201
|
Machhi J, Shahjin F, Das S, Patel M, Abdelmoaty MM, Cohen JD, Singh PA, Baldi A, Bajwa N, Kumar R, Vora LK, Patel TA, Oleynikov MD, Soni D, Yeapuri P, Mukadam I, Chakraborty R, Saksena CG, Herskovitz J, Hasan M, Oupicky D, Das S, Donnelly RF, Hettie KS, Chang L, Gendelman HE, Kevadiya BD. A Role for Extracellular Vesicles in SARS-CoV-2 Therapeutics and Prevention. J Neuroimmune Pharmacol 2021; 16:270-288. [PMID: 33544324 PMCID: PMC7862527 DOI: 10.1007/s11481-020-09981-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 12/28/2020] [Indexed: 12/13/2022]
Abstract
Extracellular vesicles (EVs) are the common designation for ectosomes, microparticles and microvesicles serving dominant roles in intercellular communication. Both viable and dying cells release EVs to the extracellular environment for transfer of cell, immune and infectious materials. Defined morphologically as lipid bi-layered structures EVs show molecular, biochemical, distribution, and entry mechanisms similar to viruses within cells and tissues. In recent years their functional capacities have been harnessed to deliver biomolecules and drugs and immunological agents to specific cells and organs of interest or disease. Interest in EVs as putative vaccines or drug delivery vehicles are substantial. The vesicles have properties of receptors nanoassembly on their surface. EVs can interact with specific immunocytes that include antigen presenting cells (dendritic cells and other mononuclear phagocytes) to elicit immune responses or affect tissue and cellular homeostasis or disease. Due to potential advantages like biocompatibility, biodegradation and efficient immune activation, EVs have gained attraction for the development of treatment or a vaccine system against the severe acute respiratory syndrome coronavirus 2 (SARS CoV-2) infection. In this review efforts to use EVs to contain SARS CoV-2 and affect the current viral pandemic are discussed. An emphasis is made on mesenchymal stem cell derived EVs' as a vaccine candidate delivery system.
Collapse
Affiliation(s)
- Jatin Machhi
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Farah Shahjin
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Srijanee Das
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Milankumar Patel
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Mai Mohamed Abdelmoaty
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Therapeutic Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, Giza, Egypt
| | - Jacob D Cohen
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Preet Amol Singh
- Department of Pharmaceutical Sciences & Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, PB, India
| | - Ashish Baldi
- Department of Pharmaceutical Sciences & Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, PB, India
| | - Neha Bajwa
- Department of Pharmaceutical Sciences & Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, PB, India
| | - Raj Kumar
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Lalit K Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Tapan A Patel
- Department of Biological Sciences, P. D. Patel Institute of Applied Sciences (PDPIAS), Charotar University of Science and Technology (CHARUSAT), Changa, Anand, Gujarat, 388421, India
| | - Maxim D Oleynikov
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Dhruvkumar Soni
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Pravin Yeapuri
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Insiya Mukadam
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Rajashree Chakraborty
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Caroline G Saksena
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Jonathan Herskovitz
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Mahmudul Hasan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - David Oupicky
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Suvarthi Das
- Department of Medicine, Stanford Medical School, Stanford University, 94304, Palo Alto, CA, USA
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Kenneth S Hettie
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Department of Otolaryngology - Head & Neck Surgery, Stanford University, 94304, Palo Alto, CA, USA
| | - Linda Chang
- Departments of Diagnostic Radiology & Nuclear Medicine, and Neurology, School of Medicine, University of Maryland, 21201, Baltimore, MD, USA
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA.
- Department of Pharmaceutical Sciences & Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, PB, India.
| | - Bhavesh D Kevadiya
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| |
Collapse
|
202
|
Hou PP, Chen HZ. Extracellular vesicles in the tumor immune microenvironment. Cancer Lett 2021; 516:48-56. [PMID: 34082025 DOI: 10.1016/j.canlet.2021.05.032] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 12/11/2022]
Abstract
Extracellular vesicles (EVs) have gained significant attention in recent decades as major mediators of intercellular communication that are involved in various essential physiological and pathological processes. They are secreted by almost all cell types and carry bioactive materials, such as proteins, lipids and nucleic acids, that can be transmitted from host cells to recipient cells, thereby eliciting phenotypic and functional alterations in the recipient cells. Recent evidence shows that EVs play essential roles in remodeling the tumor immune microenvironment (TIME). EVs derived from tumor cells and immune cells mediate mutual communication at proximal and distal sites, which determines tumor fate and antitumor therapeutic effectiveness. In this review, the current understanding of EVs and their roles in remodeling the TIME and modulating tumor-specific immunity are summarized. We mainly discuss the mutual regulation between tumor cells and tumor-infiltrating immune cells through the delivery of EVs in the TIME. We also describe the limitations of current studies and discuss directions for further research.
Collapse
Affiliation(s)
- Pei-Pei Hou
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Hang-Zi Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
203
|
Microglial Extracellular Vesicles as Vehicles for Neurodegeneration Spreading. Biomolecules 2021; 11:biom11060770. [PMID: 34063832 PMCID: PMC8224033 DOI: 10.3390/biom11060770] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 12/12/2022] Open
Abstract
Microglial cells are the neuroimmune competent cells of the central nervous system. In the adult, microglia are responsible for screening the neuronal parenchyma searching for alterations in homeostasis. Chronic neuroinflammation plays a role in neurodegenerative disease. Indeed, microglia-mediated neuroinflammation is involved in the onset and progression of several disorders in the brain and retina. Microglial cell reactivity occurs in an orchestrated manner and propagates across the neural parenchyma spreading the neuroinflammatory signal from cell to cell. Extracellular vesicles are important vehicles of intercellular communication and act as message carriers across boundaries. Extracellular vesicles can be subdivided in several categories according to their cellular origin (apoptotic bodies, microvesicles and exosomes), each presenting, different but sometimes overlapping functions in cell communication. Mounting evidence suggests a role for extracellular vesicles in regulating microglial cell action. Herein, we explore the role of microglial extracellular vesicles as vehicles for cell communication and the mechanisms that trigger their release. In this review we covered the role of microglial extracellular vesicles, focusing on apoptotic bodies, microvesicles and exosomes, in the context of neurodegeneration and the impact of these vesicles derived from other cells in microglial cell reactivity.
Collapse
|
204
|
Wu J, Peng H, Lu X, Lai M, Zhang H, Le XC. Binding-Mediated Formation of Ribonucleoprotein Corona for Efficient Delivery and Control of CRISPR/Cas9. Angew Chem Int Ed Engl 2021; 60:11104-11109. [PMID: 33354860 PMCID: PMC8252003 DOI: 10.1002/anie.202014162] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/27/2020] [Indexed: 01/26/2023]
Abstract
Protein coronae formed with nanoparticles confer several useful properties. However, the non-specific nature of protein corona formation makes it difficult to deliver specific proteins for therapeutic applications. Herein, we report on the construction of a new type of protein corona, termed binding-mediated protein corona. This new corona enables the efficient and controllable delivery of functional proteins, which is otherwise challenging for conventional protein coronae. We show the design and delivery of the ribonucleoprotein corona for the CRISPR/Cas9 system. Successful gene editing in human cell lines (Hela and HEK293) demonstrates the efficient delivery, high stability, low cytotoxicity, and well-controlled activity of the Cas9-guide RNA ribonucleoprotein. The binding-mediated protein corona strategy opens up new opportunities for therapeutic protein delivery.
Collapse
Affiliation(s)
- Jinjun Wu
- Division of Analytical and Environmental ToxicologyDepartment of Laboratory Medicine and PathologyFaculty of Medicine and DentistryUniversity of AlbertaEdmontonAlbertaT6G 2G3Canada
| | - Hanyong Peng
- Division of Analytical and Environmental ToxicologyDepartment of Laboratory Medicine and PathologyFaculty of Medicine and DentistryUniversity of AlbertaEdmontonAlbertaT6G 2G3Canada
| | - Xiufen Lu
- Division of Analytical and Environmental ToxicologyDepartment of Laboratory Medicine and PathologyFaculty of Medicine and DentistryUniversity of AlbertaEdmontonAlbertaT6G 2G3Canada
| | - Maode Lai
- Department of PathologyZhejiang University School of MedicineHangzhouZhejiang310058China
| | - Hongquan Zhang
- Division of Analytical and Environmental ToxicologyDepartment of Laboratory Medicine and PathologyFaculty of Medicine and DentistryUniversity of AlbertaEdmontonAlbertaT6G 2G3Canada
| | - X. Chris Le
- Division of Analytical and Environmental ToxicologyDepartment of Laboratory Medicine and PathologyFaculty of Medicine and DentistryUniversity of AlbertaEdmontonAlbertaT6G 2G3Canada
| |
Collapse
|
205
|
Wu J, Peng H, Lu X, Lai M, Zhang H, Le XC. Binding‐Mediated Formation of Ribonucleoprotein Corona for Efficient Delivery and Control of CRISPR/Cas9. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jinjun Wu
- Division of Analytical and Environmental Toxicology Department of Laboratory Medicine and Pathology Faculty of Medicine and Dentistry University of Alberta Edmonton Alberta T6G 2G3 Canada
| | - Hanyong Peng
- Division of Analytical and Environmental Toxicology Department of Laboratory Medicine and Pathology Faculty of Medicine and Dentistry University of Alberta Edmonton Alberta T6G 2G3 Canada
| | - Xiufen Lu
- Division of Analytical and Environmental Toxicology Department of Laboratory Medicine and Pathology Faculty of Medicine and Dentistry University of Alberta Edmonton Alberta T6G 2G3 Canada
| | - Maode Lai
- Department of Pathology Zhejiang University School of Medicine Hangzhou Zhejiang 310058 China
| | - Hongquan Zhang
- Division of Analytical and Environmental Toxicology Department of Laboratory Medicine and Pathology Faculty of Medicine and Dentistry University of Alberta Edmonton Alberta T6G 2G3 Canada
| | - X. Chris Le
- Division of Analytical and Environmental Toxicology Department of Laboratory Medicine and Pathology Faculty of Medicine and Dentistry University of Alberta Edmonton Alberta T6G 2G3 Canada
| |
Collapse
|
206
|
Bertram KM, Truong NR, Smith JB, Kim M, Sandgren KJ, Feng KL, Herbert JJ, Rana H, Danastas K, Miranda-Saksena M, Rhodes JW, Patrick E, Cohen RC, Lim J, Merten SL, Harman AN, Cunningham AL. Herpes Simplex Virus type 1 infects Langerhans cells and the novel epidermal dendritic cell, Epi-cDC2s, via different entry pathways. PLoS Pathog 2021; 17:e1009536. [PMID: 33905459 PMCID: PMC8104422 DOI: 10.1371/journal.ppat.1009536] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 05/07/2021] [Accepted: 04/06/2021] [Indexed: 12/24/2022] Open
Abstract
Skin mononuclear phagocytes (MNPs) provide the first interactions of invading viruses with the immune system. In addition to Langerhans cells (LCs), we recently described a second epidermal MNP population, Epi-cDC2s, in human anogenital epidermis that is closely related to dermal conventional dendritic cells type 2 (cDC2) and can be preferentially infected by HIV. Here we show that in epidermal explants topically infected with herpes simplex virus (HSV-1), both LCs and Epi-cDC2s interact with HSV-1 particles and infected keratinocytes. Isolated Epi-cDC2s support higher levels of infection than LCs in vitro, inhibited by acyclovir, but both MNP subtypes express similar levels of the HSV entry receptors nectin-1 and HVEM, and show similar levels of initial uptake. Using inhibitors of endosomal acidification, actin and cholesterol, we found that HSV-1 utilises different entry pathways in each cell type. HSV-1 predominantly infects LCs, and monocyte-derived MNPs, via a pH-dependent pathway. In contrast, Epi-cDC2s are mainly infected via a pH-independent pathway which may contribute to the enhanced infection of Epi-cDC2s. Both cells underwent apoptosis suggesting that Epi-cDC2s may follow the same dermal migration and uptake by dermal MNPs that we have previously shown for LCs. Thus, we hypothesize that the uptake of HSV and infection of Epi-cDC2s will stimulate immune responses via a different pathway to LCs, which in future may help guide HSV vaccine development and adjuvant targeting.
