201
|
Szigety KM, Liu F, Yuan CY, Moran DJ, Horrell J, Gochnauer HR, Cohen RN, Katz JP, Kaestner KH, Seykora JT, Tobias JW, Lazar MA, Xu M, Millar SE. HDAC3 ensures stepwise epidermal stratification via NCoR/SMRT-reliant mechanisms independent of its histone deacetylase activity. Genes Dev 2020; 34:973-988. [PMID: 32467224 PMCID: PMC7328513 DOI: 10.1101/gad.333674.119] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 04/23/2020] [Indexed: 12/12/2022]
Abstract
Here, Szigety et al. investigated the function of histone deacetylases in epidermal development, and they found that HDAC3 operates in conjunction with KLF4 to repress inappropriate expression of Tgm1, Krt16, and Aqp3, and suppresses expression of inflammatory cytokines through a Rela-dependent mechanism. Their data identify HDAC3 as a hub coordinating multiple aspects of epidermal barrier acquisition. Chromatin modifiers play critical roles in epidermal development, but the functions of histone deacetylases in this context are poorly understood. The class I HDAC, HDAC3, is of particular interest because it plays divergent roles in different tissues by partnering with tissue-specific transcription factors. We found that HDAC3 is expressed broadly in embryonic epidermis and is required for its orderly stepwise stratification. HDAC3 protein stability in vivo relies on NCoR and SMRT, which function redundantly in epidermal development. However, point mutations in the NCoR and SMRT deacetylase-activating domains, which are required for HDAC3's enzymatic function, permit normal stratification, indicating that HDAC3's roles in this context are largely independent of its histone deacetylase activity. HDAC3-bound sites are significantly enriched for predicted binding motifs for critical epidermal transcription factors including AP1, GRHL, and KLF family members. Our results suggest that among these, HDAC3 operates in conjunction with KLF4 to repress inappropriate expression of Tgm1, Krt16, and Aqp3. In parallel, HDAC3 suppresses expression of inflammatory cytokines through a Rela-dependent mechanism. These data identify HDAC3 as a hub coordinating multiple aspects of epidermal barrier acquisition.
Collapse
Affiliation(s)
- Katherine M Szigety
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Fang Liu
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Chase Y Yuan
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Deborah J Moran
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Jeremy Horrell
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Heather R Gochnauer
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Ronald N Cohen
- Section of Endocrinology, Diabetes, and Metabolism, University of Chicago, Chicago, Illinois 60637, USA
| | - Jonathan P Katz
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Klaus H Kaestner
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - John T Seykora
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - John W Tobias
- Penn Genomic Analysis Core, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Mitchell A Lazar
- Institute for Diabetes, Obesity, and Metabolism, Division of Endocrinology, Diabetes, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Mingang Xu
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA.,Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Sarah E Millar
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA.,Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA.,Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| |
Collapse
|
202
|
Stephens GS, Fu CH, St Romain CP, Zheng Y, Botterill JJ, Scharfman HE, Liu Y, Chin J. Genes Bound by ΔFosB in Different Conditions With Recurrent Seizures Regulate Similar Neuronal Functions. Front Neurosci 2020; 14:472. [PMID: 32536852 PMCID: PMC7268090 DOI: 10.3389/fnins.2020.00472] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/16/2020] [Indexed: 12/02/2022] Open
Abstract
Seizure incidence is increased in Alzheimer’s disease (AD) patients and mouse models, and treatment with the antiseizure drug levetiracetam improves cognition. We reported that one mechanism by which seizures can exert persistent effects on cognition is through accumulation of ΔFosB, a transcription factor with a long half-life. Even the infrequent seizures that spontaneously occur in transgenic mice expressing human amyloid precursor protein (APP) lead to persistent increases in ΔFosB in the hippocampus, similar to what we observed in patients with AD or temporal lobe epilepsy. ΔFosB epigenetically regulates expression of target genes, however, whether ΔFosB targets the same genes when induced by seizures in different neurological conditions is not clear. We performed ChIP-sequencing to assess the repertoire of ΔFosB target genes in APP mice and in pilocarpine-treated wildtype mice (Pilo mice), a pharmacological model of epilepsy. These mouse models allowed us to compare AD, in which seizures occur in the context of high levels of amyloid beta, and epilepsy, in which recurrent seizures occur without AD-specific pathophysiology. Network profiling of genes bound by ΔFosB in APP mice, Pilo mice, and respective control mice revealed that functional domains modulated by ΔFosB in the hippocampus are expanded and diversified in APP and Pilo mice (vs. respective controls). Domains of interest in both disease contexts involved neuronal excitability and neurotransmission, neurogenesis, chromatin remodeling, and cellular stress and neuroinflammation. To assess the gene targets bound by ΔFosB regardless of seizure etiology, we focused on 442 genes with significant ΔFosB binding in both APP and Pilo mice (vs. respective controls). Functional analyses identified pathways that regulate membrane potential, glutamatergic signaling, calcium homeostasis, complement activation, neuron-glia population maintenance, and chromatin dynamics. RNA-sequencing and qPCR measurements in independent mice detected altered expression of several ΔFosB targets shared in APP and Pilo mice. Our findings indicate that seizure-induced ΔFosB can bind genes in patterns that depend on seizure etiology, but can bind other genes regardless of seizure etiology. Understanding the factors that underlie these differences, such as chromatin accessibility and/or abundance of co-factors, could reveal novel insights into the control of gene expression in disorders with recurrent seizures.
Collapse
Affiliation(s)
- Gabriel S Stephens
- Memory and Brain Research Center, Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Chia-Hsuan Fu
- Memory and Brain Research Center, Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Corey P St Romain
- Memory and Brain Research Center, Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Yi Zheng
- Memory and Brain Research Center, Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Justin J Botterill
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
| | - Helen E Scharfman
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States.,Departments of Child & Adolescent Psychiatry, Neuroscience & Physiology, and Psychiatry, New York University Neuroscience Institute, New York University Langone Health, New York, NY, United States
| | - Yin Liu
- Department of Neurobiology and Anatomy, University of Texas Medical School at Houston, Houston, TX, United States
| | - Jeannie Chin
- Memory and Brain Research Center, Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
203
|
Lazar JE, Stehling-Sun S, Nandakumar V, Wang H, Chee DR, Howard NP, Acosta R, Dunn D, Diegel M, Neri F, Castillo A, Ibarrientos S, Lee K, Lescano N, Van Biber B, Nelson J, Halow J, Sandstrom R, Bates D, Urnov FD, Stamatoyannopoulos JA, Funnell APW. Global Regulatory DNA Potentiation by SMARCA4 Propagates to Selective Gene Expression Programs via Domain-Level Remodeling. Cell Rep 2020; 31:107676. [PMID: 32460018 DOI: 10.1016/j.celrep.2020.107676] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 12/23/2019] [Accepted: 04/30/2020] [Indexed: 01/02/2023] Open
Abstract
The human genome encodes millions of regulatory elements, of which only a small fraction are active within a given cell type. Little is known about the global impact of chromatin remodelers on regulatory DNA landscapes and how this translates to gene expression. We use precision genome engineering to reawaken homozygously inactivated SMARCA4, a central ATPase of the human SWI/SNF chromatin remodeling complex, in lung adenocarcinoma cells. Here, we combine DNase I hypersensitivity, histone modification, and transcriptional profiling to show that SMARCA4 dramatically increases both the number and magnitude of accessible chromatin sites genome-wide, chiefly by unmasking sites of low regulatory factor occupancy. By contrast, transcriptional changes are concentrated within well-demarcated remodeling domains wherein expression of specific genes is gated by both distal element activation and promoter chromatin configuration. Our results provide a perspective on how global chromatin remodeling activity is translated to gene expression via regulatory DNA.
Collapse
Affiliation(s)
- John E Lazar
- Departments of Genome Sciences and Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA; Altius Institute for Biomedical Sciences, Seattle, WA 98121, USA
| | | | - Vivek Nandakumar
- Altius Institute for Biomedical Sciences, Seattle, WA 98121, USA
| | - Hao Wang
- Altius Institute for Biomedical Sciences, Seattle, WA 98121, USA
| | - Daniel R Chee
- Departments of Genome Sciences and Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA; Altius Institute for Biomedical Sciences, Seattle, WA 98121, USA
| | | | - Reyes Acosta
- Altius Institute for Biomedical Sciences, Seattle, WA 98121, USA
| | - Douglass Dunn
- Altius Institute for Biomedical Sciences, Seattle, WA 98121, USA
| | - Morgan Diegel
- Altius Institute for Biomedical Sciences, Seattle, WA 98121, USA
| | - Fidencio Neri
- Altius Institute for Biomedical Sciences, Seattle, WA 98121, USA
| | - Andres Castillo
- Altius Institute for Biomedical Sciences, Seattle, WA 98121, USA
| | - Sean Ibarrientos
- Altius Institute for Biomedical Sciences, Seattle, WA 98121, USA
| | - Kristen Lee
- Altius Institute for Biomedical Sciences, Seattle, WA 98121, USA
| | - Ninnia Lescano
- Altius Institute for Biomedical Sciences, Seattle, WA 98121, USA
| | - Ben Van Biber
- Altius Institute for Biomedical Sciences, Seattle, WA 98121, USA
| | - Jemma Nelson
- Altius Institute for Biomedical Sciences, Seattle, WA 98121, USA
| | - Jessica Halow
- Altius Institute for Biomedical Sciences, Seattle, WA 98121, USA
| | | | - Daniel Bates
- Altius Institute for Biomedical Sciences, Seattle, WA 98121, USA
| | - Fyodor D Urnov
- Altius Institute for Biomedical Sciences, Seattle, WA 98121, USA
| | - John A Stamatoyannopoulos
- Departments of Genome Sciences and Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA; Altius Institute for Biomedical Sciences, Seattle, WA 98121, USA.
| | | |
Collapse
|
204
|
Catizone AN, Uzunbas GK, Celadova P, Kuang S, Bose D, Sammons MA. Locally acting transcription factors regulate p53-dependent cis-regulatory element activity. Nucleic Acids Res 2020; 48:4195-4213. [PMID: 32133495 PMCID: PMC7192610 DOI: 10.1093/nar/gkaa147] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 01/27/2020] [Accepted: 02/26/2020] [Indexed: 01/03/2023] Open
Abstract
The master tumor suppressor p53 controls transcription of a wide-ranging gene network involved in apoptosis, cell cycle arrest, DNA damage repair, and senescence. Recent studies revealed pervasive binding of p53 to cis-regulatory elements (CREs), which are non-coding segments of DNA that spatially and temporally control transcription through the combinatorial binding of local transcription factors. Although the role of p53 as a strong trans-activator of gene expression is well known, the co-regulatory factors and local sequences acting at p53-bound CREs are comparatively understudied. We designed and executed a massively parallel reporter assay (MPRA) to investigate the effect of transcription factor binding motifs and local sequence context on p53-bound CRE activity. Our data indicate that p53-bound CREs are both positively and negatively affected by alterations in local sequence context and changes to co-regulatory TF motifs. Our data suggest p53 has the flexibility to cooperate with a variety of transcription factors in order to regulate CRE activity. By utilizing different sets of co-factors across CREs, we hypothesize that global p53 activity is guarded against loss of any one regulatory partner, allowing for dynamic and redundant control of p53-mediated transcription.
Collapse
Affiliation(s)
- Allison N Catizone
- Department of Biological Sciences and the RNA Institute, University at Albany, State University of New York, Albany, NY, USA
| | - Gizem Karsli Uzunbas
- Department of Biological Sciences and the RNA Institute, University at Albany, State University of New York, Albany, NY, USA
| | - Petra Celadova
- Sheffield Institute For Nucleic Acids (SInFoNiA) and Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Sylvia Kuang
- Department of Biological Sciences and the RNA Institute, University at Albany, State University of New York, Albany, NY, USA
| | - Daniel Bose
- Sheffield Institute For Nucleic Acids (SInFoNiA) and Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Morgan A Sammons
- Department of Biological Sciences and the RNA Institute, University at Albany, State University of New York, Albany, NY, USA
| |
Collapse
|
205
|
TGFβ and EGF signaling orchestrates the AP-1- and p63 transcriptional regulation of breast cancer invasiveness. Oncogene 2020; 39:4436-4449. [PMID: 32350443 PMCID: PMC7253358 DOI: 10.1038/s41388-020-1299-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 04/04/2020] [Accepted: 04/09/2020] [Indexed: 01/16/2023]
Abstract
Activator protein (AP)-1 transcription factors are essential elements of the pro-oncogenic functions of transforming growth factor-β (TGFβ)-SMAD signaling. Here we show that in multiple HER2+ and/or EGFR+ breast cancer cell lines these AP-1-dependent tumorigenic properties of TGFβ critically rely on epidermal growth factor receptor (EGFR) activation and expression of the ΔN isoform of transcriptional regulator p63. EGFR and ΔNp63 enabled and/or potentiated the activation of a subset of TGFβ-inducible invasion/migration-associated genes, e.g., ITGA2, LAMB3, and WNT7A/B, and enhanced the recruitment of SMAD2/3 to these genes. The TGFβ- and EGF-induced binding of SMAD2/3 and JUNB to these gene loci was accompanied by p63-SMAD2/3 and p63-JUNB complex formation. p63 and EGFR were also found to strongly potentiate TGFβ induction of AP-1 proteins and, in particular, FOS family members. Ectopic overexpression of FOS could counteract the decrease in TGFβ-induced gene activation after p63 depletion. p63 is also involved in the transcriptional regulation of heparin binding (HB)-EGF and EGFR genes, thereby establishing a self-amplification loop that facilitates and empowers the pro-invasive functions of TGFβ. These cooperative pro-oncogenic functions of EGFR, AP-1, p63, and TGFβ were efficiently inhibited by clinically relevant chemical inhibitors. Our findings may, therefore, be of importance for therapy of patients with breast cancers with an activated EGFR-RAS-RAF pathway.
