201
|
Blair C, Ursache A, Mills-Koonce R, Stifter C, Voegtline K, Granger DA. Emotional reactivity and parenting sensitivity interact to predict cortisol output in toddlers. Dev Psychol 2015; 51:1271-7. [PMID: 26192038 DOI: 10.1037/dev0000031] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Cortisol output in response to emotion induction procedures was examined at child age 24 months in a prospective longitudinal sample of 1,292 children and families in predominantly low-income and nonurban communities in two regions of high poverty in the United States. Multilevel analysis indicated that observed emotional reactivity to a mask presentation but not a toy removal procedure interacted with sensitive parenting to predict cortisol levels in children. For children experiencing high levels of sensitive parenting, cortisol output was high among children exhibiting high emotional reactivity and low among children exhibiting low emotional reactivity. For children experiencing low levels of sensitive parenting, cortisol output was unrelated to emotional reactivity.
Collapse
Affiliation(s)
- Clancy Blair
- Department of Applied Psychology, New York University
| | | | - Roger Mills-Koonce
- Department of Human Development and Family Studies, University of North Carolina at Greensboro
| | | | - Kristin Voegtline
- Department of Population, Family, and Reproductive Health, Johns Hopkins School of Public Health
| | - Douglas A Granger
- Institute for Interdisciplinary Salivary Bioscience Research, Arizona State University
| | | |
Collapse
|
202
|
Wilson MA, Grillo CA, Fadel JR, Reagan LP. Stress as a one-armed bandit: Differential effects of stress paradigms on the morphology, neurochemistry and behavior in the rodent amygdala. Neurobiol Stress 2015; 1:195-208. [PMID: 26844236 PMCID: PMC4721288 DOI: 10.1016/j.ynstr.2015.06.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 06/04/2015] [Accepted: 06/05/2015] [Indexed: 12/12/2022] Open
Abstract
Neuroplasticity may be defined as the ability of the central nervous system (CNS) to respond to changes in the internal and external environment and it is well established that some stimuli have the ability to facilitate or impair neuroplasticity depending on the pre-existing milieu. A classic example of a stimulus that can both facilitate and impair neuroplasticity is stress. Indeed, the ability of CNS to respond to acute stress is often dependent upon the prior stress history of the individual. While responses to acute stress are often viewed as adaptive in nature, stress reactivity in subjects with prior chronic stress experiences are often linked to neuropsychiatric disorders, including major depressive disorder, post-traumatic stress disorder (PTSD) and anxiety. In rodent studies, chronic stress exposure produces structural and functional alterations in the hippocampus and medial prefrontal cortex that are consistent across different types of stress paradigms. Conversely, the amygdala appears to exhibit differential structural and functional responses to stress that are dependent on a variety of factors, including the type of stressor performed and the duration of the stress paradigm. This is most evident in output measures including morphological analysis of amygdala neurons, measurement of glutamatergic tone in amygdalar subdivisions and the analysis of amygdala-centric behaviors. Accordingly, this review will provide an overview of the effects of stress on the structural and functional plasticity of the rodent amygdala, especially in relation to the differential effects of repeated or chronic stress paradigms on dendritic architecture, neurochemistry of the glutamatergic system and behavior.
Collapse
Affiliation(s)
- Marlene A. Wilson
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
- WJB Dorn Veterans Affairs Medical Center, Columbia, SC, USA
| | - Claudia A. Grillo
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Jim R. Fadel
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Lawrence P. Reagan
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
- WJB Dorn Veterans Affairs Medical Center, Columbia, SC, USA
- Corresponding author. Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, 6439 Garners Ferry Road, D40, Columbia, SC 29208, USA.
| |
Collapse
|
203
|
Optogenetic stimulation of infralimbic PFC reproduces ketamine's rapid and sustained antidepressant actions. Proc Natl Acad Sci U S A 2015; 112:8106-11. [PMID: 26056286 DOI: 10.1073/pnas.1414728112] [Citation(s) in RCA: 207] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Ketamine produces rapid and sustained antidepressant actions in depressed patients, but the precise cellular mechanisms underlying these effects have not been identified. Here we determined if modulation of neuronal activity in the infralimbic prefrontal cortex (IL-PFC) underlies the antidepressant and anxiolytic actions of ketamine. We found that neuronal inactivation of the IL-PFC completely blocked the antidepressant and anxiolytic effects of systemic ketamine in rodent models and that ketamine microinfusion into IL-PFC reproduced these behavioral actions of systemic ketamine. We also found that optogenetic stimulation of the IL-PFC produced rapid and long-lasting antidepressant and anxiolytic effects and that these effects are associated with increased number and function of spine synapses of layer V pyramidal neurons. The results demonstrate that ketamine infusions or optogenetic stimulation of IL-PFC are sufficient to produce long-lasting antidepressant behavioral and synaptic responses similar to the effects of systemic ketamine administration.
Collapse
|
204
|
Sherman SM, Cheng YP, Fingerman KL, Schnyer DM. Social support, stress and the aging brain. Soc Cogn Affect Neurosci 2015; 11:1050-8. [PMID: 26060327 DOI: 10.1093/scan/nsv071] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 06/04/2015] [Indexed: 11/13/2022] Open
Abstract
Social support benefits health and well-being in older individuals, however the mechanism remains poorly understood. One proposal, the stress-buffering hypothesis states social support 'buffers' the effects of stress on health. Alternatively, the main effect hypothesis suggests social support independently promotes health. We examined the combined association of social support and stress on the aging brain. Forty healthy older adults completed stress questionnaires, a social network interview and structural MRI to investigate the amygdala-medial prefrontal cortex circuitry, which is implicated in social and emotional processing and negatively affected by stress. Social support was positively correlated with right medial prefrontal cortical thickness while amygdala volume was negatively associated with social support and positively related to stress. We examined whether the association between social support and amygdala volume varied across stress level. Stress and social support uniquely contribute to amygdala volume, which is consistent with the health benefits of social support being independent of stress.
Collapse
|
205
|
McKlveen JM, Myers B, Herman JP. The medial prefrontal cortex: coordinator of autonomic, neuroendocrine and behavioural responses to stress. J Neuroendocrinol 2015; 27:446-56. [PMID: 25737097 PMCID: PMC4580281 DOI: 10.1111/jne.12272] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 02/10/2015] [Accepted: 02/26/2015] [Indexed: 12/13/2022]
Abstract
Responding to real or potential threats in the environment requires the coordination of autonomic, neuroendocrine and behavioural processes to promote adaptation and survival. These diverging systems necessitate input from the limbic forebrain to integrate and modulate functional output in accordance with contextual demand. In the present review, we discuss the potential role of the medial prefrontal cortex (mPFC) as a coordinator of behavioural and physiological stress responses across multiple temporal and contextual domains. Furthermore, we highlight converging evidence from rodent and human research indicating the necessity of the mPFC for modulating physiological energetic systems to mobilise or limit energetic resources as needed to ultimately promote behavioural adaptation in the face of stress. We review the literature indicating that glucocorticoids act as one of the primary messengers in the reallocation of energetic resources having profound effects locally within the mPFC, as well as shaping how the mPFC acts within a network of brain structures to modulate responses to stress. Finally, we discuss how both rodent and human studies point toward a critical role of the mPFC in the coordination of anticipatory responses to stress and why this distinction is an important one to make in stress neurobiology.
Collapse
Affiliation(s)
- Jessica M. McKlveen
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, 45237, USA
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Brent Myers
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, 45237, USA
| | - James P. Herman
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, 45237, USA
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH, 45267, USA
| |
Collapse
|
206
|
Beauchaine TP. Future Directions in Emotion Dysregulation and Youth Psychopathology. JOURNAL OF CLINICAL CHILD AND ADOLESCENT PSYCHOLOGY 2015; 44:875-96. [DOI: 10.1080/15374416.2015.1038827] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
207
|
Osborne DM, Pearson-Leary J, McNay EC. The neuroenergetics of stress hormones in the hippocampus and implications for memory. Front Neurosci 2015; 9:164. [PMID: 25999811 PMCID: PMC4422005 DOI: 10.3389/fnins.2015.00164] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 04/21/2015] [Indexed: 12/16/2022] Open
Abstract
Acute stress causes rapid release of norepinephrine (NE) and glucocorticoids (GCs), both of which bind to hippocampal receptors. This release continues, at varying concentrations, for several hours following the stressful event, and has powerful effects on hippocampally-dependent memory that generally promote acquisition and consolidation while impairing retrieval. Several studies have characterized the brain's energy usage both at baseline and during memory processing, but there are few data on energy requirements of memory processes under stressful conditions. Because memory is enhanced by emotional arousal such as during stress, it is likely that molecular memory processes under these conditions differ from those under non-stressful conditions that do not activate the hypothalamic-pituitary-adrenal (HPA) axis. Mobilization of peripheral and central energy stores during stress may increase hippocampal glucose metabolism that enhances salience and detail to facilitate memory enhancement. Several pathways activated by the HPA axis affect neural energy supply and metabolism, and may also prevent detrimental damage associated with chronic stress. We hypothesize that alterations in hippocampal metabolism during stress are key to understanding the effects of stress hormones on hippocampally-dependent memory formation. Second, we suggest that the effects of stress on hippocampal metabolism are bi-directional: within minutes, NE promotes glucose metabolism, while hours into the stress response GCs act to suppress metabolism. These bi-directional effects of NE and GCs on glucose metabolism may occur at least in part through direct modulation of glucose transporter-4. In contrast, chronic stress and prolonged elevation of hippocampal GCs cause chronically suppressed glucose metabolism, excitotoxicity and subsequent memory deficits.
