201
|
Cui Z, Zhao X, Amevor FK, Du X, Wang Y, Li D, Shu G, Tian Y, Zhao X. Therapeutic application of quercetin in aging-related diseases: SIRT1 as a potential mechanism. Front Immunol 2022; 13:943321. [PMID: 35935939 PMCID: PMC9355713 DOI: 10.3389/fimmu.2022.943321] [Citation(s) in RCA: 118] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/27/2022] [Indexed: 12/15/2022] Open
Abstract
Quercetin, a naturally non-toxic flavonoid within the safe dose range with antioxidant, anti-apoptotic and anti-inflammatory properties, plays an important role in the treatment of aging-related diseases. Sirtuin 1 (SIRT1), a member of NAD+-dependent deacetylase enzyme family, is extensively explored as a potential therapeutic target for attenuating aging-induced disorders. SIRT1 possess beneficial effects against aging-related diseases such as Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), Depression, Osteoporosis, Myocardial ischemia (M/I) and reperfusion (MI/R), Atherosclerosis (AS), and Diabetes. Previous studies have reported that aging increases tissue susceptibility, whereas, SIRT1 regulates cellular senescence and multiple aging-related cellular processes, including SIRT1/Keap1/Nrf2/HO-1 and SIRTI/PI3K/Akt/GSK-3β mediated oxidative stress, SIRT1/NF-κB and SIRT1/NLRP3 regulated inflammatory response, SIRT1/PGC1α/eIF2α/ATF4/CHOP and SIRT1/PKD1/CREB controlled phosphorylation, SIRT1-PINK1-Parkin mediated mitochondrial damage, SIRT1/FoxO mediated autophagy, and SIRT1/FoxG1/CREB/BDNF/Trkβ-catenin mediated neuroprotective effects. In this review, we summarized the role of SIRT1 in the improvement of the attenuation effect of quercetin on aging-related diseases and the relationship between relevant signaling pathways regulated by SIRT1. Moreover, the functional regulation of quercetin in aging-related markers such as oxidative stress, inflammatory response, mitochondrial function, autophagy and apoptosis through SIRT1 was discussed. Finally, the prospects of an extracellular vesicles (EVs) as quercetin loading and delivery, and SIRT1-mediated EVs as signal carriers for treating aging-related diseases, as well as discussed the ferroptosis alleviation effects of quercetin to protect against aging-related disease via activating SIRT1. Generally, SIRT1 may serve as a promising therapeutic target in the treatment of aging-related diseases via inhibiting oxidative stress, reducing inflammatory responses, and restoring mitochondrial dysfunction.
Collapse
Affiliation(s)
- Zhifu Cui
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xingtao Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Ministry of Education, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Felix Kwame Amevor
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xiaxia Du
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yan Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Diyan Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Gang Shu
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yaofu Tian
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xiaoling Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Xiaoling Zhao,
| |
Collapse
|
202
|
Istanbuly S, Matetic A, Roberts DJ, Myint PK, Alraies MC, Van Spall HG, Mohamed MO, Bharadwaj A, Mamas MA. Relation of Extracardiac Vascular Disease and Outcomes in Patients With Diabetes (1.1 Million) Hospitalized for Acute Myocardial Infarction. Am J Cardiol 2022; 175:8-18. [PMID: 35550818 DOI: 10.1016/j.amjcard.2022.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/29/2022] [Accepted: 04/01/2022] [Indexed: 11/01/2022]
Abstract
The association between vascular disease and outcomes of patients with acute myocardial infarction (AMI) has not been well-defined in the diabetes mellitus (DM) population. All patients with DM presenting with AMI between October 2015 and December 2018 in the National Inpatient Sample database were stratified by number and site of extracardiac vascular comorbidity (cerebrovascular [CVD], renovascular, neural, retinal and peripheral [PAD] diseases). Multivariable logistic regression was used to determine the adjusted odds ratios (aORs) of in-hospital adverse outcomes and procedures. Of 1,116,670 patients with DM who were hospitalized for AMI, 366,165 had ≥1 extracardiac vascular comorbidity (32.8%). Patients with vascular disease had an increased aOR for mortality (aOR 1.05, 95% confidence interval [CI] 1.04 to 1.07), major adverse cardiovascular and cerebrovascular events (MACCEs) (aOR 1.19, 95% CI 1.18 to 1.21), stroke (aOR 1.72, 95% CI 1.68 to 1.76), and major bleeding (aOR 1.11, 95% CI 1.09 to 1.13) and had lower odds of receiving coronary angiography (CA) (aOR 0.90, 95% CI 0.90 to 0.91) and percutaneous coronary intervention (PCI) (aOR 0.82, 95% CI 0.82 to 0.83) than patients without extracardiac vascular disease. Patients with PAD had the highest odds of mortality (aOR 1.29, 95% CI 1.27 to 1.32), whereas patients with CVD had the greatest odds of MACCEs, stroke, and major bleeding (aOR 1.82, 95% CI 1.78 to 1.87, aOR 4.25, 95% CI 4.10 to 4.40, and aOR 1.51, 95% CI 1.45 to 1.57, respectively). Patients with DM presenting with AMI and concomitant extracardiac vascular disease were more likely to develop clinical outcomes and less likely to undergo CA or PCI. Patients with PAD had the highest risk of mortality, whereas patients with CVD had the greatest risk of MACCEs, stroke, and major bleeding.
