201
|
Ballabio F, Broggini L, Paissoni C, Han X, Peqini K, Sala BM, Sun R, Sandalova T, Barbiroli A, Achour A, Pellegrino S, Ricagno S, Camilloni C. l- to d-Amino Acid Substitution in the Immunodominant LCMV-Derived Epitope gp33 Highlights the Sensitivity of the TCR Recognition Mechanism for the MHC/Peptide Structure and Dynamics. ACS OMEGA 2022; 7:9622-9635. [PMID: 35350306 PMCID: PMC8945122 DOI: 10.1021/acsomega.1c06964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Presentation of pathogen-derived epitopes by major histocompatibility complex I (MHC-I) can lead to the activation and expansion of specific CD8+ T cell clones, eventually resulting in the destruction of infected target cells. Altered peptide ligands (APLs), designed to elicit immunogenicity toward a wild-type peptide, may affect the overall stability of MHC-I/peptide (pMHC) complexes and modulate the recognition by T cell receptors (TCR). Previous works have demonstrated that proline substitution at position 3 (p3P) of different MHC-restricted epitopes, including the immunodominant LCMV-derived epitope gp33 and escape variants, may be an effective design strategy to increase epitope immunogenicity. These studies hypothesized that the p3P substitution increases peptide rigidity, facilitating TCR binding. Here, molecular dynamics simulations indicate that the p3P modification rigidifies the APLs in solution predisposing them for the MHC-I loading as well as once bound to H-2Db, predisposing them for TCR binding. Our results also indicate that peptide position 6, key for interaction of H-2Db/gp33 with the TCR P14, takes a suboptimal conformation before as well as after binding to the TCR. Analyses of H-2Db in complex with APLs, in which position 6 was subjected to an l- to d-amino acid modification, revealed small conformational changes and comparable pMHC thermal stability. However, the l- to d-modification reduced significantly the binding to P14 even in the presence of the p3P modification. Our combined data highlight the sensitivity of the TCR for the conformational dynamics of pMHC and provide further tools to dissect and modulate TCR binding and immunogenicity via APLs.
Collapse
Affiliation(s)
- Federico Ballabio
- Dipartimento
di Bioscienze, Università degli Studi
di Milano, Milano 20133, Italy
| | - Luca Broggini
- Dipartimento
di Bioscienze, Università degli Studi
di Milano, Milano 20133, Italy
- Institute
of Molecular and Translational Cardiology, IRCCS Policlinico San Donato, San Donato Milanese 20097, Italy
| | - Cristina Paissoni
- Dipartimento
di Bioscienze, Università degli Studi
di Milano, Milano 20133, Italy
| | - Xiao Han
- Science
for Life Laboratory, Department of Medicine, Karolinska Institute,
& Division of Infectious Diseases, Karolinska
University Hospital, Stockholm 14186, Sweden
| | - Kaliroi Peqini
- DISFARM,
Dipartimento di Scienze Farmaceutiche, Sezione Chimica Generale e
Organica, Università degli Studi
di Milano, Milano 20122, Italy
| | - Benedetta Maria Sala
- Science
for Life Laboratory, Department of Medicine, Karolinska Institute,
& Division of Infectious Diseases, Karolinska
University Hospital, Stockholm 14186, Sweden
| | - Renhua Sun
- Science
for Life Laboratory, Department of Medicine, Karolinska Institute,
& Division of Infectious Diseases, Karolinska
University Hospital, Stockholm 14186, Sweden
| | - Tatyana Sandalova
- Science
for Life Laboratory, Department of Medicine, Karolinska Institute,
& Division of Infectious Diseases, Karolinska
University Hospital, Stockholm 14186, Sweden
| | - Alberto Barbiroli
- Dipartimento
di Scienze per gli Alimenti, la Nutrizione e l’Ambiente, Università degli Studi di Milano, Milano 20122, Italy
| | - Adnane Achour
- Science
for Life Laboratory, Department of Medicine, Karolinska Institute,
& Division of Infectious Diseases, Karolinska
University Hospital, Stockholm 14186, Sweden
| | - Sara Pellegrino
- DISFARM,
Dipartimento di Scienze Farmaceutiche, Sezione Chimica Generale e
Organica, Università degli Studi
di Milano, Milano 20122, Italy
| | - Stefano Ricagno
- Dipartimento
di Bioscienze, Università degli Studi
di Milano, Milano 20133, Italy
- Institute
of Molecular and Translational Cardiology, IRCCS Policlinico San Donato, San Donato Milanese 20097, Italy
| | - Carlo Camilloni
- Dipartimento
di Bioscienze, Università degli Studi
di Milano, Milano 20133, Italy
| |
Collapse
|
202
|
Polykretis P. The role of the antigen presentation process in the immunization mechanism of the genetic vaccines against COVID-19 and the need for biodistribution evaluations. Scand J Immunol 2022; 96:e13160. [PMID: 35298029 PMCID: PMC9135042 DOI: 10.1111/sji.13160] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/08/2022] [Accepted: 03/13/2022] [Indexed: 12/25/2022]
Affiliation(s)
- P Polykretis
- Institute of Applied Physics, Nello Carrara", National Research Council, Via Madonna Del Piano 10, 50019, Sesto Fiorentino, Italy
| |
Collapse
|
203
|
Genetic Modification of T Cells for the Immunotherapy of Cancer. Vaccines (Basel) 2022; 10:vaccines10030457. [PMID: 35335089 PMCID: PMC8949949 DOI: 10.3390/vaccines10030457] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/05/2022] [Accepted: 03/11/2022] [Indexed: 02/01/2023] Open
Abstract
Immunotherapy is a beneficial treatment approach for multiple cancers, however, current therapies are effective only in a small subset of patients. Adoptive cell transfer (ACT) is a facet of immunotherapy where T cells targeting the tumor cells are transferred to the patient with several primary forms, utilizing unmodified or modified T cells: tumor-infiltrating lymphocytes (TIL), genetically modified T cell receptor transduced T cells, and chimeric antigen receptor (CAR) transduced T cells. Many clinical trials are underway investigating the efficacy and safety of these different subsets of ACT, as well as trials that combine one of these subsets with another type of immunotherapy. The main challenges existing with ACT are improving clinical responses and decreasing adverse events. Current research focuses on identifying novel tumor targeting T cell receptors, improving safety and efficacy, and investigating ACT in combination with other immunotherapies.
Collapse
|
204
|
Cui Y, Liu Y, Mu L, Li Y, Wu G. Transcriptional Expressions of ALDH1A1/B1 as Independent Indicators for the Survival of Thyroid Cancer Patients. Front Oncol 2022; 12:821958. [PMID: 35280765 PMCID: PMC8905520 DOI: 10.3389/fonc.2022.821958] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/24/2022] [Indexed: 11/18/2022] Open
Abstract
Background Aldehyde dehydrogenase (ALDH) 1 is an important enzyme involved in the regulation of several cellular mechanisms via aldehyde detoxification. High ALDH1 levels were correlated with tumorigenesis and stemness maintenance in cancer. Methods We used UALCAN, Human Protein Atlas, Kaplan–Meier plotter, TISIDB, TIMER, and KOBAS databases to investigate the expression and role of ALDH1 in thyroid cancer progression. In addition, quantitative real-time polymerase chain reaction was performed to detect the expression of the target genes in thyroid cancer cell lines and cancer tissues. Results Expression of ALDH1A1/B1 was significantly decreased based on individual cancer stages and tumor histology, and high levels of ALDH1A1/B1 were associated with poor overall survival in thyroid cancer patients. Moreover, ALDH1A1/B1 expression was negatively correlated with immune-stimulating genes, major histocompatibility complex, chemokines, and receptors. Conclusions These results suggest that ALDH1A1/B1 might serve as potential prognostic biomarkers for thyroid cancer diagnosis.
Collapse
Affiliation(s)
- Ying Cui
- Department of Otorhinolaryngology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Yao Liu
- Department of Otorhinolaryngology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Lan Mu
- Department of Otorhinolaryngology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Yang Li
- Department of Otorhinolaryngology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Gang Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
205
|
Antibody cross-reactivity between casein and myelin-associated glycoprotein results in central nervous system demyelination. Proc Natl Acad Sci U S A 2022; 119:e2117034119. [PMID: 35235454 PMCID: PMC8916005 DOI: 10.1073/pnas.2117034119] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Multiple sclerosis (MS) is the most prevalent autoimmune disease of the central nervous system (CNS), leading to irreversible deficits in young adults. Its pathophysiology is believed to be influenced by environmental determinants. As far back as the 1990s, it had been suggested that there is a correlation between the consumption of cow’s milk and the prevalence of MS. Here, we not only demonstrate that a high percentage of MS patients harbor antibodies to bovine casein but also that antibody cross-reactivity between cow’s milk and CNS antigens can exacerbate demyelination. Our data broaden the current understanding of how diet influences the etiology of MS and set the stage for combining personalized diet plans with disease-modifying treatment strategies. Multiple sclerosis (MS) is a neuroinflammatory demyelinating disease of the central nervous system (CNS) with a high socioeconomic relevance. The pathophysiology of MS, which is both complex and incompletely understood, is believed to be influenced by various environmental determinants, including diet. Since the 1990s, a correlation between the consumption of bovine milk products and MS prevalence has been debated. Here, we show that C57BL/6 mice immunized with bovine casein developed severe spinal cord pathology, in particular, demyelination, which was associated with the deposition of immunoglobulin G. Furthermore, we observed binding of serum from casein-immunized mice to mouse oligodendrocytes in CNS tissue sections and in culture where casein-specific antibodies induced complement-dependent pathology. We subsequently identified myelin-associated glycoprotein (MAG) as a cross-reactive antigenic target. The results obtained from the mouse model were complemented by clinical data showing that serum samples from patients with MS contained significantly higher B cell and antibody reactivity to bovine casein than those from patients with other neurologic diseases. This reactivity correlated with the B cell response to a mixture of CNS antigens and could again be attributed to MAG reactivity. While we acknowledge disease heterogeneity among individuals with MS, we believe that consumption of cow’s milk in a subset of patients with MS who have experienced a previous loss of tolerance to bovine casein may aggravate the disease. Our data suggest that patients with antibodies to bovine casein might benefit from restricting dairy products from their diet.
Collapse
|
206
|
Methodological advances in the design of peptide-based vaccines. Drug Discov Today 2022; 27:1367-1380. [DOI: 10.1016/j.drudis.2022.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/02/2021] [Accepted: 03/07/2022] [Indexed: 12/11/2022]
|
207
|
Raven N, Klaassen M, Madsen T, Thomas F, Hamede R, Ujvari B. Transmissible cancer influences immune gene expression in an endangered marsupial, the Tasmanian devil (Sarcophilus harrisii). Mol Ecol 2022; 31:2293-2311. [PMID: 35202488 PMCID: PMC9310804 DOI: 10.1111/mec.16408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/14/2022] [Indexed: 11/28/2022]
Abstract
Understanding the effects of wildlife diseases on populations requires insight into local environmental conditions, host defence mechanisms, host life‐history trade‐offs, pathogen population dynamics, and their interactions. The survival of Tasmanian devils (Sarcophilus harrisii) is challenged by a novel, fitness limiting pathogen, Tasmanian devil facial tumour disease (DFTD), a clonally transmissible, contagious cancer. In order to understand the devils’ capacity to respond to DFTD, it is crucial to gain information on factors influencing the devils’ immune system. By using RT‐qPCR, we investigated how DFTD infection in association with intrinsic (sex and age) and environmental (season) factors influences the expression of 10 immune genes in Tasmanian devil blood. Our study showed that the expression of immune genes (both innate and adaptive) differed across seasons, a pattern that was altered when infected with DFTD. The expression of immunogbulins IgE and IgM:IgG showed downregulation in colder months in DFTD infected animals. We also observed strong positive association between the expression of an innate immune gene, CD16, and DFTD infection. Our results demonstrate that sampling across seasons, age groups and environmental conditions are beneficial when deciphering the complex ecoevolutionary interactions of not only conventional host‐parasite systems, but also of host and diseases with high mortality rates, such as transmissible cancers.