Collapse
Affiliation(s)
| | - Jiah Pearson-Leary
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia Philadelphia, PA, USA
| | - Ewan C McNay
- Behavioral Neuroscience, University at Albany Albany, NY, USA ; Biology, University at Albany Albany, NY, USA
| |
Collapse
|
208
|
Bridgett DJ, Burt NM, Edwards ES, Deater-Deckard K. Intergenerational transmission of self-regulation: A multidisciplinary review and integrative conceptual framework. Psychol Bull 2015; 141:602-654. [PMID: 25938878 PMCID: PMC4422221 DOI: 10.1037/a0038662] [Citation(s) in RCA: 318] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This review examines mechanisms contributing to the intergenerational transmission of self-regulation. To provide an integrated account of how self-regulation is transmitted across generations, we draw from over 75 years of accumulated evidence, spanning case studies to experimental approaches, in literatures covering developmental, social, and clinical psychology, and criminology, physiology, genetics, and human and animal neuroscience (among others). First, we present a taxonomy of what self-regulation is and then examine how it develops--overviews that guide the main foci of the review. Next, studies supporting an association between parent and child self-regulation are reviewed. Subsequently, literature that considers potential social mechanisms of transmission, specifically parenting behavior, interparental (i.e., marital) relationship behaviors, and broader rearing influences (e.g., household chaos) is considered. Finally, evidence that prenatal programming may be the starting point of the intergenerational transmission of self-regulation is covered, along with key findings from the behavioral and molecular genetics literatures. To integrate these literatures, we introduce the self-regulation intergenerational transmission model, a framework that brings together prenatal, social/contextual, and neurobiological mechanisms (spanning endocrine, neural, and genetic levels, including gene-environment interplay and epigenetic processes) to explain the intergenerational transmission of self-regulation. This model also incorporates potential transactional processes between generations (e.g., children's self-regulation and parent-child interaction dynamics that may affect parents' self-regulation) that further influence intergenerational processes. In pointing the way forward, we note key future directions and ways to address limitations in existing work throughout the review and in closing. We also conclude by noting several implications for intervention work.
Collapse
Affiliation(s)
| | - Nicole M Burt
- Department of Psychology, Northern Illinois University
| | | | | |
Collapse
|
209
|
Ycaza Herrera A, Mather M. Actions and interactions of estradiol and glucocorticoids in cognition and the brain: Implications for aging women. Neurosci Biobehav Rev 2015; 55:36-52. [PMID: 25929443 DOI: 10.1016/j.neubiorev.2015.04.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 03/30/2015] [Accepted: 04/17/2015] [Indexed: 02/03/2023]
Abstract
Menopause involves dramatic declines in estradiol production and levels. Importantly, estradiol and the class of stress hormones known as glucocorticoids exert countervailing effects throughout the body, with estradiol exerting positive effects on the brain and cognition, glucocorticoids exerting negative effects on the brain and cognition, and estradiol able to mitigate negative effects of glucocorticoids. Although the effects of these hormones in isolation have been extensively studied, the effects of estradiol on the stress response and the neuroprotection offered against glucocorticoid exposure in humans are less well known. Here we review evidence suggesting that estradiol-related protection against glucocorticoids mitigates stress-induced interference with cognitive processes. Animal and human research indicates that estradiol-related mitigation of glucocorticoid damage and interference is one benefit of estradiol supplementation during peri-menopause or soon after menopause. The evidence for estradiol-related protection against glucocorticoids suggests that maintaining estradiol levels in post-menopausal women could protect them from stress-induced declines in neural and cognitive integrity.
Collapse
Affiliation(s)
- Alexandra Ycaza Herrera
- University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089, United States.
| | - Mara Mather
- University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089, United States.
| |
Collapse
|
210
|
Bi LL, Chen M, Pei L, Shu S, Jin HJ, Yan HL, Wei N, Wang S, Yang X, Yan HH, Xu MM, Yao CY, Li N, Tang N, Wu JH, Zhu HZ, Li H, Cai Y, Guo Y, Shi Y, Tian Q, Zhu LQ, Lu YM. Infralimbic Endothelin1 Is Critical for the Modulation of Anxiety-Like Behaviors. Mol Neurobiol 2015; 53:2054-2064. [PMID: 25899174 DOI: 10.1007/s12035-015-9163-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 03/26/2015] [Indexed: 10/23/2022]
Abstract
Endothelin1 (ET1) is a potent vasoconstrictor that is also known to be a neuropeptide that is involved in neural circuits. We examined the role of ET1 that has been implicated in the anxiogenic process. We found that infusing ET1 into the IL cortex increased anxiety-like behaviors. The ET(A) receptor (ET(A)R) antagonist (BQ123) but not the ET(B) receptor (ET(B)R) antagonist (BQ788) alleviated ET1-induced anxiety. ET1 had no effect on GABAergic neurotransmission or NMDA receptor (NMDAR)-mediated neurotransmission, but increased AMPA receptor (AMPAR)-mediated excitatory synaptic transmission. The changes in AMPAR-mediated excitatory postsynaptic currents were due to presynaptic mechanisms. Finally, we found that the AMPAR antagonists (CNQX) and BQ123 reversed ET1's anxiogenic effect, with parallel and corresponding electrophysiological changes. Moreover, infusing CNQX + BQ123 into the IL had no additional anxiolytic effect compared to CNQX treatment alone. Altogether, our findings establish a previously unknown anxiogenic action of ET1 in the IL cortex. AMPAR-mediated glutamatergic neurotransmission may underlie the mechanism of ET1-ET(A)R signaling pathway in the regulation of anxiety.
Collapse
Affiliation(s)
- Lin-Lin Bi
- Department of Pathophysiology and Key Laboratory of Neurological Diseases of Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. .,Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China.
| | - Ming Chen
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lei Pei
- Department of Pathophysiology and Key Laboratory of Neurological Diseases of Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Shu Shu
- Department of Pathophysiology and Key Laboratory of Neurological Diseases of Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Hui-Juan Jin
- Department of Pathophysiology and Key Laboratory of Neurological Diseases of Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Hong-Lin Yan
- Department of Pathophysiology and Key Laboratory of Neurological Diseases of Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Na Wei
- Department of Pathophysiology and Key Laboratory of Neurological Diseases of Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Shan Wang
- Department of Pathophysiology and Key Laboratory of Neurological Diseases of Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Yang
- Department of Pathophysiology and Key Laboratory of Neurological Diseases of Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Huan-Huan Yan
- Department of Pathophysiology and Key Laboratory of Neurological Diseases of Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Meng-Meng Xu
- Department of Pathophysiology and Key Laboratory of Neurological Diseases of Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Cheng-Ye Yao
- Department of Pathophysiology and Key Laboratory of Neurological Diseases of Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Na Li
- Department of Pathophysiology and Key Laboratory of Neurological Diseases of Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Na Tang
- Department of Pathophysiology and Key Laboratory of Neurological Diseases of Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Jian-Hua Wu
- Department of Pathophysiology and Key Laboratory of Neurological Diseases of Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Hou-Ze Zhu
- Department of Pathophysiology and Key Laboratory of Neurological Diseases of Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Li
- Department of Pathophysiology and Key Laboratory of Neurological Diseases of Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - You Cai
- Department of Pathophysiology and Key Laboratory of Neurological Diseases of Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Guo
- Department of Pathophysiology and Key Laboratory of Neurological Diseases of Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Shi
- Department of Pathophysiology and Key Laboratory of Neurological Diseases of Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Tian
- Department of Pathophysiology and Key Laboratory of Neurological Diseases of Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Ling-Qiang Zhu
- Department of Pathophysiology and Key Laboratory of Neurological Diseases of Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - You-Ming Lu
- Department of Pathophysiology and Key Laboratory of Neurological Diseases of Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. .,Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
211
|
George SA, Rodriguez-Santiago M, Riley J, Abelson JL, Floresco SB, Liberzon I. Alterations in cognitive flexibility in a rat model of post-traumatic stress disorder. Behav Brain Res 2015; 286:256-64. [PMID: 25746511 DOI: 10.1016/j.bbr.2015.02.051] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/17/2015] [Accepted: 02/24/2015] [Indexed: 12/30/2022]
Abstract
Exposure to stressful or traumatic events is associated with increased vulnerability to post-traumatic stress disorder (PTSD). This vulnerability may be partly mediated by effects of stress on the prefrontal cortex (PFC) and associated circuitry. The PFC mediates critical cognitive functions, including cognitive flexibility, which reflects an organism's ability to adaptively alter behavior in light of changing contingencies. Prior work suggests that chronic or acute stress exerts complex effects on different forms of cognitive flexibility, via actions on the PFC. Similarly, PFC dysfunction is reported in PTSD, as are executive function deficits. Animal models that permit study of the effects of stress/trauma on cognitive flexibility may be useful in illuminating ways in which stress-linked cognitive changes contribute to PTSD. Here, we examined the behavioral effects of a rodent model of PTSD - single prolonged stress (SPS) - on performance of two forms of cognitive flexibility: reversal learning and strategy set-shifting. SPS did not impair acquisition of either a response or visual-cue discrimination but did cause slight impairments in the retrieval of the visual-cue rule. During response discrimination reversal, SPS rats made more perseverative errors. In comparison, during set-shifting from the visual-cue to response discrimination, SPS rats did not show enhanced perseveration, but did display increased never-reinforced errors, indicative of impairment in selecting a novel strategy. These data demonstrate that SPS leads to a complex and intriguing pattern of deficits in flexible responding and suggest that impairments in executive functioning associated with PTSD could, in part, be a neuro-cognitive consequence of trauma exposure.
