201
|
Bt toxin modification for enhanced efficacy. Toxins (Basel) 2014; 6:3005-27. [PMID: 25340556 PMCID: PMC4210883 DOI: 10.3390/toxins6103005] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 09/28/2014] [Accepted: 09/29/2014] [Indexed: 11/23/2022] Open
Abstract
Insect-specific toxins derived from Bacillus thuringiensis (Bt) provide a valuable resource for pest suppression. Here we review the different strategies that have been employed to enhance toxicity against specific target species including those that have evolved resistance to Bt, or to modify the host range of Bt crystal (Cry) and cytolytic (Cyt) toxins. These strategies include toxin truncation, modification of protease cleavage sites, domain swapping, site-directed mutagenesis, peptide addition, and phage display screens for mutated toxins with enhanced activity. Toxin optimization provides a useful approach to extend the utility of these proteins for suppression of pests that exhibit low susceptibility to native Bt toxins, and to overcome field resistance.
Collapse
|
202
|
Devillers J, Lagneau C, Lattes A, Garrigues J, Clémenté M, Yébakima A. In silico models for predicting vector control chemicals targeting Aedes aegypti. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2014; 25:805-835. [PMID: 25275884 PMCID: PMC4200584 DOI: 10.1080/1062936x.2014.958291] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 07/30/2014] [Indexed: 05/31/2023]
Abstract
Human arboviral diseases have emerged or re-emerged in numerous countries worldwide due to a number of factors including the lack of progress in vaccine development, lack of drugs, insecticide resistance in mosquitoes, climate changes, societal behaviours, and economical constraints. Thus, Aedes aegypti is the main vector of the yellow fever and dengue fever flaviviruses and is also responsible for several recent outbreaks of the chikungunya alphavirus. As for the other mosquito species, the A. aegypti control relies heavily on the use of insecticides. However, because of increasing resistance to the different families of insecticides, reduction of Aedes populations is becoming increasingly difficult. Despite the unquestionable utility of insecticides in fighting mosquito populations, there are very few new insecticides developed and commercialized for vector control. This is because the high cost of the discovery of an insecticide is not counterbalanced by the 'low profitability' of the vector control market. Fortunately, the use of quantitative structure-activity relationship (QSAR) modelling allows the reduction of time and cost in the discovery of new chemical structures potentially active against mosquitoes. In this context, the goal of the present study was to review all the existing QSAR models on A. aegypti. The homology and pharmacophore models were also reviewed. Specific attention was paid to show the variety of targets investigated in Aedes in relation to the physiology and ecology of the mosquito as well as the diversity of the chemical structures which have been proposed, encompassing man-made and natural substances.
Collapse
Affiliation(s)
| | | | - A. Lattes
- Laboratoire I.M.R.C.P., Université Paul Sabatier, Toulouse, France
| | - J.C. Garrigues
- Laboratoire I.M.R.C.P., Université Paul Sabatier, Toulouse, France
| | - M.M. Clémenté
- Centre de Démoustication/LAV (ARS-Conseil Général) de la Martinique, Martinique, France
| | - A. Yébakima
- Centre de Démoustication/LAV (ARS-Conseil Général) de la Martinique, Martinique, France
| |
Collapse
|
203
|
Melo ALDA, Soccol VT, Soccol CR. Bacillus thuringiensis: mechanism of action, resistance, and new applications: a review. Crit Rev Biotechnol 2014; 36:317-26. [DOI: 10.3109/07388551.2014.960793] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
204
|
Shared binding sites for the Bacillus thuringiensis proteins Cry3Bb, Cry3Ca, and Cry7Aa in the African sweet potato pest Cylas puncticollis (Brentidae). Appl Environ Microbiol 2014; 80:7545-50. [PMID: 25261517 DOI: 10.1128/aem.02514-14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Bacillus thuringiensis Cry3Bb, Cry3Ca, and Cry7Aa have been reported to be toxic against larvae of the genus Cylas, which are important pests of sweet potato worldwide and particularly in sub-Saharan Africa. However, relatively little is known about the processing and binding interactions of these coleopteran-specific Cry proteins. The aim of the present study was to determine whether Cry3Bb, Cry3Ca, and Cry7Aa proteins have shared binding sites in Cylas puncticollis to orient the pest resistance strategy by genetic transformation. Interestingly, processing of the 129-kDa Cry7Aa protoxin using commercial trypsin or chymotrypsin rendered two fragments of about 70 kDa and 65 kDa. N-terminal sequencing of the trypsin-activated Cry7Aa fragments revealed that processing occurs at Glu(47) for the 70-kDa form or Ile(88) for the 65-kDa form. Homologous binding assays showed specific binding of the two Cry3 proteins and the 65-kDa Cry7Aa fragment to brush border membrane vesicles (BBMV) from C. puncticollis larvae. The 70-kDa fragment did not bind to BBMV. Heterologous-competition assays showed that Cry3Bb, Cry3Ca, and Cry7Aa (65-kDa fragment) competed for the same binding sites. Hence, our results suggest that pest resistance mediated by the alteration of a shared Cry receptor binding site might render all three Cry toxins ineffective.
Collapse
|
205
|
Xu C, Wang BC, Yu Z, Sun M. Structural insights into Bacillus thuringiensis Cry, Cyt and parasporin toxins. Toxins (Basel) 2014; 6:2732-70. [PMID: 25229189 PMCID: PMC4179158 DOI: 10.3390/toxins6092732] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 08/26/2014] [Accepted: 08/28/2014] [Indexed: 11/30/2022] Open
Abstract
Since the first X-ray structure of Cry3Aa was revealed in 1991, numerous structures of B. thuringiensis toxins have been determined and published. In recent years, functional studies on the mode of action and resistance mechanism have been proposed, which notably promoted the developments of biological insecticides and insect-resistant transgenic crops. With the exploration of known pore-forming toxins (PFTs) structures, similarities between PFTs and B. thuringiensis toxins have provided great insights into receptor binding interactions and conformational changes from water-soluble to membrane pore-forming state of B. thuringiensis toxins. This review mainly focuses on the latest discoveries of the toxin working mechanism, with the emphasis on structural related progress. Based on the structural features, B. thuringiensis Cry, Cyt and parasporin toxins could be divided into three categories: three-domain type α-PFTs, Cyt toxin type β-PFTs and aerolysin type β-PFTs. Structures from each group are elucidated and discussed in relation to the latest data, respectively.
Collapse
Affiliation(s)
- Chengchen Xu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Bi-Cheng Wang
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA.
| | - Ziniu Yu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Ming Sun
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
206
|
Dietary mechanism behind the costs associated with resistance to Bacillus thuringiensis in the cabbage looper, Trichoplusia ni. PLoS One 2014; 9:e105864. [PMID: 25171126 PMCID: PMC4149471 DOI: 10.1371/journal.pone.0105864] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 07/28/2014] [Indexed: 12/23/2022] Open
Abstract
Beneficial alleles that spread rapidly as an adaptation to a new environment are often associated with costs that reduce the fitness of the population in the original environment. Several species of insect pests have evolved resistance to Bacillus thuringiensis (Bt) toxins in the field, jeopardizing its future use. This has most commonly occurred through the alteration of insect midgut binding sites specific for Bt toxins. While fitness costs related to Bt resistance alleles have often been recorded, the mechanisms behind them have remained obscure. We asked whether evolved resistance to Bt alters dietary nutrient intake, and if reduced efficiency of converting ingested nutrients to body growth are associated with fitness costs and variation in susceptibility to Bt. We fed the cabbage looper Trichoplusia ni artificial diets differing in levels of dietary imbalance in two major macronutrients, protein and digestible carbohydrate. By comparing a Bt-resistant T. ni strain with a susceptible strain we found that the mechanism behind reduced pupal weights and growth rates associated with Bt-resistance in T. ni was reduced consumption rather than impaired conversion of ingested nutrients to growth. In fact, Bt-resistant T. ni showed more efficient conversion of nutrients than the susceptible strain under certain dietary conditions. Although increasing levels of dietary protein prior to Bt challenge had a positive effect on larval survival, the LC50 of the resistant strain decreased when fed high levels of excess protein, whereas the LC50 of the susceptible strain continued to rise. Our study demonstrates that examining the nutritional basis of fitness costs may help elucidate the mechanisms underpinning them.
Collapse
|
207
|
Lucena WA, Pelegrini PB, Martins-de-Sa D, Fonseca FCA, Gomes JE, de Macedo LLP, da Silva MCM, Oliveira RS, Grossi-de-Sa MF. Molecular approaches to improve the insecticidal activity of Bacillus thuringiensis Cry toxins. Toxins (Basel) 2014; 6:2393-423. [PMID: 25123558 PMCID: PMC4147589 DOI: 10.3390/toxins6082393] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 06/23/2014] [Accepted: 06/27/2014] [Indexed: 02/01/2023] Open
Abstract
Bacillus thuringiensis (Bt) is a gram-positive spore-forming soil bacterium that is distributed worldwide. Originally recognized as a pathogen of the silkworm, several strains were found on epizootic events in insect pests. In the 1960s, Bt began to be successfully used to control insect pests in agriculture, particularly because of its specificity, which reflects directly on their lack of cytotoxicity to human health, non-target organisms and the environment. Since the introduction of transgenic plants expressing Bt genes in the mid-1980s, numerous methodologies have been used to search for and improve toxins derived from native Bt strains. These improvements directly influence the increase in productivity and the decreased use of chemical insecticides on Bt-crops. Recently, DNA shuffling and in silico evaluations are emerging as promising tools for the development and exploration of mutant Bt toxins with enhanced activity against target insect pests. In this report, we describe natural and in vitro evolution of Cry toxins, as well as their relevance in the mechanism of action for insect control. Moreover, the use of DNA shuffling to improve two Bt toxins will be discussed together with in silico analyses of the generated mutations to evaluate their potential effect on protein structure and cytotoxicity.
Collapse
Affiliation(s)
- Wagner A. Lucena
- Embrapa Cotton, Campina Grande, 58428-095, PB, Brazil; E-Mail:
- Graduate Program in Cellular and Molecular Biology, Federal University of Rio Grande do Sul, Porto Alegre, 91501-970, RS, Brazil
- Embrapa Genetic Resources and Biotechnology, Brasília, 70779-917, DF, Brazil; E-Mails: (P.B.P.); (D.M.-S.); (F.C.A.F.); (J.E.G.); (L.L.P.M.); (M.C.M.S.); (R.S.)
| | - Patrícia B. Pelegrini
- Embrapa Genetic Resources and Biotechnology, Brasília, 70779-917, DF, Brazil; E-Mails: (P.B.P.); (D.M.-S.); (F.C.A.F.); (J.E.G.); (L.L.P.M.); (M.C.M.S.); (R.S.)
| | - Diogo Martins-de-Sa
- Embrapa Genetic Resources and Biotechnology, Brasília, 70779-917, DF, Brazil; E-Mails: (P.B.P.); (D.M.-S.); (F.C.A.F.); (J.E.G.); (L.L.P.M.); (M.C.M.S.); (R.S.)