Collapse
Affiliation(s)
- Sedralmontaha Istanbuly
- Faculty of Medicine, University of Aleppo, Aleppo, Syrian Arab Republic; Keele Cardiovascular Research Group, Keele University, Stoke on Trent, Keele, United Kingdom
| | - Andrija Matetic
- Keele Cardiovascular Research Group, Keele University, Stoke on Trent, Keele, United Kingdom; Department of Cardiology, University Hospital of Split, Split, Croatia
| | - Derek J Roberts
- Division of Vascular and Endovascular Surgery, Department of Surgery; School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada; Clinical Epidemiology Program, the Ottawa Hospital Research Institute, the Ottawa Hospital, Ottawa, Ontario, Canada; The O'Brien Institute for Public Health, University of Calgary, Calgary, Alberta, Canada
| | - Phyo K Myint
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - M Chadi Alraies
- Wayne State University, Detroit Medical Center, Detroit, Michigan
| | - Harriette Gc Van Spall
- Department of Medicine and Department of Health Research Methods, Evidence, and Impact, McMaster University; Research Institute of St. Joe's, Population Health Research Institute, Hamilton, Ontario, Canada
| | - Mohamed O Mohamed
- Keele Cardiovascular Research Group, Keele University, Stoke on Trent, Keele, United Kingdom
| | | | - Mamas A Mamas
- Keele Cardiovascular Research Group, Keele University, Stoke on Trent, Keele, United Kingdom.
| |
Collapse
|
203
|
Li Z, Wang W, Meng F, Zhou Z, Zhao Z, Mei Z. Analgesic and neuroprotective effects of Baimai Ointment on diabetic peripheral neuropathy. JOURNAL OF ETHNOPHARMACOLOGY 2022; 292:115122. [PMID: 35202714 DOI: 10.1016/j.jep.2022.115122] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGY RELEVANCE Baimai (BM) ointment, a traditional Tibetan medicine, has been widely used to treat "white vein" disease, paralysis, hemiplegia and claudication caused by trauma, because of its great effects on muscle stretching and collateral activation. As one of the most terrible complications in diabetes patients, diabetes peripheral neuropathy (DPN) is mainly manifested as abnormal pain or numbness in extremities. However, whether BM ointment is a potential drug for DPN treatment is unclear. AIMS OF THE STUDY The aim of this study was to investigate the therapeutic effects of BM on DPN in a high-fat diet/low-dose of streptozotocin induced type 2 diabetes rat model and explore underlying mechanisms. METHODS The chemical components of BM were determined by high performance liquid chromatography (HPLC), and the possible targets and related pathways candidates involved in the effects of BM on DPN were predicted using network pharmacology methods. Next, the effects of different doses (1.5, 3.0 and 6.0 g/kg) of BM on physiological changes, pain behaviors, motor nerve conduction velocity (MNCV) in DPN rats were assessed and compared with placebo- and mecobalamine (Meco)-treated DPN controls. Then, the effects of BM on the expression of pain associated genes as well as the phosphorylation of PI3K/AKT and MAPKs pathways in DRG of DPN rats were examined. RESULTS Through HPLC analysis, curcumin was identified as one of the primary contents of BM. The information from network pharmacology indicated a series of target candidates for BM including IL6, IL10, TNF, CCL2, CXCL12, EGF, VEGFA, BDNF, TGFβ1 and TNF, as well as PI3K-AKT and MAPK signaling pathways. Topical treatment of BM significantly improved the hypersensitivity of mechanical and thermal pain, MNCV and the morphological changes and demyelination of sciatic nerve fibers, without affecting the body weight, serum metabolism or blood glucose. The up-regulated levels of neuropeptides Cgrp, Sst, Sp and chemokines Ccl2 and Ccl3 along with the abnormal expression of p-P38, p-ERK and p-AKT in the DRG of DPN rats were alleviated by BM application. CONCLUSION BM ointment has great activities in relieving pain hypersensitivity, neuroprotecting peripheral nerves damage caused by DPN, which may be related to the inhibition of related neuropeptide (Cgrp, Sst, Sp) and chemokine (Ccl2, Ccl3) expression and the regulation of PI3K/AKT and MAPKs signaling pathways in DRG.