Collapse
Affiliation(s)
- Sophie A George
- Department of Psychiatry, University of Michigan, 4250 Plymouth Road, Ann Arbor, MI, 48109, USA; Ann Arbor Veterans Affairs Hospital, 2215 Fuller Road, Ann Arbor, MI, 49105, USA.
| | | | - John Riley
- Department of Psychiatry, University of Michigan, 4250 Plymouth Road, Ann Arbor, MI, 48109, USA.
| | - James L Abelson
- Department of Psychiatry, University of Michigan, 4250 Plymouth Road, Ann Arbor, MI, 48109, USA.
| | - Stan B Floresco
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada.
| | - Israel Liberzon
- Department of Psychiatry, University of Michigan, 4250 Plymouth Road, Ann Arbor, MI, 48109, USA; Ann Arbor Veterans Affairs Hospital, 2215 Fuller Road, Ann Arbor, MI, 49105, USA.
| |
Collapse
|
212
|
Snyder K, Barry M, Plona Z, Ho A, Zhang XY, Valentino RJ. The impact of social stress during adolescence or adulthood and coping strategy on cognitive function of female rats. Behav Brain Res 2015; 286:175-83. [PMID: 25746514 DOI: 10.1016/j.bbr.2015.02.047] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 02/18/2015] [Accepted: 02/24/2015] [Indexed: 01/03/2023]
Abstract
The age of stressor exposure can determine its neurobehavioral impact. For example, exposure of adolescent male rats to resident-intruder stress impairs cognitive flexibility in adulthood. The current study examined the impact of this stressor in female rats. Rats were exposed to resident-intruder stress during early adolescence (EA), mid-adolescence (MA) or adulthood (Adult). They were tested in an operant strategy-shifting task for side discrimination (SD), reversal learning (REV) and strategy set-shifting (SHIFT) the following week. Performance varied with age, stress and coping style. MA and EA rats performed SD and SHIFT better than other ages, respectively. Social stress impaired performance in rats depending on their coping strategy as determined by a short (SL) or long (LL) latency to become subordinate. SL rats were impaired in SD and REV, whereas EA-LL rats were impaired in SHIFT. These impairing effects of female adolescent stress did not endure into adulthood. Strategy set-shifting performance for female adolescents was positively correlated with medial prefrontal cortex (mPFC) activation as indicated by c-fos expression suggesting that this region is engaged during task performance. This contrasts with the inverse relationship between these indices reported for male adolescent rats. Together, the results demonstrate that social stress produces cognitive impairments for female rats that depend on age and coping style but unlike males, the impairing effects of female adolescent social stress are immediate and do not endure into adulthood. Sex differences in the impact of adolescent social stress on cognition may reflect differences in mPFC engagement during the task.
Collapse
Affiliation(s)
- Kevin Snyder
- The University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Mark Barry
- The University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Zachary Plona
- The University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Andrew Ho
- The University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Xiao-Yan Zhang
- The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| | - Rita J Valentino
- The University of Pennsylvania, Philadelphia, PA 19104, USA; The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| |
Collapse
|
213
|
Goode TD, Kim JJ, Maren S. Relapse of extinguished fear after exposure to a dangerous context is mitigated by testing in a safe context. Learn Mem 2015; 22:170-8. [PMID: 25691517 PMCID: PMC4340132 DOI: 10.1101/lm.037028.114] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 01/13/2015] [Indexed: 12/30/2022]
Abstract
Aversive events can trigger relapse of extinguished fear memories, presenting a major challenge to the long-term efficacy of therapeutic interventions. Here, we examined factors regulating the relapse of extinguished fear after exposure of rats to a dangerous context. Rats received unsignaled shock in a distinct context ("dangerous" context) 24 h prior to auditory fear conditioning in another context. Fear to the auditory conditioned stimulus (CS) was subsequently extinguished either in the conditioning context ("ambiguous" context) or in a third novel context ("safe" context). Exposure to the dangerous context 30 min before a CS retention test caused relapse to the CS in the ambiguous and safe test contexts relative to nonextinguished controls. When rats were tested 24 h later (with or without short-term testing), rats tested in the ambiguous context continued to exhibit relapse, whereas rats tested in the safe context did not. Additionally, exposure of rats to the conditioning context--in place of the unsignaled shock context--did not result in relapse of fear to the CS in the safe testing context. Our work highlights the vulnerabilities of extinction recall to interference, and demonstrates the importance of context associations in the relapse of fear after extinction.
Collapse
Affiliation(s)
- Travis D Goode
- Institute for Neuroscience, Texas A&M University, College Station, Texas 77843-3473, USA
| | - Janice J Kim
- Department of Psychology, Texas A&M University, College Station, Texas 77843-3473, USA
| | - Stephen Maren
- Institute for Neuroscience, Texas A&M University, College Station, Texas 77843-3473, USA Department of Psychology, Texas A&M University, College Station, Texas 77843-3473, USA
| |
Collapse
|
214
|
Corrêa M, Vedovelli K, Giacobbo B, de Souza C, Ferrari P, de Lima Argimon I, Walz J, Kapczinski F, Bromberg E. Psychophysiological correlates of cognitive deficits in family caregivers of patients with Alzheimer Disease. Neuroscience 2015; 286:371-82. [DOI: 10.1016/j.neuroscience.2014.11.052] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 11/19/2014] [Accepted: 11/25/2014] [Indexed: 12/19/2022]
|
215
|
Stress-induced deficits in cognition and emotionality: a role of glutamate. Curr Top Behav Neurosci 2015; 12:189-207. [PMID: 22261703 DOI: 10.1007/7854_2011_193] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Stress is associated with a number of neuropsychiatric disorders, many of which are characterized by altered cognition and emotionality. Rodent models of stress have shown parallel behavioral changes such as impaired working memory, cognitive flexibility and fear extinction. This coincides with morphological changes to pyramidal neurons in the prefrontal cortex, hippocampus and amygdala, key cortical regions mediating these behaviors. Increasing evidence suggests that alteration in the function of the glutamatergic system may contribute to the pathology seen in neuropsychiatric disorders. Stress can alter glutamate transmission in the prefrontal cortex, hippocampus and amygdala and altered glutamate transmission has been linked to neuronal morphological changes. More recently, genetic manipulations in rodent models have allowed for subunit-specific analysis of the role of AMPA and NMDA receptors as well as glutamate transporters in behaviors shown to be altered by stress. Together these data point to a role for glutamate in mediating the cognitive and emotional changes observed in neuropsychiatric disorders. Furthering our understanding of how stress affects glutamate receptors and related signaling pathways will ultimately contribute to the development of improved therapeutics for individuals suffering from neuropsychiatric disorders.
Collapse
|
216
|
Kawasaki S, Nishimura Y, Takizawa R, Koike S, Kinoshita A, Satomura Y, Sakakibara E, Sakurada H, Yamagishi M, Nishimura F, Yoshikawa A, Inai A, Nishioka M, Eriguchi Y, Kakiuchi C, Araki T, Kan C, Umeda M, Shimazu A, Hashimoto H, Kawakami N, Kasai K. Using social epidemiology and neuroscience to explore the relationship between job stress and frontotemporal cortex activity among workers. Soc Neurosci 2015; 10:230-42. [DOI: 10.1080/17470919.2014.997370] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
217
|
The effects of violence exposure on the development of impulse control and future orientation across adolescence and early adulthood: Time-specific and generalized effects in a sample of juvenile offenders. Dev Psychopathol 2015; 27:1267-83. [DOI: 10.1017/s0954579414001394] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractImpulse control and future orientation increase across adolescence, but little is known about how contextual factors shape the development of these capacities. The present study investigates how stress exposure, operationalized as exposure to violence, alters the developmental pattern of impulse control and future orientation across adolescence and early adulthood. In a sample of 1,354 serious juvenile offenders, higher exposure to violence was associated with lower levels of future orientation at age 15 and suppressed development of future orientation from ages 15 to 25. Increases in witnessing violence or victimization were linked to declines in impulse control 1 year later, but only during adolescence. Thus, beyond previous experiences of exposure to violence, witnessing violence and victimization during adolescence conveys unique risk for suppressed development of self-regulation.
Collapse
|
218
|
Suri D, Vaidya VA. The adaptive and maladaptive continuum of stress responses – a hippocampal perspective. Rev Neurosci 2015; 26:415-42. [DOI: 10.1515/revneuro-2014-0083] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 02/22/2015] [Indexed: 12/21/2022]
Abstract
AbstractExposure to stressors elicits a spectrum of responses that span from potentially adaptive to maladaptive consequences at the structural, cellular and physiological level. These responses are particularly pronounced in the hippocampus where they also appear to influence hippocampal-dependent cognitive function and emotionality. The factors that influence the nature of stress-evoked consequences include the chronicity, severity, predictability and controllability of the stressors. In addition to adult-onset stress, early life stress also elicits a wide range of structural and functional responses, which often exhibit life-long persistence. However, the outcome of early stress exposure is often contingent on the environment experienced in adulthood, and could either aid in stress coping or could serve to enhance susceptibility to the negative consequences of adult stress. This review comprehensively examines the consequences of adult and early life stressors on the hippocampus, with a focus on their effects on neurogenesis, neuronal survival, structural and synaptic plasticity and hippocampal-dependent behaviors. Further, we discuss potential factors that may tip stress-evoked consequences from being potentially adaptive to largely maladaptive.
