201
|
Abstract
In the recent past, epidemics and pandemics caused by viral infections have had extraordinary effects on human life, leading to severe social and financial challenges. One such event related to the outbreak of the SARS-CoV-2 virus has already taken more than 917,417 lives globally (as of September 13, 2020). The nosocomial route of viral transmission has also been playing a significant role in the community spreading of viruses. Unfortunately, none of the existing strategies are apt for preventing the spread of viral infections. In order to contain the viral transmission, the principal target would be to stop the virus from reaching the otherwise healthy individuals. Nanomaterials, due to its unique physical and chemical properties, have been used to develop novel antiviral agents. In this review, we have discussed several nanotechnological strategies that can be used as an antiviral coating to inhibit viral transmission by preventing viral entry into the host cells.
Collapse
|
202
|
Ins and Outs of Reovirus: Vesicular Trafficking in Viral Entry and Egress. Trends Microbiol 2020; 29:363-375. [PMID: 33008713 PMCID: PMC7523517 DOI: 10.1016/j.tim.2020.09.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 12/11/2022]
Abstract
Cell entry and egress are essential steps in the viral life cycle that govern pathogenesis and spread. Mammalian orthoreoviruses (reoviruses) are nonenveloped viruses implicated in human disease that serve as tractable models for studies of pathogen-host interactions. In this review we discuss the function of intracellular vesicular transport systems in reovirus entry, trafficking, and egress and comment on shared themes for diverse viruses. Designing strategic therapeutic interventions that impede these steps in viral replication requires a detailed understanding of mechanisms by which viruses coopt vesicular trafficking. We illuminate such targets, which may foster development of antiviral agents.
Collapse
|
203
|
Hwang HS, Chang M, Kim YA. Influenza-Host Interplay and Strategies for Universal Vaccine Development. Vaccines (Basel) 2020; 8:vaccines8030548. [PMID: 32962304 PMCID: PMC7564814 DOI: 10.3390/vaccines8030548] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/11/2020] [Accepted: 09/18/2020] [Indexed: 12/24/2022] Open
Abstract
Influenza is an annual epidemic and an occasional pandemic caused by pathogens that are responsible for infectious respiratory disease. Humans are highly susceptible to the infection mediated by influenza A viruses (IAV). The entry of the virus is mediated by the influenza virus hemagglutinin (HA) glycoprotein that binds to the cellular sialic acid receptors and facilitates the fusion of the viral membrane with the endosomal membrane. During IAV infection, virus-derived pathogen-associated molecular patterns (PAMPs) are recognized by host intracellular specific sensors including toll-like receptors (TLRs), C-type lectin receptors, retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs), and nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) either on the cell surface or intracellularly in endosomes. Herein, we comprehensively review the current knowledge available on the entry of the influenza virus into host cells and the molecular details of the influenza virus–host interface. We also highlight certain strategies for the development of universal influenza vaccines.
Collapse
Affiliation(s)
- Hye Suk Hwang
- Alan G. MacDiarmid Energy Research Institute, Chonnam National University, Gwangju 61186, Korea;
| | - Mincheol Chang
- Alan G. MacDiarmid Energy Research Institute, Chonnam National University, Gwangju 61186, Korea;
- Department of Polymer Engineering, Graduate School, Chonnam National University, Gwangju 61186, Korea
- School of Polymer Science and Engineering, Chonnam National University, Gwangju 61186, Korea
- Correspondence: (M.C.); (Y.A.K.); Tel.: +82-62-530-1771 (M.C.); +82-62-530-1871 (Y.A.K.)
| | - Yoong Ahm Kim
- Alan G. MacDiarmid Energy Research Institute, Chonnam National University, Gwangju 61186, Korea;
- Department of Polymer Engineering, Graduate School, Chonnam National University, Gwangju 61186, Korea
- School of Polymer Science and Engineering, Chonnam National University, Gwangju 61186, Korea
- Correspondence: (M.C.); (Y.A.K.); Tel.: +82-62-530-1771 (M.C.); +82-62-530-1871 (Y.A.K.)