Collapse
|
206
|
Mitf Links Neuronal Activity and Long-Term Homeostatic Intrinsic Plasticity. eNeuro 2020; 7:ENEURO.0412-19.2020. [PMID: 32193365 PMCID: PMC7174873 DOI: 10.1523/eneuro.0412-19.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 02/07/2020] [Accepted: 03/02/2020] [Indexed: 12/25/2022] Open
Abstract
Neuroplasticity forms the basis for neuronal circuit complexity and differences between otherwise similar circuits. We show that the microphthalmia-associated transcription factor (Mitf) plays a central role in intrinsic plasticity of olfactory bulb (OB) projection neurons. Mitral and tufted (M/T) neurons from Mitf mutant mice are hyperexcitable, have a reduced A-type potassium current (IA) and exhibit reduced expression of Kcnd3, which encodes a potassium voltage-gated channel subunit (Kv4.3) important for generating the IA Furthermore, expression of the Mitf and Kcnd3 genes is activity dependent in OB projection neurons and the MITF protein activates expression from Kcnd3 regulatory elements. Moreover, Mitf mutant mice have changes in olfactory habituation and have increased habituation for an odorant following long-term exposure, indicating that regulation of Kcnd3 is pivotal for long-term olfactory adaptation. Our findings show that Mitf acts as a direct regulator of intrinsic homeostatic feedback and links neuronal activity, transcriptional changes and neuronal function.
Collapse
|
207
|
Beisaw A, Kuenne C, Guenther S, Dallmann J, Wu CC, Bentsen M, Looso M, Stainier DYR. AP-1 Contributes to Chromatin Accessibility to Promote Sarcomere Disassembly and Cardiomyocyte Protrusion During Zebrafish Heart Regeneration. Circ Res 2020; 126:1760-1778. [PMID: 32312172 DOI: 10.1161/circresaha.119.316167] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
RATIONALE The adult human heart is an organ with low regenerative potential. Heart failure following acute myocardial infarction is a leading cause of death due to the inability of cardiomyocytes to proliferate and replenish lost cardiac muscle. While the zebrafish has emerged as a powerful model to study endogenous cardiac regeneration, the molecular mechanisms by which cardiomyocytes respond to damage by disassembling sarcomeres, proliferating, and repopulating the injured area remain unclear. Furthermore, we are far from understanding the regulation of the chromatin landscape and epigenetic barriers that must be overcome for cardiac regeneration to occur. OBJECTIVE To identify transcription factor regulators of the chromatin landscape, which promote cardiomyocyte regeneration in zebrafish, and investigate their function. METHODS AND RESULTS Using the Assay for Transposase-Accessible Chromatin coupled to high-throughput sequencing (ATAC-Seq), we first find that the regenerating cardiomyocyte chromatin accessibility landscape undergoes extensive changes following cryoinjury, and that activator protein-1 (AP-1) binding sites are the most highly enriched motifs in regions that gain accessibility during cardiac regeneration. Furthermore, using bioinformatic and gene expression analyses, we find that the AP-1 response in regenerating adult zebrafish cardiomyocytes is largely different from the response in adult mammalian cardiomyocytes. Using a cardiomyocyte-specific dominant negative approach, we show that blocking AP-1 function leads to defects in cardiomyocyte proliferation as well as decreased chromatin accessibility at the fbxl22 and ilk loci, which regulate sarcomere disassembly and cardiomyocyte protrusion into the injured area, respectively. We further show that overexpression of the AP-1 family members Junb and Fosl1 can promote changes in mammalian cardiomyocyte behavior in vitro. CONCLUSIONS AP-1 transcription factors play an essential role in the cardiomyocyte response to injury by regulating chromatin accessibility changes, thereby allowing the activation of gene expression programs that promote cardiomyocyte dedifferentiation, proliferation, and protrusion into the injured area.
Collapse
Affiliation(s)
- Arica Beisaw
- From the Department of Developmental Genetics (A.B., J.D., C.-C.W., D.Y.R.S.), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,German Centre for Cardiovascular Research (DZHK) Partner Site Rhine-Main (A.B., S.G., D.Y.R.S.), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Carsten Kuenne
- ECCPS Bioinformatics and Deep Sequencing Platform (C.K., S.G., M.B., M.L.), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Stefan Guenther
- ECCPS Bioinformatics and Deep Sequencing Platform (C.K., S.G., M.B., M.L.), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,German Centre for Cardiovascular Research (DZHK) Partner Site Rhine-Main (A.B., S.G., D.Y.R.S.), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Julia Dallmann
- From the Department of Developmental Genetics (A.B., J.D., C.-C.W., D.Y.R.S.), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Chi-Chung Wu
- From the Department of Developmental Genetics (A.B., J.D., C.-C.W., D.Y.R.S.), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Mette Bentsen
- ECCPS Bioinformatics and Deep Sequencing Platform (C.K., S.G., M.B., M.L.), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Mario Looso
- ECCPS Bioinformatics and Deep Sequencing Platform (C.K., S.G., M.B., M.L.), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Didier Y R Stainier
- From the Department of Developmental Genetics (A.B., J.D., C.-C.W., D.Y.R.S.), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,German Centre for Cardiovascular Research (DZHK) Partner Site Rhine-Main (A.B., S.G., D.Y.R.S.), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| |
Collapse
|
208
|
Kuznetsova T, Prange KHM, Glass CK, de Winther MPJ. Transcriptional and epigenetic regulation of macrophages in atherosclerosis. Nat Rev Cardiol 2020; 17:216-228. [PMID: 31578516 PMCID: PMC7770754 DOI: 10.1038/s41569-019-0265-3] [Citation(s) in RCA: 183] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/01/2019] [Indexed: 12/11/2022]
Abstract
Monocytes and macrophages provide defence against pathogens and danger signals. These cells respond to stimulation in a fast and stimulus-specific manner by utilizing complex cascaded activation by lineage-determining and signal-dependent transcription factors. The complexity of the functional response is determined by interactions between triggered transcription factors and depends on the microenvironment and interdependent signalling cascades. Dysregulation of macrophage phenotypes is a major driver of various diseases such as atherosclerosis, rheumatoid arthritis and type 2 diabetes mellitus. Furthermore, exposure of monocytes, which are macrophage precursor cells, to certain stimuli can lead to a hypo-inflammatory tolerized phenotype or a hyper-inflammatory trained phenotype in a macrophage. In atherosclerosis, macrophages and monocytes are exposed to inflammatory cytokines, oxidized lipids, cholesterol crystals and other factors. All these stimuli induce not only a specific transcriptional response but also interact extensively, leading to transcriptional and epigenetic heterogeneity of macrophages in atherosclerotic plaques. Targeting the epigenetic landscape of plaque macrophages can be a powerful therapeutic tool to modulate pro-atherogenic phenotypes and reduce the rate of plaque formation. In this Review, we discuss the emerging role of transcription factors and epigenetic remodelling in macrophages in the context of atherosclerosis and inflammation, and provide a comprehensive overview of epigenetic enzymes and transcription factors that are involved in macrophage activation.
Collapse
Affiliation(s)
- Tatyana Kuznetsova
- Experimental Vascular Biology, Department of Medical Biochemistry, Amsterdam University Medical Centers - location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Koen H M Prange
- Experimental Vascular Biology, Department of Medical Biochemistry, Amsterdam University Medical Centers - location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Christopher K Glass
- Department of Cellular and Molecular Medicine, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Menno P J de Winther
- Experimental Vascular Biology, Department of Medical Biochemistry, Amsterdam University Medical Centers - location AMC, University of Amsterdam, Amsterdam, Netherlands.
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians University, Munich, Germany.
| |
Collapse
|
209
|
Cai WL, Greer CB, Chen JF, Arnal-Estapé A, Cao J, Yan Q, Nguyen DX. Specific chromatin landscapes and transcription factors couple breast cancer subtype with metastatic relapse to lung or brain. BMC Med Genomics 2020; 13:33. [PMID: 32143622 PMCID: PMC7060551 DOI: 10.1186/s12920-020-0695-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 02/11/2020] [Indexed: 12/17/2022] Open
Abstract
Background Few somatic mutations have been linked to breast cancer metastasis, whereas transcriptomic differences among primary tumors correlate with incidence of metastasis, especially to the lungs and brain. However, the epigenomic alterations and transcription factors (TFs) which underlie these alterations remain unclear. Methods To identify these, we performed RNA-seq, Chromatin Immunoprecipitation and sequencing (ChIP-seq) and Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq) of the MDA-MB-231 cell line and its brain (BrM2) and lung (LM2) metastatic sub-populations. We incorporated ATAC-seq data from TCGA to assess metastatic open chromatin signatures, and gene expression data from human metastatic datasets to nominate transcription factor biomarkers. Results Our integrated epigenomic analyses found that lung and brain metastatic cells exhibit both shared and distinctive signatures of active chromatin. Notably, metastatic sub-populations exhibit increased activation of both promoters and enhancers. We also integrated these data with chromosome conformation capture coupled with ChIP-seq (HiChIP) derived enhancer-promoter interactions to predict enhancer-controlled pathway alterations. We found that enhancer changes are associated with endothelial cell migration in LM2, and negative regulation of epithelial cell proliferation in BrM2. Promoter changes are associated with vasculature development in LM2 and homophilic cell adhesion in BrM2. Using ATAC-seq, we identified a metastasis open-chromatin signature that is elevated in basal-like and HER2-enriched breast cancer subtypes and associates with worse prognosis in human samples. We further uncovered TFs associated with the open chromatin landscapes of metastatic cells and whose expression correlates with risk for metastasis. While some of these TFs are associated with primary breast tumor subtypes, others more specifically correlate with lung or brain metastasis. Conclusions We identify distinctive epigenomic properties of breast cancer cells that metastasize to the lung and brain. We also demonstrate that signatures of active chromatin sites are partially linked to human breast cancer subtypes with poor prognosis, and that specific TFs can independently distinguish lung and brain relapse.
Collapse
Affiliation(s)
- Wesley L Cai
- Department of Pathology, Yale School of Medicine, 333 Cedar St, New Haven, CT, 06510, USA
| | - Celeste B Greer
- Department of Pathology, Yale School of Medicine, 333 Cedar St, New Haven, CT, 06510, USA.,Present address: Department of Pharmacology, Vanderbilt University School of Medicine, 2209 Garland Ave, Nashville, TN, 37240-0002, USA
| | - Jocelyn F Chen
- Department of Pathology, Yale School of Medicine, 333 Cedar St, New Haven, CT, 06510, USA
| | - Anna Arnal-Estapé
- Department of Pathology, Yale School of Medicine, 333 Cedar St, New Haven, CT, 06510, USA.,Yale Cancer Center, Yale School of Medicine, 333 Cedar St, New Haven, CT, 06510, USA
| | - Jian Cao
- Department of Pathology, Yale School of Medicine, 333 Cedar St, New Haven, CT, 06510, USA.,Yale Cancer Center, Yale School of Medicine, 333 Cedar St, New Haven, CT, 06510, USA.,Present address: Rutgers Cancer Institute of New Jersey, Rutgers, 195 Little Albany St, New Brunswick, NJ, 08903-2681, USA
| | - Qin Yan
- Department of Pathology, Yale School of Medicine, 333 Cedar St, New Haven, CT, 06510, USA. .,Yale Cancer Center, Yale School of Medicine, 333 Cedar St, New Haven, CT, 06510, USA. .,Yale Stem Cell Center, Yale School of Medicine, 333 Cedar St, New Haven, CT, 06510, USA. .,Department of Pathology, Yale School of Medicine, P.O. Box 208023, New Haven, CT, 06520-8023, USA.
| | - Don X Nguyen
- Department of Pathology, Yale School of Medicine, 333 Cedar St, New Haven, CT, 06510, USA. .,Yale Cancer Center, Yale School of Medicine, 333 Cedar St, New Haven, CT, 06510, USA. .,Yale Stem Cell Center, Yale School of Medicine, 333 Cedar St, New Haven, CT, 06510, USA. .,Department of Pathology, Yale School of Medicine, P.O. Box 208023, New Haven, CT, 06520-8023, USA. .,Department of Medicine (Medical Oncology), Yale School of Medicine, 333 Cedar St, New Haven, CT, 06510, USA.
| |
Collapse
|
210
|
Bozek M, Gompel N. Developmental Transcriptional Enhancers: A Subtle Interplay between Accessibility and Activity: Considering Quantitative Accessibility Changes between Different Regulatory States of an Enhancer Deconvolutes the Complex Relationship between Accessibility and Activity. Bioessays 2020; 42:e1900188. [PMID: 32142172 DOI: 10.1002/bies.201900188] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/16/2020] [Indexed: 12/21/2022]
Abstract
Measurements of open chromatin in specific cell types are widely used to infer the spatiotemporal activity of transcriptional enhancers. How reliable are these predictions? In this review, it is argued that the relationship between the accessibility and activity of an enhancer is insufficiently described by simply considering open versus closed chromatin, or active versus inactive enhancers. Instead, recent studies focusing on the quantitative nature of accessibility signal reveal subtle differences between active enhancers and their different inactive counterparts: the closed silenced state and the accessible primed and repressed states. While the open structure as such is not a specific indicator of enhancer activity, active enhancers display a higher degree of accessibility than the primed and repressed states. Molecular mechanisms that may account for these quantitative differences are discussed. A model that relates molecular events at an enhancer to changes in its activity and accessibility in a developing tissue is also proposed.
Collapse
Affiliation(s)
- Marta Bozek
- Department Biochemie, Ludwig-Maximilians Universität München, Genzentrum, 81377, München, Germany
| | - Nicolas Gompel
- Fakultät für Biologie, Ludwig-Maximilians Universität München, Biozentrum, 82152, Planegg-Martinsried, Germany
| |
Collapse
|
211
|
Altered chromatin landscape and enhancer engagement underlie transcriptional dysregulation in MED12 mutant uterine leiomyomas. Nat Commun 2020; 11:1019. [PMID: 32094355 PMCID: PMC7040020 DOI: 10.1038/s41467-020-14701-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 01/23/2020] [Indexed: 02/07/2023] Open
Abstract
Uterine leiomyomas (fibroids) are a major source of gynecologic morbidity in reproductive age women and are characterized by the excessive deposition of a disorganized extracellular matrix, resulting in rigid benign tumors. Although down regulation of the transcription factor AP-1 is highly prevalent in leiomyomas, the functional consequence of AP-1 loss on gene transcription in uterine fibroids remains poorly understood. Using high-resolution ChIP-sequencing, promoter capture Hi-C, and RNA-sequencing of matched normal and leiomyoma tissues, here we show that modified enhancer architecture is a major driver of transcriptional dysregulation in MED12 mutant uterine leiomyomas. Furthermore, modifications in enhancer architecture are driven by the depletion of AP-1 occupancy on chromatin. Silencing of AP-1 subunits in primary myometrium cells leads to transcriptional dysregulation of extracellular matrix associated genes and partly recapitulates transcriptional and epigenetic changes observed in leiomyomas. These findings establish AP-1 driven aberrant enhancer regulation as an important mechanism of leiomyoma disease pathogenesis.
