201
|
Hansen TM, Mark EB, Olesen SS, Gram M, Frøkjær JB, Drewes AM. Characterization of cortical source generators based on electroencephalography during tonic pain. J Pain Res 2017; 10:1401-1409. [PMID: 28652806 PMCID: PMC5476635 DOI: 10.2147/jpr.s132909] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Objective The aim of the present study was to characterize the cortical source generators evoked by experimental tonic pain. Methods Electroencephalography (EEG) was recorded on two separate days during rest and with immersion of the hand in ice water for 2 minutes (cold pressor test). Exact low-resolution brain electromagnetic tomography source localization was performed in 31 healthy volunteers to characterize the cortical source generators. Results Reliability was high in all eight frequency bands during rest and cold pressor conditions (intraclass coefficients =0.47–0.83 in the cingulate and insula). Tonic pain increased cortical activities in the delta (1–4 Hz), theta (4–8 Hz), beta1 (12–18 Hz), beta2 (18–24 Hz), beta3 (24–32 Hz), and gamma (32–60 Hz) bands (all P<0.011) in widespread areas mainly in the limbic system, whereas decreased cortical activities were found in cingulate and pre- and postcentral gyri in the alpha2 (10–12 Hz) band (P=0.007). The pain intensity was correlated with cingulate activity in the beta2, beta3, and gamma bands (all P<0.04). Conclusion Source localization of EEG is a reliable method to estimate cortical source generators. Activities in different brain regions, mainly in the limbic system, showed fluctuations in various frequency bands. Cingulate changes were correlated with pain intensity. Significance This method might add information to the objective assessment of the cortical pain response in future experimental pain studies.
Collapse
Affiliation(s)
- Tine Maria Hansen
- Mech-Sense, Department of Radiology, Aalborg University Hospital.,Department of Clinical Medicine, Aalborg University
| | - Esben Bolvig Mark
- Mech-Sense, Department of Radiology, Aalborg University Hospital.,Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark
| | - Søren Schou Olesen
- Department of Clinical Medicine, Aalborg University.,Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark
| | - Mikkel Gram
- Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark
| | - Jens Brøndum Frøkjær
- Mech-Sense, Department of Radiology, Aalborg University Hospital.,Department of Clinical Medicine, Aalborg University
| | - Asbjørn Mohr Drewes
- Department of Clinical Medicine, Aalborg University.,Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark
| |
Collapse
|
202
|
Fourie MM, Stein DJ, Solms M, Gobodo-Madikizela P, Decety J. Empathy and moral emotions in post-apartheid South Africa: an fMRI investigation. Soc Cogn Affect Neurosci 2017; 12:881-892. [PMID: 28338783 PMCID: PMC5472164 DOI: 10.1093/scan/nsx019] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 01/27/2017] [Accepted: 02/07/2017] [Indexed: 01/10/2023] Open
Abstract
Moral emotions elicited in response to others' suffering are mediated by empathy and affect how we respond to their pain. South Africa provides a unique opportunity to study group processes given its racially divided past. The present study seeks insights into aspects of the moral brain by investigating behavioral and functional MRI responses of White and Black South Africans who lived through apartheid to in- and out-group physical and social pain. Whereas the physical pain task featured faces expressing dynamic suffering, the social pain task featured victims of apartheid violence from the South African Truth and Reconciliation Commission to elicit heartfelt emotion. Black participants' behavioral responses were suggestive of in-group favoritism, whereas White participants' responses were apparently egalitarian. However, all participants showed significant in-group biases in activation in the amygdala (physical pain), as well as areas involved in mental state representation, including the precuneus, temporoparietal junction (TPJ) and frontal pole (physical and social pain). Additionally, Black participants reacted with heightened moral indignation to own-race suffering, whereas White participants reacted with heightened shame to Black suffering, which was associated with blunted neural empathic responding. These findings provide ecologically valid insights into some behavioral and brain processes involved in complex moral situations.
Collapse
Affiliation(s)
- Melike M. Fourie
- Studies in Historical Trauma and Transformation, Stellenbosch University, Stellenbosch, South Africa
| | - Dan J. Stein
- Department of Psychiatry and MRC Unit on Anxiety and Stress Disorders, University of Cape Town, Cape Town, South Africa
| | - Mark Solms
- Department of Psychology, University of Cape Town, Cape Town, South Africa
| | - Pumla Gobodo-Madikizela
- Studies in Historical Trauma and Transformation, Stellenbosch University, Stellenbosch, South Africa
| | - Jean Decety
- Department of Psychology and Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, USA
| |
Collapse
|
203
|
Geuter S, Boll S, Eippert F, Büchel C. Functional dissociation of stimulus intensity encoding and predictive coding of pain in the insula. eLife 2017; 6:e24770. [PMID: 28524817 PMCID: PMC5470871 DOI: 10.7554/elife.24770] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 05/18/2017] [Indexed: 01/08/2023] Open
Abstract
The computational principles by which the brain creates a painful experience from nociception are still unknown. Classic theories suggest that cortical regions either reflect stimulus intensity or additive effects of intensity and expectations, respectively. By contrast, predictive coding theories provide a unified framework explaining how perception is shaped by the integration of beliefs about the world with mismatches resulting from the comparison of these beliefs against sensory input. Using functional magnetic resonance imaging during a probabilistic heat pain paradigm, we investigated which computations underlie pain perception. Skin conductance, pupil dilation, and anterior insula responses to cued pain stimuli strictly followed the response patterns hypothesized by the predictive coding model, whereas posterior insula encoded stimulus intensity. This novel functional dissociation of pain processing within the insula together with previously observed alterations in chronic pain offer a novel interpretation of aberrant pain processing as disturbed weighting of predictions and prediction errors.
Collapse
Affiliation(s)
- Stephan Geuter
- Department of Systems Neuroscience, University Medical Center Hamburg Eppendorf, Hamburg, Germany
- Institute of Cognitive Science, University of Colorado Boulder, Boulder, United States
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, United States
| | - Sabrina Boll
- Department of Systems Neuroscience, University Medical Center Hamburg Eppendorf, Hamburg, Germany
- Department of General Psychiatry, University Hospital Heidelberg, Heidelberg, Germany
| | - Falk Eippert
- Centre for Functional Magnetic Resonance Imaging of the Brain, University of Oxford, Oxford, United Kingdom
| | - Christian Büchel
- Department of Systems Neuroscience, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| |
Collapse
|
204
|
Lenoir C, Huang G, Vandermeeren Y, Hatem SM, Mouraux A. Human primary somatosensory cortex is differentially involved in vibrotaction and nociception. J Neurophysiol 2017; 118:317-330. [PMID: 28446584 DOI: 10.1152/jn.00615.2016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 04/10/2017] [Accepted: 04/23/2017] [Indexed: 01/13/2023] Open
Abstract
The role of the primary somatosensory cortex (S1) in vibrotaction is well established. In contrast, its involvement in nociception is still debated. Here we test whether S1 is similarly involved in the processing of nonnociceptive and nociceptive somatosensory input in humans by comparing the aftereffects of high-definition transcranial direct current stimulation (HD-tDCS) of S1 on the event-related potentials (ERPs) elicited by nonnociceptive and nociceptive somatosensory stimuli delivered to the ipsilateral and contralateral hands. Cathodal HD-tDCS significantly affected the responses to nonnociceptive somatosensory stimuli delivered to the contralateral hand: both early-latency ERPs from within S1 (N20 wave elicited by transcutaneous electrical stimulation of median nerve) and late-latency ERPs elicited outside S1 (N120 wave elicited by short-lasting mechanical vibrations delivered to index fingertip, thought to originate from bilateral operculo-insular and cingulate cortices). These results support the notion that S1 constitutes an obligatory relay for the cortical processing of nonnociceptive tactile input originating from the contralateral hemibody. Contrasting with this asymmetric effect of HD-tDCS on the responses to nonnociceptive somatosensory input, HD-tDCS over the sensorimotor cortex led to a bilateral and symmetric reduction of the magnitude of the N240 wave of nociceptive laser-evoked potentials elicited by stimulation of the hand dorsum. Taken together, our results demonstrate in humans a differential involvement of S1 in vibrotaction and nociception.NEW & NOTEWORTHY Whereas the role of the primary somatosensory cortex (S1) in vibrotaction is well established, its involvement in nociception remains strongly debated. By assessing, in healthy volunteers, the effect of high-definition transcranial direct current stimulation over S1, we demonstrate a differential involvement of S1 in vibrotaction and nociception.
Collapse
Affiliation(s)
- Cédric Lenoir
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Gan Huang
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Yves Vandermeeren
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium.,NeuroModulation Unit, Neurology Department, CHU UCL Namur (Godinne), Université catholique de Louvain, Yvoir, Belgium.,Louvain Bionics, Université catholique de Louvain, Louvain-la-Neuve, Belgium; and
| | - Samar Marie Hatem
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium.,Physical Medicine and Rehabilitation, Brugmann University Hospital, and Vrije Universiteit Brussel, Université Libre de Bruxelles, Brussels, Belgium
| | - André Mouraux
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium;
| |
Collapse
|
205
|
Khedr E, Sharkawy E, Attia A, Ibrahim Osman N, Sayed Z. Role of transcranial direct current stimulation on reduction of postsurgical opioid consumption and pain in total knee arthroplasty: Double randomized clinical trial. Eur J Pain 2017; 21:1355-1365. [DOI: 10.1002/ejp.1034] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2017] [Indexed: 11/08/2022]
Affiliation(s)
- E.M. Khedr
- Neuropsychiatry Department; Assiut University Hospital; Egypt
| | - E.S.A. Sharkawy
- Anesthesiology Department; Assiut University Hospital; Egypt
| | - A.M.A. Attia
- Anesthesiology Department; Assiut University Hospital; Egypt
| | | | - Z.M. Sayed
- Anesthesiology Department; Assiut University Hospital; Egypt
| |
Collapse
|
206
|
Activity and connectivity changes of central projection areas revealed by functional magnetic resonance imaging in Na V1.8-deficient mice upon cold signaling. Sci Rep 2017; 7:543. [PMID: 28373680 PMCID: PMC5428718 DOI: 10.1038/s41598-017-00524-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 03/03/2017] [Indexed: 12/19/2022] Open
Abstract
The voltage-gated sodium channel subtype NaV1.8 is expressed in the peripheral nervous system in primary afferent nociceptive C-fibers and is essential for noxious cold signaling. We utilized functional magnetic resonance imaging on NaV1.8-deficient (NaV1.8−/−) compared with wildtype (WT) mice to identify brain structures decoding noxious cold and/or heat signals. In NaV1.8−/− mice functional activity patterns, activated volumes and BOLD signal amplitudes are significantly reduced upon noxious cold stimulation whereas differences of noxious heat processing are less pronounced. Graph-theoretical analysis of the functional connectivity also shows dramatic alterations in noxious cold sensation in NaV1.8−/− mice and clearly reduced interactions between certain brain structures. In contrast, upon heat stimulation qualitatively quite the same functional connectivity pattern and consequently less prominent connectivity differences were observed between NaV1.8−/− and WT mice. Thus, the fact that NaV1.8−/− mice do not perceive nociceptive aspects of strong cooling in contrast to their WT littermates seems not only to be a pure peripheral phenomenon with diminished peripheral transmission, but also consists of upstream effects leading to altered subsequent nociceptive processing in the central nervous system and consequently altered connectivity between pain-relevant brain structures.