| |
Collapse
|
204
|
A SARS-CoV-2 host infection model network based on genomic human Transcription Factors (TFs) depletion. Heliyon 2020; 6:e05010. [PMID: 32984567 PMCID: PMC7501776 DOI: 10.1016/j.heliyon.2020.e05010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/30/2020] [Accepted: 09/17/2020] [Indexed: 02/07/2023] Open
Abstract
In December 2019 a new beta-coronavirus was isolated and characterized by sequencing samples from pneumonia patients in Wuhan, Hubei Province, China. Coronaviruses are positive-sense RNA viruses widely distributed among different animal species and humans in which they cause respiratory, enteric, liver and neurological symptomatology. Six species of coronavirus have been described (HCoV-229E, HCoV-OC43, HCoV-NL63 and HCoV-HKU1) that cause cold-like symptoms in immunocompetent or immunocompromised subjects and two strains of sometimes fatal zoonotic origin that cause severe acute respiratory syndrome (SARS-CoV and MERS-CoV). The SARS-CoV-2 strain is the emerging seventh member of the coronavirus family, which is actually determining a global emergency. In silico analysis is a promising approach for understanding biological events in complex diseases and due to serious worldwide emergency and serious threat to global health, it is extremely important to use bioinformatics methods able to study an emerging pathogen like SARS-CoV-2. Herein, we report on in silico comparative analysis between complete genome of SARS-CoV, MERS-CoV, HCoV-OC43 and SARS-CoV-2 strains, to identify the occurrence of specific conserved motifs on viral genomic sequences which should be able to bind and therefore induce a subtraction of host's Transcription Factors (TFs) which lead to a depletion, an effect comparable to haploinsufficiency (a genetic dominant condition in which a single copy of wild-type allele at a locus, in heterozygous combination with a variant allele, is insufficient to produce the correct quantity of transcript and, therefore, of protein, for a correct standard phenotypic expression). In this competitive scenario, virus versus host, the proposed in silico protocol identified the TFs same as the distribution of TFBSs (Transcription Factor Binding Sites) on analyzed viral strains, potentially able to influence genes and pathways with biological functions confirming that this approach could brings useful insights regarding SARS-CoV-2. According to our results obtained by this in silico approach it is possible to hypothesize that TF-binding motifs could be of help in the explanation of the complex and heterogeneous clinical presentation in SARS-CoV-2 and subsequently predict possible interactions regarding metabolic pathways, and drug or target relationships.
Collapse
|
205
|
Adenovirus Receptor Expression in Cancer and Its Multifaceted Role in Oncolytic Adenovirus Therapy. Int J Mol Sci 2020; 21:ijms21186828. [PMID: 32957644 PMCID: PMC7554712 DOI: 10.3390/ijms21186828] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023] Open
Abstract
Oncolytic adenovirus therapy is believed to be a promising way to treat cancer patients. To be able to target tumor cells with an oncolytic adenovirus, expression of the adenovirus receptor on the tumor cell is essential. Different adenovirus types bind to different receptors on the cell, of which the expression can vary between tumor types. Pre-existing neutralizing immunity to human adenovirus species C type 5 (HAdV-C5) has hampered its therapeutic efficacy in clinical trials, hence several adenoviral vectors from different species are currently being developed as a means to evade pre-existing immunity. Therefore, knowledge on the expression of appropriate adenovirus receptors on tumor cells is important. This could aid in determining which tumor types would benefit most from treatment with a certain oncolytic adenovirus type. This review provides an overview of the known receptors for human adenoviruses and how their expression on tumor cells might be differentially regulated compared to healthy tissue, before and after standardized anticancer treatments. Mechanisms behind the up- or downregulation of adenovirus receptor expression are discussed, which could be used to find new targets for combination therapy to enhance the efficacy of oncolytic adenovirus therapy. Additionally, the utility of the adenovirus receptors in oncolytic virotherapy is examined, including their role in viral spread, which might even surpass their function as primary entry receptors. Finally, future directions are offered regarding the selection of adenovirus types to be used in oncolytic adenovirus therapy in the fight against cancer.
Collapse
|
206
|
Costa LB, Perez LG, Palmeira VA, Macedo e Cordeiro T, Ribeiro VT, Lanza K, Simões e Silva AC. Insights on SARS-CoV-2 Molecular Interactions With the Renin-Angiotensin System. Front Cell Dev Biol 2020; 8:559841. [PMID: 33042994 PMCID: PMC7525006 DOI: 10.3389/fcell.2020.559841] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/25/2020] [Indexed: 12/15/2022] Open
Abstract
The emergence of SARS-CoV-2/human/Wuhan/X1/2019, a virus belonging to the species Severe acute respiratory syndrome-related coronavirus, and the recognition of Coronavirus Disease 2019 (COVID-19) as a pandemic have highly increased the scientific research regarding the pathogenesis of COVID-19. The Renin Angiotensin System (RAS) seems to be involved in COVID-19 natural course, since studies suggest the membrane-bound Angiotensin-converting enzyme 2 (ACE2) works as SARS-CoV-2 cellular receptor. Besides the efforts of the scientific community to understand the virus' molecular interactions with human cells, few studies summarize what has been so far discovered about SARS-CoV-2 signaling mechanisms and its interactions with RAS molecules. This review aims to discuss possible SARS-CoV-2 intracellular signaling pathways, cell entry mechanism and the possible consequences of the interaction with RAS components, including Angiotensin II (Ang II), Angiotensin-(1-7) [Ang-(1-7)], Angiotensin-converting enzyme (ACE), ACE2, Angiotensin II receptor type-1 (AT1), and Mas Receptor. We also discuss ongoing clinical trials and treatment based on RAS cascade intervention. Data were obtained independently by the two authors who carried out a search in the PubMed, Embase, LILACS, Cochrane, Scopus, SciELO and the National Institute of Health databases using Medical Subject Heading terms as "SARS-CoV-2," "COVID-19," "Renin Angiotensin System," "ACE2," "Angiotensin II," "Angiotensin-(1-7)," and "AT1 receptor." Similarly to other members of Coronaviridae family, the molecular interactions between the pathogen and the membrane-bound ACE2 are based on the cleavage of the spike glycoprotein (S) in two subunits. Following the binding of the S1 receptor-binding domain (RBD) to ACE2, transmembrane protease/serine subfamily 2 (TMPRSS2) cleaves the S2 domain to facilitate membrane fusion. It is very likely that SARS-CoV-2 cell entry results in downregulation of membrane-bound ACE2, an enzyme that converts Ang II into Ang-(1-7). This mechanism can result in lung injury and vasoconstriction. In addition, Ang II activates pro-inflammatory cascades when binding to the AT1 Receptor. On the other hand, Ang-(1-7) promotes anti-inflammatory effects through its interactions with the Mas Receptor. These molecules might be possible therapeutic targets for treating COVID-19. Thus, the understanding of SARS-CoV-2 intracellular pathways and interactions with the RAS may clarify COVID-19 physiopathology and open perspectives for new treatments and strategies.