Collapse
|
212
|
Grossi E, Raimondi I, Goñi E, González J, Marchese FP, Chapaprieta V, Martín-Subero JI, Guo S, Huarte M. A lncRNA-SWI/SNF complex crosstalk controls transcriptional activation at specific promoter regions. Nat Commun 2020; 11:936. [PMID: 32071317 PMCID: PMC7028943 DOI: 10.1038/s41467-020-14623-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 01/18/2020] [Indexed: 12/14/2022] Open
Abstract
LncRNAs have been shown to be direct players in chromatin regulation, but little is known about their role at active genomic loci. We investigate the role of lncRNAs in gene activation by profiling the RNA interactome of SMARCB1-containing SWI/SNF complexes in proliferating and senescent conditions. The isolation of SMARCB1-associated transcripts, together with chromatin profiling, shows prevalent association to active regions where SMARCB1 differentially binds locally transcribed RNAs. We identify SWINGN, a lncRNA interacting with SMARCB1 exclusively in proliferating conditions, exerting a pro-oncogenic role in some tumor types. SWINGN is transcribed from an enhancer and modulates the activation of GAS6 oncogene as part of a topologically organized region, as well as a larger network of pro-oncogenic genes by favoring SMARCB1 binding. Our results indicate that SWINGN influences the ability of the SWI/SNF complexes to drive epigenetic activation of specific promoters, suggesting a SWI/SNF-RNA cooperation to achieve optimal transcriptional activation.
Collapse
Affiliation(s)
- Elena Grossi
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research, University of Navarra, Pamplona, 31008, Spain
- Institute of Health Research of Navarra (IdiSNA), Pamplona, Spain
| | - Ivan Raimondi
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research, University of Navarra, Pamplona, 31008, Spain
- Institute of Health Research of Navarra (IdiSNA), Pamplona, Spain
| | - Enrique Goñi
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research, University of Navarra, Pamplona, 31008, Spain
- Institute of Health Research of Navarra (IdiSNA), Pamplona, Spain
| | - Jovanna González
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research, University of Navarra, Pamplona, 31008, Spain
- Institute of Health Research of Navarra (IdiSNA), Pamplona, Spain
| | - Francesco P Marchese
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research, University of Navarra, Pamplona, 31008, Spain
- Institute of Health Research of Navarra (IdiSNA), Pamplona, Spain
| | - Vicente Chapaprieta
- Departament de Fonaments Clinics, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| | - José I Martín-Subero
- Departament de Fonaments Clinics, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Shuling Guo
- Department of Antisense Drug Discovery and Clinical Development, Ionis Pharmaceuticals, Carlsbad, CA, USA
| | - Maite Huarte
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research, University of Navarra, Pamplona, 31008, Spain.
- Institute of Health Research of Navarra (IdiSNA), Pamplona, Spain.
| |
Collapse
|
213
|
Derecka M, Herman JS, Cauchy P, Ramamoorthy S, Lupar E, Grün D, Grosschedl R. EBF1-deficient bone marrow stroma elicits persistent changes in HSC potential. Nat Immunol 2020; 21:261-273. [PMID: 32066955 DOI: 10.1038/s41590-020-0595-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 01/09/2020] [Indexed: 12/11/2022]
Abstract
Crosstalk between mesenchymal stromal cells (MSCs) and hematopoietic stem cells (HSCs) is essential for hematopoietic homeostasis and lineage output. Here, we investigate how transcriptional changes in bone marrow (BM) MSCs result in long-lasting effects on HSCs. Single-cell analysis of Cxcl12-abundant reticular (CAR) cells and PDGFRα+Sca1+ (PαS) cells revealed an extensive cellular heterogeneity but uniform expression of the transcription factor gene Ebf1. Conditional deletion of Ebf1 in these MSCs altered their cellular composition, chromatin structure and gene expression profiles, including the reduced expression of adhesion-related genes. Functionally, the stromal-specific Ebf1 inactivation results in impaired adhesion of HSCs, leading to reduced quiescence and diminished myeloid output. Most notably, HSCs residing in the Ebf1-deficient niche underwent changes in their cellular composition and chromatin structure that persist in serial transplantations. Thus, genetic alterations in the BM niche lead to long-term functional changes of HSCs.
Collapse
Affiliation(s)
- Marta Derecka
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
| | - Josip Stefan Herman
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany.,International Max Planck Research School for Molecular and Cellular Biology, Freiburg, Germany
| | - Pierre Cauchy
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | | | - Ekaterina Lupar
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Dominic Grün
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.,Centre for Integrative Biological Signaling Studies, University of Freiburg, Freiburg, Germany
| | - Rudolf Grosschedl
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
| |
Collapse
|
214
|
Gatchalian J, Liao J, Maxwell MB, Hargreaves DC. Control of Stimulus-Dependent Responses in Macrophages by SWI/SNF Chromatin Remodeling Complexes. Trends Immunol 2020; 41:126-140. [PMID: 31928914 PMCID: PMC6995420 DOI: 10.1016/j.it.2019.12.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/25/2019] [Accepted: 12/06/2019] [Indexed: 12/31/2022]
Abstract
Epigenetic regulation plays an important role in controlling the activation, timing, and resolution of innate immune responses in macrophages. Previously, SWI/SNF chromatin remodeling was found to define the kinetics and selectivity of gene activation in response to microbial ligands; however, these studies do not reflect a comprehensive understanding of SWI/SNF complex regulation. In 2018, a new variant of the SWI/SNF complex was identified with unknown function in inflammatory gene regulation. Here, we summarize the biochemical and genomic properties of SWI/SNF complex variants and the potential for increased regulatory control of innate immune transcriptional programs in light of such biochemical diversity. Finally, we review the development of SWI/SNF complex chemical inhibitors and degraders that could be used to modulate immune responses.
Collapse
Affiliation(s)
- Jovylyn Gatchalian
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Jingwen Liao
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Biological Sciences Program, University of California, San Diego, La Jolla, CA 92037, USA
| | - Matthew B Maxwell
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Biological Sciences Program, University of California, San Diego, La Jolla, CA 92037, USA
| | - Diana C Hargreaves
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| |
Collapse
|
215
|
Ward C, Volpe G, Cauchy P, Ptasinska A, Almaghrabi R, Blakemore D, Nafria M, Kestner D, Frampton J, Murphy G, Buganim Y, Kaji K, García P. Fine-Tuning Mybl2 Is Required for Proper Mesenchymal-to-Epithelial Transition during Somatic Reprogramming. Cell Rep 2020; 24:1496-1511.e8. [PMID: 30089261 PMCID: PMC6092268 DOI: 10.1016/j.celrep.2018.07.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 05/18/2018] [Accepted: 07/06/2018] [Indexed: 12/20/2022] Open
Abstract
During somatic reprogramming, Yamanaka’s pioneer factors regulate a complex sequence of molecular events leading to the activation of a network of pluripotency factors, ultimately resulting in the acquisition and maintenance of a pluripotent state. Here, we show that, contrary to the pluripotency factors studied so far, overexpression of Mybl2 inhibits somatic reprogramming. Our results demonstrate that Mybl2 levels are crucial to the dynamics of the reprogramming process. Mybl2 overexpression changes chromatin conformation, affecting the accessibility of pioneer factors to the chromatin and promoting accessibility for early immediate response genes known to be reprogramming blockers. These changes in the chromatin landscape ultimately lead to a deregulation of key genes that are important for the mesenchymal-to-epithelial transition. This work defines Mybl2 level as a gatekeeper for the initiation of reprogramming, providing further insights into the tight regulation and required coordination of molecular events that are necessary for changes in cell fate identity during the reprogramming process. Deletion and overexpression of MYBL2 pluripotency factor inhibit somatic reprogramming Mybl2 overexpression affects the accessibility of pioneer factors to the chromatin Mybl2 overexpression promotes accessibility of reprogramming blockers to the chromatin High Mybl2 levels deregulate key genes for proper MET, a requirement for reprogramming
Collapse
Affiliation(s)
- Carl Ward
- Institute of Cancer and Genomic Science, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Giacomo Volpe
- Institute of Cancer and Genomic Science, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Pierre Cauchy
- Institute of Cancer and Genomic Science, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK; Department of Molecular and Cellular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Anetta Ptasinska
- Institute of Cancer and Genomic Science, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Ruba Almaghrabi
- Institute of Cancer and Genomic Science, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Daniel Blakemore
- Institute of Cancer and Genomic Science, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Monica Nafria
- Institute of Cancer and Genomic Science, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Doris Kestner
- Institute of Cancer and Genomic Science, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Jon Frampton
- Institute of Cancer and Genomic Science, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - George Murphy
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Yosef Buganim
- The Institute for Medical Research Israel-Canada, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Keisuke Kaji
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Paloma García
- Institute of Cancer and Genomic Science, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
216
|
Kubota N, Suyama M. An integrated analysis of public genomic data unveils a possible functional mechanism of psoriasis risk via a long-range ERRFI1 enhancer. BMC Med Genomics 2020; 13:8. [PMID: 31969149 PMCID: PMC6977261 DOI: 10.1186/s12920-020-0662-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 01/15/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Psoriasis is a chronic inflammatory skin disease, for which genome-wide association studies (GWAS) have identified many genetic variants as risk markers. However, the details of underlying molecular mechanisms, especially which variants are functional, are poorly understood. METHODS We utilized a computational approach to survey psoriasis-associated functional variants that might affect protein functions or gene expression levels. We developed a pipeline by integrating publicly available datasets provided by GWAS Catalog, FANTOM5, GTEx, SNP2TFBS, and DeepBlue. To identify functional variants on exons or splice sites, we used a web-based annotation tool in the Ensembl database. To search for noncoding functional variants within promoters or enhancers, we used eQTL data calculated by GTEx. The data of variants lying on transcription factor binding sites provided by SNP2TFBS were used to predict detailed functions of the variants. RESULTS We discovered 22 functional variant candidates, of which 8 were in noncoding regions. We focused on the enhancer variant rs72635708 (T > C) in the 1p36.23 region; this variant is within the enhancer region of the ERRFI1 gene, which regulates lipid metabolism in the liver and skin morphogenesis via EGF signaling. Further analysis showed that the ERRFI1 promoter spatially contacts with the enhancer, despite the 170 kb distance between them. We found that this variant lies on the AP-1 complex binding motif and may modulate binding levels. CONCLUSIONS The minor allele rs72635708 (rs72635708-C) might affect the ERRFI1 promoter activity, which results in unstable expression of ERRFI1, enhancing the risk of psoriasis via disruption of lipid metabolism and skin cell proliferation. Our study represents a successful example of predicting molecular pathogenesis by integration and reanalysis of public data.
Collapse
Affiliation(s)
- Naoto Kubota
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
- Research Fellow of Japan Society for the Promotion of Science, Tokyo, 102-0083, Japan
| | - Mikita Suyama
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan.
| |
Collapse
|
217
|
ARID1A determines luminal identity and therapeutic response in estrogen-receptor-positive breast cancer. Nat Genet 2020; 52:198-207. [PMID: 31932695 DOI: 10.1038/s41588-019-0554-0] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 11/21/2019] [Indexed: 12/14/2022]
Abstract
Mutations in ARID1A, a subunit of the SWI/SNF chromatin remodeling complex, are the most common alterations of the SWI/SNF complex in estrogen-receptor-positive (ER+) breast cancer. We identify that ARID1A inactivating mutations are present at a high frequency in advanced endocrine-resistant ER+ breast cancer. An epigenome CRISPR-CAS9 knockout (KO) screen identifies ARID1A as the top candidate whose loss determines resistance to the ER degrader fulvestrant. ARID1A inactivation in cells and in patients leads to resistance to ER degraders by facilitating a switch from ER-dependent luminal cells to ER-independent basal-like cells. Cellular plasticity is mediated by loss of ARID1A-dependent SWI/SNF complex targeting to genomic sites of the luminal lineage-determining transcription factors including ER, forkhead box protein A1 (FOXA1) and GATA-binding factor 3 (GATA3). ARID1A also regulates genome-wide ER-FOXA1 chromatin interactions and ER-dependent transcription. Altogether, we uncover a critical role for ARID1A in maintaining luminal cell identity and endocrine therapeutic response in ER+ breast cancer.
Collapse
|
218
|
Weiterer S, Meier‐Soelch J, Georgomanolis T, Mizi A, Beyerlein A, Weiser H, Brant L, Mayr‐Buro C, Jurida L, Beuerlein K, Müller H, Weber A, Tenekeci U, Dittrich‐Breiholz O, Bartkuhn M, Nist A, Stiewe T, van IJcken WFJ, Riedlinger T, Schmitz ML, Papantonis A, Kracht M. Distinct IL-1α-responsive enhancers promote acute and coordinated changes in chromatin topology in a hierarchical manner. EMBO J 2020; 39:e101533. [PMID: 31701553 PMCID: PMC6939198 DOI: 10.15252/embj.2019101533] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 09/27/2019] [Accepted: 10/01/2019] [Indexed: 12/14/2022] Open
Abstract
How cytokine-driven changes in chromatin topology are converted into gene regulatory circuits during inflammation still remains unclear. Here, we show that interleukin (IL)-1α induces acute and widespread changes in chromatin accessibility via the TAK1 kinase and NF-κB at regions that are highly enriched for inflammatory disease-relevant SNPs. Two enhancers in the extended chemokine locus on human chromosome 4 regulate the IL-1α-inducible IL8 and CXCL1-3 genes. Both enhancers engage in dynamic spatial interactions with gene promoters in an IL-1α/TAK1-inducible manner. Microdeletions of p65-binding sites in either of the two enhancers impair NF-κB recruitment, suppress activation and biallelic transcription of the IL8/CXCL2 genes, and reshuffle higher-order chromatin interactions as judged by i4C interactome profiles. Notably, these findings support a dominant role of the IL8 "master" enhancer in the regulation of sustained IL-1α signaling, as well as for IL-8 and IL-6 secretion. CRISPR-guided transactivation of the IL8 locus or cross-TAD regulation by TNFα-responsive enhancers in a different model locus supports the existence of complex enhancer hierarchies in response to cytokine stimulation that prime and orchestrate proinflammatory chromatin responses downstream of NF-κB.