- Department of Molecular Biology, Federal University of Brasília, Brasília, 70910-900, DF, Brazil
| | - Fernando C. A. Fonseca
- Embrapa Genetic Resources and Biotechnology, Brasília, 70779-917, DF, Brazil; E-Mails: (P.B.P.); (D.M.-S.); (F.C.A.F.); (J.E.G.); (L.L.P.M.); (M.C.M.S.); (R.S.)
- Department of Molecular Biology, Federal University of Brasília, Brasília, 70910-900, DF, Brazil
| | - Jose E. Gomes
- Embrapa Genetic Resources and Biotechnology, Brasília, 70779-917, DF, Brazil; E-Mails: (P.B.P.); (D.M.-S.); (F.C.A.F.); (J.E.G.); (L.L.P.M.); (M.C.M.S.); (R.S.)
- Department of Molecular Biology, Federal University of Brasília, Brasília, 70910-900, DF, Brazil
| | - Leonardo L. P. de Macedo
- Embrapa Genetic Resources and Biotechnology, Brasília, 70779-917, DF, Brazil; E-Mails: (P.B.P.); (D.M.-S.); (F.C.A.F.); (J.E.G.); (L.L.P.M.); (M.C.M.S.); (R.S.)
- Post-Graduation of Genomic Sciences and Biotechnology, Catholic University of Brasilia, Brasília, 70790-160, DF, Brazil
| | - Maria Cristina M. da Silva
- Embrapa Genetic Resources and Biotechnology, Brasília, 70779-917, DF, Brazil; E-Mails: (P.B.P.); (D.M.-S.); (F.C.A.F.); (J.E.G.); (L.L.P.M.); (M.C.M.S.); (R.S.)
| | - Raquel S. Oliveira
- Embrapa Genetic Resources and Biotechnology, Brasília, 70779-917, DF, Brazil; E-Mails: (P.B.P.); (D.M.-S.); (F.C.A.F.); (J.E.G.); (L.L.P.M.); (M.C.M.S.); (R.S.)
- Post-Graduation of Genomic Sciences and Biotechnology, Catholic University of Brasilia, Brasília, 70790-160, DF, Brazil
| | - Maria F. Grossi-de-Sa
- Embrapa Genetic Resources and Biotechnology, Brasília, 70779-917, DF, Brazil; E-Mails: (P.B.P.); (D.M.-S.); (F.C.A.F.); (J.E.G.); (L.L.P.M.); (M.C.M.S.); (R.S.)
- Post-Graduation of Genomic Sciences and Biotechnology, Catholic University of Brasilia, Brasília, 70790-160, DF, Brazil
| |
Collapse
|
208
|
Ren XL, Ma Y, Cui JJ, Li GQ. RNA interference-mediated knockdown of three putative aminopeptidases N affects susceptibility of Spodoptera exigua larvae to Bacillus thuringiensis Cry1Ca. JOURNAL OF INSECT PHYSIOLOGY 2014; 67:28-36. [PMID: 24932922 DOI: 10.1016/j.jinsphys.2014.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Revised: 06/02/2014] [Accepted: 06/06/2014] [Indexed: 06/03/2023]
Abstract
Aminopeptidase N (APN) isoforms in insects have been documented to be involved in the mode of action of insecticidal crystal proteins (Cry) from Bacillus thuringiensis. Here we cloned two novel Seapns from the larval midgut of Spodoptera exigua, a major pest of many crops of economic importance in China. According to a phylogenetic analysis, these two novel SeAPNs, along with the four SeAPN isoforms already described, belong to six different clades. All the six SeAPNs share similar structural features. From N- to C-terminus a signal peptide, a gluzincin aminopeptidase motif, a zinc binding/gluzincin motif, and a glycosylphosphatidylinositol-anchor sequence are located. The six Seapn genes were highly expressed at the larval stage, especially in the larval gut. Ingestion during four consecutive days of double-stranded RNAs (dsRNAs) targeting Seapn1, Seapn2, Seapn3, Seapn4, Seapn5 and Seapn6 significantly reduced corresponding mRNA levels by 55.6%, 45.5%, 43.2%, 56.8%, 45.4%, and 46.0% respectively, compared with those recorded in control larvae fed on non-specific dsRNA (dsegfp). When the larvae that previously ingested phosphate buffered saline (PBS)-, dsegfp-, or six dsSeapns-overlaid diets were then exposed to a diet containing Cry1Ca, the larval mortalities were 71.2%, 69.3%, 52.0%, 77.2%, 43.3%, 62.0%, 65.4% and 53.8% respectively recorded after 6days. ANOVA analysis revealed that the larvae previously fed on dsSeapn1-, dsSeapn3-, and dsSeapn6-overlaid diets had significantly lower mortalities than those previously ingested PBS-, dsegfp-, dsSeapn2-, dsSeapn4- and dsSeapn5-overlaid diets. Thus, these results suggest that SeAPN1, SeAPN3 and SeAPN6 may be candidate receptors for Cry1Ca in S. exigua.
Collapse
Affiliation(s)
- Xiang-Liang Ren
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Yan Ma
- Institute of Cotton Research of CAAS, State Key Laboratory of Cotton Biology, Anyang, Henan 455000, China
| | - Jin-Jie Cui
- Institute of Cotton Research of CAAS, State Key Laboratory of Cotton Biology, Anyang, Henan 455000, China
| | - Guo-Qing Li
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China.
| |
Collapse
|
209
|
Wang J, Chen X, Li Y, Su C, Ding J, Peng Y. Green algae (Chlorella pyrenoidosa) adsorbs Bacillus thurigiensis (Bt) toxin, Cry1Ca insecticidal protein, without an effect on growth. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 106:6-10. [PMID: 24836871 DOI: 10.1016/j.ecoenv.2014.04.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 04/11/2014] [Accepted: 04/20/2014] [Indexed: 06/03/2023]
Abstract
The effect of purified Cry1Ca insecticidal protein on the growth of Chlorella pyrenoidosa was studied in a three-generation toxicity test. The C. pyrenoidosa medium with a density of 5.4 × 10(5) cells/mL was subcultured for three generations with added Cry1Ca at 0, 10, 100, and 1000 µg/L, and cell numbers were determined daily. To explore the distribution of Cry1Ca in C. pyrenoidosa and the culture medium, Cry1Ca was added at 1000 µg/L to algae with a high density of 4.8 × 10(6) cells/mL, and Cry1Ca content was determined daily in C. pyrenoidosa and the culture medium by enzyme-linked immunosorbent assays. Our results showed that the growth curves of C. pyrenoidosa exposed to 10, 100, and 1000 µg/L of Cry1Ca almost overlapped with that of the blank control, and there were no statistically significant differences among the four treatments from day 0 to day 7, regardless of generation. Moreover, the Cry1Ca content in the culture medium and in C. pyrenoidosa sharply decreased under exposure of 1000 µg/L Cry1Ca with high initial C. pyrenoidosa cell density. The above results demonstrate that Cry1Ca in water can be rapidly adsorbed and degraded by C. pyrenoidosa, but it has no suppressive or stimulative effect on algae growth.
Collapse
Affiliation(s)
- Jiamei Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No.2 Yuanmingyuan West Road, Haidian District, Beijing 100193, PR China; College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China
| | - Xiuping Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No.2 Yuanmingyuan West Road, Haidian District, Beijing 100193, PR China
| | - Yunhe Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No.2 Yuanmingyuan West Road, Haidian District, Beijing 100193, PR China
| | - Changqing Su
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No.2 Yuanmingyuan West Road, Haidian District, Beijing 100193, PR China
| | - Jiatong Ding
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China
| | - Yufa Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No.2 Yuanmingyuan West Road, Haidian District, Beijing 100193, PR China.
| |
Collapse
|
210
|
Pan Z, Xu L, Zhu Y, Shi H, Chen Z, Chen M, Chen Q, Liu B. Characterization of a new cry2Ab gene of Bacillus thuringiensis with high insecticidal activity against Plutella xylostella L. World J Microbiol Biotechnol 2014; 30:2655-62. [PMID: 24943249 DOI: 10.1007/s11274-014-1689-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 06/11/2014] [Indexed: 10/25/2022]
Abstract
Bacillus thuringiensis (Bt) strain FJAT-12 was a novel Bt strain isolated by Agricultural Bio-Resources Institute, Fujian Academy of Agricultural Science. In this study, a new cry2Ab gene was cloned from Bt strain FJAT-12 and named as cry2Ab30 by Bt delta-endotoxin Nomenclature Committee. The sequencing results showed there were two mutations in conservative sites which led to two amino acids modification. Homology modeling indicated that the two changes were located in β-sheet of Domain II. A prokaryotic expression vector pET30a-cry2Ab30 was constructed and the expressed protein was analyzed by western blot using Cry2Ab antibody. The expression conditions including IPTG concentration, revolution and temperature were optimized to get the highest expression level by SDS-PAGE and BandScan. The bioassay results also showed that the Cry2Ab30 toxin had high insecticidal activity against Plutella xylostella and the LC50 value was 0.0103 μg.mL(-1). The two mutations in β-sheet of Domain II might contribute to insecticidal activity of Cry2Ab30 toxin against Plutella xylostella.