Collapse
|
207
|
De Ridder D, Vanneste S. Occipital Nerve Field Transcranial Direct Current Stimulation Normalizes Imbalance Between Pain Detecting and Pain Inhibitory Pathways in Fibromyalgia. Neurotherapeutics 2017; 14:484-501. [PMID: 28004273 PMCID: PMC5398977 DOI: 10.1007/s13311-016-0493-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Occipital nerve field (OCF) stimulation with subcutaneously implanted electrodes is used to treat headaches, more generalized pain, and even failed back surgery syndrome via unknown mechanisms. Transcranial direct current stimulation (tDCS) can predict the efficacy of implanted electrodes. The purpose of this study is to unravel the neural mechanisms involved in global pain suppression, mediated by occipital nerve field stimulation, within the realm of fibromyalgia. Nineteen patients with fibromyalgia underwent a placebo-controlled OCF tDCS. Electroencephalograms were recorded at baseline after active and sham stimulation. In comparison with healthy controls, patients with fibromyalgia demonstrate increased dorsal anterior cingulate cortex, increased premotor/dorsolateral prefrontal cortex activity, and an imbalance between pain-detecting dorsal anterior cingulate cortex and pain-suppressing pregenual anterior cingulate cortex activity, which is normalized after active tDCS but not sham stimulation associated with increased pregenual anterior cingulate cortex activation. The imbalance improvement between the pregenual anterior cingulate cortex and the dorsal anterior cingulate cortex is related to clinical changes. An imbalance assumes these areas communicate and, indeed, abnormal functional connectivity between the dorsal anterior cingulate cortex and pregenual anterior cingulate cortex is noted to be caused by a dysfunctional effective connectivity from the pregenual anterior cingulate cortex to the dorsal anterior cingulate cortex, which improves and normalizes after real tDCS but not sham tDCS. In conclusion, OCF tDCS exerts its effect via activation of the descending pain inhibitory pathway and de-activation of the salience network, both of which are abnormal in fibromyalgia.
Collapse
Affiliation(s)
- Dirk De Ridder
- Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
- BRAI2N, Sint Augustinus Hospital Antwerp, Antwerp, Belgium
| | - Sven Vanneste
- Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand.
- BRAI2N, Sint Augustinus Hospital Antwerp, Antwerp, Belgium.
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX, USA.
| |
Collapse
|
208
|
Goadsby PJ, Holland PR, Martins-Oliveira M, Hoffmann J, Schankin C, Akerman S. Pathophysiology of Migraine: A Disorder of Sensory Processing. Physiol Rev 2017; 97:553-622. [PMID: 28179394 PMCID: PMC5539409 DOI: 10.1152/physrev.00034.2015] [Citation(s) in RCA: 1036] [Impact Index Per Article: 148.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Plaguing humans for more than two millennia, manifest on every continent studied, and with more than one billion patients having an attack in any year, migraine stands as the sixth most common cause of disability on the planet. The pathophysiology of migraine has emerged from a historical consideration of the "humors" through mid-20th century distraction of the now defunct Vascular Theory to a clear place as a neurological disorder. It could be said there are three questions: why, how, and when? Why: migraine is largely accepted to be an inherited tendency for the brain to lose control of its inputs. How: the now classical trigeminal durovascular afferent pathway has been explored in laboratory and clinic; interrogated with immunohistochemistry to functional brain imaging to offer a roadmap of the attack. When: migraine attacks emerge due to a disorder of brain sensory processing that itself likely cycles, influenced by genetics and the environment. In the first, premonitory, phase that precedes headache, brain stem and diencephalic systems modulating afferent signals, light-photophobia or sound-phonophobia, begin to dysfunction and eventually to evolve to the pain phase and with time the resolution or postdromal phase. Understanding the biology of migraine through careful bench-based research has led to major classes of therapeutics being identified: triptans, serotonin 5-HT1B/1D receptor agonists; gepants, calcitonin gene-related peptide (CGRP) receptor antagonists; ditans, 5-HT1F receptor agonists, CGRP mechanisms monoclonal antibodies; and glurants, mGlu5 modulators; with the promise of more to come. Investment in understanding migraine has been very successful and leaves us at a new dawn, able to transform its impact on a global scale, as well as understand fundamental aspects of human biology.
Collapse
Affiliation(s)
- Peter J Goadsby
- Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, United Kingdom; Department of Neurology, University of California, San Francisco, San Francisco, California; Department of Neurology, University of Hamburg-Eppendorf, Hamburg, Germany; and Department of Neurology, University Hospital Bern-Inselspital, University of Bern, Bern, Switzerland
| | - Philip R Holland
- Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, United Kingdom; Department of Neurology, University of California, San Francisco, San Francisco, California; Department of Neurology, University of Hamburg-Eppendorf, Hamburg, Germany; and Department of Neurology, University Hospital Bern-Inselspital, University of Bern, Bern, Switzerland
| | - Margarida Martins-Oliveira
- Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, United Kingdom; Department of Neurology, University of California, San Francisco, San Francisco, California; Department of Neurology, University of Hamburg-Eppendorf, Hamburg, Germany; and Department of Neurology, University Hospital Bern-Inselspital, University of Bern, Bern, Switzerland
| | - Jan Hoffmann
- Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, United Kingdom; Department of Neurology, University of California, San Francisco, San Francisco, California; Department of Neurology, University of Hamburg-Eppendorf, Hamburg, Germany; and Department of Neurology, University Hospital Bern-Inselspital, University of Bern, Bern, Switzerland
| | - Christoph Schankin
- Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, United Kingdom; Department of Neurology, University of California, San Francisco, San Francisco, California; Department of Neurology, University of Hamburg-Eppendorf, Hamburg, Germany; and Department of Neurology, University Hospital Bern-Inselspital, University of Bern, Bern, Switzerland
| | - Simon Akerman
- Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, United Kingdom; Department of Neurology, University of California, San Francisco, San Francisco, California; Department of Neurology, University of Hamburg-Eppendorf, Hamburg, Germany; and Department of Neurology, University Hospital Bern-Inselspital, University of Bern, Bern, Switzerland
| |
Collapse
|
209
|
Abstract
This topical review starts with a warning that despite an impressive wealth of neuroscientific data, a reductionist approach can never fully explain persistent pain. One reason is the complexity of clinical pain (in contrast to experimentally induced pain). Another reason is that the "pain system" shows degeneracy, which means that an outcome can have several causes. Problems also arise from lack of conceptual clarity regarding words like nociceptors, pain, and perception. It is, for example, argued that "homeoceptor" would be a more meaningful term than nociceptor. Pain experience most likely depends on synchronized, oscillatory activity in a distributed neural network regardless of whether the pain is caused by tissue injury, deafferentation, or hypnosis. In experimental pain, the insula, the second somatosensory area, and the anterior cingulate gyrus are consistently activated. These regions are not pain-specific, however, and are now regarded by most authors as parts of the so-called salience network, which detects all kinds of salient events (pain being highly salient). The networks related to persistent pain seem to differ from the those identified experimentally, and show a more individually varied pattern of activations. One crucial difference seems to be activation of regions implicated in emotional and body-information processing in persistent pain. Basic properties of the "pain system" may help to explain why it so often goes awry, leading to persistent pain. Thus, the system must be highly sensitive not to miss important homeostatic threats, it cannot be very specific, and it must be highly plastic to quickly learn important associations. Indeed, learning and memory processes play an important role in persistent pain. Thus, behaviour with the goal of avoiding pain provocation is quickly learned and may persist despite healing of the original insult. Experimental and clinical evidence suggest that the hippocampal formation and neurogenesis (formation of new neurons) in the dentate gyrus are involved in the development and maintenance of persistent pain. There is evidence that persistent pain in many instances may be understood as the result of an interpretation of the organism's state of health. Any abnormal pattern of sensory information as well as lack of expected correspondence between motor commands and sensory feedback may be interpreted as bodily threats and evoke pain. This may, for example, be an important mechanism in many cases of neuropathic pain. Accordingly, many patients with persistent pain show evidence of a distorted body image. Another approach to understanding why the "pain system" so often goes awry comes from knowledge of the dynamic and nonlinear behaviour of neuronal networks. In real life the emergence of persistent pain probably depends on the simultaneous occurrence of numerous challenges, and just one extra (however small) might put the network into a an inflexible state with heightened sensitivity to normally innocuous inputs. Finally, the importance of seeking the meaning the patient attributes to his/her pain is emphasized. Only then can we understand why a particular person suffers so much more than another with very similar pathology, and subsequently be able to help the person to alter the meaning of the situation.
Collapse
Affiliation(s)
- Per Brodal
- Institute of Basic Medical SciencesUniversity of Oslo, OsloNorway
| |
Collapse
|
210
|
De Ridder D, Perera S, Vanneste S. State of the Art: Novel Applications for Cortical Stimulation. Neuromodulation 2017; 20:206-214. [PMID: 28371170 DOI: 10.1111/ner.12593] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/13/2017] [Accepted: 01/30/2017] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Electrical stimulation via implanted electrodes that overlie the cortex of the brain is an upcoming neurosurgical technique that was hindered for a long time by insufficient knowledge of how the brain functions in a dynamic, physiological, and pathological way, as well as by technological limitations of the implantable stimulation devices. METHODS This paper provides an overview of cortex stimulation via implantable devices and introduces future possibilities to improve cortex stimulation. RESULTS Cortex stimulation was initially used preoperatively as a technique to localize functions in the brain and only later evolved into a treatment technique. It was first used for pain, but more recently a multitude of pathologies are being targeted by cortex stimulation. These disorders are being treated by stimulating different cortical areas of the brain. Risks and complications are essentially similar to those related to deep brain stimulation and predominantly include haemorrhage, seizures, infection, and hardware failures. For cortex stimulation to fully mature, further technological development is required to predict its outcomes and improve stimulation designs. This includes the development of network science-based functional connectivity approaches, genetic analyses, development of navigated high definition transcranial alternating current stimulation, and development of pseudorandom stimulation designs for preventing habituation. CONCLUSION In conclusion, cortex stimulation is a nascent but very promising approach to treating a variety of diseases, but requires further technological development for predicting outcomes, such as network science based functional connectivity approaches, genetic analyses, development of navigated transcranial electrical stimulation, and development of pseudorandom stimulation designs for preventing habituation.
Collapse
Affiliation(s)
- Dirk De Ridder
- Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, New Zealand
| | | | - Sven Vanneste
- Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, New Zealand.,The University of Texas at Dallas, Richardson, TX, USA
| |
Collapse
|
211
|
Fardo F, Auksztulewicz R, Allen M, Dietz MJ, Roepstorff A, Friston KJ. Expectation violation and attention to pain jointly modulate neural gain in somatosensory cortex. Neuroimage 2017; 153:109-121. [PMID: 28341164 PMCID: PMC5460976 DOI: 10.1016/j.neuroimage.2017.03.041] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 01/08/2017] [Accepted: 03/20/2017] [Indexed: 10/27/2022] Open
Abstract
The neural processing and experience of pain are influenced by both expectations and attention. For example, the amplitude of event-related pain responses is enhanced by both novel and unexpected pain, and by moving the focus of attention towards a painful stimulus. Under predictive coding, this congruence can be explained by appeal to a precision-weighting mechanism, which mediates bottom-up and top-down attentional processes by modulating the influence of feedforward and feedback signals throughout the cortical hierarchy. The influence of expectation and attention on pain processing can be mapped onto changes in effective connectivity between or within specific neuronal populations, using a canonical microcircuit (CMC) model of hierarchical processing. We thus implemented a CMC within dynamic causal modelling for magnetoencephalography in human subjects, to investigate how expectation violation and attention to pain modulate intrinsic (within-source) and extrinsic (between-source) connectivity in the somatosensory hierarchy. This enabled us to establish whether both expectancy and attentional processes are mediated by a similar precision-encoding mechanism within a network of somatosensory, frontal and parietal sources. We found that both unexpected and attended pain modulated the gain of superficial pyramidal cells in primary and secondary somatosensory cortex. This modulation occurred in the context of increased lateralized recurrent connectivity between somatosensory and fronto-parietal sources, driven by unexpected painful occurrences. Finally, the strength of effective connectivity parameters in S1, S2 and IFG predicted individual differences in subjective pain modulation ratings. Our findings suggest that neuromodulatory gain control in the somatosensory hierarchy underlies the influence of both expectation violation and attention on cortical processing and pain perception.