Collapse
Affiliation(s)
- Sinah‐Sophia Weiterer
- Rudolf Buchheim Institute of PharmacologyJustus Liebig University GiessenGiessenGermany
| | - Johanna Meier‐Soelch
- Rudolf Buchheim Institute of PharmacologyJustus Liebig University GiessenGiessenGermany
| | | | - Athanasia Mizi
- Center for Molecular Medicine CologneUniversity of CologneCologneGermany
- Department of PathologyUniversity Medical Center GöttingenGöttingenGermany
| | - Anna Beyerlein
- Rudolf Buchheim Institute of PharmacologyJustus Liebig University GiessenGiessenGermany
| | - Hendrik Weiser
- Rudolf Buchheim Institute of PharmacologyJustus Liebig University GiessenGiessenGermany
| | - Lilija Brant
- Department of PathologyUniversity Medical Center GöttingenGöttingenGermany
| | - Christin Mayr‐Buro
- Rudolf Buchheim Institute of PharmacologyJustus Liebig University GiessenGiessenGermany
| | - Liane Jurida
- Rudolf Buchheim Institute of PharmacologyJustus Liebig University GiessenGiessenGermany
| | - Knut Beuerlein
- Rudolf Buchheim Institute of PharmacologyJustus Liebig University GiessenGiessenGermany
| | - Helmut Müller
- Rudolf Buchheim Institute of PharmacologyJustus Liebig University GiessenGiessenGermany
| | - Axel Weber
- Rudolf Buchheim Institute of PharmacologyJustus Liebig University GiessenGiessenGermany
| | - Ulas Tenekeci
- Rudolf Buchheim Institute of PharmacologyJustus Liebig University GiessenGiessenGermany
| | - Oliver Dittrich‐Breiholz
- Research Core Unit GenomicsInstitute of Physiological ChemistryMedical School HannoverHannoverGermany
| | - Marek Bartkuhn
- Institute for GeneticsJustus Liebig University GiessenGiessenGermany
| | - Andrea Nist
- Genomics Core Facility and Institute of Molecular OncologyPhilipps University MarburgMarburgGermany
| | - Thorsten Stiewe
- Genomics Core Facility and Institute of Molecular OncologyPhilipps University MarburgMarburgGermany
- Member of the German Center for Lung Research (DZL)GiessenGermany
| | | | - Tabea Riedlinger
- Institute of BiochemistryJustus Liebig University GiessenGiessenGermany
| | - M Lienhard Schmitz
- Member of the German Center for Lung Research (DZL)GiessenGermany
- Institute of BiochemistryJustus Liebig University GiessenGiessenGermany
| | - Argyris Papantonis
- Center for Molecular Medicine CologneUniversity of CologneCologneGermany
- Department of PathologyUniversity Medical Center GöttingenGöttingenGermany
| | - Michael Kracht
- Rudolf Buchheim Institute of PharmacologyJustus Liebig University GiessenGiessenGermany
- Member of the German Center for Lung Research (DZL)GiessenGermany
| |
Collapse
|
219
|
Funsten JR, Murillo Brizuela KO, Swatzel HE, Ward AS, Scott TA, Eikenbusch SM, Shields MC, Meredith JL, Mitchell TY, Hanna ML, Bingham KN, Rawlings JS. PKC signaling contributes to chromatin decondensation and is required for competence to respond to IL-2 during T cell activation. Cell Immunol 2020; 347:104027. [PMID: 31864664 PMCID: PMC10731676 DOI: 10.1016/j.cellimm.2019.104027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 11/26/2019] [Accepted: 12/09/2019] [Indexed: 12/17/2022]
Abstract
The clonal proliferation of antigen-specific T cells during an immune response critically depends on the differential response to growth factors, such as IL-2. While activated T cells proliferate robustly in response to IL-2 stimulation, naïve (quiescent) T cells are able to ignore the potent effects of growth factors because they possess chromatin that is tightly condensed such that transcription factors, such as STAT5, cannot access DNA. Activation via the T cell receptor (TCR) induces a rapid decondensation of chromatin, permitting STAT5-DNA engagement and ultimately promoting proliferation of only antigen-specific T cells. Previous work demonstrated that the mobilization of intracellular calcium following TCR stimulation is a key event in the decondensation of chromatin. Here we examine PKC-dependent signaling mechanisms to determine their role in activation-induced chromatin decondensation and the subsequent acquisition of competence to respond to IL-2 stimulation. We found that a calcium-dependent PKC contributes to activation-induced chromatin decondensation and that the p38 MAPK and NFκB pathways downstream of PKC each contribute to regulating the proper decondensation of chromatin. Importantly, we found that p44/42 MAPK activity is required for peripheral T cells to gain competence to properly respond to IL-2 stimulation. Our findings shed light on the mechanisms that control the clonal proliferation of antigen-specific peripheral T cells during an immune response.
Collapse
Affiliation(s)
| | | | - Hayley E Swatzel
- Department of Biology, Furman University, Greenville, SC 29613, USA
| | - Audrey S Ward
- Department of Biology, Furman University, Greenville, SC 29613, USA
| | - Tia A Scott
- Department of Biology, Furman University, Greenville, SC 29613, USA
| | | | - Molly C Shields
- Department of Biology, Furman University, Greenville, SC 29613, USA
| | - Jenna L Meredith
- Department of Biology, Furman University, Greenville, SC 29613, USA
| | | | - Megan L Hanna
- Department of Biology, Furman University, Greenville, SC 29613, USA
| | - Kellie N Bingham
- Department of Biology, Furman University, Greenville, SC 29613, USA
| | - Jason S Rawlings
- Department of Biology, Furman University, Greenville, SC 29613, USA.
| |
Collapse
|
220
|
Tambalo M, Anwar M, Ahmed M, Streit A. Enhancer activation by FGF signalling during otic induction. Dev Biol 2020; 457:69-82. [PMID: 31539539 PMCID: PMC6902270 DOI: 10.1016/j.ydbio.2019.09.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/16/2019] [Accepted: 09/16/2019] [Indexed: 02/07/2023]
Abstract
Vertebrate ear progenitors are induced by fibroblast growth factor signalling, however the molecular mechanisms leading to the coordinate activation of downstream targets are yet to be discovered. The ear, like other sensory placodes, arises from the pre-placodal region at the border of the neural plate. Using a multiplex NanoString approach, we determined the response of these progenitors to FGF signalling by examining the changes of more than 200 transcripts that define the otic and other placodes, neural crest and neural plate territories. This analysis identifies new direct and indirect FGF targets during otic induction. Investigating changes in histone marks by ChIP-seq reveals that FGF exposure of pre-placodal cells leads to rapid deposition of active chromatin marks H3K27ac near FGF-response genes, while H3K27ac is depleted in the vicinity of non-otic genes. Genomic regions that gain H3K27ac act as cis-regulatory elements controlling otic gene expression in time and space and define a unique transcription factor signature likely to control their activity. Finally, we show that in response to FGF signalling the transcription factor dimer AP1 recruits the histone acetyl transferase p300 to selected otic enhancers. Thus, during ear induction FGF signalling modifies the chromatin landscape to promote enhancer activation and chromatin accessibility.
Collapse
Affiliation(s)
- Monica Tambalo
- Centre for Craniofacial and Regenerative Biology, Faculty of Dental, Oral and Craniofacial Sciences, King's College London, London, SE1 9RT, UK
| | - Maryam Anwar
- Centre for Craniofacial and Regenerative Biology, Faculty of Dental, Oral and Craniofacial Sciences, King's College London, London, SE1 9RT, UK
| | - Mohi Ahmed
- Centre for Craniofacial and Regenerative Biology, Faculty of Dental, Oral and Craniofacial Sciences, King's College London, London, SE1 9RT, UK
| | - Andrea Streit
- Centre for Craniofacial and Regenerative Biology, Faculty of Dental, Oral and Craniofacial Sciences, King's College London, London, SE1 9RT, UK.
| |
Collapse
|
221
|
Chottekalapanda RU, Kalik S, Gresack J, Ayala A, Gao M, Wang W, Meller S, Aly A, Schaefer A, Greengard P. AP-1 controls the p11-dependent antidepressant response. Mol Psychiatry 2020; 25:1364-1381. [PMID: 32439846 PMCID: PMC7303013 DOI: 10.1038/s41380-020-0767-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 04/10/2020] [Accepted: 04/28/2020] [Indexed: 01/10/2023]
Abstract
Selective serotonin reuptake inhibitors (SSRIs) are the most widely prescribed drugs for mood disorders. While the mechanism of SSRI action is still unknown, SSRIs are thought to exert therapeutic effects by elevating extracellular serotonin levels in the brain, and remodel the structural and functional alterations dysregulated during depression. To determine their precise mode of action, we tested whether such neuroadaptive processes are modulated by regulation of specific gene expression programs. Here we identify a transcriptional program regulated by activator protein-1 (AP-1) complex, formed by c-Fos and c-Jun that is selectively activated prior to the onset of the chronic SSRI response. The AP-1 transcriptional program modulates the expression of key neuronal remodeling genes, including S100a10 (p11), linking neuronal plasticity to the antidepressant response. We find that AP-1 function is required for the antidepressant effect in vivo. Furthermore, we demonstrate how neurochemical pathways of BDNF and FGF2, through the MAPK, PI3K, and JNK cascades, regulate AP-1 function to mediate the beneficial effects of the antidepressant response. Here we put forth a sequential molecular network to track the antidepressant response and provide a new avenue that could be used to accelerate or potentiate antidepressant responses by triggering neuroplasticity.
Collapse
Affiliation(s)
- Revathy U. Chottekalapanda
- 0000 0001 2166 1519grid.134907.8Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| | - Salina Kalik
- 0000 0001 2166 1519grid.134907.8Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| | - Jodi Gresack
- 0000 0001 2166 1519grid.134907.8Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| | - Alyssa Ayala
- 0000 0001 2166 1519grid.134907.8Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| | - Melanie Gao
- 0000 0001 2166 1519grid.134907.8Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| | - Wei Wang
- 0000 0001 2166 1519grid.134907.8Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| | - Sarah Meller
- 0000 0001 2166 1519grid.134907.8Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| | - Ammar Aly
- 0000 0001 2166 1519grid.134907.8Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| | - Anne Schaefer
- 0000 0001 0670 2351grid.59734.3cFriedman Brain Institute, Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Paul Greengard
- 0000 0001 2166 1519grid.134907.8Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| |
Collapse
|
222
|
Wilson MR, Holladay J, Chandler RL. A mouse model of endometriosis mimicking the natural spread of invasive endometrium. Hum Reprod 2020; 35:58-69. [PMID: 31886851 PMCID: PMC8205619 DOI: 10.1093/humrep/dez253] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/27/2019] [Indexed: 12/14/2022] Open
Abstract
STUDY QUESTION Is it possible to establish a genetically engineered mouse model (GEMM) of endometriosis that mimics the natural spread of invasive endometrium? SUMMARY ANSWER Endometriosis occurs in an ARID1A (AT-rich interactive domain-containing protein 1A) and PIK3CA (phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha) mutant GEMM of endometrial dysfunction following salpingectomy. WHAT IS KNOWN ALREADY Although mouse models of endometriosis have long been established, most models rely on intraperitoneal injection of uterine fragments, steroid hormone treatments or the use of immune-compromised mice. STUDY DESIGN, SIZE, DURATION Mice harboring the lactotransferrin-Cre (LtfCre0/+), Arid1afl, (Gt)R26Pik3ca*H1047R and (Gt)R26mTmG alleles were subject to unilateral salpingectomies at 6 weeks of age. Control (n = 9), LtfCre0/+; (Gt)R26Pik3ca*H1047R; Arid1afl/+ (n = 8) and LtfCre0/+; (Gt)R26Pik3ca*H1047R; Arid1afl/fl (n = 9) were used for the study. The (Gt)R26mTmG allele was used for the purpose of fluorescent lineage tracing of endometrial epithelium. LtfCre0/+; (Gt)R26mTmG (n = 3) and LtfCre0/+; (Gt)R26Pik3ca*H1047R/mTmG; Arid1afl/fl (n = 4) were used for this purpose. Mice were followed until the endpoint of vaginal bleeding at an average time of 17 weeks of age. PARTICIPANTS/MATERIALS, SETTING, METHODS At 6 weeks of age, mice were subjected to salpingectomy surgery. Mice were followed until the time point of vaginal bleeding (average 17 weeks), or aged for 1 year in the case of control mice. At time of sacrifice, endometriotic lesions, ovaries and uterus were collected for the purpose of histochemical and immunohistochemical analyses. Samples were analyzed for markers of the endometriotic tissue and other relevant biomarkers. MAIN RESULTS AND THE ROLE OF CHANCE Following salpingectomy, LtfCre0/+; (Gt)R26Pik3ca*H1047R/mTmG; Arid1afl/fl mice developed endometriotic lesions, including lesions on the ovary, omentum and abdominal wall. Epithelial glands within lesions were negative for ARID1A and positive for phospho-S6 staining, indicating ARID1A-PIK3CA co-mutation status, and expressed EGFP (enhanced green fluorescent protein), indicating endometrial origins. LARGE-SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION LtfCre0/+; (Gt)R26Pik3ca*H1047R; Arid1afl/fl mice develop vaginal bleeding as a result of endometrial dysfunction at an average age of 17 weeks and must be sacrificed. Furthermore, while this model mimics the natural spread of endometriotic tissue directly from the uterus to the peritoneum, the data presented do not reject current hypotheses on endometriosis pathogenesis. WIDER IMPLICATIONS OF THE FINDINGS The idea that endometriosis is the result of abnormal endometrial tissue colonizing the peritoneum via retrograde menstruation has gained widespread support over the past century. However, most models of endometriosis take for granted this possibility, relying on the surgical removal of bulk uterine tissue and subsequent transplantation into the peritoneum. Growing evidence suggests that somatic mutations in ARID1A and PIK3CA are present in the endometrial epithelium. The establishment of a GEMM which mimics the natural spread of endometrium and subsequent lesion formation supports the hypothesis that endometriosis is derived from mutant endometrial epithelium with invasive properties. STUDY FUNDING/COMPETING INTEREST(S) This research was supported by the American Cancer Society PF-17-163-02-DDC (M.R.W.), the Mary Kay Foundation 026-16 (R.L.C.) and the Ovarian Cancer Research Fund Alliance 457446 (R.L.C.). The authors declare no competing interests.
