201
|
Mapelli J, Gandolfi D, Vilella A, Zoli M, Bigiani A. Heterosynaptic GABAergic plasticity bidirectionally driven by the activity of pre- and postsynaptic NMDA receptors. Proc Natl Acad Sci U S A 2016; 113:9898-903. [PMID: 27531957 PMCID: PMC5024594 DOI: 10.1073/pnas.1601194113] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dynamic changes of the strength of inhibitory synapses play a crucial role in processing neural information and in balancing network activity. Here, we report that the efficacy of GABAergic connections between Golgi cells and granule cells in the cerebellum is persistently altered by the activity of glutamatergic synapses. This form of plasticity is heterosynaptic and is expressed as an increase (long-term potentiation, LTPGABA) or a decrease (long-term depression, LTDGABA) of neurotransmitter release. LTPGABA is induced by postsynaptic NMDA receptor activation, leading to calcium increase and retrograde diffusion of nitric oxide, whereas LTDGABA depends on presynaptic NMDA receptor opening. The sign of plasticity is determined by the activation state of target granule and Golgi cells during the induction processes. By controlling the timing of spikes emitted by granule cells, this form of bidirectional plasticity provides a dynamic control of the granular layer encoding capacity.
Collapse
Affiliation(s)
- Jonathan Mapelli
- Dipartimento di Scienze Biomediche, Metaboliche e Neuroscienze, Center for Neuroscience and Neurotechnology, Università di Modena e Reggio Emilia, 41125 Modena, Italy
| | - Daniela Gandolfi
- Dipartimento di Scienze Biomediche, Metaboliche e Neuroscienze, Center for Neuroscience and Neurotechnology, Università di Modena e Reggio Emilia, 41125 Modena, Italy
| | - Antonietta Vilella
- Dipartimento di Scienze Biomediche, Metaboliche e Neuroscienze, Center for Neuroscience and Neurotechnology, Università di Modena e Reggio Emilia, 41125 Modena, Italy
| | - Michele Zoli
- Dipartimento di Scienze Biomediche, Metaboliche e Neuroscienze, Center for Neuroscience and Neurotechnology, Università di Modena e Reggio Emilia, 41125 Modena, Italy
| | - Albertino Bigiani
- Dipartimento di Scienze Biomediche, Metaboliche e Neuroscienze, Center for Neuroscience and Neurotechnology, Università di Modena e Reggio Emilia, 41125 Modena, Italy
| |
Collapse
|
202
|
Insulin-Independent GABAA Receptor-Mediated Response in the Barrel Cortex of Mice with Impaired Met Activity. J Neurosci 2016; 36:3691-7. [PMID: 27030755 DOI: 10.1523/jneurosci.0006-16.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Accepted: 02/22/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Autism spectrum disorder (ASD) is a neurodevelopmental disorder caused by genetic variants, susceptibility alleles, and environmental perturbations. The autism associated geneMETtyrosine kinase has been implicated in many behavioral domains and endophenotypes of autism, including abnormal neural signaling in human sensory cortex. We investigated somatosensory thalamocortical synaptic communication in mice deficient in Met activity in cortical excitatory neurons to gain insights into aberrant somatosensation characteristic of ASD. The ratio of excitation to inhibition is dramatically increased due to decreased postsynaptic GABAAreceptor-mediated inhibition in the trigeminal thalamocortical pathway of mice lacking active Met in the cerebral cortex. Furthermore, in contrast to wild-type mice, insulin failed to increase GABAAreceptor-mediated response in the barrel cortex of mice with compromised Met signaling. Thus, lacking insulin effects may be a risk factor in ASD pathogenesis. SIGNIFICANCE STATEMENT A proposed common cause of neurodevelopmental disorders is an imbalance in excitatory neural transmission, provided by the glutamatergic neurons, and the inhibitory signals from the GABAergic interneurons. Many genes associated with autism spectrum disorders impair synaptic transmission in the expected cell type. Previously, inactivation of the autism-associated Met tyrosine kinase receptor in GABAergic interneurons led to decreased inhibition. In thus report, decreased Met signaling in glutamatergic neurons had no effect on excitation, but decimated inhibition. Further experiments indicate that loss of Met activity downregulates GABAAreceptors on glutamatergic neurons in an insulin independent manner. These data provide a new mechanism for the loss of inhibition and subsequent abnormal excitation/inhibition balance and potential molecular candidates for treatment or prevention.
Collapse
|
203
|
Hass CA, Glickfeld LL. High-fidelity optical excitation of cortico-cortical projections at physiological frequencies. J Neurophysiol 2016; 116:2056-2066. [PMID: 27489370 DOI: 10.1152/jn.00456.2016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 08/02/2016] [Indexed: 11/22/2022] Open
Abstract
Optogenetic activation of axons is a powerful approach for determining the synaptic properties and impact of long-range projections both in vivo and in vitro. However, because of the difficulty of measuring activity in axons, our knowledge of the reliability of optogenetic axonal stimulation has relied on data from somatic recordings. Yet, there are many reasons why activation of axons may not be comparable to cell bodies. Thus we have developed an approach to more directly assess the fidelity of optogenetic activation of axonal projections. We expressed opsins (ChR2, Chronos, or oChIEF) in the mouse primary visual cortex (V1) and recorded extracellular, pharmacologically isolated presynaptic action potentials in response to axonal activation in the higher visual areas. Repetitive stimulation of axons with ChR2 resulted in a 70% reduction in the fiber volley amplitude and a 60% increase in the latency at all frequencies tested (10-40 Hz). Thus ChR2 cannot reliably recruit axons during repetitive stimulation, even at frequencies that are reliable for somatic stimulation, likely due to pronounced channel inactivation at the high light powers required to evoke action potentials. By comparison, oChIEF and Chronos evoked photocurrents that inactivated minimally and could produce reliable axon stimulation at frequencies up to 60 Hz. Our approach provides a more direct and accurate evaluation of the efficacy of new optogenetic tools and has identified Chronos and oChIEF as viable tools to interrogate the synaptic and circuit function of long-range projections.
Collapse
Affiliation(s)
- Charles A Hass
- Department of Neurobiology, Duke University, Durham, North Carolina
| | | |
Collapse
|
204
|
Tao C, Zhang G, Zhou C, Wang L, Yan S, Zhang LI, Zhou Y, Xiong Y. Synaptic Basis for the Generation of Response Variation in Auditory Cortex. Sci Rep 2016; 6:31024. [PMID: 27484928 PMCID: PMC4971572 DOI: 10.1038/srep31024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 07/13/2016] [Indexed: 11/09/2022] Open
Abstract
Cortical neurons can exhibit significant variation in their responses to the same sensory stimuli, as reflected by the reliability and temporal precision of spikes. However the synaptic mechanism underlying response variation still remains unclear. Here, in vivo whole-cell patch-clamp recording of excitatory neurons revealed variation in the amplitudes as well as the temporal profiles of excitatory and inhibitory synaptic inputs evoked by the same sound stimuli in layer 4 of the rat primary auditory cortex. Synaptic inputs were reliably induced by repetitive stimulation, although with large variation in amplitude. The variation in the amplitude of excitation was much higher than that of inhibition. In addition, the temporal jitter of the synaptic onset latency was much smaller than the jitter of spike response. We further demonstrated that the amplitude variation of excitatory inputs can largely account for the spike variation, while the jitter in spike timing can be primarily attributed to the temporal variation of excitatory inputs. Furthermore, the spike reliability of excitatory but not inhibitory neurons is dependent on tone frequency. Our results thus revealed an inherent cortical synaptic contribution for the generation of variation in the spike responses of auditory cortical neurons.
Collapse
Affiliation(s)
- Can Tao
- Department of Neurobiology, College of Basic Medical Sciences, Third Military Medical University, 30 Gaotanyan St., Chongqing, 400038, China
| | - Guangwei Zhang
- Department of Neurobiology, College of Basic Medical Sciences, Third Military Medical University, 30 Gaotanyan St., Chongqing, 400038, China
| | - Chang Zhou
- Department of Neurobiology, College of Basic Medical Sciences, Third Military Medical University, 30 Gaotanyan St., Chongqing, 400038, China
| | - Lijuan Wang
- Department of Neurobiology, College of Basic Medical Sciences, Third Military Medical University, 30 Gaotanyan St., Chongqing, 400038, China
| | - Sumei Yan
- Department of Neurobiology, College of Basic Medical Sciences, Third Military Medical University, 30 Gaotanyan St., Chongqing, 400038, China
| | - Li I Zhang
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA
| | - Yi Zhou
- Department of Neurobiology, College of Basic Medical Sciences, Third Military Medical University, 30 Gaotanyan St., Chongqing, 400038, China
| | - Ying Xiong
- Department of Neurobiology, College of Basic Medical Sciences, Third Military Medical University, 30 Gaotanyan St., Chongqing, 400038, China
| |
Collapse
|
205
|
Abstract
The cortex connects to the thalamus via extensive corticothalamic (CT) pathways, but their function in vivo is not well understood. We investigated "top-down" signaling from cortex to thalamus via the cortical layer 5B (L5B) to posterior medial nucleus (POm) pathway in the whisker system of the anesthetized mouse. While L5B CT inputs to POm are extremely strong in vitro, ongoing activity of L5 neurons in vivo might tonically depress these inputs and thereby block CT spike transfer. We find robust transfer of spikes from the cortex to the thalamus, mediated by few L5B-POm synapses. However, the gain of this pathway is not constant but instead is controlled by global cortical Up and Down states. We characterized in vivo CT spike transfer by analyzing unitary PSPs and found that a minority of PSPs drove POm spikes when CT gain peaked at the beginning of Up states. CT gain declined sharply during Up states due to frequency-dependent adaptation, resulting in periodic high gain-low gain oscillations. We estimate that POm neurons receive few (2-3) active L5B inputs. Thus, the L5B-POm pathway strongly amplifies the output of a few L5B neurons and locks thalamic POm sub-and suprathreshold activity to cortical L5B spiking.
Collapse
Affiliation(s)
- Rebecca A. Mease
- Institute for Neuroscience of the Technische Universität München, 80802 Munich, Germany
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Anton Sumser
- Institute for Neuroscience of the Technische Universität München, 80802 Munich, Germany
| | - Bert Sakmann
- Institute for Neuroscience of the Technische Universität München, 80802 Munich, Germany
- Max Planck Institute for Neurobiology, 82152 Martinsried, Germany
| | - Alexander Groh
- Institute for Neuroscience of the Technische Universität München, 80802 Munich, Germany
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| |
Collapse
|
206
|
Morgenstern NA, Bourg J, Petreanu L. Multilaminar networks of cortical neurons integrate common inputs from sensory thalamus. Nat Neurosci 2016; 19:1034-40. [PMID: 27376765 DOI: 10.1038/nn.4339] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 05/26/2016] [Indexed: 12/12/2022]
Abstract
Neurons in the thalamorecipient layers of sensory cortices integrate thalamic and recurrent cortical input. Cortical neurons form fine-scale, functionally cotuned networks, but whether interconnected cortical neurons within a column process common thalamocortical inputs is unknown. We tested how local and thalamocortical connectivity relate to each other by analyzing cofluctuations of evoked responses in cortical neurons after photostimulation of thalamocortical axons. We found that connected pairs of pyramidal neurons in layer (L) 4 of mouse visual cortex share more inputs from the dorsal lateral geniculate nucleus than nonconnected pairs. Vertically aligned connected pairs of L4 and L2/3 neurons were also preferentially contacted by the same thalamocortical axons. Our results provide a circuit mechanism for the observed amplification of sensory responses by L4 circuits. They also show that sensory information is concurrently processed in L4 and L2/3 by columnar networks of interconnected neurons contacted by the same thalamocortical axons.