Collapse
Affiliation(s)
- Francesca Fardo
- Danish Pain Centre, Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark; Interacting Minds Centre, Aarhus University, 8000 Aarhus, Denmark; Institute of Cognitive Neuroscience, University College London, London WC1N 3AR, United Kingdom.
| | - Ryszard Auksztulewicz
- Oxford Centre for Human Brain Activity, University of Oxford, Oxford OX3 7JX, United Kingdom; Wellcome Trust Centre for Neuroimaging, University College London, London WC1N 3BG, United Kingdom
| | - Micah Allen
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AR, United Kingdom; Wellcome Trust Centre for Neuroimaging, University College London, London WC1N 3BG, United Kingdom
| | - Martin J Dietz
- Center for Functionally Integrative Neuroscience, Aarhus University, 8000 Aarhus, Denmark
| | - Andreas Roepstorff
- Interacting Minds Centre, Aarhus University, 8000 Aarhus, Denmark; Center for Functionally Integrative Neuroscience, Aarhus University, 8000 Aarhus, Denmark
| | - Karl J Friston
- Wellcome Trust Centre for Neuroimaging, University College London, London WC1N 3BG, United Kingdom
| |
Collapse
|
212
|
Brain activations during pain: a neuroimaging meta-analysis of patients with pain and healthy controls. Pain 2017; 157:1279-1286. [PMID: 26871535 DOI: 10.1097/j.pain.0000000000000517] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In response to recent publications from pain neuroimaging experiments, there has been a debate about the existence of a primary pain region in the brain. Yet, there are few meta-analyses providing assessments of the minimum cerebral denominators of pain. Here, we used a statistical meta-analysis method, called activation likelihood estimation, to define (1) core brain regions activated by pain per se, irrelevant of pain modality, paradigm, or participants and (2) activation likelihood estimation commonalities and differences between patients with chronic pain and healthy individuals. A subtraction analysis of 138 independent data sets revealed that the minimum denominator for activation across pain modalities and paradigms included the right insula, secondary sensory cortex, and right anterior cingulate cortex (ACC). Common activations for healthy subjects and patients with pain alike included the thalamus, ACC, insula, and cerebellum. A comparative analysis revealed that healthy individuals were more likely to activate the cingulum, thalamus, and insula. Our results point toward the central role of the insular cortex and ACC in pain processing, irrelevant of modality, body part, or clinical experience; thus, furthering the importance of ACC and insular activation as key regions for the human experience of pain.
Collapse
|
213
|
Abstract
Supplemental Digital Content is Available in the Text. Sensitivity to visual stimuli is increased in patients with fibromyalgia and improved with administration of pregabalin. Pain can be elicited through all mammalian sensory pathways yet cross-modal sensory integration, and its relationship to clinical pain, is largely unexplored. Centralized chronic pain conditions such as fibromyalgia are often associated with symptoms of multisensory hypersensitivity. In this study, female patients with fibromyalgia demonstrated cross-modal hypersensitivity to visual and pressure stimuli compared with age- and sex-matched healthy controls. Functional magnetic resonance imaging revealed that insular activity evoked by an aversive level of visual stimulation was associated with the intensity of fibromyalgia pain. Moreover, attenuation of this insular activity by the analgesic pregabalin was accompanied by concomitant reductions in clinical pain. A multivariate classification method using support vector machines (SVM) applied to visual-evoked brain activity distinguished patients with fibromyalgia from healthy controls with 82% accuracy. A separate SVM classification of treatment effects on visual-evoked activity reliably identified when patients were administered pregabalin as compared with placebo. Both SVM analyses identified significant weights within the insular cortex during aversive visual stimulation. These data suggest that abnormal integration of multisensory and pain pathways within the insula may represent a pathophysiological mechanism in some chronic pain conditions and that insular response to aversive visual stimulation may have utility as a marker for analgesic drug development.
Collapse
|
214
|
Abstract
Repeated sensory exposures shape the brain's function and its responses to environmental stimuli. An important clinical and scientific question is how exposure to pain affects brain network activity and whether that activity is modifiable with training. We sought to determine whether repeated pain exposure would impact brain network activity and whether these effects can be reversed by cognitive behavioral therapy (CBT)-based training. Healthy subjects underwent 8 experimental sessions on separate days on which they received painful thermal stimuli. They were randomly assigned to groups receiving either CBT-based training (regulate group, n = 17) or a non-pain-focused treatment (control group, n = 13). Before and after these sessions, participants underwent functional magnetic resonance imaging (fMRI) during painful stimulation and at rest. The effect of repeated pain over time in the control group was a decrease in the neurotypical pain-evoked default mode network (DMN) deactivation. The regulate group did not show these DMN effects but rather had decreased deactivation of the right ventrolateral prefrontal cortex (R vlPFC) of the executive control network. In the regulate group, reduced pain-evoked DMN deactivation was associated with greater individual reduction in pain intensity and unpleasantness over time. Finally, the regulate group showed enhanced resting functional connectivity between areas of the DMN and executive control network over time, compared with the control group. Our study demonstrates that trainable cognitive states can alter the effect of repeated sensory exposure on the brain. The findings point to the potential utility of cognitive training to prevent changes in brain network connectivity that occur with repeated experience of pain.
Collapse
|
215
|
Resolving the Brainstem Contributions to Attentional Analgesia. J Neurosci 2017; 37:2279-2291. [PMID: 28096471 PMCID: PMC5354342 DOI: 10.1523/jneurosci.2193-16.2016] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 11/18/2016] [Accepted: 11/30/2016] [Indexed: 11/24/2022] Open
Abstract
Previous human imaging studies manipulating attention or expectancy have identified the periaqueductal gray (PAG) as a key brainstem structure implicated in endogenous analgesia. However, animal studies indicate that PAG analgesia is mediated largely via caudal brainstem structures, such as the rostral ventromedial medulla (RVM) and locus coeruleus (LC). To identify their involvement in endogenous analgesia, we used brainstem optimized, whole-brain imaging to record responses to concurrent thermal stimulation (left forearm) and visual attention tasks of titrated difficulty in 20 healthy subjects. The PAG, LC, and RVM were anatomically discriminated using a probabilistic atlas. Pain ratings disclosed the anticipated analgesic interaction between task difficulty and pain intensity (p < 0.001). Main effects of noxious thermal stimulation were observed across several brain regions, including operculoinsular, primary somatosensory, and cingulate cortices, whereas hard task difficulty was represented in anterior insular, parietal, and prefrontal cortices. Permutation testing within the brainstem nuclei revealed the following: main effects of task in dorsal PAG and right LC; and main effect of temperature in RVM and a task × temperature interaction in right LC. Intrasubject regression revealed a distributed network of supratentorial brain regions and the RVM whose activity was linearly related to pain intensity. Intersubject analgesia scores correlated to activity within a distinct region of the RVM alone. These results identify distinct roles for a brainstem triumvirate in attentional analgesia: with the PAG activated by attentional load; specific RVM regions showing pronociceptive and antinociceptive processes (in line with previous animal studies); and the LC showing lateralized activity during conflicting attentional demands. SIGNIFICANCE STATEMENT Attention modulates pain intensity, and human studies have identified roles for a network of forebrain structures plus the periaqueductal gray (PAG). Animal data indicate that the PAG acts via caudal brainstem structures to control nociception. We investigated this issue within an attentional analgesia paradigm with brainstem-optimized fMRI and analysis using a probabilistic brainstem atlas. We find pain intensity encoding in several forebrain structures, including the insula and attentional activation of the PAG. Discrete regions of the rostral ventromedial medulla bidirectionally influence pain perception, and locus coeruleus activity mirrors the interaction between attention and nociception. This approach has enabled the resolution of contributions from a hub of key brainstem structures to endogenous analgesia.
Collapse
|
216
|
Gandhi W, Morrison I, Schweinhardt P. How Accurate Appraisal of Behavioral Costs and Benefits Guides Adaptive Pain Coping. Front Psychiatry 2017; 8:103. [PMID: 28659834 PMCID: PMC5467009 DOI: 10.3389/fpsyt.2017.00103] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 05/26/2017] [Indexed: 01/07/2023] Open
Abstract
Coping with pain is a complex phenomenon encompassing a variety of behavioral responses and a large network of underlying neural circuits. Whether pain coping is adaptive or maladaptive depends on the type of pain (e.g., escapable or inescapable), personal factors (e.g., individual experiences with coping strategies in the past), and situational circumstances. Keeping these factors in mind, costs and benefits of different strategies have to be appraised and will guide behavioral decisions in the face of pain. In this review we present pain coping as an unconscious decision-making process during which accurately evaluated costs and benefits lead to adaptive pain coping behavior. We emphasize the importance of passive coping as an adaptive strategy when dealing with ongoing pain and thus go beyond the common view of passivity as a default state of helplessness. In combination with passive pain coping, we highlight the role of the reward system in reestablishing affective homeostasis and discuss existing evidence on a behavioral and neural level. We further present neural circuits involved in the decision-making process of pain coping when circumstances are ambiguous and, therefore, costs and benefits are difficult to anticipate. Finally, we address the wider implications of this topic by discussing its relevance for chronic pain patients.
Collapse
Affiliation(s)
- Wiebke Gandhi
- Faculty of Dentistry, McGill University, Montreal, QC, Canada.,The Alan Edwards Center for Research on Pain, McGill University, Montreal, QC, Canada.,School of Psychology and Clinical Language Sciences, Centre for Integrative Neuroscience and Neurodynamics, University of Reading, Reading, United Kingdom
| | - India Morrison
- Center for Affective and Social Neuroscience, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Petra Schweinhardt
- Faculty of Dentistry, McGill University, Montreal, QC, Canada.,The Alan Edwards Center for Research on Pain, McGill University, Montreal, QC, Canada.,Faculty of Medicine, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.,Interdisciplinary Spinal Research Group, Balgrist University Hospital, Zurich, Switzerland
| |
Collapse
|
217
|
Elliott JM, Owen M, Bishop MD, Sparks C, Tsao H, Walton DM, Weber KA, Wideman TH. Measuring Pain for Patients Seeking Physical Therapy: Can Functional Magnetic Resonance Imaging (fMRI) Help? Phys Ther 2017; 97:145-155. [PMID: 27470977 DOI: 10.2522/ptj.20160089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 07/19/2016] [Indexed: 11/17/2022]
Abstract
In the multidisciplinary fields of pain medicine and rehabilitation, advancing techniques such as functional magnetic resonance imaging (fMRI) are used to enhance our understanding of the pain experience. Given that such measures, in some circles, are expected to help us understand the brain in pain, future research in pain measurement is undeniably rich with possibility. However, pain remains intensely personal and represents a multifaceted experience, unique to each individual; no single measure in isolation, fMRI included, can prove or quantify its magnitude beyond the patient self-report. Physical therapists should be aware of cutting-edge advances in measuring the patient's pain experience, and they should work closely with professionals in other disciplines (eg, magnetic resonance physicists, biomedical engineers, radiologists, psychologists) to guide the exploration and development of multimodal pain measurement and management on a patient-by-patient basis. The primary purpose of this perspective article is to provide a brief overview of fMRI and inform physical therapist clinicians of the pros and cons when utilized as a measure of the patient's perception of pain. A secondary purpose is to describe current known factors that influence the quality of fMRI data and its analyses, as well as the potential for future clinical applications relevant to physical therapist practice. Lastly, the interested reader is introduced and referred to existing guidelines and recommendations for reporting fMRI research.
