201
|
Hoober JK, Eggink LL, Cote R. Stories From the Dendritic Cell Guardhouse. Front Immunol 2019; 10:2880. [PMID: 31921144 PMCID: PMC6919295 DOI: 10.3389/fimmu.2019.02880] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 11/25/2019] [Indexed: 12/19/2022] Open
Abstract
Phagocytic cells [dendritic cells (DCs), macrophages, monocytes, neutrophils, and mast cells] utilize C-type (Ca2+-dependent) lectin-like (CLEC) receptors to identify and internalize pathogens or danger signals. As monitors of environmental imbalances, CLEC receptors are particularly important in the function of DCs. Activation of the immune system requires, in sequence, presentation of antigen to the T cell receptor (TCR) by DCs, interaction of co-stimulatory factors such as CD40/80/86 on DCs with CD40L and CD28 on T cells, and production of IL-12 and/or IFN-α/β to amplify T cell differentiation and expansion. Without this sequence of events within an inflammatory environment, or in a different order, antigen-specific T cells become unresponsive, are deleted or become regulatory T cells. Thus, the mode by which CLEC receptors on DCs are engaged can either elicit activation of T cells to achieve an immune response or induce tolerance. This minireview illustrates these aspects with Dectin-1, DEC205, the mannose receptor and CLEC10A as examples.
Collapse
Affiliation(s)
| | | | - Robert Cote
- Susavion Biosciences, Inc., Tempe, AZ, United States
| |
Collapse
|
202
|
Trikha P, Lee DA. The role of AhR in transcriptional regulation of immune cell development and function. Biochim Biophys Acta Rev Cancer 2019; 1873:188335. [PMID: 31816350 DOI: 10.1016/j.bbcan.2019.188335] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 12/02/2019] [Accepted: 12/02/2019] [Indexed: 12/13/2022]
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcriptional factor (TF) that is a member of the Per-Arnt-Sim family of proteins. AhR regulates diverse processes, including malignant transformation, hematopoietic cell development, and fate determination of immune cell lineages. Moreover, AhR forms a crucial link between innate and adaptive arms of the immune system. Malignant cells frequently evolve multiple mechanisms for suppressing tumor-specific responses, including the induction of suppressive pathways involving AhR and its metabolic byproducts in the tumor microenvironment that promote immune evasion and tumor progression. Thus, interest is high in further defining the role of AhR in carcinogenesis and immune development and regulation, particularly regarding the therapeutic interventions that unleash immune responses to cancer cells. Here, we provide an overview of the role of AhR in the regulation of innate and adaptive immune response and discuss the implications of targeting this pathway to augment the immune response in cancer patients.
Collapse
Affiliation(s)
- Prashant Trikha
- Cellular Therapy & Cancer Immunotherapy Program, Center for Childhood Cancer & Blood Diseases, WA-4112 Abigail Wexner Research Institute, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, United States of America.
| | - Dean A Lee
- Cellular Therapy & Cancer Immunotherapy Program, Center for Childhood Cancer & Blood Diseases, WA-4112 Abigail Wexner Research Institute, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, United States of America
| |
Collapse
|
203
|
Marin E, Bouchet-Delbos L, Renoult O, Louvet C, Nerriere-Daguin V, Managh AJ, Even A, Giraud M, Vu Manh TP, Aguesse A, Bériou G, Chiffoleau E, Alliot-Licht B, Prieur X, Croyal M, Hutchinson JA, Obermajer N, Geissler EK, Vanhove B, Blancho G, Dalod M, Josien R, Pecqueur C, Cuturi MC, Moreau A. Human Tolerogenic Dendritic Cells Regulate Immune Responses through Lactate Synthesis. Cell Metab 2019; 30:1075-1090.e8. [PMID: 31801055 DOI: 10.1016/j.cmet.2019.11.011] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 07/17/2019] [Accepted: 11/12/2019] [Indexed: 12/22/2022]
Abstract
Cell therapy is a promising strategy for treating patients suffering from autoimmune or inflammatory diseases or receiving a transplant. Based on our preclinical studies, we have generated human autologous tolerogenic dendritic cells (ATDCs), which are being tested in a first-in-man clinical trial in kidney transplant recipients. Here, we report that ATDCs represent a unique subset of monocyte-derived cells based on phenotypic, transcriptomic, and metabolic analyses. ATDCs are characterized by their suppression of T cell proliferation and their expansion of Tregs through secreted factors. ATDCs produce high levels of lactate that shape T cell responses toward tolerance. Indeed, T cells take up ATDC-secreted lactate, leading to a decrease of their glycolysis. In vivo, ATDCs promote elevated levels of circulating lactate and delay graft-versus-host disease by reducing T cell proliferative capacity. The suppression of T cell immunity through lactate production by ATDCs is a novel mechanism that distinguishes ATDCs from other cell-based immunotherapies.
Collapse
Affiliation(s)
- Eros Marin
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, CHU Nantes, ITUN, Nantes, France
| | - Laurence Bouchet-Delbos
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, CHU Nantes, ITUN, Nantes, France
| | - Ophélie Renoult
- Centre de Recherche en Cancérologie et Immunologie Nantes-Angers UMR1232, INSERM, Université de Nantes, Nantes, France
| | - Cédric Louvet
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, CHU Nantes, ITUN, Nantes, France
| | - Véronique Nerriere-Daguin
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, CHU Nantes, ITUN, Nantes, France; LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Amy J Managh
- Centre for Analytical Science, Department of Chemistry, Loughborough University, Loughborough, UK
| | - Amandine Even
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, CHU Nantes, ITUN, Nantes, France
| | - Matthieu Giraud
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, CHU Nantes, ITUN, Nantes, France
| | - Thien Phong Vu Manh
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Université, CNRS, INSERM, CIML, Marseille, France
| | - Audrey Aguesse
- UMR 1280 PhAN, Mass Spectrometry Core Facility, INRA, CRNHO, West Human Nutrition Research Center, Nantes, France
| | - Gaelle Bériou
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, CHU Nantes, ITUN, Nantes, France
| | - Elise Chiffoleau
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, CHU Nantes, ITUN, Nantes, France
| | - Brigitte Alliot-Licht
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, CHU Nantes, ITUN, Nantes, France; Faculté d'Odontologie, Université de Nantes, Nantes, France
| | - Xavier Prieur
- Institut du Thorax, INSERM, CNRS, Université de Nantes, Nantes, France
| | - Mikael Croyal
- UMR 1280 PhAN, Mass Spectrometry Core Facility, INRA, CRNHO, West Human Nutrition Research Center, Nantes, France
| | - James A Hutchinson
- Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Natasa Obermajer
- Division of Surgical Oncology, University of Pittsburgh, Hillman Cancer Center, Pittsburgh, PA, USA
| | - Edward K Geissler
- Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Bernard Vanhove
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, CHU Nantes, ITUN, Nantes, France; LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Gilles Blancho
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, CHU Nantes, ITUN, Nantes, France
| | - Marc Dalod
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Université, CNRS, INSERM, CIML, Marseille, France
| | - Régis Josien
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, CHU Nantes, ITUN, Nantes, France; Laboratoire d'Immunologie, CHU Nantes, Nantes Université, Nantes, France
| | - Claire Pecqueur
- Centre de Recherche en Cancérologie et Immunologie Nantes-Angers UMR1232, INSERM, Université de Nantes, Nantes, France; LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Maria-Cristina Cuturi
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, CHU Nantes, ITUN, Nantes, France; LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Aurélie Moreau
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, CHU Nantes, ITUN, Nantes, France; LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France.
| |
Collapse
|
204
|
Wang XS, Cao F, Zhang Y, Pan HF. Therapeutic potential of aryl hydrocarbon receptor in autoimmunity. Inflammopharmacology 2019; 28:63-81. [PMID: 31617124 DOI: 10.1007/s10787-019-00651-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 09/30/2019] [Indexed: 12/11/2022]
Abstract
Aryl hydrocarbon receptor (AhR), a type of transcriptional factor, is widely expressed in immune cells. The activation of AhR signaling pathway depends on its ligands, which exist in environment and can also be produced by metabolism. Normal expressions of AhR and AhR-mediated signaling may be essential for immune responses, and effects of AhR signaling on the development and function of innate and adaptive immune cells have also been revealed in previous studies. Recent studies also indicate that aberrant AhR signaling may be related to autoimmune diseases, including rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), multiple sclerosis (MS), autoimmune uveitis (AU), autoimmune diabetes, Behcet's disease (BD) and myasthenia gravis (MG). Moreover, administration of AhR ligands or drugs has been proven effective for improving pathological outcomes in some autoimmune diseases or models. In this review, we summarize the effects of AhR on several innate and adaptive immune cells associated with autoimmunity, and the mechanism on how AhR participates in autoimmune diseases. In addition, we also discuss therapeutic potential and application prospect of AhR in autoimmune diseases, so as to provide valuable information for exploring novel and effective approaches to autoimmune disease treatments.
Collapse
Affiliation(s)
- Xiao-Song Wang
- The First Affiliated Hospital of Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China.,Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Fan Cao
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China
| | - Yi Zhang
- Reproductive Medicine Center, Anhui Women and Child Health Care Hospital, 15 Yimin Street, Hefei, Anhui, 230011, China
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China. .,Anhui Province Key Laboratory of Major Autoimmune Diseases, 81 Meishan Road, Hefei, Anhui, China.
| |
Collapse
|
205
|
Abstract
The transcription factor MafB regulates macrophage differentiation. However, studies on
the phenotype of Mafb-deficient macrophages are still limited. Recently,
it was shown that the specific expression of MafB permits macrophages to be distinguished
from dendritic cells. In addition, MafB has been reported to be involved in various
diseases related to macrophages. Studies using macrophage-specific
Mafb-deficient mice show that MafB is linked to atherosclerosis,
autoimmunity, obesity, and ischemic stroke, all of which exhibit macrophage abnormality.
Therefore, MafB is hypothesized to be indispensable for the regulation of macrophages to
maintain systemic homeostasis and may serve as an innovative target for treating
macrophage-related diseases.
Collapse
Affiliation(s)
- Michito Hamada
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.,Laboratory Animal Resource Center (LARC), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Yuki Tsunakawa
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.,Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Hyojung Jeon
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.,Laboratory Animal Resource Center (LARC), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Manoj Kumar Yadav
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.,Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Satoru Takahashi
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.,Laboratory Animal Resource Center (LARC), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
206
|
Duroux-Richard I, Robin M, Peillex C, Apparailly F. MicroRNAs: Fine Tuners of Monocyte Heterogeneity. Front Immunol 2019; 10:2145. [PMID: 31608049 PMCID: PMC6768098 DOI: 10.3389/fimmu.2019.02145] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 08/27/2019] [Indexed: 01/13/2023] Open
Abstract
Small non-coding microRNAs (miRNAs) have been found to play critical roles in many biological processes by controlling gene expression at the post-transcriptional level. They appear to fine-tune the immune response by targeting key regulatory molecules, and their abnormal expression is associated with immune-mediated inflammatory disorders. Monocytes actively contribute to tissue homeostasis by triggering acute inflammatory reactions as well as the resolution of inflammation and tissue regeneration, in case of injury or pathogen invasion. Their contribution to tissue homeostasis can have many aspects because they are able to differentiate into different cell types including macrophages, dendritic cells, and osteoclasts, which fulfill functions as different as bone remodeling and immune response. Monocytes consist of different subsets with subset-specific expression of miRNAs linked to distinct biological processes dedicated to specific roles. Therefore, understanding the role of miRNAs in the context of monocyte heterogeneity may provide clues as to which subset gives rise to which cell type in tissues. In addition, because monocytes are involved in the pathogenesis of chronic inflammation, associated with loss of tissue homeostasis and function, identifying subset-specific miRNAs might help in developing therapeutic strategies that target one subset while sparing the others. Here, we give an overview of the state-of-the-art research regarding miRNAs that are differentially expressed between monocyte subsets and how they influence monocyte functional heterogeneity in health and disease, with descriptions of specific miRNAs. We also revisit the existing miRNome data to propose a canonical signature for each subset.