Collapse
Affiliation(s)
- N Raven
- Deakin University, Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology, Waurn Ponds, Vic, 3216, Australia
| | - M Klaassen
- Deakin University, Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology, Waurn Ponds, Vic, 3216, Australia
| | - T Madsen
- Deakin University, Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology, Waurn Ponds, Vic, 3216, Australia
| | - F Thomas
- CREEC/CANECEV (CREES), Montpellier, France.,MIVEGEC, Université de Montpellier, CNRS, IRD, Montpellier, France
| | - R Hamede
- Deakin University, Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology, Waurn Ponds, Vic, 3216, Australia.,School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania, 7001, Australia
| | - B Ujvari
- Deakin University, Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology, Waurn Ponds, Vic, 3216, Australia
| |
Collapse
|
208
|
Bilderbeek RJC, Baranov MV, van den Bogaart G, Bianchi F. Transmembrane Helices Are an Over-Presented and Evolutionarily Conserved Source of Major Histocompatibility Complex Class I and II Epitopes. Front Immunol 2022; 12:763044. [PMID: 35087515 PMCID: PMC8787072 DOI: 10.3389/fimmu.2021.763044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/02/2021] [Indexed: 11/28/2022] Open
Abstract
Cytolytic T cell responses are predicted to be biased towards membrane proteins. The peptide-binding grooves of most alleles of histocompatibility complex class I (MHC-I) are relatively hydrophobic, therefore peptide fragments derived from human transmembrane helices (TMHs) are predicted to be presented more often as would be expected based on their abundance in the proteome. However, the physiological reason of why membrane proteins might be over-presented is unclear. In this study, we show that the predicted over-presentation of TMH-derived peptides is general, as it is predicted for bacteria and viruses and for both MHC-I and MHC-II, and confirmed by re-analysis of epitope databases. Moreover, we show that TMHs are evolutionarily more conserved, because single nucleotide polymorphisms (SNPs) are present relatively less frequently in TMH-coding chromosomal regions compared to regions coding for extracellular and cytoplasmic protein regions. Thus, our findings suggest that both cytolytic and helper T cells are more tuned to respond to membrane proteins, because these are evolutionary more conserved. We speculate that TMHs are less prone to mutations that enable pathogens to evade T cell responses.
Collapse
Affiliation(s)
- Richèl J C Bilderbeek
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology (GBB) Institute, University of Groningen, Groningen, Netherlands
| | - Maksim V Baranov
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology (GBB) Institute, University of Groningen, Groningen, Netherlands
| | - Geert van den Bogaart
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology (GBB) Institute, University of Groningen, Groningen, Netherlands
| | - Frans Bianchi
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology (GBB) Institute, University of Groningen, Groningen, Netherlands
| |
Collapse
|
209
|
Jiang P, Nolte IM, Hepkema BG, Stulp M, van den Berg A, Diepstra A. Killer Cell Immunoglobulin-Like Receptor Haplotype B Modulates Susceptibility to EBV-Associated Classic Hodgkin Lymphoma. Front Immunol 2022; 13:829943. [PMID: 35154153 PMCID: PMC8828906 DOI: 10.3389/fimmu.2022.829943] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/07/2022] [Indexed: 11/21/2022] Open
Abstract
Tumor cells of classic Hodgkin lymphoma (cHL) are derived from antigen presenting B cells that are infected by Epstein Barr virus (EBV) in ~30% of patients. Polymorphic Killer cell immunoglobulin-like receptors (KIRs) expressed on NK cells interact with human leukocyte antigen (HLA) class I and play a key role in immune surveillance against virally infected cells and tumor cells. We investigated the effect of KIR types on cHL susceptibility overall (n=211) and in EBV-stratified subgroups using the Dutch GoNL cohort as controls (n=498). The frequency of the KIR haplotype B subgroup was significantly different between EBV+ and EBV− cHL patients (62% vs. 77%, p=0.04) and this difference was more pronounced in nodular sclerosis (NS) cHL (49% vs. 79%, p=0.0003). The frequency of KIR haplotype B subgroup was significantly lower in EBV+ NS cHL compared to controls (49% vs. 67%, p=0.01). Analyses of known KIR – HLA interaction pairs revealed lower carrier frequencies of KIR2DS2 – HLA-C1 (29% vs. 46%, p=0.03) and KIR2DL2 – HLA-C1 (29% vs. 45%, p=0.04) in EBV+ NS cHL patients compared to controls. Carriers of the KIR haplotype B subgroup are less likely to develop EBV+ NS cHL, probably because of a more efficient control over EBV-infected B cells.
Collapse
Affiliation(s)
- Peijia Jiang
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Ilja M Nolte
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Bouke G Hepkema
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Marijke Stulp
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Anke van den Berg
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Arjan Diepstra
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
210
|
Roquilly A, Mintern JD, Villadangos JA. Spatiotemporal Adaptations of Macrophage and Dendritic Cell Development and Function. Annu Rev Immunol 2022; 40:525-557. [PMID: 35130030 DOI: 10.1146/annurev-immunol-101320-031931] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Macrophages and conventional dendritic cells (cDCs) are distributed throughout the body, maintaining tissue homeostasis and tolerance to self and orchestrating innate and adaptive immunity against infection and cancer. As they complement each other, it is important to understand how they cooperate and the mechanisms that integrate their functions. Both are exposed to commensal microbes, pathogens, and other environmental challenges that differ widely among anatomical locations and over time. To adjust to these varying conditions, macrophages and cDCs acquire spatiotemporal adaptations (STAs) at different stages of their life cycle that determine how they respond to infection. The STAs acquired in response to previous infections can result in increased responsiveness to infection, termed training, or in reduced responses, termed paralysis, which in extreme cases can cause immunosuppression. Understanding the developmental stage and location where macrophages and cDCs acquire their STAs, and the molecular and cellular players involved in their induction, may afford opportunities to harness their beneficial outcomes and avoid or reverse their deleterious effects. Here we review our current understanding of macrophage and cDC development, life cycle, function, and STA acquisition before, during, and after infection. We propose a unified framework to explain how these two cell types adjust their activities to changing conditions over space and time to coordinate their immunosurveillance functions. Expected final online publication date for the Annual Review of Immunology, Volume 40 is April 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Antoine Roquilly
- Center for Research in Transplantation and Translational Immunology, INSERM, UMR 1064, CHU Nantes, University of Nantes, Nantes, France
| | - Justine D Mintern
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Jose A Villadangos
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia.,Department of Microbiology and Immunology, Doherty Institute of Infection and Immunity, The University of Melbourne, Parkville, Victoria, Australia;
| |
Collapse
|
211
|
Cortes C, Desler C, Mazzoli A, Chen JY, Ferreira VP. The role of properdin and Factor H in disease. Adv Immunol 2022; 153:1-90. [PMID: 35469595 DOI: 10.1016/bs.ai.2021.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The complement system consists of three pathways (alternative, classical, and lectin) that play a fundamental role in immunity and homeostasis. The multifunctional role of the complement system includes direct lysis of pathogens, tagging pathogens for phagocytosis, promotion of inflammatory responses to control infection, regulation of adaptive cellular immune responses, and removal of apoptotic/dead cells and immune complexes from circulation. A tight regulation of the complement system is essential to avoid unwanted complement-mediated damage to the host. This regulation is ensured by a set of proteins called complement regulatory proteins. Deficiencies or malfunction of these regulatory proteins may lead to pro-thrombotic hematological diseases, renal and ocular diseases, and autoimmune diseases, among others. This review focuses on the importance of two complement regulatory proteins of the alternative pathway, Factor H and properdin, and their role in human diseases with an emphasis on: (a) characterizing the main mechanism of action of Factor H and properdin in regulating the complement system and protecting the host from complement-mediated attack, (b) describing the dysregulation of the alternative pathway as a result of deficiencies, or mutations, in Factor H and properdin, (c) outlining the clinical findings, management and treatment of diseases associated with mutations and deficiencies in Factor H, and (d) defining the unwanted and inadequate functioning of properdin in disease, through a discussion of various experimental research findings utilizing in vitro, mouse and human models.
Collapse
Affiliation(s)
- Claudio Cortes
- Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI, United States.
| | - Caroline Desler
- Oakland University William Beaumont School of Medicine, Rochester, MI, United States
| | - Amanda Mazzoli
- Oakland University William Beaumont School of Medicine, Rochester, MI, United States
| | - Jin Y Chen
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Viviana P Ferreira
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States.
| |
Collapse
|
212
|
Ordoñez D, Bohórquez MD, Avendaño C, Patarroyo MA. Comparing Class II MHC DRB3 Diversity in Colombian Simmental and Simbrah Cattle Across Worldwide Bovine Populations. Front Genet 2022; 13:772885. [PMID: 35186024 PMCID: PMC8854852 DOI: 10.3389/fgene.2022.772885] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 01/17/2022] [Indexed: 11/22/2022] Open
Abstract
The major histocompatibility complex (MHC) exerts great influence on responses to infectious diseases and vaccination due to its fundamental role in the adaptive immune system. Knowledge about MHC polymorphism distribution among breeds can provide insights into cattle evolution and diversification as well as population-based immune response variability, thus guiding further studies. Colombian Simmental and Simbrah cattle’s BoLA-DRB3 genetic diversity was compared to that of taurine and zebuine breeds worldwide to estimate functional diversity. High allele richness was observed for Simmental and Simbrah cattle; nevertheless, high homozygosity was associated with individual low sequence variability in both the β1 domain and the peptide binding region (PBR), thereby implying reduced MHC-presented peptide repertoire size. There were strong signals of positive selection acting on BoLA-DRB3 in all populations, some of which were poorly structured and displayed common alleles accounting for their high genetic similarity. PBR sequence correlation analysis suggested that, except for a few populations exhibiting some divergence at PBR, global diversity regarding potential MHC-presented peptide repertoire could be similar for the cattle populations analyzed here, which points to the retention of functional diversity in spite of the selective pressures imposed by breeding.