Collapse
Affiliation(s)
- Zhanyi Li
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074, China; Institute of Ethnomedicine, South-Central University for Nationalities, Wuhan, 430074, China
| | - Wen Wang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074, China; Institute of Ethnomedicine, South-Central University for Nationalities, Wuhan, 430074, China
| | - Fengping Meng
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074, China; Institute of Ethnomedicine, South-Central University for Nationalities, Wuhan, 430074, China
| | - Zhuqing Zhou
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074, China; Institute of Ethnomedicine, South-Central University for Nationalities, Wuhan, 430074, China
| | - Zhongqiu Zhao
- Washington University School of Medicine, St. Louis, MO, 63110, United States; Barnes-Jewish Hospital, St. Louis, MO, 63110, United States
| | - Zhinan Mei
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074, China; Institute of Ethnomedicine, South-Central University for Nationalities, Wuhan, 430074, China.
| |
Collapse
|
204
|
CXCR4/CX43 Regulate Diabetic Neuropathic Pain via Intercellular Interactions between Activated Neurons and Dysfunctional Astrocytes during Late Phase of Diabetes in Rats and the Effects of Antioxidant N-Acetyl-L-Cysteine. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8547563. [PMID: 35799894 PMCID: PMC9256426 DOI: 10.1155/2022/8547563] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 06/15/2022] [Indexed: 12/12/2022]
Abstract
Growing evidence suggests that the interactions between astrocytes and neurons exert important functions in the central sensitization of the spinal cord dorsal horn in rodents with diabetes and neuropathic pain (DNP). However, it still remains unclear how signal transmission occurs in the spinal cord dorsal horn between astrocytes and neurons, especially in subjects with DNP. Chemokine CXC receptor 4 (CXCR4) plays critical roles in DNP, and connexin 43 (CX43), which is also primarily expressed by astrocytes, contributes to the development of neuropathy. We thus postulated that astrocytic and neuronal CXCR4 induces and produces inflammatory factors under persistent peripheral noxious stimulation in DNP, while intercellular CX43 can transmit inflammatory stimulation signals. The results showed that streptozotocin-induced type 1 diabetic rats developed heat hyperalgesia and mechanical allodynia. Diabetes led to persistent neuropathic pain. Diabetic rats developed peripheral sensitization at the early phase (2 weeks) and central sensitization at the late phase (5 weeks) after diabetes induction. Both CXCR4 and CX43, which are localized and coexpressed in neurons and astrocytes, were enhanced significantly in the dorsal horn of spinal cord in rats undergoing DNP during late phase of diabetes, and the CXCR4 antagonist AMD3100 reduced the expression of CX43. The nociceptive behavior was reversed, respectively, by AMD3100 at the early phase and by the antioxidant N-acetyl-L-cysteine (NAC) at the late phase. Furthermore, rats with DNP demonstrated downregulation of glial fibrillary acidic protein (GFAP) as well as upregulation of c-fos in the spinal cord dorsal horn at the late phase compared to the controls, and upregulation of GFAP and downregulation of c-fos were observed upon treatment with NAC. Given that GFAP and c-fos are, respectively, makers of astrocyte and neuronal activation, our findings suggest that CXCR4 as an inflammatory stimulation protein and CX43 as an intercellular signal transmission protein both may induce neurons excitability and astrocytes dysfunction in developing DNP.
