201
|
Klanker M, Feenstra M, Denys D. Dopaminergic control of cognitive flexibility in humans and animals. Front Neurosci 2013; 7:201. [PMID: 24204329 PMCID: PMC3817373 DOI: 10.3389/fnins.2013.00201] [Citation(s) in RCA: 156] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 10/11/2013] [Indexed: 12/21/2022] Open
Abstract
Striatal dopamine (DA) is thought to code for learned associations between cues and reinforcers and to mediate approach behavior toward a reward. Less is known about the contribution of DA to cognitive flexibility—the ability to adapt behavior in response to changes in the environment. Altered reward processing and impairments in cognitive flexibility are observed in psychiatric disorders such as obsessive compulsive disorder (OCD). Patients with this disorder show a disruption of functioning in the frontostriatal circuit and alterations in DA signaling. In this review we summarize findings from animal and human studies that have investigated the involvement of striatal DA in cognitive flexibility. These findings may provide a better understanding of the role of dopaminergic dysfunction in cognitive inflexibility in psychiatric disorders, such as OCD.
Collapse
Affiliation(s)
- Marianne Klanker
- Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences Amsterdam, Netherlands ; Department of Psychiatry, Academic Medical Center, University of Amsterdam Amsterdam, Netherlands
| | | | | |
Collapse
|
202
|
Kukshal P, Kodavali VC, Srivastava V, Wood J, McClain L, Bhatia T, Bhagwat AM, Deshpande SN, Nimgaonkar VL, Thelma BK. Dopaminergic gene polymorphisms and cognitive function in a north Indian schizophrenia cohort. J Psychiatr Res 2013; 47:1615-22. [PMID: 23932573 PMCID: PMC3831060 DOI: 10.1016/j.jpsychires.2013.07.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Revised: 05/10/2013] [Accepted: 07/05/2013] [Indexed: 12/13/2022]
Abstract
BACKGROUND Associations of polymorphisms from dopaminergic neurotransmitter pathway genes have mostly been reported in Caucasian ancestry schizophrenia (SZ) samples. As studies investigating single SNPs with SZ have been inconsistent, more detailed analyses utilizing multiple SNPs with the diagnostic phenotype as well as cognitive function may be more informative. Therefore, these analyses were conducted in a north Indian sample. METHODS Indian SZ case-parent trios (n = 601 families); unscreened controls (n = 468) and an independent set of 118 trio families were analyzed. Representative SNPs in the Dopamine D3 receptor (DRD3), dopamine transporter (SLC6A3), vesicular monoamine transporter 2 (SLC18A2), catechol-o-methyltransferase (COMT) and dopamine beta-hydroxylase (DBH) were genotyped using SNaPshot/SNPlex assays (n = 59 SNPs). The Trail Making Test (TMT) was administered to a subset of the sample (n = 260 cases and n = 302 parents). RESULTS Eight SNPs were nominally associated with SZ in either case-control or family based analyses (p < 0.05, rs7631540 and rs2046496 in DRD3; rs363399 and rs10082463 in SLC18A2; rs4680, rs4646315 and rs9332377 in COMT). rs6271 at DBH was associated in both analyses. Haplotypes of DRD3 SNPs incorporating rs7631540-rs2134655-rs3773678-rs324030-rs6280-rs905568 showed suggestive associations in both case-parent and trio samples. At SLC18A2, rs10082463 was nominally associated with psychomotor performance and rs363285 with executive functions using the TMT but did not withstand multiple corrections. CONCLUSIONS Suggestive associations with dopaminergic genes were detected in this study, but convincing links between dopaminergic polymorphisms and SZ or cognitive function were not observed.
Collapse
Affiliation(s)
- Prachi Kukshal
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi 110 021, India; C. B. Patel Research Centre, Vile Parle (West), Mumbai, India.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
203
|
Measuring the construct of executive control in schizophrenia: Defining and validating translational animal paradigms for discovery research. Neurosci Biobehav Rev 2013; 37:2125-40. [DOI: 10.1016/j.neubiorev.2012.04.006] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 03/20/2012] [Accepted: 04/03/2012] [Indexed: 11/20/2022]
|
204
|
Affiliation(s)
- Dong-Min Yin
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, USA
| | | | | |
Collapse
|
205
|
Wass C, Pizzo A, Sauce B, Kawasumi Y, Sturzoiu T, Ree F, Otto T, Matzel LD. Dopamine D1 sensitivity in the prefrontal cortex predicts general cognitive abilities and is modulated by working memory training. Learn Mem 2013; 20:617-27. [PMID: 24129098 PMCID: PMC3799419 DOI: 10.1101/lm.031971.113] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A common source of variance (i.e., “general intelligence”) underlies an individual's performance across diverse tests of cognitive ability, and evidence indicates that the processing efficacy of working memory may serve as one such source of common variance. One component of working memory, selective attention, has been reported to co-vary with general intelligence, and dopamine D1 signaling in prefrontal cortex can modulate attentional abilities. Based on their aggregate performance across five diverse tests of learning, here we characterized the general cognitive ability (GCA) of CD-1 outbred mice. In response to a D1 agonist (SKF82958, 1 mg/kg), we then assessed the relationship between GCA and activation of D1 receptor (D1R)-containing neurons in the prelimbic region of the medial prefrontal cortex, the agranular insular cortex, and the dorsomedial striatum. Increased activation of D1R-containing neurons in the prelimbic cortex (but not the agranular insular cortex or dorsomedial striatum) was observed in animals of high GCA relative to those of low GCA (quantified by c-Fos activation in response to the D1 agonist). However, a Western blot analysis revealed no differences in the density of D1Rs in the prelimbic cortex between animals of high and low GCA. Last, it was observed that working memory training promoted an increase in animals’ GCA and enhanced D1R-mediated neuronal activation in the prelimbic cortex. These results suggest that the sensitivity (but not density) of D1Rs in the prelimbic cortex may both regulate GCA and be a target for working memory training.
Collapse
Affiliation(s)
- Christopher Wass
- Department of Psychology, Rutgers University, Piscataway, New Jersey 08854, USA
| | | | | | | | | | | | | | | |
Collapse
|
206
|
Catecholaminergic gene variants: contribution in ADHD and associated comorbid attributes in the eastern Indian probands. BIOMED RESEARCH INTERNATIONAL 2013; 2013:918410. [PMID: 24163823 PMCID: PMC3791561 DOI: 10.1155/2013/918410] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 08/07/2013] [Accepted: 08/12/2013] [Indexed: 12/25/2022]
Abstract
Contribution of genes in attention deficit hyperactivity disorder (ADHD) has been explored in various populations, and several genes were speculated to contribute small but additive effects. We have assessed variants in four genes, DDC (rs3837091 and rs3735273), DRD2 (rs1800496, rs1801028, and rs1799732), DRD4 (rs4646984 and rs4646983), and COMT (rs165599 and rs740603) in Indian ADHD subjects with comorbid attributes. Cases were recruited following the Diagnostic and Statistical Manual for Mental Disorders-IV-TR after obtaining informed written consent. DNA isolated from peripheral blood leukocytes of ADHD probands (N = 170), their parents (N = 310), and ethnically matched controls (n = 180) was used for genotyping followed by population- and family-based analyses by the UNPHASED program. DRD4 sites showed significant difference in allelic frequencies by case-control analysis, while DDC and COMT exhibited bias in familial transmission (P < 0.05). rs3837091 “AGAG,” rs3735273 “A,” rs1799732 “C,” rs740603 “G,” rs165599 “G” and single repeat alleles of rs4646984/rs4646983 showed positive correlation with co-morbid characteristics (P < 0.05). Multi dimensionality reduction analysis of case-control data revealed significant interactive effects of all four genes (P < 0.001), while family-based data showed interaction between DDC and DRD2 (P = 0.04). This first study on these gene variants in Indo-Caucasoid ADHD probands and associated co-morbid conditions indicates altered dopaminergic neurotransmission in ADHD.
Collapse
|
207
|
Increasing dopamine D2 receptor expression in the adult nucleus accumbens enhances motivation. Mol Psychiatry 2013; 18:1025-33. [PMID: 23711983 PMCID: PMC4030518 DOI: 10.1038/mp.2013.57] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 03/21/2013] [Accepted: 04/02/2013] [Indexed: 01/24/2023]
Abstract
A decrease in dopamine D2 receptor (D2R) binding in the striatum is one of the most common findings in disorders that involve a dysregulation of motivation, including obesity, addiction and attention deficit hyperactivity disorder. As disruption of D2R signaling in the ventral striatum--including the nucleus accumbens (NAc)--impairs motivation, we sought to determine whether potentiating postsynaptic D2R-dependent signaling in the NAc would improve motivation. In this study, we used a viral vector strategy to overexpress postsynaptic D2Rs in either the NAc or the dorsal striatum. We investigated the effects of D2R overexpression on instrumental learning, willingness to work, use of reward value representations and modulation of motivation by reward associated cues. Overexpression of postsynaptic D2R in the NAc selectively increased motivation without altering consummatory behavior, the representation of the value of the reinforcer, or the capacity to use reward associated cues in flexible ways. In contrast, D2R overexpression in the dorsal striatum did not alter performance on any of the tasks. Thus, consistent with numerous studies showing that reduced D2R signaling impairs motivated behavior, our data show that postsynaptic D2R overexpression in the NAc specifically increases an animal's willingness to expend effort to obtain a goal. Taken together, these results provide insight into the potential impact of future therapeutic strategies that enhance D2R signaling in the NAc.
Collapse
|
208
|
Yin DM, Chen YJ, Lu YS, Bean JC, Sathyamurthy A, Shen C, Liu X, Lin TW, Smith CA, Xiong WC, Mei L. Reversal of behavioral deficits and synaptic dysfunction in mice overexpressing neuregulin 1. Neuron 2013; 78:644-57. [PMID: 23719163 DOI: 10.1016/j.neuron.2013.03.028] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2013] [Indexed: 11/16/2022]
Abstract
Neuregulin 1 (Nrg1) is a susceptibility gene of schizophrenia, a disabling mental illness that affects 1% of the general population. Here, we show that ctoNrg1 mice, which mimic high levels of NRG1 observed in forebrain regions of schizophrenic patients, exhibit behavioral deficits and hypofunction of glutamatergic and GABAergic pathways. Intriguingly, these deficits were diminished when NRG1 expression returned to normal in adult mice, suggesting that damage which occurred during development is recoverable. Conversely, increase of NRG1 in adulthood was sufficient to cause glutamatergic impairment and behavioral deficits. We found that the glutamatergic impairment by NRG1 overexpression required LIM domain kinase 1 (LIMK1), which was activated in mutant mice, identifying a pathological mechanism. These observations demonstrate that synaptic dysfunction and behavioral deficits in ctoNrg1 mice require continuous NRG1 abnormality in adulthood, suggesting that relevant schizophrenia may benefit from therapeutic intervention to restore NRG1 signaling.