Collapse
Affiliation(s)
| | - Maxime Robin
- IRMB, INSERM, University of Montpellier, Montpellier, France
| | - Cindy Peillex
- IRMB, INSERM, University of Montpellier, Montpellier, France
| | - Florence Apparailly
- IRMB, INSERM, University of Montpellier, Montpellier, France
- Clinical Department for Osteoarticular Diseases, University Hospital of Montpellier, Montpellier, France
| |
Collapse
|
207
|
Dick SA, Zaman R, Epelman S. Using High-Dimensional Approaches to Probe Monocytes and Macrophages in Cardiovascular Disease. Front Immunol 2019; 10:2146. [PMID: 31572369 PMCID: PMC6751379 DOI: 10.3389/fimmu.2019.02146] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 08/27/2019] [Indexed: 12/20/2022] Open
Abstract
High dimensional approaches that characterize single cells at unprecedented depth have helped uncover unappreciated heterogeneity, a better understanding of myeloid cell origins, developmental relationships and functions. These advancements are particularly important in cardiovascular disease, which remains the leading cause of death worldwide. Gradual, monocyte-dependent inflammatory processes, such as the development of atherosclerotic plaque within arterial vessels, contrasts with the robust acute response within the myocardium that occurs when a vessel is occluded. Monocytes and macrophages differentially contribute to tissue injury, repair and regeneration in these contexts, yet many questions remain about which myeloid cell types are involved in a coordinated, organ-level sterile inflammatory response. Single cell RNA sequencing, combined with functional analyses have demonstrated that at least three populations of resident cardiac macrophages exist, and after tissue injury, there is significant diversification of the tissue macrophage pool driven by recruited monocytes. While these studies have provided important insights, they raise many new questions and avenues for future exploration. For example, how do transcriptionally defined sub-populations of cardiac macrophages relate to each other? Are they different activation states along a pre-defined trajectory of macrophage differentiation or do local microenvironments drive newly recruited monocytes into distinct functions? The answers to these questions will require integration of high-dimensional approaches into biologically relevant in vivo experimental systems to ensure the predicted heterogeneity possess a functional outcome.
Collapse
Affiliation(s)
- Sarah A Dick
- University Health Network, Toronto General Research Institute, Toronto, ON, Canada.,Ted Rogers Centre for Heart Research, Toronto, ON, Canada
| | - Rysa Zaman
- University Health Network, Toronto General Research Institute, Toronto, ON, Canada.,Ted Rogers Centre for Heart Research, Toronto, ON, Canada
| | - Slava Epelman
- University Health Network, Toronto General Research Institute, Toronto, ON, Canada.,Ted Rogers Centre for Heart Research, Toronto, ON, Canada.,Peter Munk Cardiac Center, Toronto, ON, Canada
| |
Collapse
|
208
|
Kapellos TS, Bonaguro L, Gemünd I, Reusch N, Saglam A, Hinkley ER, Schultze JL. Human Monocyte Subsets and Phenotypes in Major Chronic Inflammatory Diseases. Front Immunol 2019; 10:2035. [PMID: 31543877 PMCID: PMC6728754 DOI: 10.3389/fimmu.2019.02035] [Citation(s) in RCA: 491] [Impact Index Per Article: 98.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 08/12/2019] [Indexed: 12/14/2022] Open
Abstract
Human monocytes are divided in three major populations; classical (CD14+CD16−), non-classical (CD14dimCD16+), and intermediate (CD14+CD16+). Each of these subsets is distinguished from each other by the expression of distinct surface markers and by their functions in homeostasis and disease. In this review, we discuss the most up-to-date phenotypic classification of human monocytes that has been greatly aided by the application of novel single-cell transcriptomic and mass cytometry technologies. Furthermore, we shed light on the role of these plastic immune cells in already recognized and emerging human chronic diseases, such as obesity, atherosclerosis, chronic obstructive pulmonary disease, lung fibrosis, lung cancer, and Alzheimer's disease. Our aim is to provide an insight into the contribution of human monocytes to the progression of these diseases and highlight their candidacy as potential therapeutic cell targets.
Collapse
Affiliation(s)
- Theodore S Kapellos
- Genomics and Immunoregulation, Life and Medical Sciences Institute (LIMES), Bonn, Germany
| | - Lorenzo Bonaguro
- Genomics and Immunoregulation, Life and Medical Sciences Institute (LIMES), Bonn, Germany
| | - Ioanna Gemünd
- Genomics and Immunoregulation, Life and Medical Sciences Institute (LIMES), Bonn, Germany
| | - Nico Reusch
- Genomics and Immunoregulation, Life and Medical Sciences Institute (LIMES), Bonn, Germany
| | - Adem Saglam
- Platform for Single Cell Genomics and Epigenomics, German Center for Neurodegenerative Diseases and University of Bonn, Bonn, Germany
| | - Emily R Hinkley
- Platform for Single Cell Genomics and Epigenomics, German Center for Neurodegenerative Diseases and University of Bonn, Bonn, Germany
| | - Joachim L Schultze
- Genomics and Immunoregulation, Life and Medical Sciences Institute (LIMES), Bonn, Germany.,Platform for Single Cell Genomics and Epigenomics, German Center for Neurodegenerative Diseases and University of Bonn, Bonn, Germany
| |
Collapse
|
209
|
Coillard A, Segura E. In vivo Differentiation of Human Monocytes. Front Immunol 2019; 10:1907. [PMID: 31456804 PMCID: PMC6700358 DOI: 10.3389/fimmu.2019.01907] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 07/29/2019] [Indexed: 01/10/2023] Open
Abstract
Circulating monocytes can infiltrate mucosal or inflamed tissues where they differentiate into either macrophages or dendritic cells. This paradigm is supported by numerous studies conducted in mice and in different in vitro settings for human cells. Determining whether it holds true in vivo in humans is essential for the successful design of monocyte-targeting therapies. Despite limitations inherent to working with human samples, there is accumulating evidence of the existence of in vivo-generated monocyte-derived cells in humans. Here, we review recent studies showing the recruitment of human monocytes into tissues and their differentiation into macrophages or dendritic cells, in normal or pathological settings. We examine the methods available in human studies to demonstrate the monocytic origin of infiltrating cells. Finally, we review the functions of human monocyte-derived cells and how they might contribute to pathogeny.
Collapse
Affiliation(s)
- Alice Coillard
- Institut Curie, PSL Research University, INSERM U932, Paris, France.,Université Paris Descartes, Paris, France
| | - Elodie Segura
- Institut Curie, PSL Research University, INSERM U932, Paris, France
| |
Collapse
|
210
|
Lee YS, Radford KJ. The role of dendritic cells in cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 348:123-178. [PMID: 31810552 DOI: 10.1016/bs.ircmb.2019.07.006] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cancer immunotherapy harnesses the ability of the immune system to recognize and eliminate cancer. The potent ability of dendritic cells (DCs) to initiate and regulate adaptive immune responses underpins the successful generation of anti-tumor immune responses. DCs are a heterogeneous leukocyte population comprised of distinct subsets that drive specific types of immune responses. Understanding how DCs induce tumor immune responses and the mechanisms adopted by tumors to evade DC surveillance is essential to render immunotherapies more effective. This review discusses current knowledge of the roles played by different DC subsets in human cancer and how these might be manipulated as new immunotherapeutics to improve CD8+ T cell-mediated immune responses, with a particular focus on the conventional type 1 DCs (cDC1).
Collapse
Affiliation(s)
- Yoke Seng Lee
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Kristen J Radford
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia.
| |
Collapse
|
211
|
Olingy CE, Dinh HQ, Hedrick CC. Monocyte heterogeneity and functions in cancer. J Leukoc Biol 2019; 106:309-322. [PMID: 30776148 PMCID: PMC6658332 DOI: 10.1002/jlb.4ri0818-311r] [Citation(s) in RCA: 330] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 12/11/2018] [Accepted: 01/21/2019] [Indexed: 12/11/2022] Open
Abstract
Monocytes are innate immune cells of the mononuclear phagocyte system that have emerged as important regulators of cancer development and progression. Our understanding of monocytes has advanced from viewing these cells as a homogenous population to a heterogeneous system of cells that display diverse responses to different stimuli. During cancer, different monocyte subsets perform functions that contribute to both pro- and antitumoral immunity, including phagocytosis, secretion of tumoricidal mediators, promotion of angiogenesis, remodeling of the extracellular matrix, recruitment of lymphocytes, and differentiation into tumor-associated macrophages and dendritic cells. The ability of cancer to evade immune recognition and clearance requires protumoral signals to outweigh ongoing attempts by the host immune system to prevent tumor growth. This review discusses current understanding of monocyte heterogeneity during homeostasis, highlights monocyte functions in cancer progression, and describes monocyte-targeted therapeutic strategies for cancer treatment.
Collapse
Affiliation(s)
- Claire E. Olingy
- La Jolla Institute for Allergy and ImmunologyLa JollaCaliforniaUSA
| | - Huy Q. Dinh
- La Jolla Institute for Allergy and ImmunologyLa JollaCaliforniaUSA
| | | |
Collapse
|
212
|
The orphan nuclear receptor NR4A3 controls the differentiation of monocyte-derived dendritic cells following microbial stimulation. Proc Natl Acad Sci U S A 2019; 116:15150-15159. [PMID: 31285338 DOI: 10.1073/pnas.1821296116] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In response to microbial stimulation, monocytes can differentiate into macrophages or monocyte-derived dendritic cells (MoDCs) but the molecular requirements guiding these possible fates are poorly understood. In addition, the physiological importance of MoDCs in the host cellular and immune responses to microbes remains elusive. Here, we demonstrate that the nuclear orphan receptor NR4A3 is required for the proper differentiation of MoDCs but not for other types of DCs. Indeed, the generation of DC-SIGN+ MoDCs in response to LPS was severely impaired in Nr4a3 -/- mice, which resulted in the inability to mount optimal CD8+ T cell responses to gram-negative bacteria. Transcriptomic analyses revealed that NR4A3 is required to skew monocyte differentiation toward MoDCs, at the expense of macrophages, and allows the acquisition of migratory characteristics required for MoDC function. Altogether, our data identify that the NR4A3 transcription factor is required to guide the fate of monocytes toward MoDCs.