Collapse
Affiliation(s)
- Nicolás A Morgenstern
- Champalimaud Neuroscience Programme, Champalimaud Center for the Unknown, Lisbon, Portugal
| | - Jacques Bourg
- Champalimaud Neuroscience Programme, Champalimaud Center for the Unknown, Lisbon, Portugal
| | - Leopoldo Petreanu
- Champalimaud Neuroscience Programme, Champalimaud Center for the Unknown, Lisbon, Portugal
| |
Collapse
|
207
|
Unichenko P, Kirischuk S, Yang JW, Baumgart J, Roskoden T, Schneider P, Sommer A, Horta G, Radyushkin K, Nitsch R, Vogt J, Luhmann HJ. Plasticity-Related Gene 1 Affects Mouse Barrel Cortex Function via Strengthening of Glutamatergic Thalamocortical Transmission. Cereb Cortex 2016; 26:3260-72. [PMID: 26980613 PMCID: PMC4898676 DOI: 10.1093/cercor/bhw066] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Plasticity-related gene-1 (PRG-1) is a brain-specific protein that modulates glutamatergic synaptic transmission. Here we investigated the functional role of PRG-1 in adolescent and adult mouse barrel cortex both in vitro and in vivo. Compared with wild-type (WT) animals, PRG-1-deficient (KO) mice showed specific behavioral deficits in tests assessing sensorimotor integration and whisker-based sensory discrimination as shown in the beam balance/walking test and sandpaper tactile discrimination test, respectively. At P25-31, spontaneous network activity in the barrel cortex in vivo was higher in KO mice compared with WT littermates, but not at P16-19. At P16-19, sensory evoked cortical responses in vivo elicited by single whisker stimulation were comparable in KO and WT mice. In contrast, at P25-31 evoked responses were smaller in amplitude and longer in duration in WT animals, whereas KO mice revealed no such developmental changes. In thalamocortical slices from KO mice, spontaneous activity was increased already at P16-19, and glutamatergic thalamocortical inputs to Layer 4 spiny stellate neurons were potentiated. We conclude that genetic ablation of PRG-1 modulates already at P16-19 spontaneous and evoked excitability of the barrel cortex, including enhancement of thalamocortical glutamatergic inputs to Layer 4, which distorts sensory processing in adulthood.
Collapse
Affiliation(s)
- Petr Unichenko
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, D-55128 Mainz, Germany
| | - Sergei Kirischuk
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, D-55128 Mainz, Germany
| | - Jenq-Wei Yang
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, D-55128 Mainz, Germany
| | - Jan Baumgart
- Institute for Microanatomy and Neurobiology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstrasse 1, Building 708, D-55131 Mainz, Germany
| | - Thomas Roskoden
- Institute of Anatomy, Otto-von-Guericke-University of Magdeburg, Leipziger Str. 44, D-39120 Magdeburg, Germany
| | - Patrick Schneider
- Institute of Anatomy, Otto-von-Guericke-University of Magdeburg, Leipziger Str. 44, D-39120 Magdeburg, Germany
| | - Angela Sommer
- Institute of Anatomy, Otto-von-Guericke-University of Magdeburg, Leipziger Str. 44, D-39120 Magdeburg, Germany
| | - Guilherme Horta
- Institute for Microanatomy and Neurobiology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstrasse 1, Building 708, D-55131 Mainz, Germany
| | - Konstantin Radyushkin
- Focus Program Translational Neuroscience, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Robert Nitsch
- Institute for Microanatomy and Neurobiology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstrasse 1, Building 708, D-55131 Mainz, Germany
| | - Johannes Vogt
- Institute for Microanatomy and Neurobiology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstrasse 1, Building 708, D-55131 Mainz, Germany
| | - Heiko J. Luhmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, D-55128 Mainz, Germany
| |
Collapse
|
208
|
Tuncdemir SN, Wamsley B, Stam FJ, Osakada F, Goulding M, Callaway EM, Rudy B, Fishell G. Early Somatostatin Interneuron Connectivity Mediates the Maturation of Deep Layer Cortical Circuits. Neuron 2016; 89:521-35. [PMID: 26844832 DOI: 10.1016/j.neuron.2015.11.020] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 08/21/2015] [Accepted: 10/28/2015] [Indexed: 01/13/2023]
Abstract
The precise connectivity of somatostatin and parvalbumin cortical interneurons is generated during development. An understanding of how these interneuron classes incorporate into cortical circuitry is incomplete but essential to elucidate the roles they play during maturation. Here, we report that somatostatin interneurons in infragranular layers receive dense but transient innervation from thalamocortical afferents during the first postnatal week. During this period, parvalbumin interneurons and pyramidal neurons within the same layers receive weaker thalamocortical inputs, yet are strongly innervated by somatostatin interneurons. Further, upon disruption of the early (but not late) somatostatin interneuron network, the synaptic maturation of thalamocortical inputs onto parvalbumin interneurons is perturbed. These results suggest that infragranular somatostatin interneurons exhibit a transient early synaptic connectivity that is essential for the establishment of thalamic feedforward inhibition mediated by parvalbumin interneurons.
Collapse
Affiliation(s)
- Sebnem N Tuncdemir
- NYU Neuroscience Institute and the Department of Neuroscience and Physiology, Smilow Research Center, New York University School of Medicine, 522 First Avenue, New York, NY 10016, USA
| | - Brie Wamsley
- NYU Neuroscience Institute and the Department of Neuroscience and Physiology, Smilow Research Center, New York University School of Medicine, 522 First Avenue, New York, NY 10016, USA
| | - Floor J Stam
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Fumitaka Osakada
- Systems Neurobiology Laboratories, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Martyn Goulding
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Edward M Callaway
- Systems Neurobiology Laboratories, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Bernardo Rudy
- NYU Neuroscience Institute and the Department of Neuroscience and Physiology, Smilow Research Center, New York University School of Medicine, 522 First Avenue, New York, NY 10016, USA
| | - Gord Fishell
- NYU Neuroscience Institute and the Department of Neuroscience and Physiology, Smilow Research Center, New York University School of Medicine, 522 First Avenue, New York, NY 10016, USA.
| |
Collapse
|
209
|
Butts DA, Cui Y, Casti ARR. Nonlinear computations shaping temporal processing of precortical vision. J Neurophysiol 2016; 116:1344-57. [PMID: 27334959 DOI: 10.1152/jn.00878.2015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 06/17/2016] [Indexed: 11/22/2022] Open
Abstract
Computations performed by the visual pathway are constructed by neural circuits distributed over multiple stages of processing, and thus it is challenging to determine how different stages contribute on the basis of recordings from single areas. In the current article, we address this problem in the lateral geniculate nucleus (LGN), using experiments combined with nonlinear modeling capable of isolating various circuit contributions. We recorded cat LGN neurons presented with temporally modulated spots of various sizes, which drove temporally precise LGN responses. We utilized simultaneously recorded S-potentials, corresponding to the primary retinal ganglion cell (RGC) input to each LGN cell, to distinguish the computations underlying temporal precision in the retina from those in the LGN. Nonlinear models with excitatory and delayed suppressive terms were sufficient to explain temporal precision in the LGN, and we found that models of the S-potentials were nearly identical, although with a lower threshold. To determine whether additional influences shaped the response at the level of the LGN, we extended this model to use the S-potential input in combination with stimulus-driven terms to predict the LGN response. We found that the S-potential input "explained away" the major excitatory and delayed suppressive terms responsible for temporal patterning of LGN spike trains but revealed additional contributions, largely PULL suppression, to the LGN response. Using this novel combination of recordings and modeling, we were thus able to dissect multiple circuit contributions to LGN temporal responses across retina and LGN, and set the foundation for targeted study of each stage.
Collapse
Affiliation(s)
- Daniel A Butts
- Department of Biology and Program in Neuroscience and Cognitive Science, University of Maryland, College Park, Maryland; and
| | - Yuwei Cui
- Department of Biology and Program in Neuroscience and Cognitive Science, University of Maryland, College Park, Maryland; and
| | - Alexander R R Casti
- Department of Mathematics, Gildart-Haase School of Engineering and Computer Sciences, Fairleigh Dickinson University, Teaneck, New Jersey
| |
Collapse
|
210
|
He HY, Shen W, Hiramoto M, Cline HT. Experience-Dependent Bimodal Plasticity of Inhibitory Neurons in Early Development. Neuron 2016; 90:1203-1214. [PMID: 27238867 DOI: 10.1016/j.neuron.2016.04.044] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 03/11/2016] [Accepted: 04/14/2016] [Indexed: 02/09/2023]
Abstract
Inhibitory neurons are heterogeneous in the mature brain. It is unclear when and how inhibitory neurons express distinct structural and functional profiles. Using in vivo time-lapse imaging of tectal neuron structure and visually evoked Ca(2+) responses in tadpoles, we found that inhibitory neurons cluster into two groups with opposite valence of plasticity after 4 hr of dark and visual stimulation. Half decreased dendritic arbor size and Ca(2+) responses after dark and increased them after visual stimulation, matching plasticity in excitatory neurons. Half increased dendrite arbor size and Ca(2+) responses following dark and decreased them after stimulation. At the circuit level, visually evoked excitatory and inhibitory synaptic inputs were potentiated by visual experience and E/I remained constant. Our results indicate that developing inhibitory neurons fall into distinct functional groups with opposite experience-dependent plasticity and as such, are well positioned to foster experience-dependent synaptic plasticity and maintain circuit stability during labile periods of circuit development.
Collapse
Affiliation(s)
- Hai-Yan He
- The Dorris Neuroscience Center, Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Wanhua Shen
- Key Lab of Organ Development and Regeneration of Zhejiang Province, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China
| | - Masaki Hiramoto
- The Dorris Neuroscience Center, Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Hollis T Cline
- The Dorris Neuroscience Center, Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
211
|
Perisse E, Owald D, Barnstedt O, Talbot CB, Huetteroth W, Waddell S. Aversive Learning and Appetitive Motivation Toggle Feed-Forward Inhibition in the Drosophila Mushroom Body. Neuron 2016; 90:1086-99. [PMID: 27210550 PMCID: PMC4893166 DOI: 10.1016/j.neuron.2016.04.034] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 03/27/2016] [Accepted: 04/19/2016] [Indexed: 11/23/2022]
Abstract
In Drosophila, negatively reinforcing dopaminergic neurons also provide the inhibitory control of satiety over appetitive memory expression. Here we show that aversive learning causes a persistent depression of the conditioned odor drive to two downstream feed-forward inhibitory GABAergic interneurons of the mushroom body, called MVP2, or mushroom body output neuron (MBON)-γ1pedc>α/β. However, MVP2 neuron output is only essential for expression of short-term aversive memory. Stimulating MVP2 neurons preferentially inhibits the odor-evoked activity of avoidance-directing MBONs and odor-driven avoidance behavior, whereas their inhibition enhances odor avoidance. In contrast, odor-evoked activity of MVP2 neurons is elevated in hungry flies, and their feed-forward inhibition is required for expression of appetitive memory at all times. Moreover, imposing MVP2 activity promotes inappropriate appetitive memory expression in food-satiated flies. Aversive learning and appetitive motivation therefore toggle alternate modes of a common feed-forward inhibitory MVP2 pathway to promote conditioned odor avoidance or approach. Aversive learning reduces odor-specific feed-forward inhibition in mushroom body Feed-forward inhibition selectively inhibits avoidance-directing neural pathways Appetitive motivation increases feed-forward inhibition in the mushroom body Imposing feed-forward inhibition favors appetitive memory expression
Collapse
Affiliation(s)
- Emmanuel Perisse
- Centre for Neural Circuits and Behaviour, The University of Oxford, Tinsley Building, Mansfield Road, Oxford, OX1 3SR, UK
| | - David Owald
- Centre for Neural Circuits and Behaviour, The University of Oxford, Tinsley Building, Mansfield Road, Oxford, OX1 3SR, UK
| | - Oliver Barnstedt
- Centre for Neural Circuits and Behaviour, The University of Oxford, Tinsley Building, Mansfield Road, Oxford, OX1 3SR, UK
| | - Clifford B Talbot
- Centre for Neural Circuits and Behaviour, The University of Oxford, Tinsley Building, Mansfield Road, Oxford, OX1 3SR, UK
| | - Wolf Huetteroth
- Centre for Neural Circuits and Behaviour, The University of Oxford, Tinsley Building, Mansfield Road, Oxford, OX1 3SR, UK
| | - Scott Waddell
- Centre for Neural Circuits and Behaviour, The University of Oxford, Tinsley Building, Mansfield Road, Oxford, OX1 3SR, UK.