Collapse
|
207
|
Broad host range of SARS-CoV-2 predicted by comparative and structural analysis of ACE2 in vertebrates. Proc Natl Acad Sci U S A 2020. [DOI: 10.1073/pnas.2010146117 'a=0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Significance
The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of COVID-19, a major pandemic that threatens millions of human lives and the global economy. We identified a large number of mammals that can potentially be infected by SARS-CoV-2 via their ACE2 proteins. This can assist the identification of intermediate hosts for SARS-CoV-2 and hence reduce the opportunity for a future outbreak of COVID-19. Among the species we found with the highest risk for SARS-CoV-2 infection are wildlife and endangered species. These species represent an opportunity for spillover of SARS-CoV-2 from humans to other susceptible animals. Given the limited infectivity data for the species studied, we urge caution not to overinterpret the predictions of the present study.
Collapse
|
208
|
Damas J, Hughes GM, Keough KC, Painter CA, Persky NS, Corbo M, Hiller M, Koepfli KP, Pfenning AR, Zhao H, Genereux DP, Swofford R, Pollard KS, Ryder OA, Nweeia MT, Lindblad-Toh K, Teeling EC, Karlsson EK, Lewin HA. Broad host range of SARS-CoV-2 predicted by comparative and structural analysis of ACE2 in vertebrates. Proc Natl Acad Sci U S A 2020; 117:22311-22322. [PMID: 32826334 PMCID: PMC7486773 DOI: 10.1073/pnas.2010146117] [Citation(s) in RCA: 447] [Impact Index Per Article: 89.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of COVID-19. The main receptor of SARS-CoV-2, angiotensin I converting enzyme 2 (ACE2), is now undergoing extensive scrutiny to understand the routes of transmission and sensitivity in different species. Here, we utilized a unique dataset of ACE2 sequences from 410 vertebrate species, including 252 mammals, to study the conservation of ACE2 and its potential to be used as a receptor by SARS-CoV-2. We designed a five-category binding score based on the conservation properties of 25 amino acids important for the binding between ACE2 and the SARS-CoV-2 spike protein. Only mammals fell into the medium to very high categories and only catarrhine primates into the very high category, suggesting that they are at high risk for SARS-CoV-2 infection. We employed a protein structural analysis to qualitatively assess whether amino acid changes at variable residues would be likely to disrupt ACE2/SARS-CoV-2 spike protein binding and found the number of predicted unfavorable changes significantly correlated with the binding score. Extending this analysis to human population data, we found only rare (frequency <0.001) variants in 10/25 binding sites. In addition, we found significant signals of selection and accelerated evolution in the ACE2 coding sequence across all mammals, and specific to the bat lineage. Our results, if confirmed by additional experimental data, may lead to the identification of intermediate host species for SARS-CoV-2, guide the selection of animal models of COVID-19, and assist the conservation of animals both in native habitats and in human care.