Collapse
Affiliation(s)
- Mike R Wilson
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
| | - Jeanne Holladay
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
| | - Ronald L Chandler
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI 49503, USA
- Department of Women’s Health, Spectrum Health System, Grand Rapids, MI 49341, USA
| |
Collapse
|
223
|
Abstract
In eukaryotes, DNA is highly compacted within the nucleus into a structure known as chromatin. Modulation of chromatin structure allows for precise regulation of gene expression, and thereby controls cell fate decisions. Specific chromatin organization is established and preserved by numerous factors to generate desired cellular outcomes. In embryonic stem (ES) cells, chromatin is precisely regulated to preserve their two defining characteristics: self-renewal and pluripotent state. This action is accomplished by a litany of nucleosome remodelers, histone variants, epigenetic marks, and other chromatin regulatory factors. These highly dynamic regulatory factors come together to precisely define a chromatin state that is conducive to ES cell maintenance and development, where dysregulation threatens the survival and fitness of the developing organism.
Collapse
Affiliation(s)
- David C Klein
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, United States
| | - Sarah J Hainer
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
224
|
Detavernier A, Azouz A, Shehade H, Splittgerber M, Van Maele L, Nguyen M, Thomas S, Achouri Y, Svec D, Calonne E, Fuks F, Oldenhove G, Goriely S. Monocytes undergo multi-step differentiation in mice during oral infection by Toxoplasma gondii. Commun Biol 2019; 2:472. [PMID: 31872076 PMCID: PMC6920430 DOI: 10.1038/s42003-019-0718-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 11/27/2019] [Indexed: 01/01/2023] Open
Abstract
Monocytes play a major role in the defense against pathogens. They are rapidly mobilized to inflamed sites where they exert both proinflammatory and regulatory effector functions. It is still poorly understood how this dynamic and exceptionally plastic system is controlled at the molecular level. Herein, we evaluated the differentiation process that occurs in Ly6Chi monocytes during oral infection by Toxoplasma gondii. Flow cytometry and single-cell analysis revealed distinct activation status and gene expression profiles in the bone marrow, the spleen and the lamina propria of infected mice. We provide further evidence that acquisition of effector functions, such as the capacity to produce interleukin-27, is accompanied by distinct waves of epigenetic programming, highlighting a role for STAT1/IRF1 in the bone marrow and AP-1/NF-κB in the periphery. This work broadens our understanding of the molecular events that occur in vivo during monocyte differentiation in response to inflammatory cues.
Collapse
Affiliation(s)
- Aurélie Detavernier
- Université Libre de Bruxelles, Institute for Medical Immunology and ULB Center for Research in Immunology (U-CRI), Gosselies, Belgium
| | - Abdulkader Azouz
- Université Libre de Bruxelles, Institute for Medical Immunology and ULB Center for Research in Immunology (U-CRI), Gosselies, Belgium
| | - Hussein Shehade
- Université Libre de Bruxelles, Institute for Medical Immunology and ULB Center for Research in Immunology (U-CRI), Gosselies, Belgium
| | - Marion Splittgerber
- Université Libre de Bruxelles, Institute for Medical Immunology and ULB Center for Research in Immunology (U-CRI), Gosselies, Belgium
| | - Laurye Van Maele
- Université Libre de Bruxelles, Institute for Medical Immunology and ULB Center for Research in Immunology (U-CRI), Gosselies, Belgium
| | - Muriel Nguyen
- Université Libre de Bruxelles, Institute for Medical Immunology and ULB Center for Research in Immunology (U-CRI), Gosselies, Belgium
| | - Séverine Thomas
- Université Libre de Bruxelles, Institute for Medical Immunology and ULB Center for Research in Immunology (U-CRI), Gosselies, Belgium
| | - Younes Achouri
- Université Catholique de Louvain, Institut de Duve, Brussels, Belgium
| | - David Svec
- Institute of Biotechnology, Czech Academy of Science, 252 50 Vestec u prahy, Czech Republic
| | - Emilie Calonne
- Université Libre de Bruxelles, Laboratory of Cancer Epigenetics, Brussels, Belgium
| | - François Fuks
- Université Libre de Bruxelles, Laboratory of Cancer Epigenetics, Brussels, Belgium
| | - Guillaume Oldenhove
- Université Libre de Bruxelles, Laboratoire d’Immunobiologie, Gosselies, Belgium
| | - Stanislas Goriely
- Université Libre de Bruxelles, Institute for Medical Immunology and ULB Center for Research in Immunology (U-CRI), Gosselies, Belgium
| |
Collapse
|
225
|
Tyssowski KM, Letai KC, Rendall SD, Tan C, Nizhnik A, Kaeser PS, Gray JM. Firing Rate Homeostasis Can Occur in the Absence of Neuronal Activity-Regulated Transcription. J Neurosci 2019; 39:9885-9899. [PMID: 31672790 PMCID: PMC6978944 DOI: 10.1523/jneurosci.1108-19.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/27/2019] [Accepted: 10/18/2019] [Indexed: 01/06/2023] Open
Abstract
Despite dynamic inputs, neuronal circuits maintain relatively stable firing rates over long periods. This maintenance of firing rate, or firing rate homeostasis, is likely mediated by homeostatic mechanisms such as synaptic scaling and regulation of intrinsic excitability. Because some of these homeostatic mechanisms depend on transcription of activity-regulated genes, including Arc and Homer1a, we hypothesized that activity-regulated transcription would be required for firing rate homeostasis. Surprisingly, however, we found that cultured mouse cortical neurons from both sexes grown on multi-electrode arrays homeostatically adapt their firing rates to persistent pharmacological stimulation even when activity-regulated transcription is disrupted. Specifically, we observed firing rate homeostasis in Arc knock-out neurons, as well as knock-out neurons lacking the activity-regulated transcription factors AP1 and SRF. Firing rate homeostasis also occurred normally during acute pharmacological blockade of transcription. Thus, firing rate homeostasis in response to increased neuronal activity can occur in the absence of neuronal-activity-regulated transcription.SIGNIFICANCE STATEMENT Neuronal circuits maintain relatively stable firing rates even in the face of dynamic circuit inputs. Understanding the molecular mechanisms that enable this firing rate homeostasis could potentially provide insight into neuronal diseases that present with an imbalance of excitation and inhibition. It has long been proposed that activity-regulated transcription could underlie firing rate homeostasis because activity-regulated genes turn on when neurons are above their target firing rates and include many genes that could regulate firing rate. Surprisingly, despite this prediction, we found that cortical neurons can undergo firing rate homeostasis in the absence of activity-regulated transcription, indicating that firing rate homeostasis can be controlled by non-transcriptional mechanisms.
Collapse
Affiliation(s)
| | | | | | - Chao Tan
- Neurobiology, Harvard Medical School, Boston, Massachusetts 02115
| | | | - Pascal S Kaeser
- Neurobiology, Harvard Medical School, Boston, Massachusetts 02115
| | | |
Collapse
|
226
|
Trizzino M, Barbieri E, Petracovici A, Wu S, Welsh SA, Owens TA, Licciulli S, Zhang R, Gardini A. The Tumor Suppressor ARID1A Controls Global Transcription via Pausing of RNA Polymerase II. Cell Rep 2019; 23:3933-3945. [PMID: 29949775 DOI: 10.1016/j.celrep.2018.05.097] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/20/2018] [Accepted: 05/30/2018] [Indexed: 12/17/2022] Open
Abstract
AT-rich interactive domain-containing proteins 1A and 1B (ARID1A and ARID1B) are mutually exclusive subunits of the chromatin remodeler SWI/SNF. ARID1A is the most frequently mutated chromatin regulator across all cancers, and ovarian clear cell carcinoma (OCCC) carries the highest prevalence of ARID1A mutations (∼57%). Despite evidence implicating ARID1A in tumorigenesis, the mechanism remains elusive. Here, we demonstrate that ARID1A binds active regulatory elements in OCCC. Depletion of ARID1A represses RNA polymerase II (RNAPII) transcription but results in modest changes to accessibility. Specifically, pausing of RNAPII is severely impaired after loss of ARID1A. Compromised pausing results in transcriptional dysregulation of active genes, which is compensated by upregulation of ARID1B. However, a subset of ARID1A-dependent genes is not rescued by ARID1B, including many p53 and estrogen receptor (ESR1) targets. Our results provide insight into ARID1A-mediated tumorigenesis and unveil functions of SWI/SNF in modulating RNAPII dynamics.
Collapse
Affiliation(s)
- Marco Trizzino
- The Wistar Institute, Gene Expression and Regulation Program, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | - Elisa Barbieri
- The Wistar Institute, Gene Expression and Regulation Program, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | - Ana Petracovici
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Shuai Wu
- The Wistar Institute, Gene Expression and Regulation Program, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | - Sarah A Welsh
- The Wistar Institute, Gene Expression and Regulation Program, 3601 Spruce Street, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Tori A Owens
- The Wistar Institute, Gene Expression and Regulation Program, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | - Silvia Licciulli
- The Wistar Institute, Gene Expression and Regulation Program, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | - Rugang Zhang
- The Wistar Institute, Gene Expression and Regulation Program, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | - Alessandro Gardini
- The Wistar Institute, Gene Expression and Regulation Program, 3601 Spruce Street, Philadelphia, PA 19104, USA.
| |
Collapse
|
227
|
|
228
|
Boxer LD, Renthal W, Greben AW, Whitwam T, Silberfeld A, Stroud H, Li E, Yang MG, Kinde B, Griffith EC, Bonev B, Greenberg ME. MeCP2 Represses the Rate of Transcriptional Initiation of Highly Methylated Long Genes. Mol Cell 2019; 77:294-309.e9. [PMID: 31784358 DOI: 10.1016/j.molcel.2019.10.032] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 09/09/2019] [Accepted: 10/23/2019] [Indexed: 12/14/2022]
Abstract
Mutations in the methyl-DNA-binding repressor protein MeCP2 cause the devastating neurodevelopmental disorder Rett syndrome. It has been challenging to understand how MeCP2 regulates transcription because MeCP2 binds broadly across the genome and MeCP2 mutations are associated with widespread small-magnitude changes in neuronal gene expression. We demonstrate here that MeCP2 represses nascent RNA transcription of highly methylated long genes in the brain through its interaction with the NCoR co-repressor complex. By measuring the rates of transcriptional initiation and elongation directly in the brain, we find that MeCP2 has no measurable effect on transcriptional elongation, but instead represses the rate at which Pol II initiates transcription of highly methylated long genes. These findings suggest a new model of MeCP2 function in which MeCP2 binds broadly across highly methylated regions of DNA, but acts at transcription start sites to attenuate transcriptional initiation.
Collapse
Affiliation(s)
- Lisa D Boxer
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - William Renthal
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Alexander W Greben
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Tess Whitwam
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Andrew Silberfeld
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Hume Stroud
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Emmy Li
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Marty G Yang
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Benyam Kinde
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Eric C Griffith
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Boyan Bonev
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Michael E Greenberg
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
229
|
Zheng P, Chen X, Xie J, Chen X, Lin S, Ye L, Chen L, Lin J, Yu X, Zheng M. Capn4 is induced by and required for Epstein-Barr virus latent membrane protein 1 promotion of nasopharyngeal carcinoma metastasis through ERK/AP-1 signaling. Cancer Sci 2019; 111:72-83. [PMID: 31691433 PMCID: PMC6942433 DOI: 10.1111/cas.14227] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/22/2019] [Accepted: 10/31/2019] [Indexed: 12/11/2022] Open
Abstract
Capn4, also known as CapnS1, is a member of the calpain family, which plays a crucial role in maintaining the activity and function of calpain. We previously reported that Capn4 also plays an essential role in the migration of nasopharyngeal carcinoma (NPC) cells through regulation of (MMP‐2) by nuclear factor‐kappa B activation. Epstein‐Barr virus latent membrane protein 1 (LMP1) is closely related to the malignant functions of NPC; however, the relationship between LMP1 and Capn4 in NPC remain unclear. Immunohistochemical studies showed that the level of LMP1 and Capn4 expression was high in both primary and metastatic NPC tissues, with a significantly positive correlation. We further found that LMP1 was able to upregulate the Capn4 promoter in a dose‐dependent way through the C‐terminal activation region (CTAR)1 and CTAR2 domains to activate AP‐1. Moreover, we also found that LMP1 activated AP‐1 through ERK/JNK phosphorylation. These findings indicate that Capn4 coordination with LMP1 promotes actin rearrangement and, ultimately, cellular migration. These results show that Capn4 coordination with LMP1 enhances NPC migration by increasing actin rearrangement involving ERK/JNK/AP‐1 signaling. Therapeutically, additional and more specific LMP1 and Capn4 targeted inhibitors could be exploited to treat NPC.
Collapse
Affiliation(s)
- Peichan Zheng
- Fujian Center for Safety Evaluation of New Drug, Fujian Medical University, Fuzhou, China
| | - Xiong Chen
- Department of Medical Oncology, The 900th Hospital of the People's Liberation Army Joint Service Support Force, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Jianqin Xie
- Fujian Center for Safety Evaluation of New Drug, Fujian Medical University, Fuzhou, China
| | - Xi Chen
- Department of Medical Oncology, The 900th Hospital of the People's Liberation Army Joint Service Support Force, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Shanshan Lin
- Fujian Center for Safety Evaluation of New Drug, Fujian Medical University, Fuzhou, China
| | - Lixiang Ye
- Fujian Center for Safety Evaluation of New Drug, Fujian Medical University, Fuzhou, China
| | - Lingfan Chen
- Fujian Center for Safety Evaluation of New Drug, Fujian Medical University, Fuzhou, China
| | - Jing Lin
- Fujian Center for Safety Evaluation of New Drug, Fujian Medical University, Fuzhou, China
| | - Xiangbin Yu
- Fujian Center for Safety Evaluation of New Drug, Fujian Medical University, Fuzhou, China
| | - Ming Zheng
- College of Pharmacy, Fujian Medical University, Fuzhou, China
| |
Collapse
|
230
|
Sundqvist A, Voytyuk O, Hamdi M, Popeijus HE, Bijlsma-van der Burgt C, Janssen J, Martens JW, Moustakas A, Heldin CH, ten Dijke P, van Dam H. JNK-Dependent cJun Phosphorylation Mitigates TGFβ- and EGF-Induced Pre-Malignant Breast Cancer Cell Invasion by Suppressing AP-1-Mediated Transcriptional Responses. Cells 2019; 8:E1481. [PMID: 31766464 PMCID: PMC6952832 DOI: 10.3390/cells8121481] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/12/2019] [Accepted: 11/18/2019] [Indexed: 12/11/2022] Open
Abstract
Transforming growth factor-β (TGFβ) has both tumor-suppressive and tumor-promoting effects in breast cancer. These functions are partly mediated through Smads, intracellular transcriptional effectors of TGFβ. Smads form complexes with other DNA-binding transcription factors to elicit cell-type-dependent responses. Previously, we found that the collagen invasion and migration of pre-malignant breast cancer cells in response to TGFβ and epidermal growth factor (EGF) critically depend on multiple Jun and Fos components of the activator protein (AP)-1 transcription factor complex. Here we report that the same process is negatively regulated by Jun N-terminal kinase (JNK)-dependent cJun phosphorylation. This was demonstrated by analysis of phospho-deficient, phospho-mimicking, and dimer-specific cJun mutants, and experiments employing a mutant version of the phosphatase MKP1 that specifically inhibits JNK. Hyper-phosphorylation of cJun by JNK strongly inhibited its ability to induce several Jun/Fos-regulated genes and to promote migration and invasion. These results show that MEK-AP-1 and JNK-phospho-cJun exhibit distinct pro- and anti-invasive functions, respectively, through differential regulation of Smad- and AP-1-dependent TGFβ target genes. Our findings are of importance for personalized cancer therapy, such as for patients suffering from specific types of breast tumors with activated EGF receptor-Ras or inactivated JNK pathways.