Collapse
Affiliation(s)
- Diego Ordoñez
- Animal Science Faculty, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Bogotá, Colombia
- PhD Program in Tropical Health and Development, Universidad de Salamanca, Salamanca, Spain
| | - Michel David Bohórquez
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
- MSc Program in Microbiology, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Catalina Avendaño
- Animal Science Faculty, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Bogotá, Colombia
| | - Manuel Alfonso Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
- Health Sciences Division, Main Campus, Universidad Santo Tomás, Bogotá, Colombia
- Microbiology Department, Faculty of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia
- *Correspondence: Manuel Alfonso Patarroyo,
| |
Collapse
|
213
|
Kubiniok P, Marcu A, Bichmann L, Kuchenbecker L, Schuster H, Hamelin DJ, Duquette JD, Kovalchik KA, Wessling L, Kohlbacher O, Rammensee HG, Neidert MC, Sirois I, Caron E. Understanding the constitutive presentation of MHC class I immunopeptidomes in primary tissues. iScience 2022; 25:103768. [PMID: 35141507 PMCID: PMC8810409 DOI: 10.1016/j.isci.2022.103768] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 06/15/2021] [Accepted: 01/11/2022] [Indexed: 12/20/2022] Open
Abstract
Understanding the molecular principles that govern the composition of the MHC-I immunopeptidome across different primary tissues is fundamentally important to predict how T cells respond in different contexts in vivo. Here, we performed a global analysis of the MHC-I immunopeptidome from 29 to 19 primary human and mouse tissues, respectively. First, we observed that different HLA-A, HLA-B, and HLA-C allotypes do not contribute evenly to the global composition of the MHC-I immunopeptidome across multiple human tissues. Second, we found that tissue-specific and housekeeping MHC-I peptides share very distinct properties. Third, we discovered that proteins that are evolutionarily hyperconserved represent the primary source of the MHC-I immunopeptidome at the organism-wide scale. Fourth, we uncovered new components of the antigen processing and presentation network, including the carboxypeptidases CPE, CNDP1/2, and CPVL. Together, this study opens up new avenues toward a system-wide understanding of antigen presentation in vivo across mammalian species. Tissue-specific and housekeeping MHC class I peptides share distinct properties HLA-A, HLA-B, and HLA-C allotypes contribute very unevenly to the pool of class I peptides MHC-I immunopeptidomes are represented by evolutionarily conserved proteins An extended antigen processing and presentation pathway is uncovered
Collapse
Affiliation(s)
- Peter Kubiniok
- CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada
| | - Ana Marcu
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, 72076 Tübingen, Baden-Württemberg, Germany
- Cluster of Excellence iFIT (EXC 2180), “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, 72076 Tübingen, Baden-Württemberg, Germany
| | - Leon Bichmann
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, 72076 Tübingen, Baden-Württemberg, Germany
- Applied Bioinformatics, Department of Computer Science, University of Tübingen, 72074 Tübingen, Baden-Württemberg, Germany
| | - Leon Kuchenbecker
- Applied Bioinformatics, Department of Computer Science, University of Tübingen, 72074 Tübingen, Baden-Württemberg, Germany
| | - Heiko Schuster
- Immatics Biotechnologies GmbH, 72076 Tübingen, Baden-Württemberg, Germany
| | - David J. Hamelin
- CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada
| | | | | | - Laura Wessling
- CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada
| | - Oliver Kohlbacher
- Applied Bioinformatics, Department of Computer Science, University of Tübingen, 72074 Tübingen, Baden-Württemberg, Germany
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, 72076 Tübingen, Baden-Württemberg, Germany
- Biomolecular Interactions, Max Planck Institute for Developmental Biology, 72076 Tübingen, Baden-Württemberg, Germany
- Cluster of Excellence Machine Learning in the Sciences (EXC 2064), University of Tübingen, 72074 Tübingen, Baden-Württemberg, Germany
- Translational Bioinformatics, University Hospital Tübingen, 72076 Tübingen, Baden-Württemberg, Germany
| | - Hans-Georg Rammensee
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, 72076 Tübingen, Baden-Württemberg, Germany
- Cluster of Excellence iFIT (EXC 2180), “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, 72076 Tübingen, Baden-Württemberg, Germany
- DKFZ Partner Site Tübingen, German Cancer Consortium (DKTK), 72076 Tübingen, Baden-Württemberg, Germany
| | - Marian C. Neidert
- Clinical Neuroscience Center and Department of Neurosurgery, University Hospital and University of Zürich, 8057&8091 Zürich, Switzerland
| | - Isabelle Sirois
- CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada
| | - Etienne Caron
- CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada
- Department of Pathology and Cellular Biology, Faculty of Medicine, Université de Montréal, QC H3T 1J4, Canada
- Corresponding author
| |
Collapse
|
214
|
Santos P, Peixoto D, Ferreira I, Passos R, Pires P, Simões M, Pousão-Ferreira P, Baptista T, Costas B. Short-Term Immune Responses of Gilthead Seabream ( Sparus aurata) Juveniles against Photobacterium damselae subsp. piscicida. Int J Mol Sci 2022; 23:ijms23031561. [PMID: 35163486 PMCID: PMC8836189 DOI: 10.3390/ijms23031561] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/20/2022] [Accepted: 01/26/2022] [Indexed: 12/21/2022] Open
Abstract
Photobacteriosis is a septicaemic bacterial disease affecting several marine species around the globe, resulting in significant economic losses. Although many studies have been performed related to the pathogen virulence and resistance factors, information regarding the host defence mechanisms activated once an infection takes place is still scarce. The present study was designed to understand innate immune responses of farmed juvenile gilthead seabream (Sparus aurata) after Photobacterium damselae subsp. piscicida (Phdp) infection. Therefore, two groups of seabream juveniles were intraperitoneally injected with 100 µL of PBS (placebo) or 100 µL of exponentially growing Phdp (1 × 106 CFU/mL; infected). The blood, plasma, liver, and head kidney of six fish from each treatment were sampled immediately before infection and 3, 6, 9, 24 and 48 h after infection for the broad screening of fish immune and oxidative stress responses. Infected animals presented marked anaemia, neutrophilia and monocytosis, conditions that are correlated with an increased expression of genes related to inflammation and phagocytic activity. Similar studies with different fish species and bacteria can be useful for the definition of health biomarkers that might help fish farmers to prevent the occurrence of such diseases.
Collapse
Affiliation(s)
- Paulo Santos
- CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; (D.P.); (I.F.)
- ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 4050-313 Porto, Portugal
- MARE, Centro de Ciências do Mar e do Ambiente, Instituto Politécnico de Leiria, Edifício CETEMARES, Av. Porto de Pesca, 2520-620 Peniche, Portugal; (R.P.); (P.P.); (M.S.); (T.B.)
- Correspondence: (P.S.); (B.C.); Tel.: +35-12-2340-1850 (P.S. & B.C.)
| | - Diogo Peixoto
- CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; (D.P.); (I.F.)
- ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 4050-313 Porto, Portugal
| | - Inês Ferreira
- CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; (D.P.); (I.F.)
- ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 4050-313 Porto, Portugal
- IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Ricardo Passos
- MARE, Centro de Ciências do Mar e do Ambiente, Instituto Politécnico de Leiria, Edifício CETEMARES, Av. Porto de Pesca, 2520-620 Peniche, Portugal; (R.P.); (P.P.); (M.S.); (T.B.)
| | - Pedro Pires
- MARE, Centro de Ciências do Mar e do Ambiente, Instituto Politécnico de Leiria, Edifício CETEMARES, Av. Porto de Pesca, 2520-620 Peniche, Portugal; (R.P.); (P.P.); (M.S.); (T.B.)
| | - Marco Simões
- MARE, Centro de Ciências do Mar e do Ambiente, Instituto Politécnico de Leiria, Edifício CETEMARES, Av. Porto de Pesca, 2520-620 Peniche, Portugal; (R.P.); (P.P.); (M.S.); (T.B.)
| | - Pedro Pousão-Ferreira
- IPMA, Instituto Português do Mar e da Atmosfera, Parque Natural da Ria Formosa s/n, 8700-194 Olhao, Portugal;
| | - Teresa Baptista
- MARE, Centro de Ciências do Mar e do Ambiente, Instituto Politécnico de Leiria, Edifício CETEMARES, Av. Porto de Pesca, 2520-620 Peniche, Portugal; (R.P.); (P.P.); (M.S.); (T.B.)
| | - Benjamín Costas
- CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; (D.P.); (I.F.)
- ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 4050-313 Porto, Portugal
- Correspondence: (P.S.); (B.C.); Tel.: +35-12-2340-1850 (P.S. & B.C.)
| |
Collapse
|
215
|
Sethumadhavan S, Barth M, Spaapen RM, Schmidt C, Trowitzsch S, Tampé R. Viral immune evasins impact antigen presentation by allele-specific trapping of MHC I at the peptide-loading complex. Sci Rep 2022; 12:1516. [PMID: 35087068 PMCID: PMC8795405 DOI: 10.1038/s41598-022-05000-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/30/2021] [Indexed: 11/30/2022] Open
Abstract
Major histocompatibility complex class I (MHC I) molecules present antigenic peptides to cytotoxic T cells to eliminate infected or cancerous cells. The transporter associated with antigen processing (TAP) shuttles proteasomally generated peptides into the ER for MHC I loading. As central part of the peptide-loading complex (PLC), TAP is targeted by viral factors, which inhibit peptide supply and thereby impact MHC I-mediated immune responses. However, it is still poorly understood how antigen presentation via different MHC I allotypes is affected by TAP inhibition. Here, we show that conditional expression of herpes simplex viral ICP47 suppresses surface presentation of HLA-A and HLA-C, but not of HLA-B, while the human cytomegaloviral US6 reduces surface levels of all MHC I allotypes. This marked difference in HLA-B antigen presentation is echoed by an enrichment of HLA-B allomorphs at US6-arrested PLC in comparison to ICP47-PLC. Although both viral factors prevent TAP-mediated peptide supply, our data imply that MHC I allomorphs favor different conformationally arrested states of the PLC, leading to differential downregulation of MHC I surface presentation. These findings will help understand MHC I biology in general and will even advance the targeted treatment of infections depending on patients' allotypes.
Collapse
Affiliation(s)
- Sunesh Sethumadhavan
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt/Main, Germany
| | - Marie Barth
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120, Halle, Germany
| | - Robbert M Spaapen
- Department of Immunopathology, Sanquin Research, Plesmanlaan 125, 1066 CX, Amsterdam, The Netherlands
| | - Carla Schmidt
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120, Halle, Germany
| | - Simon Trowitzsch
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt/Main, Germany
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt/Main, Germany.
| |
Collapse
|
216
|
Iyer S, Yadav R, Agarwal S, Tripathi S, Agarwal R. Bioengineering Strategies for Developing Vaccines against Respiratory Viral Diseases. Clin Microbiol Rev 2022; 35:e0012321. [PMID: 34788128 PMCID: PMC8597982 DOI: 10.1128/cmr.00123-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Respiratory viral pathogens like influenza and coronaviruses such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have caused outbreaks leading to millions of deaths. Vaccinations are, to date, the best and most economical way to control such outbreaks and have been highly successful for several pathogens. Currently used vaccines for respiratory viral pathogens are primarily live attenuated or inactivated and can risk reversion to virulence or confer inadequate immunity. The recent trend of using potent biomolecules like DNA, RNA, and protein antigenic components to synthesize vaccines for diseases has shown promising results. Still, it remains challenging to translate due to their high susceptibility to degradation during storage and after delivery. Advances in bioengineering technology for vaccine design have made it possible to control the physicochemical properties of the vaccines for rapid synthesis, heightened antigen presentation, safer formulations, and more robust immunogenicity. Bioengineering techniques and materials have been used to synthesize several potent vaccines, approved or in trials, against coronavirus disease 2019 (COVID-19) and are being explored for influenza, SARS, and Middle East respiratory syndrome (MERS) vaccines as well. Here, we review bioengineering strategies such as the use of polymeric particles, liposomes, and virus-like particles in vaccine development against influenza and coronaviruses and the feasibility of adopting these technologies for clinical use.
Collapse
Affiliation(s)
- Shalini Iyer
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| | - Rajesh Yadav
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| | - Smriti Agarwal
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| | - Shashank Tripathi
- Department of Microbiology and Cell Biology, Center for Infectious Disease Research, Indian Institute of Science, Bengaluru, India
| | - Rachit Agarwal
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
217
|
Isakov N. Histocompatibility and Reproduction: Lessons from the Anglerfish. LIFE (BASEL, SWITZERLAND) 2022; 12:life12010113. [PMID: 35054506 PMCID: PMC8780861 DOI: 10.3390/life12010113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/06/2022] [Accepted: 01/08/2022] [Indexed: 11/16/2022]
Abstract
Reproduction in certain deep-sea anglerfishes involves the permanent attachment of dwarf males to much larger females and fusion of their tissues leading to the establishment of a shared circulatory system. This unusual phenomenon of sexual parasitism enables anglerfishes to maximize reproductive success in the vast and deep oceans, where females and males otherwise rarely meet. An even more surprising phenomenon relates to the observation that joining of genetically disparate male and female anglerfishes does not evoke a strong anti-graft immune rejection response, which occurs in vertebrates following allogeneic parabiosis. Recent studies demonstrated that the evolutionary processes that led to the unique mating strategy of anglerfishes coevolved with genetic changes that resulted in loss of functional genes encoding critical components of the adaptive immune system. These genetic alterations enabled anglerfishes to tolerate the histoincompatible tissue antigens of their mate and prevent the occurrence of reciprocal graft rejection responses. While the exact mechanisms by which anglerfishes defend themselves against pathogens have not yet been deciphered, it is speculated that during evolution, anglerfishes adopted new immune strategies that compensate for the loss of B and T lymphocyte functions and enable them to resist infection by pathogens.
Collapse
Affiliation(s)
- Noah Isakov
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105, Israel
| |
Collapse
|
218
|
Kaimala S, Kumar CA, Allouh MZ, Ansari SA, Emerald BS. Epigenetic modifications in pancreas development, diabetes, and therapeutics. Med Res Rev 2022; 42:1343-1371. [PMID: 34984701 PMCID: PMC9306699 DOI: 10.1002/med.21878] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 11/24/2021] [Accepted: 12/18/2021] [Indexed: 12/26/2022]
Abstract
A recent International Diabetes Federation report suggests that more than 463 million people between 20 and 79 years have diabetes. Of the 20 million women affected by hyperglycemia during pregnancy, 84% have gestational diabetes. In addition, more than 1.1 million children or adolescents are affected by type 1 diabetes. Factors contributing to the increase in diabetes prevalence are complex and include contributions from genetic, environmental, and epigenetic factors. However, molecular regulatory mechanisms influencing the progression of an individual towards increased susceptibility to metabolic diseases such as diabetes are not fully understood. Recent studies suggest that the pathogenesis of diabetes involves epigenetic changes, resulting in a persistently dysregulated metabolic phenotype. This review summarizes the role of epigenetic mechanisms, mainly DNA methylation and histone modifications, in the development of the pancreas, their contribution to the development of diabetes, and the potential employment of epigenetic modulators in diabetes treatment.