Collapse
|
218
|
Xie P, Qin B, Song G, Zhang Y, Cao S, Yu J, Wu J, Wang J, Zhang T, Zhang X, Yu T, Zheng H. Microstructural Abnormalities Were Found in Brain Gray Matter from Patients with Chronic Myofascial Pain. Front Neuroanat 2016; 10:122. [PMID: 28066193 PMCID: PMC5167736 DOI: 10.3389/fnana.2016.00122] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 12/02/2016] [Indexed: 11/13/2022] Open
Abstract
Myofascial pain, presented as myofascial trigger points (MTrPs)-related pain, is a common, chronic disease involving skeletal muscle, but its underlying mechanisms have been poorly understood. Previous studies have revealed that chronic pain can induce microstructural abnormalities in the cerebral gray matter. However, it remains unclear whether the brain gray matters of patients with chronic MTrPs-related pain undergo alteration. In this study, we employed the Diffusion Kurtosis Imaging (DKI) technique, which is particularly sensitive to brain microstructural perturbation, to monitor the MTrPs-related microstructural alterations in brain gray matter of patients with chronic pain. Our results revealed that, in comparison with the healthy controls, patients with chronic myofascial pain exhibited microstructural abnormalities in the cerebral gray matter and these lesions were mainly distributed in the limbic system and the brain areas involved in the pain matrix. In addition, we showed that microstructural abnormalities in the right anterior cingulate cortex (ACC) and medial prefrontal cortex (mPFC) had a significant negative correlation with the course of disease and pain intensity. The results of this study demonstrated for the first time that there are microstructural abnormalities in the brain gray matter of patients with MTrPs-related chronic pain. Our findings may provide new insights into the future development of appropriate therapeutic strategies to this disease.
Collapse
Affiliation(s)
- Peng Xie
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University Urumqi, China
| | - Bangyong Qin
- Department of Anesthesiology, Zunyi Medical University Zunyi, China
| | - Ganjun Song
- Department of Radiology, Zunyi Medical University Zunyi, China
| | - Yi Zhang
- Department of Anesthesiology, Zunyi Medical UniversityZunyi, China; Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical UniversityZunyi, China
| | - Song Cao
- Department of Anesthesiology, Zunyi Medical UniversityZunyi, China; Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical UniversityZunyi, China
| | - Jin Yu
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University Urumqi, China
| | - Jianjiang Wu
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University Urumqi, China
| | - Jiang Wang
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University Urumqi, China
| | - Tijiang Zhang
- Department of Radiology, Zunyi Medical University Zunyi, China
| | - Xiaoming Zhang
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City KS, USA
| | - Tian Yu
- Department of Anesthesiology, Zunyi Medical UniversityZunyi, China; Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical UniversityZunyi, China
| | - Hong Zheng
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University Urumqi, China
| |
Collapse
|
219
|
Alomar S, Bakhaidar M. Neuroimaging of neuropathic pain: review of current status and future directions. Neurosurg Rev 2016; 41:771-777. [DOI: 10.1007/s10143-016-0807-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 11/24/2016] [Accepted: 12/08/2016] [Indexed: 10/20/2022]
|
220
|
Walitt B, Ceko M, Gracely JL, Gracely RH. Neuroimaging of Central Sensitivity Syndromes: Key Insights from the Scientific Literature. Curr Rheumatol Rev 2016; 12:55-87. [PMID: 26717948 DOI: 10.2174/1573397112666151231111104] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 06/24/2015] [Accepted: 12/29/2015] [Indexed: 12/14/2022]
Abstract
Central sensitivity syndromes are characterized by distressing symptoms, such as pain and fatigue, in the absence of clinically obvious pathology. The scientific underpinnings of these disorders are not currently known. Modern neuroimaging techniques promise new insights into mechanisms mediating these postulated syndromes. We review the results of neuroimaging applied to five central sensitivity syndromes: fibromyalgia, chronic fatigue syndrome, irritable bowel syndrome, temporomandibular joint disorder, and vulvodynia syndrome. Neuroimaging studies of basal metabolism, anatomic constitution, molecular constituents, evoked neural activity, and treatment effect are compared across all of these syndromes. Evoked sensory paradigms reveal sensory augmentation to both painful and nonpainful stimulation. This is a transformative observation for these syndromes, which were historically considered to be completely of hysterical or feigned in origin. However, whether sensory augmentation represents the cause of these syndromes, a predisposing factor, an endophenotype, or an epiphenomenon cannot be discerned from the current literature. Further, the result from cross-sectional neuroimaging studies of basal activity, anatomy, and molecular constituency are extremely heterogeneous within and between the syndromes. A defining neuroimaging "signature" cannot be discerned for any of the particular syndromes or for an over-arching central sensitization mechanism common to all of the syndromes. Several issues confound initial attempts to meaningfully measure treatment effects in these syndromes. At this time, the existence of "central sensitivity syndromes" is based more soundly on clinical and epidemiological evidence. A coherent picture of a "central sensitization" mechanism that bridges across all of these syndromes does not emerge from the existing scientific evidence.
Collapse
Affiliation(s)
- Brian Walitt
- National Center for Complementary and Integrative Health, National Institutes of Health, 10 Center Drive, Bethesda, MD 20814, USA.
| | | | | | | |
Collapse
|
221
|
Influencing connectivity and cross-frequency coupling by real-time source localized neurofeedback of the posterior cingulate cortex reduces tinnitus related distress. Neurobiol Stress 2016; 8:211-224. [PMID: 29888315 PMCID: PMC5991329 DOI: 10.1016/j.ynstr.2016.11.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 11/15/2016] [Accepted: 11/19/2016] [Indexed: 12/20/2022] Open
Abstract
Background In this study we are using source localized neurofeedback to moderate tinnitus related distress by influencing neural activity of the target region as well as the connectivity within the default network. Hypothesis We hypothesize that up-training alpha and down-training beta and gamma activity in the posterior cingulate cortex has a moderating effect on tinnitus related distress by influencing neural activity of the target region as well as the connectivity within the default network and other functionally connected brain areas. Methods Fifty-eight patients with chronic tinnitus were included in the study. Twenty-three tinnitus patients received neurofeedback training of the posterior cingulate cortex with the aim of up-training alpha and down-training beta and gamma activity, while 17 patients underwent training of the lingual gyrus as a control situation. A second control group consisted of 18 tinnitus patients on a waiting list for future tinnitus treatment. Results This study revealed that neurofeedback training of the posterior cingulate cortex results in a significant decrease of tinnitus related distress. No significant effect on neural activity of the target region could be obtained. However, functional and effectivity connectivity changes were demonstrated between remote brain regions or functional networks as well as by altering cross frequency coupling of the posterior cingulate cortex. Conclusion This suggests that neurofeedback could remove the information, processed in beta and gamma, from the carrier wave, alpha, which transports the high frequency information and influences the salience attributed to the tinnitus sound. Based on the observation that much pathology is the result of an abnormal functional connectivity within and between neural networks various pathologies should be considered eligible candidates for the application of source localized EEG based neurofeedback training.
Collapse
|
222
|
Zhao X, Xu M, Jorgenson K, Kong J. Neurochemical changes in patients with chronic low back pain detected by proton magnetic resonance spectroscopy: A systematic review. NEUROIMAGE-CLINICAL 2016; 13:33-38. [PMID: 27920977 PMCID: PMC5126149 DOI: 10.1016/j.nicl.2016.11.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 10/27/2016] [Accepted: 11/09/2016] [Indexed: 11/29/2022]
Abstract
Background Low back pain is a highly prevalent health problem around the world, affecting 50% to 85% of people at some point in life. The purpose of this systematic review is to summarize the previous proton magnetic resonance spectroscopy studies on brain chemical changes in patients with chronic low back pain (CLBP). Methods We identified relevant studies from a literature search of PubMed and EMBASE from 1980 to March 2016. Data extraction was performed on the subjects' characteristics, MRS methods, spectral analyses, cerebral metabolites and perceptual measurements. Results The review identified 9 studies that met the inclusion criteria, comprised of data on 135 CLBP subjects and 137 healthy controls. Seven of these studies reported statistically different neurochemical alterations in patients with CLBP. The results showed that compared to controls, CLBP patients showed reductions of 1) N-acetyl-aspartate (NAA) in the dorsolateral prefrontal cortex (DLPFC), right primary motor cortex, left somatosensory cortex (SSC), left anterior insula and anterior cingulate cortex (ACC); 2) glutamate in the ACC; 3) myo-inositol in the ACC and thalamus; 4) choline in the right SSC; and 5) glucose in the DLPFC. Conclusion This review provides evidence for alterations in the biochemical profile of the brain in patients with CLBP, which suggests that biochemical changes may play a significant role in the development and pathophysiology of CLBP and shed light on the development of new treatments for CLBP. Neurochemical changes in patients with chronic low back pain were detected by MRS. Biochemical alterations may correlate with pathophysiology of CLBP. Decrease of N-acetyl-aspartate was main metabolic changes in patients with CLBP. Future studies need to emphasize therapeutic response in patients with CLBP.
Collapse
Affiliation(s)
- Xianjing Zhao
- The First Clinical Medical College, Zhejiang Chinese Medical University, China; Department of Radiology, The 1st Affiliated Hospital of Zhejiang Chinese Medical University, China
| | - Maosheng Xu
- The First Clinical Medical College, Zhejiang Chinese Medical University, China; Department of Radiology, The 1st Affiliated Hospital of Zhejiang Chinese Medical University, China
| | - Kristen Jorgenson
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Jian Kong
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
223
|
Abstract
Homeostasis is the basis of modern medicine and allostasis, a further elaboration of homeostasis, has been defined as stability through change, which was later modified to predictive reference resetting. It has been suggested that pleasure is related to salience (behavioral relevance), and withdrawal has been linked to allostasis in addictive types. The question arises how the clinical and neural signatures of pleasure, salience, allostasis and withdrawal relate, both in a non-addicted and addicted state. Resting state EEGs were performed in 66 people, involving a food-addicted obese group, a non-food addicted obese group and a lean control group. Correlation analyses were performed on behavioral data, and correlation, comparative and conjunction analyses were performed to extract electrophysiological relationships between pleasure, salience, allostasis and withdrawal. Pleasure/liking seems to be the phenomenological expression that enough salient stimuli are obtained, and withdrawal can be seen as a motivational incentive because due to allostatic reference resetting, more stimuli are required. In addition, in contrast to non-addiction, a pathological, non-adaptive salience attached to food results in withdrawal mediated through persistent allostatic reference resetting.
Collapse
|
224
|
Van der Lubbe RHJ, Blom JHG, De Kleine E, Bohlmeijer ET. Comparing the effects of sustained and transient spatial attention on the orienting towards and the processing of electrical nociceptive stimuli. Int J Psychophysiol 2016; 112:9-21. [PMID: 27888065 DOI: 10.1016/j.ijpsycho.2016.11.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 10/31/2016] [Accepted: 11/21/2016] [Indexed: 12/26/2022]
Abstract
We examined whether sustained vs. transient spatial attention differentially affect the processing of electrical nociceptive stimuli. Cued nociceptive stimuli of a relevant intensity (low or high) on the left or right forearm required a foot pedal press. The cued side varied trial wise in the transient attention condition, while it remained constant during a series of trials in the sustained attention condition. The orienting phase preceding the nociceptive stimuli was examined by focusing on lateralized EEG activity. ERPs were computed to examine the influence of spatial attention on the processing of the nociceptive stimuli. Results for the orienting phase showed increased ipsilateral alpha and beta power above somatosensory areas in both the transient and the sustained attention conditions, which may reflect inhibition of ipsilateral and/or disinhibition of contralateral somatosensory areas. Cued nociceptive stimuli evoked a larger N130 than uncued stimuli, both in the transient and the sustained attention conditions. Support for increased efficiency of spatial attention in the sustained attention condition was obtained for the N180 and the P540 component. We concluded that spatial attention is more efficient in the case of sustained than in the case of transient spatial attention.