Collapse
Affiliation(s)
- Zhizhen Pan
- Agricultural Bio-Resources Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, China
| | | | | | | | | | | | | | | |
Collapse
|
211
|
Binding site concentration explains the differential susceptibility of Chilo suppressalis and Sesamia inferens to Cry1A-producing rice. Appl Environ Microbiol 2014; 80:5134-40. [PMID: 24928872 DOI: 10.1128/aem.01544-14] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chilo suppressalis and Sesamia inferens are two important lepidopteran rice pests that occur concurrently during outbreaks in paddy fields in the main rice-growing areas of China. Previous and current field tests demonstrate that the transgenic rice line Huahui 1 (HH1) producing a Cry1Ab-Cry1Ac hybrid toxin from the bacterium Bacillus thuringiensis reduces egg and larval densities of C. suppressalis but not of S. inferens. This differential susceptibility to HH1 rice correlates with the reduced susceptibility to Cry1Ab and Cry1Ac toxins in S. inferens larvae compared to C. suppressalis larvae. The goal of this study was to identify the mechanism responsible for this differential susceptibility. In saturation binding assays, both Cry1Ab and Cry1Ac toxins bound with high affinity and in a saturable manner to midgut brush border membrane vesicles (BBMV) from C. suppressalis and S. inferens larvae. While binding affinities were similar, a dramatically lower concentration of Cry1A toxin binding sites was detected for S. inferens BBMV than for C. suppressalis BBMV. In contrast, no significant differences between species were detected for Cry1Ca toxin binding to BBMV. Ligand blotting detected BBMV proteins binding Cry1Ac or Cry1Ca toxins, some of them unique to C. suppressalis or S. inferens. These data support that reduced Cry1A binding site concentration is associated with a lower susceptibility to Cry1A toxins and HH1 rice in S. inferens larvae than in C. suppressalis larvae. Moreover, our data support Cry1Ca as a candidate for pyramiding efforts with Cry1A-producing rice to extend the activity range and durability of this technology against rice stem borers.
Collapse
|
212
|
Park Y, González-Martínez RM, Navarro-Cerrillo G, Chakroun M, Kim Y, Ziarsolo P, Blanca J, Cañizares J, Ferré J, Herrero S. ABCC transporters mediate insect resistance to multiple Bt toxins revealed by bulk segregant analysis. BMC Biol 2014; 12:46. [PMID: 24912445 PMCID: PMC4071345 DOI: 10.1186/1741-7007-12-46] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 06/02/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Relatively recent evidence indicates that ABCC2 transporters play a main role in the mode of action of Bacillus thuringiensis (Bt) Cry1A-type proteins. Mapping of major Cry1A resistance genes has linked resistance to the ABCC2 locus in Heliothis virescens, Plutella xylostella, Trichoplusia ni and Bombyx mori, and mutations in this gene have been found in three of these Bt-resistant strains. RESULTS We have used a colony of Spodoptera exigua (Xen-R) highly resistant to a Bt commercial bioinsecticide to identify regions in the S. exigua genome containing loci for major resistance genes by using bulk segregant analysis (BSA). Results reveal a region containing three genes from the ABCC family (ABBC1, ABBC2 and ABBC3) and a mutation in one of them (ABBC2) as responsible for the resistance of S. exigua to the Bt commercial product and to its key Spodoptera-active ingredients, Cry1Ca. In contrast to all previously described mutations in ABCC2 genes that directly or indirectly affect the extracellular domains of the membrane protein, the ABCC2 mutation found in S. exigua affects an intracellular domain involved in ATP binding. Functional analyses of ABBC2 and ABBC3 support the role of both proteins in the mode of action of Bt toxins in S. exigua. Partial silencing of these genes with dsRNA decreased the susceptibility of wild type larvae to both Cry1Ac and Cry1Ca. In addition, reduction of ABBC2 and ABBC3 expression negatively affected some fitness components and induced up-regulation of arylphorin and repat5, genes that respond to Bt intoxication and that are found constitutively up-regulated in the Xen-R strain. CONCLUSIONS The current results show the involvement of different members of the ABCC family in the mode of action of B. thuringiensis proteins and expand the role of the ABCC2 transporter in B. thuringiensis resistance beyond the Cry1A family of proteins to include Cry1Ca.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Salvador Herrero
- Department of Genetics, Universitat de València, Dr Moliner 50, 46100 Burjassot, Spain.
| |
Collapse
|
213
|
Bacillus thuringiensis Cry1A toxins are versatile proteins with multiple modes of action: two distinct pre-pores are involved in toxicity. Biochem J 2014; 459:383-96. [PMID: 24456341 PMCID: PMC3969221 DOI: 10.1042/bj20131408] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cry proteins from Bacillus thuringiensis are insecticidal PFTs (pore-forming toxins). In the present study, we show that two distinct functional pre-pores of Cry1Ab are formed after binding of the protoxin or the protease-activated toxin to the cadherin receptor, but before membrane insertion. Both pre-pores actively induce pore formation, although with different characteristics, and contribute to the insecticidal activity. We also analysed the oligomerization of the mutant Cry1AbMod protein. This mutant kills different insect populations that are resistant to Cry toxins, but lost potency against susceptible insects. We found that the Cry1AbMod-protoxin efficiently induces oligomerization, but not the activated Cry1AbMod-toxin, explaining the loss of potency of Cry1AbMod against susceptible insects. These data are relevant for the future control of insects resistant to Cry proteins. Our data support the pore-formation model involving sequential interaction with different midgut proteins, leading to pore formation in the target membrane. We propose that not only different insect targets could have different receptors, but also different midgut proteases that would influence the rate of protoxin/toxin activation. It is possible that the two pre-pore structures could have been selected for in evolution, since they have differential roles in toxicity against selected targets, increasing their range of action. These data assign a functional role for the protoxin fragment of Cry PFTs that was not understood previously. Most PFTs produced by other bacteria are secreted as protoxins that require activation before oligomerization, to finally form a pore. Thus different pre-pores could be also part of the general mechanism of action of other PFTs. Two distinct functional pre-pore oligomers of the Cry1Ab insecticidal toxin are formed before membrane insertion. These oligomers are formed after binding of either the protoxin or the protease-activated toxin to the cadherin receptor. Both pre-pores have different characteristics and contribute to insecticidal activity.
Collapse
|
214
|
Hane JK, Anderson JP, Williams AH, Sperschneider J, Singh KB. Genome sequencing and comparative genomics of the broad host-range pathogen Rhizoctonia solani AG8. PLoS Genet 2014; 10:e1004281. [PMID: 24810276 PMCID: PMC4014442 DOI: 10.1371/journal.pgen.1004281] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 02/20/2014] [Indexed: 11/30/2022] Open
Abstract
Rhizoctonia solani is a soil-borne basidiomycete fungus with a necrotrophic lifestyle which is classified into fourteen reproductively incompatible anastomosis groups (AGs). One of these, AG8, is a devastating pathogen causing bare patch of cereals, brassicas and legumes. R. solani is a multinucleate heterokaryon containing significant heterozygosity within a single cell. This complexity posed significant challenges for the assembly of its genome. We present a high quality genome assembly of R. solani AG8 and a manually curated set of 13,964 genes supported by RNA-seq. The AG8 genome assembly used novel methods to produce a haploid representation of its heterokaryotic state. The whole-genomes of AG8, the rice pathogen AG1-IA and the potato pathogen AG3 were observed to be syntenic and co-linear. Genes and functions putatively relevant to pathogenicity were highlighted by comparing AG8 to known pathogenicity genes, orthology databases spanning 197 phytopathogenic taxa and AG1-IA. We also observed SNP-level "hypermutation" of CpG dinucleotides to TpG between AG8 nuclei, with similarities to repeat-induced point mutation (RIP). Interestingly, gene-coding regions were widely affected along with repetitive DNA, which has not been previously observed for RIP in mononuclear fungi of the Pezizomycotina. The rate of heterozygous SNP mutations within this single isolate of AG8 was observed to be higher than SNP mutation rates observed across populations of most fungal species compared. Comparative analyses were combined to predict biological processes relevant to AG8 and 308 proteins with effector-like characteristics, forming a valuable resource for further study of this pathosystem. Predicted effector-like proteins had elevated levels of non-synonymous point mutations relative to synonymous mutations (dN/dS), suggesting that they may be under diversifying selection pressures. In addition, the distant relationship to sequenced necrotrophs of the Ascomycota suggests the R. solani genome sequence may prove to be a useful resource in future comparative analysis of plant pathogens.
Collapse
Affiliation(s)
- James K. Hane
- Molecular Plant Pathology and Crop Genomics Laboratory, Centre for Environment and Life Sciences, Division of Plant Industry, Commonwealth Scientific and Industrial Research Organisation, Floreat, Western Australia, Australia
| | - Jonathan P. Anderson
- Molecular Plant Pathology and Crop Genomics Laboratory, Centre for Environment and Life Sciences, Division of Plant Industry, Commonwealth Scientific and Industrial Research Organisation, Floreat, Western Australia, Australia
- The University of Western Australia Institute of Agriculture, University of Western Australia, Crawley, Western Australia, Australia
| | - Angela H. Williams
- Molecular Plant Pathology and Crop Genomics Laboratory, Centre for Environment and Life Sciences, Division of Plant Industry, Commonwealth Scientific and Industrial Research Organisation, Floreat, Western Australia, Australia
| | - Jana Sperschneider
- Molecular Plant Pathology and Crop Genomics Laboratory, Centre for Environment and Life Sciences, Division of Plant Industry, Commonwealth Scientific and Industrial Research Organisation, Floreat, Western Australia, Australia
| | - Karam B. Singh
- Molecular Plant Pathology and Crop Genomics Laboratory, Centre for Environment and Life Sciences, Division of Plant Industry, Commonwealth Scientific and Industrial Research Organisation, Floreat, Western Australia, Australia
- The University of Western Australia Institute of Agriculture, University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
215
|
Chen RR, Ren XL, Han ZJ, Mu LL, Li GQ, Ma Y, Cui JJ. A cadherin-like protein from the beet armyworm Spodoptera exigua (Lepidoptera: Noctuidae) is a putative Cry1Ac receptor. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2014; 86:58-71. [PMID: 24764290 DOI: 10.1002/arch.21163] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In S. exigua, ingestion of Cry1Ac reduces larval growth, shortens lifespan, and decreases copulation and oviposition of the adults. Cadherin-like protein SeCad1b in S. exigua has recently been published. Here, we tested whether SeCad1b mediates the negative effects of Cry1Ac. We identified three potential Cry toxin binding regions in SeCad1b, i.e., (879) EIAIQITDTNN(889) , (1357) SLLTVTI(1363) , and (1436) GVISLNFQ(1443) . We expressed and purified a truncated cadherin, rSeCad1bp, and its interspecific homologue, rHaBtRp, from H. armigera that contain the putative toxin binding regions. Using a toxin overlay assay, we found that rSeCad1bp specifically binds to biotinylated Cry1Ac in a dose-dependent manner. We also discovered that an addition of rSeCad1bp and rHaBtRp enhances the suppression of larval growth by Cry1Ac, although rSeCad1bp is less suppressive than rHaBtRp. Finally, RNA interference-mediated knockdown of SeCad1b reduced approximately 80% of the target gene and significantly alleviated the negative effect of CrylAc on larval growth. We infer that the S. exigua SeCad1b is a functional receptor of Cry1Ac.