Collapse
|
219
|
Shirazi SN, Friedman AR, Kaufer D, Sakhai SA. Glucocorticoids and the Brain: Neural Mechanisms Regulating the Stress Response. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015. [DOI: 10.1007/978-1-4939-2895-8_10] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
220
|
Chaijale NN, Snyder K, Arner J, Curtis AL, Valentino RJ. Repeated social stress increases reward salience and impairs encoding of prediction by rat locus coeruleus neurons. Neuropsychopharmacology 2015; 40:513-23. [PMID: 25109891 PMCID: PMC4443966 DOI: 10.1038/npp.2014.200] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 07/16/2014] [Accepted: 08/02/2014] [Indexed: 11/09/2022]
Abstract
Stress is implicated in psychopathology characterized by cognitive dysfunction. Cognitive responses to stress are regulated by the locus coeruleus-norepinephrine (LC-NE) system. As social stress is a prevalent human stressor, this study determined the impact of repeated social stress on the relationship between LC neuronal activity and behavior during the performance of cognitive tasks. Social stress-exposed rats performed better at intradimensional set shifting (IDS) and made fewer perseverative errors during reversal learning (REV). LC neurons of control rats were task responsive, being activated after the choice and before reward. Social stress shifted LC neuronal activity from being task responsive to being reward responsive during IDS and REV. LC neurons of stressed rats were activated by reward and tonically inhibited by reward omission with incorrect choices. In contrast, LC neurons of stress-naive rats were only tonically inhibited by reward omission. Reward-related LC activation in stressed rats was unrelated to predictability because it did not habituate as learning progressed. The findings suggest that social stress history increases reward salience and impairs processes that compute predictability for LC neurons. These effects of social stress on LC neuronal activity could facilitate learning as indicated by improved performance in stressed rats. However, the ability of social stress history to enhance responses to behavioral outcomes may have a role in the association between stress and addictive behaviors. In addition, magnified fluctuations in LC activity in response to opposing behavioral consequences may underlie volatile changes in emotional arousal that characterize post-traumatic stress disorder.
Collapse
Affiliation(s)
- Nayla N Chaijale
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kevin Snyder
- Neuroscience Graduate Group, The University of Pennsylvania, Philadelphia, PA, USA
| | - Jay Arner
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Andre L Curtis
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Rita J Valentino
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA,Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, 3416 Civic Center Boulevard, Abramson Pediatric Research Center Rm 402, Philadelphia, PA 19104, USA, Tel: +215 590 0650, Fax: +215 590 3364, E-mail:
| |
Collapse
|
221
|
Stelzhammer V, Ozcan S, Gottschalk MG, Steeb H, Hodes GE, Guest PC, Rahmoune H, Wong EH, Russo SJ, Bahn S. Central and peripheral changes underlying susceptibility and resistance to social defeat stress – A proteomic profiling study. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.dineu.2015.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
222
|
Moench KM, Wellman CL. Stress-induced alterations in prefrontal dendritic spines: Implications for post-traumatic stress disorder. Neurosci Lett 2014; 601:41-5. [PMID: 25529195 DOI: 10.1016/j.neulet.2014.12.035] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 12/09/2014] [Accepted: 12/16/2014] [Indexed: 10/24/2022]
Abstract
The medial prefrontal cortex (mPFC) is involved in a variety of important functions including emotional regulation, HPA axis regulation, and working memory. It also demonstrates remarkable plasticity in an experience-dependent manner. There is extensive evidence that stressful experiences can produce profound changes in the morphology of neurons within mPFC with a variety of behavioral consequences. The deleterious behavioral outcomes associated with mPFC dysfunction have been implicated in multiple psychopathologies, including post-traumatic stress disorder (PTSD). Given the prevalence of these disorders, a deeper understanding of the cellular mechanisms underlying stress-induced morphological changes in mPFC is critical, and could lead to improved therapeutic treatments. Here we give a brief review of recent studies examining the mechanisms underlying changes in mPFC pyramidal neuron dendritic spines - the primary sites of excitatory input in cortical pyramidal neurons. We begin with an overview of the effects of chronic stress on mPFC dendritic spine density and morphology followed by proposed mechanisms for these changes. We then discuss the time course of stress effects on mPFC as well as potential intercellular influences. Given that many psychopathologies, including PTSD, have different prevalence rates among men and women, we end with a discussion of the sex differences that have been observed in morphological changes in mPFC. Future directions and implications for PTSD are discussed throughout.
Collapse
Affiliation(s)
- Kelly M Moench
- Department of Psychological & Brain Sciences, Program in Neural Science, and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA
| | - Cara L Wellman
- Department of Psychological & Brain Sciences, Program in Neural Science, and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA.
| |
Collapse
|
223
|
Impaired adrenergic-mediated plasticity of prefrontal cortical glutamate synapses in rats with developmental disruption of the ventral hippocampus. Neuropsychopharmacology 2014; 39:2963-73. [PMID: 24917197 PMCID: PMC4229566 DOI: 10.1038/npp.2014.142] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 06/03/2014] [Accepted: 06/05/2014] [Indexed: 01/21/2023]
Abstract
Neonatal ventral hippocampus (nVH) lesion in rats is a useful model to study developmental origins of adult cognitive deficits and certain features of schizophrenia. nVH lesion-induced reorganization of excitatory and inhibitory neurotransmissions within prefrontal cortical (PFC) circuits is widely believed to be responsible for many of the behavioral abnormalities in these animals. Here we provide evidence that development of an aberrant medial PFC (mPFC) α-1 adrenergic receptor (α-1AR) function following neonatal lesion markedly affects glutamatergic synaptic plasticity within PFC microcircuits and contributes to PFC-related behavior abnormalities. Using whole-cell patch-clamp recording, we report that norepinephrine-induced α-1AR-dependent long-term depression (LTD) in a subset of cortico-cortical glutamatergic inputs is strikingly diminished in mPFC slices from nVH-lesioned rats. The LTD impairment occurs in conjunction with completely blunted α-1AR signaling through extracellular signal-regulated kinase 1/2. These α-1AR abnormalities have functional significance in a mPFC-related function, that is, extinction of conditioned fear memory. Post-pubertal animals with nVH lesion show significant resistance to extinction of fear by repeated presentations of the conditioned tone stimulus. mPFC infusion of an α-1AR antagonist (benoxathian) or LTD blocking peptide (Tat-GluR23Y) impaired fear extinction in sham controls, but had no significant effect in the lesioned animals. The data suggest that impaired α-1 adrenergic regulation of cortical glutamatergic synaptic plasticity may be an important mechanism in cognitive dysfunctions reported in neurodevelopmental psychiatric disorders.
Collapse
|
224
|
Gao HM, Gao X, Ma BX, Zhang H. Long-term risks of cardiac and cerebral vascular diseases increased following winter swimming in the cold seawater. Int J Cardiol 2014; 177:701-2. [DOI: 10.1016/j.ijcard.2014.09.145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 09/27/2014] [Indexed: 10/24/2022]
|
225
|
Raio CM, Phelps EA. The influence of acute stress on the regulation of conditioned fear. Neurobiol Stress 2014; 1:134-46. [PMID: 25530986 PMCID: PMC4268774 DOI: 10.1016/j.ynstr.2014.11.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Revised: 10/30/2014] [Accepted: 11/03/2014] [Indexed: 11/24/2022] Open
Abstract
Fear learning and regulation is a prominent model for describing the pathogenesis of anxiety disorders and stress-related psychopathology. Fear expression can be modulated using a number of regulatory strategies, including extinction, cognitive emotion regulation, avoidance strategies and reconsolidation. In this review, we examine research investigating the effects of acute stress and stress hormones on these regulatory techniques. We focus on what is known about the impact of stress on the ability to flexibly regulate fear responses that are acquired through Pavlovian fear conditioning. Our primary aim is to explore the impact of stress on fear regulation in humans. Given this, we focus on techniques where stress has been linked to alterations of fear regulation in humans (extinction and emotion regulation), and briefly discuss other techniques (avoidance and reconsolidation) where the impact of stress or stress hormones have been mainly explored in animal models. These investigations reveal that acute stress may impair the persistent inhibition of fear, presumably by altering prefrontal cortex function. Characterizing the effects of stress on fear regulation is critical for understanding the boundaries within which existing regulation strategies are viable in everyday life and can better inform treatment options for those who suffer from anxiety and stress-related psychopathology.
