201
|
Rajendran NK, Liu W, Cahill PA, Redmond EM. Alcohol and vascular endothelial function: Biphasic effect highlights the importance of dose. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2023; 47:1467-1477. [PMID: 37369447 PMCID: PMC10751391 DOI: 10.1111/acer.15138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/13/2023] [Accepted: 06/18/2023] [Indexed: 06/29/2023]
Abstract
BACKGROUND Alcohol (ethanol) consumption has different influences on arterial disease, being protective or harmful depending on the amount and pattern of consumption. The mechanisms mediating these biphasic effects are unknown. Whereas endothelial cells play a critical role in maintaining arterial health, this study compared the effects of moderate and high alcohol concentrations on endothelial cell function. METHODS Human coronary artery endothelial cells (HCAEC) were treated with levels of ethanol associated with either low-risk/moderate drinking (i.e., 25 mM) or high-risk/heavy drinking (i.e., 50 mM) after which endothelial function was assessed. The effect of ethanol's primary metabolite acetaldehyde (10 and 25 μM) was also determined. RESULTS Moderate ethanol exposure (25 mM) improved HCAEC barrier integrity as determined by increased transendothelial electrical resistance (TEER), inhibited cell adhesion molecule (CAM) mRNA expression, decreased inflammatory cytokine (interferon-γ and interleukin 6) production, inhibited monocyte chemotactic protein-1 (MCP-1) expression and monocyte adhesion, and increased homeostatic Notch signaling. In contrast, exposure to high-level ethanol (50 mM) decreased TEER, increased CAM expression and inflammatory cytokine production, and stimulated MCP-1 and monocyte adhesion, with no effect on Notch signaling. Reactive oxygen species (ROS) generation and endothelial nitric oxide synthase activity were increased by both alcohol treatments, and to a greater extent in the 50 mM ethanol group. Acetaldehyde-elicited responses were generally the same as those of the high-level ethanol group. CONCLUSIONS Ethanol has biphasic effects on several endothelial functions such that a moderate level maintains the endothelium in a nonactivated state, whereas high-level ethanol causes endothelial dysfunction, as does acetaldehyde. These data show the importance of dose when considering ethanol's effects on arterial endothelium, and could explain, in part, the J-shaped relationship between alcohol concentration and atherosclerosis reported in some epidemiologic studies.
Collapse
Affiliation(s)
- Naresh K Rajendran
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Weimin Liu
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Paul A Cahill
- Vascular Biology and Therapeutics Laboratory, School of Biotechnology, Dublin City University, Dublin, Ireland
| | - Eileen M Redmond
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
202
|
Chen R, Long S, Ren L, Xu S, Liu X, Shi J, Liu J, Ma D, Zhou P, Ren L. The Role of Macrophage Phenotype in the Vascularization of Prevascularized Human Bone Marrow Mesenchymal Stem Cell Sheets. Stem Cells Dev 2023; 32:504-514. [PMID: 37119121 DOI: 10.1089/scd.2022.0268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023] Open
Abstract
With the development of tissue engineering and regenerative medicine, prevascularized bone marrow mesenchymal stem cell (BMSC) sheets have been regarded as a promising method for tissue regeneration. Furthermore, the inflammatory response is one of the main regulators of vascularization and the restoration of engineered tissue function; among them, macrophages and cytokines produced by them are considered to be the decisive factors of the downstream outcomes. This study investigated the effect of macrophages on the formation of microvascular-like structures of human umbilical vein endothelial cells (HUVECs) in BMSC sheets. First, a human monocytic leukemia cell line (THP-1 cells) was differentiated into derived macrophages (M0) with phorbol 12-myristate 13-acetate and further activated into proinflammatory macrophages (M1 macrophages) with interferon-γ and lipopolysaccharide or anti-inflammatory macrophages (M2 macrophages) with interleukin-4. Then, HUVECs and prevascularized sheets were treated with conditioned media (CM) from different macrophages, and the impact of macrophage phenotypes on vascularized network formation in prevascularized cell sheets was examined by hematoxylin and eosin staining, CD31 immunofluorescence staining and enzyme-linked immunosorbent assay. Our study showed that macrophages may guide the arrangement of endothelial cells through a paracrine pathway. Cell sheets that were cultured in the CM from M2 macrophages were thinner than those cultured in other media. At various time points, the levels of tumor necrosis factor alpha and vascular endothelial growth factor in prevascularized sheets cultured with CM(M1) was higher than that in sheets cultured with other media; however, the levels of platelet-derived growth factor in prevascularized sheets cultured with CM(M2) was higher than that in sheets cultured with other media. These findings suggest that the paracrine effect of macrophages can influence the formation of microvascular networks in prevascularized sheets by regulating the arrangement of cells, the thickness of the cell sheet and the secretion of cytokines related to angiogenesis. Macrophages with different phenotypes have unique effects on prevascularized sheets.
Collapse
Affiliation(s)
- Rui Chen
- Department of Orthodontics, School and Hospital of Stomatology, Lanzhou University, Lanzhou, PR China
| | - Siqi Long
- Department of Orthodontics, School and Hospital of Stomatology, Lanzhou University, Lanzhou, PR China
- Department of Orthodontics, West China School of Stomatology, Sichuan University, Chengdu, PR China
| | - Lina Ren
- Department of Orthodontics, School and Hospital of Stomatology, Lanzhou University, Lanzhou, PR China
| | - Sen Xu
- Department of Orthodontics, School and Hospital of Stomatology, Lanzhou University, Lanzhou, PR China
| | - Xiaoning Liu
- Department of Orthodontics, School and Hospital of Stomatology, Lanzhou University, Lanzhou, PR China
| | - Jiamin Shi
- College of Life Sciences, Lanzhou University, Lanzhou, PR China
| | - Jiaxin Liu
- Department of Orthodontics, School and Hospital of Stomatology, Lanzhou University, Lanzhou, PR China
| | - Dongyang Ma
- Department of Oral and Maxillofacial Surgery, The 940th Hospital of Joint Logistics Support Force of PLA, Lanzhou, PR China
| | - Ping Zhou
- Department of Orthodontics, School and Hospital of Stomatology, Lanzhou University, Lanzhou, PR China
| | - Liling Ren
- Department of Orthodontics, School and Hospital of Stomatology, Lanzhou University, Lanzhou, PR China
| |
Collapse
|
203
|
Lykov AP, Belogorodtsev SN, Nemkova EK, Vetlugina A, Terekhova TM, Schwartz YS. The Formation of Non-Specific Immunological Memory Phenotype in Human Monocyte-Like THP-1 and U-937 Cell Lines. Bull Exp Biol Med 2023; 175:477-480. [PMID: 37770781 DOI: 10.1007/s10517-023-05890-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Indexed: 09/30/2023]
Abstract
We studied the formation of the phenotype of non-specific immunological memory (trained immunity) in human monocyte-like THP-1 and U-937 cell lines. The absence of the lag phase after primary contact with the pathogen (Mycobacterium bovis, BCG vaccine) does not contribute to the formation of the trained immunity phenotype in the cells. The presence of the lag phase promotes the development of the trained immunity phenotype, especially in THP-1 cells. The second stimulation (bacterial LPS) did not increase the production of lactate, nitric oxide, and glucose consumption by cells, which can be a consequence of the Warburg phenomenon in these monocyte-like human cell lines.
Collapse
Affiliation(s)
- A P Lykov
- Novosibirsk Research Institute of Tuberculosis, Ministry of Health of the Russian Federation, Novosibirsk, Russia.
| | - S N Belogorodtsev
- Novosibirsk Research Institute of Tuberculosis, Ministry of Health of the Russian Federation, Novosibirsk, Russia
| | - E K Nemkova
- Novosibirsk Research Institute of Tuberculosis, Ministry of Health of the Russian Federation, Novosibirsk, Russia
| | - A Vetlugina
- Novosibirsk Research Institute of Tuberculosis, Ministry of Health of the Russian Federation, Novosibirsk, Russia
| | - T M Terekhova
- Novosibirsk Research Institute of Tuberculosis, Ministry of Health of the Russian Federation, Novosibirsk, Russia
| | - Y Sh Schwartz
- Novosibirsk Research Institute of Tuberculosis, Ministry of Health of the Russian Federation, Novosibirsk, Russia
| |
Collapse
|
204
|
Shevade K, Peddada S, Mader K, Przybyla L. Functional genomics in stem cell models: considerations and applications. Front Cell Dev Biol 2023; 11:1236553. [PMID: 37554308 PMCID: PMC10404852 DOI: 10.3389/fcell.2023.1236553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/13/2023] [Indexed: 08/10/2023] Open
Abstract
Protocols to differentiate human pluripotent stem cells have advanced in terms of cell type specificity and tissue-level complexity over the past 2 decades, which has facilitated human disease modeling in the most relevant cell types. The ability to generate induced PSCs (iPSCs) from patients further enables the study of disease mutations in an appropriate cellular context to reveal the mechanisms that underlie disease etiology and progression. As iPSC-derived disease models have improved in robustness and scale, they have also been adopted more widely for use in drug screens to discover new therapies and therapeutic targets. Advancement in genome editing technologies, in particular the discovery of CRISPR-Cas9, has further allowed for rapid development of iPSCs containing disease-causing mutations. CRISPR-Cas9 technologies have now evolved beyond creating single gene edits, aided by the fusion of inhibitory (CRISPRi) or activation (CRISPRa) domains to a catalytically dead Cas9 protein, enabling inhibition or activation of endogenous gene loci. These tools have been used in CRISPR knockout, CRISPRi, or CRISPRa screens to identify genetic modifiers that synergize or antagonize with disease mutations in a systematic and unbiased manner, resulting in identification of disease mechanisms and discovery of new therapeutic targets to accelerate drug discovery research. However, many technical challenges remain when applying large-scale functional genomics approaches to differentiated PSC populations. Here we review current technologies in the field of iPSC disease modeling and CRISPR-based functional genomics screens and practical considerations for implementation across a range of modalities, applications, and disease areas, as well as explore CRISPR screens that have been performed in iPSC models to-date and the insights and therapies these screens have produced.
Collapse
Affiliation(s)
- Kaivalya Shevade
- Laboratory for Genomics Research, San Francisco, CA, United States
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, United States
| | - Sailaja Peddada
- Laboratory for Genomics Research, San Francisco, CA, United States
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, United States
| | - Karl Mader
- Laboratory for Genomics Research, San Francisco, CA, United States
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, United States
| | - Laralynne Przybyla
- Laboratory for Genomics Research, San Francisco, CA, United States
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
205
|
DU Y, Liu X, Xiao C, Li J, Sheng Z, Wang Y, Wang R, Yu X. TIPE2 regulates periodontal inflammation by inhibiting NF-κB p65 phosphorylation. J Appl Oral Sci 2023; 31:e20230162. [PMID: 37493703 PMCID: PMC10382077 DOI: 10.1590/1678-7757-2023-0162] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/16/2023] [Indexed: 07/27/2023] Open
Abstract
BACKGROUND The roles and molecular mechanisms of tumor necrosis factor-α-induced protein 8-like 2 (TIPE2) in periodontitis remain largely unknown. OBJECTIVE This study aimed to determine the expression of TIPE2 and NF-κB p65 in rat Porphyromonas gingivalis-induced periodontics in vivo. METHODOLOGY Periodontal inflammation and alveolar bone resorption were analyzed using western blotting, micro-computed tomography, TRAP staining, immunohistochemistry, and immunofluorescence. THP-1 monocytes were stimulated using 1 μg/ml Pg. lipopolysaccharide (Pg.LPS) to determine the expression of TIPE2 in vitro. TIPE2 mRNA was suppressed by siRNA transfection, and the transfection efficiency was proven using western blotting and real-time PCR. The NF-κB pathway was activated by treating the cells with 1 μg/ml Pg.LPS to explore related mechanisms. RESULTS The expression of both TIPE2 and NF-κB p65 was increased in the gingival tissues of rat periodontitis compared with normal tissues. Positive expression of TIPE2 was distributed in inflammatory infiltrating cells and osteoclasts in the marginal lacunae of the alveolar bone. However, strong positive expression of TIPE2 in THP-1 was downregulated after Pg.LPS stimulation. TIPE2 levels negatively correlated with TNF-α and IL-1β. Decreased TIPE2 in THP-1 further promoted NF-κB p65 phosphorylation. Mechanistically, TIPE2 knockdown upregulated NF-κB signaling pathway activity. CONCLUSIONS Taken together, these findings demonstrate that TIPE2 knockdown aggravates periodontal inflammatory infiltration via NF-κB pathway. Interventions aimed at increasing TIPE2 may help in the therapeutic applications for periodontitis.
Collapse
Affiliation(s)
- Yanmei DU
- Jinan Stamotological Hospital, Jinan Key Laboratory of Oral Tissue Regeneration, Shandong Provincial Health Commission Key Laboratory of Oral Diseases and Tissue Regeneration, Shandong Province, China
| | - Xiaohua Liu
- Jinan Stamotological Hospital, Jinan Key Laboratory of Oral Tissue Regeneration, Shandong Provincial Health Commission Key Laboratory of Oral Diseases and Tissue Regeneration, Shandong Province, China
| | - Changjie Xiao
- Jinan Stamotological Hospital, Jinan Key Laboratory of Oral Tissue Regeneration, Shandong Provincial Health Commission Key Laboratory of Oral Diseases and Tissue Regeneration, Shandong Province, China
| | - Jianbin Li
- Jinan Stamotological Hospital, Jinan Key Laboratory of Oral Tissue Regeneration, Shandong Provincial Health Commission Key Laboratory of Oral Diseases and Tissue Regeneration, Shandong Province, China
- Binzhou Medical College, School of Stomatology, Shandong, China
| | - Zhenxian Sheng
- Jinan Stamotological Hospital, Jinan Key Laboratory of Oral Tissue Regeneration, Shandong Provincial Health Commission Key Laboratory of Oral Diseases and Tissue Regeneration, Shandong Province, China
- Binzhou Medical College, School of Stomatology, Shandong, China
| | - Yuxin Wang
- Jinan Stamotological Hospital, Jinan Key Laboratory of Oral Tissue Regeneration, Shandong Provincial Health Commission Key Laboratory of Oral Diseases and Tissue Regeneration, Shandong Province, China
- Binzhou Medical College, School of Stomatology, Shandong, China
| | - Ronglin Wang
- Jinan Stamotological Hospital, Department of Prosthodontics, Shandong Province, China
| | - Xijiao Yu
- Jinan Stamotological Hospital, Jinan Key Laboratory of Oral Tissue Regeneration, Central Laboratory, Department of Endodontics, Shandong Provincial Health Commission Key Laboratory of Oral Diseases and Tissue Regeneration, Shandong Province, China
| |
Collapse
|
206
|
Kheder W, Bouzid A, Venkatachalam T, Talaat IM, Elemam NM, Raju TK, Sheela S, Jayakumar MN, Maghazachi AA, Samsudin AR, Hamoudi R. Titanium Particles Modulate Lymphocyte and Macrophage Polarization in Peri-Implant Gingival Tissues. Int J Mol Sci 2023; 24:11644. [PMID: 37511404 PMCID: PMC10381089 DOI: 10.3390/ijms241411644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/06/2023] [Accepted: 07/09/2023] [Indexed: 07/30/2023] Open
Abstract
Titanium dental implants are one of the modalities to replace missing teeth. The release of titanium particles from the implant's surface may modulate the immune cells, resulting in implant failure. However, little is known about the immune microenvironment that plays a role in peri-implant inflammation as a consequence of titanium particles. In this study, the peri-implant gingival tissues were collected from patients with failed implants, successful implants and no implants, and then a whole transcriptome analysis was performed. The gene set enrichment analysis confirmed that macrophage M1/M2 polarization and lymphocyte proliferation were differentially expressed between the study groups. The functional clustering and pathway analysis of the differentially expressed genes between the failed implants and successful implants versus no implants revealed that the immune response pathways were the most common in both comparisons, implying the critical role of infiltrating immune cells in the peri-implant tissues. The H&E and IHC staining confirmed the presence of titanium particles and immune cells in the tissue samples, with an increase in the infiltration of lymphocytes and macrophages in the failed implant samples. The in vitro validation showed a significant increase in the level of IL-1β, IL-8 and IL-18 expression by macrophages. Our findings showed evidence that titanium particles modulate lymphocyte and macrophage polarization in peri-implant gingival tissues, which can help in the understanding of the imbalance in osteoblast-osteoclast activity and failure of dental implant osseointegration.