Collapse
Affiliation(s)
- Anders Sundqvist
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Box 582, SE-751 23 Uppsala, Sweden; (A.M.); (C.-H.H.); (P.t.D.)
| | - Oleksandr Voytyuk
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Box 582, SE-751 23 Uppsala, Sweden; (A.M.); (C.-H.H.); (P.t.D.)
| | - Mohamed Hamdi
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands; (M.H.); (H.E.P.); (C.B.-v.d.B.); (J.J.)
| | - Herman E. Popeijus
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands; (M.H.); (H.E.P.); (C.B.-v.d.B.); (J.J.)
| | - Corina Bijlsma-van der Burgt
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands; (M.H.); (H.E.P.); (C.B.-v.d.B.); (J.J.)
| | - Josephine Janssen
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands; (M.H.); (H.E.P.); (C.B.-v.d.B.); (J.J.)
| | - John W.M. Martens
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands;
| | - Aristidis Moustakas
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Box 582, SE-751 23 Uppsala, Sweden; (A.M.); (C.-H.H.); (P.t.D.)
| | - Carl-Henrik Heldin
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Box 582, SE-751 23 Uppsala, Sweden; (A.M.); (C.-H.H.); (P.t.D.)
| | - Peter ten Dijke
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Box 582, SE-751 23 Uppsala, Sweden; (A.M.); (C.-H.H.); (P.t.D.)
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands; (M.H.); (H.E.P.); (C.B.-v.d.B.); (J.J.)
| | - Hans van Dam
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands; (M.H.); (H.E.P.); (C.B.-v.d.B.); (J.J.)
| |
Collapse
|
231
|
Neurobiological functions of transcriptional enhancers. Nat Neurosci 2019; 23:5-14. [PMID: 31740812 DOI: 10.1038/s41593-019-0538-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 10/16/2019] [Indexed: 02/08/2023]
Abstract
Transcriptional enhancers are regulatory DNA elements that underlie the specificity and dynamic patterns of gene expression. Over the past decade, large-scale functional genomics projects have driven transformative progress in our understanding of enhancers. These data have relevance for identifying mechanisms of gene regulation in the CNS, elucidating the function of non-coding regulatory sequences in neurobiology and linking sequence variation within enhancers to genetic risk for neurological and psychiatric disorders. However, the sheer volume and complexity of genomic data presents a challenge to interpreting enhancer function in normal and pathogenic neurobiological processes. Here, to advance the application of genome-scale enhancer data, we offer a primer on current models of enhancer function in the CNS, we review how enhancers regulate gene expression across the neuronal lifespan, and we suggest how emerging findings regarding the role of non-coding sequence variation offer opportunities for understanding brain disorders and developing new technologies for neuroscience.
Collapse
|
232
|
Selvanathan S, Graham G, Grego A, Baker T, Hogg J, Simpson M, Batish M, Crompton B, Stegmaier K, Tomazou E, Kovar H, Üren A, Toretsky J. EWS-FLI1 modulated alternative splicing of ARID1A reveals novel oncogenic function through the BAF complex. Nucleic Acids Res 2019; 47:9619-9636. [PMID: 31392992 PMCID: PMC6765149 DOI: 10.1093/nar/gkz699] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 07/23/2019] [Accepted: 08/01/2019] [Indexed: 12/27/2022] Open
Abstract
Connections between epigenetic reprogramming and transcription or splicing create novel mechanistic networks that can be targeted with tailored therapies. Multiple subunits of the chromatin remodeling BAF complex, including ARID1A, play a role in oncogenesis, either as tumor suppressors or oncogenes. Recent work demonstrated that EWS-FLI1, the oncogenic driver of Ewing sarcoma (ES), plays a role in chromatin regulation through interactions with the BAF complex. However, the specific BAF subunits that interact with EWS-FLI1 and the precise role of the BAF complex in ES oncogenesis remain unknown. In addition to regulating transcription, EWS-FLI1 also alters the splicing of many mRNA isoforms, but the role of splicing modulation in ES oncogenesis is not well understood. We have identified a direct connection between the EWS-FLI1 protein and ARID1A isoform protein variant ARID1A-L. We demonstrate here that ARID1A-L is critical for ES maintenance and supports oncogenic transformation. We further report a novel feed-forward cycle in which EWS-FLI1 leads to preferential splicing of ARID1A-L, promoting ES growth, and ARID1A-L reciprocally promotes EWS-FLI1 protein stability. Dissecting this interaction may lead to improved cancer-specific drug targeting.
Collapse
Affiliation(s)
- Saravana P Selvanathan
- Departments of Oncology and Pediatrics, Georgetown University, Washington, DC 20057, USA
| | - Garrett T Graham
- Departments of Oncology and Pediatrics, Georgetown University, Washington, DC 20057, USA
| | - Alexander R Grego
- Departments of Oncology and Pediatrics, Georgetown University, Washington, DC 20057, USA
| | | | - J Robert Hogg
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mark Simpson
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University, Newark, NJ 07103, USA
| | - Mona Batish
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University, Newark, NJ 07103, USA
- Department of Medical and Molecular Sciences, University of Delaware, Newark, DE 19716, USA
| | - Brian Crompton
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, MA, USA
- Broad Institute, Cambridge, MA, USA
| | - Kimberly Stegmaier
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, MA, USA
- Broad Institute, Cambridge, MA, USA
| | - Eleni M Tomazou
- Children's Cancer Research Institute, St. Anna Kinderkrebsforschung, Vienna, Austria
| | - Heinrich Kovar
- Children's Cancer Research Institute, St. Anna Kinderkrebsforschung, Vienna, Austria
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Aykut Üren
- Departments of Oncology and Pediatrics, Georgetown University, Washington, DC 20057, USA
| | - Jeffrey A Toretsky
- Departments of Oncology and Pediatrics, Georgetown University, Washington, DC 20057, USA
| |
Collapse
|
233
|
Fernandez-Albert J, Lipinski M, Lopez-Cascales MT, Rowley MJ, Martin-Gonzalez AM, Del Blanco B, Corces VG, Barco A. Immediate and deferred epigenomic signatures of in vivo neuronal activation in mouse hippocampus. Nat Neurosci 2019; 22:1718-1730. [PMID: 31501571 PMCID: PMC6875776 DOI: 10.1038/s41593-019-0476-2] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 07/23/2019] [Indexed: 11/08/2022]
Abstract
Activity-driven transcription plays an important role in many brain processes, including those underlying memory and epilepsy. Here we combine genetic tagging of nuclei and ribosomes with RNA sequencing, chromatin immunoprecipitation with sequencing, assay for transposase-accessible chromatin using sequencing and Hi-C to investigate transcriptional and chromatin changes occurring in mouse hippocampal excitatory neurons at different time points after synchronous activation during seizure and sparse activation by novel context exploration. The transcriptional burst is associated with an increase in chromatin accessibility of activity-regulated genes and enhancers, de novo binding of activity-regulated transcription factors, augmented promoter-enhancer interactions and the formation of gene loops that bring together the transcription start site and transcription termination site of induced genes and may sustain the fast reloading of RNA polymerase complexes. Some chromatin occupancy changes and interactions, particularly those driven by AP1, remain long after neuronal activation and could underlie the changes in neuronal responsiveness and circuit connectivity observed in these neuroplasticity paradigms, perhaps thereby contributing to metaplasticity in the adult brain.
Collapse
Affiliation(s)
- Jordi Fernandez-Albert
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, Sant Joan d'Alacant, Alicante, Spain
| | - Michal Lipinski
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, Sant Joan d'Alacant, Alicante, Spain
| | - María T Lopez-Cascales
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, Sant Joan d'Alacant, Alicante, Spain
| | - M Jordan Rowley
- Department of Biology, Emory University, Atlanta, GA, USA
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ana M Martin-Gonzalez
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, Sant Joan d'Alacant, Alicante, Spain
- Nencki Institute of Experimental Biology PAS, Warsaw, Poland
| | - Beatriz Del Blanco
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, Sant Joan d'Alacant, Alicante, Spain
| | | | - Angel Barco
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, Sant Joan d'Alacant, Alicante, Spain.
| |
Collapse
|
234
|
Ho PJ, Lloyd SM, Bao X. Unwinding chromatin at the right places: how BAF is targeted to specific genomic locations during development. Development 2019; 146:146/19/dev178780. [PMID: 31570369 DOI: 10.1242/dev.178780] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The BAF (SWI/SNF) chromatin remodeling complex plays a crucial role in modulating spatiotemporal gene expression during mammalian development. Although its remodeling activity was characterized in vitro decades ago, the complex actions of BAF in vivo have only recently begun to be unraveled. In living cells, BAF only binds to and remodels a subset of genomic locations. This selectivity of BAF genomic targeting is crucial for cell-type specification and for mediating precise responses to environmental signals. Here, we provide an overview of the distinct molecular mechanisms modulating BAF chromatin binding, including its combinatory assemblies, DNA/histone modification-binding modules and post-translational modifications, as well as its interactions with proteins, RNA and lipids. This Review aims to serve as a primer for future studies to decode the actions of BAF in developmental processes.
Collapse
Affiliation(s)
- Patric J Ho
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Sarah M Lloyd
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Xiaomin Bao
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA .,Department of Dermatology, Northwestern University, Evanston, IL 60208, USA.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
235
|
Jameson NM, Ma J, Benitez J, Izurieta A, Han JY, Mendez R, Parisian A, Furnari F. Intron 1-Mediated Regulation of EGFR Expression in EGFR-Dependent Malignancies Is Mediated by AP-1 and BET Proteins. Mol Cancer Res 2019; 17:2208-2220. [PMID: 31444232 DOI: 10.1158/1541-7786.mcr-19-0747] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 08/08/2019] [Accepted: 08/21/2019] [Indexed: 11/16/2022]
Abstract
The epidermal growth factor receptor (EGFR) is overexpressed in numerous solid tumors and is the subject of extensive therapeutic efforts. Much of the research on EGFR is focused on protein dynamics and downstream signaling; however, few studies have explored its transcriptional regulation. Here, we identified two enhancers (CE1 and CE2) present within the first intron of the EGFR gene in models of glioblastoma (GBM) and head and neck squamous cell carcinoma (HNSCC). CE1 and CE2 contain open chromatin and H3K27Ac histone marks, enhance transcription in reporter assays, and interact with the EGFR promoter. Enhancer genetic deletion by CRISPR/Cas9 significantly reduces EGFR transcript levels, with double deletion exercising an additive effect. Targeted repression of CE1 and CE2 by dCas9-KRAB demonstrates repression of transcription similar to that of genomic deletion. We identify AP-1 transcription factor family members in concert with BET bromodomain proteins as modulators of CE1 and CE2 activity in HNSCC and GBM through de novo motif identification and validate their presence. Genetic inhibition of AP-1 or pharmacologic disruption of BET/AP-1 binding results in downregulated EGFR protein and transcript levels, confirming a role for these factors in CE1 and CE2. Our results identify and characterize these novel enhancers, shedding light on the role that epigenetic mechanisms play in regulating EGFR transcription in EGFR-dependent cancers. IMPLICATIONS: We identify critical constituent enhancers present in the first intron of the EGFR gene, and provide a rationale for therapeutic targeting of EGFR intron 1 enhancers through perturbation of AP-1 and BET in EGFR-positive malignancies.
Collapse
Affiliation(s)
- Nathan M Jameson
- Ludwig Cancer Research, San Diego Branch, University of California at San Diego, La Jolla, California
| | - Jianhui Ma
- Ludwig Cancer Research, San Diego Branch, University of California at San Diego, La Jolla, California.,Zeno Pharmaceuticals, San Diego, California
| | - Jorge Benitez
- Ludwig Cancer Research, San Diego Branch, University of California at San Diego, La Jolla, California.,Celgene Corporation, San Diego, California
| | - Alejandro Izurieta
- Ludwig Cancer Research, San Diego Branch, University of California at San Diego, La Jolla, California
| | - Jee Yun Han
- Center for Epigenomics, University of California at San Diego, La Jolla, California
| | - Robert Mendez
- Center for Epigenomics, University of California at San Diego, La Jolla, California
| | - Alison Parisian
- Ludwig Cancer Research, San Diego Branch, University of California at San Diego, La Jolla, California
| | - Frank Furnari
- Ludwig Cancer Research, San Diego Branch, University of California at San Diego, La Jolla, California. .,The Department of Pathology, University of California San Diego, La Jolla, California
| |
Collapse
|
236
|
Penisson M, Ladewig J, Belvindrah R, Francis F. Genes and Mechanisms Involved in the Generation and Amplification of Basal Radial Glial Cells. Front Cell Neurosci 2019; 13:381. [PMID: 31481878 PMCID: PMC6710321 DOI: 10.3389/fncel.2019.00381] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 08/05/2019] [Indexed: 12/22/2022] Open
Abstract
The development of the cerebral cortex relies on different types of progenitor cell. Among them, the recently described basal radial glial cell (bRG) is suggested to be of critical importance for the development of the brain in gyrencephalic species. These cells are highly numerous in primate and ferret brains, compared to lissencephalic species such as the mouse in which they are few in number. Their somata are located in basal subventricular zones in gyrencephalic brains and they generally possess a basal process extending to the pial surface. They sometimes also have an apical process directed toward the ventricular surface, similar to apical radial glial cells (aRGs) from which they are derived, and whose somata are found more apically in the ventricular zone. bRGs share similarities with aRGs in terms of gene expression (SOX2, PAX6, and NESTIN), whilst also expressing a range of more specific genes (such as HOPX). In primate brains, bRGs can divide multiple times, self-renewing and/or generating intermediate progenitors and neurons. They display a highly specific cytokinesis behavior termed mitotic somal translocation. We focus here on recently identified molecular mechanisms associated with the generation and amplification of bRGs, including bRG-like cells in the rodent. These include signaling pathways such as the FGF-MAPK cascade, SHH, PTEN/AKT, PDGF pathways, and proteins such as INSM, GPSM2, ASPM, TRNP1, ARHGAP11B, PAX6, and HIF1α. A number of these proteins were identified through transcriptome comparisons in human aRGs vs. bRGs, and validated by modifying their activities or expression levels in the mouse. This latter experiment often revealed enhanced bRG-like cell production, even in some cases generating folds (gyri) on the surface of the mouse cortex. We compare the features of the identified cells and methods used to characterize them in each model. These important data converge to indicate pathways essential for the production and expansion of bRGs, which may help us understand cortical development in health and disease.