Collapse
Affiliation(s)
- Candace M Raio
- Department of Psychology, New York University, 6 Washington Place, New York, NY 10003, USA
| | - Elizabeth A Phelps
- Department of Psychology, New York University, 6 Washington Place, New York, NY 10003, USA; Center for Neural Science, New York University, 4 Washington Place, New York, NY 10003, USA; Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA
| |
Collapse
|
226
|
Morning cortisol levels in schizophrenia and bipolar disorder: a meta-analysis. Psychoneuroendocrinology 2014; 49:187-206. [PMID: 25108162 DOI: 10.1016/j.psyneuen.2014.07.013] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 07/12/2014] [Accepted: 07/12/2014] [Indexed: 12/17/2022]
Abstract
Increased peripheral levels of morning cortisol have been reported in people with schizophrenia (SZ) and bipolar disorder (BD), but findings are inconsistent and few studies have conducted direct comparisons of these disorders. We undertook a meta-analysis of studies examining single measures of morning cortisol (before 10 a.m.) levels in SZ or BD, compared to controls, and to each other; we also sought to examine likely moderators of any observed effects by clinical and demographic variables. Included studies were obtained via systematic searches conducted using Medline, BIOSIS Previews and Embase databases, as well as hand searching. The decision to include or exclude studies, data extraction and quality assessment was completed in duplicate by LG, SM and AS. The initial search revealed 1459 records. Subsequently, 914 were excluded on reading the abstract because they did not meet one or more of the inclusion criteria; of the remaining 545 studies screened in full, included studies were 44 comparing SZ with controls, 19 comparing BD with controls, and 7 studies directly comparing schizophrenia with bipolar disorder. Meta-analysis of SZ (N=2613, g=0.387, p=0.001) and BD (N=704, g=0.269, p=0.004) revealed moderate quality evidence of increased morning cortisol levels in each group compared to controls, but no difference between the two disorders (N=392, g=0.038, p=0.738). Subgroup analyses revealed greater effect sizes for schizophrenia samples with an established diagnosis (as opposed to 'first-episode'), those that were free of medication, and those sampled in an inpatient setting (perhaps reflecting an acute illness phase). In BD, greater morning cortisol levels were found in outpatient and non-manic participants (as opposed to those in a manic state), relative to controls. Neither age nor sex affected cortisol levels in any group. However, earlier greater increases in SZ morning cortisol were evident in samples taken before 8 a.m. (relative to those taken after 8 a.m.). Multiple meta-regression showed that medication status was significantly associated with morning cortisol levels in SZ, when the effects of assay method, sampling time and illness stage were held constant. Heightened levels of morning cortisol in SZ and BD suggest long-term pathology of the hypothalamic-pituitary-adrenal (HPA) axis that may reflect a shared process of illness development in line with current stress-vulnerability models.
Collapse
|
227
|
Coppens CM, Coolen A, de Boer SF, Koolhaas JM. Adolescent social defeat disturbs adult aggression-related impulsivity in wild-type rats. Behav Processes 2014; 108:191-6. [PMID: 25444778 DOI: 10.1016/j.beproc.2014.10.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 10/22/2014] [Accepted: 10/24/2014] [Indexed: 11/16/2022]
Abstract
Adolescence is generally considered as a developmental period during which adverse social experiences may have lasting consequences in terms of an increased vulnerability to affective disorders. This study aimed at determining the individual susceptibility to adolescent social stress using a rat model. We used rats of the Wild-type Groningen strain, which are characterized by a broad variation in adult levels of aggression and impulsivity. We hypothesized that experience of social defeat in adolescence results in heightened aggression and impulsivity levels in adulthood. In contrast to our expectation, adolescent social defeat did not lead to a difference in the average adult level of aggression and impulsivity, but the significant correlation between offensive aggression and impulsivity found in control animals was not present in animals defeated during adolescence.
Collapse
Affiliation(s)
- Caroline M Coppens
- Department of Behavioural Physiology, University of Groningen, PO Box 11103, 9700 CC Groningen, The Netherlands.
| | - Alex Coolen
- Department of Behavioural Physiology, University of Groningen, PO Box 11103, 9700 CC Groningen, The Netherlands
| | - Sietse F de Boer
- Department of Behavioural Physiology, University of Groningen, PO Box 11103, 9700 CC Groningen, The Netherlands
| | - Jaap M Koolhaas
- Department of Behavioural Physiology, University of Groningen, PO Box 11103, 9700 CC Groningen, The Netherlands
| |
Collapse
|
228
|
Bryce CA, Howland JG. Stress facilitates late reversal learning using a touchscreen-based visual discrimination procedure in male Long Evans rats. Behav Brain Res 2014; 278:21-8. [PMID: 25251839 DOI: 10.1016/j.bbr.2014.09.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 08/20/2014] [Accepted: 09/15/2014] [Indexed: 12/12/2022]
Abstract
The stress response is essential to the survival of all species as it maintains internal equilibrium and allows organisms to respond to threats in the environment. Most stress research has focused on the detrimental impacts of stress on cognition and behavior. Reversal learning, which requires a change in response strategy based on one dimension of the stimuli, is one type of behavioral flexibility that is facilitated following some brief stress procedures. The current study investigated a potential mechanism underlying this facilitation by blocking glucocorticoid receptors (GRs) during stress. Thirty-seven male Long Evans rats learned to discriminate between two images on a touchscreen, one of which was rewarded. Once a criterion was reached, rats received stress (30 min of restraint stress or no stress) and drug (GR antagonist RU38486 or vehicle) administration prior to each of the first 3 days of reversal learning. We expected that stress would facilitate reversal learning and RU38486 (10 mg/kg) would prevent this facilitation in both early (<50% correct in one session) and late (>50% correct in one session) stages of reversal learning. Results showed that stressed rats performed better than unstressed rats (fewer days for late reversal, fewer correction trials, and fewer errors) in the late but not early stage of reversal learning. RU38486 did not block the facilitation of RL by stress, although it dramatically increased response, but not reward, latencies. These results confirm the facilitation of late reversal by stress in a touchscreen-based operant task in rats and further our understanding of how stress affects higher level cognitive functioning and behavior.
Collapse
Affiliation(s)
- Courtney A Bryce
- Department of Psychology, University of Saskatchewan, Room 154 - 9 Campus Dr., Saskatoon, SK, Canada S7N 5A5
| | - John G Howland
- Department of Physiology, University of Saskatchewan, Room GB33, Health Sciences Building, 107 Wiggins Road, Saskatoon, SK, Canada S7N 5E5.
| |
Collapse
|
229
|
Gröger N, Bock J, Goehler D, Blume N, Lisson N, Poeggel G, Braun K. Stress in utero alters neonatal stress-induced regulation of the synaptic plasticity proteins Arc and Egr1 in a sex-specific manner. Brain Struct Funct 2014; 221:679-85. [PMID: 25239865 DOI: 10.1007/s00429-014-0889-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 09/09/2014] [Indexed: 12/23/2022]
Abstract
The present study in juvenile rats investigated a "two-hit model" to test the impact of prenatal stress exposure ("first hit") on the regulation of the synaptic plasticity immediate early genes Arc and Egr1 in response to a second neonatal stressor ("second hit") in a sex-specific manner. Three stress-exposed animal groups were compared at the age of 21 days in relation to unstressed controls (CON): preS animals were exposed to various unpredictable stressors during the last gestational trimester; postS animals were exposed to 45 min restraint stress at postnatal day 21, pre/postS animals were exposed to a combination of pre- and postnatal stress as described for the two previous groups. The postS and pre/postS groups were killed 2 h after exposure to the postnatal stressor, males and females were separately analyzed. In line with our hypothesis we detected sex-specific stress sensitivity for both analyzed proteins. Males did not show any significant changes in Arc expression irrespective of the stress condition. In contrast, females, which had been pre-exposed to prenatal stress, displayed an "amplified" Arc upregulation in response to postnatal stress (pre/postS group) compared to unstressed controls, which may reflect a "sensitization" effect of prenatal stress. For Egr1, the females did not show any stress-induced regulation irrespective of the stress condition, whereas in males, which were pre-exposed to prenatal stress, we observed a "protective" effect of prenatal stress on postnatal stress-induced downregulation of Egr1 expression (pre/postS group), which may indicate that prenatal stress exposure may induce "resilience".
Collapse
Affiliation(s)
- Nicole Gröger
- Department of Zoology/Developmental Neurobiology, Institute of Biology, Otto von Guericke University, Leipziger Straße 44, 39120, Magdeburg, Germany.
| | - Joerg Bock
- Department of Zoology/Developmental Neurobiology, Institute of Biology, Otto von Guericke University, Leipziger Straße 44, 39120, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Daniela Goehler
- Department of Zoology/Developmental Neurobiology, Institute of Biology, Otto von Guericke University, Leipziger Straße 44, 39120, Magdeburg, Germany
| | - Nicole Blume
- Institute for Biology, Human Biology, University of Leipzig, Talstraße 33, 04103, Leipzig, Germany
| | - Nicole Lisson
- Institute for Biology, Human Biology, University of Leipzig, Talstraße 33, 04103, Leipzig, Germany
| | - Gerd Poeggel
- Institute for Biology, Human Biology, University of Leipzig, Talstraße 33, 04103, Leipzig, Germany
| | - Katharina Braun
- Department of Zoology/Developmental Neurobiology, Institute of Biology, Otto von Guericke University, Leipziger Straße 44, 39120, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| |
Collapse
|
230
|
Adrenocortical status predicts the degree of age-related deficits in prefrontal structural plasticity and working memory. J Neurosci 2014; 34:8387-97. [PMID: 24948795 DOI: 10.1523/jneurosci.1385-14.2014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cognitive decline in aging is marked by considerable variability, with some individuals experiencing significant impairments and others retaining intact functioning. Whereas previous studies have linked elevated hypothalamo-pituitary-adrenal (HPA) axis activity with impaired hippocampal function during aging, the idea has languished regarding whether such differences may underlie the deterioration of other cognitive functions. Here we investigate whether endogenous differences in HPA activity are predictive of age-related impairments in prefrontal structural and behavioral plasticity. Young and aged rats (4 and 21 months, respectively) were partitioned into low or high HPA activity, based upon averaged values of corticosterone release from each animal obtained from repeated sampling across a 24 h period. Pyramidal neurons in the prelimbic area of medial prefrontal cortex were selected for intracellular dye filling, followed by 3D imaging and analysis of dendritic spine morphometry. Aged animals displayed dendritic spine loss and altered geometric characteristics; however, these decrements were largely accounted for by the subgroup bearing elevated corticosterone. Moreover, high adrenocortical activity in aging was associated with downward shifts in frequency distributions for spine head diameter and length, whereas aged animals with low corticosterone showed an upward shift in these indices. Follow-up behavioral experiments revealed that age-related spatial working memory deficits were exacerbated by increased HPA activity. By contrast, variations in HPA activity in young animals failed to impact structural or behavioral plasticity. These data implicate the cumulative exposure to glucocorticoids as a central underlying process in age-related prefrontal impairment and define synaptic features accounting for different trajectories in age-related cognitive function.