Collapse
Affiliation(s)
- Joana Damas
- The Genome Center, University of California, Davis, CA 95616
| | - Graham M Hughes
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Kathleen C Keough
- Graduate Program in Pharmaceutical Sciences and Pharmacogenomics, Quantitative Biosciences Consortium, University of California, San Francisco, CA 94117
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA 94158
| | - Corrie A Painter
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Nicole S Persky
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Marco Corbo
- The Genome Center, University of California, Davis, CA 95616
| | - Michael Hiller
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
- Center for Systems Biology Dresden, 01307 Dresden, Germany
| | - Klaus-Peter Koepfli
- Center for Species Survival, Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, VA 22630
| | - Andreas R Pfenning
- Department of Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Huabin Zhao
- Department of Ecology, Tibetan Centre for Ecology and Conservation at WHU-TU, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
- College of Science, Tibet University, Lhasa 850000, China
| | | | - Ross Swofford
- Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Katherine S Pollard
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA 94158
- Department of Epidemiology & Biostatistics, Institute for Computational Health Sciences, and Institute for Human Genetics, University of California, San Francisco, CA 94158
- Chan Zuckerberg Biohub, San Francisco, CA 94158
| | - Oliver A Ryder
- San Diego Zoo Institute for Conservation Research, Escondido, CA 92027
- Department of Evolution, Behavior, and Ecology, Division of Biology, University of California San Diego, La Jolla, CA 92093
| | - Martin T Nweeia
- Department of Restorative Dentistry and Biomaterials Sciences, Harvard School of Dental Medicine, Boston, MA 02115
- School of Dental Medicine, Case Western Reserve University, Cleveland, OH 44106
- Marine Mammal Program, Department of Vertebrate Zoology, Smithsonian Institution, Washington, DC 20002
| | - Kerstin Lindblad-Toh
- Broad Institute of MIT and Harvard, Cambridge, MA 02142
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, 751 23 Uppsala, Sweden
| | - Emma C Teeling
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Elinor K Karlsson
- Broad Institute of MIT and Harvard, Cambridge, MA 02142
- Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01655
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655
| | - Harris A Lewin
- The Genome Center, University of California, Davis, CA 95616;
- Department of Evolution and Ecology, University of California, Davis, CA 95616
- John Muir Institute for the Environment, University of California, Davis, CA 95616
| |
Collapse
|
209
|
Wielgat P, Rogowski K, Godlewska K, Car H. Coronaviruses: Is Sialic Acid a Gate to the Eye of Cytokine Storm? From the Entry to the Effects. Cells 2020; 9:E1963. [PMID: 32854433 PMCID: PMC7564400 DOI: 10.3390/cells9091963] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 08/24/2020] [Indexed: 12/16/2022] Open
Abstract
Coronaviruses (CoVs) are a diverse family of the enveloped human and animal viruses reported as causative agents for respiratory and intestinal infections. The high pathogenic potential of human CoVs, including SARS-CoV, MERS-CoV and SARS-CoV-2, is closely related to the invasion mechanisms underlying the attachment and entry of viral particles to the host cells. There is increasing evidence that sialylated compounds of cellular glycocalyx can serve as an important factor in the mechanism of CoVs infection. Additionally, the sialic acid-mediated cross-reactivity with the host immune lectins is known to exert the immune response of different intensity in selected pathological stages. Here, we focus on the last findings in the field of glycobiology in the context of the role of sialic acid in tissue tropism, viral entry kinetics and immune regulation in the CoVs infections.
Collapse
Affiliation(s)
- Przemyslaw Wielgat
- Department of Clinical Pharmacology, Medical University of Bialystok, Waszyngtona 15A, 15274 Bialystok, Poland;
| | - Karol Rogowski
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15295 Bialystok, Poland;
| | - Katarzyna Godlewska
- Department of Haematology, Medical University of Bialystok, M. Sklodowskiej-Curie 24A, 15276 Bialystok, Poland;
| | - Halina Car
- Department of Clinical Pharmacology, Medical University of Bialystok, Waszyngtona 15A, 15274 Bialystok, Poland;
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15295 Bialystok, Poland;
| |
Collapse
|
210
|
Amraei R, Rahimi N. COVID-19, Renin-Angiotensin System and Endothelial Dysfunction. Cells 2020; 9:E1652. [PMID: 32660065 PMCID: PMC7407648 DOI: 10.3390/cells9071652] [Citation(s) in RCA: 192] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/04/2020] [Accepted: 07/07/2020] [Indexed: 01/08/2023] Open
Abstract
The newly emergent novel coronavirus disease 2019 (COVID-19) outbreak, which is caused by SARS-CoV-2 virus, has posed a serious threat to global public health and caused worldwide social and economic breakdown. Angiotensin-converting enzyme 2 (ACE2) is expressed in human vascular endothelium, respiratory epithelium, and other cell types, and is thought to be a primary mechanism of SARS-CoV-2 entry and infection. In physiological condition, ACE2 via its carboxypeptidase activity generates angiotensin fragments (Ang 1-9 and Ang 1-7), and plays an essential role in the renin-angiotensin system (RAS), which is a critical regulator of cardiovascular homeostasis. SARS-CoV-2 via its surface spike glycoprotein interacts with ACE2 and invades the host cells. Once inside the host cells, SARS-CoV-2 induces acute respiratory distress syndrome (ARDS), stimulates immune response (i.e., cytokine storm) and vascular damage. SARS-CoV-2 induced endothelial cell injury could exacerbate endothelial dysfunction, which is a hallmark of aging, hypertension, and obesity, leading to further complications. The pathophysiology of endothelial dysfunction and injury offers insights into COVID-19 associated mortality. Here we reviewed the molecular basis of SARS-CoV-2 infection, the roles of ACE2, RAS signaling, and a possible link between the pre-existing endothelial dysfunction and SARS-CoV-2 induced endothelial injury in COVID-19 associated mortality. We also surveyed the roles of cell adhesion molecules (CAMs), including CD209L/L-SIGN and CD209/DC-SIGN in SARS-CoV-2 infection and other related viruses. Understanding the molecular mechanisms of infection, the vascular damage caused by SARS-CoV-2 and pathways involved in the regulation of endothelial dysfunction could lead to new therapeutic strategies against COVID-19.
