cancer Research and The Royal Marsden, London, United Kingdom
| | - Begona Jimenez
- Drug Development Unit, Division of Cancer Therapeutics and Division of Clinical Studies, The Institute of Cancer Research and The Royal Marsden, London, United Kingdom
| | - Karim Rihawi
- Drug Development Unit, Division of Cancer Therapeutics and Division of Clinical Studies, The Institute of Cancer Research and The Royal Marsden, London, United Kingdom
| | - Marta Capelan
- Drug Development Unit, Division of Cancer Therapeutics and Division of Clinical Studies, The Institute of Cancer Research and The Royal Marsden, London, United Kingdom
| | - Timothy A Yap
- Drug Development Unit, Division of Cancer Therapeutics and Division of Clinical Studies, The Institute of Cancer Research and The Royal Marsden, London, United Kingdom
| | - L Rhoda Molife
- Drug Development Unit, Division of Cancer Therapeutics and Division of Clinical Studies, The Institute of Cancer Research and The Royal Marsden, London, United Kingdom
| | - Stanley B Kaye
- Drug Development Unit, Division of Cancer Therapeutics and Division of Clinical Studies, The Institute of Cancer Research and The Royal Marsden, London, United Kingdom
| | - Johann S de Bono
- Drug Development Unit, Division of Cancer Therapeutics and Division of Clinical Studies, The Institute of Cancer Research and The Royal Marsden, London, United Kingdom
| | - Udai Banerji
- Drug Development Unit, Division of Cancer Therapeutics and Division of Clinical Studies, The Institute of Cancer Research and The Royal Marsden, London, United Kingdom.
| |
Collapse
|
244
|
Raïch-Regué D, Rosborough BR, Watson AR, McGeachy MJ, Turnquist HR, Thomson AW. mTORC2 Deficiency in Myeloid Dendritic Cells Enhances Their Allogeneic Th1 and Th17 Stimulatory Ability after TLR4 Ligation In Vitro and In Vivo. THE JOURNAL OF IMMUNOLOGY 2015; 194:4767-76. [PMID: 25840913 DOI: 10.4049/jimmunol.1402551] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 03/09/2015] [Indexed: 01/29/2023]
Abstract
The mammalian/mechanistic target of rapamycin (mTOR) is a key integrative kinase that functions in two independent complexes, mTOR complex (mTORC) 1 and mTORC2. In contrast to the well-defined role of mTORC1 in dendritic cells (DC), little is known about the function of mTORC2. In this study, to our knowledge, we demonstrate for the first time an enhanced ability of mTORC2-deficient myeloid DC to stimulate and polarize allogeneic T cells. We show that activated bone marrow-derived DC from conditional Rictor(-/-) mice exhibit lower coinhibitory B7-H1 molecule expression independently of the stimulus and enhanced IL-6, TNF-α, IL-12p70, and IL-23 production following TLR4 ligation. Accordingly, TLR4-activated Rictor(-/-) DC display augmented allogeneic T cell stimulatory ability, expanding IFN-γ(+) and IL-17(+), but not IL-10(+) or CD4(+)Foxp3(+) regulatory T cells in vitro. A similar DC profile was obtained by stimulating Dectin-1 (C-type lectin family member) on Rictor(-/-) DC. Using novel CD11c-specific Rictor(-/-) mice, we confirm the alloreactive Th1 and Th17 cell-polarizing ability of endogenous mTORC2-deficient DC after TLR4 ligation in vivo. Furthermore, we demonstrate that proinflammatory cytokines produced by Rictor(-/-) DC after LPS stimulation are key in promoting Th1/Th17 responses. These data establish that mTORC2 activity restrains conventional DC proinflammatory capacity and their ability to polarize T cells following TLR and non-TLR stimulation. Our findings provide new insight into the role of mTORC2 in regulating DC function and may have implications for emerging therapeutic strategies that target mTOR in cancer, infectious diseases, and transplantation.