Collapse
Affiliation(s)
- Rui-Rui Chen
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | | | | | | | | | | | | |
Collapse
|
216
|
Yao J, Buschman LL, Lu N, Khajuria C, Zhu KY. Changes in gene expression in the larval gut of Ostrinia nubilalis in Response to Bacillus thuringiensis Cry1Ab protoxin ingestion. Toxins (Basel) 2014; 6:1274-94. [PMID: 24704690 PMCID: PMC4014733 DOI: 10.3390/toxins6041274] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 03/13/2014] [Accepted: 03/26/2014] [Indexed: 12/04/2022] Open
Abstract
We developed a microarray based on 2895 unique transcripts assembled from 15,000 cDNA sequences from the European corn borer (Ostrinia nubilalis) larval gut. This microarray was used to monitor gene expression in early third-instar larvae of Bacillus thuringiensis (Bt)-susceptible O. nubilalis after 6 h feeding on diet, with or without the Bt Cry1Ab protoxin. We identified 174 transcripts, for which the expression was changed more than two-fold in the gut of the larvae fed Cry1Ab protoxin (p < 0.05), representing 80 down-regulated and 94 up-regulated transcripts. Among 174 differentially expressed transcripts, 13 transcripts putatively encode proteins that are potentially involved in Bt toxicity, and these transcripts include eight serine proteases, three aminopeptidases, one alkaline phosphatase, and one cadherin. The expressions of trypsin-like protease and three aminopeptidase transcripts were variable, but two potential Bt-binding proteins, alkaline phosphatase and cadherin were consistently up-regulated in larvae fed Cry1Ab protoxin. The significantly up and down-regulated transcripts may be involved in Cry1Ab toxicity by activation, degradation, toxin binding, and other related cellular responses. This study is a preliminary survey of Cry1Ab protoxin-induced transcriptional responses in O. nubilalis gut and our results are expected to help with further studies on Bt toxin-insect interactions at the molecular level.
Collapse
Affiliation(s)
- Jianxiu Yao
- Department of Entomology, 123 Waters Hall, Kansas State University, Manhattan, KS 66506, USA.
| | - Lawrent L Buschman
- Department of Entomology, 123 Waters Hall, Kansas State University, Manhattan, KS 66506, USA.
| | - Nanyan Lu
- Bioinformatics Center, Kansas State University, Manhattan, KS 66506, USA.
| | - Chitvan Khajuria
- Department of Entomology, 123 Waters Hall, Kansas State University, Manhattan, KS 66506, USA.
| | - Kun Yan Zhu
- Department of Entomology, 123 Waters Hall, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|
217
|
Zhang X, Xu C, Zhang C, Liu Y, Xie Y, Liu X. Established a new double antibodies sandwich enzyme-linked immunosorbent assay for detecting Bacillus thuringiensis (Bt) Cry1Ab toxin based single-chain variable fragments from a naïve mouse phage displayed library. Toxicon 2014; 81:13-22. [DOI: 10.1016/j.toxicon.2014.01.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 12/17/2013] [Accepted: 01/16/2014] [Indexed: 10/25/2022]
|
218
|
Duchet C, Tetreau G, Marie A, Rey D, Besnard G, Perrin Y, Paris M, David JP, Lagneau C, Després L. Persistence and recycling of bioinsecticidal Bacillus thuringiensis subsp. israelensis spores in contrasting environments: evidence from field monitoring and laboratory experiments. MICROBIAL ECOLOGY 2014; 67:576-586. [PMID: 24402370 DOI: 10.1007/s00248-013-0360-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 12/19/2013] [Indexed: 06/03/2023]
Abstract
Sprays of commercial preparations of the bacterium Bacillus thuringiensis subsp. israelensis are widely used for the control of mosquito larvae. Despite an abundant literature on B. thuringiensis subsp. israelensis field efficiency on mosquito control, few studies have evaluated the fate of spores in the environment after treatments. In the present article, two complementary experiments were conducted to study the effect of different parameters on B. thuringiensis subsp. israelensis persistence and recycling, in field conditions and in the laboratory. First, we monitored B. thuringiensis subsp. israelensis persistence in the field in two contrasting regions in France: the Rhône-Alpes region, where mosquito breeding sites are temporary ponds under forest cover with large amounts of decaying leaf matter on the ground and the Mediterranean region characterized by open breeding sites such as brackish marshes. Viable B. thuringiensis subsp. israelensis spores can persist for months after a treatment, and their quantity is explained both by the vegetation type and by the number of local treatments. We found no evidence of B. thuringiensis subsp. israelensis recycling in the field. Then, we tested the effect of water level, substrate type, salinity and presence of mosquito larvae on the persistence/recycling of B. thuringiensis subsp. israelensis spores in controlled laboratory conditions (microcosms). We found no effect of change in water level or salinity on B. thuringiensis subsp. israelensis persistence over time (75 days). B. thuringiensis subsp. israelensis spores tended to persist longer in substrates containing organic matter compared to sand-only substrates. B. thuringiensis subsp. israelensis recycling only occurred in presence of mosquito larvae but was unrelated to the presence of organic matter.
Collapse
Affiliation(s)
- Claire Duchet
- Entente Interdépartementale de Démoustication du Littoral Méditerranéen, 165 avenue Paul-Rimbaud, 34184, Montpellier, Cedex 4, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
219
|
Forkpah C, Dixon LR, Fahrbach SE, Rueppell O. Xenobiotic effects on intestinal stem cell proliferation in adult honey bee (Apis mellifera L) workers. PLoS One 2014; 9:e91180. [PMID: 24608542 PMCID: PMC3946715 DOI: 10.1371/journal.pone.0091180] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 02/11/2014] [Indexed: 12/18/2022] Open
Abstract
The causes of the current global decline in honey bee health are unknown. One major group of hypotheses invokes the pesticides and other xenobiotics to which this important pollinator species is often exposed. Most studies have focused on mortality or behavioral deficiencies in exposed honey bees while neglecting other biological functions and target organs. The midgut epithelium of honey bees presents an important interface between the insect and its environment. It is maintained by proliferation of intestinal stem cells throughout the adult life of honey bees. We used caged honey bees to test multiple xenobiotics for effects on the replicative activity of the intestinal stem cells under laboratory conditions. Most of the tested compounds did not alter the replicative activity of intestinal stem cells. However, colchicine, methoxyfenozide, tetracycline, and a combination of coumaphos and tau-fluvalinate significantly affected proliferation rate. All substances except methoxyfenozide decreased proliferation rate. Thus, the results indicate that some xenobiotics frequently used in apiculture and known to accumulate in honey bee hives may have hitherto unknown physiological effects. The nutritional status and the susceptibility to pathogens of honey bees could be compromised by the impacts of xenobiotics on the maintenance of the midgut epithelium. This study contributes to a growing body of evidence that more comprehensive testing of xenobiotics may be required before novel or existing compounds can be considered safe for honey bees and other non-target species.
Collapse
Affiliation(s)
- Cordelia Forkpah
- Department of Biology, University of North Carolina, Greensboro, North Carolina, United States of America
| | - Luke R. Dixon
- Department of Biology, University of North Carolina, Greensboro, North Carolina, United States of America
| | - Susan E. Fahrbach
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina, United States of America
| | - Olav Rueppell
- Department of Biology, University of North Carolina, Greensboro, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
220
|
Portugal L, Gringorten JL, Caputo GF, Soberón M, Muñoz-Garay C, Bravo A. Toxicity and mode of action of insecticidal Cry1A proteins from Bacillus thuringiensis in an insect cell line, CF-1. Peptides 2014; 53:292-9. [PMID: 24189038 DOI: 10.1016/j.peptides.2013.10.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 10/24/2013] [Accepted: 10/25/2013] [Indexed: 02/07/2023]
Abstract
Bacillus thuringiensis Cry toxins are insecticidal proteins used to control insect pests. The interaction of Cry toxins with the midgut of susceptible insects is a dynamic process involving activation of the toxin, binding to midgut receptors in the apical epithelium and conformational changes in the toxin molecule, leading to pore formation and cell lysis. An understanding of the molecular events underlying toxin mode of action is essential for the continued use of Cry toxins. In this work, we examined the mechanism of action of Cry1A toxins in the lepidopteran cell line CF-1, using native Cry1Ab and mutant forms of this protein that interfer with different steps in the mechanism of action, specifically, receptor binding, oligomerization or pore formation. These mutants lost activity against both Manduca sexta larvae and CF-1 cells. We also analyzed a mutation created in domain I of Cry1Ab, in which helix α-1 and part of helix α-2 were deleted (Cry1AbMod). Cry1AbMod is able to oligomerize in the absence of toxin receptors, and although it shows reduced activity against some susceptible insects, it kills insect pests that have developed resistance to native Cry1Ab. Cry1AbMod showed enhanced toxicity to CF-1, suggesting that oligomerization of native Cry1Ab may be a limiting step in its activity against CF-1 cells. The toxicity of Cry1Ac and Cry1AcMod were also analyzed. Our results suggest that some of the steps in the mode of action of Cry1A toxins are conserved in vivo in insect midgut cells and in vitro in an established cell line, CF-1.
Collapse
Affiliation(s)
- Leivi Portugal
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca 620, Morelos, Mexico.
| | - J Lawrence Gringorten
- Canadian Forest Service, Great Lakes Forestry Centre, 1219 Queen St. E., Sault Ste. Marie, ON P6A 2E5, Canada.
| | - Guido F Caputo
- Canadian Forest Service, Great Lakes Forestry Centre, 1219 Queen St. E., Sault Ste. Marie, ON P6A 2E5, Canada
| | - Mario Soberón
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca 620, Morelos, Mexico.
| | - Carlos Muñoz-Garay
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca 620, Morelos, Mexico.
| | - Alejandra Bravo
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca 620, Morelos, Mexico.
| |
Collapse
|
221
|
Piovesan AR, Martinelli AHS, Ligabue-Braun R, Schwartz JL, Carlini CR. Canavalia ensiformis urease, Jaburetox and derived peptides form ion channels in planar lipid bilayers. Arch Biochem Biophys 2014; 547:6-17. [PMID: 24583269 DOI: 10.1016/j.abb.2014.02.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Revised: 02/13/2014] [Accepted: 02/14/2014] [Indexed: 01/22/2023]
Abstract
Ureases catalyze the hydrolysis of urea into NH3 and CO2. They are synthesized by plants, fungi and bacteria but not by animals. Ureases display biological activities unrelated to their enzymatic activity, i.e., platelet and neutrophil activation, fungus inhibition and insecticidal effect. Urease from Canavalia ensiformis (jack bean) is toxic to several hemipteran and coleopteran insects. Jaburetox is an insecticidal fragment derived from jack bean urease. Among other effects, Jaburetox has been shown to interact with lipid vesicles. In this work, the ion channel activity of C. ensiformis urease, Jaburetox and three deletion mutants of Jaburetox (one lacking the N-terminal region, one lacking the C-terminal region and one missing the central β-hairpin) were tested on planar lipid bilayers. All proteins formed well resolved, highly cation-selective channels exhibiting two conducting states whose conductance ranges were 7-18pS and 32-79pS, respectively. Urease and the N-terminal mutant of Jaburetox were more active at negative potentials, while the channels of the other peptides did not display voltage-dependence. This is the first direct demonstration of the capacity of C. ensiformis urease and Jaburetox to permeabilize membranes through an ion channel-based mechanism, which may be a crucial step of their diverse biological activities, including host defense.