Collapse
Affiliation(s)
- Dong-Min Yin
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
209
|
Combination of prenatal immune challenge and restraint stress affects prepulse inhibition and dopaminergic/GABAergic markers. Prog Neuropsychopharmacol Biol Psychiatry 2013; 45:156-64. [PMID: 23697796 DOI: 10.1016/j.pnpbp.2013.05.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Revised: 05/11/2013] [Accepted: 05/11/2013] [Indexed: 12/17/2022]
Abstract
Gestational immune challenge with the viral-like antigen poly I:C is a well-established neurodevelopmental model of schizophrenia. However, exposure to inflammation during early life may sensitize the developing brain to secondary insults and enhance the central nervous system vulnerability. To gain a better understanding of the pathophysiology of schizophrenia, we thus developed a two-hit animal model based on prenatal poly I:C immune challenge followed by restraint stress in juvenile mice. C57BL/6 gestational mice were intraperitoneally injected with poly I:C or saline at gestational day 12. Pups were then submitted or not, to restraint stress for 2h, for three consecutive days, from postnatal days 33 to 35. Prepulse inhibition (PPI) of acoustic startle response is commonly used to assess sensorimotor gating, a neural process severely disrupted in patients with schizophrenia. Our results revealed that the combination of prenatal immune challenge with poly I:C followed by a restraint stress period was able to induce a PPI disruption in 36-day-old pups, as opposed to each insult applied separately. PPI deficits were accompanied by dopaminergic and GABAergic abnormalities in the prefrontal cortex and striatum. Indeed, measurements of cortical and striatal dopamine D2 receptor (D2R) mRNA and protein levels revealed that the combination of gestational exposure to poly I:C and postnatal restraint stress induced an increase in D2R protein and mRNA levels. Likewise, the combination of both insults reduced the mRNA and protein expression levels of the 67 kDa form of glutamic acid decarboxylase (GAD67), in those two brain regions. To our knowledge, this two-hit animal model is the first in vivo model reporting PPI deficits at pubertal age. This two-hit animal model may also help in studying innovative therapies dedicated to the treatment of schizophrenia, especially in its early phase.
Collapse
|
210
|
Kesby JP, Cui X, Burne THJ, Eyles DW. Altered dopamine ontogeny in the developmentally vitamin D deficient rat and its relevance to schizophrenia. Front Cell Neurosci 2013; 7:111. [PMID: 23882183 PMCID: PMC3713405 DOI: 10.3389/fncel.2013.00111] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 06/26/2013] [Indexed: 11/13/2022] Open
Abstract
Schizophrenia is a heterogeneous group of disorders with unknown etiology. Although abnormalities in multiple neurotransmitter systems have been linked to schizophrenia, alterations in dopamine (DA) neurotransmission remain central to the treatment of this disorder. Given that schizophrenia is considered a neurodevelopmental disorder we have hypothesized that abnormal DA signaling in the adult patient may result from altered DA signaling during fetal brain development. Environmental and genetic risk factors can be modeled in rodents to allow for the investigation of early neurodevelopmental pathogenesis that may lead to clues into the etiology of schizophrenia. To address this we created an animal model of one such risk factor, developmental vitamin D (DVD) deficiency. DVD-deficient adult rats display an altered behavioral profile in response to DA releasing and blocking agents that are reminiscent of that seen in schizophrenia patients. Furthermore, developmental studies revealed that DVD deficiency also altered cell proliferation, apoptosis, and neurotransmission across the embryonic brain. In particular, DVD deficiency reduces the expression of crucial dopaminergic specification factors and alters DA metabolism in the developing brain. We speculate such alterations in fetal brain development may change the trajectory of DA neuron ontogeny to induce the behavioral abnormalities observed in adult offspring. The widespread evidence that both dopaminergic and structural changes are present in people who develop schizophrenia prior to onset also suggest that early alterations in development are central to the disease. Taken together, early alterations in DA ontogeny may represent a core feature in the pathology of schizophrenia. Such a mechanism could bring together evidence from multiple risk factors and genetic vulnerabilities to form a convergent pathway in disease pathophysiology.
Collapse
Affiliation(s)
- James P. Kesby
- Department of Psychiatry, School of Medicine, University of California San DiegoLa Jolla, CA, USA
| | - Xiaoying Cui
- Queensland Brain Institute, University of QueenslandBrisbane, QLD, Australia
| | - Thomas H. J. Burne
- Queensland Brain Institute, University of QueenslandBrisbane, QLD, Australia
- Queensland Centre for Mental Health Research, The Park Centre for Mental HealthWacol, QLD, Australia
| | - Darryl W. Eyles
- Queensland Brain Institute, University of QueenslandBrisbane, QLD, Australia
- Queensland Centre for Mental Health Research, The Park Centre for Mental HealthWacol, QLD, Australia
| |
Collapse
|
211
|
Yoon JH, Minzenberg MJ, Raouf S, D'Esposito M, Carter CS. Impaired prefrontal-basal ganglia functional connectivity and substantia nigra hyperactivity in schizophrenia. Biol Psychiatry 2013; 74:122-9. [PMID: 23290498 PMCID: PMC3620727 DOI: 10.1016/j.biopsych.2012.11.018] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 11/07/2012] [Accepted: 11/19/2012] [Indexed: 11/18/2022]
Abstract
BACKGROUND The theory that prefrontal cortex (PFC) dysfunction in schizophrenia leads to excess subcortical dopamine has generated widespread interest because it provides a parsimonious account for two core features of schizophrenia, cognitive deficits and psychosis, respectively. However, there has been limited empirical validation of this model. Moreover, the identity of the specific subcortical brain regions and circuits that may be impaired as a result of PFC dysfunction and mediate its link to psychosis in schizophrenia remains unclear. We undertook this event-related functional magnetic resonance imaging study to test the hypothesis that PFC dysfunction is associated with altered function of and connectivity with dopamine regulating regions of the basal ganglia. METHODS Eighteen individuals with schizophrenia or schizoaffective disorder and 19 healthy control participants completed event-related functional magnetic resonance imaging during working memory. We conducted between-group contrasts of task-evoked, univariate activation maps to identify regions of altered function in schizophrenia. We also compared the groups on the level of functional connectivity between a priori identified PFC and basal ganglia regions to determine if prefrontal disconnectivity in patients was present. RESULTS We observed task-evoked hyperactivity of the substantia nigra that occurred in association with prefrontal and striatal hypoactivity in the schizophrenia group. The magnitude of prefrontal functional connectivity with these dysfunctional basal ganglia regions was decreased in the schizophrenia group. Additionally, the level of nigrostriatal functional connectivity predicted the level of psychosis. CONCLUSIONS These results suggest that functional impairments of the prefrontal striatonigral circuit may be a common pathway linking the pathogenesis of cognitive deficits and psychosis in schizophrenia.
Collapse
Affiliation(s)
- Jong H Yoon
- Department of Psychiatry and Imaging Research Center, University of California Davis, Sacramento, CA 95817, USA.
| | | | | | | | | |
Collapse
|
212
|
Rangel-Gomez M, Hickey C, van Amelsvoort T, Bet P, Meeter M. The detection of novelty relies on dopaminergic signaling: evidence from apomorphine's impact on the novelty N2. PLoS One 2013; 8:e66469. [PMID: 23840482 PMCID: PMC3688774 DOI: 10.1371/journal.pone.0066469] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 05/08/2013] [Indexed: 11/18/2022] Open
Abstract
Despite much research, it remains unclear if dopamine is directly involved in novelty detection or plays a role in orchestrating the subsequent cognitive response. This ambiguity stems in part from a reliance on experimental designs where novelty is manipulated and dopaminergic activity is subsequently observed. Here we adopt the alternative approach: we manipulate dopamine activity using apomorphine (D1/D2 agonist) and measure the change in neurological indices of novelty processing. In separate drug and placebo sessions, participants completed a von Restorff task. Apomorphine speeded and potentiated the novelty-elicited N2, an Event-Related Potential (ERP) component thought to index early aspects of novelty detection, and caused novel-font words to be better recalled. Apomorphine also decreased the amplitude of the novelty-P3a. An increase in D1/D2 receptor activation thus appears to potentiate neural sensitivity to novel stimuli, causing this content to be better encoded.
Collapse
|
213
|
Richter A, Richter S, Barman A, Soch J, Klein M, Assmann A, Libeau C, Behnisch G, Wüstenberg T, Seidenbecher CI, Schott BH. Motivational salience and genetic variability of dopamine D2 receptor expression interact in the modulation of interference processing. Front Hum Neurosci 2013; 7:250. [PMID: 23760450 PMCID: PMC3672681 DOI: 10.3389/fnhum.2013.00250] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 05/20/2013] [Indexed: 12/13/2022] Open
Abstract
Dopamine has been implicated in the fine-tuning of complex cognitive and motor function and also in the anticipation of future rewards. This dual function of dopamine suggests that dopamine might be involved in the generation of active motivated behavior. The DRD2 TaqIA polymorphism of the dopamine D2 receptor gene (rs1800497) has previously been suggested to affect striatal function with carriers of the less common A1 allele exhibiting reduced striatal D2 receptor density and increased risk for addiction. Here we aimed to investigate the influences of DRD2 TaqIA genotype on the modulation of interference processing by reward and punishment. Forty-six young, healthy volunteers participated in a behavioral experiment, and 32 underwent functional magnetic resonance imaging (fMRI). Participants performed a flanker task with a motivation manipulation (monetary reward, monetary loss, neither, or both). Reaction times (RTs) were shorter in motivated flanker trials, irrespective of congruency. In the fMRI experiment motivation was associated with reduced prefrontal activation during incongruent vs. congruent flanker trials, possibly reflecting increased processing efficiency. DRD2 TaqIA genotype did not affect overall RTs, but interacted with motivation on the congruency-related RT differences, with A1 carriers showing smaller interference effects to reward alone and A2 homozygotes exhibiting a specific interference reduction during combined reward (REW) and punishment trials (PUN). In fMRI, anterior cingulate activity showed a similar pattern of genotype-related modulation. Additionally, A1 carriers showed increased anterior insula activation relative to A2 homozygotes. Our results point to a role for genetic variations of the dopaminergic system in individual differences of cognition-motivation interaction.
Collapse
Affiliation(s)
- Anni Richter
- Department of Behavioral Neurology and Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology Magdeburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
214
|
Markant J, Cicchetti D, Hetzel S, Thomas KM. Relating dopaminergic and cholinergic polymorphisms to spatial attention in infancy. Dev Psychol 2013; 50:360-9. [PMID: 23731290 DOI: 10.1037/a0033172] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Early selective attention skills are a crucial building block for cognitive development, as attention orienting serves as a primary means by which infants interact with and learn from the environment. Although several studies have examined infants' attention orienting using the spatial cueing task, relatively few studies have examined neurodevelopmental factors associated with attention orienting during infancy. The present study examined the relationship between normative genetic polymorphisms affecting dopamine and acetylcholine signaling and attention orienting in 7-month-old infants during a spatial cueing task. We focused on 3 genes, including the CHRNA4 C¹⁵⁴⁵T SNP (rs10344946), DAT1 3'UTR VNTR, and COMT Val¹⁵⁸Met SNP (rs4680), as previous adult research has linked spatial attention skills to these polymorphisms. Behavioral measures included both facilitation of orienting at the cued location as well as inhibition of return (IOR), in which attention orienting is suppressed at the cued location. Results indicated that COMT Val carriers showed robust IOR relative to infants with the Met/Met genotype. However, COMT was unrelated to infants' facilitation responses, and there were no effects of CHRNA4 or DAT1 on either facilitation or IOR. Overall, this study suggests that variations in dopamine signaling, likely in prefrontal cortex, contribute to individual differences in orienting during early development.