Collapse
Affiliation(s)
- Dàlia Raïch-Regué
- Department of Surgery, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Brian R Rosborough
- Department of Surgery, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Alicia R Watson
- Department of Surgery, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Mandy J McGeachy
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261; and Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Hēth R Turnquist
- Department of Surgery, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Angus W Thomson
- Department of Surgery, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| |
Collapse
|
245
|
Fantus D, Thomson AW. Evolving perspectives of mTOR complexes in immunity and transplantation. Am J Transplant 2015; 15:891-902. [PMID: 25737114 DOI: 10.1111/ajt.13151] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 11/17/2014] [Accepted: 12/06/2014] [Indexed: 01/25/2023]
Abstract
Since the discovery of Rapamycin (RAPA) and its immunosuppressive properties, enormous progress has been made in characterizing the mechanistic target of rapamycin (mTOR). Use of RAPA and its analogues (rapalogs) as anti-rejection agents has been accompanied by extensive investigation of how targeting of mTOR complex 1 (mTORC1), the principal target of RAPA, and more recently mTORC2, affects the function of immune cells, as well as vascular endothelial cells, that play crucial roles in regulation of allograft rejection. While considerable knowledge has accumulated on the function of mTORC1 and 2 in T cells, understanding of the differential roles of these complexes in antigen-presenting cells, NK cells and B cells/plasma cells is only beginning to emerge. Immune cell-specific targeting of mTORC1 or mTORC2, together with use of novel, second generation, dual mTORC kinase inhibitors (TORKinibs) have started to play an important role in elucidating the roles of these complexes and their potential for targeting in transplantation. Much remains unknown about the role of mTOR complexes and the consequences of mTOR targeting on immune reactivity in clinical transplantation. Here we address recent advances in understanding and evolving perspectives of the role of mTOR complexes and mTOR targeting in immunity, with extrapolation to transplantation.
Collapse
Affiliation(s)
- D Fantus
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | | |
Collapse
|
246
|
Abstract
Here we demonstrate that interleukin-2-inducible T-cell kinase (Itk) signaling in cluster of differentiation 4-positive (CD4(+)) T cells promotes experimental autoimmune encephalomyelitis (EAE), the animal model of multiple sclerosis (MS). We show that Itk(-/-) mice exhibit reduced disease severity, and transfer of Itk(-/-) CD4(+) T cells into T cell-deficient recipients results in lower disease severity. We observed a significant reduction of CD4(+) T cells in the CNS of Itk(-/-) mice or recipients of Itk(-/-) CD4(+) T cells during EAE, which is consistent with attenuated disease. Itk(-/-) CD4(+) T cells exhibit defective response to myelin antigen stimulation attributable to displacement of filamentous actin from the CD4(+) coreceptor. This results in inadequate transmigration of Itk(-/-) CD4(+) T cells into the CNS and across brain endothelial barriers in vitro. Finally, Itk(-/-) CD4(+) T cells show significant reduction in production of T-helper 1 (Th1) and Th17 cytokines and exhibit skewed T effector/T regulatory cell ratios. These results indicate that signaling by Itk promotes autoimmunity and CNS inflammation, suggesting that it may be a viable target for treatment of MS.
Collapse
|
247
|
McAlees JW, Lajoie S, Dienger K, Sproles AA, Richgels PK, Yang Y, Khodoun M, Azuma M, Yagita H, Fulkerson PC, Wills-Karp M, Lewkowich IP. Differential control of CD4(+) T-cell subsets by the PD-1/PD-L1 axis in a mouse model of allergic asthma. Eur J Immunol 2015; 45:1019-29. [PMID: 25630305 DOI: 10.1002/eji.201444778] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 12/12/2014] [Accepted: 01/26/2015] [Indexed: 01/22/2023]
Abstract
Studies examining the role of PD-1 family members in allergic asthma have yielded conflicting results. Using a mouse model of allergic asthma, we demonstrate that blockade of PD-1/PD-L1 has distinct influences on different CD4(+) T-cell subsets. PD-1/PD-L1 blockade enhances airway hyperreactivity (AHR), not by altering the magnitude of the underlying Th2-type immune response, but by allowing the development of a concomitant Th17-type immune response. Supporting differential CD4(+) T-cell responsiveness to PD-1-mediated inhibition, naïve PD-1(-/-) mice displayed elevated Th1 and Th17 levels, but diminished Th2 cytokine levels, and ligation of PD-1 in WT cells limited cytokine production by in vitro polarized Th1 and Th17 cells, but slightly enhanced cytokine production by in vitro polarized Th2 cells. Furthermore, PD-1 ligation enhanced Th2 cytokine production by naïve T cells cultured under nonpolarizing conditions. These data demonstrate that different CD4(+) T-cell subsets respond differentially to PD-1 ligation and may explain some of the variable results observed in control of allergic asthma by the PD-1 family members. As the PD-1/PD-L1 axis limits asthma severity by constraining Th17 cell activity, this suggests that severe allergic asthma may be associated with a defective PD-1/PD-L1 regulatory axis in some individuals.