Collapse
Affiliation(s)
- Angela R Piovesan
- Graduate Program in Cellular and Molecular Biology, Center of Biotechnology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS CEP 91501-970, Brazil
| | - Anne H S Martinelli
- Graduate Program in Cellular and Molecular Biology, Center of Biotechnology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS CEP 91501-970, Brazil; Department of Biophysics, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS CEP 91501-970, Brazil
| | - Rodrigo Ligabue-Braun
- Graduate Program in Cellular and Molecular Biology, Center of Biotechnology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS CEP 91501-970, Brazil
| | - Jean-Louis Schwartz
- Groupe d'étude des protéines membranaires (GÉPROM, FQR-S) and Department of Physiology, Faculty of Medicine, Université de Montréal, Montreal, Quebec H3C 3J7, Canada; Centre SÈVE (FQR-NT), Université de Sherbrooke, Sherbrooke, Quebec J1K 2R, Canada.
| | - Celia R Carlini
- Graduate Program in Cellular and Molecular Biology, Center of Biotechnology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS CEP 91501-970, Brazil; Department of Biophysics, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS CEP 91501-970, Brazil.
| |
Collapse
|
222
|
Konecka E, Baranek J, Bielińska I, Tadeja A, Kaznowski A. Persistence of the spores of B. thuringiensis subsp. kurstaki from Foray bioinsecticide in gleysol soil and on leaves. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 472:296-301. [PMID: 24291630 DOI: 10.1016/j.scitotenv.2013.11.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 10/14/2013] [Accepted: 11/14/2013] [Indexed: 06/02/2023]
Abstract
The aim of this study was to determine how long the spores of Bacillus thuringiensis subsp. kurstaki HD-1 from Foray bioinsecticide persist in soil and on leaf surface after application of the bioinsecticide in an oak forest. Foray 04 UL was sprayed over a 195-hectare oak forest on the Krotoszyn Plateau in Poland. B. thuringiensis was isolated from soil samples and tree leaves taken from randomly chosen sites. B. thuringiensis subsp. kurstaki HD-1 in the samples was identified upon clonal analysis of the cultured isolates by using the RAPD method. One month after Foray spraying, the number of B. thuringiensis increased in soil and decreased on leaf surface comparing to the number estimated two days after the application. The reduction in the number of B. thuringiensis was noted six months after the pesticide application and the number was decreasing during the following months. No B. thuringiensis was noted on leaf surface one year after Foray spraying and in soil after one and a half years. The study showed that B. thuringiensis spores from biopesticide can survive in the forest environment; however, relatively short persistence time does not pose environmental risk.
Collapse
Affiliation(s)
- Edyta Konecka
- Department of Microbiology, Faculty of Biology, Adam Mickiewicz University in Poznań, Umultowska 89, 61614 Poznań, Poland.
| | - Jakub Baranek
- Department of Microbiology, Faculty of Biology, Adam Mickiewicz University in Poznań, Umultowska 89, 61614 Poznań, Poland
| | - Izabela Bielińska
- Department of Microbiology, Faculty of Biology, Adam Mickiewicz University in Poznań, Umultowska 89, 61614 Poznań, Poland
| | - Agata Tadeja
- Department of Microbiology, Faculty of Biology, Adam Mickiewicz University in Poznań, Umultowska 89, 61614 Poznań, Poland
| | - Adam Kaznowski
- Department of Microbiology, Faculty of Biology, Adam Mickiewicz University in Poznań, Umultowska 89, 61614 Poznań, Poland
| |
Collapse
|
223
|
Koul B, Srivastava S, Sanyal I, Tripathi B, Sharma V, Amla DV. Transgenic tomato line expressing modified Bacillus thuringiensis cry1Ab gene showing complete resistance to two lepidopteran pests. SPRINGERPLUS 2014; 3:84. [PMID: 24600542 PMCID: PMC3937457 DOI: 10.1186/2193-1801-3-84] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 02/05/2014] [Indexed: 11/24/2022]
Abstract
The modified truncated Bt-cry1Ab gene of Bacillus thuringiensis has been used for the development and selection of over expressing transgenic events in a commercially important variety of tomato (Solanum lycopersicum L.) by Agrobacterium-mediated leaf-disc transformation procedure. The integration and inheritance of cry1Ab gene in T0 transgenic plants and their progenies were determined by PCR, RT-PCR and Southern blot hybridization analysis. The toxin expression was monitored by double antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA). The transgenic line Ab25 E, expressing 0.47 ± 0.01% Cry1Ab toxin of total soluble protein (TSP) was finally selected in the T4 generation from the segregating population, showing 100% mortality to the second instar larvae of H. armigera and S. litura and minimal damages to leaves and fruits. Southern blot analysis data revealed single copy introgression of cry1Ab gene in highly-expressing Ab25 E transgenic line and expression of Cry1Ab toxin of molecular mass ~65 kDa was evident in Western blot analyses in transgenic plants of T4, T5 and T6 generation. Receptor binding assay performed with partially purified Cry1Ab protein from Ab25 E transgenic tomato line, confirmed efficient protein-protein interaction of Cry1Ab toxin with receptor(s) of both the insects. The higher level of Cry1Ab toxin (≈ 0.47 ± 0.01% TSP) did not affect the normal in vitro regeneration, plant development and fruit yield in this transgenic line. This high expressing Cry1Ab homozygous transgenic line can be a useful candidate in tomato breeding programmes for introgression of important agronomical traits.
Collapse
Affiliation(s)
- Bhupendra Koul
- Plant Transgenic Lab, CSIR-National Botanical Research Institute, Rana Pratap Marg, P.O. Box 436, Lucknow, 226 001 India
| | - Sugandha Srivastava
- Department of Microbiology, King George's Medical University (KGMU), Lucknow, 226 003 India
| | - Indraneel Sanyal
- Plant Transgenic Lab, CSIR-National Botanical Research Institute, Rana Pratap Marg, P.O. Box 436, Lucknow, 226 001 India
| | - Bhuminath Tripathi
- Department of Botany, Guru Ghasidas Vishwavidyalaya, Bilaspur, 495 009 Chhattisgarh India
| | - Vinay Sharma
- Department of Biosciences & Biotechnology, Banasthali Vidyapith, P.O. Banasthali, Tonk Road, Rajasthan, 304 022 India
| | - Devindra Vijay Amla
- Plant Transgenic Lab, CSIR-National Botanical Research Institute, Rana Pratap Marg, P.O. Box 436, Lucknow, 226 001 India
| |
Collapse
|
224
|
Hua G, Park Y, Adang MJ. Cadherin AdCad1 in Alphitobius diaperinus larvae is a receptor of Cry3Bb toxin from Bacillus thuringiensis. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2014; 45:11-17. [PMID: 24225445 DOI: 10.1016/j.ibmb.2013.10.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 10/17/2013] [Accepted: 10/22/2013] [Indexed: 06/02/2023]
Abstract
Bacillus thuringiensis (Bt) Cry proteins are used as components of biopesticides or expressed in transgenic crops to control diverse insect pests worldwide. These Cry toxins bind to receptors on the midgut brush border membrane and kill enterocytes culminating in larval mortality. Cadherin proteins have been identified as Cry toxin receptors in diverse lepidopteran, coleopteran, and dipteran species. In the present work we report a 185 kDa cadherin (AdCad1) from larvae of the lesser mealworm (Alphitobius diaperinus) larvae as the first identified receptor for Cry3Bb toxin. The AdCad1 protein contains typical structural components for Cry toxin receptor cadherins, including nine cadherin repeats (CR9), a membrane-proximal extracellular domain (MPED) and a cytosolic region. Peptides corresponding to the CR9 and MPED regions bound Cry3Bb toxin with high affinities (23 nM and 40 nM) and significantly synergized Cry3Bb toxicity against A. diperinus larvae. Silencing of AdCad1 expression through RNA interference resulted in highly reduced susceptibility to Cry3Bb in A. diperinus larvae. The CR9 peptide fed with toxin to RNAi-treated larvae restored Cry3Bb toxicity. These results are evidences that AdCad1 is a functional receptor of Cry3Bb toxin and that exogenously fed CR9 peptide can overcome the effect of reduced AdCad1expression on Cry3Bb toxicity to larvae.
Collapse
Affiliation(s)
- Gang Hua
- Department of Entomology, University of Georgia, Athens, GA 30602-2603, USA
| | - Youngjin Park
- Department of Entomology, University of Georgia, Athens, GA 30602-2603, USA
| | - Michael J Adang
- Department of Entomology, University of Georgia, Athens, GA 30602-2603, USA; Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602-2603, USA.
| |
Collapse
|
225
|
Argôlo-Filho RC, Loguercio LL. Bacillus thuringiensis Is an Environmental Pathogen and Host-Specificity Has Developed as an Adaptation to Human-Generated Ecological Niches. INSECTS 2013; 5:62-91. [PMID: 26462580 PMCID: PMC4592628 DOI: 10.3390/insects5010062] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 12/03/2013] [Accepted: 12/13/2013] [Indexed: 11/16/2022]
Abstract
Bacillus thuringiensis (Bt) has been used successfully as a biopesticide for more than 60 years. More recently, genes encoding their toxins have been used to transform plants and other organisms. Despite the large amount of research on this bacterium, its true ecology is still a matter of debate, with two major viewpoints dominating: while some understand Bt as an insect pathogen, others see it as a saprophytic bacteria from soil. In this context, Bt's pathogenicity to other taxa and the possibility that insects may not be the primary targets of Bt are also ideas that further complicate this scenario. The existence of conflicting research results, the difficulty in developing broader ecological and genetics studies, and the great genetic plasticity of this species has cluttered a definitive concept. In this review, we gathered information on the aspects of Bt ecology that are often ignored, in the attempt to clarify the lifestyle, mechanisms of transmission and target host range of this bacterial species. As a result, we propose an integrated view to account for Bt ecology. Although Bt is indeed a pathogenic bacterium that possesses a broad arsenal for virulence and defense mechanisms, as well as a wide range of target hosts, this seems to be an adaptation to specific ecological changes acting on a versatile and cosmopolitan environmental bacterium. Bt pathogenicity and host-specificity was favored evolutionarily by increased populations of certain insect species (or other host animals), whose availability for colonization were mostly caused by anthropogenic activities. These have generated the conditions for ecological imbalances that favored dominance of specific populations of insects, arachnids, nematodes, etc., in certain areas, with narrower genetic backgrounds. These conditions provided the selective pressure for development of new hosts for pathogenic interactions, and so, host specificity of certain strains.