Collapse
Affiliation(s)
- Suneesh Kaimala
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
| | - Challagandla Anil Kumar
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
| | - Mohammed Z Allouh
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
| | - Suraiya Anjum Ansari
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE.,Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
| | - Bright Starling Emerald
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE.,Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
| |
Collapse
|
219
|
Naik R, Peden K. Regulatory Considerations on the Development of mRNA Vaccines. Curr Top Microbiol Immunol 2022; 440:187-205. [PMID: 32638114 DOI: 10.1007/82_2020_220] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Developing traditional viral vaccines for infectious diseases usually takes years, as these are usually produced either by chemical inactivation of the virus or attenuation of the pathogen, processes that can take considerable time to validate and also require the live pathogen. With the advent of nucleic-acid vaccines (DNA and mRNA), the time to vaccine design and production is considerably shortened, since once the platform has been established, all that is required is the sequence of the antigen gene, its synthesis and insertion into an appropriate expression vector; importantly, no infectious virus is required. mRNA vaccines have some advantages over DNA vaccines, such as expression in non-dividing cells and the absence of the perceived risk of integration into host genome. Also, generally lower doses are required to induce the immune response. Based on experience in recent clinical trials, mRNA-based vaccines are a promising novel platform that might be useful for the development of vaccines against emerging pandemic infectious diseases. This chapter discusses some of the specific issues that mRNA vaccines raise with respect to production, quality, safety and efficacy, and how they have been addressed so as to allow their evaluation in clinical trials.
Collapse
Affiliation(s)
- Ramachandra Naik
- Division of Vaccines and Related Products Applications, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Building 71, Room 3045, 10903 New Hampshire Avenue, Silver Spring, MD, 20993, USA
| | - Keith Peden
- Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Building 52/72, Room 1220, 10903 New Hampshire Avenue, Silver Spring, MD, 20993, USA.
| |
Collapse
|
220
|
|
221
|
Mustafa MI, Shantier SW. Next generation multi epitope based peptide vaccine against Marburg Virus disease combined with molecular docking studies. INFORMATICS IN MEDICINE UNLOCKED 2022. [DOI: 10.1016/j.imu.2022.101087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
222
|
Kocatürk B, Balık Z, Pişiren G, Kalyoncu U, Özmen F, Özen S. Spondyloarthritides: Theories and beyond. Front Pediatr 2022; 10:1074239. [PMID: 36619518 PMCID: PMC9816396 DOI: 10.3389/fped.2022.1074239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/24/2022] [Indexed: 12/24/2022] Open
Abstract
Spondyloarthritides (SpA) are a family of interrelated rheumatic disorders with a typical disease onset ranging from childhood to middle age. If left untreated, they lead to a severe decrease in patients' quality of life. A succesfull treatment strategy starts with an accurate diagnosis which is achieved through careful analysis of medical symptoms. Classification criterias are used to this process and are updated on a regular basis. Although there is a lack of definite knowledge on the disease etiology of SpA, several studies have paved the way for understanding plausible risk factors and developing treatment strategies. The significant increase of HLA-B27 positivity in SpA patients makes it a strong candidate as a predisposing factor and several theories have been proposed to explain HLA-B27 driven disease progression. However, the presence of HLA-B27 negative patients underlines the presence of additional risk factors. The current treatment options for SpAs are Non-Steroidal Anti-Inflammatory Drugs (NSAIDs), TNF inhibitors (TNFis), Disease-Modifying Anti-Rheumatic Drugs (DMARDs) and physiotherapy yet there are ongoing clinical trials. Anti IL17 drugs and targeted synthetic DMARDs such as JAK inhibitors are also emerging as treatment alternatives. This review discusses the current diagnosis criteria, treatment options and gives an overview of the previous findings and theories to clarify the possible contributors to SpA pathogenesis with a focus on Ankylosing Spondylitis (AS) and enthesitis-related arthritis (ERA).
Collapse
Affiliation(s)
- Begüm Kocatürk
- Department of Basic Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - Zeynep Balık
- Division of Pediatric Rheumatology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Gaye Pişiren
- Department of Basic Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - Umut Kalyoncu
- Division of Rheumatology, Department of Internal Medicine, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Füsun Özmen
- Department of Basic Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - Seza Özen
- Division of Pediatric Rheumatology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
223
|
Molecular characterization of hypoxanthine guanine phosphoribosyltransferase mutant T cells in human blood: The concept of surrogate selection for immunologically relevant cells. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2022; 789:108414. [PMID: 35690417 PMCID: PMC9188651 DOI: 10.1016/j.mrrev.2022.108414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 03/01/2022] [Accepted: 03/08/2022] [Indexed: 11/23/2022]
Abstract
Somatic cell gene mutations arise in vivo due to replication errors during DNA synthesis occurring spontaneously during normal DNA synthesis or as a result of replication on a DNA template damaged by endogenous or exogenous mutagens. In principle, changes in the frequencies of mutant cells in vivo in humans reflect changes in exposures to exogenous or endogenous DNA damaging insults, other factors being equal. It is becoming increasingly evident however, that somatic mutations in humans have a far greater range of interpretations. For example, mutations in lymphocytes provide invaluable probes for in vivo cellular and molecular processes, providing identification of clonal amplifications of these cells in autoimmune and infectious diseases, transplantation recipients, paroxysmal nocturnal hemoglobinuria (PNH), and cancer. The assay for mutations of the X-chromosomal hypoxanthine guanine phosphoribosyltransferase (HPRT) gene has gained popular acceptance for this purpose since viable mutant cells can be recovered for molecular and other analyses. Although the major application of the HPRT T cell assay remains human population monitoring, the enrichment of activated T cells in the mutant fraction in individuals with ongoing immunological processes has demonstrated the utility of surrogate selection, a method that uses somatic mutation as a surrogate marker for the in vivo T cell proliferation that underlies immunological processes to investigate clinical disorders with immunological features. Studies encompassing a wide range of clinical conditions are reviewed. Despite the historical importance of the HPRT mutation system in validating surrogate selection, there are now additional mutational and other methods for identifying immunologically active T cells. These methods are reviewed and provide insights for strategies to extend surrogate selection in future studies.
Collapse
|
224
|
Immunopeptidomic analysis of influenza A virus infected human tissues identifies internal proteins as a rich source of HLA ligands. PLoS Pathog 2022; 18:e1009894. [PMID: 35051231 PMCID: PMC8806059 DOI: 10.1371/journal.ppat.1009894] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 02/01/2022] [Accepted: 01/02/2022] [Indexed: 01/25/2023] Open
Abstract
CD8+ and CD4+ T cells provide cell-mediated cross-protection against multiple influenza strains by recognising epitopes bound as peptides to human leukocyte antigen (HLA) class I and -II molecules respectively. Two challenges in identifying the immunodominant epitopes needed to generate a universal T cell influenza vaccine are: A lack of cell models susceptible to influenza infection which present population-prevalent HLA allotypes, and an absence of a reliable in-vitro method of identifying class II HLA peptides. Here we present a mass spectrometry-based proteomics strategy for identifying viral peptides derived from the A/H3N2/X31 and A/H3N2/Wisconsin/67/2005 strains of influenza. We compared the HLA-I and -II immunopeptidomes presented by ex-vivo influenza challenged human lung tissues. We then compared these with directly infected immortalised macrophage-like cell line (THP1) and primary dendritic cells fed apoptotic influenza-infected respiratory epithelial cells. In each of the three experimental conditions we identified novel influenza class I and II HLA peptides with motifs specific for the host allotype. Ex-vivo infected lung tissues yielded few class-II HLA peptides despite significant numbers of alveolar macrophages, including directly infected ones, present within the tissues. THP1 cells presented HLA-I viral peptides derived predominantly from internal proteins. Primary dendritic cells presented predominantly viral envelope-derived HLA class II peptides following phagocytosis of apoptotic infected cells. The most frequent viral source protein for HLA-I and -II was matrix 1 protein (M1). This work confirms that internal influenza proteins, particularly M1, are a rich source of CD4+ and CD8+ T cell epitopes. Moreover, we demonstrate the utility of two ex-vivo fully human infection models which enable direct HLA-I and -II immunopeptide identification without significant viral tropism limitations. Application of this epitope discovery strategy in a clinical setting will provide more certainty in rational vaccine design against influenza and other emergent viruses.
Collapse
|
225
|
Barbosa CRR, Barton J, Shepherd AJ, Mishto M. Mechanistic diversity in MHC class I antigen recognition. Biochem J 2021; 478:4187-4202. [PMID: 34940832 PMCID: PMC8786304 DOI: 10.1042/bcj20200910] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 12/20/2022]
Abstract
Throughout its evolution, the human immune system has developed a plethora of strategies to diversify the antigenic peptide sequences that can be targeted by the CD8+ T cell response against pathogens and aberrations of self. Here we provide a general overview of the mechanisms that lead to the diversity of antigens presented by MHC class I complexes and their recognition by CD8+ T cells, together with a more detailed analysis of recent progress in two important areas that are highly controversial: the prevalence and immunological relevance of unconventional antigen peptides; and cross-recognition of antigenic peptides by the T cell receptors of CD8+ T cells.
Collapse
Affiliation(s)
- Camila R. R. Barbosa
- Centre for Inflammation Biology and Cancer Immunology (CIBCI) & Peter Gorer Department of Immunobiology, King's College London, SE1 1UL London, U.K
- Francis Crick Institute, NW1 1AT London, U.K
| | - Justin Barton
- Department of Biological Sciences and Institute of Structural and Molecular Biology, Birkbeck, University of London, WC1E 7HX London, U.K
| | - Adrian J. Shepherd
- Department of Biological Sciences and Institute of Structural and Molecular Biology, Birkbeck, University of London, WC1E 7HX London, U.K
| | - Michele Mishto
- Centre for Inflammation Biology and Cancer Immunology (CIBCI) & Peter Gorer Department of Immunobiology, King's College London, SE1 1UL London, U.K
- Francis Crick Institute, NW1 1AT London, U.K
| |
Collapse
|
226
|
Immune Regulatory Processes of the Tumor Microenvironment under Malignant Conditions. Int J Mol Sci 2021; 22:ijms222413311. [PMID: 34948104 PMCID: PMC8706102 DOI: 10.3390/ijms222413311] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/03/2021] [Accepted: 12/05/2021] [Indexed: 02/07/2023] Open
Abstract
The tumor microenvironment (TME) is a critical regulator of tumor growth, progression, and metastasis. Since immune cells represent a large fraction of the TME, they play a key role in mediating pro- and anti-tumor immune responses. Immune escape, which suppresses anti-tumor immunity, enables tumor cells to maintain their proliferation and growth. Numerous mechanisms, which have been intensively studied in recent years, are involved in this process and based on these findings, novel immunotherapies have been successfully developed. Here, we review the composition of the TME and the mechanisms by which immune evasive processes are regulated. In detail, we describe membrane-bound and soluble factors, their regulation, and their impact on immune cell activation in the TME. Furthermore, we give an overview of the tumor/antigen presentation and how it is influenced under malignant conditions. Finally, we summarize novel TME-targeting agents, which are already in clinical trials for different tumor entities.