Collapse
|
205
|
Elshareif N, Gavini CK, Mansuy-Aubert V. LXR agonist modifies neuronal lipid homeostasis and decreases PGD2 in the dorsal root ganglia in western diet-fed mice. Sci Rep 2022; 12:10754. [PMID: 35750708 PMCID: PMC9232502 DOI: 10.1038/s41598-022-14604-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 06/09/2022] [Indexed: 11/09/2022] Open
Abstract
The prevalence of peripheral neuropathy is high in diabetic and overweight populations. Chronic neuropathic pain, a symptom of peripheral neuropathy, is a major disabling symptom that leads to a poor quality of life. Glucose management for diabetic and prediabetic individuals often fail to reduce or improve pain symptoms, therefore, exploring other mechanisms is necessary to identify effective treatments. A large body of evidence suggest that lipid signaling may be a viable target for management of peripheral neuropathy in obese individuals. The nuclear transcription factors, Liver X Receptors (LXR), are known regulators of lipid homeostasis, phospholipid remodeling, and inflammation. Notably, the activation of LXR using the synthetic agonist GW3965, delayed western diet (WD)-induced allodynia in rodents. To further understand the neurobiology underlying the effect of LXR, we used translating ribosome affinity purification and evaluated translatomic changes in the sensory neurons of WD-fed mice treated with the LXR agonist GW3965. We also observed that GW3965 decreased prostaglandin levels and decreased free fatty acid content, while increasing lysophosphatidylcholine, phosphatidylcholine, and cholesterol ester species in the sensory neurons of the dorsal root ganglia (DRG). These data suggest novel downstream interplaying mechanisms that modifies DRG neuronal lipid following GW3965 treatment.
Collapse
Affiliation(s)
- Nadia Elshareif
- Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, 60153, USA
| | - Chaitanya K Gavini
- Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, 60153, USA
| | - Virginie Mansuy-Aubert
- Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, 60153, USA.
| |
Collapse
|
206
|
Zhou H, Yang X, Liao C, Chen H, Wu Y, Xie B, Ma F, Zhang W. The Development of Mechanical Allodynia in Diabetic Rats Revealed by Single-Cell RNA-Seq. Front Mol Neurosci 2022; 15:856299. [PMID: 35668789 PMCID: PMC9165721 DOI: 10.3389/fnmol.2022.856299] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/14/2022] [Indexed: 01/14/2023] Open
Abstract
Mechanical allodynia (MA) is the main reason that patients with diabetic peripheral neuropathy (DPN) seek medical advice. It severely debilitates the quality of life. Investigating hyperglycemia-induced changes in neural transcription could provide fundamental insights into the complex pathogenesis of painful DPN (PDPN). Gene expression profiles of physiological dorsal root ganglia (DRG) have been studied. However, the transcriptomic changes in DRG neurons in PDPN remain largely unexplored. In this study, by single-cell RNA sequencing on dissociated rat DRG, we identified five physiological neuron types and a novel neuron type MAAC (Fxyd7+/Atp1b1+) in PDPN. The novel neuron type originated from peptidergic neuron cluster and was characterized by highly expressing genes related to neurofilament and cytoskeleton. Based on the inferred gene regulatory networks, we found that activated transcription factors Hobx7 and Larp1 in MAAC could enhance Atp1b1 expression. Moreover, we constructed the cellular communication network of MAAC and revealed its receptor-ligand pairs for transmitting signals with other cells. Our molecular investigation at single-cell resolution advances the understanding of the dynamic peripheral neuron changes and underlying molecular mechanisms during the development of PDPN.