Collapse
Affiliation(s)
- Maxime Penisson
- Inserm, Institut du Fer à Moulin, Sorbonne Université, Paris, France.,Inserm UMR-S 1270, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Julia Ladewig
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Hector Institute for Translational Brain Research (gGmbH), Mannheim, Germany.,German Cancer Research Center, Heidelberg, Germany
| | - Richard Belvindrah
- Inserm, Institut du Fer à Moulin, Sorbonne Université, Paris, France.,Inserm UMR-S 1270, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Fiona Francis
- Inserm, Institut du Fer à Moulin, Sorbonne Université, Paris, France.,Inserm UMR-S 1270, Paris, France.,Institut du Fer à Moulin, Paris, France
| |
Collapse
|
237
|
ARID1A and PI3-kinase pathway mutations in the endometrium drive epithelial transdifferentiation and collective invasion. Nat Commun 2019; 10:3554. [PMID: 31391455 PMCID: PMC6686004 DOI: 10.1038/s41467-019-11403-6] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 07/03/2019] [Indexed: 01/06/2023] Open
Abstract
ARID1A and PI3-Kinase (PI3K) pathway alterations are common in neoplasms originating from the uterine endometrium. Here we show that monoallelic loss of ARID1A in the mouse endometrial epithelium is sufficient for vaginal bleeding when combined with PI3K activation. Sorted mutant epithelial cells display gene expression and promoter chromatin signatures associated with epithelial-to-mesenchymal transition (EMT). We further show that ARID1A is bound to promoters with open chromatin, but ARID1A loss leads to increased promoter chromatin accessibility and the expression of EMT genes. PI3K activation partially rescues the mesenchymal phenotypes driven by ARID1A loss through antagonism of ARID1A target gene expression, resulting in partial EMT and invasion. We propose that ARID1A normally maintains endometrial epithelial cell identity by repressing mesenchymal cell fates, and that coexistent ARID1A and PI3K mutations promote epithelial transdifferentiation and collective invasion. Broadly, our findings support a role for collective epithelial invasion in the spread of abnormal endometrial tissue. PIK3CA mutations and ARID1A loss co-exist in endometrial neoplasms. Here, the authors show that these co-mutations drive gene expression profiles correlated with differential chromatin accessibility and ARID1A binding in the endometrial epithelium, resulting in partial EMT and myometrial invasion.
Collapse
|
238
|
Yap EL, Greenberg ME. Activity-Regulated Transcription: Bridging the Gap between Neural Activity and Behavior. Neuron 2019; 100:330-348. [PMID: 30359600 DOI: 10.1016/j.neuron.2018.10.013] [Citation(s) in RCA: 347] [Impact Index Per Article: 69.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 10/02/2018] [Accepted: 10/05/2018] [Indexed: 12/21/2022]
Abstract
Gene transcription is the process by which the genetic codes of organisms are read and interpreted as a set of instructions for cells to divide, differentiate, migrate, and mature. As cells function in their respective niches, transcription further allows mature cells to interact dynamically with their external environment while reliably retaining fundamental information about past experiences. In this Review, we provide an overview of the field of activity-dependent transcription in the vertebrate brain and highlight contemporary work that ranges from studies of activity-dependent chromatin modifications to plasticity mechanisms underlying adaptive behaviors. We identify key gaps in knowledge and propose integrated approaches toward a deeper understanding of how activity-dependent transcription promotes the refinement and plasticity of neural circuits for cognitive function.
Collapse
Affiliation(s)
- Ee-Lynn Yap
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Program in Neuroscience, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Michael E Greenberg
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
239
|
Bianco S, Bellefleur AM, Beaulieu É, Beauparlant CJ, Bertolin K, Droit A, Schoonjans K, Murphy BD, Gévry N. The Ovulatory Signal Precipitates LRH-1 Transcriptional Switching Mediated by Differential Chromatin Accessibility. Cell Rep 2019; 28:2443-2454.e4. [DOI: 10.1016/j.celrep.2019.07.088] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 05/01/2019] [Accepted: 07/24/2019] [Indexed: 12/23/2022] Open
|
240
|
Gao F, Elliott NJ, Ho J, Sharp A, Shokhirev MN, Hargreaves DC. Heterozygous Mutations in SMARCA2 Reprogram the Enhancer Landscape by Global Retargeting of SMARCA4. Mol Cell 2019; 75:891-904.e7. [PMID: 31375262 PMCID: PMC7291823 DOI: 10.1016/j.molcel.2019.06.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 04/24/2019] [Accepted: 06/18/2019] [Indexed: 12/22/2022]
Abstract
Mammalian SWI/SNF complexes are multi-subunit chromatin remodeling complexes associated with an ATPase (either SMARCA4 or SMARCA2). Heterozygous mutations in the SMARCA2 ATPase cause Nicolaides-Baraitser syndrome (NCBRS), an intellectual disability syndrome associated with delayed speech onset. We engineered human embryonic stem cells (hESCs) to carry NCBRS-associated heterozygous SMARCA2 K755R or R1159Q mutations. While SMARCA2 mutant hESCs were phenotypically normal, differentiation to neural progenitors cells (NPCs) was severely impaired. We find that SMARCA2 mutations cause enhancer reorganization with loss of SOX3-dependent neural enhancers and prominent emergence of astrocyte-specific de novo enhancers. Changes in chromatin accessibility at enhancers were associated with an increase in SMARCA2 binding and retargeting of SMARCA4. We show that the AP-1 family member FRA2 is aberrantly overexpressed in SMARCA2 mutant NPCs, where it functions as a pioneer factor at de novo enhancers. Together, our results demonstrate that SMARCA2 mutations cause impaired differentiation through enhancer reprogramming via inappropriate targeting of SMARCA4.
Collapse
Affiliation(s)
- Fangjian Gao
- Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Nicholas J Elliott
- Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Josephine Ho
- Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Alexzander Sharp
- Biological Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92037, USA
| | - Maxim N Shokhirev
- Razavi Newman Integrative Genomics and Bioinformatics Core, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Diana C Hargreaves
- Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| |
Collapse
|
241
|
Good AL, Cannon CE, Haemmerle MW, Yang J, Stanescu DE, Doliba NM, Birnbaum MJ, Stoffers DA. JUND regulates pancreatic β cell survival during metabolic stress. Mol Metab 2019; 25:95-106. [PMID: 31023625 PMCID: PMC6600134 DOI: 10.1016/j.molmet.2019.04.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 04/01/2019] [Accepted: 04/08/2019] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE In type 2 diabetes (T2D), oxidative stress contributes to the dysfunction and loss of pancreatic β cells. A highly conserved feature of the cellular response to stress is the regulation of mRNA translation; however, the genes regulated at the level of translation are often overlooked due to the convenience of RNA sequencing technologies. Our goal is to investigate translational regulation in β cells as a means to uncover novel factors and pathways pertinent to cellular adaptation and survival during T2D-associated conditions. METHODS Translating ribosome affinity purification (TRAP) followed by RNA-seq or RT-qPCR was used to identify changes in the ribosome occupancy of mRNAs in Min6 cells. Gene depletion studies used lentiviral delivery of shRNAs to primary mouse islets or CRISPR-Cas9 to Min6 cells. Oxidative stress and apoptosis were measured in primary islets using cell-permeable dyes with fluorescence readouts of oxidation and activated cleaved caspase-3 and-7, respectively. Gene expression was assessed by RNA-seq, RT-qPCR, and western blot. ChIP-qPCR was used to determine chromatin enrichment. RESULTS TRAP-seq in a PDX1-deficiency model of β cell dysfunction uncovered a cohort of genes regulated at the level of mRNA translation, including the transcription factor JUND. Using a panel of diabetes-associated stressors, JUND was found to be upregulated in mouse islets cultured with high concentrations of glucose and free fatty acid, but not after treatment with hydrogen peroxide or thapsigargin. This induction of JUND could be attributed to increased mRNA translation. JUND was also upregulated in islets from diabetic db/db mice and in human islets treated with high glucose and free fatty acid. Depletion of JUND in primary islets reduced oxidative stress and apoptosis in β cells during metabolic stress. Transcriptome assessment identified a cohort of genes, including pro-oxidant and pro-inflammatory genes, regulated by JUND that are commonly dysregulated in models of β cell dysfunction, consistent with a maladaptive role for JUND in islets. CONCLUSIONS A translation-centric approach uncovered JUND as a stress-responsive factor in β cells that contributes to redox imbalance and apoptosis during pathophysiologically relevant stress.
Collapse
Affiliation(s)
- Austin L Good
- Institute for Diabetes, Obesity, and Metabolism and the Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Corey E Cannon
- Institute for Diabetes, Obesity, and Metabolism and the Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Matthew W Haemmerle
- Institute for Diabetes, Obesity, and Metabolism and the Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Juxiang Yang
- Division of Endocrinology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Diana E Stanescu
- Division of Endocrinology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Nicolai M Doliba
- Institute for Diabetes, Obesity, and Metabolism and the Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Morris J Birnbaum
- Institute for Diabetes, Obesity, and Metabolism and the Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Doris A Stoffers
- Institute for Diabetes, Obesity, and Metabolism and the Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
242
|
Jaric I, Rocks D, Greally JM, Suzuki M, Kundakovic M. Chromatin organization in the female mouse brain fluctuates across the oestrous cycle. Nat Commun 2019; 10:2851. [PMID: 31253786 PMCID: PMC6598989 DOI: 10.1038/s41467-019-10704-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 05/23/2019] [Indexed: 12/12/2022] Open
Abstract
Male and female brains differ significantly in both health and disease, and yet the female brain has been understudied. Sex-hormone fluctuations make the female brain particularly dynamic and are likely to confer female-specific risks for neuropsychiatric disorders. The molecular mechanisms underlying the dynamic nature of the female brain structure and function are unknown. Here we show that neuronal chromatin organization in the female ventral hippocampus of mouse fluctuates with the oestrous cycle. We find chromatin organizational changes associated with the transcriptional activity of genes important for neuronal function and behaviour. We link these chromatin dynamics to variation in anxiety-related behaviour and brain structure. Our findings implicate an immediate-early gene product, Egr1, as part of the mechanism mediating oestrous cycle-dependent chromatin and transcriptional changes. This study reveals extreme, sex-specific dynamism of the neuronal epigenome, and establishes a foundation for the development of sex-specific treatments for disorders such as anxiety and depression.
Collapse
Affiliation(s)
- Ivana Jaric
- Department of Biological Sciences, Fordham University, 441 E. Fordham Road, Bronx, NY, 10458, USA
| | - Devin Rocks
- Department of Biological Sciences, Fordham University, 441 E. Fordham Road, Bronx, NY, 10458, USA
| | - John M Greally
- Center for Epigenomics, Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Masako Suzuki
- Center for Epigenomics, Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Marija Kundakovic
- Department of Biological Sciences, Fordham University, 441 E. Fordham Road, Bronx, NY, 10458, USA.
| |
Collapse
|
243
|
Sen M, Wang X, Hamdan FH, Rapp J, Eggert J, Kosinsky RL, Wegwitz F, Kutschat AP, Younesi FS, Gaedcke J, Grade M, Hessmann E, Papantonis A, Strӧbel P, Johnsen SA. ARID1A facilitates KRAS signaling-regulated enhancer activity in an AP1-dependent manner in colorectal cancer cells. Clin Epigenetics 2019; 11:92. [PMID: 31217031 PMCID: PMC6585056 DOI: 10.1186/s13148-019-0690-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 05/29/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND ARID1A (AT-rich interactive domain-containing protein 1A) is a subunit of the BAF chromatin remodeling complex and plays roles in transcriptional regulation and DNA damage response. Mutations in ARID1A that lead to inactivation or loss of expression are frequent and widespread across many cancer types including colorectal cancer (CRC). A tumor suppressor role of ARID1A has been established in a number of tumor types including CRC where the genetic inactivation of Arid1a alone led to the formation of invasive colorectal adenocarcinomas in mice. Mechanistically, ARID1A has been described to largely function through the regulation of enhancer activity. METHODS To mimic ARID1A-deficient colorectal cancer, we used CRISPR/Cas9-mediated gene editing to inactivate the ARID1A gene in established colorectal cancer cell lines. We integrated gene expression analyses with genome-wide ARID1A occupancy and epigenomic mapping data to decipher ARID1A-dependent transcriptional regulatory mechanisms. RESULTS Interestingly, we found that CRC cell lines harboring KRAS mutations are critically dependent on ARID1A function. In the absence of ARID1A, proliferation of these cell lines is severely impaired, suggesting an essential role for ARID1A in this context. Mechanistically, we showed that ARID1A acts as a co-factor at enhancers occupied by AP1 transcription factors acting downstream of the MEK/ERK pathway. Consistently, loss of ARID1A led to a disruption of KRAS/AP1-dependent enhancer activity, accompanied by a downregulation of expression of the associated target genes. CONCLUSIONS We identify a previously unknown context-dependent tumor-supporting function of ARID1A in CRC downstream of KRAS signaling. Upon the loss of ARID1A in KRAS-mutated cells, enhancers that are co-occupied by ARID1A and the AP1 transcription factors become inactive, thereby leading to decreased target gene expression. Thus, targeting of the BAF complex in KRAS-mutated CRC may offer a unique, previously unknown, context-dependent therapeutic option in CRC.