| |
Collapse
|
212
|
Treviño M. Inhibition Controls Asynchronous States of Neuronal Networks. Front Synaptic Neurosci 2016; 8:11. [PMID: 27274721 PMCID: PMC4886282 DOI: 10.3389/fnsyn.2016.00011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 04/29/2016] [Indexed: 01/11/2023] Open
Abstract
Computations in cortical circuits require action potentials from excitatory and inhibitory neurons. In this mini-review, I first provide a quick overview of findings that indicate that GABAergic neurons play a fundamental role in coordinating spikes and generating synchronized network activity. Next, I argue that these observations helped popularize the notion that network oscillations require a high degree of spike correlations among interneurons which, in turn, produce synchronous inhibition of the local microcircuit. The aim of this text is to discuss some recent experimental and computational findings that support a complementary view: one in which interneurons participate actively in producing asynchronous states in cortical networks. This requires a proper mixture of shared excitation and inhibition leading to asynchronous activity between neighboring cells. Such contribution from interneurons would be extremely important because it would tend to reduce the spike correlation between neighboring pyramidal cells, a drop in redundancy that could enhance the information-processing capacity of neural networks.
Collapse
Affiliation(s)
- Mario Treviño
- Instituto de Neurociencias, Universidad de Guadalajara Guadalajara, Mexico
| |
Collapse
|
213
|
Ramamurthy DL, Krubitzer LA. The evolution of whisker-mediated somatosensation in mammals: Sensory processing in barrelless S1 cortex of a marsupial, Monodelphis domestica. J Comp Neurol 2016; 524:3587-3613. [PMID: 27098555 DOI: 10.1002/cne.24018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 04/13/2016] [Accepted: 04/13/2016] [Indexed: 11/06/2022]
Abstract
Movable tactile sensors in the form of whiskers are present in most mammals, but sensory coding in the cortical whisker representation has been studied almost exclusively in mice and rats. Many species that possess whiskers lack the modular "barrel" organization found in the primary somatosensory cortex (S1) of mice and rats, but it is unclear how whisker-related input is represented in these species. We used single-unit extracellular recording techniques to characterize receptive fields and response properties in S1 of Monodelphis domestica (short-tailed opossum), a nocturnal, terrestrial marsupial that shared its last common ancestor with placental mammals over 160 million years ago. Short-tailed opossums lack barrels and septa in S1 but show active whisking behavior similar to that of mice and rats. Most neurons in short-tailed opossum S1 exhibited multiwhisker receptive fields, including a single best whisker (BW) and lower magnitude responses to the deflection of surrounding whiskers. Mean tuning width was similar to that reported for mice and rats. Both symmetrical and asymmetrical receptive fields were present. Neurons tuned to ventral whiskers tended to show broad tuning along the rostrocaudal axis. Thus, despite the absence of barrels, most receptive field properties were similar to those reported for mice and rats. However, unlike those species, S1 neuronal responses to BW and surround whisker deflection showed comparable latencies in short-tailed opossums. This dissimilarity suggests that some aspects of barrel cortex function may not generalize to tactile processing across mammalian species and may be related to differences in the architecture of the whisker-to-cortex pathway. J. Comp. Neurol. 524:3587-3613, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Deepa L Ramamurthy
- Center for Neuroscience, University of California, Davis, Davis, California, 95618
| | - Leah A Krubitzer
- Center for Neuroscience, University of California, Davis, Davis, California, 95618.
| |
Collapse
|
214
|
Naka A, Adesnik H. Inhibitory Circuits in Cortical Layer 5. Front Neural Circuits 2016; 10:35. [PMID: 27199675 PMCID: PMC4859073 DOI: 10.3389/fncir.2016.00035] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 04/18/2016] [Indexed: 01/19/2023] Open
Abstract
Inhibitory neurons play a fundamental role in cortical computation and behavior. Recent technological advances, such as two photon imaging, targeted in vivo recording, and molecular profiling, have improved our understanding of the function and diversity of cortical interneurons, but for technical reasons most work has been directed towards inhibitory neurons in the superficial cortical layers. Here we review current knowledge specifically on layer 5 (L5) inhibitory microcircuits, which play a critical role in controlling cortical output. We focus on recent work from the well-studied rodent barrel cortex, but also draw on evidence from studies in primary visual cortex and other cortical areas. The diversity of both deep inhibitory neurons and their pyramidal cell targets make this a challenging but essential area of study in cortical computation and sensory processing.
Collapse
Affiliation(s)
- Alexander Naka
- The Helen Wills Neuroscience Institute, University of California Berkeley Berkeley, CA, USA
| | - Hillel Adesnik
- The Helen Wills Neuroscience Institute, University of California BerkeleyBerkeley, CA, USA; Department of Molecular and Cell Biology, University of California BerkeleyBerkeley, CA, USA
| |
Collapse
|
215
|
Wilmes KA, Sprekeler H, Schreiber S. Inhibition as a Binary Switch for Excitatory Plasticity in Pyramidal Neurons. PLoS Comput Biol 2016; 12:e1004768. [PMID: 27003565 PMCID: PMC4803338 DOI: 10.1371/journal.pcbi.1004768] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 01/21/2016] [Indexed: 11/19/2022] Open
Abstract
Synaptic plasticity is thought to induce memory traces in the brain that are the foundation of learning. To ensure the stability of these traces in the presence of further learning, however, a regulation of plasticity appears beneficial. Here, we take up the recent suggestion that dendritic inhibition can switch plasticity of excitatory synapses on and off by gating backpropagating action potentials (bAPs) and calcium spikes, i.e., by gating the coincidence signals required for Hebbian forms of plasticity. We analyze temporal and spatial constraints of such a gating and investigate whether it is possible to suppress bAPs without a simultaneous annihilation of the forward-directed information flow via excitatory postsynaptic potentials (EPSPs). In a computational analysis of conductance-based multi-compartmental models, we demonstrate that a robust control of bAPs and calcium spikes is possible in an all-or-none manner, enabling a binary switch of coincidence signals and plasticity. The position of inhibitory synapses on the dendritic tree determines the spatial extent of the effect and allows a pathway-specific regulation of plasticity. With appropriate timing, EPSPs can still trigger somatic action potentials, although backpropagating signals are abolished. An annihilation of bAPs requires precisely timed inhibition, while the timing constraints are less stringent for distal calcium spikes. We further show that a wide-spread motif of local circuits—feedforward inhibition—is well suited to provide the temporal precision needed for the control of bAPs. Altogether, our model provides experimentally testable predictions and demonstrates that the inhibitory switch of plasticity can be a robust and attractive mechanism, hence assigning an additional function to the inhibitory elements of neuronal microcircuits beyond modulation of excitability. We must constantly learn in order to meet the demands of a dynamically changing environment. The basis of learning is believed to be synaptic plasticity, i.e. the potential of neuronal connections to change. Depending on context, however, it may be either useful to learn and modify connections or, alternatively, to keep an established network structure stable to maintain what has been already learned (also referred to as the plasticity-stability dilemma). The ability to switch synaptic plasticity on and off in a flexible way hence constitutes an attractive feature of neuronal processing. Here, we analyze a cellular mechanism based on the inhibition-mediated gating of coincidence signals required for Hebbian forms of excitatory synaptic plasticity. While experimental evidence in support of individual steps involved in this mechanism is accumulating, it is as of now unclear whether this mechanism can indeed operate robustly under physiologically realistic parameters of pyramidal cells, in particular, without impairing information flow in these cells altogether. Computational modeling allows us to demonstrate that this is indeed possible if inhibition is well timed (on the order of 1 ms). Moreover, we show that a specific design of the local circuit can ensure the necessary timing.
Collapse
Affiliation(s)
- Katharina A. Wilmes
- Department of Biology, Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience, Berlin, Germany
| | - Henning Sprekeler
- Bernstein Center for Computational Neuroscience, Berlin, Germany
- Technische Universität Berlin, Berlin, Germany
| | - Susanne Schreiber
- Department of Biology, Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience, Berlin, Germany
- * E-mail:
| |
Collapse
|
216
|
Biophysical constraints of optogenetic inhibition at presynaptic terminals. Nat Neurosci 2016; 19:554-6. [PMID: 26950004 PMCID: PMC4926958 DOI: 10.1038/nn.4266] [Citation(s) in RCA: 242] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 02/09/2016] [Indexed: 12/11/2022]
Abstract
We investigated the efficacy of optogenetic inhibition at presynaptic terminals using halorhodopsin, archaerhodopsin and chloride-conducting channelrhodopsins. Precisely timed activation of both archaerhodopsin and halorhodpsin at presynaptic terminals attenuated evoked release. However, sustained archaerhodopsin activation was paradoxically associated with increased spontaneous release. Activation of chloride-conducting channelrhodopsins triggered neurotransmitter release upon light onset. Our results indicate that the biophysical properties of presynaptic terminals dictate unique boundary conditions for optogenetic manipulation.
Collapse
|
217
|
Ferrati G, Martini FJ, Maravall M. Presynaptic Adenosine Receptor-Mediated Regulation of Diverse Thalamocortical Short-Term Plasticity in the Mouse Whisker Pathway. Front Neural Circuits 2016; 10:9. [PMID: 26941610 PMCID: PMC4763074 DOI: 10.3389/fncir.2016.00009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 02/05/2016] [Indexed: 12/27/2022] Open
Abstract
Short-term synaptic plasticity (STP) sets the sensitivity of a synapse to incoming activity and determines the temporal patterns that it best transmits. In “driver” thalamocortical (TC) synaptic populations, STP is dominated by depression during stimulation from rest. However, during ongoing stimulation, lemniscal TC connections onto layer 4 neurons in mouse barrel cortex express variable STP. Each synapse responds to input trains with a distinct pattern of depression or facilitation around its mean steady-state response. As a result, in common with other synaptic populations, lemniscal TC synapses express diverse rather than uniform dynamics, allowing for a rich representation of temporally varying stimuli. Here, we show that this STP diversity is regulated presynaptically. Presynaptic adenosine receptors of the A1R type, but not kainate receptors (KARs), modulate STP behavior. Blocking the receptors does not eliminate diversity, indicating that diversity is related to heterogeneous expression of multiple mechanisms in the pathway from presynaptic calcium influx to neurotransmitter release.