Collapse
|
213
|
Carenza C, Calcaterra F, Oriolo F, Di Vito C, Ubezio M, Della Porta MG, Mavilio D, Della Bella S. Costimulatory Molecules and Immune Checkpoints Are Differentially Expressed on Different Subsets of Dendritic Cells. Front Immunol 2019; 10:1325. [PMID: 31244860 PMCID: PMC6579930 DOI: 10.3389/fimmu.2019.01325] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 05/24/2019] [Indexed: 12/13/2022] Open
Abstract
Dendritic cells (DCs) play a crucial role in initiating and shaping immune responses. The effects of DCs on adaptive immune responses depend partly on functional specialization of distinct DC subsets, and partly on the activation state of DCs, which is largely dictated by environmental signals. Fully activated immunostimulatory DCs express high levels of costimulatory molecules, produce pro-inflammatory cytokines, and stimulate T cell proliferation, whereas tolerogenic DCs express low levels of costimulatory molecules, produce immunomodulatory cytokines and impair T cell proliferation. Relevant to the increasing use of immune checkpoint blockade in cancer treatment, signals generated from inhibitory checkpoint molecules on DC surface may also contribute to the inhibitory properties of tolerogenic DCs. Yet, our knowledge on the expression of inhibitory molecules on human DC subsets is fragmentary. Therefore, in this study, we investigated the expression of three immune checkpoints on peripheral blood DC subsets, in basal conditions and upon exposure to pro-inflammatory and anti-inflammatory stimuli, by using a flow cytometric panel that allows a direct comparison of the activatory/inhibitory phenotype of DC-lineage and inflammatory DC subsets. We demonstrated that functionally distinct DC subsets are characterized by differential expression of activatory and inhibitory molecules, and that cDC1s in particular are endowed with a unique immune checkpoint repertoire characterized by high TIM-3 expression, scarce PD-L1 expression and lack of ILT2. Notably, this unique cDC1 repertoire was subverted in a group of patients with myelodysplastic syndromes included in the study. Applied to the characterization of DCs in the tumor microenvironment, this panel has the potential to provide valuable information to be used for investigating the role of DC subsets in cancer, guiding DC-targeting treatments, and possibly identifying predictive biomarkers for clinical response to cancer immunotherapy.
Collapse
Affiliation(s)
- Claudia Carenza
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy.,Lab of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Francesca Calcaterra
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy.,Lab of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Ferdinando Oriolo
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy.,Lab of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Clara Di Vito
- Lab of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Marta Ubezio
- Cancer Center, Humanitas Reserach Hospital, Rozzano, Italy
| | | | - Domenico Mavilio
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy.,Lab of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Silvia Della Bella
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy.,Lab of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Italy
| |
Collapse
|
214
|
Ishihara Y, Kado SY, Hoeper C, Harel S, Vogel CFA. Role of NF-kB RelB in Aryl Hydrocarbon Receptor-Mediated Ligand Specific Effects. Int J Mol Sci 2019; 20:E2652. [PMID: 31151139 PMCID: PMC6600526 DOI: 10.3390/ijms20112652] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 05/24/2019] [Accepted: 05/26/2019] [Indexed: 01/21/2023] Open
Abstract
Here, we investigate the role of RelB in the regulation of genes which were identified to be induced in an aryl hydrocarbon receptor (AhR)-dependent manner and critically involved in regulation of immune responses. We analyzed the expression of genes of the AhR gene battery, cytokines, and immune regulatory enzymes in bone marrow-derived macrophages (BMM) and thymus of B6 wildtype (wt) mice and RelB knockout (RelB-/-) mice after treatment with various AhR ligands. The 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced expression of indoleamine 2,3-dioxygenase 1 (IDO1) and IDO2 was significantly repressed in thymus of RelB-/- mice but not in BMM derived from RelB-/- mice. Interestingly, the induced and basal expression of the cytokines interleukin (IL)-17A, IL-22, and CCL20 required the functional expression of RelB. The RelB-dependent expression of CCL20 was induced by the AhR ligands TCDD and 6-formylindolo[3,2-b]carbazole (FICZ), whereas indole-3-carbinol (I3C) suppressed CCL20 in lipopolysaccharide (LPS)-activated wt BMM. The LPS-induced expression of IL-6 and IL-10 was enhanced by TCDD and FICZ, whereas I3C significantly suppressed these cytokines in BMM. The exposure to FICZ led to higher increases of IL-17A and IL-22 mRNA compared to the effect of TCDD or I3C in thymus of wt mice. On the other hand, TCDD was the strongest inducer of CYP1A1, AhR Repressor (AhRR), and IDO2. In summary, these findings provide evidence for the important role of RelB in the transcriptional regulation of cytokines and enzymes induced by AhR ligands.
Collapse
Affiliation(s)
- Yasuhiro Ishihara
- Center for Health and the Environment, University of California, One Shields Avenue, Davis, CA 95616, USA.
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8521, Japan.
| | - Sarah Y Kado
- Center for Health and the Environment, University of California, One Shields Avenue, Davis, CA 95616, USA.
| | - Christiane Hoeper
- Center for Health and the Environment, University of California, One Shields Avenue, Davis, CA 95616, USA.
| | - Shelly Harel
- Center for Health and the Environment, University of California, One Shields Avenue, Davis, CA 95616, USA.
| | - Christoph F A Vogel
- Center for Health and the Environment, University of California, One Shields Avenue, Davis, CA 95616, USA.
- Department of Environmental Toxicology, University of California, One Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
215
|
Gabriely G, Quintana FJ. Role of AHR in the control of GBM-associated myeloid cells. Semin Cancer Biol 2019; 64:13-18. [PMID: 31128300 DOI: 10.1016/j.semcancer.2019.05.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 05/21/2019] [Accepted: 05/21/2019] [Indexed: 12/16/2022]
Abstract
Glioblastoma (GBM) is an aggressive and incurable brain tumor; its malignancy has been associated with the activity of tumor infiltrating myeloid cells. Myeloid cells play important roles in the tumor control by the immune response, but also in tumor progression. Indeed, GBM exploits multiple mechanisms to recruit and modulate myeloid cells. The Aryl Hydrocarbon Receptor (AHR) is a ligand activated transcription factor implicated in the regulation of myeloid cells. In this review, we will summarize current knowledge on the AHR role in the control of myeloid cells and its impact on GBM pathogenesis.
Collapse
Affiliation(s)
- Galina Gabriely
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; The Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
216
|
Guo Z, Tao Y, Yin S, Song Y, Lu X, Li X, Fan Y, Fan X, Xu S, Yang J, Yu Y. The transcription factor Foxp1 regulates the differentiation and function of dendritic cells. Mech Dev 2019; 158:103554. [PMID: 31077741 DOI: 10.1016/j.mod.2019.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/01/2019] [Accepted: 05/07/2019] [Indexed: 01/14/2023]
Abstract
Dendritic cells (DCs) are the sentinels of the immune system and play a critical role in initiating adaptive immune responses against pathogens. As the most powerful antigen presenting cells, DCs are also important in maintaining immune homeostasis and participating in the development of autoimmune diseases. How the maturation and function of DCs is regulated in these conditions and what is the function of various transcription factors is still unclear. In this study, we found that the expression of the transcription factor Foxp1 gradually increased during the maturation of DCs. Then, we constructed a recombinant adenovirus carrying Foxp1-interfering RNA (Ad-simFoxp1) and transfected murine bone marrow-derived DCs in vitro. DCs transfected with Ad-simFoxp1 exhibited markedly lower costimulatory molecules, and decreased cytokines. And Ad-simFoxp1 greatly inhibited mature DC-induced T cell responses. Moreover, in vivo infusion with Ad-simFoxp1-modified DCs significantly delayed the onset of experimental autoimmune encephalomyelitis (EAE). Therefore, adoptive transfection of Ad-simFoxp1 in DCs may be a potential treatment strategy against autoimmune diseases.
Collapse
Affiliation(s)
- Ziyi Guo
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai, China; Department of Endocrine, Minhang Hospital, Fudan University, Shanghai, China
| | - Yijie Tao
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai, China
| | - Shulei Yin
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai, China
| | - Yuping Song
- Department of Endocrine, Minhang Hospital, Fudan University, Shanghai, China
| | - Xiaomin Lu
- Department of Endocrine, Minhang Hospital, Fudan University, Shanghai, China
| | - Xuesong Li
- Department of Endocrine, Minhang Hospital, Fudan University, Shanghai, China
| | - Yujuan Fan
- Department of Endocrine, Minhang Hospital, Fudan University, Shanghai, China
| | - Xiaofang Fan
- Department of Endocrine, Minhang Hospital, Fudan University, Shanghai, China
| | - Sheng Xu
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai, China.
| | - Jialin Yang
- Department of Endocrine, Minhang Hospital, Fudan University, Shanghai, China.
| | - Yizhi Yu
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai, China.
| |
Collapse
|
217
|
Chapuy L, Bsat M, Sarkizova S, Rubio M, Therrien A, Wassef E, Bouin M, Orlicka K, Weber A, Hacohen N, Villani AC, Sarfati M. Two distinct colonic CD14 + subsets characterized by single-cell RNA profiling in Crohn's disease. Mucosal Immunol 2019; 12:703-719. [PMID: 30670762 DOI: 10.1038/s41385-018-0126-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 12/05/2018] [Accepted: 12/11/2018] [Indexed: 02/04/2023]
Abstract
Inflammatory bowel diseases are associated with dysregulated immune responses in the intestinal tissue. Four molecularly identified macrophage subsets control immune homeostasis in healthy gut. However, the specific roles and transcriptomic profiles of the phenotypically heterogeneous CD14+ macrophage-like population in inflamed gut remain to be investigated in Crohn's disease (CD). Here we identified two phenotypically, morphologically and functionally distinct colonic HLADR+SIRPα+CD14+ subpopulations that were further characterized using single-cell RNA-sequencing (scRNAseq) in CD. Frequencies of CD64hiCD163-/dim cells selectively augmented in inflamed colon and correlated with endoscopic score of disease severity. IL-1β and IL-23-producing CD64hiCD163-/dim cells predominated over TNF-α-producing CD64hiCD163hi cells in lesions. Purified "inflammatory monocyte-like" CD163-, but not "macrophage-like" CD163hi cells, through IL-1β, promoted Th17/Th1 but not Th1 responses in tissue memory CD4+T cells. Unsupervised scRNAseq analysis that captures the entire HLADR+SIRPα+ population revealed six clusters, two of which were enriched in either CD163- or CD163hi cells, and best defined by TREM1/FCAR/FCN1/IL1RN or CD209/MERTK/MRCI/CD163L1 genes, respectively. Selected newly identified discriminating markers were used beyond CD163 to isolate cells that shared pro-Th17/Th1 function with CD163- cells. In conclusion, a molecularly distinct pro-inflammatory CD14+ subpopulation accumulates in inflamed colon, drives intestinal inflammatory T-cell responses, and thus, might contribute to CD disease severity.