Collapse
Affiliation(s)
- Waad Kheder
- College of Dental Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Amal Bouzid
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Thenmozhi Venkatachalam
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Iman M Talaat
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Noha Mousaad Elemam
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Tom Kalathil Raju
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Soumya Sheela
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Manju Nidagodu Jayakumar
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Azzam A Maghazachi
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Abdul Rani Samsudin
- College of Dental Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Rifat Hamoudi
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Division of Surgery and Interventional Science, University College London, London NW3 2PS, UK
- ASPIRE Precision Medicine Research Institute Abu Dhabi, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
207
|
Liu T, Huang T, Li J, Li A, Li C, Huang X, Li D, Wang S, Liang M. Optimization of differentiation and transcriptomic profile of THP-1 cells into macrophage by PMA. PLoS One 2023; 18:e0286056. [PMID: 37459313 PMCID: PMC10351730 DOI: 10.1371/journal.pone.0286056] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/09/2023] [Indexed: 07/20/2023] Open
Abstract
THP-1 monocyte, which can be differentiated into macrophages by PMA, is widely used in researches on pathogen infection and host innate immunity, but reports on the induction methods of PMA are different and lack a unified standard, and the transcriptome characteristics of macrophage compared with THP-1 cells remains unclear. In this research, we examined the differentiation effect of three factors including induction time, cell seeding density and PMA concentration by detecting the positive rate of CD14 expression. The concentration of 80ng/ml of PMA, the induction time of 24h, and the cell seeding density of 5×105 cells/ml, could respectively facilitates a relatively higher CD14 positive rate in THP-1 cells. Under this optimized conditions, the CD14 positive rate of THP-1 cells can reach 66.52%. Transcriptome sequencing showed that after the above induction, the mRNA expression of 3113 genes which were closely related to cell communication, signal transduction, cell response to stimulus, signaling receptor binding and cytokine activity were up-regulated, and the top 10 genes were RGS1, SPP1, GDF15, IL-1B, HAVCR2, SGK1, EGR2, TRAC, IL-8 and EBI3. While the mRNA expression of 2772 genes which were associated with cell cycle process, DNA binding and replication and cell division, were down-regulated, and the top genes were SERPINB10, TRGC2, SERPINB2, TRGC1, MS4A3, MS4A4E, TRGJP1, MS4A6A, TRGJP2, MS4A4A. This research optimized the induction method on THP-1 cell differentiation from three aspects and delineated the transcriptomic profile of PMA-induced THP-1 cells, laying a foundation for the construction method of cell model and for the functional study of macrophage.
Collapse
Affiliation(s)
- Tiezhu Liu
- National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Tao Huang
- National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jiajia Li
- The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Aqian Li
- National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Chuan Li
- National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaoxia Huang
- National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Dexin Li
- National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Shiwen Wang
- National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Mifang Liang
- National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
208
|
Quadri M, Tiso N, Musmeci F, Morasso MI, Brooks SR, Bonetti LR, Panini R, Lotti R, Marconi A, Pincelli C, Palazzo E. CD271 activation prevents low to high-risk progression of cutaneous squamous cell carcinoma and improves therapy outcomes. J Exp Clin Cancer Res 2023; 42:167. [PMID: 37443031 DOI: 10.1186/s13046-023-02737-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND Cutaneous squamous cell carcinoma (cSCC) is the second most prevalent form of skin cancer, showing a rapid increasing incidence worldwide. Although most cSCC can be cured by surgery, a sizeable number of cases are diagnosed at advanced stages, with local invasion and distant metastatic lesions. In the skin, neurotrophins (NTs) and their receptors (CD271 and Trk) form a complex network regulating epidermal homeostasis. Recently, several works suggested a significant implication of NT receptors in cancer. However, CD271 functions in epithelial tumors are controversial and its precise role in cSCC is still to be defined. METHODS Spheroids from cSCC patients with low-risk (In situ or Well-Differentiated cSCC) or high-risk tumors (Moderately/Poorly Differentiated cSCC), were established to explore histological features, proliferation, invasion abilities, and molecular pathways modulated in response to CD271 overexpression or activation in vitro. The effect of CD271 activities on the response to therapeutics was also investigated. The impact on the metastatic process and inflammation was explored in vivo and in vitro, by using zebrafish xenograft and 2D/3D models. RESULTS Our data proved that CD271 is upregulated in Well-Differentiated tumors as compared to the more aggressive Moderately/Poorly Differentiated cSCC, both in vivo and in vitro. We demonstrated that CD271 activities reduce proliferation and malignancy marker expression in patient-derived cSCC spheroids at each tumor grade, by increasing neoplastic cell differentiation. CD271 overexpression significantly increases cSCC spheroid mass density, while it reduces their weight and diameter, and promotes a major fold-enrichment in differentiation and keratinization genes. Moreover, both CD271 overexpression and activation decrease cSCC cell invasiveness in vitro. A significant inhibition of the metastatic process by CD271 was observed in a newly established zebrafish cSCC model. We found that the recruitment of leucocytes by CD271-overexpressing cells directly correlates with tumor killing and this finding was further highlighted by monocyte infiltration in a THP-1-SCC13 3D model. Finally, CD271 activity synergizes with Trk receptor inhibition, by reducing spheroid viability, and significantly improves the outcome of photodynamic therapy (PTD) or chemotherapy in spheroids and zebrafish. CONCLUSION Our study provides evidence that CD271 could prevent the switch between low to high-risk cSCC tumors. Because CD271 contributes to maintaining active differentiative paths and favors the response to therapies, it might be a promising target for future pharmaceutical development.
Collapse
Affiliation(s)
- Marika Quadri
- DermoLAB, Department of Surgical, Medical, Dental and Morphological Science, University of Modena and Reggio Emilia, Via Del Pozzo 71, 41124, Modena, Italy
| | - Natascia Tiso
- Laboratory of Developmental Genetics, Department of Biology, University of Padova, Padova, Italy
| | | | - Maria I Morasso
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD, USA
| | - Stephen R Brooks
- Biodata Mining and Discovery Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD, USA
| | - Luca Reggiani Bonetti
- Department of Diagnostic, Clinic and Public Health Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Rossana Panini
- Department of Diagnostic, Clinic and Public Health Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Roberta Lotti
- DermoLAB, Department of Surgical, Medical, Dental and Morphological Science, University of Modena and Reggio Emilia, Via Del Pozzo 71, 41124, Modena, Italy
| | - Alessandra Marconi
- DermoLAB, Department of Surgical, Medical, Dental and Morphological Science, University of Modena and Reggio Emilia, Via Del Pozzo 71, 41124, Modena, Italy
| | - Carlo Pincelli
- DermoLAB, Department of Surgical, Medical, Dental and Morphological Science, University of Modena and Reggio Emilia, Via Del Pozzo 71, 41124, Modena, Italy
| | - Elisabetta Palazzo
- DermoLAB, Department of Surgical, Medical, Dental and Morphological Science, University of Modena and Reggio Emilia, Via Del Pozzo 71, 41124, Modena, Italy.
| |
Collapse
|
209
|
Franza M, Albanesi J, Mancini B, Pennisi R, Leone S, Acconcia F, Bianchi F, di Masi A. The clinically relevant CHK1 inhibitor MK-8776 induces the degradation of the oncogenic protein PML-RARα and overcomes ATRA resistance in acute promyelocytic leukemia cells. Biochem Pharmacol 2023:115675. [PMID: 37406967 DOI: 10.1016/j.bcp.2023.115675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 07/07/2023]
Abstract
Acute promyelocytic leukemia (APL) is a hematological disease characterized by the expression of the oncogenic fusion protein PML-RARα. The current treatment approach for APL involves differentiation therapy using all-trans retinoic acid (ATRA) and arsenic trioxide (ATO). However, the development of resistance to therapy, occurrence of differentiation syndrome, and relapses necessitate the exploration of new treatment options that induce differentiation of leukemic blasts with low toxicity. In this study, we investigated the cellular and molecular effects of MK-8776, a specific inhibitor of CHK1, in ATRA-resistant APL cells. Treatment of APL cells with MK-8776 resulted in a decrease in PML-RARα levels, increased expression of CD11b, and increased granulocytic activity consistent with differentiation. Interestingly, we showed that the MK-8776-induced differentiating effect resulted synergic with ATO. We found that the reduction of PML-RARα by MK-8776 was dependent on both proteasome and caspases. Specifically, both caspase-1 and caspase-3 were activated by CHK1 inhibition, with caspase-3 acting upstream of caspase-1. Activation of caspase-3 was necessary to activate caspase-1 and promote PML-RARα degradation. Transcriptomic analysis revealed significant modulation of pathways and upstream regulators involved in the inflammatory response and cell cycle control upon MK-8776 treatment. Overall, the ability of MK-8776 to induce PML-RARα degradation and stimulate differentiation of immature APL cancer cells into more mature forms recapitulates the concept of differentiation therapy. Considering the in vivo tolerability of MK-8776, it will be relevant to evaluate its potential clinical benefit in APL patients resistant to standard ATRA/ATO therapy, as well as in patients with other forms of acute leukemias.
Collapse
Affiliation(s)
- Maria Franza
- Department of Sciences, Section of Biomedical Sciences and Technologies, Roma Tre University, Roma, Italy
| | - Jacopo Albanesi
- Department of Sciences, Section of Biomedical Sciences and Technologies, Roma Tre University, Roma, Italy
| | - Benedetta Mancini
- Department of Sciences, Section of Biomedical Sciences and Technologies, Roma Tre University, Roma, Italy
| | - Rosa Pennisi
- Department of Oncology, University of Torino Medical School, Torino, Italy; Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Torino, Italy
| | - Stefano Leone
- Department of Sciences, Section of Biomedical Sciences and Technologies, Roma Tre University, Roma, Italy
| | - Filippo Acconcia
- Department of Sciences, Section of Biomedical Sciences and Technologies, Roma Tre University, Roma, Italy
| | - Fabrizio Bianchi
- Unit of Cancer Biomarkers, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), Italy
| | - Alessandra di Masi
- Department of Sciences, Section of Biomedical Sciences and Technologies, Roma Tre University, Roma, Italy.
| |
Collapse
|
210
|
Zheng R, Xie J, Li W, Shang J, Shi Z, Zhu S, Gui L, Huang L, Shu L, Liu D, Gong Y, Li X, Chai W, Huang X, Wu X, Yue J. MiR-223-3p affects the proliferation and apoptosis of HCAECs in Kawasaki disease by regulating the expression of FOXP3. Immun Inflamm Dis 2023; 11:e939. [PMID: 37506144 PMCID: PMC10373572 DOI: 10.1002/iid3.939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/24/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023] Open
Abstract
OBJECTIVE Kawasaki disease (KD) can lead to permanent damage to coronary structures, the pathogenesis of which remains unknown. This experiment was designed to investigate whether miR-223-3p secreted in the serum of KD patients affects the proliferation and apoptosis of HCAECs in KD by regulating FOXP3. METHODS Blood samples were collected in acute febrile phase of KD, after IVIG treatment, and from healthy controls. Transfected into HCAECs cells by synthetic FOXP3 siRNA/NC. A co-culture system was established between HCAECs cells transfected with FOXP3 siRNA/NC and THP1 cells added with three sera. RESULTS Compared with the control group, the expressions of miR-223-3p, RORγt, and Th17 in serum of KD patients were significantly upregulated, and the expressions of TGF-β1, FOXP3 and Treg were significantly downregulated. At the same time, the levels of IL-6, IL-17, and IL-23 were significantly increased, and the levels of IL-10 and FOXP3 were significantly decreased. After IVIG treatment, the patient's above results were reversed. The serum of KD patients increased the expression of miR-223-3p and inhibited the expression of FOXP3 in HCAECs cells. IVIG serum is the opposite. Overexpression of miR-223-3p also promoted the apoptosis of HCAECs. In addition, serum from KD patients promoted apoptosis, whereas serum after IVIG treatment inhibited apoptosis. KD patient serum downregulated the expression of FOXP3, Bcl2, TGF-β1 and IL-10 in cells, and upregulated the expression of caspase3, Bax, IL-17, IL-6, and IL-23. The opposite results were obtained with IVIG-treated sera. CONCLUSION miR-223-3p secreted in serum of KD patients can regulate the expression of FOXP3 and affect the proliferation, apoptosis, and inflammation of cells.
Collapse
Affiliation(s)
- Ronghao Zheng
- Department of Pediatric Nephrology, Rheumatology, and Immunology, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Xie
- Department of Pediatric Nephrology, Rheumatology, and Immunology, Maternal and Child Health Hospital of Hubei Province, Hubei University of Medicine, Shiyan, Hubei, China
| | - Weijie Li
- Department of Pediatric Nephrology, Rheumatology, and Immunology, Maternal and Child Health Hospital of Hubei Province, Hubei University of Medicine, Shiyan, Hubei, China
| | - Jianping Shang
- Department of Pediatric Nephrology, Rheumatology, and Immunology, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zuliang Shi
- Department of Clinical Laboratory, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Songbai Zhu
- Department of Pediatric Nephrology, Rheumatology, and Immunology, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lin Gui
- Department of Pediatric Nephrology, Rheumatology, and Immunology, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Huang
- Department of Pediatric Nephrology, Rheumatology, and Immunology, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lan Shu
- Department of Pediatric Nephrology, Rheumatology, and Immunology, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Donglei Liu
- Department of Pediatric Nephrology, Rheumatology, and Immunology, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Gong
- Department of Pediatric Nephrology, Rheumatology, and Immunology, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohui Li
- Department of Pediatric Nephrology, Rheumatology, and Immunology, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wanxia Chai
- Department of Pediatric Nephrology, Rheumatology, and Immunology, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaofen Huang
- Department of Pediatric Nephrology, Rheumatology, and Immunology, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaolin Wu
- Department of Pediatric Nephrology, Rheumatology, and Immunology, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Yue
- Emergency Department, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
211
|
Hautanen V, Morikka J, Saarimäki LA, Bisenberger J, Toimela T, Serra A, Greco D. The in vitro immunomodulatory effect of multi-walled carbon nanotubes by multilayer analysis. NANOIMPACT 2023; 31:100476. [PMID: 37437691 DOI: 10.1016/j.impact.2023.100476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 05/17/2023] [Accepted: 07/04/2023] [Indexed: 07/14/2023]
Abstract
The study of multi-walled carbon nanotube (MWCNT) induced immunotoxicity is crucial for determining hazards posed to human health. MWCNT exposure most commonly occurs via the airways, where macrophages are first line responders. Here we exploit an in vitro assay, measuring dose-dependent secretion of a wide panel of cytokines, as a measure of immunotoxicity following the non-lethal, multi-dose exposure (IC5, IC10 and IC20) to 7 MWCNTs with different intrinsic properties. We find that a tangled structure, and small aspect ratio are key properties predicting MWCNT induced immunotoxicity, mediated predominantly by IL1B cytokine secretion. To assess the mechanism of action giving rise to MWCNT immunotoxicity, transcriptomics analysis was linked to cytokine secretion in a multilayer model established through correlation analysis across exposure concentrations. This reinforced the finding that tangled MWCNTs have greater immunomodulatory potency, displaying enrichment of immune system, signal transduction and pattern recognition associated pathways. Together our results further elucidate how structure, length and aspect ratio, critical intrinsic properties of MWCNTs, are tied to immunotoxicity.