Collapse
Affiliation(s)
- Ronaldo Costa Argôlo-Filho
- Department of Biological Sciences, State University of Santa Cruz (UESC), Rod, Ilhéus-Itabuna, Km-16, Ilhéus-BA 45662-900, Brazil.
| | - Leandro Lopes Loguercio
- Department of Biological Sciences, State University of Santa Cruz (UESC), Rod, Ilhéus-Itabuna, Km-16, Ilhéus-BA 45662-900, Brazil.
| |
Collapse
|
226
|
Bel Y, Jakubowska AK, Costa J, Herrero S, Escriche B. Comprehensive analysis of gene expression profiles of the beet armyworm Spodoptera exigua larvae challenged with Bacillus thuringiensis Vip3Aa toxin. PLoS One 2013; 8:e81927. [PMID: 24312604 PMCID: PMC3846680 DOI: 10.1371/journal.pone.0081927] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 10/17/2013] [Indexed: 01/03/2023] Open
Abstract
Host-pathogen interactions result in complex relationship, many aspects of which are not completely understood. Vip proteins, which are Bacillus thuringensis (Bt) insecticidal toxins produced during the vegetative stage, are selectively effective against specific insect pests. This new group of Bt proteins represents an interesting alternative to the classical Bt Cry toxins because current data suggests that they do not share the same mode of action. We have designed and developed a genome-wide microarray for the beet armyworm Spodoptera exigua, a serious lepidopteran pest of many agricultural crops, and used it to better understand how lepidopteran larvae respond to the treatment with the insecticidal protein Vip3Aa. With this approach, the goal of our study was to evaluate the changes in gene expression levels caused by treatment with sublethal doses of Vip3Aa (causing 99% growth inhibition) at 8 and 24 h after feeding. Results indicated that the toxin provoked a wide transcriptional response, with 19% of the microarray unigenes responding significantly to treatment. The number of up- and down-regulated unigenes was very similar. The number of genes whose expression was regulated at 8 h was similar to the number of genes whose expression was regulated after 24 h of treatment. The up-regulated sequences were enriched for genes involved in innate immune response and in pathogen response such as antimicrobial peptides (AMPs) and repat genes. The down-regulated sequences were mainly unigenes with homology to genes involved in metabolism. Genes related to the mode of action of Bt Cry proteins were found, in general, to be slightly overexpressed. The present study is the first genome-wide analysis of the response of lepidopteran insects to Vip3Aa intoxication. An insight into the molecular mechanisms and components related to Vip intoxication will allow designing of more effective management strategies for pest control.
Collapse
Affiliation(s)
- Yolanda Bel
- Department of Genetics, University of Valencia, Burjassot, Valencia, Spain
| | | | - Juliana Costa
- Department of Applied Biology, UNESP, Jaboticabal, Sao Paulo, Brazil
| | - Salvador Herrero
- Department of Genetics, University of Valencia, Burjassot, Valencia, Spain
| | - Baltasar Escriche
- Department of Genetics, University of Valencia, Burjassot, Valencia, Spain
| |
Collapse
|
227
|
Li YL, Du J, Fang ZX, You J. Dissipation of insecticidal Cry1Ac protein and its toxicity to nontarget aquatic organisms. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:10864-10871. [PMID: 24151928 DOI: 10.1021/jf403472j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The widespread cultivation of Bacillus thuringiensis crops has raised public concerns on their risk to nontarget organisms. Persistence of Cry1Ac protein in soil, sediment and water and its toxicity to nontarget aquatic organisms were determined. The dissipation of Cry1Ac toxin was well described using first order kinetics, with the half-lives (DT50) ranging from 0.8 to 3.2, 2.1 to 7.6 and 11.0 to 15.8 d in soil, sediment and water, respectively. Microbial degradation played a key role in the dissipation of Cry1Ac toxin and high temperature accelerated the processes. Cry1Ac toxin was more toxic to the midge Chironomus dilutus than the amphipod Hyalella azteca, with the median lethal concentration (LC50) of C. dilutus being 155 ng/g dry weight and 201 ng/mL in 10-d sediment and 4-d water bioassays, respectively. While Cry1Ac toxin showed toxicity to the midges, risk of Bt proteins to aquatic nontarget organisms was limited because their environmentally relevant concentrations were much lower than the LC50s.
Collapse
Affiliation(s)
- Yan-Liang Li
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences , Guangzhou 510640, People's Republic of China
| | | | | | | |
Collapse
|
228
|
Kale A, Hire RS, Hadapad AB, D'Souza SF, Kumar V. Interaction between mosquito-larvicidal Lysinibacillus sphaericus binary toxin components: analysis of complex formation. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2013; 43:1045-1054. [PMID: 23974012 DOI: 10.1016/j.ibmb.2013.07.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 07/19/2013] [Accepted: 07/29/2013] [Indexed: 06/02/2023]
Abstract
The two components (BinA and BinB) of Lysinibacillus sphaericus binary toxin together are highly toxic to Culex and Anopheles mosquito larvae, and have been employed world-wide to control mosquito borne diseases. Upon binding to the membrane receptor an oligomeric form (BinA2.BinB2) of the binary toxin is expected to play role in pore formation. It is not clear if these two proteins interact in solution as well, in the absence of receptor. The interactions between active forms of BinA and BinB polypeptides were probed in solution using size-exclusion chromatography, pull-down assay, surface plasmon resonance, circular dichroism, and by chemically crosslinking BinA and BinB components. We demonstrate that the two proteins interact weakly with first association and dissociation rate constants of 4.5×10(3) M(-1) s(-1) and 0.8 s(-1), resulting in conformational change, most likely, in toxic BinA protein that could kinetically favor membrane translocation of the active oligomer. The weak interactions between the two toxin components could be stabilized by glutaraldehyde crosslinking. The cross-linked complex, interestingly, showed maximal Culex larvicidal activity (LC50 value of 1.59 ng mL(-1)) reported so far for combination of BinA/BinB components, and thus is an attractive option for development of new bio-pesticides for control of mosquito borne vector diseases.
Collapse
Affiliation(s)
- Avinash Kale
- High Pressure & Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | | | | | | | | |
Collapse
|
229
|
Crava CM, Bel Y, Jakubowska AK, Ferré J, Escriche B. Midgut aminopeptidase N isoforms from Ostrinia nubilalis: activity characterization and differential binding to Cry1Ab and Cry1Fa proteins from Bacillus thuringiensis. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2013; 43:924-935. [PMID: 23933214 DOI: 10.1016/j.ibmb.2013.07.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 07/23/2013] [Accepted: 07/29/2013] [Indexed: 06/02/2023]
Abstract
Aminopeptidase N (APN) isoforms from Lepidoptera are known for their involvement in the mode of action of insecticidal Cry proteins from Bacillus thuringiensis. These enzymes belong to a protein family with at least eight different members that are expressed simultaneously in the midgut of lepidopteran larvae. Here, we focus on the characterization of the APNs from Ostrinia nubilalis (OnAPNs) to identify potential Cry receptors. We expressed OnAPNs in insect cells using a baculovirus system and analyzed their enzymatic activity by probing substrate specificity and inhibitor susceptibility. The interaction with Cry1Ab and Cry1Fa proteins (both found in transgenic insect-resistant maize) was evaluated by ligand blot assays and immunocytochemistry. Ligand blots of brush border membrane proteins showed that both Cry proteins bound mainly to a 150 kDa-band, in which OnAPNs were greatly represented. Binding analysis of Cry proteins to the cell-expressed OnAPNs showed that OnAPN1 interacted with both Cry1Ab and Cry1Fa, whereas OnAPN3a and OnAPN8 only bound to Cry1Fa. Two isoforms, OnAPN2 and OnAPN3b, did not interact with any of these two proteins. This work provides the first evidence of a differential role of OnAPN isoforms in the mode of action of Cry proteins in O. nubilalis.
Collapse
Affiliation(s)
- Cristina M Crava
- Department of Genetics, University of Valencia, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain.
| | | | | | | | | |
Collapse
|
230
|
Tetreau G, Chandor-Proust A, Faucon F, Stalinski R, Akhouayri I, Prud'homme SM, Raveton M, Reynaud S. Contrasting patterns of tolerance between chemical and biological insecticides in mosquitoes exposed to UV-A. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 140-141:389-397. [PMID: 23911355 DOI: 10.1016/j.aquatox.2013.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 06/27/2013] [Accepted: 07/08/2013] [Indexed: 06/02/2023]
Abstract
Mosquitoes are vectors of major human diseases, such as malaria, dengue or yellow fever. Because no efficient treatments or vaccines are available for most of these diseases, control measures rely mainly on reducing mosquito populations by the use of insecticides. Numerous biotic and abiotic factors are known to modulate the efficacy of insecticides used in mosquito control. Mosquito breeding sites vary from opened to high vegetation covered areas leading to a large ultraviolet gradient exposure. This ecological feature may affect the general physiology of the insect, including the resistance status against insecticides. In the context of their contrasted breeding sites, we assessed the impact of low-energetic ultraviolet exposure on mosquito sensitivity to biological and chemical insecticides. We show that several mosquito detoxification enzyme activities (cytochrome P450, glutathione S-transferases, esterases) were increased upon low-energy UV-A exposure. Additionally, five specific genes encoding detoxification enzymes (CYP6BB2, CYP6Z7, CYP6Z8, GSTD4, and GSTE2) previously shown to be involved in resistance to chemical insecticides were found over-transcribed in UV-A exposed mosquitoes, revealed by RT-qPCR experiments. More importantly, toxicological bioassays revealed that UV-exposed mosquitoes were more tolerant to four main chemical insecticide classes (DDT, imidacloprid, permethrin, temephos), whereas the bioinsecticide Bacillus thuringiensis subsp. israelensis (Bti) appeared more toxic. The present article provides the first experimental evidence of the capacity of low-energy UV-A to increase mosquito tolerance to major chemical insecticides. This is also the first time that a metabolic resistance to chemical insecticides is linked to a higher susceptibility to a bioinsecticide. These results support the use of Bti as an efficient alternative to chemical insecticides when a metabolic resistance to chemicals has been developed by mosquitoes.