Collapse
Affiliation(s)
- Laurence Chapuy
- Immunoregulation Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Université de Montréal, Montréal, QC, Canada
| | - Marwa Bsat
- Immunoregulation Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Université de Montréal, Montréal, QC, Canada
| | - Siranush Sarkizova
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Manuel Rubio
- Immunoregulation Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Université de Montréal, Montréal, QC, Canada
| | - Amélie Therrien
- Immunoregulation Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Université de Montréal, Montréal, QC, Canada.,Centre Hospitalier de l'Université de Montréal (CHUM), Université de Montréal, Montréal, QC, Canada
| | - Evelyne Wassef
- Immunoregulation Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Université de Montréal, Montréal, QC, Canada
| | - Mickael Bouin
- Centre Hospitalier de l'Université de Montréal (CHUM), Université de Montréal, Montréal, QC, Canada
| | - Katarzina Orlicka
- Centre Hospitalier de l'Université de Montréal (CHUM), Université de Montréal, Montréal, QC, Canada
| | - Audrey Weber
- Centre Hospitalier de l'Université de Montréal (CHUM), Université de Montréal, Montréal, QC, Canada
| | - Nir Hacohen
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Alexandra-Chloé Villani
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Marika Sarfati
- Immunoregulation Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
218
|
Zaal A, van Ham SM, Ten Brinke A. Differential effects of anaphylatoxin C5a on antigen presenting cells, roles for C5aR1 and C5aR2. Immunol Lett 2019; 209:45-52. [PMID: 30959077 DOI: 10.1016/j.imlet.2019.03.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/21/2019] [Accepted: 03/22/2019] [Indexed: 12/24/2022]
Abstract
The anaphylatoxin C5a is well-known for its role as chemoattractant and contributes to immune cell recruitment into inflamed tissue and local inflammation. C5a has recently been implicated in modulation of antigen presenting cell function, such as macrophages and dendritic cells, which are pivotal for T cell activation and final T cell effector function. The published data on the effect of C5a on APC function and subsequent adaptive immune responses are in part conflicting, as both pro and anti-inflammatory effects have been described. In this review the opposing effects of C5a on APC function in mice and human are summarized and discussed in relation to origin of the involved APC subset, being either of the monocyte-derived lineage or dendritic cell lineage. In addition, the current knowledge on the expression of C5aR1 and C5aR2 on the different APC subsets is summarized. Based on the combined data, we propose that the differential effects of C5a on APC function may be attributed to absence or presence of co-expression of C5aR2 and C5aR1 on the specific APC.
Collapse
Affiliation(s)
- Anouk Zaal
- Department of Immunopathology, Sanquin Research, Amsterdam, the Netherlands and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - S Marieke van Ham
- Department of Immunopathology, Sanquin Research, Amsterdam, the Netherlands and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Swammerdam Institute for Life Sciences, University of Amsterdam, the Netherlands
| | - Anja Ten Brinke
- Department of Immunopathology, Sanquin Research, Amsterdam, the Netherlands and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
219
|
Foote JR, Patel AA, Yona S, Segal AW. Variations in the Phagosomal Environment of Human Neutrophils and Mononuclear Phagocyte Subsets. Front Immunol 2019; 10:188. [PMID: 30881356 PMCID: PMC6405516 DOI: 10.3389/fimmu.2019.00188] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 01/22/2019] [Indexed: 12/11/2022] Open
Abstract
The phagosome microenvironment maintains enzyme activity and function. Here we compared the phagosomal pH of human neutrophils, monocytes, dendritic cells (DC), and monocyte-derived cells. An unexpected observation was the striking difference in phagosomal environment between the three monocytes subsets. Classical monocytes and neutrophils exhibited alkaline phagosomes, yet non-classical monocytes had more acidic phagosomes, while intermediate monocytes had a phenotype in-between. We next investigated the differences between primary naïve DC vs. in vitro monocyte-derived DC (MoDC) and established that both these cells had acidic phagosomal environments. Across all phagocytes, alkalinization was dependent upon the activity of the NADPH oxidase activity, demonstrated by the absence of NADPH oxidase from a patient with chronic granulomatous disease (CGD) or the use of a pharmacological inhibitor, diphenylene iodonium (DPI). Interestingly, MoDC stimulated with bacterial lipopolysaccharide had increased phagosomal pH. Overall, the increase in alkalinity within the phagosome was associated with increased oxidase activity. These data highlight the heterogeneous nature and potential function of phagocytic vacuoles within the family of mononuclear phagocytes.
Collapse
Affiliation(s)
- Juliet R Foote
- Division of Medicine, University College London, London, United Kingdom
| | - Amit A Patel
- Division of Medicine, University College London, London, United Kingdom
| | - Simon Yona
- Division of Medicine, University College London, London, United Kingdom
| | - Anthony W Segal
- Division of Medicine, University College London, London, United Kingdom
| |
Collapse
|
220
|
Tang-Huau TL, Segura E. Human in vivo-differentiated monocyte-derived dendritic cells. Semin Cell Dev Biol 2019; 86:44-49. [DOI: 10.1016/j.semcdb.2018.02.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 11/07/2017] [Accepted: 02/10/2018] [Indexed: 01/09/2023]
|
221
|
Bassler K, Schulte-Schrepping J, Warnat-Herresthal S, Aschenbrenner AC, Schultze JL. The Myeloid Cell Compartment-Cell by Cell. Annu Rev Immunol 2019; 37:269-293. [PMID: 30649988 DOI: 10.1146/annurev-immunol-042718-041728] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Myeloid cells are a major cellular compartment of the immune system comprising monocytes, dendritic cells, tissue macrophages, and granulocytes. Models of cellular ontogeny, activation, differentiation, and tissue-specific functions of myeloid cells have been revisited during the last years with surprising results; for example, most tissue macrophages are yolk sac derived, monocytes and macrophages follow a multidimensional model of activation, and tissue signals have a significant impact on the functionality of all these cells. While these exciting results have brought these cells back to center stage, their enormous plasticity and heterogeneity, during both homeostasis and disease, are far from understood. At the same time, the ongoing revolution in single-cell genomics, with single-cell RNA sequencing (scRNA-seq) leading the way, promises to change this. Prevailing models of hematopoiesis with distinct intermediates are challenged by scRNA-seq data suggesting more continuous developmental trajectories in the myeloid cell compartment. Cell subset structures previously defined by protein marker expression need to be revised based on unbiased analyses of scRNA-seq data. Particularly in inflammatory conditions, myeloid cells exhibit substantially vaster heterogeneity than previously anticipated, and work performed within large international projects, such as the Human Cell Atlas, has already revealed novel tissue macrophage subsets. Based on these exciting developments, we propose the next steps to a full understanding of the myeloid cell compartment in health and diseases.
Collapse
Affiliation(s)
- Kevin Bassler
- Department for Genomics and Immunoregulation, Life and Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany; , , , ,
| | - Jonas Schulte-Schrepping
- Department for Genomics and Immunoregulation, Life and Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany; , , , ,
| | - Stefanie Warnat-Herresthal
- Department for Genomics and Immunoregulation, Life and Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany; , , , ,
| | - Anna C Aschenbrenner
- Department for Genomics and Immunoregulation, Life and Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany; , , , , .,Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen 6525, The Netherlands
| | - Joachim L Schultze
- Department for Genomics and Immunoregulation, Life and Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany; , , , , .,PRECISE Platform for Single Cell Genomics and Epigenomics, German Center for Neurodegenerative Diseases and the University of Bonn, 53115 Bonn, Germany
| |
Collapse
|
222
|
Interplay between dendritic cells and cancer cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 348:179-215. [DOI: 10.1016/bs.ircmb.2019.07.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
223
|
Huang XT, Li X, Qin PZ, Zhu Y, Xu SN, Chen JP. Technical Advances in Single-Cell RNA Sequencing and Applications in Normal and Malignant Hematopoiesis. Front Oncol 2018; 8:582. [PMID: 30581771 PMCID: PMC6292934 DOI: 10.3389/fonc.2018.00582] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/19/2018] [Indexed: 12/20/2022] Open
Abstract
Single-cell RNA sequencing (scRNA-seq) has been tremendously developed in the past decade owing to overcoming challenges associated with isolation of massive quantities of single cells. Previously, cell heterogeneity and low quantities of available biological material posed significant difficulties to scRNA-seq. Cell-to-cell variation and heterogeneity are fundamental and intrinsic characteristics of normal and malignant hematopoietic cells; this heterogeneity has often been ignored in omics studies. The application of scRNA-seq has profoundly changed our comprehension of many biological phenomena, including organ development and carcinogenesis. Hematopoiesis, is actually a maturation process for more than ten distinct blood and immune cells, and is thought to be critically involved in hematological homeostasis and in sustaining the physiological functions. However, aberrant hematopoiesis directly leads to hematological malignancy, and a deeper understanding of malignant hematopoiesis will provide deeper insights into diagnosis and prognosis for patients with hematological malignancies. Here, we aim to review the recent technical progress and future prospects for scRNA-seq, as applied in physiological and malignant hematopoiesis, in efforts to further understand the hematopoietic hierarchy and to illuminate personalized therapy and precision medicine approaches used in the clinical treatment of hematological malignancies.
Collapse
Affiliation(s)
- Xiang-Tao Huang
- Center of Haematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xi Li
- Center of Haematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Pei-Zhong Qin
- Center of Haematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yao Zhu
- Center of Haematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Shuang-Nian Xu
- Center of Haematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jie-Ping Chen
- Center of Haematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
224
|
Neavin DR, Liu D, Ray B, Weinshilboum RM. The Role of the Aryl Hydrocarbon Receptor (AHR) in Immune and Inflammatory Diseases. Int J Mol Sci 2018; 19:ijms19123851. [PMID: 30513921 PMCID: PMC6321643 DOI: 10.3390/ijms19123851] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/27/2018] [Accepted: 11/29/2018] [Indexed: 12/17/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a nuclear receptor that modulates the response to environmental stimuli. It was recognized historically for its role in toxicology but, in recent decades, it has been increasingly recognized as an important modulator of disease—especially for its role in modulating immune and inflammatory responses. AHR has been implicated in many diseases that are driven by immune/inflammatory processes, including major depressive disorder, multiple sclerosis, rheumatoid arthritis, asthma, and allergic responses, among others. The mechanisms by which AHR has been suggested to impact immune/inflammatory diseases include targeted gene expression and altered immune differentiation. It has been suggested that single nucleotide polymorphisms (SNPs) that are near AHR-regulated genes may contribute to AHR-dependent disease mechanisms/pathways. Further, we have found that SNPs that are outside of nuclear receptor binding sites (i.e., outside of AHR response elements (AHREs)) may contribute to AHR-dependent gene regulation in a SNP- and ligand-dependent manner. This review will discuss the evidence and mechanisms of AHR contributions to immune/inflammatory diseases and will consider the possibility that SNPs that are outside of AHR binding sites might contribute to AHR ligand-dependent inter-individual variation in disease pathophysiology and response to pharmacotherapeutics.
Collapse
Affiliation(s)
- Drew R Neavin
- Mayo Clinic Graduate School of Biomedical Sciences, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55902, USA.
| | - Duan Liu
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55902, USA.
| | - Balmiki Ray
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55902, USA.
| | - Richard M Weinshilboum
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55902, USA.
| |
Collapse
|
225
|
Meyers JL, Winans B, Kelsaw E, Murthy A, Gerber S, Lawrence BP. Environmental cues received during development shape dendritic cell responses later in life. PLoS One 2018; 13:e0207007. [PMID: 30412605 PMCID: PMC6226176 DOI: 10.1371/journal.pone.0207007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 10/23/2018] [Indexed: 12/16/2022] Open
Abstract
Environmental signals mediated via the aryl hydrocarbon receptor (AHR) shape the developing immune system and influence immune function. Developmental exposure to AHR binding chemicals causes persistent changes in CD4+ and CD8+ T cell responses later in life, including dampened clonal expansion and differentiation during influenza A virus (IAV) infection. Naïve T cells require activation by dendritic cells (DCs), and AHR ligands modulate the function of DCs from adult organisms. Yet, the consequences of developmental AHR activation by exogenous ligands on DCs later in life has not been examined. We report here that early life activation of AHR durably reduces the ability of DC to activate naïve IAV-specific CD8+ T cells; however, activation of naïve CD4+ T cells was not impaired. Also, DCs from developmentally exposed offspring migrated more poorly than DCs from control dams in both in vivo and ex vivo assessments of DC migration. Conditional knockout mice, which lack Ahr in CD11c lineage cells, suggest that dampened DC emigration is intrinsic to DCs. Yet, levels of chemokine receptor 7 (CCR7), a key regulator of DC trafficking, were generally unaffected. Gene expression analyses reveal changes in Lrp1, Itgam, and Fcgr1 expression, and point to alterations in genes that regulate DC migration and antigen processing and presentation as being among pathways disrupted by inappropriate AHR signaling during development. These studies establish that AHR activation during development causes long-lasting changes to DCs, and provide new information regarding how early life environmental cues shape immune function later in life.