Collapse
Affiliation(s)
- Julie Markant
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University
| | | | - Susan Hetzel
- Institute of Child Development, University of Minnesota
| | | |
Collapse
|
215
|
Parnaudeau S, O'Neill PK, Bolkan SS, Ward RD, Abbas AI, Roth BL, Balsam PD, Gordon JA, Kellendonk C. Inhibition of mediodorsal thalamus disrupts thalamofrontal connectivity and cognition. Neuron 2013; 77:1151-62. [PMID: 23522049 DOI: 10.1016/j.neuron.2013.01.038] [Citation(s) in RCA: 279] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2013] [Indexed: 02/08/2023]
Abstract
Cognitive deficits are central to schizophrenia, but the underlying mechanisms still remain unclear. Imaging studies performed in patients point to decreased activity in the mediodorsal thalamus (MD) and reduced functional connectivity between the MD and prefrontal cortex (PFC) as candidate mechanisms. However, a causal link is still missing. We used a pharmacogenetic approach in mice to diminish MD neuron activity and examined the behavioral and physiological consequences. We found that a subtle decrease in MD activity is sufficient to trigger selective impairments in prefrontal-dependent cognitive tasks. In vivo recordings in behaving animals revealed that MD-PFC beta-range synchrony is enhanced during acquisition and performance of a working memory task. Decreasing MD activity interfered with this task-dependent modulation of MD-PFC synchrony, which correlated with impaired working memory. These findings suggest that altered MD activity is sufficient to disrupt prefrontal-dependent cognitive behaviors and could contribute to the cognitive symptoms observed in schizophrenia.
Collapse
Affiliation(s)
- Sebastien Parnaudeau
- Department of Psychiatry, New York State Psychiatric Institute, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
216
|
The relationship between antipsychotic D2 occupancy and change in frontal metabolism and working memory : A dual [(11)C]raclopride and [(18) F]FDG imaging study with aripiprazole. Psychopharmacology (Berl) 2013; 227:221-9. [PMID: 23271192 DOI: 10.1007/s00213-012-2953-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 12/10/2012] [Indexed: 10/27/2022]
Abstract
RATIONALE The effects of aripiprazole on cognitive function are obscure, possibly due to the difficulty in disentangling the specific effects on cognitive function from effects secondary to the improvement of other schizophrenic symptoms. This prompts the necessity of using an intermediate biomarker relating the drug effect on the brain to change in cognitive function. OBJECTIVES To explore the effect of aripiprazole on cognitive function, we measured changes in frontal metabolism as an intermediate biomarker and sought to determine its relationship with D2 receptor occupancy and changes in working memory. METHODS Fifteen healthy male volunteers participated in the study. Serial positron emission tomography (PET) scans with [(11)C]raclopride and [(18) F]FDG were conducted 1 day before and 2 days after the administration of aripiprazole. The subjects performed the N-back task just after finishing the [(18) F]FDG scan. RESULTS The mean (±SD) D2 receptor occupancies were 22.2 ± 16.0 % in the 2 mg group, 35.5 ± 3.6 % in the 5 mg group, 63.2 ± 9.9 % in the 10 mg group and 72.8 ± 2.1 % in the 30 mg group. The frontal metabolism was significantly decreased after the administration of aripiprazole (t = 2.705, df = 14, p = 0.017). Greater striatal D2 receptor occupancy was related to greater decrease in frontal metabolism (r = -0.659, p = 0.010), and greater reduction in frontal metabolism was associated with longer reaction times (r = -0.597, p = 0.019) under the greatest task load. CONCLUSIONS Aripiprazole can affect cognitive function and alter frontal metabolic function. The changes in these functions are linked to greater D2 receptor occupancy. This suggests that it may be important to find the lowest effective dose of aripiprazole in order to prevent adverse cognitive effects.
Collapse
|
217
|
Mouri A, Nagai T, Ibi D, Yamada K. Animal models of schizophrenia for molecular and pharmacological intervention and potential candidate molecules. Neurobiol Dis 2013; 53:61-74. [DOI: 10.1016/j.nbd.2012.10.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 10/23/2012] [Accepted: 10/28/2012] [Indexed: 12/22/2022] Open
|
218
|
Stelzel C, Fiebach CJ, Cools R, Tafazoli S, D'Esposito M. Dissociable fronto-striatal effects of dopamine D2 receptor stimulation on cognitive versus motor flexibility. Cortex 2013; 49:2799-811. [PMID: 23660437 DOI: 10.1016/j.cortex.2013.04.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 12/05/2012] [Accepted: 04/03/2013] [Indexed: 11/26/2022]
Abstract
Genetic and pharmacological studies suggest an important role of the dopamine D2 receptor (DRD2) in flexible behavioral adaptation, mostly shown in reward-based learning paradigms. Recent evidence from imaging genetics indicates that also intentional cognitive flexibility, associated with lateral frontal cortex, is affected by variations in DRD2 signaling. In the present functional magnetic resonance imaging (MRI) study, we tested the effects of a direct pharmacological manipulation of DRD2 stimulation on intentional flexibility in a task-switching context, requiring switches between cognitive task rules and between response hands. In a double blind, counterbalanced design, participants received either a low dose of the DRD2 agonist bromocriptine or a placebo in two separate sessions. Bromocriptine modulated the blood-oxygen-level-dependent (BOLD) signal during rule switching: rule-switching-related activity in the left posterior lateral frontal cortex and in the striatum was increased compared to placebo, at comparable performance levels. Fronto-striatal connectivity under bromocriptine was slightly increased for rule switches compared to rule repetitions. Hand-switching-related activity, in contrast, was reduced under bromocriptine in sensorimotor regions. Our results provide converging evidence for an involvement of DRD2 signaling in fronto-striatal mechanisms underlying intentional flexibility, and indicate that the neural mechanisms underlying different types of flexibility (cognitive vs motor) are affected differently by increased dopaminergic stimulation.
Collapse
Affiliation(s)
- Christine Stelzel
- Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin, Berlin, Germany.
| | | | | | | | | |
Collapse
|
219
|
Agnoli L, Mainolfi P, Invernizzi RW, Carli M. Dopamine D1-like and D2-like receptors in the dorsal striatum control different aspects of attentional performance in the five-choice serial reaction time task under a condition of increased activity of corticostriatal inputs. Neuropsychopharmacology 2013; 38:701-14. [PMID: 23232445 PMCID: PMC3671986 DOI: 10.1038/npp.2012.236] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We investigated the interaction between the corticostriatal glutamatergic afferents and dopamine D1-like and D2-like receptors in the dorsomedial striatum (dm-STR) in attention and executive response control in the five-choice serial reaction time (5-CSRT) task. The competitive NMDA receptor antagonist 3-(R)-2-carboxypiperazin-4-propyl-1-phosphonic acid (CPP) injected in the mPFC impaired accuracy and increased premature and perseverative responding, raising GLU, DA, and GABA release in the dm-STR. The D1-like antagonist SCH23390 injected in the dm-STR reversed the CPP-induced accuracy deficit but did not affect the increase in perseverative responding. In contrast, the D2-like antagonist haloperidol injected in the dm-STR reduced the CPP-induced increase in perseverative responding but not the accuracy deficit. The different roles of dorsal striatal D1-like and D2-like receptor were further supported by the finding that activation of D1-like receptor in the dm-STR by SKF38393 impaired accuracy but not perseverative responding while the D2-like agonist quinpirole injected in the dm-STR increased perseverative responding but did not affect accuracy. These findings suggest that integration of cortical information by D1-like receptors in the dm-STR is a key mechanism of the input selection process of attention while the integration of corticostriatal signals by D2-like receptors preserves the ability to switch from one act/response to the next in a complex motor sequence, thus providing for behavioral flexibility.
Collapse
Affiliation(s)
- Laura Agnoli
- Department of Neuroscience, Laboratory of Neurochemistry and Behavior, Istituto di Ricerche Farmacologiche ‘Mario Negri', via G. La Masa 19, Milano, Italy
| | - Pierangela Mainolfi
- Department of Neuroscience, Laboratory of Neurochemistry and Behavior, Istituto di Ricerche Farmacologiche ‘Mario Negri', via G. La Masa 19, Milano, Italy
| | - Roberto W Invernizzi
- Department of Neuroscience, Laboratory of Neurochemistry and Behavior, Istituto di Ricerche Farmacologiche ‘Mario Negri', via G. La Masa 19, Milano, Italy
| | - Mirjana Carli
- Department of Neuroscience, Laboratory of Neurochemistry and Behavior, Istituto di Ricerche Farmacologiche ‘Mario Negri', via G. La Masa 19, Milano, Italy,Department of Neuroscience, Laboratory of Neurochemistry and Behavior, Istituto di Ricerche Farmacologiche ‘Mario Negri', via G. La Masa 19, Milano 20156, Italy. Tel: +39 0239014466, Fax: +39 023546277, E-mail:
| |
Collapse
|
220
|
Carr GV, Jenkins KA, Weinberger DR, Papaleo F. Loss of dysbindin-1 in mice impairs reward-based operant learning by increasing impulsive and compulsive behavior. Behav Brain Res 2013; 241:173-84. [PMID: 23261874 PMCID: PMC3556458 DOI: 10.1016/j.bbr.2012.12.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 12/08/2012] [Accepted: 12/12/2012] [Indexed: 12/30/2022]
Abstract
The dystrobrevin-binding protein 1 (DTNBP1) gene, which encodes the dysbindin-1 protein, is a potential schizophrenia susceptibility gene. Polymorphisms in the DTNBP1 gene have been associated with altered cognitive abilities. In the present study, dysbindin-1 null mutant (dys-/-), heterozygous (dys+/-), and wild-type (dys+/+) mice, on a C57BL/6J genetic background, were tested in either a match to sample or nonmatch to sample visual discrimination task. This visual discrimination task was designed to measure rule learning and detect any changes in response timing over the course of testing. Dys-/- mice displayed significant learning deficits and required more trials to acquire this task. However, once criterion was reached, there were no differences between the genotypes on any behavioral measures. Dys-/- mice exhibited increased compulsive and impulsive behaviors compared to control littermates suggesting the inability to suppress incorrectly-timed responses underlies their increased time to acquisition. Indeed, group comparisons of behavior differences between the first and last day of testing showed that only dys-/- mice consistently decreased measures of perseverative, premature, timeout, and total responses. These findings illustrate how some aspects of altered cognitive performance in dys-/- mice might be related to increased impulsive and compulsive behaviors, analogous to cognitive deficits in some individuals with psychiatric disorders.