Collapse
Affiliation(s)
- Veera Hautanen
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, Tampere 33520, Finland; Institute of Biotechnology, University of Helsinki, P.O.Box 56, Helsinki, Uusimaa 00014, Finland
| | - Jack Morikka
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, Tampere 33520, Finland
| | - Laura Aliisa Saarimäki
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, Tampere 33520, Finland
| | - Jan Bisenberger
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, Tampere 33520, Finland
| | - Tarja Toimela
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, Tampere 33520, Finland
| | - Angela Serra
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, Tampere 33520, Finland; Tampere Institute for Advanced Study, Tampere University, Kalevantie 4, Tampere 33100, Finland
| | - Dario Greco
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, Tampere 33520, Finland; Institute of Biotechnology, University of Helsinki, P.O.Box 56, Helsinki, Uusimaa 00014, Finland; Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Finland.
| |
Collapse
|
212
|
Oh MH, Jang J, Lee JH. Polarization of THP-1-Derived Macrophage by Magnesium and MAGT1 Inhibition in Wound Healing. Arch Plast Surg 2023; 50:432-442. [PMID: 37564721 PMCID: PMC10411119 DOI: 10.1055/s-0043-1770114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 05/10/2023] [Indexed: 08/12/2023] Open
Abstract
Background Macrophages play a major role in wound healing and prevent infection from the outside. Polarization conversion of macrophages regulates aspects of inflammation, and two macrophages, M1 (classically activated) and M2 (alternatively activated), exist at both ends of broad-spectrum macrophage polarization. Thus, we aimed to investigate whether macrophage polarization can be artificially regulated. To this end, MgSO4 and small-interfering RNA (siRNA) targeting magnesium transport 1 (MAGT1) were used to investigate the effects of intracellular magnesium (Mg2+) concentrations on the differentiation of macrophages in vitro. Methods THP-1 derived macrophages maintained in a culture medium containing 5 mM MgSO4 and siRNA to inhibit the expression of MAGT1. As comparative groups, THP-1 derived macrophages polarized into M1 and M2 macrophages by treatment with M1, M2 inducer cytokine. The polarization status of each group of cells was confirmed by cell surface antigen expression and cytokine secretion. Results We found that MgSO4 treatment increased CD163 and CD206, similar to the effect noted in the M2 group. The expression of CD80 and HLA-DR was increased in the group treated with MAGT1 siRNA, similar to the effect noted in the M1 group. Functional assays demonstrated that the group treated with MgSO4 secreted higher levels of IL-10, whereas the MAGT1 siRNA-treated group secreted higher levels of IL-6 cytokines. Additionally, the conditional medium of the Mg2+ treated group showed enhanced migration of keratinocytes and fibroblasts. Conclusion Mg2+ can help to end the delay in wound healing caused by persistent inflammation in the early stages.
Collapse
Affiliation(s)
- Mun Ho Oh
- Eulji Medi-Bio Research Institute, Eulji University, Seoul, Republic of Korea
| | - JaeHyuk Jang
- Department of Plastic and Reconstructive Surgery, Nowon Eulji Medical Center, School of Medicine, Eulji University, Seoul, Republic of Korea
| | - Jong Hun Lee
- Department of Plastic and Reconstructive Surgery, Nowon Eulji Medical Center, School of Medicine, Eulji University, Seoul, Republic of Korea
| |
Collapse
|
213
|
Hong L, Wang X, Zheng L, Wang S, Zhu G. Tumor-associated macrophages promote cisplatin resistance in ovarian cancer cells by enhancing WTAP-mediated N6-methyladenosine RNA methylation via the CXCL16/CXCR6 axis. Cancer Chemother Pharmacol 2023; 92:71-81. [PMID: 37272931 PMCID: PMC10261262 DOI: 10.1007/s00280-023-04533-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 04/23/2023] [Indexed: 06/06/2023]
Abstract
PURPOSE Tumor-promotive tumor-associated macrophages (TAMs) and the CXCL16/CXCR6 axis have been reported to be correlated with the limited efficacy of chemotherapy in ovarian cancer (OC). However, the role of TAM-secreted CXCL16 and the mechanism by which it affects the cisplatin (DDP) resistance of OC cells remain elusive. METHODS We induced human THP-1 monocytes to differentiate into macrophages. Next, SKOV3 and TOV-112D cells were co-cultured with the macrophages, followed by incubation with increasing concentrations of DDP. The effects of CXCL16, CXCR6, and WTAP on the DDP resistance of OC cells were investigated using the CCK-8 assay, colony formation assay, flow cytometry, and TUNEL staining. CXCL16 concentrations were determined by ELISA. Quantitative real-time PCR and western blotting were used to examine related markers. RESULTS Our results showed that after being co-cultured with TAMs, the DDP resistance of OC cells was significantly enhanced and their CXCL16 levels were elevated. Acquired DDP resistance was characterized by an increased IC50 value for DDP, the formation of cell colonies, and decreased levels of cell apoptosis, which were accompanied by reduced levels of caspase-3 and Bax expression, and increased levels of Bcl-2, PARP1, BRCA1, and BRCA2 expression. Either CXCL16 knockdown in TAMs or CXCR6 knockdown in OC cells suppressed the DDP resistance of OC cells that had been co-cultured with TAMs. Knockdown of CXCL16 affected m6A RNA methylation in OC cells, as reflected by decreased YTHDF1/WTAP expression and increased ALKBH5 expression. WTAP overexpression and knockdown promoted and suppressed the DDP resistance of OC cells, respectively. CONCLUSION Tumor-associated macrophages promote the cisplatin resistance of OC cells by enhancing WTAP-mediated N6-methyladenosine RNA methylation via the CXCL16/CXCR6 axis.
Collapse
Affiliation(s)
- Lan Hong
- Department of Gynaecology, Hainan Affiliated Hospital of Hainan Medical University, No.19, Xiuhua Road, Xiuying District, Haikou, 570311, Hainan, China
| | - Xiuzhen Wang
- Department of Gynaecology, Hainan Affiliated Hospital of Hainan Medical University, No.19, Xiuhua Road, Xiuying District, Haikou, 570311, Hainan, China
| | - Lang Zheng
- Department of Gynaecology, Hainan Affiliated Hospital of Hainan Medical University, No.19, Xiuhua Road, Xiuying District, Haikou, 570311, Hainan, China
| | - Shengtan Wang
- Department of Gynaecology, Hainan Affiliated Hospital of Hainan Medical University, No.19, Xiuhua Road, Xiuying District, Haikou, 570311, Hainan, China
| | - Genhai Zhu
- Department of Gynaecology, Hainan Affiliated Hospital of Hainan Medical University, No.19, Xiuhua Road, Xiuying District, Haikou, 570311, Hainan, China.
| |
Collapse
|
214
|
Kodila A, Franko N, Sollner Dolenc M. A review on immunomodulatory effects of BPA analogues. Arch Toxicol 2023; 97:1831-1846. [PMID: 37204436 PMCID: PMC10256647 DOI: 10.1007/s00204-023-03519-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/11/2023] [Indexed: 05/20/2023]
Abstract
Bisphenol A (BPA) is a known endocrine disruptor found in many consumer products that humans come into contact with on a daily basis. Due to increasing concerns about the safety of BPA and the introduction of new legislation restricting its use, industry has responded by adopting new, less studied BPA analogues that have similar polymer-forming properties. Some BPA analogues have already been shown to exhibit effects similar to BPA, for example, contributing to endocrine disruption through agonistic or antagonistic behaviour at various nuclear receptors such as estrogen (ER), androgen (AR), glucocorticoid (GR), aryl hydrocarbon (AhR), and pregnane X receptor (PXR). Since the European Food Safety Authority (EFSA) issued a draft re-evaluation of BPA and drastically reduced the temporary tolerable daily intake (t-TDI) of BPA from 4 mg/kg body weight/day to 0.2 ng/kg body weight/day due to increasing concern about the toxic properties of BPA, including its potential to disrupt immune system processes, we conducted a comprehensive review of the immunomodulatory activity of environmentally abundant BPA analogues. The results of the review suggest that BPA analogues may affect both the innate and acquired immune systems and can contribute to various immune-mediated conditions such as hypersensitivity reactions, allergies, and disruption of the human microbiome.
Collapse
Affiliation(s)
- Anja Kodila
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Nina Franko
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Marija Sollner Dolenc
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia.
| |
Collapse
|
215
|
Zaiachuk M, Suryavanshi SV, Pryimak N, Kovalchuk I, Kovalchuk O. The Anti-Inflammatory Effects of Cannabis sativa Extracts on LPS-Induced Cytokines Release in Human Macrophages. Molecules 2023; 28:4991. [PMID: 37446655 DOI: 10.3390/molecules28134991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/10/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Inflammation is the response of the innate immune system to any type of injury. Although acute inflammation is critical for survival, dysregulation of the innate immune response leads to chronic inflammation. Many synthetic anti-inflammatory drugs have side effects, and thus, natural anti-inflammatory compounds are still needed. Cannabis sativa L. may provide a good source of anti-inflammatory molecules. Here, we tested the anti-inflammatory properties of cannabis extracts and pure cannabinoids in lipopolysaccharide (LPS)-induced inflammation in human THP-1 macrophages. We found that pre-treatment with cannabidiol (CBD), delta-9-tetrahydrocannabinol (THC), or extracts containing high levels of CBD or THC reduced the level of induction of various cytokines. The CBD was more efficient than THC, and the extracts were more efficient than pure cannabinoids. Finally, IL-6, IL-10, and MCP-1 cytokines were most sensitive to pre-treatments with CBD and THC, while IL-1β, IL-8, and TNF-α were less responsive. Thus, our work demonstrates the potential of the use of cannabinoids or/and cannabis extracts for the reduction of inflammation and establishes IL-6 and MCP-1 as the sensitive markers for the analysis of the effect of cannabinoids on inflammation in macrophages.
Collapse
Affiliation(s)
- Mariia Zaiachuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Santosh V Suryavanshi
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Nazar Pryimak
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| |
Collapse
|
216
|
Ma B, Liu X, Zhang Z, Ma C, Chand R, Patwardhan S, Wang C, Thamphiwatana SD, Chen P, Chen W. A digital nanoplasmonic microarray immunosensor for multiplexed cytokine monitoring during CAR T-cell therapy from a leukemia tumor microenvironment model. Biosens Bioelectron 2023; 230:115247. [PMID: 37023552 PMCID: PMC10103176 DOI: 10.1016/j.bios.2023.115247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/07/2023] [Accepted: 03/20/2023] [Indexed: 03/28/2023]
Abstract
The release of cytokines by chimeric antigen receptor (CAR) T-cells and tumor resident immune cells defines a significant part of CAR T-cell functional activity and patient immune responses during CAR T-cell therapy. However, few studies have so far precisely characterized the cytokine secretion dynamics in the tumor niche during CAR T-cell therapy, which requires multiplexed, and timely biosensing platforms and integration with biomimetic tumor microenvironment. Herein, we implemented a digital nanoplasmonic microarray immunosensor with a microfluidic biomimetic Leukemia-on-a-Chip model to monitor cytokine secretion dynamics during CD19 CAR T-cell therapy against precursor B-cell acute lymphocytic leukemia (B-ALL). The integrated nanoplasmonic biosensors achieved precise multiplexed cytokine measurements with low operating sample volume, short assay time, heightened sensitivity, and negligible sensor crosstalk. Using the digital nanoplasmonic biosensing approach, we measured the concentrations of six cytokines (TNF-α, IFN-γ, MCP-1, GM-CSF, IL-1β, and IL-6) during first 5 days of CAR T-cell treatment in the microfluidic Leukemia-on-a-Chip model. Our results revealed a heterogeneous secretion profile of various cytokines during CAR T-cell therapy and confirmed a correlation between the cytokine secretion profile and the CAR T-cell cytotoxic activity. The capability to monitor immune cell cytokine secretion dynamics in a biomimetic tumor microenvironment could further help in study of cytokine release syndrome during CAR T-cell therapy and in development of more efficient and safer immunotherapies.
Collapse
Affiliation(s)
- Benteng Ma
- Department of Biomedical Engineering, New York University, Brooklyn, NY, 11201, USA
| | - Xinya Liu
- Department of Biomedical Engineering, New York University, Brooklyn, NY, 11201, USA
| | - Zhuoyu Zhang
- Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, NY, 11201, USA
| | - Chao Ma
- Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, NY, 11201, USA
| | - Rashik Chand
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Saee Patwardhan
- Department of Biomedical Engineering, New York University, Brooklyn, NY, 11201, USA
| | - Chuanyu Wang
- Department of Material Engineering, Auburn University, Auburn, AL, 36849, USA
| | - Soracha D Thamphiwatana
- Department of Biomedical Engineering, Faculty of Engineering, Mahidol University, Nakorn Pathom, 73170, Thailand
| | - Pengyu Chen
- Department of Material Engineering, Auburn University, Auburn, AL, 36849, USA
| | - Weiqiang Chen
- Department of Biomedical Engineering, New York University, Brooklyn, NY, 11201, USA; Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, NY, 11201, USA; Perlmutter Cancer Center, NYU Langone Health, New York, NY, 10016, USA.
| |
Collapse
|
217
|
Zhang L, Cheng D, Zhang J, Tang H, Li F, Peng Y, Duan X, Meng E, Zhang C, Zeng T, Song F, Wang JS, Zhao X, Zhou J. Role of macrophage AHR/TLR4/STAT3 signaling axis in the colitis induced by non-canonical AHR ligand aflatoxin B1. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131262. [PMID: 36989784 DOI: 10.1016/j.jhazmat.2023.131262] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 03/15/2023] [Accepted: 03/21/2023] [Indexed: 05/03/2023]
Abstract
Here we report that macrophage AHR/TLR/STAT signaling axis is implicated in the colon colitis induced by non-canonical AHR ligand aflatoxin B1 (AFB1). In BALB/c mice gavaged with 5, 25 and 50 µg/kg body weight/day AFB1, we observed severe colitis featured by over-recruitment of myeloid lineage immune cells such as monocytes/macrophage in colon lamina propria. Stressed and damaged colon epithelial cells were observed in low-dose group, while twisted and shortened intestinal crypts being found in middle dose group. Severe tissue damage was induced in the high-dose group. Dose-dependent increases of ROS, NO, and decrease of mitochondrial ROS-suppressor STAT3 were observed in the exposure groups. Further investigation in AFB1-treated human macrophage model found: (1) functional adaptations such as elevation of TNF-alpha and IL-6 secretion, stimulation of phagocytosis, elevation of LTE4 level; (2) overall inflammatory status confirmed by RNA-sequence analysis, in line with up-regulation of immune functional proteins such as ICAM-1, IDO-1, NF-kB-p65, NLRP3, COX-2 and iNOS; (3) mRNA disruption of mitochondrial oxidative phosphorylation complex I units and STATs; (4) perturbation of AHR/TLR/STAT3 signaling axis, including elevated AHR, TLR2, TLR4, and decreased STAT3, p-STAT3 Ser727. Mechanism investigation revealed regulatory links of ligand-dependent AHR/TLR4/STAT3. AHR-TLR4 together regulate MyD88, and STAT3 may be directly regulated by MyD88 (TLR4 downstream molecule) upon AHR/TLR4 binding with ligands. Solely protein level changes of AHR/TLR4 cannot regulate STAT3. Our study suggests that macrophage AHR/TLR4/STAT3 is involved with the colitis induced by sub-acute exposure to AFB1. Future follow-up study will focus on the intervention of the colitis using AHR-anti-inflammatory ligands.