Collapse
|
227
|
Wang Q, Li T, Fang C, Zhang B. Bioinformatics analysis of the wheel treadmill test on motor function recovery after spinal cord injury. IBRAIN 2021; 7:265-277. [PMID: 37786556 PMCID: PMC10529348 DOI: 10.1002/ibra.12006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 02/05/2023]
Abstract
This study aimed to explore the possible target and mechanism of the wheel treadmill (WTM) test for motor function recovery of spinal cord injury (SCI). Rats were divided into sham, control and WTM groups to establish an SCI mode. Rats in the WTM group were trained on the WTM test, and Basso-Beattie-Bresnahan (BBB) scores were determined. The samples were collected, and mRNA sequencing was conducted to determine the changes in gene expression. The coexpressed genes were screened to construct a protein-protein interaction (PPI), followed by the Kyoto Encyclopedia of Genes and Genomes pathway and Gene Ontology function enrichment analysis, and the differentially expressed genes (DEGs) volcano map and hub gene expression heat map were constructed using R language. The BBB scores in the control and WTM groups increased with time, with the WTM group scoring higher than the control group. The results of rat spinal cord tissue sequencing showed that a total of 1679 DEGs were screened in the sham and control groups; 928 DEGs and 731 overlapping genes were screened in the WTM and control groups. The key genes were identified by PPI analysis. One hundred and thirty-three genes were found to be overlapping by combined analysis of spinal cord sequencing data and BBB scores of rats at Week 7. The top 10 DEGs from high to low were Tyrobp, Rac2, Cd68, C1qb, Aif1, Cd74, Spi1, Fcer1g, RT1-DA, and Ccl4. The terms with the highest enrichment scores were microglia-mediated positive regulation of cytotoxicity and major histocompatibility complex class II protein complexes. Treatment with the WTM test promotes recovery of motor function after SCI in rats by modulating intercellular communication and immune function.
Collapse
Affiliation(s)
- Qiu‐Lin Wang
- School of AnesthesiologySouthwest Medical UniversityLuzhouSichuanChina
| | - Ting‐Ting Li
- Department of Anesthesiology, Institute of Neurological Disease, West China HospitalSichuan UniversityChengduChina
| | - Chang‐Le Fang
- School of AnesthesiologySouthwest Medical UniversityLuzhouSichuanChina
| | - Bao‐Lei Zhang
- Department of Experimental ZoologyKunming Medical UniversityKunmingYunnanChina
| |
Collapse
|
228
|
Douillard V, Castelli EC, Mack SJ, Hollenbach JA, Gourraud PA, Vince N, Limou S. Approaching Genetics Through the MHC Lens: Tools and Methods for HLA Research. Front Genet 2021; 12:774916. [PMID: 34925459 PMCID: PMC8677840 DOI: 10.3389/fgene.2021.774916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/08/2021] [Indexed: 01/11/2023] Open
Abstract
The current SARS-CoV-2 pandemic era launched an immediate and broad response of the research community with studies both about the virus and host genetics. Research in genetics investigated HLA association with COVID-19 based on in silico, population, and individual data. However, they were conducted with variable scale and success; convincing results were mostly obtained with broader whole-genome association studies. Here, we propose a technical review of HLA analysis, including basic HLA knowledge as well as available tools and advice. We notably describe recent algorithms to infer and call HLA genotypes from GWAS SNPs and NGS data, respectively, which opens the possibility to investigate HLA from large datasets without a specific initial focus on this region. We thus hope this overview will empower geneticists who were unfamiliar with HLA to run MHC-focused analyses following the footsteps of the Covid-19|HLA & Immunogenetics Consortium.
Collapse
Affiliation(s)
- Venceslas Douillard
- Centre de Recherche en Transplantation et Immunologie, CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, Université de Nantes, Nantes, France
| | | | - Steven J. Mack
- Division of Allergy, Immunology and Bone Marrow Transplantation, Department of Pediatrics, School of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Jill A. Hollenbach
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, United States
| | - Pierre-Antoine Gourraud
- Centre de Recherche en Transplantation et Immunologie, CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, Université de Nantes, Nantes, France
| | - Nicolas Vince
- Centre de Recherche en Transplantation et Immunologie, CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, Université de Nantes, Nantes, France
| | - Sophie Limou
- Centre de Recherche en Transplantation et Immunologie, CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, Université de Nantes, Nantes, France
- Ecole Centrale de Nantes, Department of Computer Sciences and Mathematics in Biology, Nantes, France
| |
Collapse
|
229
|
Parasar P, Bhushan B, Panigrahi M, Kumar H, Kaisa K, Dutt T. Characterization of BoLA class II DQA and DQB by PCR-RFLP, cloning, and sequencing reveals sequence diversity in crossbred cattle. Anim Biotechnol 2021:1-11. [PMID: 34813716 DOI: 10.1080/10495398.2021.2006205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The BoLA class II DQA and DQB genes in crossbred cattle were studied using PCR-RFLP, cloning, and sequencing techniques. Seventy-two crossbred cattle (Vrindavani) were used in the current study. HaeIII and XbaI restriction enzymes digested DQA exon 2-3, revealing seven (HaeIII-A-G) and three (XbaI A-C) motifs, respectively. The BoLA-DQB gene was analyzed using PCR-RFLP with PstI and TaqI restriction enzymes, yielding five restriction motifs for each restriction enzyme (PstI-A-E and TaqI-A-E). In crossbred cattle, addition, deletion, and substitutions were observed in distinct sequences, resulting in variations in overall gene length. Changes in nucleotides at positions 64-80, 110-200, and 207-264 were largely responsible for polymorphism in DQA exon 2. The phylogenetic analysis predicted a high degree of nucleotide and amino acid changes in DQA exon 2-3 and DQB exon 2. DQA genes had a nucleotide dissimilarity of 0.3-25.4 percent, while DQB genes had a nucleotide dissimilarity of 1.5-14.3 percent. We cloned and sequenced 20 genotypes based on PCR-RFLP of the DQA and DQB genes. The current study observed variation in the DQA and DQB genes and will serve as a foundation for future research on the BoLA DQA and DQB genes.
Collapse
Affiliation(s)
- Parveen Parasar
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Bharat Bhushan
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Manjit Panigrahi
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Harshit Kumar
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Kaiho Kaisa
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Triveni Dutt
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| |
Collapse
|
230
|
Lu Y, Shi Y, You J. Strategy and clinical application of up-regulating cross presentation by DCs in anti-tumor therapy. J Control Release 2021; 341:184-205. [PMID: 34774890 DOI: 10.1016/j.jconrel.2021.11.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 12/20/2022]
Abstract
The cross presentation of exogenous antigen (Ag) by dendritic cells (DCs) facilitates a diversified mode of T-cell activation, orchestrates specific humoral and cellular immunity, and contributes to an efficient anti-tumor immune response. DCs-mediated cross presentation is subject to both intrinsic and extrinsic factors, including the homing and phenotype of DCs, the spatiotemporal trafficking and degradation kinetics of Ag, and multiple microenvironmental clues, with many details largely unexplored. Here, we systemically review the current mechanistic understanding and regulation strategies of cross presentation by heterogeneous DC populations. We also provide insights into the future exploitation of DCs cross presentation for a better clinical efficacy in anti-tumor therapy.
Collapse
Affiliation(s)
- Yichao Lu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Yingying Shi
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
231
|
Therapeutic Potential of Cancer Vaccine Based on MHC Class I Cryptic Peptides Derived from Non-Coding Regions. IMMUNO 2021. [DOI: 10.3390/immuno1040030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
MHC class I molecules display intracellular peptides on cell surfaces to enable immune surveillance under pathological conditions. The source of MHC class I antigens responsible for cancer protection is not fully understood. Here, we explored the MHC class I peptidome in mouse colon cancer cells using a proteogenomic approach. We showed that cryptic peptides derived from unconventional short open reading frames accounted for part of the MHC class I peptidome. Moreover, cancer growth was significantly prevented in mice immunized with a cocktail of synthesized cryptic peptides. Together, our data showed that the source of cancer antigens was not limited to fragments of consensus proteins. Cryptic antigens were displayed by MHC molecules and mediated anti-cancer effects, suggesting their therapeutic potential for cancer prevention.
Collapse
|
232
|
Zhang C, He Z, Cheng L, Cao J. Investigation of Prognostic Markers of Lung Adenocarcinoma Based on Tumor Metabolism-Related Genes. Front Genet 2021; 12:760506. [PMID: 34737767 PMCID: PMC8560970 DOI: 10.3389/fgene.2021.760506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/23/2021] [Indexed: 11/17/2022] Open
Abstract
Lung adenocarcinoma (LUAD) is a prevalent cancer killer. Investigation on potential prognostic markers of LUAD is crucial for a patient’s postoperative planning. LUAD-associated datasets were acquired from Gene Expression Omnibus (GEO) as well as The Cancer Genome Atlas (TCGA). LUAD metabolism-associated differentially expressed genes were obtained, combining tumor metabolism-associated genes. COX regression analyses were conducted to build a five-gene prognostic model. Samples were divided into high- and low-risk groups by the established model. Survival analysis displayed favorable prognosis in the low-risk group in the training set. Favorable predictive performance of the model was discovered as hinted by receiver’s operative curve (ROC). Survival analysis and ROC analysis in the validation set held an agreement. Gene Set Enrichment Analysis (GSEA), tumor mutation bearing (TMB), and immune infiltration differential analysis were performed. The two groups displayed differences in glycolysis gluconeogenesis, P53 signaling pathway, etc. The high-risk group showed higher TP53 mutation frequency as well as TMB. The low-risk group displayed higher immune activity along with immune score. Altogether, this study casts light on further development of novel prognostic markers for LUAD.
Collapse
Affiliation(s)
- Chong Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zhehao He
- Department of Thoracic Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ling Cheng
- Shanghai Engineering Research Center of Pharmaceutical Translation, Shanghai, China
| | - Jinlin Cao
- Department of Thoracic Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
233
|
Choy CH, He L, Tulumello D, Gajewska B, Terebiznik MR, Botelho RJ, Azizi A. Aggregation and Size Attributes Analysis of Unadsorbed and Adjuvant-adsorbed Antigens using a Multispectral Imaging Flow Cytometer Platform. J Pharm Sci 2021; 111:672-679. [PMID: 34742727 DOI: 10.1016/j.xphs.2021.10.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/30/2021] [Accepted: 10/30/2021] [Indexed: 11/26/2022]
Abstract
Various vaccine quality attributes should be monitored to ensure consistency, potency, purity, and safety of vaccine products prior to lot release. Vaccine particle size and protein antigen aggregation are two important considerations for particle-adsorbed vaccines. In this study, we evaluated the use of imaging flow cytometry as a potential all-in-one platform to measure adjuvant particle size and to detect protein aggregates through a combination of brightfield microscopy, side scatter detection, and fluorescence microscopy. An aluminum phosphate adjuvant was analyzed for size using the brightfield function, and the size measurement was compared against laser diffraction. Heat-induced protein aggregates of either unadsorbed antigens or aluminum phosphate adjuvant-adsorbed antigens were stained with the fluorescent ProteoStat aggregation dye, followed by detection and analysis using a combination of the brightfield and fluorescence microscopy functions. The change in aggregation of unadsorbed antigens was confirmed using dynamic light scattering. These results demonstrate the versatility of the imaging flow cytometry platform for the evaluation of multiple vaccine quality characteristics.
Collapse
Affiliation(s)
- Christopher H Choy
- Immunology platform, Analytical Sciences North America, Sanofi Pasteur, 1755 Steeles Avenue West, Toronto, ON, M2R 3T4, Canada; Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, M5B 2K3, Canada
| | - Liwei He
- Immunology platform, Analytical Sciences North America, Sanofi Pasteur, 1755 Steeles Avenue West, Toronto, ON, M2R 3T4, Canada
| | - David Tulumello
- Biochemistry platform, Analytical Sciences North America, Sanofi Pasteur, 1755 Steeles Avenue West, Toronto, Ontario, M2R 3T4, Canada
| | - Beata Gajewska
- Immunology platform, Analytical Sciences North America, Sanofi Pasteur, 1755 Steeles Avenue West, Toronto, ON, M2R 3T4, Canada
| | - Mauricio R Terebiznik
- Department of Biological Sciences, University of Toronto at Scarborough, Toronto, Ontario, M1C 1A4, Canada
| | - Roberto J Botelho
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, M5B 2K3, Canada
| | - Ali Azizi
- Immunology platform, Analytical Sciences North America, Sanofi Pasteur, 1755 Steeles Avenue West, Toronto, ON, M2R 3T4, Canada.
| |
Collapse
|
234
|
Kiritsy MC, McCann K, Mott D, Holland SM, Behar SM, Sassetti CM, Olive AJ. Mitochondrial respiration contributes to the interferon gamma response in antigen-presenting cells. eLife 2021; 10:e65109. [PMID: 34726598 PMCID: PMC8598164 DOI: 10.7554/elife.65109] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 10/28/2021] [Indexed: 12/22/2022] Open
Abstract
The immunological synapse allows antigen-presenting cells (APCs) to convey a wide array of functionally distinct signals to T cells, which ultimately shape the immune response. The relative effect of stimulatory and inhibitory signals is influenced by the activation state of the APC, which is determined by an interplay between signal transduction and metabolic pathways. While pathways downstream of toll-like receptors rely on glycolytic metabolism for the proper expression of inflammatory mediators, little is known about the metabolic dependencies of other critical signals such as interferon gamma (IFNγ). Using CRISPR-Cas9, we performed a series of genome-wide knockout screens in murine macrophages to identify the regulators of IFNγ-inducible T cell stimulatory or inhibitory proteins MHCII, CD40, and PD-L1. Our multiscreen approach enabled us to identify novel pathways that preferentially control functionally distinct proteins. Further integration of these screening data implicated complex I of the mitochondrial respiratory chain in the expression of all three markers, and by extension the IFNγ signaling pathway. We report that the IFNγ response requires mitochondrial respiration, and APCs are unable to activate T cells upon genetic or chemical inhibition of complex I. These findings suggest a dichotomous metabolic dependency between IFNγ and toll-like receptor signaling, implicating mitochondrial function as a fulcrum of innate immunity.