Collapse
Affiliation(s)
- Gregory V. Carr
- Clinical Brain Disorders Branch; Genes, Cognition and Psychosis Program, National Institute of Mental Health, Bethesda, MD, USA
| | - Kimberly A. Jenkins
- Clinical Brain Disorders Branch; Genes, Cognition and Psychosis Program, National Institute of Mental Health, Bethesda, MD, USA
| | - Daniel R. Weinberger
- Clinical Brain Disorders Branch; Genes, Cognition and Psychosis Program, National Institute of Mental Health, Bethesda, MD, USA
- Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, MD, USA
- Department of Psychiatry, Neurology, and Neuroscience and the Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205
| | - Francesco Papaleo
- Clinical Brain Disorders Branch; Genes, Cognition and Psychosis Program, National Institute of Mental Health, Bethesda, MD, USA
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy
- Dipartimento di Scienze del Farmaco, Universita’ degli Studi di Padova, Largo Meneghetti, 2, 35131 Padova, Italy
| |
Collapse
|
221
|
High dose zinc supplementation induces hippocampal zinc deficiency and memory impairment with inhibition of BDNF signaling. PLoS One 2013; 8:e55384. [PMID: 23383172 PMCID: PMC3561272 DOI: 10.1371/journal.pone.0055384] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 12/21/2012] [Indexed: 11/21/2022] Open
Abstract
Zinc ions highly concentrate in hippocampus and play a key role in modulating spatial learning and memory. At a time when dietary fortification and supplementation of zinc have increased the zinc consuming level especially in the youth, the toxicity of zinc overdose on brain function was underestimated. In the present study, weaning ICR mice were given water supplemented with 15 ppm Zn (low dose), 60 ppm Zn (high dose) or normal lab water for 3 months, the behavior and brain zinc homeostasis were tested. Mice fed high dose of zinc showed hippocampus-dependent memory impairment. Unexpectedly, zinc deficiency, but not zinc overload was observed in hippocampus, especially in the mossy fiber-CA3 pyramid synapse. The expression levels of learning and memory related receptors and synaptic proteins such as NMDA-NR2A, NR2B, AMPA-GluR1, PSD-93 and PSD-95 were significantly decreased in hippocampus, with significant loss of dendritic spines. In keeping with these findings, high dose intake of zinc resulted in decreased hippocampal BDNF level and TrkB neurotrophic signaling. At last, increasing the brain zinc level directly by brain zinc injection induced BDNF expression, which was reversed by zinc chelating in vivo. These results indicate that zinc plays an important role in hippocampus-dependent learning and memory and BDNF expression, high dose supplementation of zinc induces specific zinc deficiency in hippocampus, which further impair learning and memory due to decreased availability of synaptic zinc and BDNF deficit.
Collapse
|
222
|
Aging magnifies the effects of dopamine transporter and D2 receptor genes on backward serial memory. Neurobiol Aging 2013; 34:358.e1-10. [DOI: 10.1016/j.neurobiolaging.2012.08.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2012] [Revised: 07/17/2012] [Accepted: 08/02/2012] [Indexed: 11/21/2022]
|
223
|
Fusar-Poli P, Meyer-Lindenberg A. Striatal presynaptic dopamine in schizophrenia, part II: meta-analysis of [(18)F/(11)C]-DOPA PET studies. Schizophr Bull 2013; 39:33-42. [PMID: 22282454 PMCID: PMC3523905 DOI: 10.1093/schbul/sbr180] [Citation(s) in RCA: 179] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/08/2011] [Indexed: 11/13/2022]
Abstract
BACKGROUND Alterations in striatal dopamine neurotransmission are central to the emergence of psychotic symptoms and to the mechanism of action of antipsychotics. Although the functional integrity of the presynaptic system can be assessed by measuring striatal dopamine synthesis capacity (DSC), no quantitative meta-analysis is available. METHODS Eleven striatal (caudate and putamen) [(11)C/(18)F]-DOPA positron emission tomography studies comparing 113 patients with schizophrenia and 131 healthy controls were included in a quantitative meta-analysis of DSC. Demographic, clinical, and methodological variables were extracted from each study or obtained from the authors and tested as covariates. Hedges' g was used as a measure of effect size in Comprehensive Meta-Analysis. Publication bias was assessed with funnel plots and Egger's intercept. Heterogeneity was addressed with the Q statistic and I(2) index. RESULTS Patients and controls were well matched in sociodemographic variables (P > .05). Quantitative evaluation of publication bias was nonsignificant (P = .276). Heterogeneity across study was modest in magnitude and statistically nonsignificant (Q = 19.19; P = .078; I (2) = 39.17). Patients with schizophrenia showed increased striatal DSC as compared with controls (Hedges' g = 0.867, CI 95% from 0.594 to 1.140, Z = 6.222, P < .001). The DSC schizophrenia/control ratio showed a relatively homogenous elevation of around 14% in schizophrenic patients as compared with controls. DSC elevation was regionally confirmed in both caudate and putamen. Controlling for potential confounders such as age, illness duration, gender, psychotic symptoms, and exposure to antipsychotics had no impact on the results. Sensitivity analysis confirmed robustness of meta-analytic findings. CONCLUSIONS The present meta-analysis showed consistently increased striatal DSC in schizophrenia, with a 14% elevation in patients as compared with healthy controls.
Collapse
Affiliation(s)
- Paolo Fusar-Poli
- Section of Psychiatry,DepartmentofHealth Sciences, University of Pavia, Pavia, Italy.
| | | |
Collapse
|
224
|
Bonoldi I, Howes O. The Enduring Centrality of Dopamine in the Pathophysiology of Schizophrenia. A NEW ERA OF CATECHOLAMINES IN THE LABORATORY AND CLINIC 2013; 68:199-220. [DOI: 10.1016/b978-0-12-411512-5.00010-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
|
225
|
Mihali A, Subramani S, Kaunitz G, Rayport S, Gaisler-Salomon I. Modeling resilience to schizophrenia in genetically modified mice: a novel approach to drug discovery. Expert Rev Neurother 2012; 12:785-99. [PMID: 22853787 DOI: 10.1586/ern.12.60] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Complex psychiatric disorders, such as schizophrenia, arise from a combination of genetic, developmental, environmental and social factors. These vulnerabilities can be mitigated by adaptive factors in each of these domains engendering resilience. Modeling resilience in mice using transgenic approaches offers a direct path to intervention, as resilience mutations point directly to therapeutic targets. As prototypes for this approach, we discuss the three mouse models of schizophrenia resilience, all based on modulating glutamatergic synaptic transmission. This motivates the broader development of schizophrenia resilience mouse models independent of specific pathophysiological hypotheses as a strategy for drug discovery. Three guiding validation criteria are presented. A resilience-oriented approach should identify pharmacologically tractable targets and in turn offer new insights into pathophysiological mechanisms.
Collapse
Affiliation(s)
- Andra Mihali
- Department of Psychiatry, Columbia University, New York State Psychiatric Institute, 1051 Riverside Drive, Unit 62, New York, NY 10032, USA
| | | | | | | | | |
Collapse
|
226
|
Deletion of GSK3β in D2R-expressing neurons reveals distinct roles for β-arrestin signaling in antipsychotic and lithium action. Proc Natl Acad Sci U S A 2012. [PMID: 23188793 DOI: 10.1073/pnas.1215489109] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Several studies in rodent models have shown that glycogen synthase kinase 3 β (GSK3β) plays an important role in the actions of antispychotics and mood stabilizers. Recently it was demonstrated that GSK3β through a β-arrestin2/protein kinase B (PKB or Akt)/protein phosphatase 2A (PP2A) signaling complex regulates dopamine (DA)- and lithium-sensitive behaviors and is required to mediate endophenotypes of mania and depression in rodents. We have previously shown that atypical antipsychotics antagonize DA D2 receptor (D2R)/β-arrestin2 interactions more efficaciously than G-protein-dependent signaling, whereas typical antipsychotics inhibit both pathways with similar efficacy. To elucidate the site of action of GSK3β in regulating DA- or lithium-sensitive behaviors, we generated conditional knockouts of GSK3β, where GSK3β was deleted in either DA D1- or D2-receptor-expressing neurons. We analyzed these mice for behaviors commonly used to test antipsychotic efficacy or behaviors that are sensitive to lithium treatment. Mice with deletion of GSK3β in D2 (D2GSK3β(-/-)) but not D1 (D1GSK3β(-/-)) neurons mimic antipsychotic action. However, haloperidol (HAL)-induced catalepsy was unchanged in either D2GSK3β(-/-) or D1GSK3β(-/-) mice compared with control mice. Interestingly, genetic stabilization of β-catenin, a downstream target of GSK3β, in D2 neurons did not affect any of the behaviors tested. Moreover, D2GSK3β(-/-) or D1GSK3β(-/-) mice showed similar responses to controls in the tail suspension test (TST) and dark-light emergence test, behaviors which were previously shown to be β-arrestin2- and GSK3β-dependent and sensitive to lithium treatment. Taken together these studies suggest that selective deletion of GSK3β but not stabilization of β-catenin in D2 neurons mimics antipsychotic action without affecting signaling pathways involved in catalepsy or certain mood-related behaviors.
Collapse
|
227
|
Simpson EH, Waltz JA, Kellendonk C, Balsam PD. Schizophrenia in translation: dissecting motivation in schizophrenia and rodents. Schizophr Bull 2012; 38:1111-7. [PMID: 23015686 PMCID: PMC3494038 DOI: 10.1093/schbul/sbs114] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 08/22/2012] [Indexed: 11/14/2022]
Abstract
The negative symptoms of schizophrenia include deficits in motivation, for which there is currently no treatment available. Animal models provide a powerful tool for identifying the potential pathophysiological mechanisms underlying the motivation deficits of schizophrenia with the aim of discovering novel treatment targets. The success of such an approach critically depends on meticulously detailed analysis of motivational phenotypes in patients and in animal models. Here, we review the results of recent human behavioral and imaging studies of motivation, and we relate those findings to the results from animal studies, including a mouse model of striatal dopamine D2 receptor hyperfunction. The motivational deficit in patients with schizophrenia is not due to an inability to experience pleasure in the moment as hedonic reaction appears intact in patients. Instead, the motivation deficit represents a reduced capacity for anticipating future pleasure resulting from goal-directed action. The diminished anticipation appears to be a consequence of an inability to accurately represent the expected reward values of actions. A strikingly similar phenotype in incentive motivation has also been described in mice with striatal dopamine D2 receptor hyperfunction. These convergent findings identify potential pathophysiological mechanisms that underlie the deficit in anticipatory motivation, and importantly, the mouse model provides a tool for investigating novel treatment strategies, which we discuss here.
Collapse
|
228
|
Effects of antipsychotics on dentate gyrus stem cell proliferation and survival in animal models: a critical update. Neural Plast 2012; 2012:832757. [PMID: 23150836 PMCID: PMC3488410 DOI: 10.1155/2012/832757] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 09/19/2012] [Accepted: 09/20/2012] [Indexed: 12/15/2022] Open
Abstract
Schizophrenia is a complex psychiatric disorder. Although a number of different hypotheses have been developed to explain its aetiopathogenesis, we are far from understanding it. There is clinical and experimental evidence indicating that neurodevelopmental factors play a major role. Disturbances in neurodevelopment might result in alterations of neuroanatomy and neurochemistry, leading to the typical symptoms observed in schizophrenia. The present paper will critically address the neurodevelopmental models underlying schizophrenia by discussing the effects of typical and atypical antipsychotics in animal models. We will specifically discuss the vitamin D deficiency model, the poly I:C model, the ketamine model, and the postnatal ventral hippocampal lesion model, all of which reflect core neurodevelopmental issues underlying schizophrenia onset.
Collapse
|
229
|
Howes OD, Fusar-Poli P, Bloomfield M, Selvaraj S, McGuire P. From the prodrome to chronic schizophrenia: the neurobiology underlying psychotic symptoms and cognitive impairments. Curr Pharm Des 2012; 18:459-65. [PMID: 22239576 DOI: 10.2174/138161212799316217] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 10/18/2011] [Indexed: 11/22/2022]
Abstract
Schizophrenia is a chronic psychotic disorder that remains a considerable cause of global disease burden. Cognitive impairments are common and contribute significantly to the morbidity of the disorder. Over the last two decades or so molecular imaging studies have refined understanding of the pathophysiology underlying the development of psychosis and cognitive impairments. Firstly they have consistently implicated presynaptic dopaminergic dysfunction in the disorder, finding that dopamine synthesis capacity, dopamine release and baseline dopamine levels are increased in the illness. Secondly recent findings show that dopamine synthesis capacity is elevated in those that go on to develop psychosis in the following year, but not in those that do not, and appears to increase further with the development of psychosis. Thirdly evidence links greater dopamine synthesis capacity to poorer cognitive performance and altered frontal cortical function measured using functional imaging during cognitive tasks. Finally they have provided data on the nature of other neurofunctional alterations in the disorder, in particular in the serotonergic system and neuroinflammation. We review these findings and discuss their implications for understanding the neurobiology of psychosis and cognitive impairments in schizophrenia.