Collapse
Affiliation(s)
- Liwen Zhang
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 250012, China; Division of Chemistry and Physics, Shandong Center for Disease Control and Prevention, Jinan 250014, China
| | - Dong Cheng
- Division of Toxicology, Shandong Center for Disease Control and Prevention, Jinan 250014, China; Division of Chemistry and Physics, Shandong Center for Disease Control and Prevention, Jinan 250014, China
| | - Jing Zhang
- Division of Toxicology, Shandong Center for Disease Control and Prevention, Jinan 250014, China; Division of Chemistry and Physics, Shandong Center for Disease Control and Prevention, Jinan 250014, China
| | - Hui Tang
- Division of Toxicology, Shandong Center for Disease Control and Prevention, Jinan 250014, China; Division of Chemistry and Physics, Shandong Center for Disease Control and Prevention, Jinan 250014, China
| | - Fenghua Li
- Division of Toxicology, Shandong Center for Disease Control and Prevention, Jinan 250014, China; Division of Chemistry and Physics, Shandong Center for Disease Control and Prevention, Jinan 250014, China
| | - Yi Peng
- Division of Chemistry and Physics, Shandong Center for Disease Control and Prevention, Jinan 250014, China; School of Public Health, Cheeloo College of Medicine, Shandong University, 250012, China
| | - Xinglan Duan
- Division of Chemistry and Physics, Shandong Center for Disease Control and Prevention, Jinan 250014, China; School of Public Health, Cheeloo College of Medicine, Shandong University, 250012, China
| | - En Meng
- Division of Chemistry and Physics, Shandong Center for Disease Control and Prevention, Jinan 250014, China; School of Public Health, Cheeloo College of Medicine, Shandong University, 250012, China
| | - Cuili Zhang
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 250012, China; Division of Chemistry and Physics, Shandong Center for Disease Control and Prevention, Jinan 250014, China
| | - Tao Zeng
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 250012, China; Division of Chemistry and Physics, Shandong Center for Disease Control and Prevention, Jinan 250014, China
| | - Fuyong Song
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 250012, China; Division of Chemistry and Physics, Shandong Center for Disease Control and Prevention, Jinan 250014, China
| | - Jia-Sheng Wang
- Division of Chemistry and Physics, Shandong Center for Disease Control and Prevention, Jinan 250014, China; Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602, USA
| | - Xiulan Zhao
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 250012, China; Division of Chemistry and Physics, Shandong Center for Disease Control and Prevention, Jinan 250014, China.
| | - Jun Zhou
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 250012, China; Division of Chemistry and Physics, Shandong Center for Disease Control and Prevention, Jinan 250014, China.
| |
Collapse
|
218
|
Chen S, Wu M, Xiong Z, Huang J, Lv Y, Li Y, Zeng M, Lai T. Myeloid-Specific SIRT6 Deletion Protects Against Particulate Matter (PM 2.5)-Induced Airway Inflammation. Int J Chron Obstruct Pulmon Dis 2023; 18:1135-1144. [PMID: 37323542 PMCID: PMC10266380 DOI: 10.2147/copd.s398796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/30/2023] [Indexed: 06/17/2023] Open
Abstract
Purpose Particulate matter (PM2.5) is a common risk factor for airway inflammation. Alveolar macrophages play a critical role in airway inflammation. Sirtuin 6 (SIRT6) is a class Ill histone deacetylase that exerts an anti-inflammatory effect in airway diseases. However, the role of SIRT6 on PM2.5-induced airway inflammation in macrophages remains unclear. We aimed to determine whether SIRT6 protects against PM2.5-induced airway inflammation in macrophages. Methods The effect of SIRT6 on PM2.5-induced airway inflammation was assessed by using THP1 cells or bone marrow-derived macrophages (BMDMs) exposed to PM2.5 in vitro and myeloid cell-specific SIRT6 conditional knockout mice (Sirt6fl/fl-LysMCre) in vivo. Results PM2.5 increased SIRT6 expression in THP1 cells, but SIRT6 gene silencing decreased PM2.5 induced inflammatory cytokines in THP1 cells. Moreover, the expression of SIRT6 and inflammatory cytokines was also decreased in BMDMs with myeloid-specific deletion of SIRT6 after stimulation of PM2.5. In vivo, Sirt6fl/fl-LysMCre mice substantially decreased airway inflammation in response to PM2.5 exposure. Conclusion Our results revealed that SIRT6 promotes the PM2.5-induced airway inflammation in macrophages and indicated that inhibition of SIRT6 in macrophages may represent therapeutic strategy for airway disorders induced by airborne particulate pollution.
Collapse
Affiliation(s)
- Shaopeng Chen
- Institute of Respiratory Diseases, The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, People’s Republic of China
- Blood Donation Service Department, Zhanjiang Blood Center, Zhanjiang, People’s Republic of China
| | - Mindan Wu
- Department of Pulmonary and Critical Care Medicine, Shantou Central Hospital, Shantou, People’s Republic of China
| | - Zhilin Xiong
- Institute of Respiratory Diseases, The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, People’s Republic of China
| | - Jiewen Huang
- Institute of Respiratory Diseases, The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, People’s Republic of China
| | - Yingying Lv
- Institute of Respiratory Diseases, The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, People’s Republic of China
| | - Yuyan Li
- Department of Pulmonary and Critical Care Medicine, Dongguan Hospital of Southern Medical University, Dongguan, People’s Republic of China
| | - Minjuan Zeng
- Laboratory Animal Center, Guangdong Medical University, Zhanjiang, People’s Republic of China
| | - Tianwen Lai
- Institute of Respiratory Diseases, The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, People’s Republic of China
| |
Collapse
|
219
|
Song Y, Burns GW, Joshi NR, Arora R, Kim JJ, Fazleabas AT. Spheroids as a model for endometriotic lesions. JCI Insight 2023; 8:e160815. [PMID: 37104033 PMCID: PMC10393231 DOI: 10.1172/jci.insight.160815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 04/20/2023] [Indexed: 04/28/2023] Open
Abstract
The development and progression of endometriotic lesions are poorly understood, but immune cell dysfunction and inflammation are closely associated with the pathophysiology of endometriosis. There is a need for 3D in vitro models to permit the study of interactions between cell types and the microenvironment. To address this, we developed endometriotic spheroids (ES) to explore the role of epithelial-stromal interactions and model peritoneal invasion associated with lesion development. Using a nonadherent microwell culture system, spheroids were generated with immortalized endometriotic epithelial cells (12Z) combined with endometriotic stromal (iEc-ESC) or uterine stromal (iHUF) cell lines. Transcriptomic analysis found 4,522 differentially expressed genes in ES compared with spheroids containing uterine stromal cells. The top increased gene sets were inflammation-related pathways, and an overlap with baboon endometriotic lesions was highly significant. Finally, to mimic invasion of endometrial tissue into the peritoneum, a model was developed with human peritoneal mesothelial cells in an extracellular matrix. Invasion was increased in the presence of estradiol or pro-inflammatory macrophages and suppressed by a progestin. Taken together, our results strongly support the concept that ES are an appropriate model for dissecting mechanisms that contribute to endometriotic lesion development.
Collapse
Affiliation(s)
- Yong Song
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, Michigan, USA
| | - Gregory W. Burns
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, Michigan, USA
| | - Niraj R. Joshi
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, Michigan, USA
| | - Ripla Arora
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, Michigan, USA
| | - J. Julie Kim
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Asgerally T. Fazleabas
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, Michigan, USA
| |
Collapse
|
220
|
Cebadero-Dominguez Ó, Casas-Rodríguez A, Puerto M, Cameán AM, Jos A. In vitro safety assessment of reduced graphene oxide in human monocytes and T cells. ENVIRONMENTAL RESEARCH 2023; 232:116356. [PMID: 37295592 DOI: 10.1016/j.envres.2023.116356] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/12/2023]
Abstract
Considering the increase in the use of graphene derivatives in different fields, the environmental and human exposure to these materials is likely, and the potential consequences are not fully elucidated. This study is focused on the human immune system, as this plays a key role in the organism's homeostasis. In this sense, the cytotoxicity response of reduced graphene oxide (rGO) was investigated in monocytes (THP-1) and human T cells (Jurkat). A mean effective concentration (EC50-24 h) of 121.45 ± 11.39 μg/mL and 207.51 ± 21.67 μg/mL for cytotoxicity was obtained in THP-1 and Jurkat cells, respectively. rGO decreased THP-1 monocytes differentiation at the highest concentration after 48 h of exposure. Regarding the inflammatory response at genetic level, rGO upregulated IL-6 in THP-1 and all cytokines tested in Jurkat cells after 4 h of exposure. At 24 h, IL-6 upregulation was maintained, and a significant decrease of TNF-α gene expression was observed in THP-1 cells. Moreover, TNF-α, and INF-γ upregulation were maintained in Jurkat cells. With respect to the apoptosis/necrosis, gene expression was not altered in THP-1 cells, but a down regulation of BAX and BCL-2 was observed in Jurkat cells after 4 h of exposure. These genes showed values closer to negative control after 24 h. Finally, rGO did not trigger a significant release of any cytokine at any exposure time assayed. In conclusion, our data contributes to the risk assessment of this material and suggest that rGO has an impact on the immune system whose final consequences should be further investigated.
Collapse
Affiliation(s)
- Óscar Cebadero-Dominguez
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González n°2, 41012, Seville, Spain.
| | - Antonio Casas-Rodríguez
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González n°2, 41012, Seville, Spain.
| | - María Puerto
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González n°2, 41012, Seville, Spain.
| | - Ana María Cameán
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González n°2, 41012, Seville, Spain.
| | - Angeles Jos
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González n°2, 41012, Seville, Spain.
| |
Collapse
|
221
|
Matotoka MM, Mashabela GT, Masoko P. Phytochemical Content, Antibacterial Activity, and Antioxidant, Anti-Inflammatory, and Cytotoxic Effects of Traditional Medicinal Plants against Respiratory Tract Bacterial Pathogens. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:1243438. [PMID: 37293600 PMCID: PMC10247327 DOI: 10.1155/2023/1243438] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 04/24/2023] [Accepted: 05/05/2023] [Indexed: 06/10/2023]
Abstract
Respiratory tract infections (RTIs) are frequent ailments among humans and are a high burden on public health. This study aimed to determine the in vitro antibacterial, anti-inflammatory, and cytotoxic effects of indigenous medicinal plants used in the treatment of RTIs, namely, Senna petersiana, Gardenia volkensii, Acacia senegal, and Clerodendrum glabrum. Dried leaves were extracted using various organic solvents. Antibacterial activity was quantified using the microbroth dilution assay. Protein denaturation assays were used to evaluate anti-inflammatory activity. The cytotoxicity of the extracts towards THP-1 macrophages was evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Antioxidant activity was determined using free radical scavenging activity and ferric-reducing power. Total polyphenolics were quantified. Liquid chromatography mass spectrometry was used to evaluate the acetone plant extracts. Nonpolar extracts had noteworthy antibacterial activity against Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Mycobacterium smegmatis where MIC values ranged between 0.16 and 0.63 mg/mL. At 100 μg/mL, A. senegal, G. volkensii, and S. petersiana had a nonsignificant effect on the viability of the THP-1 macrophages. The LC-MS analysis of the leaf extracts of S. petersiana detected Columnidin, Hercynine, L-Lysine citrate, and Gamma-Linolenate. A pentacyclic triterpenoid, cochalate, was detected in G. volkensii. Two flavonoids 7-hydroxy-2-(4-methoxyphenyl)-4-oxo-chroman-5-olate and (3R)-3-(2,4-dimethoxyphenyl)-7-hydroxy-4-oxo-chroman-5-olate were detected in the C. glabrum extract. The findings from this study indicated that the leaves of the selected plant extracts possess antioxidant, anti-inflammatory, and antibacterial activity. Therefore, they may serve as good candidates for further pharmaceutical investigations.
Collapse
Affiliation(s)
- Mashilo M. Matotoka
- Faculty of Science and Agriculture, Department of Biochemistry, Microbiology and Biotechnology, University of Limpopo, Private Bag X1106, Sovenga 0727, South Africa
| | - Gabriel T. Mashabela
- Faculty of Medicine and Health Sciences, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Stellenbosch University, P.O. Box 19063, Francie van Zijl Drive, Tygerberg 7505, South Africa
| | - Peter Masoko
- Faculty of Science and Agriculture, Department of Biochemistry, Microbiology and Biotechnology, University of Limpopo, Private Bag X1106, Sovenga 0727, South Africa
| |
Collapse
|
222
|
Yang L, Chaves L, Kutscher HL, Karki S, Tamblin M, Kenney P, Reynolds JL. An immunoregulator nanomedicine approach for the treatment of tuberculosis. Front Bioeng Biotechnol 2023; 11:1095926. [PMID: 37304141 PMCID: PMC10249870 DOI: 10.3389/fbioe.2023.1095926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 05/12/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction: A nanoparticle composed of a poly (lactic-co-glycolic acid) (PLGA) core and a chitosan (CS) shell with surface-adsorbed 1,3 β-glucan (β-glucan) was synthesized. The exposure response of CS-PLGA nanoparticles (0.1 mg/mL) with surface-bound β-glucan at 0, 5, 10, 15, 20, or 25 ng or free β-glucan at 5, 10, 15, 20, or 25 ng/mL in macrophage in vitro and in vivo was investigated. Results: In vitro studies demonstrate that gene expression for IL-1β, IL-6, and TNFα increased at 10 and 15 ng surface-bound β-glucan on CS-PLGA nanoparticles (0.1 mg/mL) and at 20 and 25 ng/mL of free β-glucan both at 24 h and 48 h. Secretion of TNFα protein and ROS production increased at 5, 10, 15, and 20 ng surface-bound β-glucan on CS-PLGA nanoparticles and at 20 and 25 ng/mL of free β-glucan at 24 h. Laminarin, a Dectin-1 antagonist, prevented the increase in cytokine gene expression induced by CS-PLGA nanoparticles with surface-bound β-glucan at 10 and 15 ng, indicating a Dectin-1 receptor mechanism. Efficacy studies showed a significant reduction in intracellular accumulation of mycobacterium tuberculosis (Mtb) in monocyte-derived macrophages (MDM) incubated with on CS-PLGA (0.1 mg/ml) nanoparticles with 5, 10, and 15 ng surface-bound β-glucan or with 10 and 15 ng/mL of free β-glucan. β-glucan-CS-PLGA nanoparticles inhibited intracellular Mtb growth more than free β-glucan alone supporting the role of β-glucan-CS-PLGA nanoparticles as stronger adjuvants than free β-glucan. In vivo studies demonstrate that oropharyngeal aspiration (OPA) of CS-PLGA nanoparticles with nanogram concentrations of surface-bound β-glucan or free β-glucan increased TNFα gene expression in alveolar macrophages and TNFα protein secretion in bronchoalveolar lavage supernatants. Discussion: Data also demonstrate no damage to the alveolar epithelium or changes in the murine sepsis score following exposure to β-glucan-CS-PLGA nanoparticles only, indicating safety and feasibility of this nanoparticle adjuvant platform to mice by OPA.
Collapse
Affiliation(s)
- Luona Yang
- Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Lee Chaves
- Department of Neurosurgery, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Hilliard L. Kutscher
- Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Shanta Karki
- Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Maria Tamblin
- Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Patrick Kenney
- Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Jessica L. Reynolds
- Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
223
|
Palanikumar L, Kalmouni M, Houhou T, Abdullah O, Ali L, Pasricha R, Thomas S, Afzal AJ, Barrera FN, Magzoub M. pH-responsive upconversion mesoporous silica nanospheres for combined multimodal diagnostic imaging and targeted photodynamic and photothermal cancer therapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.22.541491. [PMID: 37292655 PMCID: PMC10245854 DOI: 10.1101/2023.05.22.541491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Photodynamic therapy (PDT) and photothermal therapy (PTT) have garnered considerable interest as non-invasive cancer treatment modalities. However, these approaches remain limited by low solubility, poor stability and inefficient targeting of many common photosensitizers (PSs) and photothermal agents (PTAs). To overcome these limitations, we have designed biocompatible and biodegradable tumor-targeted upconversion nanospheres with imaging capabilities. The multifunctional nanospheres consist of a sodium yttrium fluoride core doped with lanthanides (ytterbium, erbium and gadolinium) and bismuth selenide (NaYF 4 :Yb/Er/Gd,Bi 2 Se 3 ) within a mesoporous silica shell that encapsulates a PS, Chlorin e6 (Ce6), in its pores. NaYF 4 :Yb/Er converts deeply penetrating near-infrared (NIR) light to visible light, which excites the Ce6 to generate cytotoxic reactive oxygen species (ROS), while the PTA Bi 2 Se 3 efficiently converts absorbed NIR light to heat. Additionally, Gd enables magnetic resonance imaging (MRI) of the nanospheres. The mesoporous silica shell is coated with lipid/polyethylene glycol (DPPC/cholesterol/DSPE-PEG) to ensure retention of the encapsulated Ce6 and minimize interactions with serum proteins and macrophages that impede tumor targeting. Finally, the coat is functionalized with the acidity-triggered rational membrane (ATRAM) peptide, which promotes specific and efficient internalization into cancer cells within the mildly acidic tumor microenvironment. Following uptake by cancer cells in vitro , NIR laser irradiation of the nanospheres caused substantial cytotoxicity due to ROS production and hyperthermia. The nanospheres facilitated tumor MRI and thermal imaging, and exhibited potent NIR laser light-induced antitumor effects in vivo via combined PDT and PTT, with no observable toxicity to healthy tissue, thereby substantially prolonging survival. Our results demonstrate that the ATRAM-functionalized, lipid/PEG-coated upconversion mesoporous silica nanospheres (ALUMSNs) offer multimodal diagnostic imaging and targeted combinatorial cancer therapy.