Collapse
Affiliation(s)
- Razie Amraei
- Department of Pathology, School of Medicine, Boston University Medical Campus, Boston, MA 02118, USA
| | - Nader Rahimi
- Department of Pathology, School of Medicine, Boston University Medical Campus, Boston, MA 02118, USA
| |
Collapse
|
211
|
Hensel A, Bauer R, Heinrich M, Spiegler V, Kayser O, Hempel G, Kraft K. Challenges at the Time of COVID-19: Opportunities and Innovations in Antivirals from Nature. PLANTA MEDICA 2020; 86:659-664. [PMID: 32434254 PMCID: PMC7356065 DOI: 10.1055/a-1177-4396] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/05/2020] [Accepted: 05/13/2020] [Indexed: 05/03/2023]
Abstract
As viral infections are an increasing threat to human societies, the need for new therapeutic strategies is becoming even more obvious. As no vaccine is available for COVID-19, the development of directly acting antiviral agents and preventive strategies have to be considered. Nature provides a huge reservoir of anti-infectious compounds, from which we can deduce innovative ideas, therapies, and products. Anti-adhesive natural products interact with the receptor-mediated recognition and early interaction of viruses with the host cells, leading to a reduced internalisation of the virus and reduced infections (e.g., procyanidin-B-2-di-O-gallate against influenza and herpes virus). Lignans like podophyllotoxin and bicyclol show strong antiviral activities against different viruses, and essential oils can directly interact with viral membranes and reduce the host's inflammatory responses (e.g., 1,8-cineol). Echinacea extracts stimulate the immune system, and bioavailable alkamides are key players by interacting with immunomodulating cannabinoid receptors. COVID-19 and SARS-CoV-2 infections have, in part, successfully been treated in China by preparations from traditional Chinese medicine and, while it is too early to draw conclusions, some promising data are available. There is huge potential, but intensified research is needed to develop evidence-based medicines with a clearly defined chemical profile. Intensified research and development, and therefore funding, are needed for exploiting nature's reservoir against viral infections. Combined action for basic research, chemistry, pharmacognosy, virology, and clinical studies, but also supply chain, sustainable sourcing, and economic aspects have to be considered. This review calls for intensified innovative science on natural products for the patients and for a healthier world!
Collapse
Affiliation(s)
- Andreas Hensel
- Institute of Pharmaceutical Biology and Phytochemistry, University of Münster, Münster, Germany
| | - Rudolf Bauer
- Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria
| | - Michael Heinrich
- Pharmacognosy and Phytotherapy, UCL School of Pharmacy, London, UK
| | - Verena Spiegler
- Institute of Pharmaceutical Biology and Phytochemistry, University of Münster, Münster, Germany
| | - Oliver Kayser
- Technical Biochemistry, TU Dortmund University, Dortmund, Germany
| | - Georg Hempel
- Institute of Pharmaceutical and Medical Chemistry, Clinical Pharmacy, University of Münster, Münster, Germany
| | - Karin Kraft
- University Medicine Rostock, Chair of Complementary Medicine, Rostock, Germany
| |
Collapse
|
212
|
Gaunkar RB, Nagarsekar A, Carvalho KM, Jodalli PS, Mascarenhas K. COVID-19 in Smokeless Tobacco Habitués: Increased Susceptibility and Transmission. Cureus 2020; 12:e8824. [PMID: 32742838 PMCID: PMC7384704 DOI: 10.7759/cureus.8824] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 06/25/2020] [Indexed: 12/15/2022] Open
Abstract
As the coronavirus disease (COVID-19) pandemic continues to sweep across the globe, the world is responding by implementing public awareness campaigns, social distancing measures, and other preventive strategies to arrest the spread of this lethal disease. Infection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exacts a heavy toll on patients with existing comorbidities. Smokeless tobacco (SLT) consumption is of particular concern in countries in South Asia with high population densities, as it facilitates exposure to SARS-CoV-2 within or between communities by the act of public spitting. Salivary droplets generated in this act are a potential threat because they can transmit this airborne infection. Moreover, large gatherings at tobacco retail outlets, frequent hand-to-mouth contact, and sharing of apparatus by SLT habitués could also aid in increasing the spread of SARS-CoV-2. SLT-induced higher expression of angiotensin-converting enzyme 2 receptors along with the presence of furin in the oral mucosa and dysfunctional immune responses among SLT habitués increase viral dissemination and an individual's susceptibility to COVID-19. Issuing rigorous regulations to restrict the use of various forms of SLT products and the obnoxious act of spitting in public can assist in arresting the spread of COVID-19. Widespread education campaigns enlightening the community regarding the adverse effects of SLT consumption and its relationship with COVID-19, along with providing effective assistance to quit for those who are addicted, would decrease the spread of COVID-19.