Collapse
Affiliation(s)
- O D Howes
- Psychiatric Imaging Group Cyclotron Building Hammersmith Hospital, London W12 0NN, UK.
| | | | | | | | | |
Collapse
|
230
|
Kabbani N, Woll MP, Nordman JC, Levenson R. Dopamine receptor interacting proteins: targeting neuronal calcium sensor-1/D2 dopamine receptor interaction for antipsychotic drug development. Curr Drug Targets 2012; 13:72-9. [PMID: 21777187 DOI: 10.2174/138945012798868515] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 09/06/2010] [Accepted: 09/16/2010] [Indexed: 01/24/2023]
Abstract
D2 dopamine receptors (D2Rs) represent an important class of receptors in the pharmacological development of novel therapeutic drugs for the treatment of schizophrenia. Recent research into D2R signaling suggests that receptor properties are dependent on interaction with a cohort of dopamine receptor interacting proteins (DRIPs) within a macromolecular structure termed the signalplex. One component of this signalplex is neuronal calcium sensor 1 (NCS-1) a protein found to regulate the phosphorylation, trafficking, and signaling profile of the D2R in neurons. It has also been found that NCS-1 can contribute to the pathology of schizophrenia and may play a role in the efficacy of antipsychotic drug medication in the brain. In this review we discuss how the selective targeting of a DRIP, such as NCS-1, can be utilized as a novel strategy of drug design for the creation of new therapeutics for a disease such as schizophrenia. Using a fluorescence polarization assay we explore how the ability to detect changes in D2R/NCS-1 interaction can be exploited as an effective screening tool in the isolation and development of lead compounds for antipsychotic drug development. This line of work explores a novel direction in targeting D2Rs via their signalplex components and supports the notion that receptor interacting proteins represent an emerging new class of molecular targets for pharmacological drug development.
Collapse
Affiliation(s)
- Nadine Kabbani
- Department of Molecular Neuroscience, Krasnow Institute for Advanced Study, George Mason University, 4400 University Drive, Fairfax, VA 22030, USA. nkabbani@gmu
| | | | | | | |
Collapse
|
231
|
Abbs B, Achalia RM, Adelufosi AO, Aktener AY, Beveridge NJ, Bhakta SG, Blackman RK, Bora E, Byun MS, Cabanis M, Carrion R, Castellani CA, Chow TJ, Dmitrzak-Weglarz M, Gayer-Anderson C, Gomes FV, Haut K, Hori H, Kantrowitz JT, Kishimoto T, Lee FHF, Lin A, Palaniyappan L, Quan M, Rubio MD, Ruiz de Azúa S, Sahoo S, Strauss GP, Szczepankiewicz A, Thompson AD, Trotta A, Tully LM, Uchida H, Velthorst E, Young JW, O’Shea A, DeLisi LE. The 3rd Schizophrenia International Research Society Conference, 14-18 April 2012, Florence, Italy: summaries of oral sessions. Schizophr Res 2012; 141:e1-e24. [PMID: 22910407 PMCID: PMC3877922 DOI: 10.1016/j.schres.2012.07.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 07/23/2012] [Indexed: 01/30/2023]
Abstract
The 3rd Schizophrenia International Research Society Conference was held in Florence, Italy, April 14-18, 2012 and this year had as its emphasis, "The Globalization of Research". Student travel awardees served as rapporteurs for each oral session and focused their summaries on the most significant findings that emerged and the discussions that followed. The following report is a composite of these summaries. We hope that it will provide an overview for those who were present, but could not participate in all sessions, and those who did not have the opportunity to attend, but who would be interested in an update on current investigations ongoing in the field of schizophrenia research.
Collapse
Affiliation(s)
- Brandon Abbs
- Brigham and Women’s Hospital, Department of Medicine, Connors Center for Women’s Health, Harvard Medical School, Department of Psychiatry, 1620 Tremont Street BC 3-34 Boston, MA 02120, Phone: 617-525-8641, Fax: 617-525-7900
| | - Rashmin M Achalia
- Department of Psychiatry, Government Medical College, Aurangabad, Maharashtra, India. Phone: + 91 9028851672, Fax: + 91 0240 2402418
| | - Adegoke O Adelufosi
- Dbepartment of Psychiatry, Ladoke Akintola University, Teaching Hospital (LAUTECH), Ogbomoso, Oyo State, Nigeria. P.O. Box 2210, Sapon, Abeokuta, Ogun State, Nigeria, Phone: +234 803 5988 054
| | - Ahmet Yiğit Aktener
- Göksun State Hospital, Göksun, Kahramanmaraş, Turkey, Phone: (0090) 532 4465832
| | - Natalie J Beveridge
- School of Biomedical Sciences & Pharmacy, Schizophrenia Research Institute, Room 616 Medical Sciences Building, University of Newcastle, Callaghan NSW 2308, Phone: (02) 4921 8748, Fax: (02) 4921 7903
| | - Savita G Bhakta
- Hofstra-NSLIJHS School of Medicine/The Zucker Hillside Hospital, address: 75 59 263rd street, Glen Oaks, NY-11004, Phone: 718-470-8232, Fax: 718-831-0368
| | - Rachael K Blackman
- University of Minnesota Medical Scientist Training Program (MD/PhD), University of Minnesota Neuroscience Department, and Brain Sciences Center VA Medical Center, Minneapolis, MN, University of Minnesota, Medical Scientist Training Program (MD/PhD), B681 Mayo, 420 Delaware St. SE, Minneapolis, MN 55455, Phone: 612-467-5077
| | - Emre Bora
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, VIC, Australia. Alan Gilbert Building NNF level 3 University of Melbourne, VIC, Australia, Phone: 61 3 8345 5611, Fax: 61 3 8345 5610
| | - MS Byun
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea, address: Department of Psychiatry, Seoul National University College of Medicine, 101 Daehak-no, Chongno-gu, Seoul 110-744, Republic of Korea. Phone: +82-2-2072-2457 Fax: +82-2-747-9063
| | - Maurice Cabanis
- Department of Psychiatry and Psychotherapy, Philipps-University, Rudolf-Bultmann-Straße 8, D-35039 Marburg, Germany, Department of Psychiatry and Psychotherapy, Philipps-University of Marburg, Rudolf-Bultmann-Str. 8, D-35039 Marburg, Germany Phone: +49(0)6421-58-66932, Fax: +49(0)6421-58-68939
| | - Ricardo Carrion
- Division of Psychiatry Research, The Zucker Hillside Hospital, North Shore – Long Island Jewish Health System (NS-LIJHS), Glen Oaks, NY, USA, 2. Center for Psychiatric Neuroscience, The Feinstein Institute for Medical Research, North Shore – Long Island Jewish Health System, Manhasset, New York, 11030, USA, Phone: 718-470-8878, Fax: 718-470-8131
| | - Christina A Castellani
- Molecular Genetics Unit, Department of Biology, The University of Western Ontario, London, Ontario, Canada, Phone: 519-661-2111 x86928, Fax: 519-661-3935
| | - Tze Jen Chow
- Universiti Tunku Abdul Rahman, Jalan Genting Kelang, Setapak 53300, Kuala Lumpur, Malaysia, Phone: +603-41079802
| | - M Dmitrzak-Weglarz
- Psychiatric Genetics Unit, Department of Psychiatry, Poznan University of Medical Sciences, Szpitalna St. 27/33, Poznan, 60-572, Poland, Phone: +48 618491311, Fax: +48 61484392
| | - Charlotte Gayer-Anderson
- Institute of Psychiatry, King’s College London, De Crespigny Park, London, United Kingdom, SE5 8AF, Phone: 0207 848 5060
| | - Felipe V Gomes
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Bandeirantes Avenue, 3900, Ribeirão Preto/SP 14049-900, Brazil
| | - Kristen Haut
- University of California, Los Angeles, 1285 Franz Hall, University of California, Los Angeles, CA, 90095, Phone: 310-794-9673, Fax: 310-794-9740
| | - Hiroaki Hori
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1, Ogawahigashi, Kodaira, Tokyo, 187-8502, Japan, Phone: +81 42 341 2711, Fax: +81 42 346 1744
| | - Joshua T Kantrowitz
- New York State Psychiatric Institute/Nathan Kline Institute for Psychiatric Research 1051 Riverside Drive, Room 5807, New York, NY 10023, Phone: 212-543-6711, Fax: 212-543-1350
| | - Taishiro Kishimoto
- (1) The Zucker Hillside Hospital, Psychiatry Research, 75-59 263rd street, Glen Oaks, NY 11004 USA (2) Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, Japan, Phone: +1-718-470-8386, Fax: +718-343-1659
| | - Frankie HF Lee
- 1. Centre for Addiction and Mental Health, 250 College St. Toronto, Ontario, Canada, M5T 1R8, 2. Department of Pharmacology, University of Toronto, Toronto, Ontario, Canada, M5S 1A8, Phone: +1416-535-8501 ext. 4084, Fax: +1416-979-4663
| | - Ashleigh Lin
- School of Psychology, University of Birmingham, Edgbaston, B152TT, United Kingdom, Phone: +44 121 414 6241, Fax: +44 121 414 4897
| | - Lena Palaniyappan
- Translational Neuroimaging, Division of Psychiatry, University of Nottingham address: C09, Institute of Mental Health, University of Nottingham Innovation Park, Triumph Road, Nottingham, NG7 2TU, Phone: 01157430407, Fax: 01157430422
| | - Meina Quan
- 1. Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, 1249 Boylston Street, Boston, MA, 02215. 2. Laboratory of Neuroscience, Department of Psychiatry, VA Boston Healthcare System, Harvard Medical School, 940 Belmont Street, Brockton, MA, 02301, Phone: 617-525-6264, Fax: 617-525-6150
| | - Maria D Rubio
- University of Alabama at Birmingham, Department of Psychiatry and Behavioral Neurobiology, 1719 6th Ave S Rm 590, Birmingham, AL 35233, Phone: 205-996-6229
| | - Sonia Ruiz de Azúa
- CIBERSAM (Biomedical Research Center in Mental Health Net), University Hospital of Alava, University of the Basque Country, 29 Olaguibel St., 01004, Vitoria, Spain. Phone: 0034 945007664, Fax: 0034 945007664
| | - Saddichha Sahoo
- Clinical Fellow, Dept of Psychiatry, University of British Columbia, Vancouver, BC, Canada V6T1Z3
| | - Gregory P Strauss
- Department of Psychiatry, University of Maryland School of Medicine, Maryland Psychiatric Research Center, P.O. Box 21247, Baltimore, MD 21228, Phone: (410) 402-6104, Fax: (410) 402-7198
| | - Aleksandra Szczepankiewicz
- Laboratory of Molecular and Cell Biology, Department of Psychiatric Genetics, Poznan University of Medical Sciences, 27/33 Szpitalna St., 60-572 Poznan, Poland, Phone: +48-618491311, Fax: +48-61-8480111
| | - Andrew D Thompson
- Orygen Youth Health Research Centre, 35 Poplar Rd, Parkville, VIC 3052, Australia Phone: +61 3 93422800, Fax: +61 3 9342 2941
| | - Antonella Trotta
- Psychosis Studies, Institute of Psychiatry, King’s College London, United Kingdom, PO52 Psychosis Studies, Institute of Psychiatry, King’s College London, De Crespigny Park, London SE5 8AF, United Kingdom, Phone: +44 (0)743 5214863, Fax: +44 (0)20 7848 0287
| | - Laura M Tully
- Harvard University, Address: 33 Kirkland St., Cambridge MA 02138, Phone: 857-207-5509
| | - Hiroyuki Uchida
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan, Phone: +81.3.3353.1211(x62454), Fax: +81.3.5379.0187
| | - Eva Velthorst
- Academic Medical Center, Department of Early Psychosis, Meibergdreef 5, 1105 AZ Amsterdam, the Netherlands, Phone: +31 (0)20 89 13671, Fax: +31 (0)20 89 13635
| | - Jared W Young
- University of California San Diego, Department of Psychiatry, 9500 Gilman Drive, La Jolla, CA, 92093-0804, Phone: 619 543 3582, Fax: 619 543 2493
| | - Anne O’Shea
- Coordinator of reports. Harvard Medical School, VA Boston Healthcare System, 940 Belmont Street, Brockton, MA 02301, Phone: 774-826-1374
| | - Lynn E. DeLisi
- Corresponding Author, VA Boston Healthcare System and Harvard Medical School, 940 Belmont Street, Brockton, MA 02301, Phone: 774-826-1355, Fax: 774-826-1758, Address all correspondence to Lynn E DeLisi, MD,
| |
Collapse
|
232
|
Armbruster DJN, Ueltzhöffer K, Basten U, Fiebach CJ. Prefrontal cortical mechanisms underlying individual differences in cognitive flexibility and stability. J Cogn Neurosci 2012; 24:2385-99. [PMID: 22905818 DOI: 10.1162/jocn_a_00286] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The pFC is critical for cognitive flexibility (i.e., our ability to flexibly adjust behavior to changing environmental demands), but also for cognitive stability (i.e., our ability to follow behavioral plans in the face of distraction). Behavioral research suggests that individuals differ in their cognitive flexibility and stability, and neurocomputational theories of working memory relate this variability to the concept of attractor stability in recurrently connected neural networks. We introduce a novel task paradigm to simultaneously assess flexible switching between task rules (cognitive flexibility) and task performance in the presence of irrelevant distractors (cognitive stability) and to furthermore assess the individual "spontaneous switching rate" in response to ambiguous stimuli to quantify the individual dispositional cognitive flexibility in a theoretically motivated way (i.e., as a proxy for attractor stability). Using fMRI in healthy human participants, a common network consisting of parietal and frontal areas was found for task switching and distractor inhibition. More flexible persons showed reduced activation and reduced functional coupling in frontal areas, including the inferior frontal junction, during task switching. Most importantly, the individual spontaneous switching rate antagonistically affected the functional coupling between inferior frontal junction and the superior frontal gyrus during task switching and distractor inhibition, respectively, indicating that individual differences in cognitive flexibility and stability are indeed related to a common prefrontal neural mechanism. We suggest that the concept of attractor stability of prefrontal working memory networks is a meaningful model for individual differences in cognitive stability versus flexibility.