Collapse
Affiliation(s)
- Han Zhou
- Department of Neurosurgery, Ninth People Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaosheng Yang
- Department of Neurosurgery, Ninth People Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenlong Liao
- Department of Neurosurgery, Ninth People Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongjin Chen
- Department of Neurosurgery, Ninth People Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiwei Wu
- Department of Neurosurgery, Ninth People Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Binran Xie
- Department of Neurosurgery, Ninth People Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fukai Ma
- Department of Neurosurgery, Ninth People Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - WenChuan Zhang
- Department of Neurosurgery, Ninth People Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
207
|
Attenuation of Some Inflammatory Markers by Endurance Training in the Spinal Cord of Rats with Diabetic Neuropathic Pain. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:6551358. [PMID: 35655729 PMCID: PMC9132667 DOI: 10.1155/2022/6551358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/01/2022] [Accepted: 04/21/2022] [Indexed: 11/17/2022]
Abstract
Nervous inflammation is an important component of the pathogenesis of neurodegenerative diseases including chronic diabetic neuropathic pain. In order to obtain a decrease in the progression of diabetic neuronal damage, it may be necessary to examine therapeutic options that involve antioxidants and anti-inflammatory agents. The aim of this study was to investigate the attenuation of inflammatory factors with endurance training in the spinal cord of rats with neuropathic pain. Thirty-two 8-week-old male Wistar rats (with a weight range of 204 ± 11.3 g) were randomly divided into 4 groups (n = 8), including (1) diabetic neuropathy (50 mg/kg streptozotocin intraperitoneal injection), (2) diabetic neuropathy training (30 minutes of endurance training at 15 meters per minute, 5 days a week for 6 weeks), (3) healthy training, and (4) healthy control. After confirmation of diabetic neuropathy by behavioral tests, training protocol and supplementation were performed. The NLRP3, P38 MAPK, TNF-α, and IL-1β gene expressions were measured by a real-time technique in the spinal cord tissue. One-way analysis of variance and Tukey's post hoc test were used for statistical analysis. Endurance training reduced the sensitivity of the nervous system to thermal hyperalgesia and mechanical allodynia; also, compared to the diabetic neuropathy group, the gene expressions of NLTP3, P38 MAPK, TNF-α, and IL-1β were significantly reduced by endurance training (P < 0.05). Endurance training modulates NLRP3, P38 MAPK, and TNF-α, IL-1β gene expressions and improves the sensitivity of nociceptors to pain factors. Accordingly, it is recommended to use endurance training to reduce neuropathic pain for diabetics.
Collapse
|
208
|
The Effect of Yiqi Huoxue Tongluo Decoction on Spinal Cord Microglia Activation and ASK1-MKK3-p38 Signal Pathway in Rats with Diabetic Neuropathic Pain. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2408265. [PMID: 35646150 PMCID: PMC9135525 DOI: 10.1155/2022/2408265] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/23/2022] [Accepted: 04/13/2022] [Indexed: 02/06/2023]
Abstract
Diabetic neuropathic pain (DNP) is one of the most common chronic peripheral neuropathies in diabetes mellitus (DM). Objective. To observe the underlying mechanism of the effects of Yiqi Huoxue Tongluo Decoction (YQHX) on DNP rats. Methods. SD rats were intraperitoneally injected with 35 mg/kg streptozotocin (STZ) to prepare DNP models and were treated with YQHX for 8 weeks. Results. Studies have shown that the drug restores some levels of MWT, TWL, and MNCV, downregulates the levels of inflammatory factors IL-6, IL-1β, and TNF-α, downregulates the levels of ASK1-MKK3-p38, and weakens the level of OX42 activation. Conclusion. Yiqi Huoxue Tongluo Decoction can relieve DNP by affecting the activity of spinal cord microglia and the ASK1-MKK3-p38 signaling pathway, thereby reducing the central sensitization caused by the inflammatory response of DNP rats.
Collapse
|
209
|
Simão VP, Cury CS, Tavares GMZ, Ortega GC, Ribeiro AC, Santos GS, Lana JFSD. Platelet-rich plasma application in diabetic ulcers: A review. World J Dermatol 2022; 10:1-9. [DOI: 10.5314/wjd.v10.i1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/29/2022] [Accepted: 04/24/2022] [Indexed: 02/06/2023] Open
Abstract
There are 422 million diabetic people in the world. 25% of these individuals are diagnosed with diabetic foot ulcer (DFU). 20% of patients with DFU will suffer amputation of the lower limbs. Following amputation procedures, the mortality rate of patients is over 70% in 5 years. Diabetes has no cure and, therefore, treatment aims to prevent and treat its complications. Autologous platelet-rich plasma (PRP) has been shown to be a therapeutic tool for many types of disorders, including the treatment of DFU. This manuscript aims to carry out a review to provide more knowledge about the efficacy and safety of autologous PRP for wound closure in patients with DFU. The majority of studies included in this review state that PRP promotes improvement of DFU lesions by accelerating tissue healing processes. However, many studies have a small sample size and thus require larger sample range in order to improve robustness of data in the literature.