Collapse
Affiliation(s)
- Guillaume Tetreau
- Laboratoire d'Ecologie Alpine, LECA-UMR 5553, Université de Grenoble 1, BP 53, 38041 Grenoble cedex 09, France.
| | | | | | | | | | | | | | | |
Collapse
|
231
|
Zhang X, Kain W, Wang P. Sequence variation and differential splicing of the midgut cadherin gene in Trichoplusia ni. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2013; 43:712-723. [PMID: 23743444 DOI: 10.1016/j.ibmb.2013.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 05/07/2013] [Accepted: 05/21/2013] [Indexed: 06/02/2023]
Abstract
The insect midgut cadherin serves as an important receptor for the Cry toxins from Bacillus thuringiensis (Bt). Variation of the cadherin in insect populations provides a genetic potential for development of cadherin-based Bt resistance in insect populations. Sequence analysis of the cadherin from the cabbage looper, Trichoplusia ni, together with cadherins from 18 other lepidopterans showed a similar phylogenetic relationship of the cadherins to the phylogeny of Lepidoptera. The midgut cadherin in three laboratory populations of T. ni exhibited high variability, although the resistance to Bt toxin Cry1Ac in the T. ni strain is not genetically associated with cadherin gene mutations. A total of 142 single nucleotide polymorphisms (SNPs) were identified in the cadherin cDNAs from the T. ni strains, including 20 missense mutations. In addition, insertion and deletion polymorphisms (indels) were also identified in the cadherin alleles in T. ni. More interestingly, the results from this study reveal that differential splicing of mRNA also occurs in the cadherin gene expression. Therefore, variation of the midgut cadherin in insects may not only be caused by cadherin gene mutations, but could also result from alternative splicing of its mRNA regulated by factors acting in trans. Analysis of cadherin gene alleles in F2, F3 and F4 progenies from the cross between the Cry1Ac resistant and the susceptible strain after consecutive selections with Cry1Ac for three generations showed that selection with Cry1Ac did not result in an increase of frequencies of the cadherin alleles originated from the resistant strain.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Entomology, Cornell University, New York State Agricultural Experiment Station, Geneva, NY 14456, USA
| | | | | |
Collapse
|
232
|
A Spodoptera exigua cadherin serves as a putative receptor for Bacillus thuringiensis Cry1Ca toxin and shows differential enhancement of Cry1Ca and Cry1Ac toxicity. Appl Environ Microbiol 2013; 79:5576-83. [PMID: 23835184 DOI: 10.1128/aem.01519-13] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Crystal toxin Cry1Ca from Bacillus thuringiensis has an insecticidal spectrum encompassing lepidopteran insects that are tolerant to current commercially used B. thuringiensis crops (Bt crops) expressing Cry1A toxins and may be useful as a potential bioinsecticide. The mode of action of Cry1A is fairly well understood. However, whether Cry1Ca interacts with the same receptor proteins as Cry1A remains unproven. In the present paper, we first cloned a cadherin-like gene, SeCad1b, from Spodoptera exigua (relatively susceptible to Cry1Ca). SeCad1b was highly expressed in the larval gut but scarcely detected in fat body, Malpighian tubules, and remaining carcass. Second, we bacterially expressed truncated cadherin rSeCad1bp and its interspecific homologue rHaBtRp from Helicoverpa armigera (more sensitive to Cry1Ac) containing the putative toxin-binding regions. Competitive binding assays showed that both Cry1Ca and Cry1Ac could bind to rSeCad1bp and rHaBtRp, and they did not compete with each other. Third, Cry1Ca ingestion killed larvae and decreased the weight of surviving larvae. Dietary introduction of SeCad1b double-stranded RNA (dsRNA) reduced approximately 80% of the target mRNA and partially alleviated the negative effect of Cry1Ca on larval survival and growth. Lastly, rSeCad1bp and rHaBtRp differentially enhanced the negative effects of Cry1Ca and Cry1Ac on the larval mortalities and growth of S. exigua and H. armigera. Thus, we provide the first lines of evidence to suggest that SeCad1b from S. exigua is a functional receptor of Cry1Ca.
Collapse
|
233
|
Hernández-Rodríguez CS, Hernández-Martínez P, Van Rie J, Escriche B, Ferré J. Shared midgut binding sites for Cry1A.105, Cry1Aa, Cry1Ab, Cry1Ac and Cry1Fa proteins from Bacillus thuringiensis in two important corn pests, Ostrinia nubilalis and Spodoptera frugiperda. PLoS One 2013; 8:e68164. [PMID: 23861865 PMCID: PMC3702569 DOI: 10.1371/journal.pone.0068164] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 05/27/2013] [Indexed: 12/29/2022] Open
Abstract
First generation of insect-protected transgenic corn (Bt-corn) was based on the expression of Cry1Ab or Cry1Fa proteins. Currently, the trend is the combination of two or more genes expressing proteins that bind to different targets. In addition to broadening the spectrum of action, this strategy helps to delay the evolution of resistance in exposed insect populations. One of such examples is the combination of Cry1A.105 with Cry1Fa and Cry2Ab to control O. nubilalis and S. frugiperda. Cry1A.105 is a chimeric protein with domains I and II and the C-terminal half of the protein from Cry1Ac, and domain III almost identical to Cry1Fa. The aim of the present study was to determine whether the chimeric Cry1A.105 has shared binding sites either with Cry1A proteins, with Cry1Fa, or with both, in O. nubilalis and in S. frugiperda. Brush-border membrane vesicles (BBMV) from last instar larval midguts were used in competition binding assays with (125)I-labeled Cry1A.105, Cry1Ab, and Cry1Fa, and unlabeled Cry1A.105, Cry1Aa, Cry1Ab, Cry1Ac, Cry1Fa, Cry2Ab and Cry2Ae. The results showed that Cry1A.105, Cry1Ab, Cry1Ac and Cry1Fa competed with high affinity for the same binding sites in both insect species. However, Cry2Ab and Cry2Ae did not compete for the binding sites of Cry1 proteins. Therefore, according to our results, the development of cross-resistance among Cry1Ab/Ac, Cry1A.105, and Cry1Fa proteins is possible in these two insect species if the alteration of shared binding sites occurs. Conversely, cross-resistance between these proteins and Cry2A proteins is very unlikely in such case.
Collapse
Affiliation(s)
| | | | | | | | - Juan Ferré
- Departamento de Genética, Universitat de València, Burjassot, Spain
| |
Collapse
|
234
|
Quantitative genetic analysis of Cry1Ab tolerance in Ostrinia nubilalis Spanish populations. J Invertebr Pathol 2013; 113:220-7. [PMID: 23612057 DOI: 10.1016/j.jip.2013.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 04/12/2013] [Accepted: 04/13/2013] [Indexed: 11/22/2022]
Abstract
Tolerance to Bacillus thuringiensis Cry1Ab toxin in Spanish Ostrinia nubilalis populations was analyzed by quantitative genetic techniques, using isolines established from field-derived insects. F1 offspring was tested for susceptibility to trypsin activated Cry1Ab using a concentration that caused a mean larval mortality of 87% (±17% SD). The progeny of the most tolerant isolines (that had shown mortalities lower than 60%) was crossed to obtain the F2 generation that was exposed to the same Cry1Ab concentration. A clear reduction in mortality (62±17% SD) was observed. The upper limit for heritability was estimated to range between 0.82 and 0.90, suggesting that a high part of phenotypic variation in tolerance to Cry1Ab was attributable to genetic differences. An estimate of the minimum number of segregating factors indicated that the loci involved in tolerance to Cry1Ab were at least two. The role of the cadherin gene, which is a B. thuringiensis resistance gene in Lepidoptera, was assessed in the most tolerant isolines by using an EPIC-PCR marker specifically developed for this study. Association between cadherin and tolerance was obtained in one tolerant isoline; however it could be not confirmed by segregation analysis in the F2 progeny because F2 offspring was not viable. Our results indicate that the tolerance trait is common in Spanish field populations. Quantitative genetic techniques may be helpful for estimating the influence of genetic factors to Cry1Ab tolerance in O. nubilalis.
Collapse
|
235
|
Fescemyer HW, Sandoya GV, Gill TA, Ozkan S, Marden JH, Luthe DS. Maize toxin degrades peritrophic matrix proteins and stimulates compensatory transcriptome responses in fall armyworm midgut. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2013; 43:280-291. [PMID: 23306018 DOI: 10.1016/j.ibmb.2012.12.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 12/05/2012] [Accepted: 12/10/2012] [Indexed: 06/01/2023]
Abstract
Understanding the molecular mechanisms underlying insect compensatory responses to plant defenses could lead to improved plant resistance to herbivores. The Mp708 inbred line of maize produces the maize insect resistant 1-cysteine protease (Mir1-CP) toxin. Reduced feeding and growth of fall armyworm larvae fed on Mp708 was previously linked to impairment of nutrient utilization and degradation of the midgut (MG) peritrophic matrix (PM) by Mir1-CP. Here we examine the biochemical and transcriptional responses of fall armyworm larvae to Mir1-CP. Insect Intestinal Mucin (IIM) was severely depleted from pure PMs treated in vitro with recombinant Mir1-CP. Larvae fed on Mp708 midwhorls excrete frass largely depleted of IIM. Cracks, fissures and increased porosity previously observed in the PM of larvae fed on Mp708 midwhorls could ensue when Mir1-CP degrades the IIM that cross-links chitin fibrils in the PM. Both targeted and global transcriptome analyses were performed to determine how complete dissolution of the structure and function of the PM is prevented, enabling larvae to continue growing in the presence of Mir1-CP. The MGs from fall armyworm fed on Mp708 upregulate expression of genes encoding proteins involved in PM production as an apparent compensation to replace the disrupted PM structure and restore appropriate counter-current MG gradients. Also, several families of digestive enzymes (endopeptidases, aminopeptidases, lipases, amylase) were more highly expressed in MGs from larvae fed on Mp708 than MGs from larvae fed on diets lacking Mir1-CP (artificial diet, midwhorls from Tx601 or B73 maize). Impaired growth of larvae fed on Mp708 probably results from metabolic costs associated with higher production of PM constituents and digestive enzymes in a compensatory attempt to maintain MG function.