Collapse
|
233
|
Chronic haloperidol-induced spatial memory deficits accompany the upregulation of D(1) and D(2) receptors in the caudate putamen of C57BL/6 mouse. Life Sci 2012; 91:322-8. [PMID: 22884478 DOI: 10.1016/j.lfs.2012.07.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 07/03/2012] [Accepted: 07/13/2012] [Indexed: 11/23/2022]
Abstract
AIMS Haloperidol (HAL) is an antipsychotic drug that has high affinities to the dopamine D(2), but low affinities to D(1) receptors in the brain. Of brain regions, caudate putamen (CP) has the highest levels of the D(1) and D(2) receptors. In this study we evaluated the spatial memory of C57BL/6 mice following chronic administration of HAL and measured levels of D(1) and D(2) receptors in specific brain regions, with the hypothesis that the D(1) and D(2) receptors in CP are important players in spatial memory function of the brain. MAIN METHODS C57BL/6 mice received daily intraperitoneal injections of saline or HAL at 1.0 or 2.0mg/kg/day for 3 or 6 weeks. Two days after the last injection, spontaneous alternation of mice in a Y-maze was evaluated to measure their exploratory behavior and spatial working memory. The Morris water maze test was performed to measure their spatial learning and memory. D(1) and D(2) receptors in specific brain regions were measured by Western-blot analysis. KEY FINDINGS HAL treatment for 6 weeks decreased the spontaneous alternation of mice in Y-maze, altered the acquisition process and impaired spatial memory in Morris water maze. The same treatment increased levels of D(1) and D(2) receptors in CP and up-regulated D(2) receptors in the hippocampus, but did not change the receptors in the prefrontal cortex. SIGNIFICANCE These results suggest that the D(1) and D(2) receptors in CP are among the main targets of HAL and the receptors in CP play an important role in spatial learning and memory.
Collapse
|
234
|
Laplante F, Zhang ZW, Huppé-Gourgues F, Dufresne MM, Vaucher E, Sullivan RM. Cholinergic depletion in nucleus accumbens impairs mesocortical dopamine activation and cognitive function in rats. Neuropharmacology 2012; 63:1075-84. [PMID: 22842071 DOI: 10.1016/j.neuropharm.2012.07.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 06/21/2012] [Accepted: 07/16/2012] [Indexed: 10/28/2022]
Abstract
In rats, selective depletion of the cholinergic interneurons in the ventral striatum (nucleus accumbens or N.Acc.) results in heightened behavioural sensitivity to amphetamine and impaired sensorimotor gating processes, suggesting a hyper-responsiveness to dopamine (DA) activity in the N.Acc. We hypothesized that local cholinergic depletion may also trigger distal functional alterations, particularly in prefrontal cortex (PFC). Adult male Sprague-Dawley rats were injected bilaterally in the N.Acc. with an immunotoxin targeting choline acetyltransferase. Two weeks later, cognitive function was assessed using the delayed alternation paradigm in the T-maze. The rats were then implanted with voltammetric recording electrodes in the ventromedial PFC to measure in vivo extracellular DA release in response to mild tail pinch stress. The PFC was also examined for density of tyrosine hydroxylase (TH)-labelled varicosities. In another cohort of control and lesioned rats, we measured post mortem tissue content of DA. Depletion of cholinergic neurons (restricted to N.Acc.) significantly impaired delayed alternation performance across delay intervals. While (basal) post mortem indices of PFC DA function were unaffected by N.Acc. lesions, in vivo mesocortical DA activation was markedly reduced; this deficit correlated significantly with cognitive impairments. TH-labelled varicosities however, were unaffected in cortical layer V relative to controls. These data suggest that selective depletion of cholinergic interneurons in N.Acc. triggers widespread functional impairments in mesocorticolimbic DA function and cognition. The possible relevance of these findings is also discussed in relation to schizophrenia, where reduced density of cholinergic neurons in ventral striatum has been reported.
Collapse
|
235
|
Urban A, Rossier J. Genetic targeting of specific neuronal cell types in the cerebral cortex. PROGRESS IN BRAIN RESEARCH 2012; 196:163-92. [PMID: 22341326 DOI: 10.1016/b978-0-444-59426-6.00009-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Understanding the structure and function of cortical circuits requires the identification of and control over specific cell types in the cortex. To address these obstacles, recent optogenetic approaches have been developed. The capacity to activate, silence, or monitor specific cell types by combining genetics, virology, and optics will decipher the role of specific groups of neurons within circuits with a spatiotemporal resolution that overcomes standard approaches. In this review, the various strategies for selective genetic targeting of a defined neuronal population are discussed as well as the pros and cons of the use of transgenic animals and recombinant viral vectors for the expression of transgenes in a specific set of neurons.
Collapse
Affiliation(s)
- Alan Urban
- Laboratoire de Neurobiologie et Diversité Cellulaire, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7637, Ecole Supérieure de Physique et de Chimie Industrielles, Paris, France.
| | | |
Collapse
|
236
|
Dichter GS, Damiano CA, Allen JA. Reward circuitry dysfunction in psychiatric and neurodevelopmental disorders and genetic syndromes: animal models and clinical findings. J Neurodev Disord 2012; 4:19. [PMID: 22958744 PMCID: PMC3464940 DOI: 10.1186/1866-1955-4-19] [Citation(s) in RCA: 207] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 05/02/2012] [Indexed: 02/07/2023] Open
Abstract
This review summarizes evidence of dysregulated reward circuitry function in a range of neurodevelopmental and psychiatric disorders and genetic syndromes. First, the contribution of identifying a core mechanistic process across disparate disorders to disease classification is discussed, followed by a review of the neurobiology of reward circuitry. We next consider preclinical animal models and clinical evidence of reward-pathway dysfunction in a range of disorders, including psychiatric disorders (i.e., substance-use disorders, affective disorders, eating disorders, and obsessive compulsive disorders), neurodevelopmental disorders (i.e., schizophrenia, attention-deficit/hyperactivity disorder, autism spectrum disorders, Tourette's syndrome, conduct disorder/oppositional defiant disorder), and genetic syndromes (i.e., Fragile X syndrome, Prader-Willi syndrome, Williams syndrome, Angelman syndrome, and Rett syndrome). We also provide brief overviews of effective psychopharmacologic agents that have an effect on the dopamine system in these disorders. This review concludes with methodological considerations for future research designed to more clearly probe reward-circuitry dysfunction, with the ultimate goal of improved intervention strategies.
Collapse
Affiliation(s)
- Gabriel S Dichter
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Department of Psychology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Psychiatry, University of North Carolina School of Medicine, CB# 7255, 101 Manning Drive, Chapel Hill, NC, 275997255, USA
| | - Cara A Damiano
- Department of Psychology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - John A Allen
- Neuroscience Research Unit Pfizer Global Research and Development, Groton, CT 06340, USA
| |
Collapse
|
237
|
Pratt J, Winchester C, Dawson N, Morris B. Advancing schizophrenia drug discovery: optimizing rodent models to bridge the translational gap. Nat Rev Drug Discov 2012; 11:560-79. [DOI: 10.1038/nrd3649] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
238
|
Slagter HA, Tomer R, Christian BT, Fox AS, Colzato LS, King CR, Murali D, Davidson RJ. PET evidence for a role for striatal dopamine in the attentional blink: functional implications. J Cogn Neurosci 2012; 24:1932-40. [PMID: 22663253 DOI: 10.1162/jocn_a_00255] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Our outside world changes continuously, for example, when driving through traffic. An important question is how our brain deals with this constant barrage of rapidly changing sensory input and flexibly selects only newly goal-relevant information for further capacity-limited processing in working memory. The challenge our brain faces is experimentally captured by the attentional blink (AB): an impairment in detecting the second of two target stimuli presented in close temporal proximity among distracters. Many theories have been proposed to explain this deficit in processing goal-relevant information, with some attributing the AB to capacity limitations related to encoding of the first target and others assigning a critical role to on-line selection mechanisms that control access to working memory. The current study examined the role of striatal dopamine in the AB, given its known role in regulating the contents of working memory. Specifically, participants performed an AB task and their basal level of dopamine D2-like receptor binding was measured using PET and [F-18]fallypride. As predicted, individual differences analyses showed that greater D2-like receptor binding in the striatum was associated with a larger AB, implicating striatal dopamine and mechanisms that control access to working memory in the AB. Specifically, we propose that striatal dopamine may determine the AB by regulating the threshold for working memory updating, providing a testable physiological basis for this deficit in gating rapidly changing visual information. A challenge for current models of the AB lies in connecting more directly to these neurobiological data.