Collapse
Affiliation(s)
- L. Palanikumar
- Biology Program, Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Mona Kalmouni
- Biology Program, Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Tatiana Houhou
- Biology Program, Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Osama Abdullah
- Core Technology Platforms, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Liaqat Ali
- Core Technology Platforms, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Renu Pasricha
- Core Technology Platforms, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Sneha Thomas
- Core Technology Platforms, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Ahmed J. Afzal
- Biology Program, Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Francisco N. Barrera
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee Knoxville, Knoxville, Tennessee, United States
| | - Mazin Magzoub
- Biology Program, Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
224
|
Phuangbubpha P, Thara S, Sriboonaied P, Saetan P, Tumnoi W, Charoenpanich A. Optimizing THP-1 Macrophage Culture for an Immune-Responsive Human Intestinal Model. Cells 2023; 12:1427. [PMID: 37408263 DOI: 10.3390/cells12101427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/09/2023] [Accepted: 05/09/2023] [Indexed: 07/07/2023] Open
Abstract
Previously established immune-responsive co-culture models with macrophages have limitations due to the dedifferentiation of macrophages in long-term cultures. This study is the first report of a long-term (21-day) triple co-culture of THP-1 macrophages (THP-1m) with Caco-2 intestinal epithelial cells and HT-29-methotrexate (MTX) goblet cells. We demonstrated that high-density seeded THP-1 cells treated with 100 ng/mL phorbol 12-myristate 13-acetate for 48 h differentiated stably and could be cultured for up to 21 days. THP-1m were identified by their adherent morphology and lysosome expansion. In the triple co-culture immune-responsive model, cytokine secretions during lipopolysaccharide-induced inflammation were confirmed. Tumor necrosis factor-alpha and interleukin 6 levels were elevated in the inflamed state, reaching 824.7 ± 130.0 pg/mL and 609.7 ± 139.5 pg/mL, respectively. Intestinal membrane integrity was maintained with a transepithelial electrical resistance value of 336.4 ± 18.0 Ω·cm2. Overall, our findings suggest that THP-1m can be effectively employed in models of long-term immune responses in both normal and chronic inflammatory states of the intestinal epithelium, making them a valuable tool for future research on the association between the immune system and gut health.
Collapse
Affiliation(s)
- Pornwipa Phuangbubpha
- Department of Biology, Faculty of Science, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Sanya Thara
- Department of Biology, Faculty of Science, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Patsawee Sriboonaied
- Department of Biology, Faculty of Science, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Puretat Saetan
- Department of Biology, Faculty of Science, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Wanwiwa Tumnoi
- Department of Biology, Faculty of Science, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Adisri Charoenpanich
- Department of Biology, Faculty of Science, Silpakorn University, Nakhon Pathom 73000, Thailand
| |
Collapse
|
225
|
Yadav H, Singh R. Immunomodulatory role of non-ionizing electromagnetic radiation in human leukemiamonocytic cell line. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 331:121843. [PMID: 37207815 DOI: 10.1016/j.envpol.2023.121843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/21/2023]
Abstract
In daily life, people are usually exposed to radiofrequency radiations (RFR). The effects of RFR on human physiology have been a major source of controversy since the WHO declared that these radiations are a type of environmental energy that interacts with the physiological functioning of the human body. The immune system provides internal protection and promotes long-term health and survival. However, the relevant research on the innate immune system and radiofrequency radiation is scant. In this connection, we hypothesized that innate immune responses would be influenced by exposure to non-ionizing electromagnetic radiation from mobile phones in a cell-specific and time-dependent manner. To analyze this hypothesis, human leukemia monocytic cell lines were exposed to 2318 MHz (MHz) RFR emitted by mobile phones at a power density of 0.224 W/m2 in a controlled manner for various time durations (15, 30, 45, 60, 90, and 120 min). Systematic studies on cell viability, nitric oxide (NO), superoxide (SO), pro-inflammatory cytokine production, and phagocytic assays were performed after the irradiation. The duration of exposure seems to have a substantial influence on the RFR-induced effects. It was noticed that after 30 min of exposure, the RFR dramatically enhanced the pro-inflammatory cytokine IL-1α level as well as reactive species such as NO and SO generation as compared to the control. In contrast, the RFR dramatically reduced the phagocytic activity of monocytes during 60 min of treatment when compared to the control. Interestingly, the irradiated cells restored their normal functioning until the final 120-min of exposure. Furthermore, mobile phone exposure had no influence on cell viability or TNF-α level. The results showed that RFR exhibits a time-dependent immune-modulatory role in the human leukemia monocytic cell line. Nevertheless, more research is needed to further determine the long-term effects and precise mechanism of action of RFR.
Collapse
Affiliation(s)
- Himanshi Yadav
- Department of Environmental Studies, Satyawati College, University of Delhi, Delhi-110054, India
| | - Rajeev Singh
- Department of Environmental Studies, Satyawati College, University of Delhi, Delhi-110054, India; Department of Environmental Science, Jamia Millia Islamia, Delhi- 110025, India.
| |
Collapse
|
226
|
Ma C, Hao X, Gao L, Wang Y, Shi J, Luo H, Li M. Extracellular Vesicles Released from Macrophages Infected with Mycoplasma pneumoniae Stimulate Proinflammatory Response via the TLR2-NF-κB/JNK Signaling Pathway. Int J Mol Sci 2023; 24:ijms24108588. [PMID: 37239946 DOI: 10.3390/ijms24108588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/06/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Mycoplasma pneumoniae (M. pneumoniae, Mp) is an intracellular pathogen that causes pneumonia, tracheobronchitis, pharyngitis, and asthma in humans and can infect and survive in the host cells leading to excessive immune responses. Extracellular vesicles (EVs) from host cells carry components of pathogens to recipient cells and play a role in intercellular communication during infection. However, there is limited knowledge on whether EVs derived from M. pneumoniae-infected macrophages play as intercellular messengers and functional mechanisms. In this study, we establish a cell model of M. pneumoniae-infected macrophages that continuously secrete EVs to further asses their role as intercellular messengers and their functional mechanisms. Based on this model, we determined a method for isolating the pure EVs from M. pneumoniae-infected macrophages, which employs a sequence of operations, including differential centrifugation, filtering, and ultracentrifugation. We identified EVs and their purity using multiple methods, including electron microscopy, nanoparticle tracking analysis, Western blot, bacteria culture, and nucleic acid detection. EVs from M. pneumoniae-infected macrophages are pure, with a 30-200 nm diameter. These EVs can be taken up by uninfected macrophages and induce the production of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, and IL-8 through the nuclear factor (NF)-κB, and mitogen-activated protein kinases (MAPK) signals pathway. Moreover, the expression of inflammatory cytokines induced by EVs relies on TLR2-NF-κB/JNK signal pathways. These findings will help us better understand a persistent inflammatory response and cell-to-cell immune modulation in the context of M. pneumoniae infection.
Collapse
Affiliation(s)
- Chunji Ma
- Life Science School, Ningxia University, Yinchuan 750021, China
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan 750021, China
| | - Xiujing Hao
- Life Science School, Ningxia University, Yinchuan 750021, China
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan 750021, China
| | - Liyang Gao
- Life Science School, Ningxia University, Yinchuan 750021, China
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan 750021, China
| | - Yongyu Wang
- Life Science School, Ningxia University, Yinchuan 750021, China
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan 750021, China
| | - Juan Shi
- Life Science School, Ningxia University, Yinchuan 750021, China
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan 750021, China
| | - Haixia Luo
- Life Science School, Ningxia University, Yinchuan 750021, China
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan 750021, China
| | - Min Li
- Life Science School, Ningxia University, Yinchuan 750021, China
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan 750021, China
| |
Collapse
|
227
|
Fujita H, Adachi C, Inoue T. Cholesterol-load evokes robust calcium response in macrophages: An early event toward cholesterol-induced macrophage death. Cell Calcium 2023; 113:102754. [PMID: 37196488 DOI: 10.1016/j.ceca.2023.102754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/27/2023] [Accepted: 05/09/2023] [Indexed: 05/19/2023]
Abstract
Macrophages in atherosclerotic lesions accumulate large amounts of unesterified cholesterol. Excess cholesterol load leads to cell death of macrophages, which is associated with the progression of atherosclerotic lesions. Calcium depletion in the endoplasmic reticulum (ER) and subsequent pro-apoptotic aberrant calcium signaling are key events in cholesterol-induced macrophage death. Although these concepts imply cytoplasmic calcium events in cholesterol-loaded macrophages, the mechanisms linking cholesterol accumulation to cytoplasmic calcium response have been poorly investigated. Based on our previous finding that extracellularly applied cholesterol evoked robust calcium oscillations in astrocytes, a type of glial cells in the brain, we hypothesized that cholesterol accumulation in macrophages triggers cytoplasmic calcium elevation. Here, we showed that cholesterol application induces calcium transients in THP-1-derived and peritoneal macrophages. Inhibition of inositol 1,4,5-trisphosphate receptors (IP3Rs) and l-type calcium channels (LTCCs) prevented cholesterol-induced calcium transients and ameliorated cholesterol-induced macrophage death. These results suggest that cholesterol-induced calcium transients through IP3Rs and LTCCs are crucial mechanisms underlying cholesterol-induced cell death of macrophages.
Collapse
Affiliation(s)
- Hirotaka Fujita
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, 162-8480, Japan
| | - Chihiro Adachi
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, 162-8480, Japan
| | - Takafumi Inoue
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, 162-8480, Japan.
| |
Collapse
|
228
|
Simmons K, Chan J, Hussain S, Rose EL, Markham K, Byun TS, Panicker S, Parry GC, Storek M. Anti-C1s humanized monoclonal antibody SAR445088: A classical pathway complement inhibitor specific for the active form of C1s. Clin Immunol 2023; 251:109629. [PMID: 37149117 DOI: 10.1016/j.clim.2023.109629] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/28/2023] [Accepted: 04/26/2023] [Indexed: 05/08/2023]
Abstract
The objective of this study was to characterize the complement-inhibiting activity of SAR445088, a novel monoclonal antibody specific for the active form of C1s. Wieslab® and hemolytic assays were used to demonstrate that SAR445088 is a potent, selective inhibitor of the classical pathway of complement. Specificity for the active form of C1s was confirmed in a ligand binding assay. Finally, TNT010 (a precursor to SAR445088) was assessed in vitro for its ability to inhibit complement activation associated with cold agglutinin disease (CAD). TNT010 inhibited C3b/iC3b deposition on human red blood cells incubated with CAD patient serum and decreased their subsequent phagocytosis by THP-1 cells. In summary, this study identifies SAR445088 as a potential therapeutic for the treatment of classical pathway-driven diseases and supports its continued assessment in clinical trials.
Collapse
Affiliation(s)
| | - Joanne Chan
- Sanofi, Cambridge, MA, USA; Former Sanofi Employee Affiliated with Sanofi at Time of Study
| | - Sami Hussain
- Sanofi, Cambridge, MA, USA; Former Sanofi Employee Affiliated with Sanofi at Time of Study
| | - Eileen L Rose
- Sanofi, Cambridge, MA, USA; Former Sanofi Employee Affiliated with Sanofi at Time of Study
| | - Kate Markham
- Sanofi, Cambridge, MA, USA; Former Sanofi Employee Affiliated with Sanofi at Time of Study
| | - Tony S Byun
- Sanofi, Cambridge, MA, USA; Former Sanofi Employee Affiliated with Sanofi at Time of Study
| | - Sandip Panicker
- Sanofi, Cambridge, MA, USA; Former Sanofi Employee Affiliated with Sanofi at Time of Study
| | - Graham C Parry
- Sanofi, Cambridge, MA, USA; Former Sanofi Employee Affiliated with Sanofi at Time of Study
| | | |
Collapse
|
229
|
Ma H, Shu Q, Li D, Wang T, Li L, Song X, Lou K, Xu H. Accumulation of Intracellular Ferrous Iron in Inflammatory-Activated Macrophages. Biol Trace Elem Res 2023; 201:2303-2310. [PMID: 35852674 DOI: 10.1007/s12011-022-03362-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/14/2022] [Indexed: 11/28/2022]
Abstract
Macrophages are important innate immune cells which can be polarized into heterogeneous populations. The inflammatory-activated M1 cells are known to be involved in all kinds of inflammatory diseases, which were also found to be associated with dysregulation of iron metabolism. While iron overload is known to induce M1 polarization, the valence states of iron and its intracellular dynamics during macrophage inflammatory activation have not been identified. In this study, THP-1-derived macrophages were polarized into M1, M2a, M2b, M2c, and M2d cells, and intracellular ferrous iron (Fe(II)) was measured by our previously developed ultrasensitive Fe(II) fluorescent probe. Significant accumulation of Fe(II) was only observed in M1 cells, which was different from the alterations of total iron. Time-dependent change of intracellular Fe(II) during the inflammatory activation was also consistent with the expression shifts of transferrin receptor CD71, ferrireductase Steap3, and Fe(II) exporter Slc40a1. In addition, accumulation of Fe(II) was also found in the colon macrophages of mice with ulcerative colitis, which was positively correlated to inflammatory phenotypes, including the productions of NO, IL-1β, TNF-α, and IL-6. Collectively, these results demonstrated the specific accumulation of Fe(II) in inflammatory-activated macrophages, which not only enriched our understanding of iron homeostasis in macrophages, but also indicated that Fe(II) could be further developed as a potential biomarker for inflammatory-activated macrophages.
Collapse
Affiliation(s)
- Huijuan Ma
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Qi Shu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Dan Li
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Tingqian Wang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Linyi Li
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Xiaodong Song
- Medical Laboratory Department, Hua Shan Hospital North, Fudan University, Shanghai, 201907, China
| | - Kaiyan Lou
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
| | - Huan Xu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
230
|
Wei Z, Wang W, Feng H, Xu W, Tao L, Li Z, Zhang Y, Shao X. Investigation on the immunotoxicity induced by Emamectin benzoate on THP-1 macrophages based on metabolomics analysis. ENVIRONMENTAL TOXICOLOGY 2023; 38:1053-1062. [PMID: 36896474 DOI: 10.1002/tox.23747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/29/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Emamectin benzoate (EMB) is an insecticide extensively used in agricultural area. Assessing the toxic effects of EMB in mammals or humans and its endogenous metabolites alteration are the appropriate means of evaluating its risks to human health. In the study, THP-1 macrophage, a human immune model, was applied to investigate the immunotoxicity of EMB. A global metabolomics approach was developed to analyze metabolic perturbation on macrophages and discover the potential biomarkers of EMB-induced immunotoxicity. The results indicated that EMB could inhibit immune functions of macrophages. Based on metabolomics analysis, our results illustrated that EMB caused significant alterations in metabolic profiles on macrophages. 22 biomarkers associated with immune response were screened by pattern recognition and multivariate statistical analysis. Furthermore, pathway analysis identified purine metabolism was the most relevant pathway in the metabolic process and the abnormal conversion of AMP to xanthosine regulated by NT5E might be a potential mechanism of immunotoxicity induced by EMB. Our study provides important insights for understanding and underlying mechanism of immunotoxicity exposed to EMB.