Collapse
Affiliation(s)
- Kirstie M. Bertram
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, Australia
- The Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
| | - Naomi R. Truong
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, Australia
- The Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
| | - Jacinta B. Smith
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, Australia
- The Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
| | - Min Kim
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, Australia
- The Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
| | - Kerrie J. Sandgren
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, Australia
- The Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
| | - Konrad L. Feng
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, Australia
- The Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
| | - Jason J. Herbert
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, Australia
- The Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
| | - Hafsa Rana
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, Australia
- The Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
| | - Kevin Danastas
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, Australia
- The Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
| | - Monica Miranda-Saksena
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, Australia
- The Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
| | - Jake W. Rhodes
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, Australia
- The Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
| | - Ellis Patrick
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, Australia
- The School of Mathematics and Statistics, Faculty of Science, The University of Sydney, Camperdown, Australia
| | - Ralph C. Cohen
- Department of Surgery, University of Sydney and The Children’s Hospital at Westmead, Westmead, Australia
| | - Jake Lim
- Department of Surgery, Westmead Private Hospital, Westmead, Australia
| | - Steven L. Merten
- Department of Surgery, Macquarie University Hospital, Macquarie Park, Australia
| | - Andrew N. Harman
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, Australia
- The School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead, Australia
| | - Anthony L. Cunningham
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, Australia
- The Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
- * E-mail:
| |
Collapse
|
207
|
Gurung S, Perocheau D, Touramanidou L, Baruteau J. The exosome journey: from biogenesis to uptake and intracellular signalling. Cell Commun Signal 2021; 19:47. [PMID: 33892745 PMCID: PMC8063428 DOI: 10.1186/s12964-021-00730-1] [Citation(s) in RCA: 828] [Impact Index Per Article: 207.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/25/2021] [Indexed: 12/13/2022] Open
Abstract
The use of exosomes in clinical settings is progressively becoming a reality, as clinical trials testing exosomes for diagnostic and therapeutic applications are generating remarkable interest from the scientific community and investors. Exosomes are small extracellular vesicles secreted by all cell types playing intercellular communication roles in health and disease by transferring cellular cargoes such as functional proteins, metabolites and nucleic acids to recipient cells. An in-depth understanding of exosome biology is therefore essential to ensure clinical development of exosome based investigational therapeutic products. Here we summarise the most up-to-date knowkedge about the complex biological journey of exosomes from biogenesis and secretion, transport and uptake to their intracellular signalling. We delineate the major pathways and molecular players that influence each step of exosome physiology, highlighting the routes of interest, which will be of benefit to exosome manipulation and engineering. We highlight the main controversies in the field of exosome research: their adequate definition, characterisation and biogenesis at plasma membrane. We also delineate the most common identified pitfalls affecting exosome research and development. Unravelling exosome physiology is key to their ultimate progression towards clinical applications. Video Abstract
Collapse
Affiliation(s)
- Sonam Gurung
- Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Dany Perocheau
- Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Loukia Touramanidou
- Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Julien Baruteau
- Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK. .,Metabolic Medicine Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.
| |
Collapse
|
208
|
Microvesicles - promising tiny players' of cancer stem cells targeted liver cancer treatments: The interesting interactions and therapeutic aspects. Pharmacol Res 2021; 169:105609. [PMID: 33852962 DOI: 10.1016/j.phrs.2021.105609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 11/23/2022]
Abstract
Liver cancer is one of the most malignant cancers worldwide with poor prognosis. Intracellular mediators like microvesicles (MVs) and cancer stem cells (CSCs) are considered as potential candidates in liver cancer progression. CSCs receive stimuli from the tumor microenvironment to initiate tumor formation in which it's secreted MVs play a noteworthy role. The phenotypic conversion of tumor cells during epithelial-to-mesenchymal transition (EMT) is a key step in tumor invasion and metastasis which indicates that the diverse cell populations within the primary tumor are in a dynamic balance and can be regulated by cell to cell communication via secreted microvesicles. Thus, in this review, we aim to highlight the evidences that suggest CSCs are crucial for liver cancer development where the microvesicles plays an important part in the maintenance of its stemness properties. In addition, we summarize the existing evidences that support the concept of microvesicles, the tiny particles have a big role behind the rare immortal CSCs which controls the tumor initiation, propagation and metastasis in liver cancer. Identifying interactions between CSCs and microvesicles may offer new insights into precise anti-cancer therapies in the future.
Collapse
|
209
|
Comparative study of commercial protocols for high recovery of high-purity mesenchymal stem cell-derived extracellular vesicle isolation and their efficient labeling with fluorescent dyes. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 35:102396. [PMID: 33864911 DOI: 10.1016/j.nano.2021.102396] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/08/2021] [Accepted: 03/18/2021] [Indexed: 01/01/2023]
Abstract
The extracellular vesicles (EVs) derived from mesenchymal stem cells (MSCs) can be used as carriers for therapeutic molecules and drugs to target disordered tissues. This aimed to compare the protocols used for isolation of MSC-derived EVs by comparing EV collection conditions and three commercial purification kits. We also determined appropriate fluorescent dyes for labeling EVs. MSC-derived EVs were efficiently secreted during cell growth and highly purified by the phosphatidyl serine-based affinity kit. Although the EV membrane was more efficiently labeled with the fluorescent dye PKH67 compared to other probes, the efficiency was not enough to accurately analyze the endothelial cellular uptake of EVs. Results verified the easy protocol for isolating and fluorescently labeling EVs with commercial reagents and kits, but meanwhile, further modification of the protocol is required in order to scale up the amount of EVs derived from MSCs using fluorescent probes.
Collapse
|
210
|
Schneider J, Pultar M, Oesterreicher J, Bobbili MR, Mühleder S, Priglinger E, Redl H, Spittler A, Grillari J, Holnthoner W. Cre mRNA Is Not Transferred by EVs from Endothelial and Adipose-Derived Stromal/Stem Cells during Vascular Network Formation. Int J Mol Sci 2021; 22:ijms22084050. [PMID: 33919955 PMCID: PMC8070972 DOI: 10.3390/ijms22084050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/02/2021] [Accepted: 04/12/2021] [Indexed: 11/16/2022] Open
Abstract
Coculture systems employing adipose tissue-derived mesenchymal stromal/stem cells (ASC) and endothelial cells (EC) represent a widely used technique to model vascularization. Within this system, cell-cell communication is crucial for the achievement of functional vascular network formation. Extracellular vesicles (EVs) have recently emerged as key players in cell communication by transferring bioactive molecules between cells. In this study we aimed to address the role of EVs in ASC/EC cocultures by discriminating between cells, which have received functional EV cargo from cells that have not. Therefore, we employed the Cre-loxP system, which is based on donor cells expressing the Cre recombinase, whose mRNA was previously shown to be packaged into EVs and reporter cells containing a construct of floxed dsRed upstream of the eGFP coding sequence. The evaluation of Cre induced color switch in the reporter system via EVs indicated that there is no EV-mediated RNA transmission either between EC themselves or EC and ASC. However, since Cre mRNA was not found present in EVs, it remains unclear if Cre mRNA is generally not packaged into EVs or if EVs are not taken up by the utilized cell types. Our data indicate that this technique may not be applicable to evaluate EV-mediated cell-to-cell communication in an in vitro setting using EC and ASC. Further investigations will require a functional system showing efficient and specific loading of Cre mRNA or protein into EVs.
Collapse
Affiliation(s)
- Jaana Schneider
- AUVA Research Centre, Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, 1200 Vienna, Austria; (J.S.); (M.P.); (J.O.); (M.R.B.); (E.P.); (H.R.); (J.G.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria;
| | - Marianne Pultar
- AUVA Research Centre, Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, 1200 Vienna, Austria; (J.S.); (M.P.); (J.O.); (M.R.B.); (E.P.); (H.R.); (J.G.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria;
| | - Johannes Oesterreicher
- AUVA Research Centre, Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, 1200 Vienna, Austria; (J.S.); (M.P.); (J.O.); (M.R.B.); (E.P.); (H.R.); (J.G.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria;
| | - Madhusudhan Reddy Bobbili
- AUVA Research Centre, Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, 1200 Vienna, Austria; (J.S.); (M.P.); (J.O.); (M.R.B.); (E.P.); (H.R.); (J.G.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria;
| | - Severin Mühleder
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Molecular Genetics of Angiogenesis Group, 28029 Madrid, Spain;
| | - Eleni Priglinger
- AUVA Research Centre, Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, 1200 Vienna, Austria; (J.S.); (M.P.); (J.O.); (M.R.B.); (E.P.); (H.R.); (J.G.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria;
| | - Heinz Redl
- AUVA Research Centre, Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, 1200 Vienna, Austria; (J.S.); (M.P.); (J.O.); (M.R.B.); (E.P.); (H.R.); (J.G.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria;
| | - Andreas Spittler
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria;
- Department of Surgery, Research Labs & Core Facility Flow Cytometry, Medical University of Vienna, 1090 Vienna, Austria
| | - Johannes Grillari
- AUVA Research Centre, Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, 1200 Vienna, Austria; (J.S.); (M.P.); (J.O.); (M.R.B.); (E.P.); (H.R.); (J.G.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria;
- Department of Biotechnology, Intitute of Molecular Biotechnology, BOKU-University of Natural Resources and Life Sciences, 1180 Vienna, Austria
| | - Wolfgang Holnthoner
- AUVA Research Centre, Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, 1200 Vienna, Austria; (J.S.); (M.P.); (J.O.); (M.R.B.); (E.P.); (H.R.); (J.G.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria;
- Correspondence: ; Tel.: +43-(0)-5-93-93-41961
| |
Collapse
|
211
|
Busatto S, Iannotta D, Walker SA, Di Marzio L, Wolfram J. A Simple and Quick Method for Loading Proteins in Extracellular Vesicles. Pharmaceuticals (Basel) 2021; 14:356. [PMID: 33924377 PMCID: PMC8069621 DOI: 10.3390/ph14040356] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 02/08/2023] Open
Abstract
Extracellular vesicles (EVs) mediate intercellular transport of biomolecular cargo in the body, making them promising delivery vehicles for bioactive compounds. Genetic engineering of producer cells has enabled encapsulation of therapeutic proteins in EVs. However, genetic engineering approaches can be expensive, time-consuming, and incompatible with certain EV sources, such as human plasma and bovine milk. The goal of this study was to develop a quick, versatile, and simple method for loading proteins in EVs post-isolation. Proteins, including CRISPR associated protein 9 (Cas9), were bound to cationic lipids that were further complexed with MDA-MB-231 cell-derived EVs through passive incubation. Size-exclusion chromatography was used to remove components that were not complexed with EVs. The ability of EVs to mediate intracellular delivery of proteins was compared to conventional methods, such as electroporation and commercial protein transfection reagents. The results indicate that EVs retain native features following protein-loading and obtain similar levels of intracellular protein delivery as conventional methods, but display less toxicity. This method opens up opportunities for rapid exploration of EVs for protein delivery.
Collapse
Affiliation(s)
- Sara Busatto
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL 32224, USA; (D.I.); (S.A.W.)
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Surgery, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Dalila Iannotta
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL 32224, USA; (D.I.); (S.A.W.)
- Department of Pharmacy, University of Chieti—Pescara “G. d’Annunzio”, 66100 Chieti, Italy;
| | - Sierra A. Walker
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL 32224, USA; (D.I.); (S.A.W.)
| | - Luisa Di Marzio
- Department of Pharmacy, University of Chieti—Pescara “G. d’Annunzio”, 66100 Chieti, Italy;
| | - Joy Wolfram
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL 32224, USA; (D.I.); (S.A.W.)