Collapse
Affiliation(s)
- Giovanni Ferrati
- Instituto de Neurociencias de Alicante UMH-CSIC Sant Joan d'Alacant, Spain
| | | | - Miguel Maravall
- Instituto de Neurociencias de Alicante UMH-CSICSant Joan d'Alacant, Spain; School of Life Sciences, Sussex Neuroscience, University of SussexBrighton, UK
| |
Collapse
|
218
|
Qi HX, Reed JL, Franca JG, Jain N, Kajikawa Y, Kaas JH. Chronic recordings reveal tactile stimuli can suppress spontaneous activity of neurons in somatosensory cortex of awake and anesthetized primates. J Neurophysiol 2016; 115:2105-23. [PMID: 26912593 DOI: 10.1152/jn.00634.2015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 02/19/2016] [Indexed: 01/05/2023] Open
Abstract
In somatosensory cortex, tactile stimulation within the neuronal receptive field (RF) typically evokes a transient excitatory response with or without postexcitatory inhibition. Here, we describe neuronal responses in which stimulation on the hand is followed by suppression of the ongoing discharge. With the use of 16-channel microelectrode arrays implanted in the hand representation of primary somatosensory cortex of New World monkeys and prosimian galagos, we recorded neuronal responses from single units and neuron clusters. In 66% of our sample, neuron activity tended to display suppression of firing when regions of skin outside of the excitatory RF were stimulated. In a small proportion of neurons, single-site indentations suppressed firing without initial increases in response to any of the tested sites on the hand. Latencies of suppressive responses to skin indentation (usually 12-34 ms) were similar to excitatory response latencies. The duration of inhibition varied across neurons. Although most observations were from anesthetized animals, we also found similar neuron response properties in one awake galago. Notably, suppression of ongoing neuronal activity did not require conditioning stimuli or multi-site stimulation. The suppressive effects were generally seen following single-site skin indentations outside of the neuron's minimal RF and typically on different digits and palm pads, which have not often been studied in this context. Overall, the characteristics of widespread suppressive or inhibitory response properties with and without initial facilitative or excitatory responses add to the growing evidence that neurons in primary somatosensory cortex provide essential processing for integrating sensory stimulation from across the hand.
Collapse
Affiliation(s)
- Hui-Xin Qi
- Department of Psychology, Vanderbilt University, Nashville, Tennessee; and
| | - Jamie L Reed
- Department of Psychology, Vanderbilt University, Nashville, Tennessee; and
| | - Joao G Franca
- Department of Psychology, Vanderbilt University, Nashville, Tennessee; and Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Neeraj Jain
- Department of Psychology, Vanderbilt University, Nashville, Tennessee; and
| | - Yoshinao Kajikawa
- Department of Psychology, Vanderbilt University, Nashville, Tennessee; and
| | - Jon H Kaas
- Department of Psychology, Vanderbilt University, Nashville, Tennessee; and
| |
Collapse
|
219
|
Balanced feedforward inhibition and dominant recurrent inhibition in olfactory cortex. Proc Natl Acad Sci U S A 2016; 113:2276-81. [PMID: 26858458 DOI: 10.1073/pnas.1519295113] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Throughout the brain, the recruitment of feedforward and recurrent inhibition shapes neural responses. However, disentangling the relative contributions of these often-overlapping cortical circuits is challenging. The piriform cortex provides an ideal system to address this issue because the interneurons responsible for feedforward and recurrent inhibition are anatomically segregated in layer (L) 1 and L2/3 respectively. Here we use a combination of optical and electrical activation of interneurons to profile the inhibitory input received by three classes of principal excitatory neuron in the anterior piriform cortex. In all classes, we find that L1 interneurons provide weaker inhibition than L2/3 interneurons. Nonetheless, feedforward inhibitory strength covaries with the amount of afferent excitation received by each class of principal neuron. In contrast, intracortical stimulation of L2/3 evokes strong inhibition that dominates recurrent excitation in all classes. Finally, we find that the relative contributions of feedforward and recurrent pathways differ between principal neuron classes. Specifically, L2 neurons receive more reliable afferent drive and less overall inhibition than L3 neurons. Alternatively, L3 neurons receive substantially more intracortical inhibition. These three features--balanced afferent drive, dominant recurrent inhibition, and differential recruitment by afferent vs. intracortical circuits, dependent on cell class--suggest mechanisms for olfactory processing that may extend to other sensory cortices.
Collapse
|
220
|
Whitmire CJ, Waiblinger C, Schwarz C, Stanley GB. Information Coding through Adaptive Gating of Synchronized Thalamic Bursting. Cell Rep 2016; 14:795-807. [PMID: 26776512 DOI: 10.1016/j.celrep.2015.12.068] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 10/07/2015] [Accepted: 12/11/2015] [Indexed: 11/27/2022] Open
Abstract
It has been posited that the regulation of burst/tonic firing in the thalamus could function as a mechanism for controlling not only how much but what kind of information is conveyed to downstream cortical targets. Yet how this gating mechanism is adaptively modulated on fast timescales by ongoing sensory inputs in rich sensory environments remains unknown. Using single-unit recordings in the rat vibrissa thalamus (VPm), we found that the degree of bottom-up adaptation modulated thalamic burst/tonic firing as well as the synchronization of bursting across the thalamic population along a continuum for which the extremes facilitate detection or discrimination of sensory inputs. Optogenetic control of baseline membrane potential in thalamus further suggests that this regulation may result from an interplay between adaptive changes in thalamic membrane potential and synaptic drive from inputs to thalamus, setting the stage for an intricate control strategy upon which cortical computation is built.
Collapse
Affiliation(s)
- Clarissa J Whitmire
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Christian Waiblinger
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA; Systems Neurophysiology, Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen 72074, Germany; Department of Cognitive Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen 72074, Germany
| | - Cornelius Schwarz
- Systems Neurophysiology, Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen 72074, Germany; Department of Cognitive Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen 72074, Germany
| | - Garrett B Stanley
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA.
| |
Collapse
|
221
|
Bazelot M, Bocchio M, Kasugai Y, Fischer D, Dodson PD, Ferraguti F, Capogna M. Hippocampal Theta Input to the Amygdala Shapes Feedforward Inhibition to Gate Heterosynaptic Plasticity. Neuron 2015; 87:1290-1303. [PMID: 26402610 PMCID: PMC4590554 DOI: 10.1016/j.neuron.2015.08.024] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 07/02/2015] [Accepted: 08/07/2015] [Indexed: 12/29/2022]
Abstract
The dynamic interactions between hippocampus and amygdala are critical for emotional memory. Theta synchrony between these structures occurs during fear memory retrieval and may facilitate synaptic plasticity, but the cellular mechanisms are unknown. We report that interneurons of the mouse basal amygdala are activated during theta network activity or optogenetic stimulation of ventral CA1 pyramidal cell axons, whereas principal neurons are inhibited. Interneurons provide feedforward inhibition that transiently hyperpolarizes principal neurons. However, synaptic inhibition attenuates during theta frequency stimulation of ventral CA1 fibers, and this broadens excitatory postsynaptic potentials. These effects are mediated by GABAB receptors and change in the Cl− driving force. Pairing theta frequency stimulation of ventral CA1 fibers with coincident stimuli of the lateral amygdala induces long-term potentiation of lateral-basal amygdala excitatory synapses. Hence, feedforward inhibition, known to enforce temporal fidelity of excitatory inputs, dominates hippocampus-amygdala interactions to gate heterosynaptic plasticity. Video Abstract
Theta stimulation of CA1 ventral hippocampal fibers activates amygdala interneurons Interneurons induce feedforward inhibition that hyperpolarizes principal neurons Theta-evoked inhibition attenuates to broaden excitation on principal neurons Feedforward inhibition gates heterosynaptic plasticity via GABAB receptors
Collapse
Affiliation(s)
- Michaël Bazelot
- MRC Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3TH, UK
| | - Marco Bocchio
- MRC Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3TH, UK
| | - Yu Kasugai
- Department of Pharmacology, Innsbruck Medical University, Peter Mayr Straße 1a, 6020 Innsbruck, Austria
| | - David Fischer
- Department of Pharmacology, Innsbruck Medical University, Peter Mayr Straße 1a, 6020 Innsbruck, Austria
| | - Paul D Dodson
- MRC Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3TH, UK
| | - Francesco Ferraguti
- Department of Pharmacology, Innsbruck Medical University, Peter Mayr Straße 1a, 6020 Innsbruck, Austria
| | - Marco Capogna
- MRC Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3TH, UK.
| |
Collapse
|
222
|
I Want It All and I Want It Now: How a Neural Circuit Encodes Odor with Speed and Accuracy. Neuron 2015; 88:852-854. [PMID: 26637793 DOI: 10.1016/j.neuron.2015.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A study by Jeanne and Wilson (2015) describes a circuit and determines the distinct neural circuit mechanisms that allow a signal to be represented with both speed and accuracy in the Drosophila olfactory system.
Collapse
|
223
|
Millard DC, Whitmire CJ, Gollnick CA, Rozell CJ, Stanley GB. Electrical and Optical Activation of Mesoscale Neural Circuits with Implications for Coding. J Neurosci 2015; 35:15702-15. [PMID: 26609162 PMCID: PMC4659829 DOI: 10.1523/jneurosci.5045-14.2015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 10/12/2015] [Accepted: 10/18/2015] [Indexed: 01/12/2023] Open
Abstract
Artificial activation of neural circuitry through electrical microstimulation and optogenetic techniques is important for both scientific discovery of circuit function and for engineered approaches to alleviate various disorders of the nervous system. However, evidence suggests that neural activity generated by artificial stimuli differs dramatically from normal circuit function, in terms of both the local neuronal population activity at the site of activation and the propagation to downstream brain structures. The precise nature of these differences and the implications for information processing remain unknown. Here, we used voltage-sensitive dye imaging of primary somatosensory cortex in the anesthetized rat in response to deflections of the facial vibrissae and electrical or optogenetic stimulation of thalamic neurons that project directly to the somatosensory cortex. Although the different inputs produced responses that were similar in terms of the average cortical activation, the variability of the cortical response was strikingly different for artificial versus sensory inputs. Furthermore, electrical microstimulation resulted in highly unnatural spatial activation of cortex, whereas optical input resulted in spatial cortical activation that was similar to that induced by sensory inputs. A thalamocortical network model suggested that observed differences could be explained by differences in the way in which artificial and natural inputs modulate the magnitude and synchrony of population activity. Finally, the variability structure in the response for each case strongly influenced the optimal inputs for driving the pathway from the perspective of an ideal observer of cortical activation when considered in the context of information transmission. SIGNIFICANCE STATEMENT Artificial activation of neural circuitry through electrical microstimulation and optogenetic techniques is important for both scientific discovery and clinical translation. However, neural activity generated by these artificial means differs dramatically from normal circuit function, both locally and in the propagation to downstream brain structures. The precise nature of these differences and the implications for information processing remain unknown. The significance of this work is in quantifying the differences, elucidating likely mechanisms underlying the differences, and determining the implications for information processing.
Collapse
Affiliation(s)
- Daniel C Millard
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, and
| | - Clarissa J Whitmire
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, and
| | - Clare A Gollnick
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, and
| | - Christopher J Rozell
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Garrett B Stanley
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, and
| |
Collapse
|
224
|
Prager EM, Bergstrom HC, Wynn GH, Braga MFM. The basolateral amygdala γ-aminobutyric acidergic system in health and disease. J Neurosci Res 2015; 94:548-67. [PMID: 26586374 DOI: 10.1002/jnr.23690] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 10/01/2015] [Accepted: 10/18/2015] [Indexed: 01/13/2023]
Abstract
The brain comprises an excitatory/inhibitory neuronal network that maintains a finely tuned balance of activity critical for normal functioning. Excitatory activity in the basolateral amygdala (BLA), a brain region that plays a central role in emotion and motivational processing, is tightly regulated by a relatively small population of γ-aminobutyric acid (GABA) inhibitory neurons. Disruption in GABAergic inhibition in the BLA can occur when there is a loss of local GABAergic interneurons, an alteration in GABAA receptor activation, or a dysregulation of mechanisms that modulate BLA GABAergic inhibition. Disruptions in GABAergic control of the BLA emerge during development, in aging populations, or after trauma, ultimately resulting in hyperexcitability. BLA hyperexcitability manifests behaviorally as an increase in anxiety, emotional dysregulation, or development of seizure activity. This Review discusses the anatomy, development, and physiology of the GABAergic system in the BLA and circuits that modulate GABAergic inhibition, including the dopaminergic, serotonergic, noradrenergic, and cholinergic systems. We highlight how alterations in various neurotransmitter receptors, including the acid-sensing ion channel 1a, cannabinoid receptor 1, and glutamate receptor subtypes, expressed on BLA interneurons, modulate GABAergic transmission and how defects of these systems affect inhibitory tonus within the BLA. Finally, we discuss alterations in the BLA GABAergic system in neurodevelopmental (autism/fragile X syndrome) and neurodegenerative (Alzheimer's disease) diseases and after the development of epilepsy, anxiety, and traumatic brain injury. A more complete understanding of the intrinsic excitatory/inhibitory circuit balance of the amygdala and how imbalances in inhibitory control contribute to excessive BLA excitability will guide the development of novel therapeutic approaches in neuropsychiatric diseases.