Collapse
|
231
|
Hansen RT, Conti M, Zhang HT. Mice deficient in phosphodiesterase-4A display anxiogenic-like behavior. Psychopharmacology (Berl) 2014; 231:2941-54. [PMID: 24563185 DOI: 10.1007/s00213-014-3480-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 01/24/2014] [Indexed: 12/26/2022]
Abstract
RATIONALE Phosphodiesterases (PDEs) are a super family of enzymes responsible for the halting of intracellular cyclic nucleotide signaling and may represent novel therapeutic targets for treatment of cognitive disorders. PDE4 is of considerable interest to cognitive research because it is highly expressed in the brain, particularly in the cognition-related brain regions. Recently, the functional role of PDE4B and PDE4D, two of the four PDE4 subtypes (PDE4A, B, C, and D), in behavior has begun to be identified; however, the role of PDE4A in the regulation of behavior is still unknown. OBJECTIVES The purpose of this study was to characterize the functional role of PDE4A in behavior. METHODS The role of PDE4A in behavior was evaluated through a battery of behavioral tests using PDE4A knockout (KO) mice; urine corticosterone levels were also measured. RESULTS PDE4A KO mice exhibited improved memory in the step-through-passive-avoidance test. They also displayed anxiogenic-like behavior in elevated-plus maze, holeboard, light-dark transition, and novelty suppressed feeding tests. Consistent with the anxiety profile, PDE4A KO mice had elevated corticosterone levels compared with wild-type controls post-stress. Interestingly, PDE4A KO mice displayed no change in object recognition, Morris water maze, forced swim, tail suspension, and duration of anesthesia induced by co-administration of xylazine and ketamine (suggesting that PDE4A KO may not be emetic). CONCLUSIONS These results suggest that PDE4A may be important in the regulation of emotional memory and anxiety-like behavior, but not emesis. PDE4A could possibly represent a novel therapeutic target in the future for anxiety or disorders affecting memory.
Collapse
Affiliation(s)
- Rolf T Hansen
- Departments of Behavioral Medicine & Psychiatry and Physiology & Pharmacology, West Virginia University Health Sciences Center, 1 Medical Center Dr, Morgantown, WV, 26506-9137, USA
| | | | | |
Collapse
|
232
|
Acute effects of restraint, shock and training in the elevated T-Maze on noradrenaline and serotonin systems of the prefrontal cortex. ACTA COLOMBIANA DE PSICOLOGIA 2014. [DOI: 10.14718/acp.2014.17.2.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
The prefrontal cortex (PFC) participates in cognitive functions and stress regulation. Noradrenaline (NA) and serotonin (5-HT) levels in some regions of the central nervous system are modified by acute stress. The effects depend on the type of stressor and the time elapsed between the presence of the stressor and the assessment. The aims of the present study were to assess the acute effect of different stressors on NA and 5-HT activities in the PFC and its relation with corticosterone levels. Independent groups of male Wistar rats (250-280 g) were submitted to restraint, footshock or training in the elevated T-maze (ETMT). The animals were sacrificed immediately (T0) or one hour (T1) after stress exposure. An untreated group sacrificed concurrently with treated animals was included as control. Samples of the PFC were dissected and the concentration of NA, 5-HT and their metabolites were measured by HPLC. Corticosterone levels were measured in serum. None of the treatments modified NA levels in the PFC. Animals exposed to footshock or ETMT showed significantly higher concentrations of 5-HT at T0. Restraint and footshock treatments were associated with higher corticosterone levels at T0 and T1 after the respective treatment. Taken together the results show that in the PFC, the noradrenergic and serotonergic systems, and the corticosterone levels respond in different ways to different stressors.
Collapse
|
233
|
Jiang ZC, Pan Q, Zheng C, Deng XF, Wang JY, Luo F. Inactivation of the prelimbic rather than infralimbic cortex impairs acquisition and expression of formalin-induced conditioned place avoidance. Neurosci Lett 2014; 569:89-93. [PMID: 24726402 PMCID: PMC4382360 DOI: 10.1016/j.neulet.2014.03.074] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 03/19/2014] [Accepted: 03/31/2014] [Indexed: 11/20/2022]
Abstract
Conditioned place avoidance (CPA) paradigm has been used to investigate the affective component of pain. Although the anterior cingulate cortex (ACC) has been demonstrated to play an important role in the affective aspect of pain, whether the other prefrontal subdivisions are involved in pain-related aversion is unknown. The present study investigated the role of the prelimbic cortex (PL) and infralimbic cortex (IL) in the acquisition and expression of formalin-induced CPA (F-CPA) in rats. GABAA receptor agonist muscimol was bilaterally microinjected into PL/IL before or after the formalin-paired training, to explore the effect of temporary inactivation of PL/IL on the acquisition and expression of F-CPA, respectively. The results showed that inactivation of PL rather than IL impaired the acquisition and expression of F-CPA. Moreover, the PL inactivation did not block the acquisition of LiCl-induced CPA, suggesting that PL may be specifically implicated in the pain-emotion related encoding. These results indicate that PL but not IL is involved in the aversive dimension of pain.
Collapse
Affiliation(s)
- Zhao-Cai Jiang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Qi Pan
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Chun Zheng
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100039, China; Department of Psychology, Southwest University for Nationalities, Chengdu 610041, China
| | - Xiao-Fei Deng
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Jin-Yan Wang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Beijing 100101, China.
| | - Fei Luo
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Beijing 100101, China
| |
Collapse
|
234
|
McLaughlin RJ, Hill MN, Gorzalka BB. A critical role for prefrontocortical endocannabinoid signaling in the regulation of stress and emotional behavior. Neurosci Biobehav Rev 2014; 42:116-31. [PMID: 24582908 DOI: 10.1016/j.neubiorev.2014.02.006] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 01/31/2014] [Accepted: 02/18/2014] [Indexed: 12/21/2022]
Abstract
The prefrontal cortex (PFC) provides executive control of the brain in humans and rodents, coordinating cognitive, emotional, and behavioral responses to threatening stimuli and subsequent feedback inhibition of the hypothalamic-pituitary-adrenal (HPA) axis. The endocannabinoid system has emerged as a fundamental regulator of HPA axis feedback inhibition and an important modulator of emotional behavior. However, the precise role of endocannabinoid signaling within the PFC with respect to stress coping and emotionality has only recently been investigated. This review discusses the current state of knowledge regarding the localization and function of the endocannabinoid system in the PFC, its sensitivity to stress and its role in modulating the neuroendocrine and behavioral responses to aversive stimuli. We propose a model whereby steady-state endocannabinoid signaling in the medial PFC indirectly regulates the outflow of pyramidal neurons by fine-tuning GABAergic inhibition. Local activation of this population of CB1 receptors increases the downstream targets of medial PFC activation, which include inhibitory interneurons in the basolateral amygdala, inhibitory relay neurons in the bed nucleus of the stria terminalis and monoamine cell bodies such as the dorsal raphe nucleus. This ultimately produces beneficial effects on emotionality (active coping responses to stress and reduced anxiety) and assists in constraining activation of the HPA axis. Under conditions of chronic stress, or in individuals suffering from mood disorders, this system may be uniquely recruited to help maintain appropriate function in the face of adversity, while breakdown of the endocannabinoid system in the medial PFC may be, in and of itself, sufficient to produce neuropsychiatric illness. Thus, we suggest that endocannabinoid signaling in the medial PFC may represent an attractive target for the treatment of stress-related disorders.
Collapse
Affiliation(s)
| | - Matthew N Hill
- Department of Cell Biology & Anatomy and Department of Psychiatry, Calgary, AB, Canada; Department of Psychiatry, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Boris B Gorzalka
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
235
|
Zhang W, Peterson M, Beyer B, Frankel WN, Zhang ZW. Loss of MeCP2 from forebrain excitatory neurons leads to cortical hyperexcitation and seizures. J Neurosci 2014; 34:2754-63. [PMID: 24523563 PMCID: PMC3921436 DOI: 10.1523/jneurosci.4900-12.2014] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 01/11/2014] [Accepted: 01/15/2014] [Indexed: 11/21/2022] Open
Abstract
Mutations of MECP2 cause Rett syndrome (RTT), a neurodevelopmental disorder leading to loss of motor and cognitive functions, impaired social interactions, and seizure at young ages. Defects of neuronal circuit development and function are thought to be responsible for the symptoms of RTT. The majority of RTT patients show recurrent seizures, indicating that neuronal hyperexcitation is a common feature of RTT. However, mechanisms underlying hyperexcitation in RTT are poorly understood. Here we show that deletion of Mecp2 from cortical excitatory neurons but not forebrain inhibitory neurons in the mouse leads to spontaneous seizures. Selective deletion of Mecp2 from excitatory but not inhibitory neurons in the forebrain reduces GABAergic transmission in layer 5 pyramidal neurons in the prefrontal and somatosensory cortices. Loss of MeCP2 from cortical excitatory neurons reduces the number of GABAergic synapses in the cortex, and enhances the excitability of layer 5 pyramidal neurons. Using single-cell deletion of Mecp2 in layer 2/3 pyramidal neurons, we show that GABAergic transmission is reduced in neurons without MeCP2, but is normal in neighboring neurons with MeCP2. Together, these results suggest that MeCP2 in cortical excitatory neurons plays a critical role in the regulation of GABAergic transmission and cortical excitability.