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
| |
Collapse
|
212
|
Abstract
Extracellular vesicles (EVs) are increasingly being recognised as players in intercellular communication within the human body. EVs are nano-sized vesicles that are secreted by virtually all cells, primarily arising from either the plasma membrane or the endocytic system. They contain a wide range of proteins and nucleic acids in their lumen, as well as cell surface proteins on their exterior. The proteins and nucleic acids within are the 'cargo' that EVs deliver into the cytosol of recipient cells to elicit a response or phenotypic change. For delivery to occur, the cargo needs to cross two lipid bilayers; one that makes up the vesicle itself, and the other of the recipient cell. Exactly how this process works is a topic that is poorly understood, despite being pivotal for their function. Furthermore, extracellular vesicles have therapeutic potential as drug delivery vehicles. Therefore, understanding their delivery mechanism and harnessing its action for drug delivery is of great importance. This chapter will focus on the proposed mechanisms for cargo delivery and discuss existing evidence for cargo delivery from EVs into the cytosol of recipient cells.
Collapse
|
213
|
Ghoshal B, Bertrand E, Bhattacharyya SN. Non-canonical ago loading of EV-derived exogenous single stranded miRNA in recipient cells. J Cell Sci 2021; 134:jcs.253914. [PMID: 33785534 DOI: 10.1242/jcs.253914] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 03/19/2021] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs, the tiny regulators of gene expression, can be transferred between neighbouring cells via Extracellular Vesicles (EV) to control the expression of genes in both donor and recipient cells. How the EV-derived miRNAs get internalized and become functional in target cells is an unresolved question. We have expressed liver specific microRNA, miR-122, in non-hepatic cells for packaging in the released EVs. With these EVs, we have followed the trafficking of miR-122 to recipient HeLa cells that otherwise don't express this miRNA. We found that EV-associated miR-122 are primarily single stranded and, to become functional, get loaded onto the recipient cell Ago proteins without requiring host Dicer1. Following endocytosis, EV-associated miR-122 get loaded onto the host cell Ago on the endosomal membrane where the release of internalized miRNAs occurs in a pH-dependent manner facilitating the formation of the exogenous miRNP pool in the recipient cells. Endosome maturation defect affects EV-mediated entry of exogeneous miRNAs in mammalian cells.
Collapse
Affiliation(s)
- Bartika Ghoshal
- RNA Biology Research Laboratory, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, India
| | - Edouard Bertrand
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, CNRS, Montpellier, France
| | - Suvendra N Bhattacharyya
- RNA Biology Research Laboratory, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, India
| |
Collapse
|
214
|
Quantitative characterization of extracellular vesicle uptake and content delivery within mammalian cells. Nat Commun 2021; 12:1864. [PMID: 33767144 PMCID: PMC7994380 DOI: 10.1038/s41467-021-22126-y] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 03/03/2021] [Indexed: 12/21/2022] Open
Abstract
Extracellular vesicles (EVs), including exosomes, are thought to mediate intercellular communication through the transfer of cargoes from donor to acceptor cells. Occurrence of EV-content delivery within acceptor cells has not been unambiguously demonstrated, let alone quantified, and remains debated. Here, we developed a cell-based assay in which EVs containing luciferase- or fluorescent-protein tagged cytosolic cargoes are loaded on unlabeled acceptor cells. Results from dose-responses, kinetics, and temperature-block experiments suggest that EV uptake is a low yield process (~1% spontaneous rate at 1 h). Further characterization of this limited EV uptake, through fractionation of membranes and cytosol, revealed cytosolic release (~30% of the uptaken EVs) in acceptor cells. This release is inhibited by bafilomycin A1 and overexpression of IFITM proteins, which prevent virus entry and fusion. Our results show that EV content release requires endosomal acidification and suggest the involvement of membrane fusion. Extracellular vesicles mediate cell–cell communication, however, their capacity to deliver their content within acceptor cells is unclear. Here, the authors develop a quantitative assay and show that release of extracellular vesicle contents requires endosomal acidification and may involve membrane fusion.
Collapse
|
215
|
Hayatudin R, Fong Z, Ming LC, Goh BH, Lee WL, Kifli N. Overcoming Chemoresistance via Extracellular Vesicle Inhibition. Front Mol Biosci 2021; 8:629874. [PMID: 33842540 PMCID: PMC8024536 DOI: 10.3389/fmolb.2021.629874] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/22/2021] [Indexed: 12/22/2022] Open
Abstract
With the ever-growing number of cancer deaths worldwide, researchers have been working hard to identify the key reasons behind the failure of cancer therapies so the efficacy of those therapies may be improved. Based on extensive research activities and observations done by researchers, chemoresistance has been identified as a major contributor to the drastic number of deaths among cancer patients. Several factors have been linked to formation of chemoresistance, such as chemotherapy drug efflux, immunosuppression, and epithelial-mesenchymal transition (EMT). Lately, increasing evidence has shed light on the role of extracellular vesicles (EVs) in the regulation of chemoresistance. However, there is limited research into the possibility that inhibiting EV release or uptake in cancer cells may curb chemoresistance, allowing chemotherapy drugs to target cancer cells without restriction. Prominent inhibitors of EV uptake and release in cancer cells have been compiled and contrasted in this review. This is in the hope of sparking greater interest in the field of EV-mediated chemoresistance, as well as to provide an overview of the field for fundamental and clinical research communities, particularly in the field of cancer resistance research. In-depth studies of EV-mediated chemoresistance and EV inhibitors in cancer cells would spur significant improvement in cancer treatments which are currently available.
Collapse
Affiliation(s)
- Raeesah Hayatudin
- School of Science, Monash University Malaysia, Subang Jaya, Malaysia
| | - Zhijack Fong
- School of Science, Monash University Malaysia, Subang Jaya, Malaysia
| | - Long Chiau Ming
- PAP Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei
| | - Bey-Hing Goh
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, Subang Jaya, Malaysia
| | - Wai-Leng Lee
- School of Science, Monash University Malaysia, Subang Jaya, Malaysia
| | - Nurolaini Kifli
- PAP Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei
| |
Collapse
|
216
|
da Costa Gonçalves F, Korevaar SS, Ortiz Virumbrales M, Baan CC, Reinders MEJ, Merino A, Lombardo E, Hoogduijn MJ. Mesenchymal Stromal Cell Derived Membrane Particles Are Internalized by Macrophages and Endothelial Cells Through Receptor-Mediated Endocytosis and Phagocytosis. Front Immunol 2021; 12:651109. [PMID: 33790914 PMCID: PMC8005704 DOI: 10.3389/fimmu.2021.651109] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/15/2021] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stromal cells (MSC) are a promising therapy for inflammatory diseases. However, MSC are large and become trapped in the lungs after intravenous infusion, where they have a short survival time. To steer MSC immunoregulatory therapy beyond the lungs, we generated nm-sized particles from MSC membranes (membrane particles, MP), which have immunomodulatory properties, and investigated their internalization and mode of interaction in macrophages subtypes and human umbilical vein endothelial cells (HUVEC) under control and inflammatory conditions. We found that macrophages and HUVEC take up MP in a dose, time, and temperature-dependent manner. Specific inhibitors for endocytotic pathways revealed that MP internalization depends on heparan sulfate proteoglycan-, dynamin-, and clathrin-mediated endocytosis but does not involve caveolin-mediated endocytosis. MP uptake also involved the actin cytoskeleton and phosphoinositide 3-kinase, which are implicated in macropinocytosis and phagocytosis. Anti-inflammatory M2 macrophages take up more MP than pro-inflammatory M1 macrophages. In contrast, inflammatory conditions did not affect the MP uptake by HUVEC. Moreover, MP induced both anti- and pro-inflammatory responses in macrophages and HUVEC by affecting gene expression and cell surface proteins. Our findings on the mechanisms of uptake of MP under different conditions help the development of target-cell specific MP therapy to modulate immune responses.
Collapse
Affiliation(s)
- Fabiany da Costa Gonçalves
- Nephrology and Transplantation, Internal Medicine, Erasmus Medical Center Transplantation Institute, Erasmus Medical Center, Rotterdam, Netherlands
| | - Sander S Korevaar
- Nephrology and Transplantation, Internal Medicine, Erasmus Medical Center Transplantation Institute, Erasmus Medical Center, Rotterdam, Netherlands
| | | | - Carla C Baan
- Nephrology and Transplantation, Internal Medicine, Erasmus Medical Center Transplantation Institute, Erasmus Medical Center, Rotterdam, Netherlands
| | - Marlies E J Reinders
- Nephrology and Transplantation, Internal Medicine, Erasmus Medical Center Transplantation Institute, Erasmus Medical Center, Rotterdam, Netherlands
| | - Ana Merino
- Nephrology and Transplantation, Internal Medicine, Erasmus Medical Center Transplantation Institute, Erasmus Medical Center, Rotterdam, Netherlands
| | | | - Martin J Hoogduijn
- Nephrology and Transplantation, Internal Medicine, Erasmus Medical Center Transplantation Institute, Erasmus Medical Center, Rotterdam, Netherlands
| |
Collapse
|
217
|
Circulating Extracellular Vesicles As Biomarkers and Drug Delivery Vehicles in Cardiovascular Diseases. Biomolecules 2021; 11:biom11030388. [PMID: 33808038 PMCID: PMC8001426 DOI: 10.3390/biom11030388] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) are composed of a lipid bilayer containing transmembrane and soluble proteins. Subtypes of EVs include ectosomes (microparticles/microvesicles), exosomes, and apoptotic bodies that can be released by various tissues into biological fluids. EV cargo can modulate physiological and pathological processes in recipient cells through near- and long-distance intercellular communication. Recent studies have shown that origin, amount, and internal cargos (nucleic acids, proteins, and lipids) of EVs are variable under different pathological conditions, including cardiovascular diseases (CVD). The early detection and management of CVD reduce premature morbidity and mortality. Circulating EVs have attracted great interest as a potential biomarker for diagnostics and follow-up of CVD. This review highlights the role of circulating EVs as biomarkers for diagnosis, prognosis, and therapeutic follow-up of CVD, and also for drug delivery. Despite the great potential of EVs as a tool to study the pathophysiology of CVD, further studies are needed to increase the spectrum of EV-associated applications.
Collapse
|
218
|
Valter M, Verstockt S, Finalet Ferreiro JA, Cleynen I. Extracellular Vesicles in Inflammatory Bowel Disease: Small Particles, Big Players. J Crohns Colitis 2021; 15:499-510. [PMID: 32905585 DOI: 10.1093/ecco-jcc/jjaa179] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Extracellular vesicles are nanovesicles released by many cell types into the extracellular space. They are important mediators of intercellular communication, enabling the functional transfer of molecules from one cell to another. Moreover, their molecular composition reflects the physiological status of the producing cell and tissue. Consequently, these vesicles have been involved in many [patho]physiological processes such as immunomodulation and intestinal epithelial repair, both key processes involved in inflammatory bowel disease. Given that these vesicles are present in many body fluids, they also provide opportunities for diagnostic, prognostic, and therapeutic applications. In this review, we summarise functional roles of extracellular vesicles in health and disease, with a focus on immune regulation and intestinal barrier integrity, and review recent studies on extracellular vesicles and inflammatory bowel disease. We also elaborate on their clinical potential in inflammatory bowel disease.