Collapse
Affiliation(s)
- Rob H J Van der Lubbe
- Cognitive Psychology and Ergonomics, University of Twente, The Netherlands; Cognitive Psychology, University of Finance and Management, Warszawa, Poland.
| | - Jorian H G Blom
- Cognitive Psychology and Ergonomics, University of Twente, The Netherlands
| | - Elian De Kleine
- Psychology, Health & Technology, University of Twente, The Netherlands
| | | |
Collapse
|
225
|
Wiech K. Deconstructing the sensation of pain: The influence of cognitive processes on pain perception. Science 2016; 354:584-587. [DOI: 10.1126/science.aaf8934] [Citation(s) in RCA: 237] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
226
|
Minichino A, Delle Chiaie R, Cruccu G, Piroso S, Di Stefano G, Francesconi M, Bersani FS, Biondi M, Truini A. Pain-processing abnormalities in bipolar I disorder, bipolar II disorder, and schizophrenia: A novel trait marker for psychosis proneness and functional outcome? Bipolar Disord 2016; 18:591-601. [PMID: 27782355 DOI: 10.1111/bdi.12439] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 09/02/2016] [Indexed: 12/30/2022]
Abstract
OBJECTIVES Overlapping neural system dysfunctions, mainly involving the secondary somatosensory cortex (S2), the anterior cingulate cortex (ACC) and the anterior insular cortex (AIC), seem to be related to both pain-perception abnormalities and psychotic symptoms in schizophrenia (SCZ) and bipolar disorder (BD). Laser-evoked potentials (LEPs) were used to investigate pain-perception and central pain-processing abnormalities in SCZ, bipolar I disorder (BD-I), and bipolar II disorder (BD-II), and to evaluate their relationship with history of psychosis, and social-cognitive and functional impairments. METHODS Twenty patients with SCZ, 17 patients with BD-I, and 21 patients with BD-II who were all under similar pharmacological treatment underwent clinical, functional, and neuro-psychological assessment. LEPs were analyzed in patients and 19 healthy subjects (HS). LEPs elicit responses reflecting the activity of the S2 (N1 wave) and the ACC/AIC cortices (N2/P2 complex). A four-group ANOVA was conducted between patients and HS to compare pain-perceptive thresholds (PThs), N1, and N2/P2-LEP components. RESULTS Compared to HS: (i) patients with SCZ showed pain-processing and pain-perception abnormalities, as revealed by significantly higher PTh (P<.01), and lower N1 (P<.01) and N2/P2 (P<.01) amplitudes, (ii) patients with BD-I showed only pain-processing abnormalities, as revealed by significantly lower N1 (P<.05) and N2 (P<.01) amplitudes; and patients with BD-II did not differ for any of the LEP variables investigated. N1 and N2 amplitudes negatively correlated to history of psychosis (P<.01), social-cognition (P<.05), and real-world functioning (P<.01) measures in the whole group of patients. CONCLUSIONS To the best of our knowledge, this is the first study comparing central pain processing in patients with SCZ, BD-I, and BD-II. Our results suggest that pain-processing abnormalities may represent a novel locus of interest for research investigating trait markers of the psychosis spectrum.
Collapse
Affiliation(s)
- Amedeo Minichino
- Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy.,Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Roberto Delle Chiaie
- Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy
| | - Giorgio Cruccu
- Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy
| | - Serena Piroso
- Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy
| | - Giulia Di Stefano
- Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy
| | - Marta Francesconi
- Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy.,Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | | | - Massimo Biondi
- Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy
| | - Andrea Truini
- Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
227
|
Kuo PC, Chen YT, Chen YS, Chen LF. Decoding the perception of endogenous pain from resting-state MEG. Neuroimage 2016; 144:1-11. [PMID: 27746387 DOI: 10.1016/j.neuroimage.2016.09.040] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 07/17/2016] [Accepted: 09/16/2016] [Indexed: 02/08/2023] Open
Abstract
Decoding the neural representations of pain is essential to obtaining an objective assessment as well as an understanding of its underlying mechanisms. The complexities involved in the subjective experience of pain make it difficult to obtain a quantitative assessment from the induced spatiotemporal patterns of brain activity of high dimensionality. Most previous studies have investigated the perception of pain by analyzing the amplitude or spatial patterns in the response of the brain to external stimulation. This study investigated the decoding of endogenous pain perceptions according to resting-state magnetoencephalographic (MEG) recordings. In our experiments, we applied a beamforming method to calculate the brain activity for every brain region and examined temporal and spectral features of brain activity for predicting the intensity of perceived pain in patients with primary dysmenorrhea undergoing menstrual pain. Our results show that the asymmetric index of sample entropy in the precuneus and the sample entropy in the left posterior cingulate gyrus were the most informative characteristics associated with the perception of menstrual pain. The correlation coefficient (ρ=0.64, p<0.001) between the predicted and self-reported pain scores demonstrated the high prediction accuracy. In addition to the estimated brain activity, we were able to predict accurate pain scores directly from MEG channel signals (ρ=0.65, p<0.001). These findings suggest the possibility of using the proposed model based on resting-state MEG to predict the perceived intensity of endogenous pain.
Collapse
Affiliation(s)
- Po-Chih Kuo
- Department of Computer Science, National Chiao Tung University, Hsinchu, Taiwan
| | - Yi-Ti Chen
- Department of Computer Science, National Chiao Tung University, Hsinchu, Taiwan
| | - Yong-Sheng Chen
- Department of Computer Science, National Chiao Tung University, Hsinchu, Taiwan; Institute of Biomedical Engineering, National Chiao Tung University, Hsinchu, Taiwan.
| | - Li-Fen Chen
- Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan; Integrated Brain Research Unit, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
228
|
Hu L, Iannetti GD. Issues in Pain Prediction – Beyond Pain and Gain. Trends Neurosci 2016; 39:640-642. [DOI: 10.1016/j.tins.2016.08.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 08/25/2016] [Indexed: 11/27/2022]
|
229
|
Kucyi A, Davis KD. The Neural Code for Pain: From Single-Cell Electrophysiology to the Dynamic Pain Connectome. Neuroscientist 2016; 23:397-414. [DOI: 10.1177/1073858416667716] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Pain occurs in time. In naturalistic settings, pain perception is sometimes stable but often varies in intensity and quality over the course of seconds, minutes, and days. A principal aim in classic electrophysiology studies of pain was to uncover a neural code based on the temporal patterns of single neuron firing. In contrast, modern neuroimaging studies have placed emphasis on uncovering the spatial pattern of brain activity (or “map”) that may reflect the pain experience. However, in the emerging field of connectomics, communication within and among brain networks is characterized as intrinsically dynamic on multiple time scales. In this review, we revisit the single-cell electrophysiological evidence for a nociceptive neural code and consider how those findings relate to recent advances in understanding systems-level dynamic processes that suggest the existence of a “dynamic pain connectome” as a spatiotemporal physiological signature of pain. We explore how spontaneous activity fluctuations in this dynamic system shape, and are shaped by, acute and chronic pain experiences and individual differences in those experiences. Highlighting the temporal dimension of pain, we aim to move pain theory beyond the concept of a static neurosignature and toward an ethologically relevant account of naturalistic dynamics.
Collapse
Affiliation(s)
- Aaron Kucyi
- Department of Neurology & Neurological Sciences, Stanford University, Stanford CA, USA
| | - Karen D. Davis
- Division of Brain, Imaging & Behaviour - Systems Neuroscience, Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
230
|
Ferris LJ, Jetten J, Molenberghs P, Bastian B, Karnadewi F. Increased Pain Communication following Multiple Group Memberships Salience Leads to a Relative Reduction in Pain-Related Brain Activity. PLoS One 2016; 11:e0163117. [PMID: 27657917 PMCID: PMC5033402 DOI: 10.1371/journal.pone.0163117] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 09/03/2016] [Indexed: 11/22/2022] Open
Abstract
Pain is a fundamental human experience that triggers a range of social and psychological responses. In this study, we present behavioral and fMRI data to examine the effect of multiple group memberships salience on reported and neural indices of pain. We found that participants expressed higher levels of pain when more social group memberships were salient. This is consistent with the notion that pain itself motivates people to communicate their pain, and more so when multiple psychological resources are salient. In addition, fMRI results reveal an interesting twist: when participants increased their pain reporting as group memberships increased (from one group to four), there was a corresponding relative reduction in dorsal anterior cingulate cortex and anterior insula activation. These results provide evidence for an adaptive response to pain: the more people make use of the social resources at their disposal when experiencing pain, the less pain areas are activated.
Collapse
Affiliation(s)
| | | | - Pascal Molenberghs
- School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Melbourne, Australia
| | | | | |
Collapse
|
231
|
Goksan S, Hartley C, Hurley SA, Winkler AM, Duff EP, Jenkinson M, Rogers R, Clare S, Slater R. Optimal echo time for functional MRI of the infant brain identified in response to noxious stimulation. Magn Reson Med 2016; 78:625-631. [PMID: 27654315 PMCID: PMC5516146 DOI: 10.1002/mrm.26455] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 08/14/2016] [Accepted: 08/15/2016] [Indexed: 12/17/2022]
Abstract
Purpose Blood oxygen level dependent (BOLD) brain activity, measured using functional MRI (fMRI), is dependent on the echo time (TE) and the reversible spin–spin relaxation time constant (
T2*) that describes the decay of transverse magnetization. Use of the optimal TE during fMRI experiments allows maximal sensitivity to BOLD to be achieved. Reports that
T2* values are longer in infants (due to higher water concentrations and lower lipid content) have led to the use of longer TEs during infant fMRI experiments; however, the optimal TE has not been established. Methods In this study, acute experimental mildly noxious stimuli were applied to the heel in 12 term infants (mean gestational age = 40 weeks, mean postnatal age = 3 days); and the percentage change in BOLD activity was calculated across a range of TEs, from 30 to 70 ms, at 3 Tesla. In addition,
T2* maps of the whole brain were collected in seven infants. Results The maximal change in BOLD occurred at a TE of 52 ms, and the average
T2* across the whole brain was 99 ms. Conclusion A TE of approximately 50 ms is recommended for use in 3T fMRI investigations in term infants. Magn Reson Med 78:625–631, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Sezgi Goksan
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Caroline Hartley
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Samuel A Hurley
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Anderson M Winkler
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Eugene P Duff
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Mark Jenkinson
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Richard Rogers
- Nuffield Department of Anaesthetics, University of Oxford, Oxford, United Kingdom
| | - Stuart Clare
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Rebeccah Slater
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
232
|
Golm D, Schmidt-Samoa C, Dechent P, Kröner-Herwig B. Tinnitus- related distress: evidence from fMRI of an emotional stroop task. BMC EAR, NOSE, AND THROAT DISORDERS 2016; 16:10. [PMID: 27499700 PMCID: PMC4975911 DOI: 10.1186/s12901-016-0029-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 07/21/2016] [Indexed: 11/28/2022]
Abstract
Background Chronic tinnitus affects 5 % of the population, 17 % suffer under the condition. This distress seems mainly to be dependent on negative cognitive-emotional evaluation of the tinnitus and selective attention to the tinnitus. A well-established paradigm to examine selective attention and emotional processing is the Emotional Stroop Task (EST). Recent models of tinnitus distress propose limbic, frontal and parietal regions to be more active in highly distressed tinnitus patients. Only a few studies have compared high and low distressed tinnitus patients. Thus, this study aimed to explore neural correlates of tinnitus-related distress. Methods Highly distressed tinnitus patients (HDT, n = 16), low distressed tinnitus patients (LDT, n = 16) and healthy controls (HC, n = 16) underwent functional magnetic resonance imaging (fMRI) during an EST, that used tinnitus-related words and neutral words as stimuli. A random effects analysis of the fMRI data was conducted on the basis of the general linear model. Furthermore correlational analyses between the blood oxygen level dependent response and tinnitus distress, loudness, depression, anxiety, vocabulary and hypersensitivity to sound were performed. Results Contradictory to the hypothesis, highly distressed patients showed no Stroop effect in their reaction times. As hypothesized HDT and LDT differed in the activation of the right insula and the orbitofrontal cortex. There were no hypothesized differences between HDT and HC. Activation of the orbitofrontal cortex and the right insula were found to correlate with tinnitus distress. Conclusions The results are partially supported by earlier resting-state studies and corroborate the role of the insula and the orbitofrontal cortex in tinnitus distress.