Collapse
Affiliation(s)
| | - Carolina Souza Cury
- Medical School, Centro Universitário Lusíada, Santos 11045-101, São Paulo, Brazil
| | | | | | | | - Gabriel Silva Santos
- Biomedical Science, Brazilian Institute of Regenerative Medicine, Indaiatuba 13334-170, São Paulo, Brazil
| | | |
Collapse
|
210
|
Soltani S, Mansouri K, Parvaneh S, Thakor AS, Pociot F, Yarani R. Diabetes complications and extracellular vesicle therapy. Rev Endocr Metab Disord 2022; 23:357-385. [PMID: 34647239 DOI: 10.1007/s11154-021-09680-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/30/2021] [Indexed: 02/06/2023]
Abstract
Diabetes is a chronic disorder characterized by dysregulated glycemic conditions. Diabetic complications include microvascular and macrovascular abnormalities and account for high morbidity and mortality rates in patients. Current clinical approaches for diabetic complications are limited to symptomatic treatments and tight control of blood sugar levels. Extracellular vesicles (EVs) released by somatic and stem cells have recently emerged as a new class of potent cell-free therapeutic delivery packets with a great potential to treat diabetic complications. EVs contain a mixture of bioactive molecules and can affect underlying pathological processes in favor of tissue healing. In addition, EVs have low immunogenicity and high storage capacity while maintaining nearly the same regenerative and immunomodulatory effects compared to current cell-based therapies. Therefore, EVs have received increasing attention for diabetes-related complications in recent years. In this review, we provide an outlook on diabetic complications and summarizes new knowledge and advances in EV applications. Moreover, we highlight recommendations for future EV-related research.
Collapse
Affiliation(s)
- Setareh Soltani
- Clinical Research Development Center, Taleghani and Imam Ali Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Kamran Mansouri
- Medical Biology Research Center, Health Technology Institute, Kermanshah, University of Medical Sciences, Kermanshah, Iran
| | - Shahram Parvaneh
- Regenerative Medicine and Cellular Pharmacology Laboratory (HECRIN), Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
- Research Institute of Translational Biomedicine, Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
| | - Avnesh S Thakor
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | - Flemming Pociot
- Translational Type 1 Diabetes Research, Department of Clinical Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Reza Yarani
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA.
- Translational Type 1 Diabetes Research, Department of Clinical Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark.
| |
Collapse
|
211
|
Identification and quantification of nociceptive Schwann cells in mice with and without Streptozotocin-induced diabetes. J Chem Neuroanat 2022; 123:102118. [DOI: 10.1016/j.jchemneu.2022.102118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 06/03/2022] [Accepted: 06/04/2022] [Indexed: 12/31/2022]
|
212
|
Chen F, Leng Y, Ni J, Niu T, Zhang L, Li J, Zheng Y. Symptom clusters and quality of life in ambulatory patients with multiple myeloma. Support Care Cancer 2022; 30:4961-4970. [PMID: 35182229 DOI: 10.1007/s00520-022-06896-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 02/02/2022] [Indexed: 02/05/2023]
Abstract
PURPOSE The aim of this study was to investigate symptom clusters and associated clinical factors in ambulatory multiple myeloma patients undergoing medication therapy. We also aimed to determine the correlations between symptom clusters and patient quality of life. METHODS A total of 174 multiple myeloma patients hospitalized in the haematology day unit were included in this study. A cross-sectional survey was conducted to examine symptoms and quality of life. Symptoms were assessed by the Chinese version of the Condensed Memorial Symptom Assessment Scale. Quality of life was measured with the Functional Assessment of Cancer Therapy-General. Principal component analysis was used to identify symptom clusters. Independent-samples t tests and chi-square tests were used for comparisons between groups. Spearman's rank correlation analysis was used to identify correlations. RESULTS We identified three symptom clusters in multiple myeloma patients: psychological; pain, dry mouth, and difficulty sleeping; and fatigue symptom cluster. For each symptom cluster, the patients could be categorized into a severe-symptom group or a mild-symptom group based on the distress of symptoms. The patients in each group exhibited differential demographic and clinical features. Symptom cluster distress was adversely correlated with patients' quality of life. CONCLUSIONS Ambulatory multiple myeloma patients undergoing anticancer medication therapy experience multiple symptoms, which can be categorized into three symptom clusters. For each symptom cluster, level of distress was associated with patients' demographic and clinical characteristics. The presence and level of distress of these symptom clusters have adverse impacts on patients' quality of life.