Collapse
Affiliation(s)
- M Valter
- Laboratory for Complex Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - S Verstockt
- Translational Research center for Gastrointestinal Disorders [TARGID], Department of Chronic Diseases, Metabolism and Ageing [CHROMETA], KU Leuven, Leuven, Belgium
| | - J A Finalet Ferreiro
- Laboratory for Complex Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - I Cleynen
- Laboratory for Complex Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
| |
Collapse
|
219
|
Zhang Y, Li C, Qin Y, Cepparulo P, Millman M, Chopp M, Kemper A, Szalad A, Lu X, Wang L, Zhang ZG. Small extracellular vesicles ameliorate peripheral neuropathy and enhance chemotherapy of oxaliplatin on ovarian cancer. J Extracell Vesicles 2021; 10:e12073. [PMID: 33728031 PMCID: PMC7931803 DOI: 10.1002/jev2.12073] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 01/07/2021] [Accepted: 02/13/2021] [Indexed: 12/17/2022] Open
Abstract
There are no effective treatments for chemotherapy induced peripheral neuropathy (CIPN). Small extracellular vesicles (sEVs) facilitate intercellular communication and mediate nerve function and tumour progression. We found that the treatment of mice bearing ovarian tumour with sEVs derived from cerebral endothelial cells (CEC-sEVs) in combination with a chemo-drug, oxaliplatin, robustly reduced oxaliplatin-induced CIPN by decreasing oxaliplatin-damaged myelination and nerve fibres of the sciatic nerve and significantly amplified chemotherapy of oxaliplatin by reducing tumour size. The combination therapy substantially increased a set of sEV cargo-enriched miRNAs, but significantly reduced oxaliplatin-increased proteins in the sciatic nerve and tumour tissues. Bioinformatics analysis revealed the altered miRNAs and proteins formed two distinct networks that regulate neuropathy and tumour growth, respectively. Intravenously administered CEC-sEVs were internalized by axons of the sciatic nerve and cancer cells. Reduction of CEC-sEV cargo miRNAs abolished the effects of CEC-sEVs on oxaliplatin-inhibited axonal growth and on amplification of the anti-cancer effect in ovarian cancer cells, suggesting that alterations in the networks of miRNAs and proteins in recipient cells contribute to the therapeutic effect of CEC-sEVs on CIPN. Together, the present study demonstrates that CEC-sEVs suppressed CIPN and enhanced chemotherapy of oxaliplatin in the mouse bearing ovarian tumour.
Collapse
Affiliation(s)
- Yi Zhang
- Department of NeurologyHenry Ford Health SystemDetroitMichiganUSA
| | - Chao Li
- Department of NeurologyHenry Ford Health SystemDetroitMichiganUSA
| | - Yi Qin
- Department of NeurologyHenry Ford Health SystemDetroitMichiganUSA
| | | | | | - Michael Chopp
- Department of NeurologyHenry Ford Health SystemDetroitMichiganUSA
- Department of PhysicsOakland UniversityRochesterMichiganUSA
| | - Amy Kemper
- Department of PathologyHenry Ford Health SystemDetroitMichiganUSA
| | - Alexandra Szalad
- Department of NeurologyHenry Ford Health SystemDetroitMichiganUSA
| | - Xuerong Lu
- Department of NeurologyHenry Ford Health SystemDetroitMichiganUSA
| | - Lei Wang
- Department of NeurologyHenry Ford Health SystemDetroitMichiganUSA
| | - Zheng Gang Zhang
- Department of NeurologyHenry Ford Health SystemDetroitMichiganUSA
| |
Collapse
|
220
|
Nair S, Ormazabal V, Lappas M, McIntyre HD, Salomon C. Extracellular vesicles and their potential role inducing changes in maternal insulin sensitivity during gestational diabetes mellitus. Am J Reprod Immunol 2021; 85:e13361. [PMID: 33064367 DOI: 10.1111/aji.13361] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/11/2020] [Accepted: 09/30/2020] [Indexed: 12/18/2022] Open
Abstract
Gestational diabetes mellitus (GDM) is one of the most common endocrine disorders during gestation and affects around 15% of all pregnancies worldwide, paralleling the global increase in obesity and type 2 diabetes. Normal pregnancies are critically dependent on the development of maternal insulin resistance balanced by an increased capacity to secrete insulin, which allows for the allocation of nutrients for adequate foetal growth and development. Several factors including placental hormones, inflammatory mediators and nutrients have been proposed to alter insulin sensitivity and insulin response and underpin the pathological outcomes of GDM. However, other factors may also be involved in the regulation of maternal metabolism and a complete understanding of GDM pathophysiology requires the identification of these factors, and the mechanisms associated with them. Recent studies highlight the potential utility of tissue-specific extracellular vesicles (EVs) in the diagnosis of disease onset and treatment monitoring for several pregnancy-related complications, including GDM. To date, there is a paucity of data defining changes in the release, content, bioactivity and diagnostic utility of circulating EVs in pregnancies complicated by GDM. Placental EVs may engage in paracellular interactions including local cell-to-cell communication between the cell constituents of the placenta and contiguous maternal tissues, and/or distal interactions involving the release of placental EVs into biological fluids and their transport to a remote site of action. Hence, the aim of this review is to discuss the biogenesis, isolation methods and role of EVs in the physiopathology of GDM, including changes in maternal insulin sensitivity during pregnancy.
Collapse
Affiliation(s)
- Soumyalekshmi Nair
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane, QLD, Australia
| | - Valeska Ormazabal
- Department of Pharmacology, Faculty of Biological Sciences, University of Concepción, Concepción, Chile
| | - Martha Lappas
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Heidelberg, Vic., Australia.,Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, Vic., Australia
| | - H David McIntyre
- Mater Research, The University of Queensland, South Brisbane, Qld, Australia
| | - Carlos Salomon
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane, QLD, Australia.,Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepción, Concepción, Chile
| |
Collapse
|
221
|
Therapeutic potential of stem cells for preterm infant brain damage: Can we move from the heterogeneity of preclinical and clinical studies to established therapeutics? Biochem Pharmacol 2021; 186:114461. [PMID: 33571501 DOI: 10.1016/j.bcp.2021.114461] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/27/2021] [Accepted: 02/02/2021] [Indexed: 12/17/2022]
Abstract
Acquired perinatal brain injuries are a set of conditions that remains a key challenge for neonatologists and that have significant social, emotional and financial implications for our communities. In our perspective article, we will introduce perinatal brain injury focusing specifically on the events leading to brain damage in preterm born infants and outcomes for these infants. Then we will summarize and discuss the preclinical and clinical studies testing the efficacy of stem cells as neuroprotectants in the last ten years in perinatal brain injury. There are no therapies to treat brain damage in preterm born infants and a primary finding from this review is that there is a scarcity of stem cell trials focused on overcoming brain injuries in these infants. Overall, across all forms of perinatal brain injury there is a remarkable heterogeneity in previous and on-going preclinical and clinical studies in terms of the stem cell type, animal models/patient selection, route and time of administration. Despite the quality of many of the studies this variation makes it difficult to reach a valid consensus for future developments. However, it is clear that stem cells (and stem cell derived exosomes) can reduce perinatal brain injury and our field needs to work collectively to refine an effective protocol for each type of injury. The use of standardized stem cell products and testing these products across multiple models of injury will provide a stronger framework for clinical trials development.
Collapse
|
222
|
Abstract
Delivery of genetic material to tissues in vivo is an important technique used in research settings and is the foundation upon which clinical gene therapy is built. The lung is a prime target for gene delivery due to a host of genetic, acquired, and infectious diseases that manifest themselves there, resulting in many pathologies. However, the in vivo delivery of genetic material to the lung remains a practical problem clinically and is considered the major obstacle needed to be overcome for gene therapy. Currently there are four main strategies for in vivo gene delivery to the lung: viral vectors, liposomes, nanoparticles, and electroporation. Viral delivery uses several different genetically modified viruses that enter the cell and express desired genes that have been inserted to the viral genome. Liposomes use combinations of charged and neutral lipids that can encapsulate genetic cargo and enter cells through endogenous mechanisms, thereby delivering their cargoes. Nanoparticles are defined by their size (typically less than 100 nm) and are made up of many different classes of building blocks, including biological and synthetic polymers, cell penetrant and other peptides, and dendrimers, that also enter cells through endogenous mechanisms. Electroporation uses mild to moderate electrical pulses to create pores in the cell membrane through which delivered genetic material can enter a cell. An emerging fifth category, exosomes and extracellular vesicles, may have advantages of both viral and non-viral approaches. These extracellular vesicles bud from cellular membranes containing receptors and ligands that may aid cell targeting and which can be loaded with genetic material for efficient transfer. Each of these vectors can be used for different gene delivery applications based on mechanisms of action, side-effects, and other factors, and their use in the lung and possible clinical considerations is the primary focus of this review.
Collapse
Affiliation(s)
- Uday K Baliga
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
- Department of Pathology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| | - David A Dean
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| |
Collapse
|
223
|
Kwok ZH, Wang C, Jin Y. Extracellular Vesicle Transportation and Uptake by Recipient Cells: A Critical Process to Regulate Human Diseases. Processes (Basel) 2021; 9. [PMID: 34336602 PMCID: PMC8323758 DOI: 10.3390/pr9020273] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Emerging evidence highlights the relevance of extracellular vesicles
(EVs) in modulating human diseases including but not limited to cancer,
inflammation, and neurological disorders. EVs can be found in almost all types
of human body fluids, suggesting that their trafficking may allow for their
targeting to remote recipient cells. While molecular processes underlying EV
biogenesis and secretion are increasingly elucidated, mechanisms governing EV
transportation, target finding and binding, as well as uptake into recipient
cells remain to be characterized. Understanding the specificity of EV transport
and uptake is critical to facilitating the development of EVs as valuable
diagnostics and therapeutics. In this mini review, we focus on EV uptake
mechanisms and specificities, as well as their implications in human
diseases.
Collapse
|
224
|
Oviduct as a sensor of embryo quality: deciphering the extracellular vesicle (EV)-mediated embryo-maternal dialogue. J Mol Med (Berl) 2021; 99:685-697. [PMID: 33512581 DOI: 10.1007/s00109-021-02042-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/07/2020] [Accepted: 01/18/2021] [Indexed: 12/25/2022]
Abstract
Embryo-derived extracellular vesicles (EVs) may play a role in mediating the embryo-maternal dialogue at the oviduct, potentially carrying signals reflecting embryo quality. We investigated the effects of bovine embryo-derived EVs on the gene expression of bovine oviductal epithelial cells (BOECs), and whether these effects are dependent on embryo quality. Presumptive zygotes were cultured individually in vitro in culture medium droplets until day 8 while their development was assessed at day 2, 5 and 8. Conditioned medium samples were collected at day 5 and pooled based on embryo development (good quality embryo media and degenerating embryo media). EVs were isolated from conditioned media by size exclusion chromatography and supplemented to primary BOEC monolayer cultures to evaluate the effects of embryo-derived EVs on gene expression profile of BOEC. Gene expression was quantified by RNA-seq and RT-qPCR. A total of 7 upregulated and 18 downregulated genes were detected in the BOECs supplemented with good quality embryo-derived EV compared to the control. The upregulated genes included interferon-τ-induced genes, such as OAS1Y, MX1 and ISG15, which have previously been reported as upregulated in the oviductal epithelial cells in the presence of embryos. Of the upregulated genes, OAS1Y and MX1 were validated with RT-qPCR. In contrast, only one differentially expressed gene was detected in BOECs in response to degenerating embryo-derived EVs, suggesting that oviductal responses are dependent on embryo quality. Our results support the hypothesis that embryo-derived EVs are involved in embryo-maternal communication at the oviduct and the oviductal response is dependant on the embryo quality. KEY MESSAGES: • Extracellular vesicles (EVs) released by individually cultured pre-implantation bovine embryos can alter the gene expression of primary oviductal epithelial cells. • The oviductal response, in terms of gene expression, to the bovine embryo-derived EVs varied depending on the embryo quality. • In vivo, the oviduct may have the ability to sense the quality of the pre-implantation embryos. • The observed effect of embryo-derived EVs on oviductal epithelial cells could serve as a non-invasive method of evaluating the embryo quality.