Collapse
Affiliation(s)
- Ziyi Wei
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Weiguo Wang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Hao Feng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Wenping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Liming Tao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yang Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Xusheng Shao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
231
|
Manoharan RR, Sedlářová M, Pospíšil P, Prasad A. Detection and characterization of free oxygen radicals induced protein adduct formation in differentiating macrophages. Biochim Biophys Acta Gen Subj 2023; 1867:130324. [PMID: 36775000 DOI: 10.1016/j.bbagen.2023.130324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/24/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023]
Abstract
Reactive oxygen species play a key role in cellular homeostasis and redox signaling at physiological levels, where excessive production affects the function and integrity of macromolecules, specifically proteins. Therefore, it is important to define radical-mediated proteotoxic stress in macrophages and identify target protein to prevent tissue dysfunction. A well employed, THP-1 cell line was utilized as in vitro model to study immune response and herein we employ immuno-spin trapping technique to investigate radical-mediated protein oxidation in macrophages. Hydroxyl radical formation along macrophage differentiation was confirmed by electron paramagnetic resonance along with confocal laser scanning microscopy using hydroxyphenyl fluorescein. Lipid peroxidation product, malondialdehyde, generated under experimental conditions as detected using swallow-tailed perylene derivative fluorescence observed by confocal laser scanning microscopy and high-performance liquid chromatography, respectively. The results obtained from this study warrant further corroboration and study of specific proteins involved in the macrophage activation and their role in inflammations.
Collapse
Affiliation(s)
- Renuka Ramalingam Manoharan
- Department of Biophysics, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Michaela Sedlářová
- Department of Botany, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Pavel Pospíšil
- Department of Biophysics, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Ankush Prasad
- Department of Biophysics, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic.
| |
Collapse
|
232
|
Giebe S, Brux M, Hofmann A, Lowe F, Breheny D, Morawietz H, Brunssen C. Comparative study of the effects of cigarette smoke versus next-generation tobacco and nicotine product extracts on inflammatory biomarkers of human monocytes. Pflugers Arch 2023:10.1007/s00424-023-02809-9. [PMID: 37081240 DOI: 10.1007/s00424-023-02809-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/22/2023]
Abstract
Monocytes exhibiting a pro-inflammatory phenotype play a key role in adhesion and development of atherosclerotic plaques. As an alternative to smoking, next-generation tobacco and nicotine products (NGP) are now widely used. However, little is known about their pro-inflammatory effects on monocytes. We investigated cell viability, anti-oxidant and pro-inflammatory gene and protein expression in THP-1 monocytes after exposure to aqueous smoke extracts (AqE) of a heated tobacco product (HTP), an electronic cigarette (e-cig), a conventional cigarette (3R4F) and pure nicotine (nic). Treatment with 3R4F reduced cell viability in a dose-dependent manner, whereas exposure to alternative smoking products showed no difference to control. At the highest non-lethal dose of 3R4F (20%), the following notable mRNA expression changes were observed for 3R4F, HTP, and e-cig respectively, relative to control; HMOX1 (6-fold, < 2-fold, < 2-fold), NQO1 (3.5-fold, < 2-fold, < 2-fold), CCL2 (4-fold, 3.5-fold, 2.5-fold), IL1B (4-fold, 3-fold, < 2-fold), IL8 (5-fold, 2-fold, 2-fold), TNF (2-fold, 2-fold, < 2-fold) and ICAM1 was below the 2-fold threshold for all products. With respect to protein expression, IL1B (3-fold, < 2-fold, < 2-fold) and IL8 (3.5-fold, 2-fold, 2-fold) were elevated over the 2-fold threshold, whereas CCL2, TNF, and ICAM1 were below 2-fold expression for all products. At higher doses, greater inductions were observed with all extracts; however, NGP responses were typically lower than 3R4F. In conclusion, anti-oxidative and pro-inflammatory processes were activated by all products. NGPs overall showed lower responses relative to controls than THP-1 cells exposed to 3R4F AqE.
Collapse
Affiliation(s)
- Sindy Giebe
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, Fetscherstr. 74, D-01307, Dresden, Germany
| | - Melanie Brux
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, Fetscherstr. 74, D-01307, Dresden, Germany
| | - Anja Hofmann
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, Fetscherstr. 74, D-01307, Dresden, Germany
| | - Frazer Lowe
- B.A.T. (Investments) Limited, Regents Park Road, Millbrook, Southampton, SO15 8TL, UK
| | - Damien Breheny
- B.A.T. (Investments) Limited, Regents Park Road, Millbrook, Southampton, SO15 8TL, UK
| | - Henning Morawietz
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, Fetscherstr. 74, D-01307, Dresden, Germany.
| | - Coy Brunssen
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, Fetscherstr. 74, D-01307, Dresden, Germany.
| |
Collapse
|
233
|
Casas-Rodríguez A, Cebadero-Dominguez Ó, Puerto M, Cameán AM, Jos A. Immunomodulatory Effects of Cylindrospermopsin in Human T Cells and Monocytes. Toxins (Basel) 2023; 15:toxins15040301. [PMID: 37104239 PMCID: PMC10146592 DOI: 10.3390/toxins15040301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 04/28/2023] Open
Abstract
Cylindrospermopsin (CYN) is a cyanotoxin with an increasing occurrence, and therefore it is important to elucidate its toxicity profile. CYN has been classified as a cytotoxin, although the scientific literature has already revealed that it affects a wide range of organs and systems. However, research on its potential immunotoxicity is still limited. Thus, this study aimed to evaluate the impact of CYN on two human cell lines representative of the immune system: THP-1 (monocytes) and Jurkat (lymphocytes). CYN reduced cell viability, leading to mean effective concentrations (EC50 24 h) of 6.00 ± 1.04 µM and 5.20 ± 1.20 µM for THP-1 and Jurkat cells, respectively, and induced cell death mainly by apoptosis in both experimental models. Moreover, CYN decreased the differentiation of monocytes to macrophages after 48 h of exposure. In addition, an up-regulation of the mRNA expression of different cytokines, such as interleukin (IL) 2, IL-8, tumor necrosis factor-alpha (TNF-α) and interferon-gamma (INF-γ), was also observed mainly after 24 h exposure in both cell lines. However, only an increase in TNF-α in THP-1 supernatants was observed by ELISA. Overall, these results suggest the immunomodulatory activity of CYN in vitro. Therefore, further research is required to evaluate the impact of CYN on the human immune system.
Collapse
Affiliation(s)
| | | | - María Puerto
- Area of Toxicology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain
| | - Ana María Cameán
- Area of Toxicology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain
| | - Angeles Jos
- Area of Toxicology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain
| |
Collapse
|
234
|
Pitchai MS, Ipe DS, Hamlet S. The Effect of Titanium Surface Topography on Adherent Macrophage Integrin and Cytokine Expression. J Funct Biomater 2023; 14:jfb14040211. [PMID: 37103301 PMCID: PMC10145888 DOI: 10.3390/jfb14040211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 04/28/2023] Open
Abstract
Immunomodulatory biomaterials have the potential to stimulate an immune response able to promote constructive and functional tissue remodeling, as opposed to persistent inflammation and scar tissue formation. This study examined the effects of titanium surface modification on integrin expression and concurrent cytokine secretion by adherent macrophages in vitro in an attempt to delineate the molecular events involved in biomaterial-mediated immunomodulation. Non-polarised (M0) and inflammatory polarised (M1) macrophages were cultured on a relatively smooth (machined) titanium surface and two proprietary modified rough titanium surfaces (blasted and fluoride-modified) for 24 h. The physiochemical characteristics of the titanium surfaces were assessed by microscopy and profilometry, while macrophage integrin expression and cytokine secretion were determined using PCR and ELISA, respectively. After 24 h adhesion onto titanium, integrin α1 expression was downregulated in both M0 and M1 cells on all titanium surfaces. Expression of integrins α2, αM, β1 and β2 increased in M0 cells cultured on the machined surface only, whereas in M1 cells, expression of integrins α2, αM and β1 all increased with culture on both the machined and rough titanium surfaces. These results correlated with a cytokine secretory response whereby levels of IL-1β, IL-31 and TNF-α increased significantly in M1 cells cultured on the titanium surfaces. These results show that adherent inflammatory macrophages interact with titanium in a surface-dependent manner such that increased levels of inflammatory cytokines IL-1β, TNF-α and IL-31 secreted by M1 cells were associated with higher expression of integrins α2, αM and β1.
Collapse
Affiliation(s)
- Manju Sofia Pitchai
- School of Medicine and Dentistry, Gold Coast Campus, Griffith University, Southport, QLD 4222, Australia
| | - Deepak Samuel Ipe
- School of Medicine and Dentistry, Gold Coast Campus, Griffith University, Southport, QLD 4222, Australia
| | - Stephen Hamlet
- School of Medicine and Dentistry, Gold Coast Campus, Griffith University, Southport, QLD 4222, Australia
| |
Collapse
|
235
|
Firl CEM, Halushka M, Fraser N, Masson M, Cuneo BF, Saxena A, Clancy R, Buyon J. Contribution of S100A4-expressing fibroblasts to anti-SSA/Ro-associated atrioventricular nodal calcification and soluble S100A4 as a biomarker of clinical severity. Front Immunol 2023; 14:1114808. [PMID: 37090702 PMCID: PMC10117984 DOI: 10.3389/fimmu.2023.1114808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/06/2023] [Indexed: 04/25/2023] Open
Abstract
Background Fibrosis and dystrophic calcification disrupting conduction tissue architecture are histopathological lesions characterizing cardiac manifestations of neonatal lupus (cardiac-NL) associated with maternal anti-SSA/Ro antibodies. Objectives Increased appreciation of heterogeneity in fibroblasts encourages re-examination of existing models with the consideration of multiple fibroblast subtypes (and their unique functional differences) in mind. This study addressed fibroblast heterogeneity by examining expression of α-Smooth Muscle Actin (myofibroblasts) and of S100 Calcium-Binding Protein A4 (S100A4). Methods Using a previously established model of rheumatic scarring/fibrosis in vitro, supported by the evaluation of cord blood from cardiac-NL neonates and their healthy (anti-SSA/Ro-exposed) counterparts, and autopsy tissue from fetuses dying with cardiac-NL, the current study was initiated to more clearly define and distinguish the S100A4-positive fibroblast in the fetal cardiac environment. Results S100A4 immunostaining was observed in 4 cardiac-NL hearts with positional identity in the conduction system at regions of dystrophic calcification but not fibrotic zones, the latter containing only myofibroblasts. In vitro, fibroblasts cultured with supernatants of macrophages transfected with hY3 (noncoding ssRNA) differentiated into myofibroblasts or S100A4+ fibroblasts. Myofibroblasts expressed collagen while S100A4+ fibroblasts expressed pro-angiogenic cytokines and proteases that degrade collagen. Cord blood levels of S100A4 in anti-SSA/Ro-exposed neonates tracked disease severity and, in discordant twins, distinguished affected from unaffected. Conclusions These findings position the S100A4+ fibroblast alongside the canonical myofibroblast in the pathogenesis of cardiac-NL. Neonatal S100A4 levels support a novel biomarker of poor prognosis.
Collapse
Affiliation(s)
- Christina E. M. Firl
- Division of Rheumatology, Department of Medicine, New York University Grossman School of Medicine, New York, NY, United States
| | - Marc Halushka
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, United States
| | - Nicola Fraser
- Division of Rheumatology, Department of Medicine, New York University Grossman School of Medicine, New York, NY, United States
| | - Mala Masson
- Division of Rheumatology, Department of Medicine, New York University Grossman School of Medicine, New York, NY, United States
| | - Bettina F. Cuneo
- Department of Obstetrics and Gynecology, University of Colorado Anschultz Medical Campus, Aurora, CO, United States
| | - Amit Saxena
- Division of Rheumatology, Department of Medicine, New York University Grossman School of Medicine, New York, NY, United States
| | - Robert Clancy
- Division of Rheumatology, Department of Medicine, New York University Grossman School of Medicine, New York, NY, United States
| | - Jill Buyon
- Division of Rheumatology, Department of Medicine, New York University Grossman School of Medicine, New York, NY, United States
| |
Collapse
|
236
|
Weiss V, Gobec M, Jakopin Ž. In vitro investigation of immunomodulatory activities of selected UV-filters. Food Chem Toxicol 2023; 174:113684. [PMID: 36813152 DOI: 10.1016/j.fct.2023.113684] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/07/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023]
Abstract
Organic UV filters are ubiquitous as they are used in numerous personal care products. Consequently, people constantly come into direct or indirect contact with these chemicals. Albeit studies of the effects of UV filters on human health have been undertaken, their toxicological profiles are not complete. In this work, we investigated the immunomodulatory properties of eight UV filters representing different chemotypes, including benzophenone-1, benzophenone-3, ethylhexyl methoxycinnamate, octyldimethyl-para-aminobenzoic acid, octyl salate, butylmethoxydibenzoylmethane, 3-benzylidenecamphor, and 2,4-di-tert-butyl-6-(5-chlorobenzotriazol-2-yl)phenol. We demonstrated that none of these UV filters were cytotoxic to THP-1 cells at concentrations up to 50 μM. Importantly, our study highlighted the capacity of nontoxic concentrations of avobenzone and 3-benzylidene camphor to increase the secretion of interleukin 8 (IL-8) from both THP-1 cells and THP-1 derived macrophages. Further, they also exhibited a pronounced decrease of IL-6 and IL-10 release from lipopolysaccharide-stimulated peripheral blood mononuclear cells. The observed immune cell alterations suggest that exposure to 3-BC and BMDM could be involved in immune deregulation. Our research thus provided additional insight into UV filter safety profile.
Collapse
Affiliation(s)
- Veronika Weiss
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, SI-1000, Ljubljana, Slovenia
| | - Martina Gobec
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, SI-1000, Ljubljana, Slovenia
| | - Žiga Jakopin
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, SI-1000, Ljubljana, Slovenia.
| |
Collapse
|
237
|
Morimoto M, Tatsumi K, Takabayashi Y, Sakata A, Yuui K, Terazawa I, Kudo R, Kasuda S. Involvement of monocyte-derived extracellular vesicle-associated tissue factor activity in convallatoxin-induced hypercoagulability. Blood Coagul Fibrinolysis 2023; 34:184-190. [PMID: 36966751 DOI: 10.1097/mbc.0000000000001211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
Abstract
OBJECTIVES Convallatoxin (CNT) is a natural cardiac glycoside extracted from lily of the valley ( Convallaria majalis ). Although it is empirically known to cause blood coagulation disorders, the underlying mechanism remains unclear. CNT exerts cytotoxicity and increases tissue factor (TF) expression in endothelial cells. However, the direct action of CNT on blood coagulation remains unclear. Therefore, herein, we investigated the effects of CNT on whole blood coagulation system and TF expression in monocytes. METHODS Blood samples were collected from healthy volunteers to measure plasma thrombin-antithrombin complex (TAT) concentration using ELISA and to perform rotational thromboelastometry (ROTEM) and whole-blood extracellular vesicle (EV)-associated TF (EV-TF) analysis. The effects of CNT were also investigated using the monocytic human cell line THP-1. Quantitative real-time PCR and western blotting were performed, and PD98059, a mitogen-activated protein kinase (MAPK) inhibitor, was used to elucidate the action mechanism of CNT-mediated TF production. RESULTS CNT treatment increased EV-TF activity, shortened the whole blood clotting time in rotational thromboelastometry analysis, and increased TAT levels, which is an index of thrombin generation. Furthermore, CNT increased TF mRNA expression in THP-1 cells and EV-TF activity in the cell culture supernatant. Therefore, CNT may induce a hypercoagulable state with thrombin generation, in which elevated EV-TF activity derived from monocytes might be involved. These procoagulant effects of CNT were reversed by PD98059, suggesting that CNT-induced TF production in monocytes might be mediated by the MAPK pathway. CONCLUSIONS The findings of the present study have further clarified the procoagulant properties of CNT.