Collapse
Affiliation(s)
- Eric M Prager
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services, University of the Health Sciences, Bethesda, Maryland
| | | | - Gary H Wynn
- Center for the Study of Traumatic Stress, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland.,Department of Psychiatry, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland.,Program in Neuroscience, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Maria F M Braga
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services, University of the Health Sciences, Bethesda, Maryland.,Center for the Study of Traumatic Stress, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland.,Department of Psychiatry, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland.,Program in Neuroscience, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| |
Collapse
|
225
|
Coordinated Neuronal Activity Enhances Corticocortical Communication. Neuron 2015; 87:827-39. [PMID: 26291164 DOI: 10.1016/j.neuron.2015.07.026] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 06/12/2015] [Accepted: 07/21/2015] [Indexed: 11/22/2022]
Abstract
Relaying neural signals between cortical areas is central to cognition and sensory processing. The temporal coordination of activity in a source population has been suggested to determine corticocortical signaling efficacy, but others have argued that coordination is functionally irrelevant. We reasoned that if coordination significantly influenced signaling, spiking in downstream networks should be preceded by transiently elevated coordination in a source population. We developed a metric to quantify network coordination in brief epochs, and applied it to simultaneous recordings of neuronal populations in cortical areas V1 and V2 of the macaque monkey. Spiking in the input layers of V2 was preceded by brief epochs of elevated V1 coordination, but this was not the case in other layers of V2. Our results indicate that V1 coordination influences its signaling to direct downstream targets, but that coordinated V1 epochs do not propagate through multiple downstream networks as in some corticocortical signaling schemes.
Collapse
|
226
|
Froemke RC, Schreiner CE. Synaptic plasticity as a cortical coding scheme. Curr Opin Neurobiol 2015; 35:185-99. [PMID: 26497430 DOI: 10.1016/j.conb.2015.10.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 10/02/2015] [Accepted: 10/05/2015] [Indexed: 12/31/2022]
Abstract
Processing of auditory information requires constant adjustment due to alterations of the environment and changing conditions in the nervous system with age, health, and experience. Consequently, patterns of activity in cortical networks have complex dynamics over a wide range of timescales, from milliseconds to days and longer. In the primary auditory cortex (AI), multiple forms of adaptation and plasticity shape synaptic input and action potential output. However, the variance of neuronal responses has made it difficult to characterize AI receptive fields and to determine the function of AI in processing auditory information such as vocalizations. Here we describe recent studies on the temporal modulation of cortical responses and consider the relation of synaptic plasticity to neural coding.
Collapse
Affiliation(s)
- Robert C Froemke
- Skirball Institute for Biomolecular Medicine, Neuroscience Institute, Departments of Otolaryngology, Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA; Center for Neural Science, New York University, New York, NY, USA.
| | - Christoph E Schreiner
- Coleman Memorial Laboratory and W.M. Keck Foundation Center for Integrative Neuroscience, Neuroscience Graduate Group, Department of Otolaryngology, University of California, San Francisco, CA, USA
| |
Collapse
|
227
|
Distinct recurrent versus afferent dynamics in cortical visual processing. Nat Neurosci 2015; 18:1789-97. [PMID: 26502263 DOI: 10.1038/nn.4153] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 09/30/2015] [Indexed: 01/21/2023]
Abstract
How intracortical recurrent circuits in mammalian sensory cortex influence dynamics of sensory representation is not understood. Previous methods could not distinguish the relative contributions of recurrent circuits and thalamic afferents to cortical dynamics. We accomplish this by optogenetically manipulating thalamus and cortex. Over the initial 40 ms of visual stimulation, excitation from recurrent circuits in visual cortex progressively increased to exceed direct thalamocortical excitation. Even when recurrent excitation exceeded thalamic excitation, upon silencing thalamus, sensory-evoked activity in cortex decayed rapidly, with a time constant of 10 ms, which is similar to a neuron's integration time window. In awake mice, this cortical decay function predicted the time-locking of cortical activity to thalamic input at frequencies <15 Hz and attenuation of the cortical response to higher frequencies. Under anesthesia, depression at thalamocortical synapses disrupted the fidelity of sensory transmission. Thus, we determine dynamics intrinsic to cortical recurrent circuits that transform afferent input in time.
Collapse
|
228
|
Control of cerebellar granule cell output by sensory-evoked Golgi cell inhibition. Proc Natl Acad Sci U S A 2015; 112:13099-104. [PMID: 26432880 DOI: 10.1073/pnas.1510249112] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Classical feed-forward inhibition involves an excitation-inhibition sequence that enhances the temporal precision of neuronal responses by narrowing the window for synaptic integration. In the input layer of the cerebellum, feed-forward inhibition is thought to preserve the temporal fidelity of granule cell spikes during mossy fiber stimulation. Although this classical feed-forward inhibitory circuit has been demonstrated in vitro, the extent to which inhibition shapes granule cell sensory responses in vivo remains unresolved. Here we combined whole-cell patch-clamp recordings in vivo and dynamic clamp recordings in vitro to directly assess the impact of Golgi cell inhibition on sensory information transmission in the granule cell layer of the cerebellum. We show that the majority of granule cells in Crus II of the cerebrocerebellum receive sensory-evoked phasic and spillover inhibition prior to mossy fiber excitation. This preceding inhibition reduces granule cell excitability and sensory-evoked spike precision, but enhances sensory response reproducibility across the granule cell population. Our findings suggest that neighboring granule cells and Golgi cells can receive segregated and functionally distinct mossy fiber inputs, enabling Golgi cells to regulate the size and reproducibility of sensory responses.
Collapse
|
229
|
Wahlstrom-Helgren S, Klyachko VA. GABAB receptor-mediated feed-forward circuit dysfunction in the mouse model of fragile X syndrome. J Physiol 2015; 593:5009-24. [PMID: 26282581 DOI: 10.1113/jp271190] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 08/12/2015] [Indexed: 12/18/2022] Open
Abstract
KEY POINTS Cortico-hippocampal feed-forward circuits formed by the temporoammonic (TA) pathway exhibit a marked increase in excitation/inhibition ratio and abnormal spike modulation functions in Fmr1 knock-out (KO) mice. Inhibitory, but not excitatory, synapse dysfunction underlies cortico-hippocampal feed-forward circuit abnormalities in Fmr1 KO mice. GABA release is reduced in TA-associated inhibitory synapses of Fmr1 KO mice in a GABAB receptor-dependent manner. Inhibitory synapse and feed-forward circuit defects are mediated predominately by presynaptic GABAB receptor signalling in the TA pathway of Fmr1 KO mice. GABAB receptor-mediated inhibitory synapse defects are circuit-specific and are not observed in the Schaffer collateral pathway-associated inhibitory synapses in stratum radiatum. ABSTRACT Circuit hyperexcitability has been implicated in neuropathology of fragile X syndrome, the most common inheritable cause of intellectual disability. Yet, how canonical unitary circuits are affected in this disorder remains poorly understood. Here, we examined this question in the context of the canonical feed-forward inhibitory circuit formed by the temporoammonic (TA) branch of the perforant path, the major cortical input to the hippocampus. TA feed-forward circuits exhibited a marked increase in excitation/inhibition ratio and major functional defects in spike modulation tasks in Fmr1 knock-out (KO) mice, a fragile X mouse model. Changes in feed-forward circuits were caused specifically by inhibitory, but not excitatory, synapse defects. TA-associated inhibitory synapses exhibited increase in paired-pulse ratio and in the coefficient of variation of IPSPs, consistent with decreased GABA release probability. TA-associated inhibitory synaptic transmission in Fmr1 KO mice was also more sensitive to inhibition of GABAB receptors, suggesting an increase in presynaptic GABAB receptor (GABAB R) signalling. Indeed, the differences in inhibitory synaptic transmission between Fmr1 KO and wild-type (WT) mice were eliminated by a GABAB R antagonist. Inhibition of GABAB Rs or selective activation of presynaptic GABAB Rs also abolished the differences in the TA feed-forward circuit properties between Fmr1 KO and WT mice. These GABAB R-mediated defects were circuit-specific and were not observed in the Schaffer collateral pathway-associated inhibitory synapses. Our results suggest that the inhibitory synapse dysfunction in the cortico-hippocampal pathway of Fmr1 KO mice causes hyperexcitability and feed-forward circuit defects, which are mediated in part by a presynaptic GABAB R-dependent reduction in GABA release.
Collapse
Affiliation(s)
- Sarah Wahlstrom-Helgren
- Departments of Cell Biology and Physiology, Biomedical Engineering, Center for the Investigation of Membrane Excitable Diseases, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Vitaly A Klyachko
- Departments of Cell Biology and Physiology, Biomedical Engineering, Center for the Investigation of Membrane Excitable Diseases, Washington University School of Medicine, St Louis, MO, 63110, USA
| |
Collapse
|
230
|
Letzkus J, Wolff S, Lüthi A. Disinhibition, a Circuit Mechanism for Associative Learning and Memory. Neuron 2015; 88:264-76. [PMID: 26494276 DOI: 10.1016/j.neuron.2015.09.024] [Citation(s) in RCA: 240] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
231
|
Abstract
How sensory information is processed within olfactory cortices is unclear. Here, we examined long-range circuit wiring between different olfactory cortical regions of acute mouse brain slices using a channelrhodopsin-2 (ChR2)-based neuronal targeting approach. Our results provide detailed information regarding the synaptic properties of the reciprocal long-range monosynaptic glutamatergic projections (LRMGP) between and within anterior piriform cortex (aPC), posterior piriform cortex (pPC), and lateral entorhinal cortex (LEC), thereby creating a long-range inter- and intracortical circuit diagrams at the level of synapses and single cortical neurons. Our results reveal the following information regarding hierarchical intra- and intercortical organizations: (i) there is massive bottom-up (i.e., rostral-caudal) excitation within the LRMGP accompanied with strong feedforward (FF) inhibition; (ii) there are convergent FF connections onto LEC from both aPC and pPC; (iii) feedback (FB) intercortical connections are weak with a significant fraction of presumptive silent synapses; and (iv) intra and intercortical long-range connections lack layer specificity and their innervation of interneurons are stronger than neighboring pyramidal neurons. The elucidation of the distinct hierarchical organization of long-range olfactory cortical circuits paves the way for further understanding of higher order cortical processing within the olfactory system.
Collapse
Affiliation(s)
- Weiguo Yang
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY Graduate Neuroscience Program, University of Wyoming, Laramie, WY
| | - Qian-Quan Sun
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY
| |
Collapse
|
232
|
Hires SA, Gutnisky DA, Yu J, O'Connor DH, Svoboda K. Low-noise encoding of active touch by layer 4 in the somatosensory cortex. eLife 2015; 4. [PMID: 26245232 PMCID: PMC4525079 DOI: 10.7554/elife.06619] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 07/07/2015] [Indexed: 11/13/2022] Open
Abstract
Cortical spike trains often appear noisy, with the timing and number of spikes varying across repetitions of stimuli. Spiking variability can arise from internal (behavioral state, unreliable neurons, or chaotic dynamics in neural circuits) and external (uncontrolled behavior or sensory stimuli) sources. The amount of irreducible internal noise in spike trains, an important constraint on models of cortical networks, has been difficult to estimate, since behavior and brain state must be precisely controlled or tracked. We recorded from excitatory barrel cortex neurons in layer 4 during active behavior, where mice control tactile input through learned whisker movements. Touch was the dominant sensorimotor feature, with >70% spikes occurring in millisecond timescale epochs after touch onset. The variance of touch responses was smaller than expected from Poisson processes, often reaching the theoretical minimum. Layer 4 spike trains thus reflect the millisecond-timescale structure of tactile input with little noise.