Collapse
Affiliation(s)
- Howard W Fescemyer
- Department of Biology, The Pennsylvania State University, 208 Mueller Laboratory, University Park, PA 16802, USA.
| | | | | | | | | | | |
Collapse
|
236
|
Scientific Opinion on an application from Pioneer Hi‐Bred International and Dow AgroSciences LLC (EFSA‐GMO‐NL‐2005‐23) for placing on the market of genetically modified maize 59122 for food and feed uses, import, processing and cultivation under Regulation (EC) No 1829/2003. EFSA J 2013. [DOI: 10.2903/j.efsa.2013.3135] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
237
|
Hua G, Zhang Q, Zhang R, Abdullah AM, Linser PJ, Adang MJ. AgCad2 cadherin in Anopheles gambiae larvae is a putative receptor of Cry11Ba toxin of Bacillus thuringiensis subsp. jegathesan. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2013; 43:153-161. [PMID: 23231770 DOI: 10.1016/j.ibmb.2012.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 11/22/2012] [Accepted: 11/30/2012] [Indexed: 06/01/2023]
Abstract
In an effort to study the mode of action of Cry11Ba, we identified toxin binding proteins in Anopheles gambiae larval midgut and investigated their receptor roles. Previously, an aminopeptidase (AgAPN2) and an alkaline phosphatase (AgALP1) were identified as receptors for Cry11Ba toxin in A. gambiae. However, an A. gambiae cadherin (AgCad1) that bound Cry11Ba with low affinity (K(d) = 766 nM) did not support a receptor role of AgCad1 for Cry11Ba. Here, we studied a second A. gambiae cadherin (AgCad2) that shares 14% identity to AgCad1. Immunohistochemical study showed that the protein is localized on A. gambiae larval midgut apical membranes. Its cDNA was cloned and the protein was analyzed as a transmembrane protein containing 14 cadherin repeats. An Escherichia coli expressed CR14MPED fragment of AgCad2 bound Cry11Ba with high affinity (K(d) = 11.8 nM), blocked Cry11Ba binding to A. gambiae brush border vesicles and reduced Cry11Ba toxicity in bioassays. Its binding to Cry11Ba could be completely competed off by AgCad1, but only partially competed by AgALP1. The results are evidence that AgCad2 may function as a receptor for Cry11Ba in A. gambiae larvae.
Collapse
Affiliation(s)
- Gang Hua
- Department of Entomology, University of Georgia, Athens, GA 30602-2603, USA
| | | | | | | | | | | |
Collapse
|
238
|
Abstract
Many electrical properties of insect larval guts have been studied, but their importance for toxicity of the Cry-type toxins has never been reported in the literature. In the present work, we observed potential-dependent permeabilization of plasma membrane by several polycationic peptides derived from the Cry11Bb protoxin. The peptide BTM-P1d, all D-type amino acid analogue of the earlier reported peptide BTM-P1, demonstrated high membrane-permeabilizing activity in experiments with isolated rat liver mitochondria, RBC (red blood cells) and mitochondria in homogenates of Aedes aegypti larval guts. Two larger peptides, BTM-P2 and BTM-P3, as well as the Cry11Bb protoxin treated with the protease extract of mosquito larval guts showed similar effects. Only protease-resistant BTM-P1d, in comparison with other peptides, displayed A. aegypti larval toxicity. Taking into account the potential-dependent mechanism of membrane permeabilization by studied fragments of the Cry11Bb protoxin and the literature data related to the distribution of membrane and transepithelial potentials in the A. aegypti larval midgut, we suggest an electrical hypothesis of toxicity of the Cry toxins for mosquito larvae. According to this hypothesis, the electrical field distribution is one of the factors determining the midgut region most susceptible for insertion of activated toxins into the plasma membrane to form pores. In addition, potential-dependent penetration of short active toxin fragments into the epithelial cells could induce permeabilization of mitochondria and subsequent apoptosis or necrosis.
Collapse
|
239
|
Valaitis AP, Podgwaite JD. Bacillus thuringiensis Cry1A toxin-binding glycoconjugates present on the brush border membrane and in the peritrophic membrane of the Douglas-fir tussock moth are peritrophins. J Invertebr Pathol 2013; 112:1-8. [DOI: 10.1016/j.jip.2012.10.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 09/19/2012] [Accepted: 10/18/2012] [Indexed: 10/27/2022]
|
240
|
Navarro-Cerrillo G, Hernández-Martínez P, Vogel H, Ferré J, Herrero S. A new gene superfamily of pathogen-response (repat) genes in Lepidoptera: Classification and expression analysis. Comp Biochem Physiol B Biochem Mol Biol 2013; 164:10-7. [DOI: 10.1016/j.cbpb.2012.09.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 09/21/2012] [Accepted: 09/25/2012] [Indexed: 01/17/2023]
|
241
|
Transgenic approaches to western corn rootworm control. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2013; 136:135-62. [PMID: 23604211 DOI: 10.1007/10_2013_195] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The western corn rootworm, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae) is a significant corn pest throughout the United States corn belt. Rootworm larvae feed on corn roots causing yield losses and control expenditures that are estimated to exceed US$1 billion annually. Traditional management practices to control rootworms such as chemical insecticides or crop rotation have suffered reduced effectiveness due to the development of physiological and behavioral resistance. Transgenic maize expressing insecticidal proteins are very successful in protecting against rootworm damage and preserving corn yield potential. However, the high rate of grower adoption and early reliance on hybrids expressing a single mode of action and low-dose traits threatens the durability of commercialized transgenic rootworm technology for rootworm control. A summary of current transgenic approaches for rootworm control and the corresponding insect resistance management practices is included. An overview of potential new modes of action based on insecticidal proteins, and especially RNAi targeting mRNA coding for essential insect proteins is provided.
Collapse
|
242
|
Kupferschmied P, Maurhofer M, Keel C. Promise for plant pest control: root-associated pseudomonads with insecticidal activities. FRONTIERS IN PLANT SCIENCE 2013; 4:287. [PMID: 23914197 PMCID: PMC3728486 DOI: 10.3389/fpls.2013.00287] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 07/12/2013] [Indexed: 05/20/2023]
Abstract
Insects are an important and probably the most challenging pest to control in agriculture, in particular when they feed on belowground parts of plants. The application of synthetic pesticides is problematic owing to side effects on the environment, concerns for public health and the rapid development of resistance. Entomopathogenic bacteria, notably Bacillus thuringiensis and Photorhabdus/Xenorhabdus species, are promising alternatives to chemical insecticides, for they are able to efficiently kill insects and are considered to be environmentally sound and harmless to mammals. However, they have the handicap of showing limited environmental persistence or of depending on a nematode vector for insect infection. Intriguingly, certain strains of plant root-colonizing Pseudomonas bacteria display insect pathogenicity and thus could be formulated to extend the present range of bioinsecticides for protection of plants against root-feeding insects. These entomopathogenic pseudomonads belong to a group of plant-beneficial rhizobacteria that have the remarkable ability to suppress soil-borne plant pathogens, promote plant growth, and induce systemic plant defenses. Here we review for the first time the current knowledge about the occurrence and the molecular basis of insecticidal activity in pseudomonads with an emphasis on plant-beneficial and prominent pathogenic species. We discuss how this fascinating Pseudomonas trait may be exploited for novel root-based approaches to insect control in an integrated pest management framework.
Collapse
Affiliation(s)
- Peter Kupferschmied
- Department of Fundamental Microbiology, University of LausanneLausanne, Switzerland
| | - Monika Maurhofer
- Plant Pathology, Institute of Integrative Biology, Swiss Federal Institute of Technology ZurichZurich, Switzerland
| | - Christoph Keel
- Department of Fundamental Microbiology, University of LausanneLausanne, Switzerland
- *Correspondence: Christoph Keel, Department of Fundamental Microbiology, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland e-mail:
| |
Collapse
|
243
|
Jisha VN, Smitha RB, Benjamin S. An Overview on the Crystal Toxins from <i>Bacillus thuringiensis</i>. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/aim.2013.35062] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
244
|
Zhang H, Wu S, Yang Y, Tabashnik BE, Wu Y. Non-recessive Bt toxin resistance conferred by an intracellular cadherin mutation in field-selected populations of cotton bollworm. PLoS One 2012; 7:e53418. [PMID: 23285292 PMCID: PMC3532162 DOI: 10.1371/journal.pone.0053418] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Accepted: 11/27/2012] [Indexed: 01/25/2023] Open
Abstract
Transgenic crops producing Bacillus thuringiensis (Bt) toxins have been planted widely to control insect pests, yet evolution of resistance by the pests can reduce the benefits of this approach. Recessive mutations in the extracellular domain of toxin-binding cadherin proteins that confer resistance to Bt toxin Cry1Ac by disrupting toxin binding have been reported previously in three major lepidopteran pests, including the cotton bollworm, Helicoverpa armigera. Here we report a novel allele from cotton bollworm with a deletion in the intracellular domain of cadherin that is genetically linked with non-recessive resistance to Cry1Ac. We discovered this allele in each of three field-selected populations we screened from northern China where Bt cotton producing Cry1Ac has been grown intensively. We expressed four types of cadherin alleles in heterologous cell cultures: susceptible, resistant with the intracellular domain mutation, and two complementary chimeric alleles with and without the mutation. Cells transfected with each of the four cadherin alleles bound Cry1Ac and were killed by Cry1Ac. However, relative to cells transfected with either the susceptible allele or the chimeric allele lacking the intracellular domain mutation, cells transfected with the resistant allele or the chimeric allele containing the intracellular domain mutation were less susceptible to Cry1Ac. These results suggest that the intracellular domain of cadherin is involved in post-binding events that affect toxicity of Cry1Ac. This evidence is consistent with the vital role of the intracellular region of cadherin proposed by the cell signaling model of the mode of action of Bt toxins. Considered together with previously reported data, the results suggest that both pore formation and cell signaling pathways contribute to the efficacy of Bt toxins.
Collapse
Affiliation(s)
- Haonan Zhang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Shuwen Wu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yihua Yang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Bruce E. Tabashnik
- Department of Entomology, University of Arizona, Tucson, Arizona, United States of America
| | - Yidong Wu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
245
|
Scientific Opinion updating the risk assessment conclusions and risk management recommendations on the genetically modified insect resistant maize MON 810. EFSA J 2012. [DOI: 10.2903/j.efsa.2012.3017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
246
|
Resistance evolution to the first generation of genetically modified Diabrotica-active Bt-maize events by western corn rootworm: management and monitoring considerations. Transgenic Res 2012; 22:269-99. [DOI: 10.1007/s11248-012-9657-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2012] [Accepted: 09/07/2012] [Indexed: 01/21/2023]
|