Collapse
Affiliation(s)
- Jaclyn W McAlees
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
248
|
Liu C, Chapman NM, Karmaus PWF, Zeng H, Chi H. mTOR and metabolic regulation of conventional and regulatory T cells. J Leukoc Biol 2015; 97:837-847. [PMID: 25714803 DOI: 10.1189/jlb.2ri0814-408r] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Revised: 01/08/2015] [Accepted: 01/09/2015] [Indexed: 12/12/2022] Open
Abstract
mTOR signaling links bioenergetic and biosynthetic metabolism to immune responses. mTOR is activated by diverse upstream stimuli, including immune signals, growth factors, and nutrients. Recent studies highlight crucial roles of mTOR signaling in immune functions mediated by conventional T cells and Tregs In this review, we discuss the regulation of mTOR signaling in T cells and the functional impacts of mTOR and metabolic pathways on T cell-mediated immune responses, with a particular focus on the differentiation and function of Tregs.
Collapse
Affiliation(s)
- Chaohong Liu
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Nicole M Chapman
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Peer W F Karmaus
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Hu Zeng
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Hongbo Chi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
249
|
Th17 differentiation and their pro-inflammation function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 841:99-151. [PMID: 25261206 DOI: 10.1007/978-94-017-9487-9_5] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
CD4(+) T helper cells are classical but constantly reinterpreted T-cell subset, playing critical roles in a diverse range of inflammatory responses or diseases. Depending on the cytokines they release and the immune responses they mediate, CD4(+) T cells are classically divided into two major cell populations: Th1 and Th2 cells. However, recent studies challenged this Th1/Th2 paradigm by discovering several T-helper cell subsets with specific differentiation program and functions, including Th17 cells, Treg cells, and Tfh cells. In this chapter, we summarize the current understanding and recent progresses on the Th17 lineage differentiation and its effector impacts on variety of inflammatory responses or disease pathogenesis.
Collapse
|
250
|
Insight into the role of mTOR and metabolism in T cells reveals new potential approaches to preventing graft rejection. Curr Opin Organ Transplant 2015; 19:363-71. [PMID: 24991977 DOI: 10.1097/mot.0000000000000098] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW In this review, we discuss the recent advances with regard to the mammalian target of rapamycin (mTOR) signaling pathway and focus on how this pathway modulates immune responses. Overall, these insights provide important clues in terms of strategically integrating mTOR and metabolic inhibitors into transplantation rejection protocols. RECENT FINDINGS mTOR is regulated by environmental cues and activates diverse downstream pathways to guide cell growth and fate. What has emerged from recent studies is that mechanistically mTOR directs T cell differentiation and function in part by regulating metabolic programs. Such findings not only inform us with regard to the metabolic demands of effector and memory T cells but also elucidate metabolic pathways that might be targeted to selectively regulate immune responses. SUMMARY Initial studies focused on the ability of the mTOR inhibitor rapamycin to suppress immune responses by inhibiting T cell proliferation. Since then, both pharmacologic and genetic studies have revealed a central role for mTOR in regulating T cell activation, differentiation, and function independent of proliferation. Specifically, it has become clear that mTOR plays an important role in regulating the metabolic machinery necessary for effector, regulatory, and memory T cell generation. As such, direct inhibition of metabolism may emerge as a potent and selective means of preventing graft rejection. This review will discuss new insights regarding the ability of downstream signaling pathways, including mTOR-dependent metabolic pathways in regulating T cell responses. Finally, we will discuss these new insights in the context of developing novel immunoregulatory regimens for transplantation.
Collapse
|