Collapse
Affiliation(s)
| | | | - Karla M Carvalho
- Oral and Maxillofacial Pathology, Goa Dental College and Hospital, Goa, IND
| | - Praveen S Jodalli
- Public Health Dentistry, Yenepoya Dental College and Hospital, Mangalore, IND
| | | |
Collapse
|
213
|
Xu R, Cui B, Duan X, Zhang P, Zhou X, Yuan Q. Saliva: potential diagnostic value and transmission of 2019-nCoV. Int J Oral Sci 2020; 12:11. [PMID: 32300101 PMCID: PMC7162686 DOI: 10.1038/s41368-020-0080-z] [Citation(s) in RCA: 212] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 02/05/2023] Open
Abstract
2019-nCoV epidemic was firstly reported at late December of 2019 and has caused a global outbreak of COVID-19 now. Saliva, a biofluid largely generated from salivary glands in oral cavity, has been reported 2019-nCoV nucleic acid positive. Besides lungs, salivary glands and tongue are possibly another hosts of 2019-nCoV due to expression of ACE2. Close contact or short-range transmission of infectious saliva droplets is a primary mode for 2019-nCoV to disseminate as claimed by WHO, while long-distance saliva aerosol transmission is highly environment dependent within indoor space with aerosol-generating procedures such as dental practice. So far, no direct evidence has been found that 2019-nCoV is vital in air flow for long time. Therefore, to prevent formation of infectious saliva droplets, to thoroughly disinfect indoor air and to block acquisition of saliva droplets could slow down 2019-nCoV dissemination. This review summarizes diagnostic value of saliva for 2019-nCoV, possibly direct invasion into oral tissues, and close contact transmission of 2019-nCoV by saliva droplets, expecting to contribute to 2019-nCoV epidemic control.
Collapse
Affiliation(s)
- Ruoshi Xu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bomiao Cui
- State Key Laboratory of Oral Diseases & Human Saliva Laboratory & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaobo Duan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ping Zhang
- State Key Laboratory of Oral Diseases & Human Saliva Laboratory & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases & Human Saliva Laboratory & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Quan Yuan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
214
|
Haga K, Ettayebi K, Tenge VR, Karandikar UC, Lewis MA, Lin SC, Neill FH, Ayyar BV, Zeng XL, Larson G, Ramani S, Atmar RL, Estes MK. Genetic Manipulation of Human Intestinal Enteroids Demonstrates the Necessity of a Functional Fucosyltransferase 2 Gene for Secretor-Dependent Human Norovirus Infection. mBio 2020; 11:e00251-20. [PMID: 32184242 PMCID: PMC7078471 DOI: 10.1128/mbio.00251-20] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 02/12/2020] [Indexed: 02/01/2023] Open
Abstract
Human noroviruses (HuNoVs) are the leading cause of nonbacterial gastroenteritis worldwide. Histo-blood group antigen (HBGA) expression is an important susceptibility factor for HuNoV infection based on controlled human infection models and epidemiologic studies that show an association of secretor status with infection caused by several genotypes. The fucosyltransferase 2 gene (FUT2) affects HBGA expression in intestinal epithelial cells; secretors express a functional FUT2 enzyme, while nonsecretors lack this enzyme and are highly resistant to infection and gastroenteritis caused by many HuNoV strains. These epidemiologic associations are confirmed by infections in stem cell-derived human intestinal enteroid (HIE) cultures. GII.4 HuNoV does not replicate in HIE cultures derived from nonsecretor individuals, while HIEs from secretors are permissive to infection. However, whether FUT2 expression alone is critical for infection remains unproven, since routinely used secretor-positive transformed cell lines are resistant to HuNoV replication. To evaluate the role of FUT2 in HuNoV replication, we used CRISPR or overexpression to genetically manipulate FUT2 gene function to produce isogenic HIE lines with or without FUT2 expression. We show that FUT2 expression alone affects both HuNoV binding to the HIE cell surface and susceptibility to HuNoV infection. These findings indicate that initial binding to a molecule(s) glycosylated by FUT2 is critical for HuNoV infection and that the HuNoV receptor is present in nonsecretor HIEs. In addition to HuNoV studies, these isogenic HIE lines will be useful tools to study other enteric microbes where infection and/or disease outcome is associated with secretor status.IMPORTANCE Several studies have demonstrated that secretor status is associated with susceptibility to human norovirus (HuNoV) infection; however, previous reports found that FUT2 expression is not sufficient to allow infection with HuNoV in a variety of continuous laboratory cell lines. Which cellular factor(s) regulates susceptibility to HuNoV infection remains unknown. We used genetic manipulation of HIE cultures to show that secretor status determined by FUT2 gene expression is necessary and sufficient to support HuNoV replication based on analyses of isogenic lines that lack or express FUT2. Fucosylation of HBGAs is critical for initial binding and for modification of another putative receptor(s) in HIEs needed for virus uptake or uncoating and necessary for successful infection by GI.1 and several GII HuNoV strains.