Collapse
Affiliation(s)
- Michael C Kiritsy
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Katelyn McCann
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical SchoolWorcesterUnited States
- Immunopathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesdaUnited States
| | - Daniel Mott
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Steven M Holland
- Immunopathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesdaUnited States
| | - Samuel M Behar
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Christopher M Sassetti
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Andrew J Olive
- Department of Microbiology & Molecular Genetics, College of Osteopathic Medicine, Michigan State UniversityEast LansingUnited States
| |
Collapse
|
235
|
Alterations in HLA Class I-Presented Immunopeptidome and Class I-Interactome upon Osimertinib Resistance in EGFR Mutant Lung Adenocarcinoma. Cancers (Basel) 2021; 13:cancers13194977. [PMID: 34638461 PMCID: PMC8507780 DOI: 10.3390/cancers13194977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/02/2021] [Indexed: 01/04/2023] Open
Abstract
Simple Summary We sought to identify molecular mechanisms of lower efficacy of immunotherapy in epidermal growth factor receptor (EGFR) mutant lung adenocarcinoma and the differences in those mechanisms with the emergence of tyrosine kinase inhibitor (TKI)-resistance. To this end, we conducted affinity purification and quantitative mass spectrometry-based proteomic profiling of human leukocyte antigen (HLA) Class I-presented immunopeptides and Class I-interacting proteins. This large-scale dataset revealed that the Class I-presented immunopeptidome was suppressed in two third-generation EGFR TKI, osimertinib-resistant lung adenocarcinoma cell lines compared to their isogenic TKI-sensitive counterparts. The whole-cell proteomic profiling show that antigen presentation complex proteins and immunoproteasome were downregulated upon EGFR TKI resistance. Furthermore, HLA class I-interactome profiling demonstrated altered interaction with key apoptosis and autophagy pathway proteins. In summary, our comprehensive multi-proteomic characterization in antigen presentation machinery provides potentially novel evidence of poor immune response in osimertinib-resistant lung adenocarcinoma. Abstract Immune checkpoint inhibitor (ICI) therapy has been a paradigm shift in the treatment of cancer. ICI therapy results in durable responses and survival benefit for a large number of tumor types. Osimertinib, a third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) has shown great efficacy treating EGFR mutant lung cancers; however, all patients eventually develop resistance. ICI therapy has not benefitted EGFR mutant lung cancer. Herein, we employed stable isotope labeling by amino acids in cell culture (SILAC) quantitative mass spectrometry-based proteomics to investigate potential immune escape molecular mechanisms in osimertinib resistant EGFR mutant lung adenocarcinoma by interrogating the alterations in the human leukocyte antigen (HLA) Class I-presented immunopeptidome, Class I-interactome, and the whole cell proteome between isogenic osimertinib-sensitive and -resistant human lung adenocarcinoma cells. Our study demonstrates an overall reduction in HLA class I-presented immunopeptidome and downregulation of antigen presentation core complex (e.g., TAP1 and ERAP1/2) and immunoproteasome in osimertinib resistant lung adenocarcinoma cells. Several key components in autophagy pathway are differentially altered. S100 proteins and SLC3A2 may play critical roles in reduced antigen presentation. Our dataset also includes ~1000 novel HLA class I interaction partners and hundreds of Class I-presented immunopeptides in EGFR mutant lung adenocarcinoma. This large-scale unbiased proteomics study provides novel insights and potential mechanisms of immune evasion of EGFR mutant lung adenocarcinoma.
Collapse
|
236
|
Mishto M. Commentary: Are There Indeed Spliced Peptides in the Immunopeptidome? Mol Cell Proteomics 2021; 20:100158. [PMID: 34607014 PMCID: PMC8724881 DOI: 10.1016/j.mcpro.2021.100158] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 11/27/2022] Open
Abstract
Proteasome-generated spliced epitopes presented by HLA class I complexes are emerging targets for T cell targeted immunotherapies. Their identification by mass spectrometry triggered heated debates, which find a representative opinion in one of the two fronts in the recent perspective article by Arie Admon. Briefly, he suggests that proteasomes cannot efficiently catalyze such a reaction, and, thus, that all spliced peptides identified in HLA class I immunopeptidomes and other specimens are artifacts. This hypothesis is in contrast with in vitro, in cellula, and in vivo results published since the discovery of proteasome-catalyzed peptide splicing in 2004.
Collapse
Affiliation(s)
- Michele Mishto
- Centre for Inflammation Biology and Cancer Immunology (CIBCI) & Peter Gorer Department of Immunobiology, King's College London, London, United Kingdom; Francis Crick Institute, London, United Kingdom.
| |
Collapse
|
237
|
Luo C, Wang S, Liao W, Zhang S, Xu N, Xie W, Zhang Y. Upregulation of the APOBEC3 Family Is Associated with a Poor Prognosis and Influences Treatment Response to Raf Inhibitors in Low Grade Glioma. Int J Mol Sci 2021; 22:10390. [PMID: 34638749 PMCID: PMC8508917 DOI: 10.3390/ijms221910390] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/23/2021] [Accepted: 09/25/2021] [Indexed: 12/29/2022] Open
Abstract
Apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3 (APOBEC3) has been identified as a group of enzymes that catalyze cytosine deamination in single-stranded (ss) DNA to form uracil, causing somatic mutations in some cancers. We analyzed the APOBEC3 family in 33 TCGA cancer types and the results indicated that APOBEC3s are upregulated in multiple cancers and strongly correlate with prognosis, particularly in low grade glioma (LGG). Then we constructed a prognostic model based on family expression in LGG where the APOBEC3 family signature is an accurate predictive model (AUC of 0.85). Gene mutation, copy number variation (CNV), and a differential gene expression (DEG) analysis were performed in different risk groups, and the weighted gene co-expression network analysis (WGCNA) was employed to clarify the role of various members in LGG; CIBERSORT algorithm was deployed to evaluate the landscape of LGG immune infiltration. We found that upregulation of the APOBEC3 family expression can strengthen Ras/MAPK signaling pathway, promote tumor progression, and ultimately reduce the treatment benefits of Raf inhibitors. Moreover, the APOBEC3 family was shown to enhance the immune response mediated by myeloid cells and interferon gamma, as well as PD-L1 and PD-L2 expression, implying that they have immunotherapy potential. Therefore, the APOBEC3 signature enables an efficient assessment of LGG patient survival outcomes and expansion of clinical benefits by selecting appropriate individualized treatment strategies.
Collapse
Affiliation(s)
- Cheng Luo
- China State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China; (C.L.); (S.W.); (W.L.); (S.Z.); (N.X.); (W.X.)
- Department of Biomedical Engineering, Tsinghua University, Beijing 100084, China
- Key Lab in Healthy Science and Technology of Shenzhen, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
| | - Songmao Wang
- China State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China; (C.L.); (S.W.); (W.L.); (S.Z.); (N.X.); (W.X.)
- Key Lab in Healthy Science and Technology of Shenzhen, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Weijie Liao
- China State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China; (C.L.); (S.W.); (W.L.); (S.Z.); (N.X.); (W.X.)
- Key Lab in Healthy Science and Technology of Shenzhen, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
| | - Shikuan Zhang
- China State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China; (C.L.); (S.W.); (W.L.); (S.Z.); (N.X.); (W.X.)
- Key Lab in Healthy Science and Technology of Shenzhen, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Naihan Xu
- China State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China; (C.L.); (S.W.); (W.L.); (S.Z.); (N.X.); (W.X.)
- Key Lab in Healthy Science and Technology of Shenzhen, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
- Open FIESTA Center, Tsinghua University, Shenzhen 518055, China
| | - Weidong Xie
- China State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China; (C.L.); (S.W.); (W.L.); (S.Z.); (N.X.); (W.X.)
- Key Lab in Healthy Science and Technology of Shenzhen, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
- Open FIESTA Center, Tsinghua University, Shenzhen 518055, China
| | - Yaou Zhang
- China State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China; (C.L.); (S.W.); (W.L.); (S.Z.); (N.X.); (W.X.)
- Key Lab in Healthy Science and Technology of Shenzhen, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
- Open FIESTA Center, Tsinghua University, Shenzhen 518055, China
| |
Collapse
|
238
|
Jasinski-Bergner S, Mandelboim O, Seliger B. Molecular mechanisms of human herpes viruses inferring with host immune surveillance. J Immunother Cancer 2021; 8:jitc-2020-000841. [PMID: 32616556 PMCID: PMC7333871 DOI: 10.1136/jitc-2020-000841] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2020] [Indexed: 02/06/2023] Open
Abstract
Several human herpes viruses (HHVs) exert oncogenic potential leading to malignant transformation of infected cells and/or tissues. The molecular processes induced by viral-encoded molecules including microRNAs, peptides, and proteins contributing to immune evasion of the infected host cells are equal to the molecular processes of immune evasion mediated by tumor cells independently of viral infections. Such major immune evasion strategies include (1) the downregulation of proinflammatory cytokines/chemokines as well as the induction of anti-inflammatory cytokines/chemokines, (2) the downregulation of major histocompatibility complex (MHC) class Ia directly as well as indirectly by downregulation of the components involved in the antigen processing, and (3) the downregulation of stress-induced ligands for activating receptors on immune effector cells with NKG2D leading the way. Furthermore, (4) immune modulatory molecules like MHC class Ib molecules and programmed cell death1 ligand 1 can be upregulated on infections with certain herpes viruses. This review article focuses on the known molecular mechanisms of HHVs modulating the above-mentioned possibilities for immune surveillance and even postulates a temporal order linking regular tumor immunology with basic virology and offering putatively novel insights for targeting HHVs.
Collapse
Affiliation(s)
- Simon Jasinski-Bergner
- Institute for Medical Immunology, Martin-Luther-Universitat Halle-Wittenberg, Halle (Saale), Germany
| | - Ofer Mandelboim
- Immunology & Cancer Research Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Barbara Seliger
- Institute for Medical Immunology, Martin-Luther-Universitat Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
239
|
Zhu Y, Liu J. The Role of Neoantigens in Cancer Immunotherapy. Front Oncol 2021; 11:682325. [PMID: 34513673 PMCID: PMC8429900 DOI: 10.3389/fonc.2021.682325] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 08/10/2021] [Indexed: 02/05/2023] Open
Abstract
Somatic mutation-derived neoantigens, expressed only on tumor cells, may elicit antitumor T-cell responses in cancer immunotherapies with minimal immune tolerance. Neoantigens can be identified by multiple bioinformatics technologies, mainly based on whole-exome sequencing. Personalized cancer vaccines and adoptive T cell therapies are two primary treatment modalities targeting neoantigens, and both of them have shown promising therapeutic effects. This review, summarizes the history of neoantigen-related tumor control, introduces recent neoantigen screening and identification methods, and discusses the role of neoantigen in cancer immunotherapies. Moreover, we propose the challenges of targeting neoantigens for cancer treatment.