Collapse
Affiliation(s)
- Dennis Golm
- Department of Clinical Psychology and Psychotherapy, Georg-August-University, Georg-Elias-Mueller-Institute of Psychology, Gosslerstrasse 14, 37073 Goettingen, Germany ; University of Southampton, Academic Unit of Psychology, Developmental Brain Behaviour Laboratory, Highfield Campus, Building 44, SO17 1 BJ Southampton, UK
| | - Carsten Schmidt-Samoa
- Georg-August-University, UMG, MR-Research in Neurology and Psychiatry, Robert-Koch-Str. 40, 37075 Goettingen, Germany
| | - Peter Dechent
- Georg-August-University, UMG, MR-Research in Neurology and Psychiatry, Robert-Koch-Str. 40, 37075 Goettingen, Germany
| | - Birgit Kröner-Herwig
- Department of Clinical Psychology and Psychotherapy, Georg-August-University, Georg-Elias-Mueller-Institute of Psychology, Gosslerstrasse 14, 37073 Goettingen, Germany
| |
Collapse
|
233
|
Ichesco E, Puiu T, Hampson JP, Kairys AE, Clauw DJ, Harte SE, Peltier SJ, Harris RE, Schmidt-Wilcke T. Altered fMRI resting-state connectivity in individuals with fibromyalgia on acute pain stimulation. Eur J Pain 2016; 20:1079-89. [PMID: 26773435 DOI: 10.1002/ejp.832] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2015] [Indexed: 12/29/2022]
Abstract
BACKGROUND Fibromyalgia is a chronic widespread pain condition, with patients commonly reporting other symptoms such as sleep difficulties, memory complaints and fatigue. The use of magnetic resonance imaging (MRI) in fibromyalgia has allowed for the detection of neural abnormalities, with alterations in brain activation elicited by experimental pain and alterations in resting state connectivity related to clinical pain. METHODS In this study, we sought to monitor state changes in resting brain connectivity following experimental pressure pain in fibromyalgia patients and healthy controls. Twelve fibromyalgia patients and 15 healthy controls were studied by applying discrete pressure stimuli to the thumbnail bed during MRI. Resting-state functional MRI scanning was performed before and immediately following experimental pressure pain. We investigated changes in functional connectivity to the thalamus and the insular cortex. RESULTS Acute pressure pain increased insula connectivity to the anterior cingulate and the hippocampus. Additionally, we observed increased thalamic connectivity to the precuneus/posterior cingulate cortex, a known part of the default mode network, in patients but not in controls. This connectivity was correlated with changes in clinical pain. CONCLUSIONS These data reporting changes in resting-state brain activity following a noxious stimulus suggest that the acute painful stimuli may contribute to the alteration of the neural signature of chronic pain. WHAT DOES THIS STUDY/ADD?: In this study acute pain application shows an echo in functional connectivity and clinical pain changes in chronic pain.
Collapse
Affiliation(s)
- E Ichesco
- Chronic Pain and Fatigue Research Center, Department of Anesthesiology, University of Michigan, Ann Arbor, USA
| | - T Puiu
- Chronic Pain and Fatigue Research Center, Department of Anesthesiology, University of Michigan, Ann Arbor, USA
| | - J P Hampson
- Chronic Pain and Fatigue Research Center, Department of Anesthesiology, University of Michigan, Ann Arbor, USA
| | - A E Kairys
- Chronic Pain and Fatigue Research Center, Department of Anesthesiology, University of Michigan, Ann Arbor, USA
- Department of Psychology, University of Colorado Denver, USA
| | - D J Clauw
- Chronic Pain and Fatigue Research Center, Department of Anesthesiology, University of Michigan, Ann Arbor, USA
| | - S E Harte
- Chronic Pain and Fatigue Research Center, Department of Anesthesiology, University of Michigan, Ann Arbor, USA
| | - S J Peltier
- Functional MRI Laboratory, University of Michigan, Ann Arbor, USA
| | - R E Harris
- Chronic Pain and Fatigue Research Center, Department of Anesthesiology, University of Michigan, Ann Arbor, USA
| | - T Schmidt-Wilcke
- Chronic Pain and Fatigue Research Center, Department of Anesthesiology, University of Michigan, Ann Arbor, USA
- Department of Neurology, BG Universitätsklinik Bergmannsheil, Ruhr University Bochum, Germany
| |
Collapse
|
234
|
Perrotta A, Chiacchiaretta P, Anastasio MG, Pavone L, Grillea G, Bartolo M, Siravo E, Colonnese C, De Icco R, Serrao M, Sandrini G, Pierelli F, Ferretti A. Temporal summation of the nociceptive withdrawal reflex involves deactivation of posterior cingulate cortex. Eur J Pain 2016; 21:289-301. [PMID: 27452295 DOI: 10.1002/ejp.923] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2016] [Indexed: 02/02/2023]
Abstract
BACKGROUND Temporal summation of pain sensation is pivotal both in physiological and pathological nociception. In humans, it develops in parallel with temporal summation of the nociceptive withdrawal reflex (NWR) of the lower limb, an objective representation of the temporal processing of nociceptive signals into the spinal cord. METHODS To study the contribution of cortical and subcortical structures in temporal summation of pain reflex responses, we compared the fMRI signal changes related to the temporal summation threshold (TST) of the NWR with that related to the single NWR response. We studied 17 healthy subjects using a stimulation paradigm previously determined to evoke both the TST of the NWR (SUMM) and the NWR single response (SING). RESULTS We found a significant activation in left (contralateral) primary somatosensory cortex (SI), bilateral secondary somatosensory cortex (SII), bilateral insula, anterior cingulate cortex (ACC) and bilateral thalamus during both SUMM and SING conditions. The SUMM versus SING contrast revealed a significant deactivation in the posterior cingulate cortex (PCC) and bilateral middle occipital gyrus in SUMM when compared to SING condition. CONCLUSIONS Our data support the hypothesis that temporal summation of nociceptive reflex responses is driven through a switch between activation and deactivation of a specific set of brain areas linked to the default mode network. This behaviour could be explained in view of the relevance of the pain processing induced by temporal summation, recognized as a more significant potential damaging condition with respect to a single, isolated, painful stimulation of comparable pain intensity. SIGNIFICANCE The study demonstrated that TST of the NWR involves a selective deactivation of PCC.
Collapse
Affiliation(s)
- A Perrotta
- IRCCS Neuromed, Pozzilli (Isernia), Italy
| | - P Chiacchiaretta
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti, Italy.,Institute for Advanced Biomedical Technologies (ITAB), University "G. d'Annunzio" of Chieti, Italy
| | | | - L Pavone
- IRCCS Neuromed, Pozzilli (Isernia), Italy
| | - G Grillea
- IRCCS Neuromed, Pozzilli (Isernia), Italy.,Department of Neurology and Psychiatry, "Sapienza" University of Rome, Italy
| | - M Bartolo
- IRCCS Neuromed, Pozzilli (Isernia), Italy
| | - E Siravo
- IRCCS Neuromed, Pozzilli (Isernia), Italy
| | - C Colonnese
- IRCCS Neuromed, Pozzilli (Isernia), Italy.,Department of Neurology and Psychiatry, "Sapienza" University of Rome, Italy
| | - R De Icco
- C. Mondino National Neurological Institute, Department of Brain and Behavioral Sciences, University of Pavia, Italy
| | - M Serrao
- Unit of Neurorehabilitation, Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, ICOT, Latina, Italy
| | - G Sandrini
- C. Mondino National Neurological Institute, Department of Brain and Behavioral Sciences, University of Pavia, Italy
| | - F Pierelli
- IRCCS Neuromed, Pozzilli (Isernia), Italy.,Unit of Neurorehabilitation, Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, ICOT, Latina, Italy
| | - A Ferretti
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti, Italy.,Institute for Advanced Biomedical Technologies (ITAB), University "G. d'Annunzio" of Chieti, Italy
| |
Collapse
|
235
|
Rasche D, Tronnier VM. Clinical Significance of Invasive Motor Cortex Stimulation for Trigeminal Facial Neuropathic Pain Syndromes. Neurosurgery 2016; 79:655-666. [DOI: 10.1227/neu.0000000000001353] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Abstract
BACKGROUND:
Invasive neuromodulation of the cortical surface for various chronic pain syndromes has been performed for >20 years. The significance of motor cortex stimulation (MCS) in chronic trigeminal neuropathic pain (TNP) syndromes remains unclear. Different techniques are performed worldwide in regard to operative procedure, stimulation parameters, test trials, and implanted materials.
OBJECTIVE:
To present the clinical experiences of a single center with MCS, surgical approach, complications, and follow-up as a prospective, noncontrolled clinical trial.
METHODS:
The implantation of epidural leads over the motor cortex was performed via a burr hole technique with neuronavigation and intraoperative neurostimulation. Special focus was placed on a standardized test trial with an external stimulation device and the implementation of a double-blinded or placebo test phase to identify false-positive responders.
RESULTS:
A total of 36 patients with TNP were operated on, and MCS was performed. In 26 of the 36 patients (72%), a significant pain reduction from a mean of 8.11 to 4.58 (on the visual analog scale) during the test trial was achieved (P <.05). Six patients were identified as false-positive responders (17%). At the last available follow-up of 26 patients (mean, 5.6 years), active MCS led to a significant pain reduction compared with the preoperative pain ratings (mean visual analog scale score, 5.01; P <.05).
CONCLUSION:
MCS is an additional therapeutic option for patients with refractory chronic TNP, and significant long-term pain suppression can be achieved. Placebo or double-blinded testing is mandatory.
Collapse
Affiliation(s)
- Dirk Rasche
- Department of Neurosurgery, University Hospital of Schleswig-Holstein, University of Lübeck, Lübeck, Germany
| | - Volker M. Tronnier
- Department of Neurosurgery, University Hospital of Schleswig-Holstein, University of Lübeck, Lübeck, Germany
| |
Collapse
|
236
|
Davis MT, Daniel TA, Witte TK, Beyers RJ, Willis JZ, Wang Y, Denney TS, Katz JS, Salibi N, Deshpande G. Demonstration and validation of a new pressure-based MRI-safe pain tolerance device. J Neurosci Methods 2016; 271:160-8. [PMID: 27378028 DOI: 10.1016/j.jneumeth.2016.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 06/29/2016] [Accepted: 07/01/2016] [Indexed: 11/24/2022]
Abstract
BACKGROUND One of the barriers to studying the behavioral and emotional effects of pain using functional Magnetic Resonance Imaging (fMRI) is the absence of a commercially available, MRI-compatible, pressure-based algometer to elicit pain. The present study sought to address this barrier through creation and validation of a novel MRI-safe apparatus capable of delivering incremental, measurable amounts of pressure inside a scanning bore. NEW METHOD We introduced an MR-safe device used to administer pressure-based pain. To test against a commercially available, MRI-incompatible algometer (AlgoMed), 199 participants reported their pain tolerance for both devices. A second experiment tested the validity of pressure-based pain in an MRI environment by comparing brain activation with established neural networks for pain. 10 participants performed an identical procedure to test for pain tolerance while being scanned in a 7T MRI scanner. RESULTS Results support the validity and reliability of our novel device. In Study 1, pain tolerance with this device was strongly correlated with pain tolerance as measured by a commercially available algometer (r=0.78). In Study 2, this device yielded BOLD activation within the insula (BA 13) and anterior cingulate gyrus (BA 24); as pressure increased, activation in these areas parametrically increased. COMPARISON WITH EXISTING METHOD These findings correspond to other studies using thermal, electrical, or mechanical pain applications. Behavioral and functional data demonstrate that this new device is a valid method of administering pressure-related pain in MRI environments. CONCLUSIONS Our novel MRI-safe device is a valid instrument to measure and administer pressure-based pain.