Collapse
Affiliation(s)
- Samuel Andrew Hires
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Diego A Gutnisky
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Jianing Yu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Daniel H O'Connor
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Karel Svoboda
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| |
Collapse
|
233
|
High Stimulus-Related Information in Barrel Cortex Inhibitory Interneurons. PLoS Comput Biol 2015; 11:e1004121. [PMID: 26098109 PMCID: PMC4476555 DOI: 10.1371/journal.pcbi.1004121] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 01/11/2015] [Indexed: 01/28/2023] Open
Abstract
The manner in which populations of inhibitory (INH) and excitatory (EXC) neocortical neurons collectively encode stimulus-related information is a fundamental, yet still unresolved question. Here we address this question by simultaneously recording with large-scale multi-electrode arrays (of up to 128 channels) the activity of cell ensembles (of up to 74 neurons) distributed along all layers of 3–4 neighboring cortical columns in the anesthetized adult rat somatosensory barrel cortex in vivo. Using two different whisker stimulus modalities (location and frequency) we show that individual INH neurons – classified as such according to their distinct extracellular spike waveforms – discriminate better between restricted sets of stimuli (≤6 stimulus classes) than EXC neurons in granular and infra-granular layers. We also demonstrate that ensembles of INH cells jointly provide as much information about such stimuli as comparable ensembles containing the ~20% most informative EXC neurons, however presenting less information redundancy – a result which was consistent when applying both theoretical information measurements and linear discriminant analysis classifiers. These results suggest that a consortium of INH neurons dominates the information conveyed to the neocortical network, thereby efficiently processing incoming sensory activity. This conclusion extends our view on the role of the inhibitory system to orchestrate cortical activity. Perception of the environment relies on neuronal computation in the cerebral cortex. However, the exact algorithms by which cortical neuronal networks process relevant information from the inputs of sensory organs are only poorly understood. To address this problem we stimulated distinct whiskers and recorded the neuronal responses from identified cortical whisker representations of the rat using multi-site electrodes. For rodents the whisker system is one main sensory input channel, offering the unique property that for each whisker an identified cortical area ("barrel-related column") represents its main cortical input station. In the present study we were able to demonstrate that the action potential firing of single inhibitory neurons provides more information about behaviorally relevant qualities of whisker stimulation (identity of the stimulated whisker and frequency of stimulation) than excitatory neurons. In addition, information about stimulation qualities was encoded with less redundancy in inhibitory neurons. In summary, the results of our study suggest that inhibitory neurons carry substantial information about the sensory environment and can thereby adequately orchestrate neuronal activity in sensory cortices.
Collapse
|
234
|
The ubiquitous nature of multivesicular release. Trends Neurosci 2015; 38:428-38. [PMID: 26100141 DOI: 10.1016/j.tins.2015.05.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 05/20/2015] [Accepted: 05/24/2015] [Indexed: 11/21/2022]
Abstract
'Simplicity is prerequisite for reliability' (E.W. Dijkstra [1]) Presynaptic action potentials trigger the fusion of vesicles to release neurotransmitter onto postsynaptic neurons. Each release site was originally thought to liberate at most one vesicle per action potential in a probabilistic fashion, rendering synaptic transmission unreliable. However, the simultaneous release of several vesicles, or multivesicular release (MVR), represents a simple mechanism to overcome the intrinsic unreliability of synaptic transmission. MVR was initially identified at specialized synapses but is now known to be common throughout the brain. MVR determines the temporal and spatial dispersion of transmitter, controls the extent of receptor activation, and contributes to adapting synaptic strength during plasticity and neuromodulation. MVR consequently represents a widespread mechanism that extends the dynamic range of synaptic processing.
Collapse
|
235
|
The mediodorsal thalamus drives feedforward inhibition in the anterior cingulate cortex via parvalbumin interneurons. J Neurosci 2015; 35:5743-53. [PMID: 25855185 DOI: 10.1523/jneurosci.4565-14.2015] [Citation(s) in RCA: 160] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Although the medial prefrontal cortex (mPFC) is classically defined by its reciprocal connections with the mediodorsal thalamic nucleus (MD), the nature of information transfer between MD and mPFC is poorly understood. In sensory thalamocortical pathways, thalamic recruitment of feedforward inhibition mediated by fast-spiking, putative parvalbumin-expressing (PV) interneurons is a key feature that enables cortical neurons to represent sensory stimuli with high temporal fidelity. Whether a similar circuit mechanism is in place for the projection from the MD (a higher-order thalamic nucleus that does not receive direct input from the periphery) to the mPFC is unknown. Here we show in mice that inputs from the MD drive disynaptic feedforward inhibition in the dorsal anterior cingulate cortex (dACC) subregion of the mPFC. In particular, we demonstrate that axons arising from MD neurons directly synapse onto and excite PV interneurons that in turn mediate feedforward inhibition of pyramidal neurons in layer 3 of the dACC. This feedforward inhibition in the dACC limits the time window during which pyramidal neurons integrate excitatory synaptic inputs and fire action potentials, but in a manner that allows for greater flexibility than in sensory cortex. These findings provide a foundation for understanding the role of MD-PFC circuit function in cognition.
Collapse
|
236
|
Ji XY, Zingg B, Mesik L, Xiao Z, Zhang LI, Tao HW. Thalamocortical Innervation Pattern in Mouse Auditory and Visual Cortex: Laminar and Cell-Type Specificity. Cereb Cortex 2015; 26:2612-25. [PMID: 25979090 DOI: 10.1093/cercor/bhv099] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Despite many previous studies, the functional innervation pattern of thalamic axons and their target specificity remains to be investigated thoroughly. Here, in primary auditory cortical slices, we examined thalamic innervation patterns for excitatory and different types of inhibitory neurons across laminae, by optogenetically stimulating axons from the medial geniculate body. We found that excitatory cells and parvalbumin (PV)-expressing inhibitory neurons across layer 2/3 (L2/3) to L6 are directly innervated by thalamic projections, with the strongest innervation occurring in L4. The innervation of PV neurons is stronger than that of excitatory neurons in the same layer, with a relatively constant ratio between their innervation strengths across layers. For somatostatin and vasoactive intestinal peptide inhibitory neurons, essentially only L4 neurons were innervated by thalamic axons and the innervation was much weaker compared with excitatory and PV cells. In addition, more than half of inhibitory neurons in L1 were innervated, relatively strongly, by thalamic axons. Similar innervation patterns were also observed in the primary visual cortex. Thus, thalamic information can be processed independently and differentially by different cortical layers, in addition to the generally thought hierarchical processing starting from L4. This parallel processing is likely shaped by feedforward inhibition from PV neurons in each individual lamina, and may extend the computation power of sensory cortices.
Collapse
Affiliation(s)
- Xu-Ying Ji
- Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China Zilkha Neurogenetic Institute
| | - Brian Zingg
- Zilkha Neurogenetic Institute Neuroscience Graduate Program, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Lukas Mesik
- Zilkha Neurogenetic Institute Neuroscience Graduate Program, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Zhongju Xiao
- Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Li I Zhang
- Zilkha Neurogenetic Institute Department of Biophysics and Physiology
| | - Huizhong W Tao
- Zilkha Neurogenetic Institute Department of Cell and Neurobiology
| |
Collapse
|
237
|
Nassar M, Simonnet J, Lofredi R, Cohen I, Savary E, Yanagawa Y, Miles R, Fricker D. Diversity and overlap of parvalbumin and somatostatin expressing interneurons in mouse presubiculum. Front Neural Circuits 2015; 9:20. [PMID: 26005406 PMCID: PMC4424818 DOI: 10.3389/fncir.2015.00020] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 04/20/2015] [Indexed: 12/17/2022] Open
Abstract
The presubiculum, located between hippocampus and entorhinal cortex, plays a fundamental role in representing spatial information, notably head direction. Little is known about GABAergic interneurons of this region. Here, we used three transgenic mouse lines, Pvalb-Cre, Sst-Cre, and X98, to examine distinct interneurons labeled with tdTomato or green fluorescent protein. The distribution of interneurons in presubicular lamina for each animal line was compared to that in the GAD67-GFP knock-in animal line. Labeling was specific in the Pvalb-Cre line with 87% of labeled interneurons immunopositive for parvalbumin (PV). Immunostaining for somatostatin (SOM) revealed good specificity in the X98 line with 89% of fluorescent cells, but a lesser specificity in Sst-Cre animals where only 71% of labeled cells were immunopositive. A minority of ∼6% of interneurons co-expressed PV and SOM in the presubiculum of Sst-Cre animals. The electrophysiological and morphological properties of fluorescent interneurons from Pvalb-Cre, Sst-Cre, and X98 mice differed. Distinct physiological groups of presubicular interneurons were resolved by unsupervised cluster analysis of parameters describing passive properties, firing patterns and AP shapes. One group consisted of SOM-positive, Martinotti type neurons with a low firing threshold (cluster 1). Fast spiking basket cells, mainly from the Pvalb-Cre line, formed a distinct group (cluster 3). Another group (cluster 2) contained interneurons of intermediate electrical properties and basket-cell like morphologies. These labeled neurons were recorded from both Sst-Cre and Pvalb-Cre animals. Thus, our results reveal a wide variation in anatomical and physiological properties for these interneurons, a real overlap of interneurons immuno-positive for both PV and SOM as well as an off-target recombination in the Sst-Cre line, possibly linked to maternal cre inheritance.
Collapse
Affiliation(s)
- Mérie Nassar
- Institut du Cerveau et de la Moelle Epinière, Sorbonne Universités, UPMC Université Paris 06 UM 75, CHU Pitié-Salpêtrière INSERM U1127, CNRS UMR7225 Paris, France
| | - Jean Simonnet
- Institut du Cerveau et de la Moelle Epinière, Sorbonne Universités, UPMC Université Paris 06 UM 75, CHU Pitié-Salpêtrière INSERM U1127, CNRS UMR7225 Paris, France
| | - Roxanne Lofredi
- Institut du Cerveau et de la Moelle Epinière, Sorbonne Universités, UPMC Université Paris 06 UM 75, CHU Pitié-Salpêtrière INSERM U1127, CNRS UMR7225 Paris, France
| | - Ivan Cohen
- Neuroscience Paris Seine Paris, Sorbonne Universités, UPMC Université Paris 06 UM CR 18, CNRS UMR 8246, INSERM U1130 Paris, France
| | - Etienne Savary
- Institut du Cerveau et de la Moelle Epinière, Sorbonne Universités, UPMC Université Paris 06 UM 75, CHU Pitié-Salpêtrière INSERM U1127, CNRS UMR7225 Paris, France
| | - Yuchio Yanagawa
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine Maebashi, Japan ; Japan Science and Technology Agency Tokyo, Japan
| | - Richard Miles
- Institut du Cerveau et de la Moelle Epinière, Sorbonne Universités, UPMC Université Paris 06 UM 75, CHU Pitié-Salpêtrière INSERM U1127, CNRS UMR7225 Paris, France
| | - Desdemona Fricker
- Institut du Cerveau et de la Moelle Epinière, Sorbonne Universités, UPMC Université Paris 06 UM 75, CHU Pitié-Salpêtrière INSERM U1127, CNRS UMR7225 Paris, France
| |
Collapse
|
238
|
Jiao D, Liu Y, Li X, Liu J, Zhao M. The role of the GABA system in amphetamine-type stimulant use disorders. Front Cell Neurosci 2015; 9:162. [PMID: 25999814 PMCID: PMC4419710 DOI: 10.3389/fncel.2015.00162] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 04/13/2015] [Indexed: 11/22/2022] Open
Abstract
Abuse of amphetamine-type stimulants (ATS) has become a global public health problem. ATS causes severe neurotoxicity, which could lead to addiction and could induce psychotic disorders or cognitive dysfunctions. However, until now, there has been a lack of effective medicines for treating ATS-related problems. Findings from recent studies indicate that in addition to the traditional dopamine-ergic system, the GABA (gamma-aminobutyric acid)-ergic system plays an important role in ATS abuse. However, the exact mechanisms of the GABA-ergic system in amphetamine-type stimulant use disorders are not fully understood. This review discusses the role of the GABA-ergic system in ATS use disorders, including ATS induced psychotic disorders and cognitive dysfunctions. We conclude that the GABA-ergic system are importantly involved in the development of ATS use disorders through multiple pathways, and that therapies or medicines that target specific members of the GABA-ergic system may be novel effective interventions for the treatment of ATS use disorders.