Collapse
|
225
|
Song S, Zhang Y, Ding T, Ji N, Zhao H. The Dual Role of Macropinocytosis in Cancers: Promoting Growth and Inducing Methuosis to Participate in Anticancer Therapies as Targets. Front Oncol 2021; 10:570108. [PMID: 33542897 PMCID: PMC7851083 DOI: 10.3389/fonc.2020.570108] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 12/01/2020] [Indexed: 02/05/2023] Open
Abstract
Macropinocytosis is an important mechanism of internalizing extracellular materials and dissolved molecules in eukaryotic cells. Macropinocytosis has a dual effect on cancer cells. On the one hand, cells expressing RAS genes (such as K-RAS, H-RAS) under the stress of nutrient deficiency can spontaneously produce constitutive macropinocytosis to promote the growth of cancer cells by internalization of extracellular nutrients (like proteins), receptors, and extracellular vesicles(EVs). On the other hand, abnormal expression of RAS genes and drug treatment (such as MOMIPP) can induce a novel cell death associated with hyperactivated macropinocytosis: methuosis. Based on the dual effect, there is immense potential for designing anticancer therapies that target macropinocytosis in cancer cells. In view of the fact that there has been little review of the dual effect of macropinocytosis in cancer cells, herein, we systematically review the general process of macropinocytosis, its specific manifestation in cancer cells, and its application in cancer treatment, including anticancer drug delivery and destruction of macropinocytosis. This review aims to serve as a reference for studying macropinocytosis in cancers and designing macropinocytosis-targeting anticancer drugs in the future.
Collapse
Affiliation(s)
- Shaojuan Song
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yanan Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tingting Ding
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ning Ji
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hang Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
226
|
Pedrioli G, Paganetti P. Hijacking Endocytosis and Autophagy in Extracellular Vesicle Communication: Where the Inside Meets the Outside. Front Cell Dev Biol 2021; 8:595515. [PMID: 33490063 PMCID: PMC7817780 DOI: 10.3389/fcell.2020.595515] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 11/18/2020] [Indexed: 12/25/2022] Open
Abstract
Extracellular vesicles, phospholipid bilayer-membrane vesicles of cellular origin, are emerging as nanocarriers of biological information between cells. Extracellular vesicles transport virtually all biologically active macromolecules (e.g., nucleotides, lipids, and proteins), thus eliciting phenotypic changes in recipient cells. However, we only partially understand the cellular mechanisms driving the encounter of a soluble ligand transported in the lumen of extracellular vesicles with its cytosolic receptor: a step required to evoke a biologically relevant response. In this context, we review herein current evidence supporting the role of two well-described cellular transport pathways: the endocytic pathway as the main entry route for extracellular vesicles and the autophagic pathway driving lysosomal degradation of cytosolic proteins. The interplay between these pathways may result in the target engagement between an extracellular vesicle cargo protein and its cytosolic target within the acidic compartments of the cell. This mechanism of cell-to-cell communication may well own possible implications in the pathogenesis of neurodegenerative disorders.
Collapse
Affiliation(s)
- Giona Pedrioli
- Neurodegeneration Research Group, Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Torricella-Taverne, Switzerland
- Member of the International Ph.D. Program of the Biozentrum, University of Basel, Basel, Switzerland
| | - Paolo Paganetti
- Neurodegeneration Research Group, Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Torricella-Taverne, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| |
Collapse
|
227
|
Schubert A, Boutros M. Extracellular vesicles and oncogenic signaling. Mol Oncol 2021; 15:3-26. [PMID: 33207034 PMCID: PMC7782092 DOI: 10.1002/1878-0261.12855] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/17/2020] [Accepted: 10/30/2020] [Indexed: 12/19/2022] Open
Abstract
In recent years, extracellular vesicles (EVs) emerged as potential diagnostic and prognostic markers for cancer therapy. While the field of EV research is rapidly developing and their application as vehicles for therapeutic cargo is being tested, little is still known about the exact mechanisms of signaling specificity and cargo transfer by EVs, especially in vivo. Several signaling cascades have been found to use EVs for signaling in the tumor-stroma interaction. These include potentially oncogenic, verbatim transforming, signaling cascades such as Wnt and TGF-β signaling, and other signaling cascades that have been tightly associated with tumor progression and metastasis, such as PD-L1 and VEGF signaling. Multiple mechanisms of how these signaling cascades and EVs interplay to mediate these complex processes have been described, such as direct signal activation through pathway components on or in EVs or indirectly by influencing vesicle biogenesis, cargo sorting, or uptake dynamics. In this review, we summarize the current knowledge of EVs, their biogenesis, and our understanding of EV interactions with recipient cells with a focus on selected oncogenic and cancer-associated signaling pathways. After an in-depth look at how EVs mediate and influence signaling, we discuss potentially translatable EV functions and existing knowledge gaps.
Collapse
Affiliation(s)
- Antonia Schubert
- Division Signaling and Functional GenomicsGerman Cancer Research Center (DKFZ) and Heidelberg UniversityGermany
- Clinic for Hematology and Medical OncologyUniversity Medical Center GöttingenGermany
| | - Michael Boutros
- Division Signaling and Functional GenomicsGerman Cancer Research Center (DKFZ) and Heidelberg UniversityGermany
| |
Collapse
|
228
|
Tu C, Du Z, Zhang H, Feng Y, Qi Y, Zheng Y, Liu J, Wang J. Endocytic pathway inhibition attenuates extracellular vesicle-induced reduction of chemosensitivity to bortezomib in multiple myeloma cells. Am J Cancer Res 2021; 11:2364-2380. [PMID: 33500730 PMCID: PMC7797667 DOI: 10.7150/thno.47996] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 11/18/2020] [Indexed: 12/16/2022] Open
Abstract
Extracellular vesicles (EVs), including exosomes and microvesicles, derived from bone marrow stromal cells (BMSCs) have been demonstrated as key factors in the progression and drug resistance of multiple myeloma (MM). EV uptake involves a variety of mechanisms which largely depend on the vesicle origin and recipient cell type. The aim of the present study was to identify the mechanisms involved in the uptake of BMSC-derived small EVs (sEVs) by MM cells, and to evaluate the anti-MM effect of targeting this process. Methods: Human BMSC-derived sEVs were identified by transmission electron microscopy, nanoparticle tracking analysis, and western blot. The effects of chemical inhibitors and shRNA-mediated knockdown of endocytosis-associated genes on sEV uptake and cell apoptosis were analyzed by flow cytometry. The anti-MM effect of blocking sEV uptake was evaluated in vitro and in a xenograft MM mouse model. Results: sEVs derived from BMSC were taken up by MM cells in a time- and dose-dependent manner, and subsequently promoted MM cell cycling and reduced their chemosensitivity to bortezomib. Chemical endocytosis inhibitors targeting heparin sulphate proteoglycans, actin, tyrosine kinase, dynamin-2, sodium/proton exchangers, or phosphoinositide 3-kinases significantly reduced MM cell internalization of BMSC-derived sEVs. Moreover, shRNA-mediated knockdown of endocytosis-associated proteins, including caveolin-1, flotillin-1, clathrin heavy chain, and dynamin-2 in MM cells suppressed sEV uptake. Furthermore, an endocytosis inhibitor targeting dynamin-2 preferentially suppressed the uptake of sEV by primary MM cells ex vivo and enhanced the anti-MM effects of bortezomib in vitro and in a mouse model. Conclusion: Clathrin- and caveolin-dependent endocytosis and macropinocytosis are the predominant routes of sEV-mediated communication between BMSCs and MM cells, and inhibiting endocytosis attenuates sEV-induced reduction of chemosensitivity to bortezomib, and thus enhances its anti-MM properties.
Collapse
|
229
|
González-González A, García-Sánchez D, Dotta M, Rodríguez-Rey JC, Pérez-Campo FM. Mesenchymal stem cells secretome: The cornerstone of cell-free regenerative medicine. World J Stem Cells 2020; 12:1529-1552. [PMID: 33505599 PMCID: PMC7789121 DOI: 10.4252/wjsc.v12.i12.1529] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/07/2020] [Accepted: 11/12/2020] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are the most frequently used stem cells in clinical trials due to their easy isolation from various adult tissues, their ability of homing to injury sites and their potential to differentiate into multiple cell types. However, the realization that the beneficial effect of MSCs relies mainly on their paracrine action, rather than on their engraftment in the recipient tissue and subsequent differentiation, has opened the way to cell-free therapeutic strategies in regenerative medicine. All the soluble factors and vesicles secreted by MSCs are commonly known as secretome. MSCs secretome has a key role in cell-to-cell communication and has been proven to be an active mediator of immune-modulation and regeneration both in vitro and in vivo. Moreover, the use of secretome has key advantages over cell-based therapies, such as a lower immunogenicity and easy production, handling and storage. Importantly, MSCs can be modulated to alter their secretome composition to better suit specific therapeutic goals, thus, opening a large number of possibilities. Altogether these advantages now place MSCs secretome at the center of an important number of investigations in different clinical contexts, enabling rapid scientific progress in this field.
Collapse
Affiliation(s)
- Alberto González-González
- Department of Molecular Biology_IDIVAL, Faculty of Medicine, University of Cantabria, Santander 39011, Cantabria, Spain
| | - Daniel García-Sánchez
- Department of Molecular Biology_IDIVAL, Faculty of Medicine, University of Cantabria, Santander 39011, Cantabria, Spain
| | - Monica Dotta
- Department of Molecular Biology_IDIVAL, Faculty of Medicine, University of Cantabria, Santander 39011, Cantabria, Spain
| | - José C Rodríguez-Rey
- Department of Molecular Biology_IDIVAL, Faculty of Medicine, University of Cantabria, Santander 39011, Cantabria, Spain
| | - Flor M Pérez-Campo
- Department of Molecular Biology_IDIVAL, Faculty of Medicine, University of Cantabria, Santander 39011, Cantabria, Spain
| |
Collapse
|
230
|
Al Sharif S, Pinto DO, Mensah GA, Dehbandi F, Khatkar P, Kim Y, Branscome H, Kashanchi F. Extracellular Vesicles in HTLV-1 Communication: The Story of an Invisible Messenger. Viruses 2020; 12:E1422. [PMID: 33322043 PMCID: PMC7763366 DOI: 10.3390/v12121422] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 02/08/2023] Open
Abstract
Human T-cell lymphotropic virus type 1 (HTLV-1) infects 5-10 million people worldwide and is the causative agent of adult T-cell leukemia/lymphoma (ATLL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) as well as other inflammatory diseases. A major concern is that the most majority of individuals with HTLV-1 are asymptomatic carriers and that there is limited global attention by health care officials, setting up potential conditions for increased viral spread. HTLV-1 transmission occurs primarily through sexual intercourse, blood transfusion, intravenous drug usage, and breast feeding. Currently, there is no cure for HTLV-1 infection and only limited treatment options exist, such as class I interferons (IFN) and Zidovudine (AZT), with poor prognosis. Recently, small membrane-bound structures, known as extracellular vesicles (EVs), have received increased attention due to their potential to carry viral cargo (RNA and proteins) in multiple pathogenic infections (i.e., human immunodeficiency virus type I (HIV-1), Zika virus, and HTLV-1). In the case of HTLV-1, EVs isolated from the peripheral blood and cerebral spinal fluid (CSF) of HAM/TSP patients contained the viral transactivator protein Tax. Additionally, EVs derived from HTLV-1-infected cells (HTLV-1 EVs) promote functional effects such as cell aggregation which enhance viral spread. In this review, we present current knowledge surrounding EVs and their potential role as immune-modulating agents in cancer and other infectious diseases such as HTLV-1 and HIV-1. We discuss various features of EVs that make them prime targets for possible vehicles of future diagnostics and therapies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Fatah Kashanchi
- Laboratory of Molecular Virology, George Mason University, Manassas, VA 20110, USA; (S.A.S.); (D.O.P.); (G.A.M.); (F.D.); (P.K.); (Y.K.); (H.B.)
| |
Collapse
|
231
|
Cerezo-Magaña M, Christianson HC, van Kuppevelt TH, Forsberg-Nilsson K, Belting M. Hypoxic Induction of Exosome Uptake through Proteoglycan-Dependent Endocytosis Fuels the Lipid Droplet Phenotype in Glioma. Mol Cancer Res 2020; 19:528-540. [PMID: 33288734 DOI: 10.1158/1541-7786.mcr-20-0560] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/13/2020] [Accepted: 12/02/2020] [Indexed: 11/16/2022]
Abstract
As an adaptive response to hypoxic stress, aggressive tumors rewire their metabolic phenotype into increased malignant behavior through extracellular lipid scavenging and storage in lipid droplets (LD). However, the underlying mechanisms and potential lipid source retrieved in the hypoxic tumor microenvironment remain poorly understood. Here, we show that exosome-like extracellular vesicles (EV), known as influential messengers in the tumor microenvironment, may also serve anabolic functions by transforming hypoxic, patient-derived human glioblastoma cell lines into the LD+ phenotype. EVs were internalized via a hypoxia-sensitive, endocytic mechanism that fueled LD formation through direct lipid transfer, and independently of fatty acid synthase activity. EVs can enter cells through multiple and yet ill-defined pathways. On a mechanistic level, we found that hypoxia-mediated EV uptake depends on increased heparan sulfate proteoglycan (HSPG) endocytosis that preferentially followed the lipid raft pathway. The functional relevance of HSPG was evidenced by the reversal of EV-mediated LD loading by targeting of HSPG receptor function. IMPLICATIONS: Together, our data extend the multifaceted role of EVs in cancer biology by showing their LD-inducing capacity in hypoxic glioma cells. Moreover, these findings highlight a potential function for HSPG-mediated endocytosis as a salvage pathway for EV retrieval during tumor stress conditions.