Collapse
Affiliation(s)
- Heleen A Slagter
- Department of Psychology, University of Amsterdam, 1018 XA Amsterdam, the Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
239
|
Dissociation of hedonic reaction to reward and incentive motivation in an animal model of the negative symptoms of schizophrenia. Neuropsychopharmacology 2012; 37:1699-707. [PMID: 22414818 PMCID: PMC3358738 DOI: 10.1038/npp.2012.15] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We previously showed that mice that selectively and reversibly overexpress striatal D2 receptors (D2R-OE) model the negative symptoms of schizophrenia. Specifically, D2R-OE mice display a deficit in incentive motivation. The present studies investigated the basis for this deficit. First, we assessed whether hedonic reaction to reward is intact in D2R-OE mice. We assessed licking behavior and video-scored positive hedonic facial reactions to increasing concentrations of sucrose in control and D2R-OE mice. We found no difference between D2R-OE mice and controls in hedonic reactions. To further understand the basis of the motivational deficit, mice were given a choice between pressing a lever for access to a preferred reward (evaporated milk) or consuming a freely available less preferred reward (home-cage chow). D2R-OE mice pressed less for the preferred milk and consumed more of the freely available less preferred chow, indicating that striatal overexpression of postsynaptic D2Rs can alter cost/benefit computations, leading to a motivational deficit. This motivational impairment was ameliorated when the transgene was turned off and D2R levels were normalized. Such a deficit may arise from impaired ability to represent the value of future rewards. To test this, we used operant concurrent schedules and found reduced sensitivity to the value of future outcomes in D2R-OE mice. These results demonstrate for the first time in a transgenic animal model of schizophrenia a dissociation between hedonic reaction to reward and incentive motivation, and show a striking parallel to the proposed neurobiological and psychological mechanisms of impaired incentive motivation in schizophrenia.
Collapse
|
240
|
Synaptic activity unmasks dopamine D2 receptor modulation of a specific class of layer V pyramidal neurons in prefrontal cortex. J Neurosci 2012; 32:4959-71. [PMID: 22492051 DOI: 10.1523/jneurosci.5835-11.2012] [Citation(s) in RCA: 169] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Dopamine D2 receptors (D2Rs) play a major role in the function of the prefrontal cortex (PFC), and may contribute to prefrontal dysfunction in conditions such as schizophrenia. Here we report that in mouse PFC, D2Rs are selectively expressed by a subtype of layer V pyramidal neurons that have thick apical tufts, prominent h-current, and subcortical projections. Within this subpopulation, the D2R agonist quinpirole elicits a novel afterdepolarization that generates voltage fluctuations and spiking for hundreds of milliseconds. Surprisingly, this afterdepolarization is masked in quiescent brain slices, but is readily unmasked by physiologic levels of synaptic input which activate NMDA receptors, possibly explaining why this phenomenon has not been reported previously. Notably, we could still elicit this afterdepolarization for some time after the cessation of synaptic stimulation. In addition to NMDA receptors, the quinpirole-induced afterdepolarization also depended on L-type Ca(2+) channels and was blocked by the selective L-type antagonist nimodipine. To confirm that D2Rs can elicit this afterdepolarization by enhancing Ca(2+) (and Ca(2+)-dependent) currents, we measured whole-cell Ca(2+) potentials that occur after blocking Na(+) and K(+) channels, and found quinpirole enhanced these potentials, while the selective D2R antagonist sulpiride had the opposite effect. Thus, D2Rs can elicit a Ca(2+)-channel-dependent afterdepolarization that powerfully modulates activity in specific prefrontal neurons. Through this mechanism, D2Rs might enhance outputs to subcortical structures, contribute to reward-related persistent firing, or increase the level of noise in prefrontal circuits.
Collapse
|
241
|
Rossi MA, Hayrapetyan VY, Maimon B, Mak K, Je HS, Yin HH. Prefrontal cortical mechanisms underlying delayed alternation in mice. J Neurophysiol 2012; 108:1211-22. [PMID: 22539827 DOI: 10.1152/jn.01060.2011] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The prefrontal cortex (PFC) has been implicated in the maintenance of task-relevant information during goal-directed behavior. Using a combination of lesions, local inactivation, and optogenetics, we investigated the functional role of the medial prefrontal cortex (mPFC) in mice with a novel operant delayed alternation task. Task difficulty was manipulated by changing the duration of the delay between two sequential actions. In experiment 1, we showed that excitotoxic lesions of the mPFC impaired acquisition of delayed alternation with long delays (16 s), whereas lesions of the dorsal hippocampus and ventral striatum, areas connected with the PFC, did not produce any deficits. Lesions of dorsal hippocampus, however, significantly impaired reversal learning when the rule was changed from alternation to repetition. In experiment 2, we showed that local infusions of muscimol (an agonist of the GABA(A) receptor) into mPFC impaired performance even when the animal was well trained, suggesting that the mPFC is critical not only for acquisition but also for successful performance. In experiment 3, to examine the mechanisms underlying the role of GABAergic inhibition, we used Cre-inducible Channelrhodopsin-2 to activate parvalbumin (PV)-expressing GABAergic interneurons in the mPFC of PV-Cre transgenic mice as they performed the task. Using whole cell patch-clamp recording, we demonstrated that activation of PV-expressing interneurons in vitro with blue light in brain slices reliably produced spiking and inhibited nearby pyramidal projection neurons. With similar stimulation parameters, in vivo stimulation significantly impaired delayed alternation performance. Together these results demonstrate a critical role for the mPFC in the acquisition and performance of the delayed alternation task.
Collapse
Affiliation(s)
- Mark A Rossi
- Dept. of Psychology and Neuroscience, Dept. of Neurobiology, Center for Cognitive Neuroscience, Duke Univ, Durham, NC 27708, USA
| | | | | | | | | | | |
Collapse
|
242
|
Striatal D2 receptors regulate dendritic morphology of medium spiny neurons via Kir2 channels. J Neurosci 2012; 32:2398-409. [PMID: 22396414 DOI: 10.1523/jneurosci.6056-11.2012] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Structural plasticity in the adult brain is essential for adaptive behaviors and is thought to contribute to a variety of neurological and psychiatric disorders. Medium spiny neurons of the striatum show a high degree of structural plasticity that is modulated by dopamine through unknown signaling mechanisms. Here, we demonstrate that overexpression of dopamine D2 receptors in medium spiny neurons increases their membrane excitability and decreases the complexity and length of their dendritic arbors. These changes can be reversed in the adult animal after restoring D2 receptors to wild-type levels, demonstrating a remarkable degree of structural plasticity in the adult striatum. Increased excitability and decreased dendritic arborization are associated with downregulation of inward rectifier potassium channels (Kir2.1/2.3). Downregulation of Kir2 function is critical for the neurophysiological and morphological changes in vivo because virally mediated expression of a dominant-negative Kir2 channel is sufficient to recapitulate the changes in D2 transgenic mice. These findings may have important implications for the understanding of basal ganglia disorders, and more specifically schizophrenia, in which excessive activation of striatal D2 receptors has long been hypothesized to be of pathophysiologic significance.
Collapse
|
243
|
Prefrontal dopaminergic and enkephalinergic synaptic accommodation in HIV-associated neurocognitive disorders and encephalitis. J Neuroimmune Pharmacol 2012; 7:686-700. [PMID: 22391864 PMCID: PMC3419353 DOI: 10.1007/s11481-012-9345-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 02/06/2012] [Indexed: 12/15/2022]
Abstract
Changes in synapse structure occur in frontal neocortex with HIV encephalitis (HIVE) and may contribute to HIV-associated neurocognitive disorders (HAND). A postmortem survey was conducted to determine if mRNAs involved in synaptic transmission are perturbed in dorsolateral prefrontal cortex (DLPFC) in subjects with HIVE or HAND. Expression of the opioid neurotransmitter preproenkephalin mRNA (PENK) was significantly decreased in a sampling of 446 brain specimens from HIV-1 infected people compared to 67 HIV negative subjects. Decreased DLPFC PENK was most evident in subjects with HIVE and/or increased expression of interferon regulatory factor 1 mRNA (IRF1). Type 2 dopamine receptor mRNA (DRD2L) was decreased significantly, but not in the same set of subjects with PENK dysregulation. DRD2L downregulation occurred primarily in the subjects without HIVE or neurocognitive impairment. Subjects with neurocognitive impairment often failed to significantly downregulate DRD2L and had abnormally high IRF1 expression. Conclusion: Dysregulation of synaptic preproenkephalin and DRD2L in frontal neocortex can occur with and without neurocognitive impairment in HIV-infected people. Downregulation of DRD2L in the prefrontal cortex was associated with more favorable neuropsychological and neuropathological outcomes; the failure to downregulate DRD2L was significantly less favorable. PENK downregulation was related neuropathologically to HIVE, but was not related to neuropsychological outcome independently. Emulating endogenous synaptic plasticity pharmacodynamically could enhance synaptic accommodation and improve neuropsychological and neuropathological outcomes in HIV/AIDS.
Collapse
|
244
|
Ward RD, Kellendonk C, Kandel ER, Balsam PD. Timing as a window on cognition in schizophrenia. Neuropharmacology 2012; 62:1175-81. [PMID: 21530549 PMCID: PMC3155658 DOI: 10.1016/j.neuropharm.2011.04.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 03/24/2011] [Accepted: 04/11/2011] [Indexed: 11/25/2022]
Abstract
Distorted interval timing is a common feature of the cognitive impairment observed in patients with schizophrenia. The neural circuits which are required for interval timing and those thought to be compromised in schizophrenia overlap and include the cortico-striatal pathways. Here, we suggest that a focus on temporal information processing offers a window into understanding the cognitive deficits of schizophrenia and how deficits might contribute to a variety of symptoms. A disruption in the functioning of the cortico-striatal pathways may lead to cognitive deficits which in turn lead to impaired processing of temporal information. Disrupted temporal processing may also contribute to a variety of other symptoms associated with the disorder. Because interval timing is a cognitive/behavioral phenotype that can easily be assessed in animals it can be used as a sensitive screen for deficits in animal models. Using a recently developed transgenic mouse that models increased D2 receptor upregulation in the striatum similar to that observed in patients with schizophrenia we illustrate the utility of an interval timing approach in assessing cognitive impairment. We further discuss how variants of timing procedures can be used to assess attention and working memory performance as well as other necessary components of adaptive cognitive function.