Collapse
Affiliation(s)
- Dongliang Jiao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine Shanghai, China
| | - Yao Liu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine Shanghai, China
| | - Xiaohong Li
- Department of Neurochemistry, NY State Institute for Basic Research in Developmental Disabilities New York, NY, USA
| | - Jinggen Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai, China
| | - Min Zhao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine Shanghai, China
| |
Collapse
|
239
|
Abstract
Layer (L)2 is a major output of primary sensory cortex that exhibits very sparse spiking, but the structure of sensory representation in L2 is not well understood. We combined two-photon calcium imaging with deflection of many whiskers to map whisker receptive fields, characterize sparse coding, and quantitatively define the point representation in L2 of mouse somatosensory cortex. Neurons within a column-sized imaging field showed surprisingly heterogeneous, salt-and-pepper tuning to many different whiskers. Single whisker deflection elicited low-probability spikes in highly distributed, shifting neural ensembles spanning multiple cortical columns. Whisker-evoked response probability correlated strongly with spontaneous firing rate, but weakly with tuning properties, indicating a spectrum of inherent responsiveness across pyramidal cells. L2 neurons projecting to motor and secondary somatosensory cortex differed in whisker tuning and responsiveness, and carried different amounts of information about columnar whisker deflection. From these data, we derive a quantitative, fine-scale picture of the distributed point representation in L2.
Collapse
|
240
|
Bartley AF, Dobrunz LE. Short-term plasticity regulates the excitation/inhibition ratio and the temporal window for spike integration in CA1 pyramidal cells. Eur J Neurosci 2015; 41:1402-15. [PMID: 25903384 DOI: 10.1111/ejn.12898] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 02/27/2015] [Accepted: 03/16/2015] [Indexed: 12/21/2022]
Abstract
Many neurodevelopmental and neuropsychiatric disorders involve an imbalance between excitation and inhibition caused by synaptic alterations. The proper excitation/inhibition (E/I) balance is especially critical in CA1 pyramidal cells, because they control hippocampal output. Activation of Schaffer collateral axons causes direct excitation of CA1 pyramidal cells, quickly followed by disynaptic feedforward inhibition, stemming from synaptically induced firing of GABAergic interneurons. Both excitatory and inhibitory synapses are modulated by short-term plasticity, potentially causing dynamic tuning of the E/I ratio. However, the effects of short-term plasticity on the E/I ratio in CA1 pyramidal cells are not yet known. To determine this, we recorded disynaptic inhibitory postsynaptic currents and the E/I ratio in CA1 pyramidal cells in acute hippocampal slices from juvenile mice. We found that, whereas inhibitory synapses had paired-pulse depression, disynaptic inhibition instead had paired-pulse facilitation (≤ 200-ms intervals), caused by increased recruitment of feedforward interneurons. Although enhanced disynaptic inhibition helped to constrain paired-pulse facilitation of excitation, the E/I ratio was still larger on the second pulse, increasing pyramidal cell spiking. Surprisingly, this occurred without compromising the precision of spike timing. The E/I balance regulates the temporal spike integration window from multiple inputs; here, we showed that paired-pulse stimulation can broaden the spike integration window. Together, our findings show that the combined effects of short-term plasticity of disynaptic inhibition and monosynaptic excitation alter the E/I balance in CA1 pyramidal cells, leading to dynamic modulation of spike probability and the spike integration window. Short-term plasticity is therefore an important mechanism for modulating signal processing of hippocampal output.
Collapse
Affiliation(s)
- Aundrea F Bartley
- Department of Neurobiology, Civitan International Research Center, Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, 1825 University Blvd, SHEL 902, Birmingham, AL, 35294, USA
| | - Lynn E Dobrunz
- Department of Neurobiology, Civitan International Research Center, Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, 1825 University Blvd, SHEL 902, Birmingham, AL, 35294, USA
| |
Collapse
|
241
|
Paz JT, Huguenard JR. Microcircuits and their interactions in epilepsy: is the focus out of focus? Nat Neurosci 2015; 18:351-9. [PMID: 25710837 DOI: 10.1038/nn.3950] [Citation(s) in RCA: 205] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 01/16/2015] [Indexed: 12/11/2022]
Abstract
Epileptic seizures represent dysfunctional neural networks dominated by excessive and/or hypersynchronous activity. Recent progress in the field has outlined two concepts regarding mechanisms of seizure generation, or ictogenesis. First, all seizures, even those associated with what have historically been thought of as 'primary generalized' epilepsies, appear to originate in local microcircuits and then propagate from that initial ictogenic zone. Second, seizures propagate through cerebral networks and engage microcircuits in distal nodes, a process that can be weakened or even interrupted by suppressing activity in such nodes. We describe various microcircuit motifs, with a special emphasis on one that has been broadly implicated in several epilepsies: feed-forward inhibition. Furthermore, we discuss how, in the dynamic network in which seizures propagate, focusing on circuit 'choke points' remote from the initiation site might be as important as that of the initial dysfunction, the seizure 'focus'.
Collapse
Affiliation(s)
- Jeanne T Paz
- Gladstone Institutes and University of California, San Francisco, California, USA
| | - John R Huguenard
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
242
|
Zhu Y, Qiao W, Liu K, Zhong H, Yao H. Control of response reliability by parvalbumin-expressing interneurons in visual cortex. Nat Commun 2015; 6:6802. [PMID: 25869033 DOI: 10.1038/ncomms7802] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 03/02/2015] [Indexed: 11/09/2022] Open
Abstract
The responses of visual cortical neurons to natural stimuli are both reliable and sparse. These properties require inhibition, yet the contribution of specific types of inhibitory neurons is not well understood. Here we demonstrate that optogenetic suppression of parvalbumin (PV)- but not somatostatin (SOM)-expressing interneurons reduces response reliability in the primary visual cortex of anaesthetized and awake mice. PV suppression leads to increases in the low firing rates and decreases in the high firing rates of cortical neurons, resulting in an overall reduction of the signal-to-noise ratio (SNR). In contrast, SOM suppression generally increases the overall firing rate for most neurons, without affecting the SNR. Further analysis reveals that PV, but not SOM, suppression impairs neural discrimination of natural stimuli. Together, these results reveal a critical role for PV interneurons in the formation of reliable visual cortical representations of natural stimuli.
Collapse
Affiliation(s)
- Yingjie Zhu
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Wenhui Qiao
- 1] Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China [2] University of Chinese Academy of Sciences, Shanghai, China
| | - Kefei Liu
- 1] Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China [2] University of Chinese Academy of Sciences, Shanghai, China
| | - Huiyuan Zhong
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Haishan Yao
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| |
Collapse
|
243
|
Sellers KK, Bennett DV, Hutt A, Williams JH, Fröhlich F. Awake vs. anesthetized: layer-specific sensory processing in visual cortex and functional connectivity between cortical areas. J Neurophysiol 2015; 113:3798-815. [PMID: 25833839 DOI: 10.1152/jn.00923.2014] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 03/30/2015] [Indexed: 01/03/2023] Open
Abstract
During general anesthesia, global brain activity and behavioral state are profoundly altered. Yet it remains mostly unknown how anesthetics alter sensory processing across cortical layers and modulate functional cortico-cortical connectivity. To address this gap in knowledge of the micro- and mesoscale effects of anesthetics on sensory processing in the cortical microcircuit, we recorded multiunit activity and local field potential in awake and anesthetized ferrets (Mustela putoris furo) during sensory stimulation. To understand how anesthetics alter sensory processing in a primary sensory area and the representation of sensory input in higher-order association areas, we studied the local sensory responses and long-range functional connectivity of primary visual cortex (V1) and prefrontal cortex (PFC). Isoflurane combined with xylazine provided general anesthesia for all anesthetized recordings. We found that anesthetics altered the duration of sensory-evoked responses, disrupted the response dynamics across cortical layers, suppressed both multimodal interactions in V1 and sensory responses in PFC, and reduced functional cortico-cortical connectivity between V1 and PFC. Together, the present findings demonstrate altered sensory responses and impaired functional network connectivity during anesthesia at the level of multiunit activity and local field potential across cortical layers.
Collapse
Affiliation(s)
- Kristin K Sellers
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Neurobiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Davis V Bennett
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Axel Hutt
- INRIA CR Nancy-Grand Est, Team Neurosys, Villers-les-Nancy, France
| | - James H Williams
- Department of Anesthesiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Flavio Fröhlich
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Neurobiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; and Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
244
|
Pelkey KA, Barksdale E, Craig MT, Yuan X, Sukumaran M, Vargish GA, Mitchell RM, Wyeth MS, Petralia RS, Chittajallu R, Karlsson RM, Cameron HA, Murata Y, Colonnese MT, Worley PF, McBain CJ. Pentraxins coordinate excitatory synapse maturation and circuit integration of parvalbumin interneurons. Neuron 2015; 85:1257-72. [PMID: 25754824 DOI: 10.1016/j.neuron.2015.02.020] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 12/05/2014] [Accepted: 02/04/2015] [Indexed: 10/23/2022]
Abstract
Circuit computation requires precision in the timing, extent, and synchrony of principal cell (PC) firing that is largely enforced by parvalbumin-expressing, fast-spiking interneurons (PVFSIs). To reliably coordinate network activity, PVFSIs exhibit specialized synaptic and membrane properties that promote efficient afferent recruitment such as expression of high-conductance, rapidly gating, GluA4-containing AMPA receptors (AMPARs). We found that PVFSIs upregulate GluA4 during the second postnatal week coincident with increases in the AMPAR clustering proteins NPTX2 and NPTXR. Moreover, GluA4 is dramatically reduced in NPTX2(-/-)/NPTXR(-/-) mice with consequent reductions in PVFSI AMPAR function. Early postnatal NPTX2(-/-)/NPTXR(-/-) mice exhibit delayed circuit maturation with a prolonged critical period permissive for giant depolarizing potentials. Juvenile NPTX2(-/-)/NPTXR(-/-) mice display reduced feedforward inhibition yielding a circuit deficient in rhythmogenesis and prone to epileptiform discharges. Our findings demonstrate an essential role for NPTXs in controlling network dynamics highlighting potential therapeutic targets for disorders with inhibition/excitation imbalances such as schizophrenia.