Collapse
Affiliation(s)
| | - Thomas A Daniel
- Department of Psychology, Auburn University, Auburn, AL, USA
| | - Tracy K Witte
- Department of Psychology, Auburn University, Auburn, AL, USA.
| | - Ronald J Beyers
- AU MRI Research Center, Department of Electrical Engineering, Auburn University, Auburn, AL, USA
| | - J Zachary Willis
- AU MRI Research Center, Department of Electrical Engineering, Auburn University, Auburn, AL, USA
| | - Yun Wang
- AU MRI Research Center, Department of Electrical Engineering, Auburn University, Auburn, AL, USA
| | - Thomas S Denney
- Department of Psychology, Auburn University, Auburn, AL, USA; AU MRI Research Center, Department of Electrical Engineering, Auburn University, Auburn, AL, USA; Alabama Advanced Imaging Consortium, Auburn University and University of Alabama Birmingham, AL, USA
| | - Jeffrey S Katz
- Department of Psychology, Auburn University, Auburn, AL, USA; AU MRI Research Center, Department of Electrical Engineering, Auburn University, Auburn, AL, USA; Alabama Advanced Imaging Consortium, Auburn University and University of Alabama Birmingham, AL, USA
| | - Nouha Salibi
- AU MRI Research Center, Department of Electrical Engineering, Auburn University, Auburn, AL, USA; MR R&D Siemens Healthcare, Malvern, PA, USA
| | - Gopikrishna Deshpande
- Department of Psychology, Auburn University, Auburn, AL, USA; AU MRI Research Center, Department of Electrical Engineering, Auburn University, Auburn, AL, USA; Alabama Advanced Imaging Consortium, Auburn University and University of Alabama Birmingham, AL, USA.
| |
Collapse
|
237
|
Krishnan A, Woo CW, Chang LJ, Ruzic L, Gu X, López-Solà M, Jackson PL, Pujol J, Fan J, Wager TD. Somatic and vicarious pain are represented by dissociable multivariate brain patterns. eLife 2016; 5. [PMID: 27296895 PMCID: PMC4907690 DOI: 10.7554/elife.15166] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 05/03/2016] [Indexed: 01/10/2023] Open
Abstract
Understanding how humans represent others' pain is critical for understanding pro-social behavior. 'Shared experience' theories propose common brain representations for somatic and vicarious pain, but other evidence suggests that specialized circuits are required to experience others' suffering. Combining functional neuroimaging with multivariate pattern analyses, we identified dissociable patterns that predicted somatic (high versus low: 100%) and vicarious (high versus low: 100%) pain intensity in out-of-sample individuals. Critically, each pattern was at chance in predicting the other experience, demonstrating separate modifiability of both patterns. Somatotopy (upper versus lower limb: 93% accuracy for both conditions) was also distinct, located in somatosensory versus mentalizing-related circuits for somatic and vicarious pain, respectively. Two additional studies demonstrated the generalizability of the somatic pain pattern (which was originally developed on thermal pain) to mechanical and electrical pain, and also demonstrated the replicability of the somatic/vicarious dissociation. These findings suggest possible mechanisms underlying limitations in feeling others' pain, and present new, more specific, brain targets for studying pain empathy.
Collapse
Affiliation(s)
- Anjali Krishnan
- Institute of Cognitive Science, University of Colorado Boulder, Boulder, United States.,Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, United States.,Department of Psychology, Brooklyn College of the City University of New York, Brooklyn, United States
| | - Choong-Wan Woo
- Institute of Cognitive Science, University of Colorado Boulder, Boulder, United States.,Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, United States
| | - Luke J Chang
- Institute of Cognitive Science, University of Colorado Boulder, Boulder, United States.,Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, United States.,Department of Psychological and Brain Sciences, Dartmouth College, Hanover, United States
| | - Luka Ruzic
- Institute of Cognitive Science, University of Colorado Boulder, Boulder, United States.,Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, United States.,Center for Cognitive Neuroscience, Duke University, Durham, United States
| | - Xiaosi Gu
- Wellcome Trust Centre for Neuroimaging, University College London, London, United Kingdom.,School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, United States
| | - Marina López-Solà
- Institute of Cognitive Science, University of Colorado Boulder, Boulder, United States.,Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, United States
| | | | - Jesús Pujol
- MRI Research Unit, Radiology Department, Hospital del Mar, CIBERSAM G21, Barcelona, Spain
| | - Jin Fan
- Department of Psychology, Queens College of the City University of New York, New York City, United States.,Department of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York City, United States
| | - Tor D Wager
- Institute of Cognitive Science, University of Colorado Boulder, Boulder, United States.,Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, United States
| |
Collapse
|
238
|
Martini M. Real, rubber or virtual: The vision of "one's own" body as a means for pain modulation. A narrative review. Conscious Cogn 2016; 43:143-51. [PMID: 27295559 DOI: 10.1016/j.concog.2016.06.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 05/24/2016] [Accepted: 06/03/2016] [Indexed: 12/30/2022]
Abstract
In the last few years a branch of pain research has been focussing on the modulatory effects of the vision of the body on pain perception. So, for instance, the vision of one's own real body has been proven to induce analgesic effects. On the other hand, bodily illusions such as the rubber hand illusion have provided new tools for the study of perceptual processes during altered body ownership states. Recently, new paradigms of body ownership made use of a technology that is going places both in clinical and in experimental settings, i.e. virtual reality. While the vision of one's own real body has been proven to yield compelling analgesic effects, slightly more controversial are those attributed to the vision of "owned" dummy bodies. This review will discuss the studies that examined the effects on pain perception of the vision of the own body, with or without body ownership illusions.
Collapse
Affiliation(s)
- Matteo Martini
- School of Psychology, University of East London, Water Lane, London E15 4LZ, UK.
| |
Collapse
|
239
|
Cirelli LK, Spinelli C, Nozaradan S, Trainor LJ. Measuring Neural Entrainment to Beat and Meter in Infants: Effects of Music Background. Front Neurosci 2016; 10:229. [PMID: 27252619 PMCID: PMC4877507 DOI: 10.3389/fnins.2016.00229] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 05/09/2016] [Indexed: 11/28/2022] Open
Abstract
Caregivers often engage in musical interactions with their infants. For example, parents across cultures sing lullabies and playsongs to their infants from birth. Behavioral studies indicate that infants not only extract beat information, but also group these beats into metrical hierarchies by as early as 6 months of age. However, it is not known how this is accomplished in the infant brain. An EEG frequency-tagging approach has been used successfully with adults to measure neural entrainment to auditory rhythms. The current study is the first to use this technique with infants in order to investigate how infants' brains encode rhythms. Furthermore, we examine how infant and parent music background is associated with individual differences in rhythm encoding. In Experiment 1, EEG was recorded while 7-month-old infants listened to an ambiguous rhythmic pattern that could be perceived to be in two different meters. In Experiment 2, EEG was recorded while 15-month-old infants listened to a rhythmic pattern with an unambiguous meter. In both age groups, information about music background (parent music training, infant music classes, hours of music listening) was collected. Both age groups showed clear EEG responses frequency-locked to the rhythms, at frequencies corresponding to both beat and meter. For the younger infants (Experiment 1), the amplitudes at duple meter frequencies were selectively enhanced for infants enrolled in music classes compared to those who had not engaged in such classes. For the older infants (Experiment 2), amplitudes at beat and meter frequencies were larger for infants with musically-trained compared to musically-untrained parents. These results suggest that the frequency-tagging method is sensitive to individual differences in beat and meter processing in infancy and could be used to track developmental changes.
Collapse
Affiliation(s)
- Laura K. Cirelli
- Department of Psychology, Neuroscience and Behaviour, McMaster UniversityHamilton, ON, Canada
| | - Christina Spinelli
- Department of Psychology, Neuroscience and Behaviour, McMaster UniversityHamilton, ON, Canada
| | - Sylvie Nozaradan
- MARCS Institute, Western Sydney UniversityMilperra, NSW, Australia
- Institute of Neuroscience, Université Catholique de LouvainLouvain-la-Neuve, Belgium
- BRAMS, Université de MontréalOutremont, QC, Canada
| | - Laurel J. Trainor
- Department of Psychology, Neuroscience and Behaviour, McMaster UniversityHamilton, ON, Canada
- McMaster Institute for Music and the Mind, McMaster UniversityHamilton, ON, Canada
- Rotman Research Institute, Baycrest HospitalToronto, ON, Canada
| |
Collapse
|
240
|
Mitsi V, Zachariou V. Modulation of pain, nociception, and analgesia by the brain reward center. Neuroscience 2016; 338:81-92. [PMID: 27189881 DOI: 10.1016/j.neuroscience.2016.05.017] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/26/2016] [Accepted: 05/05/2016] [Indexed: 02/06/2023]
Abstract
The midbrain dopamine center comprises a key network for reward, salience, motivation, and mood. Evidence from various clinical and preclinical settings points to the midbrain dopamine circuit as an important modulator of pain perception and pain-induced anxiety and depression. This review summarizes recent findings that shed light to the neuroanatomical, electrophysiological and molecular adaptations that chronic pain conditions promote in the mesolimbic dopamine system. Chronic pain states induce changes in neuronal plasticity and functional connectivity in several parts of the brain reward center, including nucleus accumbens, the ventral tegmental area and the prefrontal cortex. Here, we discuss recent findings on the mechanisms involved in the perception of chronic pain, in pain-induced anxiety and depression, as well as in pain-killer addiction vulnerability. Several new studies also show that the mesolimbic dopamine circuit potently modulates responsiveness to opioids and antidepressants used for the treatment of chronic pain. We discuss recent data supporting a role of the brain reward pathway in treatment efficacy and we summarize novel findings on intracellular adaptations in the brain reward circuit under chronic pain states.
Collapse
Affiliation(s)
- Vasiliki Mitsi
- Department of Basic Sciences, Faculty of Medicine, University of Crete, Heraklion, Crete 71003, Greece; Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Venetia Zachariou
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States.
| |
Collapse
|
241
|
Chatelle C, Thibaut A, Whyte J, De Val MD, Laureys S, Schnakers C. Pain issues in disorders of consciousness. Brain Inj 2016; 28:1202-8. [PMID: 25099024 DOI: 10.3109/02699052.2014.920518] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND The assessment of pain and nociception in non-communicative patients with disorders of consciousness (DOC) is a real challenge for clinicians. It is, therefore, important to develop sensitive standardized tools usable at the bedside. OBJECTIVES This review aims to provide an overview of the current knowledge about pain processing and assessment in patients with DOC. METHODS A search was performed on PubMed using MeSH terms including vegetative state, unresponsive wakefulness syndrome, minimally conscious state, consciousness disorders, pain, nociception, neuroimaging and pain assessment. RESULTS Neuroimaging studies investigating pain processing in patients with DOC and their implication for clinicians are reviewed. Current works on the development of standardized and sensitive tools for assessing nociception are described. CONCLUSION The suggested pain perception capacity highlighted by neuroimaging studies in patients in a MCS and in some patients in a VS/UWS supports the idea that these patients need analgesic treatment and monitoring. The first tool which has been developed to assess nociception and pain in patients with DOC is the NCS. Its revised version represents a rapid, standardized and sensitive scale which can be easily implemented in a clinical setting. Complementary pain assessments are also under validation in order to offer more options to clinicians.
Collapse
Affiliation(s)
- Camille Chatelle
- Coma Science Group, Cyclotron Research Centre, University of Liège , Liège , Belgium
| | | | | | | | | | | |
Collapse
|
242
|
Reinstatement of pain-related brain activation during the recognition of neutral images previously paired with nociceptive stimuli. Pain 2016; 156:1501-1510. [PMID: 25906345 DOI: 10.1097/j.pain.0000000000000194] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Remembering an event partially reactivates cortical and subcortical brain regions that were engaged during its experience and encoding. Such reinstatement of neuronal activation has been observed in different sensory systems, including the visual, auditory, olfactory, and somatosensory domain. However, so far, this phenomenon of incidental memory has not been explored in the context of pain. In this functional magnetic resonance imaging study, we investigated the neural reinstatement of pain-related and tone-related activations during the recognition of neutral images that had been encoded during (1) painful stimulation, (2) auditory stimulation of comparable unpleasantness, or (3) no additional stimulation. Stimulus-specific reinstatement was tested in 24 healthy male and female participants who performed a visual categorization task (encoding) that was immediately followed by a surprise recognition task. Neural responses were acquired in both sessions. Our data show a partial reinstatement of brain regions frequently associated with pain processing, including the left posterior insula, bilateral putamen, and right operculum, during the presentation of images previously paired with painful heat. This effect was specific to painful stimuli. Moreover, the bilateral ventral striatum showed stronger responses for remembered pain-associated images as compared with tone-associated images, suggesting a higher behavioral relevance of remembering neutral pictures previously paired with pain. Our results support the biological relevance of pain in that only painful but not equally unpleasant auditory stimuli were able to "tag" neutral images during their simultaneous presentation and reactivate pain-related brain regions. Such mechanisms might contribute to the development or maintenance of chronic pain and deserve further investigation in clinical populations.