Collapse
Affiliation(s)
- Ryan D Ward
- Department of Psychiatry, Columbia University, New York, NY 10032, USA.
| | | | | | | |
Collapse
|
245
|
Eyles D, Feldon J, Meyer U. Schizophrenia: do all roads lead to dopamine or is this where they start? Evidence from two epidemiologically informed developmental rodent models. Transl Psychiatry 2012; 2:e81. [PMID: 22832818 PMCID: PMC3309552 DOI: 10.1038/tp.2012.6] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 12/13/2011] [Accepted: 01/08/2012] [Indexed: 12/13/2022] Open
Abstract
The idea that there is some sort of abnormality in dopamine (DA) signalling is one of the more enduring hypotheses in schizophrenia research. Opinion leaders have published recent perspectives on the aetiology of this disorder with provocative titles such as 'Risk factors for schizophrenia--all roads lead to dopamine' or 'The dopamine hypothesis of schizophrenia--the final common pathway'. Perhaps, the other most enduring idea about schizophrenia is that it is a neurodevelopmental disorder. Those of us that model schizophrenia developmental risk-factor epidemiology in animals in an attempt to understand how this may translate to abnormal brain function have consistently shown that as adults these animals display behavioural, cognitive and pharmacological abnormalities consistent with aberrant DA signalling. The burning question remains how can in utero exposure to specific (environmental) insults induce persistent abnormalities in DA signalling in the adult? In this review, we summarize convergent evidence from two well-described developmental animal models, namely maternal immune activation and developmental vitamin D deficiency that begin to address this question. The adult offspring resulting from these two models consistently reveal locomotor abnormalities in response to DA-releasing or -blocking drugs. Additionally, as adults these animals have DA-related attentional and/or sensorimotor gating deficits. These findings are consistent with many other developmental animal models. However, the authors of this perspective have recently refocused their attention on very early aspects of DA ontogeny and describe reductions in genes that induce or specify dopaminergic phenotype in the embryonic brain and early changes in DA turnover suggesting that the origins of these behavioural abnormalities in adults may be traced to early alterations in DA ontogeny. Whether the convergent findings from these two models can be extended to other developmental animal models for this disease is at present unknown as such early brain alterations are rarely examined. Although it is premature to conclude that such mechanisms could be operating in other developmental animal models for schizophrenia, our convergent data have led us to propose that rather than all roads leading to DA, perhaps, this may be where they start.
Collapse
Affiliation(s)
- D Eyles
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
- Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Wacol, Queensland, Australia
| | - J Feldon
- Laboratory of Behavioural Neurobiology, Swiss Federal Institute of Technology Zurich (ETH), Schwerzenbach, Switzerland
| | - U Meyer
- Laboratory of Behavioural Neurobiology, Swiss Federal Institute of Technology Zurich (ETH), Schwerzenbach, Switzerland
- Physiology and Behaviour Laboratory, Swiss Federal Institute of Technology (ETH) Zurich, Schwerzenbach, Switzerland
| |
Collapse
|
246
|
Rothmond DA, Weickert CS, Webster MJ. Developmental changes in human dopamine neurotransmission: cortical receptors and terminators. BMC Neurosci 2012; 13:18. [PMID: 22336227 PMCID: PMC3315415 DOI: 10.1186/1471-2202-13-18] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 02/15/2012] [Indexed: 11/10/2022] Open
Abstract
Background Dopamine is integral to cognition, learning and memory, and dysfunctions of the frontal cortical dopamine system have been implicated in several developmental neuropsychiatric disorders. The dorsolateral prefrontal cortex (DLPFC) is critical for working memory which does not fully mature until the third decade of life. Few studies have reported on the normal development of the dopamine system in human DLPFC during postnatal life. We assessed pre- and postsynaptic components of the dopamine system including tyrosine hydroxylase, the dopamine receptors (D1, D2 short and D2 long isoforms, D4, D5), catechol-O-methyltransferase, and monoamine oxidase (A and B) in the developing human DLPFC (6 weeks -50 years). Results Gene expression was first analysed by microarray and then by quantitative real-time PCR. Protein expression was analysed by western blot. Protein levels for tyrosine hydroxylase peaked during the first year of life (p < 0.001) then gradually declined to adulthood. Similarly, mRNA levels of dopamine receptors D2S (p < 0.001) and D2L (p = 0.003) isoforms, monoamine oxidase A (p < 0.001) and catechol-O-methyltransferase (p = 0.024) were significantly higher in neonates and infants as was catechol-O-methyltransferase protein (32 kDa, p = 0.027). In contrast, dopamine D1 receptor mRNA correlated positively with age (p = 0.002) and dopamine D1 receptor protein expression increased throughout development (p < 0.001) with adults having the highest D1 protein levels (p ≤ 0.01). Monoamine oxidase B mRNA and protein (p < 0.001) levels also increased significantly throughout development. Interestingly, dopamine D5 receptor mRNA levels negatively correlated with age (r = -0.31, p = 0.018) in an expression profile opposite to that of the dopamine D1 receptor. Conclusions We find distinct developmental changes in key components of the dopamine system in DLPFC over postnatal life. Those genes that are highly expressed during the first year of postnatal life may influence and orchestrate the early development of cortical neural circuitry while genes portraying a pattern of increasing expression with age may indicate a role in DLPFC maturation and attainment of adult levels of cognitive function.
Collapse
Affiliation(s)
- Debora A Rothmond
- Schizophrenia Research Institute, 405 Liverpool St, Darlinghurst NSW 2010 AU.
| | | | | |
Collapse
|
247
|
Virdee K, Cumming P, Caprioli D, Jupp B, Rominger A, Aigbirhio FI, Fryer TD, Riss PJ, Dalley JW. Applications of positron emission tomography in animal models of neurological and neuropsychiatric disorders. Neurosci Biobehav Rev 2012; 36:1188-216. [PMID: 22342372 DOI: 10.1016/j.neubiorev.2012.01.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 01/26/2012] [Accepted: 01/31/2012] [Indexed: 01/08/2023]
Abstract
Positron emission tomography (PET) provides dynamic images of the biodistribution of radioactive tracers in the brain. Through application of the principles of compartmental analysis, tracer uptake can be quantified in terms of specific physiological processes such as cerebral blood flow, cerebral metabolic rate, and the availability of receptors in brain. Whereas early PET studies in animal models of brain diseases were hampered by the limited spatial resolution of PET instruments, dedicated small-animal instruments now provide molecular images of rodent brain with resolution approaching 1mm, the theoretic limit of the method. Major applications of PET for brain research have consisted of studies of animal models of neurological disorders, notably Parkinson's disease (PD), Alzheimer's disease (AD), and Huntington's disease (HD), stroke, epilepsy and traumatic brain injury; these studies have particularly benefited from selective neurochemical lesion models (PD), and also transgenic rodent models (AD, HD). Due to their complex and uncertain pathophysiologies, corresponding models of neuropsychiatric disorders have proven more difficult to establish. Historically, there has been an emphasis on PET studies of dopamine transmission, as assessed with a range of tracers targeting dopamine synthesis, plasma membrane transporters, and receptor binding sites. However, notable recent breakthroughs in molecular imaging include the development of greatly improved tracers for subtypes of serotonin, cannabinoid, and metabotropic glutamate receptors, as well as noradrenaline transporters, amyloid-β and neuroinflammatory changes. This article reviews the considerable recent progress in preclinical PET and discusses applications relevant to a number of neurological and neuropsychiatric disorders in humans.
Collapse
Affiliation(s)
- Kanwar Virdee
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
248
|
Pavlopoulos E, Trifilieff P, Chevaleyre V, Fioriti L, Zairis S, Pagano A, Malleret G, Kandel ER. Neuralized1 activates CPEB3: a function for nonproteolytic ubiquitin in synaptic plasticity and memory storage. Cell 2012; 147:1369-83. [PMID: 22153079 PMCID: PMC3442370 DOI: 10.1016/j.cell.2011.09.056] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 07/29/2010] [Accepted: 09/26/2011] [Indexed: 01/05/2023]
Abstract
The cytoplasmic polyadenylation element-binding protein 3 (CPEB3), a regulator of local protein synthesis, is the mouse homolog of ApCPEB, a functional prion protein in Aplysia. Here, we provide evidence that CPEB3 is activated by Neuralized1, an E3 ubiquitin ligase. In hippocampal cultures, CPEB3 activated by Neuralized1-mediated ubiquitination leads both to the growth of new dendritic spines and to an increase of the GluA1 and GluA2 subunits of AMPA receptors, two CPEB3 targets essential for synaptic plasticity. Conditional overexpression of Neuralized1 similarly increases GluA1 and GluA2 and the number of spines and functional synapses in the hippocampus and is reflected in enhanced hippocampal-dependent memory and synaptic plasticity. By contrast, inhibition of Neuralized1 reduces GluA1 and GluA2 levels and impairs hippocampal-dependent memory and synaptic plasticity. These results suggest a model whereby Neuralized1-dependent ubiquitination facilitates hippocampal plasticity and hippocampal-dependent memory storage by modulating the activity of CPEB3 and CPEB3-dependent protein synthesis and synapse formation.
Collapse
Affiliation(s)
- Elias Pavlopoulos
- Department of Neuroscience, College of Physicians and Surgeons, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA
| | | | | | | | | | | | | | | |
Collapse
|
249
|
Pou C, Mannoury la Cour C, Stoddart LA, Millan MJ, Milligan G. Functional homomers and heteromers of dopamine D2L and D3 receptors co-exist at the cell surface. J Biol Chem 2012; 287:8864-78. [PMID: 22291025 DOI: 10.1074/jbc.m111.326678] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human dopamine D(2long) and D(3) receptors were modified by N-terminal addition of SNAP or CLIP forms of O(6)-alkylguanine-DNA-alkyltransferase plus a peptide epitope tag. Cells able to express each of these four constructs only upon addition of an antibiotic were established and used to confirm regulated and inducible control of expression, the specificity of SNAP and CLIP tag covalent labeling reagents, and based on homogenous time-resolved fluorescence resonance energy transfer, the presence of cell surface D(2long) and D(3) receptor homomers. Following constitutive expression of reciprocal constructs, potentially capable of forming and reporting the presence of cell surface D(2long)-D(3) heteromers, individual clones were assessed for levels of expression of the constitutively expressed protomer. This was unaffected by induction of the partner protomer and the level of expression of the partner required to generate detectable cell surface D(2long)-D(3) heteromers was defined. Such homomers and heteromers were found to co-exist and using a reconstitution of function approach both homomers and heteromers of D(2long) and D(3) receptors were shown to be functional, potentially via trans-activation of associated G protein. These studies demonstrate the ability of dopamine D(2long) and D(3) receptors to form both homomers and heteromers, and show that in cells expressing each subtype a complex mixture of homomers and heteromers co-exists at steady state. These data are of potential importance both to disorders in which D(2long) and D(3) receptors are implicated, like schizophrenia and Parkinson disease, and also to drugs exerting their actions via these sites.
Collapse
Affiliation(s)
- Chantevy Pou
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | | | | | | | | |
Collapse
|
250
|
Kuepper R, Skinbjerg M, Abi-Dargham A. The dopamine dysfunction in schizophrenia revisited: new insights into topography and course. Handb Exp Pharmacol 2012:1-26. [PMID: 23129326 DOI: 10.1007/978-3-642-25761-2_1] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Schizophrenia has long been associated with an imbalance in dopamine (DA) neurotransmission, and brain imaging has played an important role in advancing our knowledge and providing evidence for the dopaminergic abnormalities. This chapter reviews the evidence for DA dysfunction in different brain regions in schizophrenia, in particular striatal, extrastriatal, and prefrontal regions, with emphasis on recently published findings. As opposed to the traditional view that most striatal dopaminergic excess, associated with the positive symptoms of schizophrenia, involves the dopaminergic mesolimbic pathway, recent evidence points to the nigrostriatal pathway as the area of highest dysregulation. Furthermore, evidence from translational research suggests that dopaminergic excess may be present in the prodromal phase, and may by itself, as suggested by the phenotype observed in transgenic mice with developmental overexpression of dorso-striatal D(2) receptors, be an early pathogenic condition, leading to irreversible cortical dysfunction.
Collapse
Affiliation(s)
- Rebecca Kuepper
- Department of Psychiatry and Psychology, Maastricht University Medical Center, Maastricht, The Netherlands
| | | | | |
Collapse
|