Collapse
Affiliation(s)
- Wen Zhang
- The Jackson Laboratory, Bar Harbor, Maine 04609
| | | | | | | | | |
Collapse
|
236
|
Read J, Fosse R, Moskowitz A, Perry B. The traumagenic neurodevelopmental model of psychosis revisited. ACTA ACUST UNITED AC 2014. [DOI: 10.2217/npy.13.89] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
237
|
Abstract
Abstract
Collapse
|
238
|
Gong Q, Li L, Tognin S, Wu Q, Pettersson-Yeo W, Lui S, Huang X, Marquand AF, Mechelli A. Using structural neuroanatomy to identify trauma survivors with and without post-traumatic stress disorder at the individual level. Psychol Med 2014; 44:195-203. [PMID: 23551879 PMCID: PMC3854554 DOI: 10.1017/s0033291713000561] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 02/15/2013] [Accepted: 02/15/2013] [Indexed: 02/05/2023]
Abstract
BACKGROUND At present there are no objective, biological markers that can be used to reliably identify individuals with post-traumatic stress disorder (PTSD). This study assessed the diagnostic potential of structural magnetic resonance imaging (sMRI) for identifying trauma-exposed individuals with and without PTSD. METHOD sMRI scans were acquired from 50 survivors of the Sichuan earthquake of 2008 who had developed PTSD, 50 survivors who had not developed PTSD and 40 healthy controls who had not been exposed to the earthquake. Support vector machine (SVM), a multivariate pattern recognition technique, was used to develop an algorithm that distinguished between the three groups at an individual level. The accuracy of the algorithm and its statistical significance were estimated using leave-one-out cross-validation and permutation testing. RESULTS When survivors with PTSD were compared against healthy controls, both grey and white matter allowed discrimination with an accuracy of 91% (p < 0.001). When survivors without PTSD were compared against healthy controls, the two groups could be discriminated with accuracies of 76% (p < 0.001) and 85% (p < 0.001) based on grey and white matter, respectively. Finally, when survivors with and without PTSD were compared directly, grey matter allowed discrimination with an accuracy of 67% (p < 0.001); in contrast the two groups could not be distinguished based on white matter. CONCLUSIONS These results reveal patterns of neuroanatomical alterations that could be used to inform the identification of trauma survivors with and without PTSD at the individual level, and provide preliminary support to the development of SVM as a clinically useful diagnostic aid.
Collapse
Affiliation(s)
- Q. Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - L. Li
- Mental Health Institute, The Second Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
| | - S. Tognin
- Department of Psychosis Studies, Institute of Psychiatry, King's College London, London, UK
| | - Q. Wu
- Huaxi MR Research Center (HMRRC), Department of Radiology, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - W. Pettersson-Yeo
- Department of Psychosis Studies, Institute of Psychiatry, King's College London, London, UK
| | - S. Lui
- Huaxi MR Research Center (HMRRC), Department of Radiology, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - X. Huang
- Huaxi MR Research Center (HMRRC), Department of Radiology, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - A. F. Marquand
- Department of Clinical Neuroscience, Centre for Neuroimaging Sciences, Institute of Psychiatry, King's College London, London, UK
| | - A. Mechelli
- Department of Psychosis Studies, Institute of Psychiatry, King's College London, London, UK
| |
Collapse
|
239
|
Daulatzai MA. Role of stress, depression, and aging in cognitive decline and Alzheimer's disease. Curr Top Behav Neurosci 2014; 18:265-96. [PMID: 25167923 DOI: 10.1007/7854_2014_350] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Late-onset Alzheimer's disease (AD) is a chronic neurodegenerative disorder and the most common cause of progressive cognitive dysfunction and dementia. Despite considerable progress in elucidating the molecular pathology of this disease, we are not yet close to unraveling its etiopathogenesis. A battery of neurotoxic modifiers may underpin neurocognitive pathology via deleterious heterogeneous pathologic impact in brain regions, including the hippocampus. Three important neurotoxic factors being addressed here include aging, stress, and depression. Unraveling "upstream pathologies" due to these disparate neurotoxic entities, vis-à-vis cognitive impairment involving hippocampal dysfunction, is of paramount importance. Persistent systemic inflammation triggers and sustains neuroinflammation. The latter targets several brain regions including the hippocampus causing upregulation of amyloid beta and neurofibrillary tangles, synaptic and neuronal degeneration, gray matter volume atrophy, and progressive cognitive decline. However, what is the fundamental source of this peripheral inflammation in aging, stress, and depression? This chapter highlights and delineates the inflammatory involvement-i.e., from its inception from gut to systemic inflammation to neuroinflammation. It highlights an upregulated cascade in which gut-microbiota-related dysbiosis generates lipopolysaccharides (LPS), which enhances inflammation and gut's leakiness, and through a Web of interactions, it induces stress and depression. This may increase neuronal dysfunction and apoptosis, promote learning and memory impairment, and enhance vulnerability to cognitive decline.
Collapse
Affiliation(s)
- Mak Adam Daulatzai
- Sleep Disorders Group, EEE Department, Melbourne School of Engineering, The University of Melbourne, Building 193, 3rd Floor, Room no. 3/344, Parkville, VIC, 3010, Australia,
| |
Collapse
|
240
|
Kar AN, Sun CY, Reichard K, Gervasi NM, Pickel J, Nakazawa K, Gioio AE, Kaplan BB. Dysregulation of the axonal trafficking of nuclear-encoded mitochondrial mRNA alters neuronal mitochondrial activity and mouse behavior. Dev Neurobiol 2013; 74:333-50. [PMID: 24151253 DOI: 10.1002/dneu.22141] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 09/03/2013] [Accepted: 10/16/2013] [Indexed: 01/22/2023]
Abstract
Local translation of nuclear-encoded mitochondrial mRNAs is essential for mitochondrial activity, yet there is little insight into the role that axonal trafficking of these transcripts play in neuronal function and behavior. Previously, we identified a 38 nucleotide stem-loop structure (zipcode) in the 3' untranslated region of the Cytochrome C oxidase IV (COXIV) mRNA that directs the transport of a reporter mRNA to the axon of superior cervical ganglion neurons (SCG). Overexpression of a chimeric reporter mRNA with the COXIV zipcode competed with the axonal trafficking of endogenous COXIV mRNA, and led to attenuated axon growth in SCG neurons. Here, we show that exogenous expression of the COXIV zipcode in cultured SCG neurons also results in the reduction of local ATP levels and increases levels of reactive oxygen species (ROS) in the axon. We took advantage of this "competition" phenotype to investigate the in vivo significance of axonal transport of COXIV mRNA. Toward this end, we generated transgenic mice expressing a fluorescent reporter fused to COXIV zipcode under a forebrain-specific promoter. Immunohistological analyses and RT-PCR analyses of RNA from the transgenic mouse brain showed expression of the reporter in the deep layer neurons in the pre-frontal and frontal cortex. Consistent with the in vitro studies, we observed increased ROS levels in neurons of these transgenic animals. A battery of behavioral tests on transgenic mice expressing the COXIV zipcode revealed an "anxiety-like" behavioral phenotype, suggesting an important role for axonal trafficking of nuclear-encoded mitochondrial mRNAs in neuronal physiology and animal behavior.
Collapse
Affiliation(s)
- Amar N Kar
- Laboratory of Molecular Biology, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, 20892
| | | | | | | | | | | | | | | |
Collapse
|
241
|
|
242
|
Davies DA, Molder JJ, Greba Q, Howland JG. Inactivation of medial prefrontal cortex or acute stress impairs odor span in rats. Learn Mem 2013; 20:665-9. [PMID: 24241748 PMCID: PMC4457520 DOI: 10.1101/lm.032243.113] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The capacity of working memory is limited and is altered in brain disorders including schizophrenia. In rodent working memory tasks, capacity is typically not measured (at least not explicitly). One task that does measure working memory capacity is the odor span task (OST) developed by Dudchenko and colleagues. In separate experiments, the effects of medial prefrontal cortex (mPFC) inactivation or acute stress on the OST were assessed in rats. Inactivation of the mPFC profoundly impaired odor span without affecting olfactory sensitivity. Acute stress also significantly reduced odor span. These findings support a potential role of the OST in developing novel therapeutics for disorders characterized by impaired working memory capacity.