Collapse
|
243
|
Abstract
PURPOSE OF REVIEW This article reviews the current state of knowledge in functional MRI (fMRI) research related to pain with primary focus on clinical studies. RECENT FINDINGS With fMRI, the subjective effects of pain (sensory, affect, emotion, and motor components) can be objectively imaged. Although the conventional fMRI technique has been the isolation of regions in the brain transmitting and modulating pain, functional connectivity measurement can identify functionally linked regions associated with pain processing. The primary and secondary somatosensory cortex (S1 and S2), anterior cingulate cortex (ACC), and insula are the four regions (part of pain matrix) consistently activated in pain states. Functional connectivity between the prefrontal cortex (PFC), ACC, and insula correlates well with clinical pain measures. The dorsal medial PFC to insula connectivity can identify patients prone to persistent back pain. Default mode network (DMN) to insula connectivity is associated with spontaneous pain in fibromyalgia patients. In addition, the DMN encompasses the PFC. Techniques for fMRI analysis, templates, and standards for identifying the functional networks in the brain are evolving continuously. The activation pattern with analgesic agents seems to be specific to the class of drugs. SUMMARY As we learn more about fMRI related to pain, functional connectivity patterns could emerge as biomarkers for specific pain conditions.
Collapse
|
244
|
Michail G, Dresel C, Witkovský V, Stankewitz A, Schulz E. Neuronal Oscillations in Various Frequency Bands Differ between Pain and Touch. Front Hum Neurosci 2016; 10:182. [PMID: 27199705 PMCID: PMC4850848 DOI: 10.3389/fnhum.2016.00182] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 04/11/2016] [Indexed: 12/19/2022] Open
Abstract
Although humans are generally capable of distinguishing single events of pain or touch, recent research suggested that both modalities activate a network of similar brain regions. By contrast, less attention has been paid to which processes uniquely contribute to each modality. The present study investigated the neuronal oscillations that enable a subject to process pain and touch as well as to evaluate the intensity of both modalities by means of Electroencephalography. Nineteen healthy subjects were asked to rate the intensity of each stimulus at single trial level. By computing Linear mixed effects models (LME) encoding of both modalities was explored by relating stimulus intensities to brain responses. While the intensity of single touch trials is encoded only by theta activity, pain perception is encoded by theta, alpha and gamma activity. Beta activity in the tactile domain shows an on/off like characteristic in response to touch which was not observed in the pain domain. Our results enhance recent findings pointing to the contribution of different neuronal oscillations to the processing of nociceptive and tactile stimuli.
Collapse
Affiliation(s)
- Georgios Michail
- Department of Neurology, Technische Universität MünchenMunich, Germany; TUM-Neuroimaging Center, Technische Universität MünchenMunich, Germany; Neurophysics Group, Department of Neurology, Charité-Universitätsmedizin BerlinBerlin, Germany
| | - Christian Dresel
- Department of Neurology, Technische Universität MünchenMunich, Germany; TUM-Neuroimaging Center, Technische Universität MünchenMunich, Germany
| | - Viktor Witkovský
- Department of Theoretical Methods, Institute of Measurement Science, Slovak Academy of Sciences Bratislava, Slovak Republic
| | - Anne Stankewitz
- Department of Neurology, Technische Universität München Munich, Germany
| | - Enrico Schulz
- Department of Neurology, Technische Universität MünchenMunich, Germany; TUM-Neuroimaging Center, Technische Universität MünchenMunich, Germany; Oxford Centre for Functional Magnetic Resonance Imaging of the Brain, Nuffield Department of Clinical Neurosciences, University of OxfordOxford, UK
| |
Collapse
|
245
|
Warbrick T, Fegers-Stollenwerk V, Maximov II, Grinberg F, Shah NJ. Using Structural and Functional Brain Imaging to Investigate Responses to Acute Thermal Pain. THE JOURNAL OF PAIN 2016; 17:836-44. [PMID: 27102895 DOI: 10.1016/j.jpain.2016.03.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 02/21/2016] [Accepted: 03/05/2016] [Indexed: 02/04/2023]
Abstract
UNLABELLED Despite a fundamental interest in the relationship between structure and function, the relationships between measures of white matter microstructural coherence and functional brain responses to pain are poorly understood. We investigated whether fractional anisotropy (FA) in 2 white matter regions in pathways associated with pain is related to the functional magnetic resonance imaging (fMRI) blood oxygen level-dependent (BOLD) response to thermal stimulation. BOLD fMRI was measured from 16 healthy male subjects during painful thermal stimulation of the right arm. Diffusion-weighted images were acquired for each subject and FA estimates were extracted from the posterior internal capsule and the cingulum (cingulate gyrus). These values were then included as covariates in the fMRI data analysis. We found BOLD response in the midcingulate cortex (MCC) to be positively related to FA in the posterior internal capsule and negatively related to FA in the cingulum. Our results suggest that the MCC's involvement in processing pain can be further delineated by considering how the magnitude of the BOLD response is related to white matter microstructural coherence and to subjective perception of pain. Considering relationships to white matter microstructural coherence in tracts involved in transmitting information to different parts of the pain network can help interpretation of MCC BOLD activation. PERSPECTIVE Relationships between functional brain responses, white matter microstructural coherence, and subjective ratings are crucial for understanding the role of the MCC in pain. These findings provide a basis for investigating the effect of the reduced white matter microstructural coherence observed in some pain disorders on the functional responses to pain.
Collapse
Affiliation(s)
- Tracy Warbrick
- Institute of Neuroscience and Medicine, Jülich, Germany.
| | | | | | - Farida Grinberg
- Institute of Neuroscience and Medicine, Jülich, Germany; Department of Neurology, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - N Jon Shah
- Institute of Neuroscience and Medicine, Jülich, Germany; Department of Neurology, Faculty of Medicine, RWTH Aachen University, Aachen, Germany; Jülich Aachen Research Alliance (JARA) - Translational Brain Medicine, Aachen and Jülich, Germany
| |
Collapse
|
246
|
Abstract
Nonopioid agents, such as nonsteroidal anti-inflammatory drugs (NSAIDs), are the most commonly used class of analgesics. Increasing evidence suggests that cyclooxygenase (COX) inhibition at both peripheral and central sites can contribute to the antihyperalgesic effects of NSAIDs, with the predominant clinical effect being mediated centrally. In this study, we examined the cerebral response to ibuprofen in presurgical and postsurgical states and looked at the analgesic interaction between surgical state and treatment. We used an established clinical pain model involving third molar extraction, and quantitative arterial spin labelling (ASL) imaging to measure changes in tonic/ongoing neural activity. Concurrent to the ASL scans, we presented visual analogue scales inside the scanner to evaluate the subjective experience of pain. This novel methodology was incorporated into a randomized double-blind placebo-controlled design, with an open method of drug administration. We found that independent of its antinociceptive action, ibuprofen has no effect on regional cerebral blood flow under pain-free conditions (presurgery). However, in the postsurgical state, we observed increased activation of top-down modulatory circuits, which was accompanied by decreases in the areas engaged because of ongoing pain. Our findings demonstrate that ibuprofen has a measurable analgesic response in the human brain, with the subjective effects of pain relief reflected in two distinct brain networks. The observed activation of descending modulatory circuits warrants further investigation, as this may provide new insights into the inhibitory mechanisms of analgesia that might be exploited to improve safety and efficacy in pain management.
Collapse
|
247
|
Betti V, Aglioti SM. Dynamic construction of the neural networks underpinning empathy for pain. Neurosci Biobehav Rev 2016; 63:191-206. [DOI: 10.1016/j.neubiorev.2016.02.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 02/08/2016] [Accepted: 02/09/2016] [Indexed: 12/19/2022]
|
248
|
Weiss T. Plasticity and Cortical Reorganization Associated With Pain. ZEITSCHRIFT FUR PSYCHOLOGIE-JOURNAL OF PSYCHOLOGY 2016. [DOI: 10.1027/2151-2604/a000241] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Abstract. This review focuses on plasticity and reorganization associated with pain. It is well established that noxious stimulation activates a large network of neural structures in the human brain, which is often denominated as the neuromatrix of pain. Repeated stimulation is able to induce plasticity in nearly all structures of this neuromatrix. While the plasticity to short-term stimulation is usually transient, long-term stimulation might induce persistent changes within the neuromatrix network and reorganize its functions and structures. Interestingly, a large longitudinal study on patients with subacute back pain found predictors for the persistence of pain versus remission in mesolimbic structures not usually included in the neuromatrix of pain. From these results, new concepts of nociception, pain, and transition from acute to chronic pain emerged. Overall, this review outlines a number of plastic changes in response to pain. However, the role of plasticity for chronic pain has still to be established.
Collapse
Affiliation(s)
- Thomas Weiss
- Department of Biological and Clinical Psychology, Friedrich Schiller University Jena, Germany
| |
Collapse
|
249
|
Cross-modal representations of first-hand and vicarious pain, disgust and fairness in insular and cingulate cortex. Nat Commun 2016; 7:10904. [PMID: 26988654 PMCID: PMC4802033 DOI: 10.1038/ncomms10904] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 02/01/2016] [Indexed: 12/18/2022] Open
Abstract
The anterior insula (AI) and mid-anterior cingulate cortex (mACC) have repeatedly been implicated in first-hand and vicarious experiences of pain, disgust and unfairness. However, it is debated whether these regions process different aversive events through a common modality-independent code, reflecting the shared unpleasantness of the experiences or through independent modality-specific representations. Using functional magnetic resonance imaging, we subjected 19 participants (and 19 confederates) to equally unpleasant painful and disgusting stimulations, as well as unfair monetary treatments. Multivoxel pattern analysis identified modality-independent activation maps in the left AI and mACC, pointing to common coding of affective unpleasantness, but also response patterns specific for the events' sensory properties and the person to whom it was addressed, particularly in the right AI. Our results provide evidence of both functional specialization and integration within AI and mACC, and support a comprehensive role of this network in processing aversive experiences for self and others.
Collapse
|
250
|
Sikandar S, Aasvang EK, Dickenson AH. Scratching the surface: the processing of pain from deep tissues. Pain Manag 2016; 6:95-102. [PMID: 26974398 DOI: 10.2217/pmt.15.50] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Although most pain research focuses on skin, muscles, joints and viscerae are major sources of pain. We discuss the mechanisms of deep pains arising from somatic and visceral structures and how this can lead to widespread manifestations and chronification. We include how both altered peripheral and central sensory neurotransmission lead to deep pain states and comment on key areas such as top-down modulation where little is known. It is vital that the clinical characterization of deep pain in patients is improved to allow for back translation to preclinical models so that the missing links can be ascertained. The contribution of deeper somatic and visceral tissues to various chronic pain syndromes is common but there is much we need to know.
Collapse
Affiliation(s)
- Shafaq Sikandar
- Department of Neuroscience, Physiology & Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Eske Kvanner Aasvang
- Section for Surgical Pathophysiology, Julianne Marie Centre, Rigshospitalet, Copenhagen University, Copenhagen 2100 KBH Ø, Denmark
| | - Anthony H Dickenson
- Department of Neuroscience, Physiology & Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| |
Collapse
|