Collapse
Affiliation(s)
- Myriam Cerezo-Magaña
- Department of Clinical Sciences, Section of Oncology, Lund University, Lund, Sweden
| | | | - Toin H van Kuppevelt
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - Karin Forsberg-Nilsson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Mattias Belting
- Department of Clinical Sciences, Section of Oncology, Lund University, Lund, Sweden. .,Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.,Skåne University Hospital, Lund, Sweden
| |
Collapse
|
232
|
Chen L, Mou S, Hou J, Fang H, Zeng Y, Sun J, Wang Z. Simple application of adipose-derived stem cell-derived extracellular vesicles coating enhances cytocompatibility and osteoinductivity of titanium implant. Regen Biomater 2020; 8:rbaa038. [PMID: 33732487 PMCID: PMC7947573 DOI: 10.1093/rb/rbaa038] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/06/2020] [Accepted: 08/23/2020] [Indexed: 12/17/2022] Open
Abstract
Surface modification using bioactive molecules is frequently performed to improve the biological properties of medical metal biomaterial titanium (Ti) implants. Developmental evidence suggests that mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) served as potent bioactive component. As a subset of MSC-EV, adipose-derived stem cell-derived extracellular vesicles (ADSC-EVs) could be obtained from abundant adipose tissue. Meanwhile, it possesses multiple regenerative properties and might be used to endow biological activities to medical Ti implant. Here, we present a simple ADSC-EV coating strategy based on physisorption of fibronectin. This ADSC-EV functionalized Ti implants (EV-Ti) revealed enhanced osteoblast compatibility and osteoinductive activity. Cell spreading area of EV-Ti group was 1.62- and 1.48-fold larger than that of Ti group after 6 and 12 h of cell seeding, respectively. Moreover, EV-Ti promoted alkaline phosphatase, collagen 1 and osteocalcin gene expression in osteoblast by 1.51-, 1.68- and 1.82-fold compared with pristine Ti, respectively. Thus, the MSC-EVs modification method reported here provide a clinically translatable strategy to promote the bioactivity of Ti implants.
Collapse
Affiliation(s)
- Lifeng Chen
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan Union Hospital, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Shan Mou
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan Union Hospital, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Jinfei Hou
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan Union Hospital, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Huimin Fang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan Union Hospital, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Yuyang Zeng
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan Union Hospital, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Jiaming Sun
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan Union Hospital, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Zhenxing Wang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan Union Hospital, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| |
Collapse
|
233
|
Dad HA, Gu TW, Zhu AQ, Huang LQ, Peng LH. Plant Exosome-like Nanovesicles: Emerging Therapeutics and Drug Delivery Nanoplatforms. Mol Ther 2020; 29:13-31. [PMID: 33278566 DOI: 10.1016/j.ymthe.2020.11.030] [Citation(s) in RCA: 274] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/09/2020] [Accepted: 11/29/2020] [Indexed: 12/19/2022] Open
Abstract
Plant exosome-like nanovesicles, being innately replete with bioactive lipids, proteins, RNA, and other pharmacologically active molecules, offer unique morphological and compositional characteristics as natural nanocarriers. Furthermore, their compelling physicochemical traits underpin their modulative role in physiological processes, all of which have fostered the concept that these nanovesicles may be highly proficient in the development of next-generation biotherapeutic and drug delivery nanoplatforms to meet the ever-stringent demands of current clinical challenges. This review systemically deals with various facets of plant exosome-like nanovesicles ranging from their origin and isolation to identification of morphological composition, biological functions, and cargo-loading mechanisms. Efforts are made to encompass their biotherapeutic roles by elucidating their immunological modulating, anti-tumor, regenerative, and anti-inflammatory roles. We also shed light on re-engineering these nanovesicles into robust, innocuous, and non-immunogenic nanovectors for drug delivery through multiple stringent biological hindrances to various targeted organs such as intestine and brain. Finally, recent advances centered around plant exosome-like nanovesicles along with new insights into transdermal, transmembrane and targeting mechanisms of these vesicles are also elucidated. We expect that the continuing development of plant exosome-like nanovesicle-based therapeutic and delivery nanoplatforms will promote their clinical applications.
Collapse
Affiliation(s)
- Haseeb Anwar Dad
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - Ting-Wei Gu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - Ao-Qing Zhu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - Lu-Qi Huang
- National Resource Centre for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, P.R. China
| | - Li-Hua Peng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P.R. China.
| |
Collapse
|
234
|
Vanza JD, Patel RB, Patel MR. Nanocarrier centered therapeutic approaches: Recent developments with insight towards the future in the management of lung cancer. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.102070] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
235
|
Hernandez-Oller L, Seras-Franzoso J, Andrade F, Rafael D, Abasolo I, Gener P, Schwartz S. Extracellular Vesicles as Drug Delivery Systems in Cancer. Pharmaceutics 2020; 12:pharmaceutics12121146. [PMID: 33256036 PMCID: PMC7761384 DOI: 10.3390/pharmaceutics12121146] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/03/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023] Open
Abstract
Within tumors, Cancer Stem Cell (CSC) subpopulation has an important role in maintaining growth and dissemination while preserving high resistance against current treatments. It has been shown that, when CSCs are eliminated, the surrounding Differentiated Cancer Cells (DCCs) may reverse their phenotype and gain CSC-like features to preserve tumor progression and ensure tumor survival. This strongly suggests the existence of paracrine communication within tumor cells. It is evidenced that the molecular crosstalk is at least partly mediated by Extracellular Vesicles (EVs), which are cell-derived membranous nanoparticles that contain and transport complex molecules that can affect and modify the biological behavior of distal cells and their molecular background. This ability of directional transport of small molecules prospects EVs as natural Drug Delivery Systems (DDS). EVs present inherent homing abilities and are less immunogenic than synthetic nanoparticles, in general. Currently, strong efforts are focused into the development and improvement of EV-based DDS. Even though EV-DDS have already reached early phases in clinical trials, their clinical application is still far from commercialization since protocols for EVs loading, modification and isolation need to be standardized for large-scale production. Here, we summarized recent knowledge regarding the use of EVs as natural DDS against CSCs and cancer resistance.
Collapse
Affiliation(s)
- Laia Hernandez-Oller
- Drug Delivery and Targeting Group, Molecular Biology and Biochemistry Research Centre for Nanomedicine (CIBBIM-Nanomedicine), Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (L.H.-O.); (J.S.-F.); (F.A.); (D.R.); (I.A.)
| | - Joaquin Seras-Franzoso
- Drug Delivery and Targeting Group, Molecular Biology and Biochemistry Research Centre for Nanomedicine (CIBBIM-Nanomedicine), Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (L.H.-O.); (J.S.-F.); (F.A.); (D.R.); (I.A.)
| | - Fernanda Andrade
- Drug Delivery and Targeting Group, Molecular Biology and Biochemistry Research Centre for Nanomedicine (CIBBIM-Nanomedicine), Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (L.H.-O.); (J.S.-F.); (F.A.); (D.R.); (I.A.)
- Networking Research Centre for Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, 50004 Zaragoza, Spain
| | - Diana Rafael
- Drug Delivery and Targeting Group, Molecular Biology and Biochemistry Research Centre for Nanomedicine (CIBBIM-Nanomedicine), Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (L.H.-O.); (J.S.-F.); (F.A.); (D.R.); (I.A.)
- Networking Research Centre for Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, 50004 Zaragoza, Spain
| | - Ibane Abasolo
- Drug Delivery and Targeting Group, Molecular Biology and Biochemistry Research Centre for Nanomedicine (CIBBIM-Nanomedicine), Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (L.H.-O.); (J.S.-F.); (F.A.); (D.R.); (I.A.)
- Networking Research Centre for Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, 50004 Zaragoza, Spain
| | - Petra Gener
- Drug Delivery and Targeting Group, Molecular Biology and Biochemistry Research Centre for Nanomedicine (CIBBIM-Nanomedicine), Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (L.H.-O.); (J.S.-F.); (F.A.); (D.R.); (I.A.)
- Networking Research Centre for Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, 50004 Zaragoza, Spain
- Correspondence: (P.G.); (S.S.J.); Tel.: +34-93489-4055 (P.G. & S.S.J.)
| | - Simo Schwartz
- Drug Delivery and Targeting Group, Molecular Biology and Biochemistry Research Centre for Nanomedicine (CIBBIM-Nanomedicine), Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (L.H.-O.); (J.S.-F.); (F.A.); (D.R.); (I.A.)
- Networking Research Centre for Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, 50004 Zaragoza, Spain
- Correspondence: (P.G.); (S.S.J.); Tel.: +34-93489-4055 (P.G. & S.S.J.)
| |
Collapse
|
236
|
Zhou W, Zhou Y, Chen X, Ning T, Chen H, Guo Q, Zhang Y, Liu P, Zhang Y, Li C, Chu Y, Sun T, Jiang C. Pancreatic cancer-targeting exosomes for enhancing immunotherapy and reprogramming tumor microenvironment. Biomaterials 2020; 268:120546. [PMID: 33253966 DOI: 10.1016/j.biomaterials.2020.120546] [Citation(s) in RCA: 263] [Impact Index Per Article: 52.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/13/2022]
Abstract
Immunotherapy has gained increasing focus in treating pancreatic ductal adenocarcinoma (PDAC), since conventional therapies like chemotherapy could not provide satisfactory improvement in overall survival outcome of PDAC patients. However, it is still not the game changing solution due to the unique tumor microenvironment and low cancer immunogenicity of PDAC. Thus, inducing more intratumoral effector immune cells as well as reversing immunosuppression is the core of PDAC treatment. Herein, we demonstrate an exosome-based dual delivery biosystem for enhancing PDAC immunotherapy as well as reversing tumor immunosuppression of M2-like tumor associated macrophages (M2-TAMs) upon disruption of galectin-9/dectin 1 axis. The deliver system is constructed from bone marrow mesenchymal stem cell (BM-MSC) exosomes, electroporation-loaded galectin-9 siRNA, and surficially modified with oxaliplatin (OXA) prodrug as an immunogenic cell death (ICD)-trigger. The use of biomaterials, BM-MSC exosomes, can significantly improve tumor targeting efficacy, thus increasing drug accumulation in the tumor site. The combined therapy (iEXO-OXA) elicits anti-tumor immunity through tumor-suppressive macrophage polarization, cytotoxic T lymphocytes recruitment and Tregs downregulation, and achieves significant therapeutic efficacy in cancer treatment.