Collapse
Affiliation(s)
- Jessica L. Meyers
- Department of Environmental Medicine, University of Rochester School of Medicine & Dentistry, Rochester, New York, United States of America
| | - Bethany Winans
- Department of Environmental Medicine, University of Rochester School of Medicine & Dentistry, Rochester, New York, United States of America
| | - Erin Kelsaw
- Department of Microbiology and Immunology, University of Rochester School of Medicine & Dentistry, Rochester, New York, United States of America
| | - Aditi Murthy
- Department of Microbiology and Immunology, University of Rochester School of Medicine & Dentistry, Rochester, New York, United States of America
| | - Scott Gerber
- Department of Microbiology and Immunology, University of Rochester School of Medicine & Dentistry, Rochester, New York, United States of America
- Department of Surgery, University of Rochester School of Medicine & Dentistry, Rochester, New York, United States of America
| | - B. Paige Lawrence
- Department of Environmental Medicine, University of Rochester School of Medicine & Dentistry, Rochester, New York, United States of America
- Department of Microbiology and Immunology, University of Rochester School of Medicine & Dentistry, Rochester, New York, United States of America
| |
Collapse
|
226
|
Shinde R, McGaha TL. The Aryl Hydrocarbon Receptor: Connecting Immunity to the Microenvironment. Trends Immunol 2018; 39:1005-1020. [PMID: 30409559 DOI: 10.1016/j.it.2018.10.010] [Citation(s) in RCA: 177] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/10/2018] [Accepted: 10/11/2018] [Indexed: 12/12/2022]
Abstract
The aryl hydrocarbon receptor (AhR) is a cytoplasmic receptor and transcription factor activated through cognate ligand binding. It is an important factor in immunity and tissue homeostasis, and structurally diverse compounds from the environment, diet, microbiome, and host metabolism can induce AhR activity. Emerging evidence suggests that AhR is a key sensor allowing immune cells to adapt to environmental conditions and changes in AhR activity have been associated with autoimmune disorders and cancer. Furthermore, AhR agonists or antagonists can impact immune disease outcomes identifying AhR as a potentially actionable target for immunotherapy. In this review, we describe known ligands stimulating AhR activity, downstream proinflammatory and suppressive mechanisms potentiated by AhR, and how this understanding is being applied to immunopathology to help control disease outcomes.
Collapse
Affiliation(s)
- Rahul Shinde
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Tracy L McGaha
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Immunology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
227
|
Hwang WB, Kim DJ, Oh GS, Park JH. Aryl Hydrocarbon Receptor Ligands Indoxyl 3-sulfate and Indole-3-carbinol Inhibit FMS-like Tyrosine Kinase 3 Ligand-induced Bone Marrow-derived plasmacytoid Dendritic Cell Differentiation. Immune Netw 2018; 18:e35. [PMID: 30402330 PMCID: PMC6215903 DOI: 10.4110/in.2018.18.e35] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 12/29/2022] Open
Abstract
Aryl hydrocarbon receptor (AhR) regulates both innate and adaptive immune responses by sensing a variety of small synthetic and natural chemicals, which act as its ligands. AhR, which is expressed in dendritic cells (DCs), regulates the differentiation of DCs. However, effects of AhR on the differentiation of DCs are variable due to the heterogeneity of DCs in cell surface marker expression, anatomical location, and functional responses. The plasmacytoid DCs (pDCs), one of DC subsets, not only induce innate as well as adaptive immune responses by secreting type I interferons and pro-inflammatory cytokines, but also induce IL-10 producing regulatory T cell or anergy or deletion of antigen-specific T cells. We showed here that AhR ligands indoxyl 3-sulfate (I3S) and indole-3-carbinol (I3C) inhibited the development of pDCs derived from bone marrow (BM) precursors induced by FMS-like tyrosine kinase 3 ligand (Flt3L). I3S and I3C downregulated the expression of signal transducer and activator of transcription 3 (STAT3) and E2-2 (Tcf4). In mice orally treated with I3S and I3C, oral tolerance to dinitrofluorobenzene was impaired and the proportion of CD11c+B220+ cells in mesenteric lymph nodes was reduced. These data demonstrate that AhR negatively regulates the development of pDCs from BM precursors induced by Flt3L, probably via repressing the expression of STAT3.
Collapse
Affiliation(s)
- Won-Bhin Hwang
- Department of Biology, Changwon National University, Changwon 51140, Korea
| | - Da-Jeong Kim
- Department of Biology, Changwon National University, Changwon 51140, Korea
| | - Gap-Soo Oh
- Department of Biology, Changwon National University, Changwon 51140, Korea
| | - Joo-Hung Park
- Department of Biology, Changwon National University, Changwon 51140, Korea
| |
Collapse
|
228
|
Guilliams M, Mildner A, Yona S. Developmental and Functional Heterogeneity of Monocytes. Immunity 2018; 49:595-613. [DOI: 10.1016/j.immuni.2018.10.005] [Citation(s) in RCA: 395] [Impact Index Per Article: 65.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/04/2018] [Accepted: 10/02/2018] [Indexed: 02/07/2023]
|
229
|
Schlitzer A, Zhang W, Song M, Ma X. Recent advances in understanding dendritic cell development, classification, and phenotype. F1000Res 2018; 7. [PMID: 30345015 PMCID: PMC6173131 DOI: 10.12688/f1000research.14793.1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/19/2018] [Indexed: 12/14/2022] Open
Abstract
Dendritic cells (DCs) play an essential role in the induction of adaptive immune responses against infectious agents and in the generation of tolerance to self-antigens. In this mini-review, we summarize new evidence suggesting that the tissue of residence significantly shapes the last developmental steps of DCs into locally adapted cellular entities, enabling them to perform tissue-specific tasks while maintaining the core DC properties. We also discuss recent advances that have highlighted DCs’ rather complex phenotypic and functional heterogeneity in the tumor microenvironment, based on their physical characteristics, such as activation status, maturity, and polarization, illustrating a key role for DCs in the induction of anti-tumor immunity.
Collapse
Affiliation(s)
| | - Wei Zhang
- Shanghai Institute of Cancer Research, Shanghai, China
| | - Mei Song
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Xiaojing Ma
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA.,Sheng Yushou Center of Cell Biology and Immunology, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
230
|
Sun L, Rautela J, Delconte RB, Souza-Fonseca-Guimaraes F, Carrington EM, Schenk RL, Herold MJ, Huntington ND, Lew AM, Xu Y, Zhan Y. GM-CSF Quantity Has a Selective Effect on Granulocytic vs. Monocytic Myeloid Development and Function. Front Immunol 2018; 9:1922. [PMID: 30210491 PMCID: PMC6120981 DOI: 10.3389/fimmu.2018.01922] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 08/06/2018] [Indexed: 01/14/2023] Open
Abstract
GM-CSF promotes myeloid differentiation of cultured bone marrow cells into cells of the granulocytic and monocytic lineage; the latter can further differentiate into monocytes/macrophages and dendritic cells. How GM-CSF selects for these different myeloid fates is unresolved. GM-CSF levels can change either iatrogenically (e.g., augmenting leukopoiesis after radiotherapy) or naturally (e.g., during infection or inflammation) resulting in different immunological outcomes. Therefore, we asked whether the dose of GM-CSF may regulate the development of three types of myeloid cells. Here, we showed that GM-CSF acted as a molecular rheostat where the quantity determined which cell type was favored; moreover, the cellular process by which this was achieved was different for each cell type. Thus, low quantities of GM-CSF promoted the granulocytic lineage, mainly through survival. High quantities promoted the monocytic lineage, mainly through proliferation, whereas moderate quantities promoted moDCs, mainly through differentiation. Finally, we demonstrated that monocytes/macrophages generated with different doses of GM-CSF differed in function. We contend that this selective effect of GM-CSF dose on myeloid differentiation and function should be taken into consideration during pathophysiological states that may alter GM-CSF levels and during GM-CSF agonistic or antagonistic therapy.
Collapse
Affiliation(s)
- Li Sun
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, School of Life Science, Anhui Normal University, Wuhu, China
| | - Jai Rautela
- The Walter & Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Rebecca B Delconte
- The Walter & Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Fernando Souza-Fonseca-Guimaraes
- The Walter & Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Emma M Carrington
- The Walter & Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Robyn L Schenk
- The Walter & Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Marco J Herold
- The Walter & Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Nicholas D Huntington
- The Walter & Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Andrew M Lew
- The Walter & Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.,Department of Immunology and Microbiology, University of Melbourne, Parkville, VIC, Australia
| | - Yuekang Xu
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, School of Life Science, Anhui Normal University, Wuhu, China
| | - Yifan Zhan
- The Walter & Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.,Guangzhou Women and Children's Medical Centre, Guangzhou Institute of Pediatrics, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
231
|
Nakamura T, Ushigome H. Myeloid-Derived Suppressor Cells as a Regulator of Immunity in Organ Transplantation. Int J Mol Sci 2018; 19:ijms19082357. [PMID: 30103447 PMCID: PMC6121658 DOI: 10.3390/ijms19082357] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 08/08/2018] [Indexed: 12/16/2022] Open
Abstract
Regulation of allo-immune responses is proposed as a topic for investigation in the current field of organ transplantation. As a regulator, regulatory T cells (Tregs) have received attention due to their ability to control allograft rejection. Concurrently, however, the independent action of Tregs is not enough to achieve tolerance status in many situations. Meanwhile, as a multi-functional regulator, myeloid-derived suppressor cells (MDSCs) can suppress effector T cells as well as induce Tregs or regulatory B cells (Bregs) in certain circumstances. Furthermore, the importance of a crosstalk between MDSCs and natural killer T cells to induce tolerance has been reported. Thus, orchestration between MDSCs, myeloid regulators, T/Bregs and other lymphoid/myeloid regulators can shed light on achieving allogeneic tolerance. Here, we review the current knowledge in terms of immunological regulatory function displayed by MDSCs in the context of organ transplantation. Ideal control of MDSCs would lead to a reduction of allograft rejection and subsequent long-term allograft acceptance.