Collapse
Affiliation(s)
| | - Kohei Tatsumi
- Advanced Medical Science of Thrombosis and Hemostasis
| | | | - Asuka Sakata
- Medicinal Biology of Thrombosis and Hemostasis, Nara Medical University, Kashihara, Nara, Japan
| | | | | | | | | |
Collapse
|
238
|
Kim NY, Kim S, Park HM, Lim CM, Kim J, Park JY, Jeon KB, Poudel A, Lee HP, Oh SR, Ahn J, Yoon DY. Cinnamomum verum extract inhibits NOX2/ROS and PKCδ/JNK/AP-1/NF-κB pathway-mediated inflammatory response in PMA-stimulated THP-1 monocytes. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 112:154685. [PMID: 36753827 DOI: 10.1016/j.phymed.2023.154685] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/08/2022] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Cinnamomum verum J. Presl (Cinnamon) is widely used in the food and pharmaceutical industries. C. verum exhibits various biological activities. However, it is unclear whether C. verum can inhibit NOX, a major source of ROS generation, and exert anti-inflammatory and antioxidant effects in PMA-stimulated THP-1 cells. PURPOSE This study investigates the anti-inflammatory and antioxidant effects of C. verum in PMA-stimulated THP-1 cells. METHODS The MeOH extract of C. verum was analyzed using UPLC-QTOF/MS. Anti-inflammatory and antioxidant effects of C. verum extract were examined by DCF-DA staining, immunofluorescence staining, RT-PCR, and immunoblotting in PMA-stimulated THP-1 cells. RESULTS C. verum and its components, cinnamic acid and coumarin, significantly attenuated the expression of IL-1β, IL-8, CCL5, and COX-2 in PMA-stimulated THP-1. C. verum decreased ROS levels via NOX2 downregulation, as well as ameliorated plasma membrane translocation of PKCδ and decreased JNK phosphorylation. Besides, C. verum suppressed the nuclear translocation of AP-1 and NF-κB, which modulates diverse pro-inflammatory genes. CONCLUSION C. verum effectively inhibits inflammation and oxidative stress during monocyte-macrophage differentiation and downregulates inflammatory mediators via NOX2/ROS and PKCδ/JNK/AP-1/NF-κB signaling.
Collapse
Affiliation(s)
- Na-Yeon Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Seonhwa Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Hyo-Min Park
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Chae-Min Lim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Jinju Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Jae-Young Park
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Kyeong-Bae Jeon
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Amrit Poudel
- Panchamrit Research Center, Pokhara-07, Kaski 33700, Nepal
| | - Hee Pom Lee
- College of Pharmacy & Medical Research Center, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Sei-Ryang Oh
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea.
| | - Jongmin Ahn
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea.
| | - Do-Young Yoon
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
239
|
Essletzbichler P, Sedlyarov V, Frommelt F, Soulat D, Heinz LX, Stefanovic A, Neumayer B, Superti-Furga G. A genome-wide CRISPR functional survey of the human phagocytosis molecular machinery. Life Sci Alliance 2023; 6:e202201715. [PMID: 36725334 PMCID: PMC9892931 DOI: 10.26508/lsa.202201715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 02/03/2023] Open
Abstract
Phagocytosis, the process by which cells engulf large particles, plays a vital role in driving tissue clearance and host defense. Its dysregulation is connected to autoimmunity, toxic accumulation of proteins, and increased risks for infections. Despite its importance, we lack full understanding of all molecular components involved in the process. To create a functional map in human cells, we performed a genome-wide CRISPRko FACS screen that identified 716 genes. Mapping those hits to a comprehensive protein-protein interaction network annotated for functional cellular processes allowed retrieval of protein complexes identified multiple times and detection of missing phagocytosis regulators. In addition to known components, such as the Arp2/3 complex, the vacuolar-ATPase-Rag machinery, and the Wave-2 complex, we identified and validated new phagocytosis-relevant functions, including the oligosaccharyltransferase complex (MAGT1/SLC58A1, DDOST, STT3B, and RPN2) and the hypusine pathway (eIF5A, DHPS, and DOHH). Overall, our phagocytosis network comprises elements of cargo uptake, shuffling, and biotransformation through the cell, providing a resource for the identification of potential novel drivers for diseases of the endo-lysosomal system. Our approach of integrating protein-protein interaction offers a broadly applicable way to functionally interpret genome-wide screens.
Collapse
Affiliation(s)
- Patrick Essletzbichler
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Vitaly Sedlyarov
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Fabian Frommelt
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Didier Soulat
- Institute of Clinical Microbiology, Immunology and Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Leonhard X Heinz
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Adrijana Stefanovic
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Benedikt Neumayer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
240
|
Kazi M, Khan MF, Nasr FA, Ahmed MZ, Alqahtani AS, Ali MM, Aldughaim MS. Development of Curcumin and Piperine-Loaded Bio-Active Self-Nanoemulsifying Drugs and Investigation of Their Bioactivity in Zebrafish Embryos and Human Hematological Cancer Cell Lines. Int J Nanomedicine 2023; 18:1793-1808. [PMID: 37051315 PMCID: PMC10084868 DOI: 10.2147/ijn.s400330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/25/2023] [Indexed: 04/08/2023] Open
Abstract
Purpose Curcumin (CUR) and piperine (PP) are bioactive compounds with prominent pharmacological activities that have been investigated for the treatment of various diseases. The aim of the present study is to develop Bio-SNEDDS for CUR and PP as a combined delivery system for cancer therapy. Methods CUR and PP loaded Bio-SNEDDSs with varying compositions of bioactive lipid oils, surfactants, and cosolvents were prepared at room temperature. Bio-SNEDDSs were characterized using a Zetasizer Nano particle size analyzer and further examined by transmission electron microscopy (TEM) for morphology. The in vivo toxicity of the preparations of Bio-SNEDDS was investigated in wild-type zebrafish embryos and cytotoxicity in THP-1 (human leukemia monocytic cells), Jurkat (human T lymphocyte cells) and HUVEC (non-cancerous normal) cells. Results Bio-SNEDDSs were successfully developed with black seed oil, Imwitor 988, Transcutol P and Cremophor RH40 at a ratio of 20/20/10/50 (%w/w). The droplet size, polydispersity index and zeta potential of the optimized Bio-SNEDDS were found to be 42.13 nm, 0.59, and -19.30 mV, respectively. Bio-SNEDDS showed a spherical structure evident by TEM analysis. The results showed that Bio-SNEDDS did not induce toxicity in zebrafish embryos at concentrations between 0.40 and 30.00 μg/mL. In TG (fli1: EGFP) embryos treated with Bio-SNEDDS, there was no change in the blood vessel structure. The O-dianisidine staining of Bio-SNEDDS treated embryos at 48 h post-fertilization also showed a significant reduction in the number of blood cells compared to mock (DMSO 0.1% V/V) treated embryos. Bio-SNEDDS induced significant levels of cytotoxicity in the hematological cell lines THP-1 and Jurkat, while low toxicity in normal HUVEC cell lines was observed with IC50 values of 18.63±0.23 μg/mL, 26.03 ± 1.5 μg/mL and 17.52 ± 0.22 μg/mL, respectively. Conclusion Bio-SNEDDS exhibited enhanced anticancer activity and could thus be an important new pharmaceutical formulation to treat leukemia.
Collapse
Affiliation(s)
- Mohsin Kazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
- Correspondence: Mohsin Kazi; Mohammed S Aldughaim, Email ;
| | - Muhammad Farooq Khan
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Fahd A Nasr
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Mohammad Z Ahmed
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Ali S Alqahtani
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Meser M Ali
- Department of Neurosurgery, Henry Ford Health, Detroit, MI, 48202, USA
| | - Mohammed S Aldughaim
- Research Center, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh, 11525, Kingdom of Saudi Arabia
| |
Collapse
|
241
|
Kim SK, Choe JY, Kim JW, Park KY. HMG-CoA Reductase Inhibitors Suppress Monosodium Urate-Induced NLRP3 Inflammasome Activation through Peroxisome Proliferator-Activated Receptor-γ Activation in THP-1 Cells. Pharmaceuticals (Basel) 2023; 16:522. [PMID: 37111279 PMCID: PMC10145217 DOI: 10.3390/ph16040522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/24/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023] Open
Abstract
Peroxisome proliferator-activated receptor γ (PPAR-γ) is thought to negatively regulate NLRP3 inflammasome activation. The aim of this study was to identify the inhibitory effect of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors (statins) on monosodium urate (MSU) crystal-induced NLRP3 inflammasome activation through the regulation of PPAR-γ in THP-1 cells. The expression of PPAR-γ, NLRP3, caspase-1, and interleukin-1β (IL-1β) in human monocytic THP-1 cells transfected with PPAR-γ siRNA or not and stimulated with MSU crystals was assessed using quantitative a real time-polymerase chain reaction and Western blotting. The expression of those markers in THP-1 cells pretreated with statins (atorvastatin, simvastatin, and mevastatin) was also evaluated. Intracellular reactive oxygen species (ROS) were measured using H2DCF-DA and flow cytometry analyses. THP-1 cells treated with MSU crystals (0.3 mg/mL) inhibited PARR-γ and increased NLRP3, caspase-1, and IL-1β mRNA and protein expression, and all those changes were significantly reversed by treatment with atorvastatin, simvastatin, or mevastatin. PPAR-γ activity revealed that MSU crystals suppressed PPAR-γ activity, which was markedly augmented by atorvastatin, simvastatin, and mevastatin. Transfecting cells with PPAR-γ siRNA attenuated the inhibitory effect of statins on MSU crystal-mediated NLRP3 inflammasome activation. Statins also significantly reduced the intracellular ROS generation caused by stimulation with MSU crystals. The inhibitory effects of atorvastatin and simvastatin on intracellular ROS generation were reduced in THP-1 cells transfected with PPAR-γ siRNA. This study demonstrates that PPAR-γ is responsible for suppressing MSU-mediated NLRP3 inflammasome activation. The inhibitory effect of statins on MSU-induced NLRP3 inflammasome activation depends on PPAR-γ activity and production and the inhibition of ROS generation.
Collapse
Affiliation(s)
- Seong-Kyu Kim
- Division of Rheumatology, Department of Internal Medicine, Catholic University of Daegu School of Medicine, Daegu 42472, Republic of Korea
- Arthritis and Autoimmunity Research Center, Catholic University of Daegu, Daegu 42472, Republic of Korea
| | - Jung-Yoon Choe
- Division of Rheumatology, Department of Internal Medicine, Catholic University of Daegu School of Medicine, Daegu 42472, Republic of Korea
- Arthritis and Autoimmunity Research Center, Catholic University of Daegu, Daegu 42472, Republic of Korea
| | - Ji-Won Kim
- Division of Rheumatology, Department of Internal Medicine, Catholic University of Daegu School of Medicine, Daegu 42472, Republic of Korea
- Arthritis and Autoimmunity Research Center, Catholic University of Daegu, Daegu 42472, Republic of Korea
| | - Ki-Yeun Park
- Arthritis and Autoimmunity Research Center, Catholic University of Daegu, Daegu 42472, Republic of Korea
| |
Collapse
|
242
|
Jensen M, Thorsen NW, Hallberg LAE, Hägglund P, Hawkins CL. New insight into the composition of extracellular traps released by macrophages exposed to different types of inducers. Free Radic Biol Med 2023; 202:97-109. [PMID: 36990299 DOI: 10.1016/j.freeradbiomed.2023.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023]
Abstract
Neutrophil extracellular trap (NET) release plays a key role in many chronic disease settings, including atherosclerosis. They are critical to innate immune defence, but also contribute to disease by promoting thrombosis and inflammation. Macrophages are known to release extracellular traps or "METs", but their composition and role in pathological processes are less well defined. In this study, we examined MET release from human THP-1 macrophages exposed to model inflammatory and pathogenic stimuli, including tumour necrosis factor α (TNFα), hypochlorous acid (HOCl) and nigericin. In each case, there was release of DNA from the macrophages, as visualized by fluorescence microscopy with the cell impermeable DNA binding dye SYTOX green, consistent with MET formation. Proteomic analysis on METs released from macrophages exposed to TNFα and nigericin reveals that they are composed of linker and core histones, together with a range of cytosolic and mitochondrial proteins. These include proteins involved in DNA binding, stress responses, cytoskeletal organisation, metabolism, inflammation, anti-microbial activity, and calcium binding. Quinone oxidoreductase in particular, was highly abundant in all METs but has not been reported previously in NETs. Moreover, there was an absence of proteases in METs in contrast to NETs. Some of the MET histones, contained post-translational modifications, including acetylation and methylation of Lys but not citrullination of Arg. These data provide new insight into the potential implications of MET formation in vivo and their contributions to immune defence and pathology.
Collapse
Affiliation(s)
- Mathias Jensen
- Department of Biomedical Sciences, University of Copenhagen, Panum, Blegdamsvej 3B, Copenhagen N, DK-2200, Denmark
| | - Nicoline W Thorsen
- Department of Biomedical Sciences, University of Copenhagen, Panum, Blegdamsvej 3B, Copenhagen N, DK-2200, Denmark
| | - Line A E Hallberg
- Department of Biomedical Sciences, University of Copenhagen, Panum, Blegdamsvej 3B, Copenhagen N, DK-2200, Denmark
| | - Per Hägglund
- Department of Biomedical Sciences, University of Copenhagen, Panum, Blegdamsvej 3B, Copenhagen N, DK-2200, Denmark.
| | - Clare L Hawkins
- Department of Biomedical Sciences, University of Copenhagen, Panum, Blegdamsvej 3B, Copenhagen N, DK-2200, Denmark.
| |
Collapse
|
243
|
Gallanis GT, Sharif GM, Schmidt MO, Friedland BN, Battina R, Rahhal R, Davis JE, Khan IS, Wellstein A, Riegel AT. Stromal Senescence following Treatment with the CDK4/6 Inhibitor Palbociclib Alters the Lung Metastatic Niche and Increases Metastasis of Drug-Resistant Mammary Cancer Cells. Cancers (Basel) 2023; 15:1908. [PMID: 36980794 PMCID: PMC10046966 DOI: 10.3390/cancers15061908] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/05/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND CDK4/6 inhibitors (CDKi) have improved disease control in hormone-receptor-positive, HER2-negative metastatic breast cancer, but most patients develop progressive disease. METHODS We asked whether host stromal senescence after CDK4/6 inhibition affects metastatic seeding and growth of CDKi-resistant mammary cancer cells by using the p16-INK-ATTAC mouse model of inducible senolysis. RESULTS Palbociclib pretreatment of naïve mice increased lung seeding of CDKi-resistant syngeneic mammary cancer cells, and this effect was reversed by depletion of host senescent cells. RNA sequencing analyses of lungs from non-tumor-bearing p16-INK-ATTAC mice identified that palbociclib downregulates immune-related gene sets and gene expression related to leukocyte migration. Concomitant senolysis reversed a portion of these effects, including pathway-level enrichment of TGF-β- and senescence-related signaling. CIBERSORTx analysis revealed that palbociclib alters intra-lung macrophage/monocyte populations. Notably, lung metastases from palbociclib-pretreated mice revealed senescent endothelial cells. Palbociclib-treated endothelial cells exhibit hallmark senescent features in vitro, upregulate genes involved with the senescence-associated secretory phenotype, leukocyte migration, and TGF-β-mediated paracrine senescence and induce tumor cell migration and monocyte trans-endothelial invasion in co-culture. CONCLUSIONS These studies shed light on how stromal senescence induced by palbociclib affects lung metastasis, and they describe palbociclib-induced gene expression changes in the normal lung and endothelial cell models that correlate with changes in the tumor microenvironment in the lung metastatic niche.