Collapse
Affiliation(s)
- Wenxi Zhou
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Yu Zhou
- Department of Interventional Radiology, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, China
| | - Xinli Chen
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Tingting Ning
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Hongyi Chen
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Qin Guo
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Yiwen Zhang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Peixin Liu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Yujie Zhang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Chao Li
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Yongchao Chu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Tao Sun
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Chen Jiang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, China.
| |
Collapse
|
237
|
Bazzoni R, Takam Kamga P, Tanasi I, Krampera M. Extracellular Vesicle-Dependent Communication Between Mesenchymal Stromal Cells and Immune Effector Cells. Front Cell Dev Biol 2020; 8:596079. [PMID: 33240892 PMCID: PMC7677193 DOI: 10.3389/fcell.2020.596079] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are multipotent cells residing in the stromal tissues of the body and capable of promoting tissue repair and attenuating inflammatory processes through their immunomodulatory properties. Preclinical and clinical observations revealed that not only direct intercellular communication mediates MSC properties; in fact, a pivotal role is also played by the release of soluble and bioactive factors, such as cytokines, growth factor and extracellular vesicles (EVs). EVs are membrane-coated vesicles containing a large variety of bioactive molecules, including lipids, proteins, and nucleic acids, such as RNA. EVs release their contents into target cells, thus influencing cell fate through the control of intracellular processes. In addition, MSC-derived EVs can mediate modulatory effects toward different effector cells belonging to both innate and adaptive immunity. In this review, we will discuss the literature data concerning MSC-derived EVs, including the current standardized methods for their isolation and characterization, the mechanisms supporting their immunoregulatory properties, and their potential clinical application as alternative to MSC-based therapy for inflammatory reactions, such as graft-versus-host disease (GvHD).
Collapse
Affiliation(s)
- Riccardo Bazzoni
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| | - Paul Takam Kamga
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
- EA4340-BCOH, Biomarker in Cancerology and Onco-Haematology, UVSQ, Université Paris Saclay, Boulogne-Billancourt, France
| | - Ilaria Tanasi
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| | - Mauro Krampera
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| |
Collapse
|
238
|
Ni K, Wang C, Carnino JM, Jin Y. The Evolving Role of Caveolin-1: A Critical Regulator of Extracellular Vesicles. Med Sci (Basel) 2020; 8:medsci8040046. [PMID: 33158117 PMCID: PMC7712126 DOI: 10.3390/medsci8040046] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/26/2020] [Accepted: 10/30/2020] [Indexed: 12/24/2022] Open
Abstract
Emerging evidence suggests that extracellular vesicles (EVs) play an essential role in mediating intercellular communication and inter-organ crosstalk both at normal physiological conditions and in the pathogenesis of human diseases. EV cargos are made up of a broad spectrum of molecules including lipids, proteins, and nucleic acids such as DNA, RNA, and microRNAs. The complex EV cargo composition is cell type-specific. A dynamic change in EV cargos occurs along with extracellular stimuli and a change in the pathophysiological status of the host. Currently, the underlying mechanisms by which EVs are formed and EV cargos are selected in the absence and presence of noxious stimuli and pathogens remain incompletely explored. The term EVs refers to a heterogeneous group of vesicles generated via different mechanisms. Some EVs are formed via direct membrane budding, while the others are produced through multivesicular bodies (MVBs) or during apoptosis. Despite the complexity of EV formation and EV cargo selection, recent studies suggest that caveolin-1, a well-known structural protein of caveolae, regulates the formation and cargo selection of some EVs, such as microvesicles (MVs). In this article, we will review the current understanding of this emerging and novel role of cav-1.
Collapse
Affiliation(s)
| | | | | | - Yang Jin
- Correspondence: ; Tel.: +1-617-358-1356; Fax: +1-617-536-8093
| |
Collapse
|
239
|
Hassanpour M, Rezaie J, Nouri M, Panahi Y. The role of extracellular vesicles in COVID-19 virus infection. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2020; 85:104422. [PMID: 32544615 PMCID: PMC7293471 DOI: 10.1016/j.meegid.2020.104422] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 12/11/2022]
Abstract
Extracellular vesicles releasing from various types of cells contribute to intercellular communication via delivering bio-molecules like nucleic acids, proteins, and lipids to recipient cells. Exosomes are 30-120 nm extracellular vesicles that participate in several pathological conditions. Virus-infected cells release exosomes that are implicated in infection through transferring viral components such as viral-derived miRNAs and proteins. As well, exosomes contain receptors for viruses that make recipient cells susceptible to virus entry. Since December 2019, SARS-CoV-2 (COVID-19) infection has become a worldwide urgent public health concern. There is currently no vaccine or specific antiviral treatment existing for COVID-19 virus infection. Hence, it is critical to find a safe and effective therapeutic tool to patients with severe COVID-19 virus infection. Extracellular vesicles may contribute to spread this virus as they transfer such receptors as CD9 and ACE2, which make recipient cells susceptible to virus docking. Upon entry, COVID-19 virus may be directed into the exosomal pathway, and its component is packaged into exosomes for secretion. Exosome-based strategies for the treatment of COVID-19 virus infection may include following items: inhibition of exosome biogenesis and uptake, exosome-therapy, exosome-based drug delivery system, and exosome-based vaccine. Mesenchymal stem cells can suppress nonproductive inflammation and improve/repair lung cells including endothelial and alveolar cells, which damaged by COVID-19 virus infection. Understanding molecular mechanisms behind extracellular vesicles related COVID-19 virus infection may provide us with an avenue to identify its entry, replication, spreading, and infection to overcome its adverse effects.
Collapse
Affiliation(s)
- Mehdi Hassanpour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran,Department of Clinical Biochemistry, Laboratory Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran,Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Rezaie
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran,Correspondence to: J. Rezaie, Solid Tumor Research Center, Research Institute on Cellular and Molecular Medicine, Urmia University of Medical Sciences, Shafa St, Ershad Blvd., P.O. BoX: 1138, 57147 Urmia, Iran
| | - Mohammad Nouri
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran,Department of Clinical Biochemistry, Laboratory Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran,Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yunes Panahi
- Pharmacy Department, Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran,Correspondence to: Y. Panahi, Clinical Pharmacy Department, Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran 1435916471, Iran
| |
Collapse
|
240
|
de Abreu RC, Fernandes H, da Costa Martins PA, Sahoo S, Emanueli C, Ferreira L. Native and bioengineered extracellular vesicles for cardiovascular therapeutics. Nat Rev Cardiol 2020; 17:685-697. [PMID: 32483304 PMCID: PMC7874903 DOI: 10.1038/s41569-020-0389-5] [Citation(s) in RCA: 259] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/23/2020] [Indexed: 12/21/2022]
Abstract
Extracellular vesicles (EVs) are a heterogeneous group of natural particles that are relevant to the treatment of cardiovascular diseases. These endogenous vesicles have certain properties that allow them to survive in the extracellular space, bypass biological barriers and deliver their biologically active molecular cargo to recipient cells. Moreover, EVs can be bioengineered to increase their stability, bioactivity, presentation to acceptor cells and capacity for on-target binding at both cell-type-specific and tissue-specific levels. Bioengineering of EVs involves the modification of the donor cell before EV isolation or direct modification of the EV properties after isolation. The therapeutic potential of native EVs and bioengineered EVs has been only minimally explored in the context of cardiovascular diseases. Efforts to harness the therapeutic potential of EVs will require innovative approaches and a comprehensive integration of knowledge gathered from decades of research into molecular-compound delivery. In this Review, we outline the endogenous properties of EVs that make them natural delivery agents as well as the features that can be improved by bioengineering. We also discuss the therapeutic applications of native and bioengineered EVs to cardiovascular diseases and examine the opportunities and challenges that need to be addressed to advance this research area, with an emphasis on clinical translation.
Collapse
Affiliation(s)
- Ricardo Cerqueira de Abreu
- CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands.,Department of Molecular Genetics, Faculty of Sciences and Engineering, Maastricht University, Maastricht, Netherlands.,CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Hugo Fernandes
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Paula A da Costa Martins
- CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands.,Department of Molecular Genetics, Faculty of Sciences and Engineering, Maastricht University, Maastricht, Netherlands
| | - Susmita Sahoo
- Division of Cardiology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Costanza Emanueli
- National Heart & Lung Institute, Imperial College London, London, UK
| | - Lino Ferreira
- CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal. .,Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
241
|
Mohammadzadeh R, Ghazvini K, Farsiani H, Soleimanpour S. Mycobacterium tuberculosis extracellular vesicles: exploitation for vaccine technology and diagnostic methods. Crit Rev Microbiol 2020; 47:13-33. [PMID: 33044878 DOI: 10.1080/1040841x.2020.1830749] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Tuberculosis (TB) is a fatal epidemic disease usually caused by Mycobacterium tuberculosis (Mtb). Pervasive latent infection, multidrug- and extensively drug-resistant tuberculosis (MDR- and XDR-TB), and TB/HIV co-infection make TB a global health problem, which emphasises the design and development of efficient vaccines and diagnostic biomarkers. Extracellular vesicles (EVs) secretion is a conserved phenomenon in all the domains of life. Various cargos such as nucleic acids, toxins, lipoproteins, and enzymes have been recognised in these nano-sized vesicles that may be involved in bacterial physiology and pathogenesis. The intrinsic adjuvant effect, native immunogenic cargo, sensing by host immune cells, circulation in all body fluids, and comprehensive distribution of antigens introduce EVs as a promising tool for designing novel vaccines, diagnostic biomarkers, and drug delivery systems. Genetic engineering of the EV-producing bacteria and the subsequent production of proper EVs could facilitate the development of the EV-based therapeutic applications. Recently, it was demonstrated that thick-walled mycobacteria release EVs, which contain immunodominant cargos such as lipoglycans and lipoproteins. The present article is a comprehensive review on the recent findings of Mtb EVs biology and the exploitation of EVs for the vaccine technology and diagnostic methods.
Collapse
Affiliation(s)
- Roghayeh Mohammadzadeh
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kiarash Ghazvini
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hadi Farsiani
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saman Soleimanpour
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Reference Tuberculosis Laboratory, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
242
|
Kostyushev D, Kostyusheva A, Brezgin S, Smirnov V, Volchkova E, Lukashev A, Chulanov V. Gene Editing by Extracellular Vesicles. Int J Mol Sci 2020; 21:E7362. [PMID: 33028045 PMCID: PMC7582630 DOI: 10.3390/ijms21197362] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/23/2020] [Accepted: 10/03/2020] [Indexed: 12/12/2022] Open
Abstract
CRISPR/Cas technologies have advanced dramatically in recent years. Many different systems with new properties have been characterized and a plethora of hybrid CRISPR/Cas systems able to modify the epigenome, regulate transcription, and correct mutations in DNA and RNA have been devised. However, practical application of CRISPR/Cas systems is severely limited by the lack of effective delivery tools. In this review, recent advances in developing vehicles for the delivery of CRISPR/Cas in the form of ribonucleoprotein complexes are outlined. Most importantly, we emphasize the use of extracellular vesicles (EVs) for CRISPR/Cas delivery and describe their unique properties: biocompatibility, safety, capacity for rational design, and ability to cross biological barriers. Available molecular tools that enable loading of desired protein and/or RNA cargo into the vesicles in a controllable manner and shape the surface of EVs for targeted delivery into specific tissues (e.g., using targeting ligands, peptides, or nanobodies) are discussed. Opportunities for both endogenous (intracellular production of CRISPR/Cas) and exogenous (post-production) loading of EVs are presented.
Collapse
Affiliation(s)
- Dmitry Kostyushev
- National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, 127994 Moscow, Russia; (A.K.); (S.B.); (V.C.)
| | - Anastasiya Kostyusheva
- National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, 127994 Moscow, Russia; (A.K.); (S.B.); (V.C.)
| | - Sergey Brezgin
- National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, 127994 Moscow, Russia; (A.K.); (S.B.); (V.C.)
- Institute of Immunology, Federal Medical Biological Agency, 115522 Moscow, Russia;
| | - Valery Smirnov
- Institute of Immunology, Federal Medical Biological Agency, 115522 Moscow, Russia;
- Sechenov First Moscow State Medical University, 119146 Moscow, Russia; (E.V.); (A.L.)
| | - Elena Volchkova
- Sechenov First Moscow State Medical University, 119146 Moscow, Russia; (E.V.); (A.L.)
| | - Alexander Lukashev
- Sechenov First Moscow State Medical University, 119146 Moscow, Russia; (E.V.); (A.L.)
| | - Vladimir Chulanov
- National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, 127994 Moscow, Russia; (A.K.); (S.B.); (V.C.)