Collapse
Affiliation(s)
- Tsukasa Nakamura
- Department of Organ Transplantation and General Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan.
| | - Hidetaka Ushigome
- Department of Organ Transplantation and General Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan.
| |
Collapse
|
232
|
Mohammadi S, Memarian A, Sedighi S, Behnampour N, Yazdani Y. Immunoregulatory effects of indole-3-carbinol on monocyte-derived macrophages in systemic lupus erythematosus: A crucial role for aryl hydrocarbon receptor. Autoimmunity 2018; 51:199-209. [PMID: 30289282 DOI: 10.1080/08916934.2018.1494161] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Macrophages are versatile phagocytic cells in immune system with immunoregulatory functions. However, the removal of apoptotic cells by macrophages is disturbed in systemic lupus erythematosus (SLE). Aryl hydrocarbon receptor (AhR) is a ligand-activated cytoplasmic receptor and transcription factor with diverse effects on immune response. Indole-3-carbinol (I3C) is an AhR agonist which has been implicated as a beneficial factor in regulating inflammation and cytokine expression in murine models of SLE. However, the molecular mechanisms are not thoroughly studied. Here, we aimed to investigate the ex vivo effects of I3C on polarization of monocyte-derived macrophages (MDMs) in SLE patients and the expression of regulatory cytokines upon AhR activation. MDMs from 15 newly diagnosed SLE patients and 10 normal subjects were induced by Jurkat apoptotic bodies (JABs) and treated with I3C. I3C enhanced the nuclear accumulation of AhR among MDMs of SLE patients and altered the expression of AhR target genes including CYP1A1, IL1- β, IDO-1 and MRC-1. The imbalanced expression of pro- and anti- inflammatory cytokines (IL-10, IL-12, TGFβ1, TNFα, IL-23, IL-6 and IFN-γ) was compensated in response to I3C. AhR activation was also associated with the overexpression of M2 markers (CD163) and downregulation of M1 markers (CD86). Thus, macrophages are activated alternatively in response to I3C. The obtained data indicate that I3C-mediated AhR activation possess immunoregulatory effects on macrophages of SLE patients by exerting an obvious downregulation in the expression of pro-inflammatory and overexpression of anti-inflammatory cytokines. Therefore, AhR could be targeted and further investigated as a choice of anti-inflammatory therapies for autoimmune disorders such as SLE.
Collapse
Affiliation(s)
- Saeed Mohammadi
- a Stem Cell Research Center , Golestan University of Medical Sciences , Gorgan , Iran
| | - Ali Memarian
- b Golestan Research Center of Gastroenterology and Hepatology , Golestan University of Medical Sciences , Gorgan , Iran
| | - Sima Sedighi
- c Joint, Bone and Connective tissue Research Center (JBCRC) , Golestan University of Medical Sciences , Gorgan , Iran
| | - Nasser Behnampour
- d Department of Biostatistics, Faculty of Health , Golestan University of Medical Sciences , Gorgan , Iran
| | - Yaghoub Yazdani
- e Infectious Diseases Research Center and Laboratory Science Research Center , Golestan University of Medical Sciences , Gorgan , Iran
| |
Collapse
|
233
|
Human in vivo-generated monocyte-derived dendritic cells and macrophages cross-present antigens through a vacuolar pathway. Nat Commun 2018; 9:2570. [PMID: 29967419 PMCID: PMC6028641 DOI: 10.1038/s41467-018-04985-0] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 06/08/2018] [Indexed: 12/20/2022] Open
Abstract
Presentation of exogenous antigens on MHC-I molecules, termed cross-presentation, is essential for cytotoxic CD8+ T cell responses. In mice, dendritic cells (DCs) that arise from monocytes (mo-DCs) during inflammation have a key function in these responses by cross-presenting antigens locally in peripheral tissues. Whether human naturally-occurring mo-DCs can cross-present is unknown. Here, we use human mo-DCs and macrophages directly purified from ascites to address this question. Single-cell RNA-seq data show that ascites CD1c+ DCs contain exclusively monocyte-derived cells. Both ascites mo-DCs and monocyte-derived macrophages cross-present efficiently, but are inefficient for transferring exogenous proteins into their cytosol. Inhibition of cysteine proteases, but not of proteasome, abolishes cross-presentation in these cells. We conclude that human monocyte-derived cells cross-present exclusively using a vacuolar pathway. Finally, only ascites mo-DCs provide co-stimulatory signals to induce effector cytotoxic CD8+ T cells. Our findings thus provide important insights on how to harness cross-presentation for therapeutic purposes.
Collapse
|
234
|
Lamas B, Natividad JM, Sokol H. Aryl hydrocarbon receptor and intestinal immunity. Mucosal Immunol 2018; 11:1024-1038. [PMID: 29626198 DOI: 10.1038/s41385-018-0019-2] [Citation(s) in RCA: 335] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 02/24/2018] [Accepted: 02/26/2018] [Indexed: 02/04/2023]
Abstract
Aryl hydrocarbon receptor (AhR) is a member of the basic helix-loop-helix-(bHLH) superfamily of transcription factors, which are associated with cellular responses to environmental stimuli, such as xenobiotics and oxygen levels. Unlike other members of bHLH, AhR is the only bHLH transcription factor that is known to be ligand activated. Early AhR studies focused on understanding the role of AhR in mediating the toxicity and carcinogenesis properties of the prototypic ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). In recent years, however, it has become apparent that, in addition to its toxicological involvement, AhR is highly receptive to a wide array of endogenous and exogenous ligands, and that its activation leads to a myriad of key host physiological functions. In this study, we review the current understanding of the functions of AhR in the mucosal immune system with a focus on its role in intestinal barrier function and intestinal immune cells, as well as in intestinal homeostasis.
Collapse
Affiliation(s)
- Bruno Lamas
- Laboratoire de biomolécules, LBM, Sorbonne Université, École normale supérieure, PSL Research University, CNRS, INSERM, AP-HP, Hôpital Saint-Antoine, Paris, F-75005, France.,Micalis Institute, Institut National de la Recherche Agronomique (INRA), AgroParisTech, Université Paris-Saclay, Jouy en Josas, 78350, France
| | - Jane M Natividad
- Micalis Institute, Institut National de la Recherche Agronomique (INRA), AgroParisTech, Université Paris-Saclay, Jouy en Josas, 78350, France
| | - Harry Sokol
- Laboratoire de biomolécules, LBM, Sorbonne Université, École normale supérieure, PSL Research University, CNRS, INSERM, AP-HP, Hôpital Saint-Antoine, Paris, F-75005, France. .,Micalis Institute, Institut National de la Recherche Agronomique (INRA), AgroParisTech, Université Paris-Saclay, Jouy en Josas, 78350, France.
| |
Collapse
|
235
|
Cervantes-Barragan L, Colonna M. AHR signaling in the development and function of intestinal immune cells and beyond. Semin Immunopathol 2018; 40:371-377. [PMID: 29951906 DOI: 10.1007/s00281-018-0694-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 06/13/2018] [Indexed: 12/19/2022]
Abstract
The intestinal immune system is challenged daily with the task of recognizing and eliminating pathogens while simultaneously tolerating dietary and commensal antigens. All components must effectively coordinate to differentiate a continual barrage of environmental cues and mount appropriate responses dependent on the nature of the stimuli encountered. Playing a pivotal role, the aryl hydrocarbon receptor (AHR) is a chemical sensor that detects both dietary and microbial cues and is important for development, maintenance, and function of several types of intestinal immune cells, particularly innate lymphoid cells (ILCs) and T cells. In this review, we will highlight recent advances in our knowledge of the role of AHR signaling in ILCs, T cells, B cells, and dendritic cells.
Collapse
Affiliation(s)
- Luisa Cervantes-Barragan
- Department of Pathology and Immunology, Washington University School of Medicine, 660 S. Euclid, St. Louis, MO, 63110, USA
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, 660 S. Euclid, St. Louis, MO, 63110, USA.
| |
Collapse
|
236
|
Remes Lenicov F, Paletta AL, Gonzalez Prinz M, Varese A, Pavillet CE, Lopez Malizia Á, Sabatté J, Geffner JR, Ceballos A. Prostaglandin E2 Antagonizes TGF-β Actions During the Differentiation of Monocytes Into Dendritic Cells. Front Immunol 2018; 9:1441. [PMID: 29988364 PMCID: PMC6023975 DOI: 10.3389/fimmu.2018.01441] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 06/11/2018] [Indexed: 12/27/2022] Open
Abstract
Inflammatory dendritic cells (DCs) are a distinct subset of DCs that derive from circulating monocytes infiltrating injured tissues. Monocytes can differentiate into DCs with different functional signatures, depending on the presence of environment stimuli. Among these stimuli, transforming growth factor-beta (TGF-β) and prostaglandin E2 (PGE2) have been shown to modulate the differentiation of monocytes into DCs with different phenotypes and functional profiles. In fact, both mediators lead to contrasting outcomes regarding the production of inflammatory and anti-inflammatory cytokines. Previously, we have shown that human semen, which contains high concentrations of PGE2, promoted the differentiation of DCs into a tolerogenic profile through a mechanism dependent on signaling by E-prostanoid receptors 2 and 4. Notably, this effect was induced despite the huge concentration of TGF-β present in semen, suggesting that PGE2 overrides the influence exerted by TGF-β. No previous studies have analyzed the joint actions induced by PGE2 and TGF-β on the function of monocytes or DCs. Here, we analyzed the phenotype and functional profile of monocyte-derived DCs differentiated in the presence of TGF-β and PGE2. DC differentiation guided by TGF-β alone enhanced the expression of CD1a and abrogated LPS-induced expression of IL-10, while differentiation in the presence of PGE2 impaired CD1a expression, preserved CD14 expression, abrogated IL-12 and IL-23 production, stimulated IL-10 production, and promoted the expansion of FoxP3+ regulatory T cells in a mixed lymphocyte reaction. Interestingly, DCs differentiated in the presence of TGF-β and PGE2 showed a phenotype and functional profile closely resembling those induced by PGE2 alone. Finally, we found that PGE2 inhibited TGF-β signaling through an action exerted by EP2 and EP4 receptors coupled to cyclic AMP increase and protein kinase A activity. These results indicate that PGE2 suppresses the influence exerted by TGF-β during DC differentiation, imprinting a tolerogenic signature. High concentrations of TGF-β and PGE2 are usually found in infectious, autoimmune, and neoplastic diseases. Our observations suggest that in these scenarios PGE2 might play a mandatory role in the acquisition of a regulatory profile by DCs.
Collapse
Affiliation(s)
- Federico Remes Lenicov
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ana Luz Paletta
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Melina Gonzalez Prinz
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Augusto Varese
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Clara E Pavillet
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Álvaro Lopez Malizia
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Juan Sabatté
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jorge Raul Geffner
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ana Ceballos
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
237
|
Coillard A, Segura E. Visualization of RNA at the Single Cell Level by Fluorescent in situ Hybridization Coupled to Flow Cytometry. Bio Protoc 2018; 8:e2892. [PMID: 34286001 DOI: 10.21769/bioprotoc.2892] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/22/2018] [Accepted: 05/31/2018] [Indexed: 11/02/2022] Open
Abstract
The protocol described here has been developed to detect RNA at the single cell level. Fluorescent probes hybridize to target RNAs and are detected by flow cytometry after multiple amplification steps. Different types of RNA can be detected such as mRNA, long noncoding RNA, viral RNA or telomere RNA and up to 4 different target probes can be used simultaneously. We used this protocol to specifically measure the expression of two transcription factor mRNAs, MAFB and IRF4, in human monocytes.