Collapse
Affiliation(s)
- Madhobi Sen
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Xin Wang
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Feda H Hamdan
- Gene Regulatory Mechanisms and Molecular Epigenetics Lab, Gastroenterology Research, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Jacobe Rapp
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Jessica Eggert
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Robyn Laura Kosinsky
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Florian Wegwitz
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Ana Patricia Kutschat
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Fereshteh S Younesi
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Jochen Gaedcke
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Marian Grade
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Elisabeth Hessmann
- Department of Gastroenterology & Gastrointestinal Oncology, University Medical Center Gӧttingen, 37075, Göttingen, Germany
| | - Argyris Papantonis
- Department of Pathology, University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Philipp Strӧbel
- Department of Pathology, University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Steven A Johnsen
- Gene Regulatory Mechanisms and Molecular Epigenetics Lab, Gastroenterology Research, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
244
|
Herre M, Korb E. The chromatin landscape of neuronal plasticity. Curr Opin Neurobiol 2019; 59:79-86. [PMID: 31174107 DOI: 10.1016/j.conb.2019.04.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 04/18/2019] [Indexed: 01/27/2023]
Abstract
Examining the links between neuronal activity, transcriptional output, and synaptic function offers unique insights into how neurons adapt to changing environments and form memories. Epigenetic markers, such as DNA methylation and histone modifications, have been implicated in the formation of not only cellular memories such as cell fate, but also memories of experience at the organismal level. Here, we review recent advances in chromatin regulation that contribute to synaptic plasticity and drive adaptive behaviors through dynamic and precise regulation of transcription output in neurons. We discuss chromatin-associated proteins, histone variant proteins, the contribution of cis-regulatory elements and their interaction with histone modifications, and how these mechanisms are integrated into distinct behavior and environmental response paradigms.
Collapse
Affiliation(s)
- Margaret Herre
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY 10065, USA
| | - Erica Korb
- Department of Genetics, Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA.
| |
Collapse
|
245
|
Hillmer RE, Link BA. The Roles of Hippo Signaling Transducers Yap and Taz in Chromatin Remodeling. Cells 2019; 8:E502. [PMID: 31137701 PMCID: PMC6562424 DOI: 10.3390/cells8050502] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/15/2019] [Accepted: 05/19/2019] [Indexed: 01/04/2023] Open
Abstract
Hippo signaling controls cellular processes that ultimately impact organogenesis and homeostasis. Consequently, disease states including cancer can emerge when signaling is deregulated. The major pathway transducers Yap and Taz require cofactors to impart transcriptional control over target genes. Research into Yap/Taz-mediated epigenetic modifications has revealed their association with chromatin-remodeling complex proteins as a means of altering chromatin structure, therefore affecting accessibility and activity of target genes. Specifically, Yap/Taz have been found to associate with factors of the GAGA, Ncoa6, Mediator, Switch/sucrose nonfermentable (SWI/SNF), and Nucleosome Remodeling and Deacetylase (NuRD) chromatin-remodeling complexes to alter the accessibility of target genes. This review highlights the different mechanisms by which Yap/Taz collaborate with other factors to modify DNA packing at specific loci to either activate or repress target gene transcription.
Collapse
Affiliation(s)
- Ryan E Hillmer
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| | - Brian A Link
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| |
Collapse
|
246
|
Genome-scale screens identify JNK-JUN signaling as a barrier for pluripotency exit and endoderm differentiation. Nat Genet 2019; 51:999-1010. [PMID: 31110351 PMCID: PMC6545159 DOI: 10.1038/s41588-019-0408-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 04/01/2019] [Indexed: 12/21/2022]
Abstract
Human embryonic and induced pluripotent stem cells (hESCs/hiPSCs) hold great promise for cell-based therapies and drug discovery. However, homogeneous differentiation remains a major challenge, highlighting the need for understanding developmental mechanisms. We performed genome-scale CRISPR screens to uncover regulators of definitive endoderm (DE) differentiation, which unexpectedly uncovered five JNK/JUN family genes as key barriers of DE differentiation. The JNK/JUN pathway does not act through directly inhibiting the DE enhancers. Instead JUN co-occupies ESC enhancers with OCT4, NANOG and SMAD2/3, and specifically inhibits the exit from the pluripotent state by impeding the decommissioning of ESC enhancers and inhibiting the reconfiguration of SMAD2/3 chromatin binding from ESC to DE enhancers. Therefore, the JNK/JUN pathway safeguards pluripotency from precocious DE differentiation. Direct pharmacological inhibition of JNK significantly improves the efficiencies of generating DE and DE-derived pancreatic and lung progenitor cells, highlighting the potential of harnessing the knowledge from developmental studies for regenerative medicine.
Collapse
|
247
|
Pruunsild P, Bading H. Shaping the human brain: evolutionary cis-regulatory plasticity drives changes in synaptic activity-controlled adaptive gene expression. Curr Opin Neurobiol 2019; 59:34-40. [PMID: 31102862 DOI: 10.1016/j.conb.2019.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 04/10/2019] [Indexed: 01/09/2023]
Abstract
Neuronal activity-induced gene expression programs involved in synaptic structure- and plasticity-related functions are similar in mice and humans, yet bear distinct features. These include gains or losses of activity-responsiveness of certain genes and differences in gene induction profiles. Here, we discuss a possible origin of dissimilarities in activity-regulated transcription between species. We highlight that while synapse-to-nucleus signalling pathways are evolutionarily conserved, cis-regulatory plasticity has been driving species-specific remodelling of the activity-controlled enhancer landscape, thereby affecting gene regulation. In particular, evolutionary rearrangements of transcription factor binding site placements together with potential species-dependent developmental stage- and/or cell type-specific epigenetic and other trans-acting mechanisms are most likely at least in part accountable for between-species diversity in activity-regulated transcription. It is conceivable that cis-regulatory plasticity may have equipped the synaptic activity-driven adaptive gene program in human neurons with unique, species-specific qualities.
Collapse
Affiliation(s)
- Priit Pruunsild
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120 Heidelberg, Germany
| | - Hilmar Bading
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120 Heidelberg, Germany.
| |
Collapse
|
248
|
Orlando KA, Nguyen V, Raab JR, Walhart T, Weissman BE. Remodeling the cancer epigenome: mutations in the SWI/SNF complex offer new therapeutic opportunities. Expert Rev Anticancer Ther 2019; 19:375-391. [PMID: 30986130 DOI: 10.1080/14737140.2019.1605905] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Cancer genome sequencing studies have discovered mutations in members of the SWItch/Sucrose Non-Fermentable (SWI/SNF) chromatin-remodeling complex in nearly 25% of human cancers. The SWI/SNF complex, first discovered in S. cerevisiae, shows strong conservation from yeast to Drosophila to mammals, contains approximately 10-12 subunits and regulates nucleosome positioning through the energy generated by its ATPase subunits. The unexpected finding of frequent mutations in the complex has fueled studies to identify the mechanisms that drive tumor development and the accompanying therapeutic vulnerabilities. Areas covered: In the review, we focus upon the potential roles different SWI/SNF subunit mutations play in human oncogenesis, their common and unique mechanisms of transformation and the potential for translating these mechanisms into targeted therapies for SWI/SNF-mutant tumors. Expert opinion: We currently have limited insights into how mutations in different SWI/SNF subunits drive the development of human tumors. Because the SWI/SNF complex participates in a broad range of normal cellular functions, defining specific oncogenic pathways has proved difficult. In addition, therapeutic options for SWI/SNF-mutant cancers have mainly evolved from high-throughput screens of cell lines with mutations in different subunits. Future studies should follow a more coherent plan to pinpoint common vulnerabilities among these tumors.
Collapse
Affiliation(s)
- Krystal A Orlando
- a Department of Pathology and Laboratory Medicine , University of North Carolina , Chapel Hill , NC , USA
| | - Vinh Nguyen
- b Curriculum in Toxicology and Environmental Medicine , University of North Carolina , Chapel Hill , NC , USA
| | - Jesse R Raab
- c Department of Genetics , University of North Carolina , Chapel Hill , NC , USA
| | - Tara Walhart
- d Lineberger Comprehensive Cancer Center , University of North Carolina , Chapel Hill , NC , USA
| | - Bernard E Weissman
- a Department of Pathology and Laboratory Medicine , University of North Carolina , Chapel Hill , NC , USA.,b Curriculum in Toxicology and Environmental Medicine , University of North Carolina , Chapel Hill , NC , USA.,d Lineberger Comprehensive Cancer Center , University of North Carolina , Chapel Hill , NC , USA
| |
Collapse
|
249
|
Zhao Q, Wirka R, Nguyen T, Nagao M, Cheng P, Miller CL, Kim JB, Pjanic M, Quertermous T. TCF21 and AP-1 interact through epigenetic modifications to regulate coronary artery disease gene expression. Genome Med 2019; 11:23. [PMID: 31014396 PMCID: PMC6480881 DOI: 10.1186/s13073-019-0635-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 04/03/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Genome-wide association studies have identified over 160 loci that are associated with coronary artery disease. As with other complex human diseases, risk in coronary disease loci is determined primarily by altered expression of the causal gene, due to variation in binding of transcription factors and chromatin-modifying proteins that directly regulate the transcriptional apparatus. We have previously identified a coronary disease network downstream of the disease-associated transcription factor TCF21, and in work reported here extends these studies to investigate the mechanisms by which it interacts with the AP-1 transcription complex to regulate local epigenetic effects in these downstream coronary disease loci. METHODS Genomic studies, including chromatin immunoprecipitation sequencing, RNA sequencing, and protein-protein interaction studies, were performed in human coronary artery smooth muscle cells. RESULTS We show here that TCF21 and JUN regulate expression of two presumptive causal coronary disease genes, SMAD3 and CDKN2B-AS1, in part by interactions with histone deacetylases and acetyltransferases. Genome-wide TCF21 and JUN binding is jointly localized and particularly enriched in coronary disease loci where they broadly modulate H3K27Ac and chromatin state changes linked to disease-related processes in vascular cells. Heterozygosity at coronary disease causal variation, or genome editing of these variants, is associated with decreased binding of both JUN and TCF21 and loss of expression in cis, supporting a transcriptional mechanism for disease risk. CONCLUSIONS These data show that the known chromatin remodeling and pioneer functions of AP-1 are a pervasive aspect of epigenetic control of transcription, and thus, the risk in coronary disease-associated loci, and that interaction of AP-1 with TCF21 to control epigenetic features, contributes to the genetic risk in loci where they co-localize.
Collapse
Affiliation(s)
- Quanyi Zhao
- Division of Cardiovascular Medicine and Cardiovascular Institute, School of Medicine, Stanford University, 300 Pasteur Dr., Falk CVRC, Stanford, CA, 94305, USA
| | - Robert Wirka
- Division of Cardiovascular Medicine and Cardiovascular Institute, School of Medicine, Stanford University, 300 Pasteur Dr., Falk CVRC, Stanford, CA, 94305, USA
| | - Trieu Nguyen
- Division of Cardiovascular Medicine and Cardiovascular Institute, School of Medicine, Stanford University, 300 Pasteur Dr., Falk CVRC, Stanford, CA, 94305, USA
| | - Manabu Nagao
- Division of Cardiovascular Medicine and Cardiovascular Institute, School of Medicine, Stanford University, 300 Pasteur Dr., Falk CVRC, Stanford, CA, 94305, USA
| | - Paul Cheng
- Division of Cardiovascular Medicine and Cardiovascular Institute, School of Medicine, Stanford University, 300 Pasteur Dr., Falk CVRC, Stanford, CA, 94305, USA
| | - Clint L Miller
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesville, VA, 22908, USA
- Center for Public Health Genomics, Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
- Center for Public Health Genomics, Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Juyong Brian Kim
- Division of Cardiovascular Medicine and Cardiovascular Institute, School of Medicine, Stanford University, 300 Pasteur Dr., Falk CVRC, Stanford, CA, 94305, USA
| | - Milos Pjanic
- Division of Cardiovascular Medicine and Cardiovascular Institute, School of Medicine, Stanford University, 300 Pasteur Dr., Falk CVRC, Stanford, CA, 94305, USA
| | - Thomas Quertermous
- Division of Cardiovascular Medicine and Cardiovascular Institute, School of Medicine, Stanford University, 300 Pasteur Dr., Falk CVRC, Stanford, CA, 94305, USA.
| |
Collapse
|
250
|
Weissmiller AM, Wang J, Lorey SL, Howard GC, Martinez E, Liu Q, Tansey WP. Inhibition of MYC by the SMARCB1 tumor suppressor. Nat Commun 2019; 10:2014. [PMID: 31043611 PMCID: PMC6494882 DOI: 10.1038/s41467-019-10022-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 04/12/2019] [Indexed: 01/22/2023] Open
Abstract
SMARCB1 encodes the SNF5 subunit of the SWI/SNF chromatin remodeler. SNF5 also interacts with the oncoprotein transcription factor MYC and is proposed to stimulate MYC activity. The concept that SNF5 is a coactivator for MYC, however, is at odds with its role as a tumor-suppressor, and with observations that loss of SNF5 leads to activation of MYC target genes. Here, we reexamine the relationship between MYC and SNF5 using biochemical and genome-wide approaches. We show that SNF5 inhibits the DNA-binding ability of MYC and impedes target gene recognition by MYC in cells. We further show that MYC regulation by SNF5 is separable from its role in chromatin remodeling, and that reintroduction of SNF5 into SMARCB1-null cells mimics the primary transcriptional effects of MYC inhibition. These observations reveal that SNF5 antagonizes MYC and provide a mechanism to explain how loss of SNF5 can drive malignancy.
Collapse
Affiliation(s)
- April M Weissmiller
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Jing Wang
- Center for Quantitative Sciences, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Shelly L Lorey
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Gregory C Howard
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Ernest Martinez
- Department of Biochemistry, University of California at Riverside, Riverside, CA, 92521, USA
| | - Qi Liu
- Center for Quantitative Sciences, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - William P Tansey
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA.
| |
Collapse
|