- Sechenov First Moscow State Medical University, 119146 Moscow, Russia; (E.V.); (A.L.)
| |
Collapse
|
243
|
Wang J, Tu C, Zhang H, Zhang J, Feng Y, Deng Y, Huo Y, Xie M, Yang B, Zhou M, Liu J. Loading of metal isotope-containing intercalators for mass cytometry-based high-throughput quantitation of exosome uptake at the single-cell level. Biomaterials 2020; 255:120152. [DOI: 10.1016/j.biomaterials.2020.120152] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 05/07/2020] [Accepted: 05/25/2020] [Indexed: 12/14/2022]
|
244
|
Colombo F, Norton EG, Cocucci E. Microscopy approaches to study extracellular vesicles. Biochim Biophys Acta Gen Subj 2020; 1865:129752. [PMID: 32991970 DOI: 10.1016/j.bbagen.2020.129752] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/05/2020] [Accepted: 08/18/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND Extracellular vesicles (EVs) have drawn the attention of both biological researchers and clinical physicians due to their function in mediating cell-to-cell communication and relevance as potential diagnostic markers. Since their discovery, the small size and heterogeneity of EVs has posed a hindrance to their characterization as well as to the definition of their biological significance. SCOPE OF THE REVIEW Recent technological advances have considerably expanded the tools available for EV studies. In particular, the combination of novel microscope setups with high resolution imaging and the flexibility in EV labelling allows for the precise detection and characterization of the molecular composition of single EVs. Here we will review the microscopy techniques that have been applied to unravel the mechanism of EV-mediated intercellular communication and to study their molecular composition. MAJOR CONCLUSIONS Microscopy technologies have largely contributed to our understanding of molecular processes, including EV biology. As we discuss in this review, careful experimental planning is necessary to identify the most appropriate technique to use to answer a specific question. GENERAL SIGNIFICANCE The considerations regarding microscopy and experimental planning that are discussed here are applicable to the characterization of other small structures, including synthetic nanovectors and viruses.
Collapse
Affiliation(s)
- Federico Colombo
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Erienne G Norton
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Emanuele Cocucci
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
245
|
Brennan MÁ, Layrolle P, Mooney DJ. Biomaterials functionalized with MSC secreted extracellular vesicles and soluble factors for tissue regeneration. ADVANCED FUNCTIONAL MATERIALS 2020; 30:1909125. [PMID: 32952493 PMCID: PMC7494127 DOI: 10.1002/adfm.201909125] [Citation(s) in RCA: 219] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Indexed: 05/05/2023]
Abstract
The therapeutic benefits of mesenchymal stromal cell (MSC) transplantation have been attributed to their secreted factors, including extracellular vesicles (EVs) and soluble factors. The potential of employing the MSC secretome as an alternative acellular approach to cell therapy is being investigated in various tissue injury indications, but EVs administered via bolus injections are rapidly sequestered and cleared. However, biomaterials offer delivery platforms to enhance EV retention rates and healing efficacy. In this review, we highlight the mechanisms underpinning the therapeutic effects of MSC-EVs and soluble factors as effectors of immunomodulation and tissue regeneration, conferred primarily via their nucleic acid and protein contents. We discuss how manipulating the cell culture microenvironment or genetic modification of MSCs can further augment the potency of their secretions. The most recent advances in the development of EV-functionalized biomaterials that mediate enhanced angiogenesis and cell survival, while attenuating inflammation and fibrosis, are presented. Finally, some technical challenges to be considered for the clinical translation of biomaterials carrying MSC-secreted bioactive cargo are discussed.
Collapse
Affiliation(s)
- Meadhbh Á Brennan
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Pierre Layrolle
- INSERM, UMR 1238, PHY-OS, Bone sarcomas and remodeling of calcified tissues, Faculty of Medicine, University of Nantes, Nantes, France
| | - David J Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
246
|
Schwager SC, Reinhart-King CA. Mechanobiology of microvesicle release, uptake, and microvesicle-mediated activation. CURRENT TOPICS IN MEMBRANES 2020; 86:255-278. [PMID: 33837695 DOI: 10.1016/bs.ctm.2020.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Microvesicles are small, membrane-bound vesicles that are shed from the plasma membrane of cells into the extracellular space. Microvesicles contain a variety of cargo not typically thought to be released from cells, including receptor tyrosine kinases, cytosolic signaling proteins, and microRNAs, which are transferred from donor cells to recipient cells. The transfer of microvesicle cargo can result in the transformation of recipient cells thereby supporting disease progression, including modified fibroblast metabolism, epithelial cell contractility, vascular remodeling, and immune cell inflammatory signaling. Additionally, microvesicles are believed to play prominent roles in cell-cell communication and disease progression as they are detected at elevated concentrations in diseased tissues. As microvesicle uptake by recipient cells can modulate cell function to promote disease progression, understanding the mechanisms and mechanosensitivity of microvesicle release, internalization, and the resulting signaling is crucial to fully comprehend their functions in disease. Here, we review recent advances in the understanding of actomyosin-regulated microvesicle biogenesis, microvesicle uptake via pinocytosis, and the resulting cellular transformation. We discuss the effects of altered cell contractility, mode of cell migration, and extracellular matrix compliance on microvesicle signaling, with direct implications in disease progression and identifying future therapeutic targets.
Collapse
Affiliation(s)
- Samantha C Schwager
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
| | | |
Collapse
|
247
|
Guerreiro EM, Øvstebø R, Thiede B, Costea DE, Søland TM, Kanli Galtung H. Cancer cell line-specific protein profiles in extracellular vesicles identified by proteomics. PLoS One 2020; 15:e0238591. [PMID: 32886718 PMCID: PMC7473518 DOI: 10.1371/journal.pone.0238591] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 08/19/2020] [Indexed: 12/15/2022] Open
Abstract
Extracellular vesicles (EVs), are important for intercellular communication in both physiological and pathological processes. To explore the potential of cancer derived EVs as disease biomarkers for diagnosis, monitoring, and treatment decision, it is necessary to thoroughly characterize their biomolecular content. The aim of the study was to characterize and compare the protein content of EVs derived from three different cancer cell lines in search of a specific molecular signature, with emphasis on proteins related to the carcinogenic process. Oral squamous cell carcinoma (OSCC), pancreatic ductal adenocarcinoma (PDAC) and melanoma brain metastasis cell lines were cultured in CELLine AD1000 flasks. EVs were isolated by ultrafiltration and size-exclusion chromatography and characterized. Next, the isolated EVs underwent liquid chromatography-mass spectrometry (LC-MS) analysis for protein identification. Functional enrichment analysis was performed for a more general overview of the biological processes involved. More than 600 different proteins were identified in EVs from each particular cell line. Here, 14%, 10%, and 24% of the identified proteins were unique in OSCC, PDAC, and melanoma vesicles, respectively. A specific protein profile was discovered for each cell line, e.g., EGFR in OSCC, Muc5AC in PDAC, and FN1 in melanoma vesicles. Nevertheless, 25% of all the identified proteins were common to all cell lines. Functional enrichment analysis linked the proteins in each data set to biological processes such as "biological adhesion", "cell motility", and "cellular component biogenesis". EV proteomics discovered cancer-specific protein profiles, with proteins involved in processes promoting tumor progression. In addition, the biological processes associated to the melanoma-derived EVs were distinct from the ones linked to the EVs isolated from OSCC and PDAC. The malignancy specific biomolecular cues in EVs may have potential applications as diagnostic biomarkers and in therapy.
Collapse
Affiliation(s)
- Eduarda M. Guerreiro
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Reidun Øvstebø
- Department of Medical Biochemistry, Blood Cell Research Group, Oslo University Hospital, Ullevål, Oslo, Norway
| | - Bernd Thiede
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Daniela Elena Costea
- Centre for Cancer Biomarkers CCBio and Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Tine M. Søland
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Hilde Kanli Galtung
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| |
Collapse
|
248
|
De La-Rocque S, Moretto E, Butnaru I, Schiavo G. Knockin' on heaven's door: Molecular mechanisms of neuronal tau uptake. J Neurochem 2020; 156:563-588. [PMID: 32770783 PMCID: PMC8432157 DOI: 10.1111/jnc.15144] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 12/18/2022]
Abstract
Since aggregates of the microtubule‐binding protein tau were found to be the main component of neurofibrillary tangles more than 30 years ago, their contribution to neurodegeneration in Alzheimer's disease (AD) and tauopathies has become well established. Recent work shows that both tau load and its distribution in the brain of AD patients correlate with cognitive decline more closely compared to amyloid plaque deposition. In addition, the amyloid cascade hypothesis has been recently challenged because of disappointing results of clinical trials designed to treat AD by reducing beta‐amyloid levels, thus fuelling a renewed interest in tau. There is now robust evidence to indicate that tau pathology can spread within the central nervous system via a prion‐like mechanism following a stereotypical pattern, which can be explained by the trans‐synaptic inter‐neuronal transfer of pathological tau. In the receiving neuron, tau has been shown to take multiple routes of internalisation, which are partially dependent on its conformation and aggregation status. Here, we review the emerging mechanisms proposed for the uptake of extracellular tau in neurons and the requirements for the propagation of its pathological conformers, addressing how they gain access to physiological tau monomers in the cytosol. Furthermore, we highlight some of the key mechanistic gaps of the field, which urgently need to be addressed to expand our understanding of tau propagation and lead to the identification of new therapeutic strategies for tauopathies.
Collapse
Affiliation(s)
- Samantha De La-Rocque
- UK Dementia Research Institute, University College London, London, UK.,Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Edoardo Moretto
- UK Dementia Research Institute, University College London, London, UK
| | - Ioana Butnaru
- UK Dementia Research Institute, University College London, London, UK
| | - Giampietro Schiavo
- UK Dementia Research Institute, University College London, London, UK.,Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, UK
| |
Collapse
|
249
|
Extracellular vesicles as natural therapeutic agents and innate drug delivery systems for cancer treatment: Recent advances, current obstacles, and challenges for clinical translation. Semin Cancer Biol 2020; 80:340-355. [DOI: 10.1016/j.semcancer.2020.08.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 12/13/2022]
|
250
|
Li H, Pinilla-Macua I, Ouyang Y, Sadovsky E, Kajiwara K, Sorkin A, Sadovsky Y. Internalization of trophoblastic small extracellular vesicles and detection of their miRNA cargo in P-bodies. J Extracell Vesicles 2020; 9:1812261. [PMID: 32944196 PMCID: PMC7480505 DOI: 10.1080/20013078.2020.1812261] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Pregnancy is a unique situation, in which placenta-derived small extracellular vesicles (sEVs) may communicate with maternal and foetal tissues. While relevant to homoeostatic and pathological functions, the mechanisms underlying sEV entry and cargo handling in target cells remain largely unknown. Using fluorescently or luminescently labelled sEVs, derived from primary human placental trophoblasts or from a placental cell line, we interrogated the endocytic pathways used by these sEVs to enter relevant target cells, including the neighbouring primary placental fibroblasts and human uterine microvascular endothelial cells. We found that trophoblastic sEVs can enter target cells, where they retain biological activity. Importantly, using a broad series of pharmacological inhibitors and siRNA-dependent silencing approaches, we showed that trophoblastic sEVs enter target cells using macropinocytosis and clathrin-mediated endocytosis pathways, but not caveolin-dependent endocytosis. Tracking their intracellular course, we localized the sEVs to early endosomes, late endosomes, and lysosomes. Finally, we used coimmunoprecipitation to demonstrate the association of the sEV microRNA (miRNA) with the P-body proteins AGO2 and GW182. Together, our data systematically detail endocytic pathways used by placental sEVs to enter relevant fibroblastic and endothelial target cells, and provide support for “endocytic escape” of sEV miRNA to P-bodies, a key site for cytoplasmic RNA regulation.
Collapse
Affiliation(s)
- Hui Li
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Reproductive Department of Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Itziar Pinilla-Macua
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yingshi Ouyang
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Elena Sadovsky
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kazuhiro Kajiwara
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Alexander Sorkin
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yoel Sadovsky
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|