Collapse
Affiliation(s)
- Kei Haga
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Khalil Ettayebi
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Victoria R Tenge
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Umesh C Karandikar
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Miranda A Lewis
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Shih-Ching Lin
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Frederick H Neill
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - B Vijayalakshmi Ayyar
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Xi-Lei Zeng
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Göran Larson
- Department of Laboratory Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Sasirekha Ramani
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Robert L Atmar
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Mary K Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
215
|
Abstract
Viruses are ubiquitous parasites of cellular life and the most abundant biological entities on Earth. It is widely accepted that viruses are polyphyletic, but a consensus scenario for their ultimate origin is still lacking. Traditionally, three scenarios for the origin of viruses have been considered: descent from primordial, precellular genetic elements, reductive evolution from cellular ancestors and escape of genes from cellular hosts, achieving partial replicative autonomy and becoming parasitic genetic elements. These classical scenarios give different timelines for the origin(s) of viruses and do not explain the provenance of the two key functional modules that are responsible, respectively, for viral genome replication and virion morphogenesis. Here, we outline a 'chimeric' scenario under which different types of primordial, selfish replicons gave rise to viruses by recruiting host proteins for virion formation. We also propose that new groups of viruses have repeatedly emerged at all stages of the evolution of life, often through the displacement of ancestral structural and genome replication genes.
Collapse
|
216
|
Chen SL, Liu YG, Zhou YT, Zhao P, Ren H, Xiao M, Zhu YZ, Qi ZT. Endophilin-A2-mediated endocytic pathway is critical for enterovirus 71 entry into caco-2 cells. Emerg Microbes Infect 2019; 8:773-786. [PMID: 31132962 PMCID: PMC6542187 DOI: 10.1080/22221751.2019.1618686] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Enterovirus 71 (EV71) is typically transmitted by the oral-faecal route and initiates infection upon crossing the intestinal mucosa. Our limited understanding of the mechanisms by which it crosses the intestinal mucosa has hampered the development of effective therapeutic options. Here, using an RNA interference screen combined with chemical inhibitors or the overexpression of dominant negative proteins, we found that EV71 entry into Caco-2 cells, a polarized human intestinal epithelial cell line, does not involve clathrin- and caveolae-dependent endocytic pathways or macropinocytosis but requires GTP-binding protein dynamin 2 and cytoskeleton remodelling. The use of siRNAs targeting endophilin family members revealed that endophlin-A2 is essential for the uptake of EV71 particles by Caco-2 cells. Subcellular analysis revealed that internalized EV71 virions largely colocalized with endophilin-A2 at cytomembrane ruffles and in the perinuclear area. Combined with viral entry kinetics, these data suggest that EV71 enters Caco-2 cells mainly via an endophilin-A2-mediated endocytic (EME) pathway. Finally, we showed that internalized EV71 virions were transported to endosomal sorting complex required for transport (ESCRT)-related multivesicular bodies (MVBs). These data provide attractive therapeutic targets to block EV71 infection.