Collapse
Affiliation(s)
| | | | - Marcel O. Schmidt
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20007, USA
| | | | | | | | | | | | | | - Anna T. Riegel
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20007, USA
| |
Collapse
|
244
|
Kim J, Rosenberger MG, Chen S, IP CKM, Bahmani A, Chen Q, Shen J, Tang Y, Wang A, Kenna E, Son M, Tay S, Ferguson AL, Esser-Kahn AP. Discovery of New States of Immunomodulation for Vaccine Adjuvants via High Throughput Screening: Expanding Innate Responses to PRRs. ACS CENTRAL SCIENCE 2023; 9:427-439. [PMID: 36968540 PMCID: PMC10037445 DOI: 10.1021/acscentsci.2c01351] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Indexed: 06/18/2023]
Abstract
Stimulation of the innate immune system is crucial in both effective vaccinations and immunotherapies. This is often achieved through adjuvants, molecules that usually activate pattern recognition receptors (PRRs) and stimulate two innate immune signaling pathways: the nuclear factor kappa-light-chain-enhancer of activated B-cells pathway (NF-κB) and the interferon regulatory factors pathway (IRF). Here, we demonstrate the ability to alter and improve adjuvant activity via the addition of small molecule "immunomodulators". By modulating signaling activity instead of receptor binding, these molecules allow the customization of select innate responses. We demonstrate both inhibition and enhancement of the products of the NF-κB and IRF pathways by several orders of magnitude. Some modulators apply generally across many receptors, while others focus specifically on individual receptors. Modulators boost correlates of a protective immune responses in a commercial flu vaccine model and reduced correlates of reactogenicity in a typhoid vaccine model. These modulators have a range of applications: from adjuvanticity in prophylactics to enhancement of immunotherapy.
Collapse
Affiliation(s)
| | | | - Siquan Chen
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Carman KM IP
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Azadeh Bahmani
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Qing Chen
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Jinjing Shen
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Yifeng Tang
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Andrew Wang
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Emma Kenna
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Minjun Son
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Savaş Tay
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Andrew L. Ferguson
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Aaron P. Esser-Kahn
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, United States
| |
Collapse
|
245
|
Lerouge L, Gries M, Chateau A, Daouk J, Lux F, Rocchi P, Cedervall J, Olsson AK, Tillement O, Frochot C, Acherar S, Thomas N, Barberi-Heyob M. Targeting Glioblastoma-Associated Macrophages for Photodynamic Therapy Using AGuIX ®-Design Nanoparticles. Pharmaceutics 2023; 15:pharmaceutics15030997. [PMID: 36986856 PMCID: PMC10057379 DOI: 10.3390/pharmaceutics15030997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Glioblastoma (GBM) is the most difficult brain cancer to treat, and photodynamic therapy (PDT) is emerging as a complementary approach to improve tumor eradication. Neuropilin-1 (NRP-1) protein expression plays a critical role in GBM progression and immune response. Moreover, various clinical databases highlight a relationship between NRP-1 and M2 macrophage infiltration. In order to induce a photodynamic effect, multifunctional AGuIX®-design nanoparticles were used in combination with a magnetic resonance imaging (MRI) contrast agent, as well as a porphyrin as the photosensitizer molecule and KDKPPR peptide ligand for targeting the NRP-1 receptor. The main objective of this study was to characterize the impact of macrophage NRP-1 protein expression on the uptake of functionalized AGuIX®-design nanoparticles in vitro and to describe the influence of GBM cell secretome post-PDT on the polarization of macrophages into M1 or M2 phenotypes. By using THP-1 human monocytes, successful polarization into the macrophage phenotypes was argued via specific morphological traits, discriminant nucleocytoplasmic ratio values, and different adhesion abilities based on real-time cell impedance measurements. In addition, macrophage polarization was confirmed via the transcript-level expression of TNFα, CXCL10, CD-80, CD-163, CD-206, and CCL22 markers. In relation to NRP-1 protein over-expression, we demonstrated a three-fold increase in functionalized nanoparticle uptake for the M2 macrophages compared to the M1 phenotype. The secretome of the post-PDT GBM cells led to nearly a three-fold increase in the over-expression of TNFα transcripts, confirming the polarization to the M1 phenotype. The in vivo relationship between post-PDT efficiency and the inflammatory effects points to the extensive involvement of macrophages in the tumor zone.
Collapse
Affiliation(s)
- Lucie Lerouge
- Department of Biology, Signals and Systems in Cancer and Neuroscience, CRAN, UMR7039, Université de Lorraine-French National Scientific Research Center (CNRS), 54500 Vandœuvre-lès-Nancy, France
| | - Mickaël Gries
- Department of Biology, Signals and Systems in Cancer and Neuroscience, CRAN, UMR7039, Université de Lorraine-French National Scientific Research Center (CNRS), 54500 Vandœuvre-lès-Nancy, France
| | - Alicia Chateau
- Department of Biology, Signals and Systems in Cancer and Neuroscience, CRAN, UMR7039, Université de Lorraine-French National Scientific Research Center (CNRS), 54500 Vandœuvre-lès-Nancy, France
| | - Joël Daouk
- Department of Biology, Signals and Systems in Cancer and Neuroscience, CRAN, UMR7039, Université de Lorraine-French National Scientific Research Center (CNRS), 54500 Vandœuvre-lès-Nancy, France
| | - François Lux
- Institute of Light and Matter (ILM), UMR5306, Université de Lyon-CNRS, 69100 Lyon, France
| | - Paul Rocchi
- Institute of Light and Matter (ILM), UMR5306, Université de Lyon-CNRS, 69100 Lyon, France
| | - Jessica Cedervall
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Biomedical Center, Uppsala University, 75105 Uppsala, Sweden
| | - Anna-Karin Olsson
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Biomedical Center, Uppsala University, 75105 Uppsala, Sweden
| | - Olivier Tillement
- Institute of Light and Matter (ILM), UMR5306, Université de Lyon-CNRS, 69100 Lyon, France
| | - Céline Frochot
- Reactions and Chemical Engineering Laboratory (LRGP), UMR7274, Université de Lorraine-CNRS, 54000 Nancy, France
| | - Samir Acherar
- Laboratory of Chemical Physics of Macromolecules (LCPM), UMR7375, Université de Lorraine-CNRS, 54000 Nancy, France
| | - Noémie Thomas
- Department of Biology, Signals and Systems in Cancer and Neuroscience, CRAN, UMR7039, Université de Lorraine-French National Scientific Research Center (CNRS), 54500 Vandœuvre-lès-Nancy, France
| | - Muriel Barberi-Heyob
- Department of Biology, Signals and Systems in Cancer and Neuroscience, CRAN, UMR7039, Université de Lorraine-French National Scientific Research Center (CNRS), 54500 Vandœuvre-lès-Nancy, France
| |
Collapse
|
246
|
ProInfer: An interpretable protein inference tool leveraging on biological networks. PLoS Comput Biol 2023; 19:e1010961. [PMID: 36930671 PMCID: PMC10057851 DOI: 10.1371/journal.pcbi.1010961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 03/29/2023] [Accepted: 02/20/2023] [Indexed: 03/18/2023] Open
Abstract
In mass spectrometry (MS)-based proteomics, protein inference from identified peptides (protein fragments) is a critical step. We present ProInfer (Protein Inference), a novel protein assembly method that takes advantage of information in biological networks. ProInfer assists recovery of proteins supported only by ambiguous peptides (a peptide which maps to more than one candidate protein) and enhances the statistical confidence for proteins supported by both unique and ambiguous peptides. Consequently, ProInfer rescues weakly supported proteins thereby improving proteome coverage. Evaluated across THP1 cell line, lung cancer and RAW267.4 datasets, ProInfer always infers the most numbers of true positives, in comparison to mainstream protein inference tools Fido, EPIFANY and PIA. ProInfer is also adept at retrieving differentially expressed proteins, signifying its usefulness for functional analysis and phenotype profiling. Source codes of ProInfer are available at https://github.com/PennHui2016/ProInfer.
Collapse
|
247
|
Therapeutic strategies targeting pro-fibrotic macrophages in interstitial lung disease. Biochem Pharmacol 2023; 211:115501. [PMID: 36921632 DOI: 10.1016/j.bcp.2023.115501] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/18/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is the representative phenotype of interstitial lung disease where severe scarring develops in the lung interstitium. Although antifibrotic treatments are available and have been shown to slow the progression of IPF, improved therapeutic options are still needed. Recent data indicate that macrophages play essential pro-fibrotic roles in the pathogenesis of pulmonary fibrosis. Historically, macrophages have been classified into two functional subtypes, "M1" and "M2," and it is well described that "M2" or "alternatively activated" macrophages contribute to fibrosis via the production of fibrotic mediators, such as TGF-β, CTGF, and CCL18. However, highly plastic macrophages may possess distinct functions and phenotypes in the fibrotic lung environment. Thus, M2-like macrophages in vitro and pro-fibrotic macrophages in vivo are not completely identical cell populations. Recent developments in transcriptome analysis, including single-cell RNA sequencing, have attempted to depict more detailed phenotypic characteristics of pro-fibrotic macrophages. This review will outline the role and characterization of pro-fibrotic macrophages in fibrotic lung diseases and discuss the possibility of treating lung fibrosis by preventing or reprogramming the polarity of macrophages. We also utilized a systematic approach to review the literature and identify novel and promising therapeutic agents that follow this treatment strategy.
Collapse
|
248
|
Skopek R, Palusińska M, Kaczor-Keller K, Pingwara R, Papierniak-Wyglądała A, Schenk T, Lewicki S, Zelent A, Szymański Ł. Choosing the Right Cell Line for Acute Myeloid Leukemia (AML) Research. Int J Mol Sci 2023; 24:5377. [PMID: 36982453 PMCID: PMC10049680 DOI: 10.3390/ijms24065377] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/01/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
Immortalized cell lines are widely used in vitro tools in oncology and hematology research. While these cell lines represent artificial systems and may accumulate genetic aberrations with each passage, they are still considered valuable models for pilot, preliminary, and screening studies. Despite their limitations, cell lines are cost-effective and provide repeatable and comparable results. Choosing the appropriate cell line for acute myeloid leukemia (AML) research is crucial for obtaining reliable and relevant results. Several factors should be considered when selecting a cell line for AML research, such as specific markers and genetic abnormalities associated with different subtypes of AML. It is also essential to evaluate the karyotype and mutational profile of the cell line, as these can influence the behavior and response to the treatment of the cells. In this review, we evaluate immortalized AML cell lines and discuss the issues surrounding them concerning the revised World Health Organization and the French-American-British classifications.
Collapse
Affiliation(s)
- Rafał Skopek
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552 Magdalenka, Poland
| | - Małgorzata Palusińska
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552 Magdalenka, Poland
| | - Katarzyna Kaczor-Keller
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552 Magdalenka, Poland
| | - Rafał Pingwara
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, 02-787 Warsaw, Poland
| | | | - Tino Schenk
- Department of Hematology and Medical Oncology, Clinic of Internal Medicine II, Jena University Hospital, 07747 Jena, Germany
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine Jena (CMB), Jena University Hospital, 07747 Jena, Germany
| | - Sławomir Lewicki
- Faculty of Medical Sciences and Health Sciences, Kazimierz Pulaski University of Technology and Humanities, 26-600 Radom, Poland
- Institute of Outcomes Research, Maria Sklodowska-Curie Medical Academy, 00-001 Warsaw, Poland
| | - Artur Zelent
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552 Magdalenka, Poland
| | - Łukasz Szymański
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552 Magdalenka, Poland
| |
Collapse
|
249
|
Ruder AV, Temmerman L, van Dommelen JM, Nagenborg J, Lu C, Sluimer JC, Goossens P, Biessen EA. Culture density influences the functional phenotype of human macrophages. Front Immunol 2023; 14:1078591. [PMID: 36969194 PMCID: PMC10036771 DOI: 10.3389/fimmu.2023.1078591] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 02/28/2023] [Indexed: 03/12/2023] Open
Abstract
Macrophages (MΦ) are commonly cultured in vitro as a model of their biology and functions in tissues. Recent evidence suggests MΦ to engage in quorum sensing, adapting their functions in response to cues about the proximity of neighboring cells. However, culture density is frequently overlooked in the standardization of culture protocols as well as the interpretation of results obtained in vitro. In this study, we investigated how the functional phenotype of MΦ was influenced by culture density. We assessed 10 core functions of human MΦ derived from the THP-1 cell line as well as primary monocyte-derived MΦ. THP-1 MΦ showed increasing phagocytic activity and proliferation with increasing density but decreasing lipid uptake, inflammasome activation, mitochondrial stress, and secretion of cytokines IL-10, IL-6, IL-1β, IL-8, and TNF-α. For THP-1 MΦ, the functional profile displayed a consistent trajectory with increasing density when exceeding a threshold (of 0.2 x 103 cells/mm2), as visualized by principal component analysis. Culture density was also found to affect monocyte-derived MΦ, with functional implications that were distinct from those observed in THP-1 MΦ, suggesting particular relevance of density effects for cell lines. With increasing density, monocyte-derived MΦ exhibited progressively increased phagocytosis, increased inflammasome activation, and decreased mitochondrial stress, whereas lipid uptake was unaffected. These different findings in THP-1 MΦ and monocyte-derived MΦ could be attributed to the colony-forming growth pattern of THP-1 MΦ. At the lowest density, the distance to the closest neighboring cells showed greater influence on THP-1 MΦ than monocyte-derived MΦ. In addition, functional differences between monocyte-derived MΦ from different donors could at least partly be attributed to differences in culture density. Our findings demonstrate the importance of culture density for MΦ function and demand for awareness of culture density when conducting and interpreting in vitro experiments.
Collapse
Affiliation(s)
- Adele V. Ruder
- Cardiovascular Research Institute Maastricht (CARIM), Department of Pathology, Maastricht University Medical Center (UMC), Maastricht, Netherlands
| | - Lieve Temmerman
- Cardiovascular Research Institute Maastricht (CARIM), Department of Pathology, Maastricht University Medical Center (UMC), Maastricht, Netherlands
| | - Joep M.A. van Dommelen
- Cardiovascular Research Institute Maastricht (CARIM), Department of Pathology, Maastricht University Medical Center (UMC), Maastricht, Netherlands
| | - Jan Nagenborg
- Cardiovascular Research Institute Maastricht (CARIM), Department of Pathology, Maastricht University Medical Center (UMC), Maastricht, Netherlands
| | - Chang Lu
- Cardiovascular Research Institute Maastricht (CARIM), Department of Pathology, Maastricht University Medical Center (UMC), Maastricht, Netherlands
| | - Judith C. Sluimer
- Cardiovascular Research Institute Maastricht (CARIM), Department of Pathology, Maastricht University Medical Center (UMC), Maastricht, Netherlands
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Pieter Goossens
- Cardiovascular Research Institute Maastricht (CARIM), Department of Pathology, Maastricht University Medical Center (UMC), Maastricht, Netherlands
| | - Erik A.L. Biessen
- Cardiovascular Research Institute Maastricht (CARIM), Department of Pathology, Maastricht University Medical Center (UMC), Maastricht, Netherlands
- Institute for Molecular Cardiovascular Research, RWTH Aachen University, Aachen, Germany
- *Correspondence: Erik A.L. Biessen,
| |
Collapse
|
250
|
3-(5-Hydroxyphenyl)-5-Phenyl-2-Pyrazolines as Toll-Like Receptor 7 Agonists. J CHEM-NY 2023. [DOI: 10.1155/2023/2151669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023] Open
Abstract
Toll-like receptor 7 (TLR7) is an attractive target for developing immune modulators to enhance innate immunity against ssRNA virus infections, including hepatitis C and COVID-19. Ten 3-(5-hydroxyphenyl)-5-phenyl-2-pyrazolines were tested using TLR7 reporter cells, overexpressing TLR7 and the NF-κB-inducible SEAP reporter gene to discover a novel TLR7 agonist enhancing innate immunity. Of these, 2-(3-(2-hydroxynaphthalen-1-yl)-5-(4-methoxyphenyl)-4,5-dihydro-1H-pyrazol-1-yl)thiazol-4(5H)-one (compound 6) showed the best TLR7 agonistic activity, and further experiments were carried out to study the immune-modulatory capability of compound 6. Treatment with compound 6 rapidly induced phosphorylation of IRAK4, IKKα/β, IκBα, and p65/RelA in THP1 monocytic cells. In addition, it increased the expression of NF-κB-regulated innate cytokines, such as TNFα and IL1β, in THP1 monocytic cells. These data suggest that compound 6 induces an innate immune response by agonizing TLR7 activity in THP1 human monocytic cells. Therefore, compound 6 can be used as an innate immune modulator to develop antiviral agents and vaccine adjuvants.
Collapse
|