Collapse
Affiliation(s)
- Don A. Davies
- Department of Physiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E5
| | - Joel J. Molder
- Department of Physiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E5
| | - Quentin Greba
- Department of Physiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E5
| | - John G. Howland
- Department of Physiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E5
| |
Collapse
|
243
|
Bruce J, Fisher PA, Graham AM, Moore WE, Peake SJ, Mannering AM. Patterns of brain activation in foster children and nonmaltreated children during an inhibitory control task. Dev Psychopathol 2013; 25:931-41. [PMID: 24229540 PMCID: PMC3831359 DOI: 10.1017/s095457941300028x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Children in foster care have often encountered a range of adverse experiences, including neglectful and/or abusive care and multiple caregiver transitions. Prior research findings suggest that such experiences negatively affect inhibitory control and the underlying neural circuitry. In the current study, event-related functional magnetic resonance imaging was employed during a go/no go task that assesses inhibitory control to compare the behavioral performance and brain activation of foster children and nonmaltreated children. The sample included two groups of 9- to 12-year-old children: 11 maltreated foster children and 11 nonmaltreated children living with their biological parents. There were no significant group differences on behavioral performance on the task. In contrast, patterns of brain activation differed by group. The nonmaltreated children demonstrated stronger activation than did the foster children across several regions, including the right anterior cingulate cortex, the middle frontal gyrus, and the right lingual gyrus, during correct no go trials, whereas the foster children displayed stronger activation than the nonmaltreated children in the left inferior parietal lobule and the right superior occipital cortex, including the lingual gyrus and cuneus, during incorrect no go trials. These results provide preliminary evidence that the early adversity experienced by foster children impacts the neural substrates of inhibitory control.
Collapse
|
244
|
Nikiforuk A, Popik P. Neurochemical modulation of stress-induced cognitive inflexibility in a rat model of an attentional set-shifting task. Pharmacol Rep 2013; 65:1479-88. [DOI: 10.1016/s1734-1140(13)71508-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 10/15/2013] [Indexed: 10/25/2022]
|
245
|
Garner AS. Home visiting and the biology of toxic stress: opportunities to address early childhood adversity. Pediatrics 2013; 132 Suppl 2:S65-73. [PMID: 24187125 DOI: 10.1542/peds.2013-1021d] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Home visiting is an important mechanism for minimizing the lifelong effects of early childhood adversity. To do so, it must be informed by the biology of early brain and child development. Advances in neuroscience, epigenetics, and the physiology of stress are revealing the biological mechanisms underlying well-established associations between early childhood adversity and suboptimal life-course trajectories. Left unchecked, mediators of physiologic stress become toxic, alter both genome and brain, and lead to a vicious cycle of chronic stress. This so-called "toxic stress" results a wide array of behavioral attempts to blunt the stress response, a process known as "behavioral allostasis." Although behaviors like smoking, overeating, promiscuity, and substance abuse decrease stress transiently, over time they become maladaptive and result in the unhealthy lifestyles and noncommunicable diseases that are the leading causes of morbidity and mortality. The biology of toxic stress and the concept of behavioral allostasis shed new light on the developmental origins of lifelong disease and highlight opportunities for early intervention and prevention. Future efforts to minimize the effects of childhood adversity should focus on expanding the capacity of caregivers and communities to promote (1) the safe, stable, and nurturing relationships that buffer toxic stress, and (2) the rudimentary but foundational social-emotional, language, and cognitive skills needed to develop healthy, adaptive coping skills. Building these critical caregiver and community capacities will require a public health approach with unprecedented levels of collaboration and coordination between the healthcare, childcare, early education, early intervention, and home visiting sectors.
Collapse
|
246
|
Farrell MR, Sengelaub DR, Wellman CL. Sex differences and chronic stress effects on the neural circuitry underlying fear conditioning and extinction. Physiol Behav 2013; 122:208-15. [PMID: 23624153 PMCID: PMC3812406 DOI: 10.1016/j.physbeh.2013.04.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Revised: 04/11/2013] [Accepted: 04/16/2013] [Indexed: 11/20/2022]
Abstract
There are sex differences in the rates of many stress-sensitive psychological disorders such as posttraumatic stress disorder (PTSD). As medial prefrontal cortex and amygdala are implicated in many of these disorders, understanding differential stress effects in these regions may shed light on the mechanisms underlying sex-dependent expression of disorders like depression and anxiety. Prefrontal cortex and amygdala are key regions in the neural circuitry underlying fear conditioning and extinction, which thus has emerged as a useful model of stress influences on the neural circuitry underlying regulation of emotional behavior. This review outlines the current literature on sex differences and stress effects on dendritic morphology within medial prefrontal cortex and basolateral amygdala. Such structural differences and/or alterations can have important effects on fear conditioning and extinction, behaviors that are mediated by the basolateral amygdala and prefrontal cortex, respectively. Given the importance of extinction-based exposure therapy as a treatment for anxiety disorders such as PTSD, understanding the neural mechanisms by which stress differentially influences fear learning and extinction in males and females is an important goal for developing sex-appropriate interventions for stress-related disorders.
Collapse
Affiliation(s)
- Mollee R Farrell
- Department of Psychological & Brain Sciences, Program in Neuroscience, and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, United States.
| | | | | |
Collapse
|
247
|
Stress, anxiety, and dendritic spines: What are the connections? Neuroscience 2013; 251:108-19. [DOI: 10.1016/j.neuroscience.2012.04.021] [Citation(s) in RCA: 195] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2012] [Revised: 04/10/2012] [Accepted: 04/11/2012] [Indexed: 01/11/2023]
|
248
|
Mar AC, Horner AE, Nilsson SRO, Alsiö J, Kent BA, Kim CH, Holmes A, Saksida LM, Bussey TJ. The touchscreen operant platform for assessing executive function in rats and mice. Nat Protoc 2013; 8:1985-2005. [PMID: 24051960 PMCID: PMC4131754 DOI: 10.1038/nprot.2013.123] [Citation(s) in RCA: 179] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This protocol details a subset of assays developed within the touchscreen platform to measure various aspects of executive function in rodents. Three main procedures are included: extinction, measuring the rate and extent of curtailing a response that was previously, but is no longer, associated with reward; reversal learning, measuring the rate and extent of switching a response toward a visual stimulus that was previously not, but has become, associated with reward (and away from a visual stimulus that was previously, but is no longer, rewarded); and the 5-choice serial reaction time (5-CSRT) task, gauging the ability to selectively detect and appropriately respond to briefly presented, spatially unpredictable visual stimuli. These protocols were designed to assess both complementary and overlapping constructs including selective and divided visual attention, inhibitory control, flexibility, impulsivity and compulsivity. The procedures comprise part of a wider touchscreen test battery assessing cognition in rodents with high potential for translation to human studies.
Collapse
Affiliation(s)
- Adam C Mar
- Department of Psychology, University of Cambridge, Cambridge, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
249
|
Markham JA, Mullins SE, Koenig JI. Periadolescent maturation of the prefrontal cortex is sex-specific and is disrupted by prenatal stress. J Comp Neurol 2013; 521:1828-43. [PMID: 23172080 DOI: 10.1002/cne.23262] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 09/01/2012] [Accepted: 11/06/2012] [Indexed: 12/19/2022]
Abstract
The prefrontal cortex (PFC) undergoes dramatic, sex-specific maturation during adolescence. Adolescence is a vulnerable window for developing mental illnesses that show significant sexual dimorphisms. Gestational stress is associated with increased risk for both schizophrenia, which is more common among men, and cognitive deficits. We have shown that male, but not female, rats exposed to prenatal stress develop postpubertal deficits in cognitive behaviors supported by the prefrontal cortex. Here we tested the hypothesis that repeated variable prenatal stress during the third week of rat gestation disrupts periadolescent development of prefrontal neurons in a sex-specific fashion. Using Golgi-Cox stained tissue, we compared dendritic arborization and spine density of prelimbic layer III neurons in prenatally stressed and control animals at juvenile (day 20), prepubertal (day 30), postpubertal (day 56), and adult (day 90) ages (N = 115). Dendritic ramification followed a sex-specific pattern that was disrupted during adolescence in prenatally stressed males, but not in females. In contrast, the impact of prenatal stress on the female PFC was not evident until adulthood. Prenatal stress also caused reductions in brain and body weights, and the latter effect was more pronounced among males. Additionally, there was a trend toward reduced testosterone levels for adult prenatally stressed males. Our findings indicate that, similarly to humans, the rat PFC undergoes sex-specific development during adolescence and furthermore that this process is disrupted by prenatal stress. These findings may be relevant to both the development of normal sex differences in cognition as well as differential male-female vulnerability to psychiatric conditions.
Collapse
Affiliation(s)
- Julie A Markham
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland-Baltimore School of Medicine, Baltimore, Maryland 21228, USA.
| | | | | |
Collapse
|
250
|
McEwen BS, Morrison JH. The brain on stress: vulnerability and plasticity of the prefrontal cortex over the life course. Neuron 2013; 79:16-29. [PMID: 23849196 DOI: 10.1016/j.neuron.2013.06.028] [Citation(s) in RCA: 636] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2013] [Indexed: 12/14/2022]
Abstract
The prefrontal cortex (PFC) is involved in working memory and self-regulatory and goal-directed behaviors and displays remarkable structural and functional plasticity over the life course. Neural circuitry, molecular profiles, and neurochemistry can be changed by experiences, which influence behavior as well as neuroendocrine and autonomic function. Such effects have a particular impact during infancy and in adolescence. Behavioral stress affects both the structure and function of PFC, though such effects are not necessarily permanent, as young animals show remarkable neuronal resilience if the stress is discontinued. During aging, neurons within the PFC become less resilient to stress. There are also sex differences in the PFC response to stressors. While such stress and sex hormone-related alterations occur in regions mediating the highest levels of cognitive function and self-regulatory control, the fact that they are not necessarily permanent has implications for future behavior-based therapies that harness neural plasticity for recovery.
Collapse
Affiliation(s)
- Bruce S McEwen
- Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| | | |
Collapse
|