Collapse
Affiliation(s)
- Alice Coillard
- Institut Curie, PSL Research University, INSERM U932, Paris, France
| | - Elodie Segura
- Institut Curie, PSL Research University, INSERM U932, Paris, France
| |
Collapse
|
238
|
Kim CH. Immune regulation by microbiome metabolites. Immunology 2018; 154:220-229. [PMID: 29569377 PMCID: PMC5980225 DOI: 10.1111/imm.12930] [Citation(s) in RCA: 210] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 02/18/2018] [Accepted: 03/06/2018] [Indexed: 02/06/2023] Open
Abstract
Commensal microbes and the host immune system have been co-evolved for mutual regulation. Microbes regulate the host immune system, in part, by producing metabolites. A mounting body of evidence indicates that diverse microbial metabolites profoundly regulate the immune system via host receptors and other target molecules. Immune cells express metabolite-specific receptors such as P2X7 , GPR41, GPR43, GPR109A, aryl hydrocarbon receptor precursor (AhR), pregnane X receptor (PXR), farnesoid X receptor (FXR), TGR5 and other molecular targets. Microbial metabolites and their receptors form an extensive array of signals to respond to changes in nutrition, health and immunological status. As a consequence, microbial metabolite signals contribute to nutrient harvest from diet, and regulate host metabolism and the immune system. Importantly, microbial metabolites bidirectionally function to promote both tolerance and immunity to effectively fight infection without developing inflammatory diseases. In pathogenic conditions, adverse effects of microbial metabolites have been observed as well. Key immune-regulatory functions of the metabolites, generated from carbohydrates, proteins and bile acids, are reviewed in this article.
Collapse
Affiliation(s)
- Chang H. Kim
- Department of Pathology and Mary H. Weiser Food Allergy CenterUniversity of Michigan Medical SchoolAnn ArborMIUSA
| |
Collapse
|
239
|
Poulin LF, Lasseaux C, Chamaillard M. Understanding the Cellular Origin of the Mononuclear Phagocyte System Sheds Light on the Myeloid Postulate of Immune Paralysis in Sepsis. Front Immunol 2018; 9:823. [PMID: 29740436 PMCID: PMC5928298 DOI: 10.3389/fimmu.2018.00823] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 04/04/2018] [Indexed: 12/31/2022] Open
Abstract
Sepsis, in essence, is a serious clinical condition that can subsequently result in death as a consequence of a systemic inflammatory response syndrome including febrile leukopenia, hypotension, and multiple organ failures. To date, such life-threatening organ dysfunction remains one of the leading causes of death in intensive care units, with an increasing incidence rate worldwide and particularly within the rapidly growing senior population. While most of the clinical trials are aimed at dampening the overwhelming immune response to infection that spreads through the bloodstream, based on several human immunological investigations, it is now widely accepted that susceptibility to nosocomial infections and long-term sepsis mortality involves an immunosuppressive phase that is characterized by a decrease in some subsets of dendritic cells (DCs). Only recently substantial advances have been made in terms of the origin of the mononuclear phagocyte system that is now likely to allow for a better understanding of how the paralysis of DCs leads to sepsis-related death. Indeed, the unifying view of each subset of DCs has already improved our understanding of the pivotal pathways that contribute to the shift in commitment of their progenitors that originate from the bone marrow. It is quite plausible that this anomaly in sepsis may occur at the single level of DC-committed precursors, and elucidating the immunological basis for such a derangement during the ontogeny of each subset of DCs is now of particular importance for restoring an adequate cell fate decision to their vulnerable progenitors. Last but not least, it provides a direct perspective on the development of sophisticated myelopoiesis-based strategies that are currently being considered for the treatment of immunosenescence within different tissue microenvironments, such as the kidney and the spleen.
Collapse
Affiliation(s)
- Lionel Franz Poulin
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Corentin Lasseaux
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Mathias Chamaillard
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| |
Collapse
|
240
|
Taborska P, Bartunkova J, Smrz D. Simultaneous in vitro generation of human CD34 +-derived dendritic cells and mast cells from non-mobilized peripheral blood mononuclear cells. J Immunol Methods 2018; 458:63-73. [PMID: 29684429 DOI: 10.1016/j.jim.2018.04.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/17/2017] [Accepted: 04/18/2018] [Indexed: 10/17/2022]
Abstract
Dendritic cells (DCs) and mast cells (MCs) are key players of the immune system, often coming in close proximity in peripheral tissues. The interplay of these cells is, however, still poorly understood, especially with regards to human cells. The reason for that is the absence of a well established in vitro human cell-based study system that would allow a simultaneous preparation of both cell types. In this study, we show a method for simultaneous generation of DCs and MCs from CD34+ stem cell progenitors that were isolated from the non-adherent fraction of non-mobilized peripheral blood mononuclear cells of healthy donors. We observed that combining stem cells factor (SCF), IL-3 and GM-CSF in serum-free StemPro-34 medium allowed CD34+ cells isolated from an equivalent of 450 ml of peripheral blood to expand to 10-92 × 106 cells after 7 weeks of culturing. These cultures comprised of 6-53% of DCs and 1-21% of MCs as determined by the expression of, respectively, CD11c/HLA-DR or CD117/FcεRI. The DCs were CD1a-CD14-, did not express co-stimulatory molecules CD80 and CD83 and chemokine receptor CCR7. However, the DCs expressed co-stimulatory molecule CD86, and had a capacity to uptake dextran, phagocyte latex particles and induce alloreactivity. MCs, on the other hand, degranulated after crosslinking of FcεRI-bound IgE as determined by the externalization of CD107b. Collectively, our data show that CD34+-derived human DCs and MCs can be generated in a single culture using CD34+ cells isolated from non-mobilized human peripheral blood and that this method may allow ex vivo studies on DC-MC interplay in human system.
Collapse
Affiliation(s)
- Pavla Taborska
- Institute of Immunology, Charles University, 2nd Faculty of Medicine, University Hospital Motol, Czech Republic
| | - Jirina Bartunkova
- Institute of Immunology, Charles University, 2nd Faculty of Medicine, University Hospital Motol, Czech Republic
| | - Daniel Smrz
- Institute of Immunology, Charles University, 2nd Faculty of Medicine, University Hospital Motol, Czech Republic.
| |
Collapse
|
241
|
Zhao Y, Zou W, Du J, Zhao Y. The origins and homeostasis of monocytes and tissue‐resident macrophages in physiological situation. J Cell Physiol 2018; 233:6425-6439. [PMID: 29323706 DOI: 10.1002/jcp.26461] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 01/05/2018] [Indexed: 12/23/2022]
Affiliation(s)
- Yang Zhao
- State Key Laboratory of Membrane Biology Institute of Zoology, Chinese Academy of Sciences Beijing China
- The Comprehensive Cancer Center Affiliated Drum Tower Hospital of Nanjing University Medical School Nanjing China
| | - Weilong Zou
- Surgery of Transplant and Hepatopancrobiliary The General Hospital of Chinese People's Armed Police Forces Beijing China
| | - Junfeng Du
- Department of General Surgery PLA Army General Hospital Beijing China
| | - Yong Zhao
- State Key Laboratory of Membrane Biology Institute of Zoology, Chinese Academy of Sciences Beijing China
| |
Collapse
|
242
|
Glyteer, Soybean Tar, Impairs IL-4/Stat6 Signaling in Murine Bone Marrow-Derived Dendritic Cells: The Basis of Its Therapeutic Effect on Atopic Dermatitis. Int J Mol Sci 2018; 19:ijms19041169. [PMID: 29649105 PMCID: PMC5979322 DOI: 10.3390/ijms19041169] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 04/09/2018] [Accepted: 04/10/2018] [Indexed: 01/22/2023] Open
Abstract
Atopic dermatitis (AD) is a common inflammatory skin disease. Recent studies have revealed the involvement of T helper (Th)2 cytokines including Interleukin 4 (IL-4) in the pathogenesis of AD. Since epidermal Langerhans cells (LCs) and dermal myeloid dendritic cells (DCs) produce CCL17 and CCL22 that chemoattract Th2 cells, interfering with CCL17 and CCL22 production from LCs and dermal myeloid DCs may be beneficial in the treatment of AD. To investigate this, we stimulated murine bone marrow-derived DCs (BMDCs) with IL-4. IL-4 stimulation produced Ccl17 and Ccl22, which was attenuated by soybean tar Glyteer, a known aryl hydrocarbon receptor (Ahr) activator. Notably, Glyteer treatment blocked the nuclear translocation of Stat6 induced by IL-4 stimulation, suggesting that this treatment impairs the IL-4/Stat6 signaling pathway in BMDCs. Unexpectedly, Glyteer treatment did not potently upregulate the expression of Cyp1a1, a specific Ahr-responsive gene, suggesting that its inhibitory machinery for Ccl17 and Ccl22 expression is likely to operate in an Ahr-independent manner. These findings indicate that Glyteer may exhibit therapeutic potential for AD by downregulating the CCL17 and CCL22 production from DCs in a Th2-deviated microenvironment.
Collapse
|
243
|
Cochain C, Vafadarnejad E, Arampatzi P, Pelisek J, Winkels H, Ley K, Wolf D, Saliba AE, Zernecke A. Single-Cell RNA-Seq Reveals the Transcriptional Landscape and Heterogeneity of Aortic Macrophages in Murine Atherosclerosis. Circ Res 2018; 122:1661-1674. [PMID: 29545365 DOI: 10.1161/circresaha.117.312509] [Citation(s) in RCA: 531] [Impact Index Per Article: 88.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 02/16/2018] [Accepted: 03/14/2018] [Indexed: 02/05/2023]
Abstract
RATIONALE It is assumed that atherosclerotic arteries contain several macrophage subsets endowed with specific functions. The precise identity of these subsets is poorly characterized as they have been defined by the expression of a restricted number of markers. OBJECTIVE We have applied single-cell RNA sequencing as an unbiased profiling strategy to interrogate and classify aortic macrophage heterogeneity at the single-cell level in atherosclerosis. METHOD AND RESULTS We performed single-cell RNA sequencing of total aortic CD45+ cells extracted from the nondiseased (chow fed) and atherosclerotic (11 weeks of high-fat diet) aorta of low-density lipoprotein receptor-deficient (Ldlr-/-) mice. Unsupervised clustering singled out 13 distinct aortic cell clusters. Among the myeloid cell populations, resident-like macrophages with a gene expression profile similar to aortic resident macrophages were found in healthy and diseased aortas, whereas monocytes, monocyte-derived dendritic cells, and 2 populations of macrophages were almost exclusively detectable in atherosclerotic aortas, comprising inflammatory macrophages showing enrichment in Il1b and previously undescribed TREM2hi (triggered receptor expressed on myeloid cells 2) macrophages showing enrichment in Trem2. Differential gene expression and gene ontology enrichment analyses revealed specific gene expression patterns distinguishing these 3 macrophage subsets and monocyte-derived dendritic cells and uncovered putative functions of each cell type. Notably, TREM2hi macrophages seemed to be endowed with specialized functions in lipid metabolism and catabolism and presented a gene expression signature reminiscent of osteoclasts, suggesting a role in lesion calcification. TREM2 expression was moreover detected in human lesional macrophages. Importantly, these macrophage populations were present also in advanced atherosclerosis and in Apoe-/- aortas, indicating relevance of our findings in different stages of atherosclerosis and mouse models. CONCLUSIONS These data unprecedentedly uncovered the transcriptional landscape and phenotypic heterogeneity of aortic macrophages and monocyte-derived dendritic cells in atherosclerotic and identified previously unrecognized macrophage populations and their gene expression signature, suggesting specialized functions. Our findings will open up novel opportunities to explore distinct myeloid cell populations and their functions in atherosclerosis.