Collapse
Affiliation(s)
- Yueting Zhu
- Department of Biotherapy, Cancer Center, and National Clinical Research Center for Geriatrics, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Jiyan Liu
- Department of Biotherapy, Cancer Center, and National Clinical Research Center for Geriatrics, West China Hospital, West China Medical School, Sichuan University, Chengdu, China.,Department of Oncology, The First People's Hospital of Ziyang, Ziyang, China
| |
Collapse
|
240
|
Padariya M, Kote S, Mayordomo M, Dapic I, Alfaro J, Hupp T, Fahraeus R, Kalathiya U. Structural determinants of peptide-dependent TAP1-TAP2 transit passage targeted by viral proteins and altered by cancer-associated mutations. Comput Struct Biotechnol J 2021; 19:5072-5091. [PMID: 34589184 PMCID: PMC8453138 DOI: 10.1016/j.csbj.2021.09.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 09/06/2021] [Accepted: 09/06/2021] [Indexed: 01/20/2023] Open
Abstract
The TAP1-TAP2 complex transports antigenic peptide substrates into the endoplasmic reticulum (ER). In ER, the peptides are further processed and loaded on the major histocompatibility class (MHC) I molecules by the peptide loading complex (PLC). The TAP transporters are linked with the PLC; a target for cancers and viral immune evasion. But the mechanisms whereby the cancer-derived mutations in TAP1-TAP2 or viral factors targeting the PLC, interfere peptide transport are only emerging. This study describes that transit of peptides through TAP can take place via two different channels (4 or 8 helices) depending on peptide length and sequence. Molecular dynamics and binding affinity predictions of peptide-transporters demonstrated that smaller peptides (8-10 mers; e.g. AAGIGILTV, SIINFEKL) can transport quickly through the transport tunnel compared to longer peptides (15-mer; e.g. ENPVVHFFKNIVTPR). In line with a regulated and selective peptide transport by TAPs, the immunopeptidome upon IFN-γ treatment in melanoma cells induced the shorter length (9-mer) peptide presentation over MHC-I that exhibit a relatively weak binding affinity with TAP. A conserved distance between N and C terminus residues of the studied peptides in the transport tunnel were reported. Furthermore, by adversely interacting with the TAP transport passage or affecting TAPNBD domains tilt movement, the viral proteins and cancer-derived mutations in TAP1-TAP2 may induce allosteric effects in TAP that block conformation of the tunnel (closed towards ER lumen). Interestingly, some cancer-associated mutations (e.g. TAP1R372Q and TAP2R373H) can specifically interfere with selective transport channels (i.e. for longer-peptides). These results provide a model for how viruses and cancer-associated mutations targeting TAP interfaces can affect MHC-I antigen presentation, and how the IFN-γ pathway alters MHC-I antigen presentation via the kinetics of peptide transport.
Collapse
Affiliation(s)
- Monikaben Padariya
- International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24, 80-822 Gdansk, Poland
| | - Sachin Kote
- International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24, 80-822 Gdansk, Poland
| | - Marcos Mayordomo
- International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24, 80-822 Gdansk, Poland
| | - Irena Dapic
- International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24, 80-822 Gdansk, Poland
| | - Javier Alfaro
- International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24, 80-822 Gdansk, Poland
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, Scotland EH4 2XR, United Kingdom
| | - Ted Hupp
- International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24, 80-822 Gdansk, Poland
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, Scotland EH4 2XR, United Kingdom
| | - Robin Fahraeus
- International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24, 80-822 Gdansk, Poland
- Inserm UMRS1131, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St. Louis, F-75010 Paris, France
- Department of Medical Biosciences, Building 6M, Umeå University, 901 85 Umeå, Sweden
- RECAMO, Masaryk Memorial Cancer Institute, Zlutykopec 7, 65653 Brno, Czech Republic
| | - Umesh Kalathiya
- International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24, 80-822 Gdansk, Poland
| |
Collapse
|
241
|
Arosa FA, Esgalhado AJ, Reste-Ferreira D, Cardoso EM. Open MHC Class I Conformers: A Look through the Looking Glass. Int J Mol Sci 2021; 22:ijms22189738. [PMID: 34575902 PMCID: PMC8470049 DOI: 10.3390/ijms22189738] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/04/2021] [Accepted: 09/08/2021] [Indexed: 12/16/2022] Open
Abstract
Studies carried out during the last few decades have consistently shown that cell surface MHC class I (MHC-I) molecules are endowed with functions unrelated with antigen presentation. These include cis–trans-interactions with inhibitory and activating KIR and LILR, and cis-interactions with receptors for hormones, growth factors, cytokines, and neurotransmitters. The mounting body of evidence indicates that these non-immunological MHC-I functions impact clinical and biomedical settings, including autoimmune responses, tumor escape, transplantation, and neuronal development. Notably, most of these functions appear to rely on the presence in hematopoietic and non-hematopoietic cells of heavy chains not associated with β2m and the peptide at the plasma membrane; these are known as open MHC-I conformers. Nowadays, open conformers are viewed as functional cis-trans structures capable of establishing physical associations with themselves, with other surface receptors, and being shed into the extracellular milieu. We review past and recent developments, strengthening the view that open conformers are multifunctional structures capable of fine-tuning cell signaling, growth, differentiation, and cell communication.
Collapse
Affiliation(s)
- Fernando A Arosa
- Health Sciences Research Center (CICS-UBI), University of Beira Interior, 6200-506 Covilhã, Portugal
- Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal
| | - André J Esgalhado
- Health Sciences Research Center (CICS-UBI), University of Beira Interior, 6200-506 Covilhã, Portugal
| | - Débora Reste-Ferreira
- Health Sciences Research Center (CICS-UBI), University of Beira Interior, 6200-506 Covilhã, Portugal
| | - Elsa M Cardoso
- Health Sciences Research Center (CICS-UBI), University of Beira Interior, 6200-506 Covilhã, Portugal
- Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal
- Health School, Guarda Polytechnic Institute, 6300-749 Guarda, Portugal
| |
Collapse
|
242
|
Weeder BR, Wood MA, Li E, Nellore A, Thompson RF. pepsickle rapidly and accurately predicts proteasomal cleavage sites for improved neoantigen identification. Bioinformatics 2021; 37:3723-3733. [PMID: 34478497 DOI: 10.1093/bioinformatics/btab628] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/21/2021] [Accepted: 08/31/2021] [Indexed: 12/30/2022] Open
Abstract
MOTIVATION Proteasomal cleavage is a key component in protein turnover, as well as antigen processing and presentation. Although tools for proteasomal cleavage prediction are available, they vary widely in their performance, options, and availability. RESULTS Herein we present pepsickle, an open-source tool for proteasomal cleavage prediction with better in vivo prediction performance (AUC) and computational speed than current models available in the field and with the ability to predict sites based on both constitutive and immunoproteasome profiles. Post-hoc filtering of predicted patient neoepitopes using pepsickle significantly enriches for immune-responsive epitopes and may improve current epitope prediction and vaccine development pipelines. AVAILABILITY pepsickle is open source and available at https://github.com/pdxgx/pepsickle. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Benjamin R Weeder
- Computational Biology Program, Oregon Health & Science University, Portland, Oregon, USA.,Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA
| | | | - Ellysia Li
- Pacific University, Forest Grove, OR, USA
| | - Abhinav Nellore
- Computational Biology Program, Oregon Health & Science University, Portland, Oregon, USA.,Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA.,Department of Surgery, Oregon Health & Science University, Portland, Oregon, USA
| | - Reid F Thompson
- Computational Biology Program, Oregon Health & Science University, Portland, Oregon, USA.,Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA.,Department of Radiation Medicine, Oregon Health & Science University, Portland, Oregon, USA.,Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, Oregon, USA.,Division of Hospital and Specialty Medicine, VA Portland Healthcare System, Portland, Oregon, USA
| |
Collapse
|
243
|
Kikuchi Y, Tokita S, Hirama T, Kochin V, Nakatsugawa M, Shinkawa T, Hirohashi Y, Tsukahara T, Hata F, Takemasa I, Sato N, Kanaseki T, Torigoe T. CD8 + T-cell Immune Surveillance against a Tumor Antigen Encoded by the Oncogenic Long Noncoding RNA PVT1. Cancer Immunol Res 2021; 9:1342-1353. [PMID: 34433589 DOI: 10.1158/2326-6066.cir-20-0964] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 04/11/2021] [Accepted: 08/23/2021] [Indexed: 11/16/2022]
Abstract
CD8+ T cells recognize peptides displayed by HLA class I molecules on cell surfaces, monitoring pathologic conditions such as cancer. Advances in proteogenomic analysis of HLA ligandomes have demonstrated that cells present a subset of cryptic peptides derived from noncoding regions of the genome; however, the roles of cryptic HLA ligands in tumor immunity remain unknown. In the current study, we comprehensively and quantitatively investigated the HLA class I ligandome of a set of human colorectal cancer and matched normal tissues, showing that cryptic translation products accounted for approximately 5% of the HLA class I ligandome. We also found that a peptide encoded by the long noncoding RNA (lncRNA) PVT1 was predominantly enriched in multiple colorectal cancer tissues. The PVT1 gene is located downstream of the MYC gene in the genome and is aberrantly overexpressed across a variety of cancers, reflecting its oncogenic property. The PVT1 peptide was recognized by patient CD8+ tumor-infiltrating lymphocytes, as well as peripheral blood mononuclear cells, suggesting the presence of patient immune surveillance. Our findings show that peptides can be translated from lncRNAs and presented by HLA class I and that cancer patient T cells are capable of sensing aberrations in noncoding regions of the genome.
Collapse
Affiliation(s)
- Yasuhiro Kikuchi
- Department of Pathology, Sapporo Medical University, Sapporo, Japan
| | - Serina Tokita
- Department of Pathology, Sapporo Medical University, Sapporo, Japan.,Sapporo Dohto Hospital, Sapporo, Japan
| | - Tomomi Hirama
- Department of Pathology, Sapporo Medical University, Sapporo, Japan.,Sapporo Dohto Hospital, Sapporo, Japan
| | - Vitaly Kochin
- Department of Pathology, Sapporo Medical University, Sapporo, Japan.,Department of Immunology, Nagoya University, Nagoya, Japan
| | - Munehide Nakatsugawa
- Department of Pathology, Sapporo Medical University, Sapporo, Japan.,Department of Pathology, Tokyo Medical University Hachioji Medical Center, Hachioji, Tokyo, Japan
| | - Tomoyo Shinkawa
- Department of Pathology, Sapporo Medical University, Sapporo, Japan
| | | | | | | | - Ichiro Takemasa
- Department of Surgery, Surgical Oncology and Science, Sapporo Medical University, Sapporo, Japan
| | - Noriyuki Sato
- Department of Pathology, Sapporo Medical University, Sapporo, Japan.,Sapporo Dohto Hospital, Sapporo, Japan
| | - Takayuki Kanaseki
- Department of Pathology, Sapporo Medical University, Sapporo, Japan.
| | | |
Collapse
|
244
|
Pasharawipas T. Different Aspects Concerning Viral Infection and the Role of MHC Molecules in Viral Prevention. Open Microbiol J 2021. [DOI: 10.2174/1874285802115010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Major Histocompatibility Complex (MHC) molecules play a crucial role in inducing an adaptive immune response. T-cell epitopes require compatible MHC molecules to form MHC-peptide Complexes (pMHC) that activate the T-cell Receptors (TCR) of T-lymphocyte clones. MHCs are polymorphic molecules with wide varieties of gene alleles. There are two classes of MHC molecules, class I and II. Both classes have three classical loci HLA-A, -B, and –C are present in class I and HLA-DP, -DQ, and -DR in class II. To induce a compatible T-lymphocyte clone, the T-cell epitope requires the association of the compatible MHC molecule to form pMHC. Each MHC variant possesses a different groove that is capable of binding a different range of antigenic epitopes. Without the compatible MHC molecule, a T cell clone cannot be activated by a particular viral epitope. With the aim of preventing viral transmission, the efficiency of a viral vaccine is related to the existence of specific MHC alleles in the individual. This article proposes the roles of the MHC molecule to prevent viral infection. In addition, the association of the viral receptor molecule with the viral infection will also be discussed.