Collapse
Affiliation(s)
- Sheng-Lin Chen
- a Department of Microbiology, Shanghai Key Laboratory of Medical Biodefense , Second Military Medical University Shanghai , People's Republic of China.,b General Hospital of the Tibet Military Area Command , Tibet , People's Republic of China
| | - Yan-Gang Liu
- a Department of Microbiology, Shanghai Key Laboratory of Medical Biodefense , Second Military Medical University Shanghai , People's Republic of China
| | - Yong-Tao Zhou
- a Department of Microbiology, Shanghai Key Laboratory of Medical Biodefense , Second Military Medical University Shanghai , People's Republic of China.,c Company 7, Department of Clinical Medicine , Second Military Medical University Shanghai , People's Republic of China
| | - Ping Zhao
- a Department of Microbiology, Shanghai Key Laboratory of Medical Biodefense , Second Military Medical University Shanghai , People's Republic of China
| | - Hao Ren
- a Department of Microbiology, Shanghai Key Laboratory of Medical Biodefense , Second Military Medical University Shanghai , People's Republic of China
| | - Man Xiao
- b General Hospital of the Tibet Military Area Command , Tibet , People's Republic of China
| | - Yong-Zhe Zhu
- a Department of Microbiology, Shanghai Key Laboratory of Medical Biodefense , Second Military Medical University Shanghai , People's Republic of China
| | - Zhong-Tian Qi
- a Department of Microbiology, Shanghai Key Laboratory of Medical Biodefense , Second Military Medical University Shanghai , People's Republic of China
| |
Collapse
|
217
|
Ke F, Wang ZH, Ming CY, Zhang QY. Ranaviruses Bind Cells from Different Species through Interaction with Heparan Sulfate. Viruses 2019; 11:v11070593. [PMID: 31261956 PMCID: PMC6669447 DOI: 10.3390/v11070593] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/25/2019] [Accepted: 06/28/2019] [Indexed: 11/16/2022] Open
Abstract
Ranavirus cross-species infections have been documented, but the viral proteins involved in the interaction with cell receptors have not yet been identified. Here, viral cell-binding proteins and their cognate cellular receptors were investigated using two ranaviruses, Andrias davidianus ranavirus (ADRV) and Rana grylio virus (RGV), and two different cell lines, Chinese giant salamander thymus cells (GSTC) and Epithelioma papulosum cyprinid (EPC) cells. The heparan sulfate (HS) analog heparin inhibited plaque formation of ADRV and RGV in the two cell lines by more than 80% at a concentration of 5 μg/mL. In addition, enzymatic removal of cell surface HS by heparinase I markedly reduced plaque formation by both viruses and competition with heparin reduced virus-cell binding. These results indicate that cell surface HS is involved in ADRV and RGV cell binding and infection. Furthermore, recombinant viral envelope proteins ADRV-58L and RGV-53R bound heparin-Sepharose beads implying the potential that cell surface HS is involved in the initial interaction between ranaviruses and susceptible host cells. To our knowledge, this is the first report identifying cell surface HS as ranavirus binding factor and furthers understanding of interactions between ranaviruses and host cells.
Collapse
Affiliation(s)
- Fei Ke
- State Key Laboratory of Freshwater Ecology and Biotechnology, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- College of Modern Agriculture Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zi-Hao Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Cheng-Yue Ming
- State Key Laboratory of Freshwater Ecology and Biotechnology, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Qi-Ya Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
- College of Modern Agriculture Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
218
|
Nikitina E, Larionova I, Choinzonov E, Kzhyshkowska J. Monocytes and Macrophages as Viral Targets and Reservoirs. Int J Mol Sci 2018; 19:E2821. [PMID: 30231586 PMCID: PMC6163364 DOI: 10.3390/ijms19092821] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/10/2018] [Accepted: 09/14/2018] [Indexed: 02/07/2023] Open
Abstract
Viruses manipulate cell biology to utilize monocytes/macrophages as vessels for dissemination, long-term persistence within tissues and virus replication. Viruses enter cells through endocytosis, phagocytosis, macropinocytosis or membrane fusion. These processes play important roles in the mechanisms contributing to the pathogenesis of these agents and in establishing viral genome persistence and latency. Upon viral infection, monocytes respond with an elevated expression of proinflammatory signalling molecules and antiviral responses, as is shown in the case of the influenza, Chikungunya, human herpes and Zika viruses. Human immunodeficiency virus initiates acute inflammation on site during the early stages of infection but there is a shift of M1 to M2 at the later stages of infection. Cytomegalovirus creates a balance between pro- and anti-inflammatory processes by inducing a specific phenotype within the M1/M2 continuum. Despite facilitating inflammation, infected macrophages generally display abolished apoptosis and restricted cytopathic effect, which sustains the virus production. The majority of viruses discussed in this review employ monocytes/macrophages as a repository but certain viruses use these cells for productive replication. This review focuses on viral adaptations to enter monocytes/macrophages, immune escape, reprogramming of infected cells and the response of the host cells.
Collapse
Affiliation(s)
- Ekaterina Nikitina
- Department of Episomal-Persistent DNA in Cancer- and Chronic Diseases, German Cancer Research Center, 69120 Heidelberg, Germany.
- Department of Oncovirology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634050, Russia.
- Department of Translational Cellular and Molecular Biomedicine, Tomsk State University, Tomsk 634050, Russia.
| | - Irina Larionova
- Department of Translational Cellular and Molecular Biomedicine, Tomsk State University, Tomsk 634050, Russia.
- Department of Molecular Oncology and Immunology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634050, Russia.
| | - Evgeniy Choinzonov
- Head and Neck Department, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634050, Russia.
| | - Julia Kzhyshkowska
- Department of Translational Cellular and Molecular Biomedicine, Tomsk State University, Tomsk 634050, Russia.
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, 68167 Heidelberg, Germany.
| |
Collapse
|
219
|
Affiliation(s)
- Pierre-Yves Lozach
- CellNetworks-Cluster of Excellence and Center for Integrative Infectious Disease Research, University Hospital Heidelberg, Heidelberg, Germany.
| |
Collapse
|