Collapse
Affiliation(s)
- Kenneth A Pelkey
- Program in Developmental Neuroscience, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, 35 Lincoln Drive, Bethesda, MD 20892, USA.
| | - Elizabeth Barksdale
- Program in Developmental Neuroscience, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, 35 Lincoln Drive, Bethesda, MD 20892, USA
| | - Michael T Craig
- Program in Developmental Neuroscience, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, 35 Lincoln Drive, Bethesda, MD 20892, USA
| | - Xiaoqing Yuan
- Program in Developmental Neuroscience, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, 35 Lincoln Drive, Bethesda, MD 20892, USA
| | - Madhav Sukumaran
- Program in Developmental Neuroscience, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, 35 Lincoln Drive, Bethesda, MD 20892, USA
| | - Geoffrey A Vargish
- Program in Developmental Neuroscience, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, 35 Lincoln Drive, Bethesda, MD 20892, USA
| | - Robert M Mitchell
- Program in Developmental Neuroscience, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, 35 Lincoln Drive, Bethesda, MD 20892, USA
| | - Megan S Wyeth
- Program in Developmental Neuroscience, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, 35 Lincoln Drive, Bethesda, MD 20892, USA
| | - Ronald S Petralia
- Advanced Imaging Core National Institute of Deafness and Other Communication Disorders, National Institutes of Health, 35 Lincoln Drive, Bethesda, MD 20892, USA
| | - Ramesh Chittajallu
- Program in Developmental Neuroscience, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, 35 Lincoln Drive, Bethesda, MD 20892, USA
| | - Rose-Marie Karlsson
- Section on Neuroplasticity, Mood and Anxiety Disorders Program, National Institute of Mental Health, National Institutes of Health, 35 Lincoln Drive, Bethesda, MD 20892, USA
| | - Heather A Cameron
- Section on Neuroplasticity, Mood and Anxiety Disorders Program, National Institute of Mental Health, National Institutes of Health, 35 Lincoln Drive, Bethesda, MD 20892, USA
| | - Yasunobu Murata
- Department of Pharmacology and Physiology, and Institute for Neuroscience, George Washington University, 2300 Eye Street, Washington, DC 20037, USA
| | - Matthew T Colonnese
- Department of Pharmacology and Physiology, and Institute for Neuroscience, George Washington University, 2300 Eye Street, Washington, DC 20037, USA
| | - Paul F Worley
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, 725 N. Wolfe Street, Baltimore, MD 21205, USA
| | - Chris J McBain
- Program in Developmental Neuroscience, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, 35 Lincoln Drive, Bethesda, MD 20892, USA
| |
Collapse
|
245
|
Zhang D, Wu S, Rasch MJ. Circuit motifs for contrast-adaptive differentiation in early sensory systems: the role of presynaptic inhibition and short-term plasticity. PLoS One 2015; 10:e0118125. [PMID: 25723493 PMCID: PMC4344245 DOI: 10.1371/journal.pone.0118125] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 01/06/2015] [Indexed: 01/26/2023] Open
Abstract
In natural signals, such as the luminance value across of a visual scene, abrupt changes in intensity value are often more relevant to an organism than intensity values at other positions and times. Thus to reduce redundancy, sensory systems are specialized to detect the times and amplitudes of informative abrupt changes in the input stream rather than coding the intensity values at all times. In theory, a system that responds transiently to fast changes is called a differentiator. In principle, several different neural circuit mechanisms exist that are capable of responding transiently to abrupt input changes. However, it is unclear which circuit would be best suited for early sensory systems, where the dynamic range of the natural input signals can be very wide. We here compare the properties of different simple neural circuit motifs for implementing signal differentiation. We found that a circuit motif based on presynaptic inhibition (PI) is unique in a sense that the vesicle resources in the presynaptic site can be stably maintained over a wide range of stimulus intensities, making PI a biophysically plausible mechanism to implement a differentiator with a very wide dynamical range. Moreover, by additionally considering short-term plasticity (STP), differentiation becomes contrast adaptive in the PI-circuit but not in other potential neural circuit motifs. Numerical simulations show that the behavior of the adaptive PI-circuit is consistent with experimental observations suggesting that adaptive presynaptic inhibition might be a good candidate neural mechanism to achieve differentiation in early sensory systems.
Collapse
Affiliation(s)
- Danke Zhang
- Department of Biomedical Engineering, Hangzhou Dianzi University, Hangzhou, China
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Si Wu
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Malte J. Rasch
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| |
Collapse
|
246
|
Target-specific properties of thalamocortical synapses onto layer 4 of mouse primary visual cortex. J Neurosci 2015; 34:15455-65. [PMID: 25392512 DOI: 10.1523/jneurosci.2595-14.2014] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In primary sensory cortices, thalamocortical (TC) inputs can directly activate excitatory and inhibitory neurons. In vivo experiments in the main input layer (L4) of primary visual cortex (V1) have shown that excitatory and inhibitory neurons have different tuning properties. The different functional properties may arise from distinct intrinsic properties of L4 neurons, but could also depend on cell type-specific properties of the synaptic inputs from the lateral geniculate nucleus of the thalamus (LGN) onto L4 neurons. While anatomical studies identified LGN inputs onto both excitatory and inhibitory neurons in V1, their synaptic properties have not been investigated. Here we used an optogenetic approach to selectively activate LGN terminal fields in acute coronal slices containing V1, and recorded monosynaptic currents from excitatory and inhibitory neurons in L4. LGN afferents made monosynaptic connections with pyramidal (Pyr) and fast-spiking (FS) neurons. TC EPSCs on FS neurons were larger and showed steeper short-term depression in response to repetitive stimulation than those on Pyr neurons. LGN inputs onto Pyr and FS neurons also differed in postsynaptic receptor composition and organization of presynaptic release sites. Together, our results demonstrate that LGN input onto L4 neurons in mouse V1 have target-specific presynaptic and postsynaptic properties. Distinct mechanisms of activation of feedforward excitatory and inhibitory neurons in the main input layer of V1 are likely to endow neurons with different response properties to incoming visual stimuli.
Collapse
|
247
|
Thimm A, Funke K. Multiple blocks of intermittent and continuous theta-burst stimulation applied via transcranial magnetic stimulation differently affect sensory responses in rat barrel cortex. J Physiol 2015; 593:967-85. [PMID: 25504571 PMCID: PMC4398532 DOI: 10.1113/jphysiol.2014.282467] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 11/26/2014] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Theta-burst stimulation (TBS) applied via transcranial magnetic stimulation is able to modulate human cortical excitability. Here we investigated in a rat model how two different forms of TBS, intermittent (iTBS) and continuous (cTBS), affect sensory responses in rat barrel cortex. We found that iTBS but less cTBS promoted late (>18 ms) sensory response components while not affecting the earliest response (8-18 ms). The effect increased with each of the five iTBS blocks applied. cTBS somewhat reduced the early response component after the first block but had a similar effect as iTBS after four to five blocks. We conclude that iTBS primarly modulates the activity of (inhibitory) cortical interneurons while cTBS may first reduce general neuronal excitability with a single block but reverse to iTBS-like effects with application of several blocks. ABSTRACT Cortical sensory processing varies with cortical state and the balance of inhibition to excitation. Repetitive transcranial magnetic stimulation (rTMS) has been shown to modulate human cortical excitability. In a rat model, we recently showed that intermittent theta-burst stimulation (iTBS) applied to the corpus callosum, to activate primarily supragranular cortical pyramidal cells but fewer subcortical neurons, strongly reduced the cortical expression of parvalbumin (PV), indicating reduced activity of fast-spiking interneurons. Here, we used the well-studied rodent barrel cortex system to test how iTBS and continuous TBS (cTBS) modulate sensory responses evoked by either single or double stimuli applied to the principal (PW) and/or adjacent whisker (AW) in urethane-anaesthetized rats. Compared to sham stimulation, iTBS but not cTBS particularly enhanced late (>18 ms) response components of multi-unit spiking and local field potential responses in layer 4 but not the very early response (<18 ms). Similarly, only iTBS diminished the suppression of the second response evoked by paired PW or AW-PW stimulation at 20 ms intervals. The effects increased with each of the five iTBS blocks applied. With cTBS a mild effect similar to that of iTBS was first evident after 4-5 stimulation blocks. Enhanced cortical c-Fos and zif268 expression but reduced PV and GAD67 expression was found only after iTBS, indicating increased cortical activity due to lowered inhibition. We conclude that iTBS but less cTBS may primarily weaken a late recurrent-type cortical inhibition mediated via a subset of PV+ interneurons, enabling stronger late response components believed to contribute to the perception of sensory events.
Collapse
Affiliation(s)
- Andreas Thimm
- Department of Neurophysiology, Medical Faculty, Ruhr-University Bochum, 44780, Bochum, Germany
| | | |
Collapse
|
248
|
Lottem E, Gugig E, Azouz R. Parallel coding schemes of whisker velocity in the rat's somatosensory system. J Neurophysiol 2014; 113:1784-99. [PMID: 25552637 DOI: 10.1152/jn.00485.2014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The function of rodents' whisker somatosensory system is to transform tactile cues, in the form of vibrissa vibrations, into neuronal responses. It is well established that rodents can detect numerous tactile stimuli and tell them apart. However, the transformation of tactile stimuli obtained through whisker movements to neuronal responses is not well-understood. Here we examine the role of whisker velocity in tactile information transmission and its coding mechanisms. We show that in anaesthetized rats, whisker velocity is related to the radial distance of the object contacted and its own velocity. Whisker velocity is accurately and reliably coded in first-order neurons in parallel, by both the relative time interval between velocity-independent first spike latency of rapidly adapting neurons and velocity-dependent first spike latency of slowly adapting neurons. At the same time, whisker velocity is also coded, although less robustly, by the firing rates of slowly adapting neurons. Comparing first- and second-order neurons, we find similar decoding efficiencies for whisker velocity using either temporal or rate-based methods. Both coding schemes are sufficiently robust and hardly affected by neuronal noise. Our results suggest that whisker kinematic variables are coded by two parallel coding schemes and are disseminated in a similar way through various brain stem nuclei to multiple brain areas.
Collapse
Affiliation(s)
- Eran Lottem
- Department of Physiology and Cell Biology, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Erez Gugig
- Department of Physiology and Cell Biology, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Rony Azouz
- Department of Physiology and Cell Biology, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
249
|
Martin-Cortecero J, Nuñez A. Tactile response adaptation to whisker stimulation in the lemniscal somatosensory pathway of rats. Brain Res 2014; 1591:27-37. [DOI: 10.1016/j.brainres.2014.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 09/17/2014] [Accepted: 10/01/2014] [Indexed: 11/29/2022]
|
250
|
Goudar V, Buonomano DV. A model of order-selectivity based on dynamic changes in the balance of excitation and inhibition produced by short-term synaptic plasticity. J Neurophysiol 2014; 113:509-23. [PMID: 25339707 DOI: 10.1152/jn.00568.2014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Determining the order of sensory events separated by a few hundred milliseconds is critical to many forms of sensory processing, including vocalization and speech discrimination. Although many experimental studies have recorded from auditory order-sensitive and order-selective neurons, the underlying mechanisms are poorly understood. Here we demonstrate that universal properties of cortical synapses-short-term synaptic plasticity of excitatory and inhibitory synapses-are well suited for the generation of order-selective neural responses. Using computational models of canonical disynaptic circuits, we show that the dynamic changes in the balance of excitation and inhibition imposed by short-term plasticity lead to the generation of order-selective responses. Parametric analyses predict that among the forms of short-term plasticity expressed at excitatory-to-excitatory, excitatory-to-inhibitory, and inhibitory-to-excitatory synapses, the single most important contributor to order-selectivity is the paired-pulse depression of inhibitory postsynaptic potentials (IPSPs). A topographic model of the auditory cortex that incorporates short-term plasticity accounts for both context-dependent suppression and enhancement in response to paired tones. Together these results provide a framework to account for an important computational problem based on ubiquitous synaptic properties that did not yet have a clearly established computational function. Additionally, these studies suggest that disynaptic circuits represent a fundamental computational unit that is capable of processing both spatial and temporal information.
Collapse
Affiliation(s)
- Vishwa Goudar
- Integrative Center for Learning and Memory, Departments of Neurobiology and Psychology, UCLA, Los Angeles, California
| | - Dean V Buonomano
- Integrative Center for Learning and Memory, Departments of Neurobiology and Psychology, UCLA, Los Angeles, California
| |
Collapse
|