Collapse
Affiliation(s)
- Clément Cochain
- From the Institute of Experimental Biomedicine (C.C., A.Z.).,University Hospital Würzburg, Germany; Comprehensive Heart Failure Center, Würzburg, Germany (C.C.)
| | - Ehsan Vafadarnejad
- Helmholtz Institute for RNA-based Infection Research, Würzburg, Germany (E.V., A.-E.S.)
| | | | - Jaroslav Pelisek
- Department of Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany (J.P.)
| | - Holger Winkels
- La Jolla Institute for Allergy and Immunology, CA (H.W., K.L., D.W.)
| | - Klaus Ley
- La Jolla Institute for Allergy and Immunology, CA (H.W., K.L., D.W.)
| | - Dennis Wolf
- La Jolla Institute for Allergy and Immunology, CA (H.W., K.L., D.W.).,Department of Cardiology and Angiology I, Faculty of Medicine, University Heart Center, University of Freiburg, Germany (D.W.)
| | | | - Alma Zernecke
- From the Institute of Experimental Biomedicine (C.C., A.Z.)
| |
Collapse
|
244
|
Tcyganov E, Mastio J, Chen E, Gabrilovich DI. Plasticity of myeloid-derived suppressor cells in cancer. Curr Opin Immunol 2018; 51:76-82. [PMID: 29547768 DOI: 10.1016/j.coi.2018.03.009] [Citation(s) in RCA: 268] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 01/25/2018] [Accepted: 03/01/2018] [Indexed: 01/12/2023]
Abstract
In recent years, myeloid-derived suppressor cells (MDSC) have emerged as one of the major inhibitors of immune effector cell function in cancer. MDSC represent a heterogeneous population of largely immature myeloid cells that are characterized by a pathological state of activation and display potent immune suppressive activity. Two major subsets of MDSC have been identified: monocytic (M-MDSC) and polymorphonuclear (PMN-MDSC). PMN-MSDC share phenotypic and morphologic features with neutrophils, whereas M-MDSC are similar to monocytes and are characterized by high plasticity. Differentiation of M-MDSC to macrophages and dendritic cells is shaped by tumor microenvironment. In recent years, the mechanisms of this process start to emerge.
Collapse
Affiliation(s)
| | - Jerome Mastio
- The Wistar Institute, Philadelphia, PA 19104, United States
| | - Eric Chen
- University of Pennsylvania, Philadelphia, PA, United States
| | - Dmitry I Gabrilovich
- The Wistar Institute, Philadelphia, PA 19104, United States; University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
245
|
Baranska A, Shawket A, Jouve M, Baratin M, Malosse C, Voluzan O, Vu Manh TP, Fiore F, Bajénoff M, Benaroch P, Dalod M, Malissen M, Henri S, Malissen B. Unveiling skin macrophage dynamics explains both tattoo persistence and strenuous removal. J Exp Med 2018; 215:1115-1133. [PMID: 29511065 PMCID: PMC5881467 DOI: 10.1084/jem.20171608] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 12/14/2017] [Accepted: 02/06/2018] [Indexed: 12/24/2022] Open
Abstract
Here we describe a new mouse model that exploits the pattern of expression of the high-affinity IgG receptor (CD64) and allows diphtheria toxin (DT)-mediated ablation of tissue-resident macrophages and monocyte-derived cells. We found that the myeloid cells of the ear skin dermis are dominated by DT-sensitive, melanin-laden cells that have been missed in previous studies and correspond to macrophages that have ingested melanosomes from neighboring melanocytes. Those cells have been referred to as melanophages in humans. We also identified melanophages in melanocytic melanoma. Benefiting of our knowledge on melanophage dynamics, we determined the identity, origin, and dynamics of the skin myeloid cells that capture and retain tattoo pigment particles. We showed that they are exclusively made of dermal macrophages. Using the possibility to delete them, we further demonstrated that tattoo pigment particles can undergo successive cycles of capture-release-recapture without any tattoo vanishing. Therefore, congruent with dermal macrophage dynamics, long-term tattoo persistence likely relies on macrophage renewal rather than on macrophage longevity.
Collapse
Affiliation(s)
- Anna Baranska
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS UMR, Marseille, France
| | - Alaa Shawket
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS UMR, Marseille, France
| | | | - Myriam Baratin
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS UMR, Marseille, France
| | - Camille Malosse
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS UMR, Marseille, France
| | - Odessa Voluzan
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS UMR, Marseille, France
| | - Thien-Phong Vu Manh
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS UMR, Marseille, France
| | - Frédéric Fiore
- Centre d'Immunophénomique, Aix Marseille Université, INSERM, CNRS, Marseille, France
| | - Marc Bajénoff
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS UMR, Marseille, France
| | | | - Marc Dalod
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS UMR, Marseille, France
| | - Marie Malissen
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS UMR, Marseille, France.,Centre d'Immunophénomique, Aix Marseille Université, INSERM, CNRS, Marseille, France
| | - Sandrine Henri
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS UMR, Marseille, France
| | - Bernard Malissen
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS UMR, Marseille, France .,Centre d'Immunophénomique, Aix Marseille Université, INSERM, CNRS, Marseille, France
| |
Collapse
|
246
|
Cheong JE, Sun L. Targeting the IDO1/TDO2–KYN–AhR Pathway for Cancer Immunotherapy – Challenges and Opportunities. Trends Pharmacol Sci 2018; 39:307-325. [PMID: 29254698 DOI: 10.1016/j.tips.2017.11.007] [Citation(s) in RCA: 284] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/15/2017] [Accepted: 11/21/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Jae Eun Cheong
- Center for Drug Discovery and Translational Research, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Lijun Sun
- Center for Drug Discovery and Translational Research, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
247
|
Li S, Bostick JW, Zhou L. Regulation of Innate Lymphoid Cells by Aryl Hydrocarbon Receptor. Front Immunol 2018; 8:1909. [PMID: 29354125 PMCID: PMC5760495 DOI: 10.3389/fimmu.2017.01909] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 12/14/2017] [Indexed: 12/20/2022] Open
Abstract
With striking similarity to their adaptive T helper cell counterparts, innate lymphoid cells (ILCs) represent an emerging family of cell types that express signature transcription factors, including T-bet+ Eomes+ natural killer cells, T-bet+ Eomes- group 1 ILCs, GATA3+ group 2 ILCs, RORγt+ group 3 ILCs, and newly identified Id3+ regulatory ILC. ILCs are abundantly present in barrier tissues of the host (e.g., the lung, gut, and skin) at the interface of host-environment interactions. Active research has been conducted to elucidate molecular mechanisms underlying the development and function of ILCs. The aryl hydrocarbon receptor (Ahr) is a ligand-dependent transcription factor, best known to mediate the effects of xenobiotic environmental toxins and endogenous microbial and dietary metabolites. Here, we review recent progresses regarding Ahr function in ILCs. We focus on the Ahr-mediated cross talk between ILCs and other immune/non-immune cells in host tissues especially in the gut. We discuss the molecular mechanisms of the action of Ahr expression and activity in regulation of ILCs in immunity and inflammation, and the interaction between Ahr and other pathways/transcription factors in ILC development and function with their implication in disease.
Collapse
Affiliation(s)
- Shiyang Li
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - John W. Bostick
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, United States
| | - Liang Zhou
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|
248
|
Bonnardel J, Guilliams M. Developmental control of macrophage function. Curr Opin Immunol 2017; 50:64-74. [PMID: 29247852 DOI: 10.1016/j.coi.2017.12.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 11/15/2017] [Accepted: 12/01/2017] [Indexed: 12/24/2022]
Abstract
The combination between novel fate-mapping tools and single-cell RNA-sequencing technology has revealed the presence of multiple macrophage progenitors. This raises the fascinating possibility that what was once perceived as immense functional plasticity of macrophages could in fact come down to separate macrophage subsets performing distinct functions because of their differential cellular origin. The question of macrophage plasticity versus macrophage heterogeneity is broader than the difference between macrophages of embryonic or adult hematopoietic origin and is particularly relevant in the context of inflammation. In this manuscript, we review the potential impact of cellular origin on the function of macrophages. We also highlight the need for novel 'functional fate-mapping' tools that would reveal the history of the functional state of macrophages, rather than their cellular origin, in order to finally study their true plasticity in vivo.
Collapse
Affiliation(s)
- Johnny Bonnardel
- Laboratory of Myeloid Cell Ontogeny and Functional Specialisation, VIB Centre for Inflammation Research, Ghent 9052, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| | - Martin Guilliams
- Laboratory of Myeloid Cell Ontogeny and Functional Specialisation, VIB Centre for Inflammation Research, Ghent 9052, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| |
Collapse
|
249
|
Lasseaux C, Fourmaux MP, Chamaillard M, Poulin LF. Type I interferons drive inflammasome-independent emergency monocytopoiesis during endotoxemia. Sci Rep 2017; 7:16935. [PMID: 29209091 PMCID: PMC5717267 DOI: 10.1038/s41598-017-16869-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 11/15/2017] [Indexed: 12/24/2022] Open
Abstract
Emergency monocytopoiesis is an inflammation-driven hematological process that supplies the periphery with monocytes and subsequently with macrophages and monocyte-derived dendritic cells. Yet, the regulatory mechanisms by which early bone marrow myeloid progenitors commit to monocyte-derived phagocytes during endotoxemia remains elusive. Herein, we show that type I interferons signaling promotes the differentiation of monocyte-derived phagocytes at the level of their progenitors during a mouse model of endotoxemia. In this model, we characterized early changes in the numbers of conventional dendritic cells, monocyte-derived antigen-presenting cells and their respective precursors. While loss of caspase-1/11 failed to impair a shift toward monocytopoiesis, we observed sustained type-I-IFN-dependent monocyte progenitors differentiation in the bone marrow correlated to an accumulation of Mo-APCs in the spleen. Importantly, IFN-alpha and -beta were found to efficiently generate the development of monocyte-derived antigen-presenting cells while having no impact on the precursor activity of conventional dendritic cells. Consistently, the LPS-driven decrease of conventional dendritic cells and their direct precursor occurred independently of type-I-IFN signaling in vivo. Our characterization of early changes in mononuclear phagocytes and their dependency on type I IFN signaling during sepsis opens the way to the development of treatments for limiting the immunosuppressive state associated with sepsis.
Collapse
Affiliation(s)
- Corentin Lasseaux
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, F-59000, Lille, France
| | - Marie-Pierre Fourmaux
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, F-59000, Lille, France
| | - Mathias Chamaillard
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, F-59000, Lille, France
| | - Lionel Franz Poulin
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, F-59000, Lille, France.
| |
Collapse
|
250
|
Abstract
PURPOSE OF REVIEW The purpose of the study was to review the characteristics of renal macrophages and dendritic cells during homeostasis and disease, with a particular focus on lupus nephritis. RECENT FINDINGS Resident renal macrophages derive from embryonic sources and are long-lived and self-renewing; they are also replaced from the bone marrow with age. The unique characteristics of macrophages in each tissue are imposed by the microenvironment and reinforced by epigenetic modifications. In acute renal injury, inflammatory macrophages are rapidly recruited and then replaced by those with a wound healing/resolution phenotype. In lupus nephritis, dendritic cells infiltrate the kidneys and function to present antigen and organize tertiary lymphoid structures that amplify inflammation. In addition, both infiltrating and resident macrophages contribute to ongoing injury. These cells have a mixed inflammatory and alternatively activated phenotype that may reflect failed resolution, potentially leading to tissue fibrosis and irreversible damage. A further understanding of the renal inflammatory cells that mediate tissue injury and fibrosis should lead to new therapies to help preserve renal function in patients with lupus nephritis.
Collapse
Affiliation(s)
- Naomi I Maria
- Center for Autoimmunity and Musculoskeletal Diseases, Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, New York, NY, 11030, USA
| | - Anne Davidson
- Center for Autoimmunity and Musculoskeletal Diseases, Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, New York, NY, 11030, USA.
| |
Collapse
|