Collapse
|
245
|
Xu Y, Su GH, Ma D, Xiao Y, Shao ZM, Jiang YZ. Technological advances in cancer immunity: from immunogenomics to single-cell analysis and artificial intelligence. Signal Transduct Target Ther 2021; 6:312. [PMID: 34417437 PMCID: PMC8377461 DOI: 10.1038/s41392-021-00729-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 07/06/2021] [Accepted: 07/18/2021] [Indexed: 02/07/2023] Open
Abstract
Immunotherapies play critical roles in cancer treatment. However, given that only a few patients respond to immune checkpoint blockades and other immunotherapeutic strategies, more novel technologies are needed to decipher the complicated interplay between tumor cells and the components of the tumor immune microenvironment (TIME). Tumor immunomics refers to the integrated study of the TIME using immunogenomics, immunoproteomics, immune-bioinformatics, and other multi-omics data reflecting the immune states of tumors, which has relied on the rapid development of next-generation sequencing. High-throughput genomic and transcriptomic data may be utilized for calculating the abundance of immune cells and predicting tumor antigens, referring to immunogenomics. However, as bulk sequencing represents the average characteristics of a heterogeneous cell population, it fails to distinguish distinct cell subtypes. Single-cell-based technologies enable better dissection of the TIME through precise immune cell subpopulation and spatial architecture investigations. In addition, radiomics and digital pathology-based deep learning models largely contribute to research on cancer immunity. These artificial intelligence technologies have performed well in predicting response to immunotherapy, with profound significance in cancer therapy. In this review, we briefly summarize conventional and state-of-the-art technologies in the field of immunogenomics, single-cell and artificial intelligence, and present prospects for future research.
Collapse
Affiliation(s)
- Ying Xu
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Guan-Hua Su
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ding Ma
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi Xiao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Zhi-Ming Shao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| | - Yi-Zhou Jiang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
246
|
He Y, Yu H, Zhao H, Zhu H, Zhang Q, Wang A, Shen Y, Xu X, Li J. Transcriptomic analysis to elucidate the effects of high stocking density on grass carp (Ctenopharyngodon idella). BMC Genomics 2021; 22:620. [PMID: 34399686 PMCID: PMC8369720 DOI: 10.1186/s12864-021-07924-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/06/2021] [Indexed: 01/23/2023] Open
Abstract
Background Grass carp (Ctenopharyngodon idella) is one of the most widely cultivated fishes in China. High stocking density can reportedly affect fish growth and immunity. Herein we performed PacBio long-read single-molecule real-time (SMRT) sequencing and Illumina RNA sequencing to evaluate the effects of high stocking density on grass carp transcriptome. Results SMRT sequencing led to the identification of 33,773 genes (14,946 known and 18,827 new genes). From the structure analysis, 8,009 genes were detected with alternative splicing events, 10,219 genes showed alternative polyadenylation sites and 15,521 long noncoding RNAs. Further, 1,235, 962, and 213 differentially expressed genes (DEGs) were identified in the intestine, muscle, and brain tissues, respectively. We performed functional enrichment analyses of DEGs, and they were identified to be significantly enriched in nutrient metabolism and immune function. The expression levels of several genes encoding apolipoproteins and activities of enzymes involved in carbohydrate enzymolysis were found to be upregulated in the high stocking density group, indicating that lipid metabolism and carbohydrate decomposition were accelerated. Besides, four isoforms of grass carp major histocompatibility complex class II antigen alpha and beta chains in the aforementioned three tissue was showed at least a 4-fold decrease. Conclusions The results suggesting that fish farmed at high stocking densities face issues associated with the metabolism and immune system. To conclude, our results emphasize the importance of maintaining reasonable density in grass carp aquaculture. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07924-4.
Collapse
Affiliation(s)
- Yan He
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.,Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Hongyan Yu
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Honggang Zhao
- Department of Natural Resources, Cornell University, 14853, Ithaca, New York, USA
| | - Hua Zhu
- Beijing Key Laboratory of Fishery Biotechnology, Beijing Fisheries Research Institute, 100068, Beijing, China
| | - Qingjing Zhang
- Beijing Key Laboratory of Fishery Biotechnology, Beijing Fisheries Research Institute, 100068, Beijing, China
| | - Anqi Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
| | - Yubang Shen
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Xiaoyan Xu
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China. .,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China. .,Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China.
| | - Jiale Li
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China. .,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China. .,Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
247
|
Mavridis G, Mpakali A, Zoidakis J, Makridakis M, Vlahou A, Kaloumenou E, Ziotopoulou A, Georgiadis D, Papakyriakou A, Stratikos E. The ERAP1 active site cannot productively access the N-terminus of antigenic peptide precursors stably bound onto MHC class I. Sci Rep 2021; 11:16475. [PMID: 34389743 PMCID: PMC8363620 DOI: 10.1038/s41598-021-95786-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/22/2021] [Indexed: 12/01/2022] Open
Abstract
Processing of N-terminally elongated antigenic peptide precursors by Endoplasmic Reticulum Aminopeptidase 1 (ERAP1) is a key step in antigen presentation and the adaptive immune response. Although ERAP1 can efficiently process long peptides in solution, it has been proposed that it can also process peptides bound onto Major Histocompatibility Complex I molecules (MHCI). In a previous study, we suggested that the occasionally observed “ontο MHCI” trimming by ERAP1 is likely due to fast peptide dissociation followed by solution trimming, rather than direct action of ERAP1 onto the MHCI complex. However, other groups have proposed that ERAP1 can trim peptides covalently bound onto MHCI, which would preclude peptide dissociation. To explore this interaction, we constructed disulfide-linked MHCI-peptide complexes using HLA-B*08 and a 12mer kinetically labile peptide, or a 16mer carrying a phosphinic transition-state analogue N-terminus with high-affinity for ERAP1. Kinetic and biochemical analyses suggested that while both peptides could access the ERAP1 active site when free in solution, they were unable to do so when tethered in the MHCI binding groove. Our results suggest that MHCI binding protects, rather than promotes, antigenic peptide precursor trimming by ERAP1 and thus solution trimming is the more likely model of antigenic peptide processing.
Collapse
Affiliation(s)
- George Mavridis
- Protein Chemistry Laboratory, National Centre for Scientific Research Demokritos, 15341, Agia Paraskevi, Greece
| | - Anastasia Mpakali
- Protein Chemistry Laboratory, National Centre for Scientific Research Demokritos, 15341, Agia Paraskevi, Greece
| | - Jerome Zoidakis
- Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527, Athens, Greece
| | - Manousos Makridakis
- Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527, Athens, Greece
| | - Antonia Vlahou
- Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527, Athens, Greece
| | - Eleni Kaloumenou
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15784, Panepistimiopolis Zografou, Greece
| | - Angeliki Ziotopoulou
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15784, Panepistimiopolis Zografou, Greece
| | - Dimitris Georgiadis
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15784, Panepistimiopolis Zografou, Greece
| | - Athanasios Papakyriakou
- Protein Chemistry Laboratory, National Centre for Scientific Research Demokritos, 15341, Agia Paraskevi, Greece
| | - Efstratios Stratikos
- Protein Chemistry Laboratory, National Centre for Scientific Research Demokritos, 15341, Agia Paraskevi, Greece. .,Biochemistry Laboratory, National and Kapodistrian University of Athens, 15784, Panepistimiopolis Zografou, Greece.
| |
Collapse
|
248
|
Wu X, Kang X, Zhang X, Xie W, Su Y, Liu X, Guo L, Guo E, Li F, Hu D, Qin X, Fu Y, Peng W, Jia J, Wang C. WEE1 inhibitor and ataxia telangiectasia and RAD3-related inhibitor trigger stimulator of interferon gene-dependent immune response and enhance tumor treatment efficacy through programmed death-ligand 1 blockade. Cancer Sci 2021; 112:4444-4456. [PMID: 34382294 PMCID: PMC8586668 DOI: 10.1111/cas.15108] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/05/2021] [Accepted: 08/10/2021] [Indexed: 11/28/2022] Open
Abstract
WEE1 plays an important role in the regulation of cell cycle G2/M checkpoints and DNA damage response (DDR). Inhibition of WEE1 can increase the instability of the genome and have anti–tumor effects in some solid tumors. However, it has certain limitations for multiple cancer cells from different lineages. Therefore, we consider the use of synthetic lethal interactions to enhance the therapeutic effect. Our experiments proved that WEE1 inhibitor (WEE1i) can activate the ataxia telangiectasia and RAD3‐related (ATR) pathway and that blockage of ATR dramatically sensitized the WEE1i‐induced cell death. The tumor‐selective synthetic lethality between bioavailable WEE1 and ATR inhibitors led to tumor remission in vivo. Mechanistically, the combination promoted the accumulation of cytosolic double‐strand DNA, which subsequently activated the stimulator of the interferon gene (STING) pathway and induced the production of type I interferon and CD8+ T cells, thereby inducing anti–tumor immunity. Furthermore, our study found that immune checkpoint programmed death‐ligand 1 is upregulated by the combination therapy, and blocking PD‐L1 further enhances the effect of the combination therapy. In summary, as an immunomodulator, the combination of WEE1i with ATR inhibitor (ATRi) and immune checkpoint blockers provides a potential new approach for cancer treatment.
Collapse
Affiliation(s)
- Xue Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyan Kang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoxiao Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wan Xie
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Su
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyu Liu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lili Guo
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ensong Guo
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fuxia Li
- Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Dianxing Hu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xu Qin
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Fu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenju Peng
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiedong Jia
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Changyu Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
249
|
Abstract
The composition of the gut microbiota is affected by a number of factors, including the innate and adaptive immune system. The major histocompatibility complex (MHC), or the human leukocyte antigen (HLA) in humans, performs an essential role in vertebrate immunity and is very polymorphic in different populations. HLA determines the specificity of T lymphocyte and natural killer (NK) cell responses, including those against the commensal bacteria present in the human gut. Thus, it is likely that our HLA molecules, and thereby the adaptive immune response, can shape the composition of our microbiota. Here, we investigated the effect of HLA haplotype on the microbiota composition. We performed HLA typing and microbiota composition analyses on 3,002 public human gut microbiome data sets. We found that individuals with functionally similar HLA molecules are also similar in their microbiota composition. Our results show a statistical association between host HLA haplotype and gut microbiota composition. Because the HLA haplotype is a readily measurable parameter of the human immune system, these results open the door to incorporating the genetics of the immune system into predictive microbiome models. IMPORTANCE The microorganisms that live in the digestive tracts of humans, known as the gut microbiota, are essential for hosts' survival, as they support crucial functions. For example, they support the host in facilitating the uptake of nutrients and give colonization resistance against pathogens. The composition of the gut microbiota varies among humans. Studies have proposed multiple factors driving the observed variation, including diet, lifestyle, and health condition. Another major influence on the microbiota is the host's genetic background. We hypothesized the immune system to be one of the most important genetic factors driving the differences observed between gut microbiotas. Therefore, we searched for a link between the polymorphic molecules that shape human immune responses and the composition of the microbiota. HLA molecules are the most polymorphic molecules in our genome and therefore makes an excellent candidate to test such an association. To our knowledge for the first time, our results indicate a significant impact of the HLA on the human gut microbiota.
Collapse
|
250
|
Abstract
Next-generation sequencing technologies have revolutionized our ability to catalog the landscape of somatic mutations in tumor genomes. These mutations can sometimes create so-called neoantigens, which allow the immune system to detect and eliminate tumor cells. However, efforts that stimulate the immune system to eliminate tumors based on their molecular differences have had less success than has been hoped for, and there are conflicting reports about the role of neoantigens in the success of this approach. Here we review some of the conflicting evidence in the literature and highlight key aspects of the tumor-immune interface that are emerging as major determinants of whether mutation-derived neoantigens will contribute to an immunotherapy response. Accounting for these factors is expected to improve success rates of future immunotherapy approaches.
Collapse
Affiliation(s)
- Andrea Castro
- Biomedical Informatics Program, University of California San Diego, La Jolla, California 92093, USA
- Division of Medical Genetics, Department of Medicine, University of California San Diego, La Jolla, California 92093, USA;
| | - Maurizio Zanetti
- Department of Medicine, University of California San Diego, La Jolla, California 92093, USA
- The Laboratory of Immunology, Moores Cancer Center, University of California San Diego, La Jolla, California 92093, USA
| | - Hannah Carter
- Division of Medical Genetics, Department of Medicine, University of California San Diego, La Jolla, California 92093, USA;
- The Laboratory of Immunology, Moores Cancer Center, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|