Collapse
Affiliation(s)
- Fengjiao Chen
- Department of Hematology, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, #37 Guo Xue Xiang Street, Chengdu, 610041, China
| | - Yamei Leng
- Department of Hematology, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, #37 Guo Xue Xiang Street, Chengdu, 610041, China
| | - Jingyao Ni
- Department of Hematology, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, #37 Guo Xue Xiang Street, Chengdu, 610041, China
| | - Ting Niu
- Department of Hematology, West China Hospital, Sichuan University, #37 Guo Xue Xiang Street, Chengdu, 610041, China
| | - Li Zhang
- Department of Hematology, West China Hospital, Sichuan University, #37 Guo Xue Xiang Street, Chengdu, 610041, China
| | - Jiping Li
- Department of Nursing, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, #37 Guo Xue Xiang Street, Chengdu, 610041, China.
| | - Yuhuan Zheng
- Department of Hematology, West China Hospital, Sichuan University, #37 Guo Xue Xiang Street, Chengdu, 610041, China.
| |
Collapse
|
213
|
Babetto E, Beirowski B. Of axons that struggle to make ends meet: Linking axonal bioenergetic failure to programmed axon degeneration. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148545. [PMID: 35339437 DOI: 10.1016/j.bbabio.2022.148545] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 03/07/2022] [Accepted: 03/16/2022] [Indexed: 02/07/2023]
Abstract
Axons are the long, fragile, and energy-hungry projections of neurons that are challenging to sustain. Together with their associated glia, they form the bulk of the neuronal network. Pathological axon degeneration (pAxD) is a driver of irreversible neurological disability in a host of neurodegenerative conditions. Halting pAxD is therefore an attractive therapeutic strategy. Here we review recent work demonstrating that pAxD is regulated by an auto-destruction program that revolves around axonal bioenergetics. We then focus on the emerging concept that axonal and glial energy metabolism are intertwined. We anticipate that these discoveries will encourage the pursuit of new treatment strategies for neurodegeneration.
Collapse
Affiliation(s)
- Elisabetta Babetto
- Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA; Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14214, USA.
| | - Bogdan Beirowski
- Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA; Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14214, USA.
| |
Collapse
|
214
|
Coelho MA, Jeyaraman M, Jeyaraman N, Rajendran RL, Sugano AA, Mosaner T, Santos GS, Bizinotto Lana JV, Lana AVSD, da Fonseca LF, Domingues RB, Gangadaran P, Ahn BC, Lana JFSD. Application of Sygen® in Diabetic Peripheral Neuropathies—A Review of Biological Interactions. Bioengineering (Basel) 2022; 9:bioengineering9050217. [PMID: 35621495 PMCID: PMC9138133 DOI: 10.3390/bioengineering9050217] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/14/2022] [Accepted: 05/16/2022] [Indexed: 12/15/2022] Open
Abstract
This study investigates the role of Sygen® in diabetic peripheral neuropathy, a severe disease that affects the peripheral nervous system in diabetic individuals. This disorder often impacts the lower limbs, causing significant discomfort and, if left untreated, progresses into more serious conditions involving chronic ulcers and even amputation in many cases. Although there are management strategies available, peripheral neuropathies are difficult to treat as they often present multiple causes, especially due to metabolic dysfunction in diabetic individuals. Gangliosides, however, have long been studied and appreciated for their role in neurological diseases. The monosialotetrahexosylganglioside (GM1) ganglioside, popularly known as Sygen, provides beneficial effects such as enhanced neuritic sprouting, neurotrophism, neuroprotection, anti-apoptosis, and anti-excitotoxic activity, being particularly useful in the treatment of neurological complications that arise from diabetes. This product mimics the roles displayed by neurotrophins, improving neuronal function and immunomodulation by attenuating exacerbated inflammation in neurons. Furthermore, Sygen assists in axonal stabilization and keeps nodal and paranodal regions of myelin fibers organized. This maintains an adequate propagation of action potentials and restores standard peripheral nerve function. Given the multifactorial nature of this complicated disorder, medical practitioners must carefully screen the patient to avoid confusion and misdiagnosis. There are several studies analyzing the role of Sygen in neurological disorders. However, the medical literature still needs more robust investigations such as randomized clinical trials regarding the administration of this compound for diabetic peripheral neuropathies, specifically.
Collapse
Affiliation(s)
- Marcelo Amaral Coelho
- Department of Orthopaedics, Brazilian Institute of Regenerative Medicine, Indaiatuba 13334-170, Brazil; (M.A.C.); (A.A.S.); (T.M.); (G.S.S.); (L.F.d.F.); (R.B.D.); (J.F.S.D.L.)
| | - Madhan Jeyaraman
- Department of Orthopaedics, Faculty of Medicine-Sri Lalithambigai Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai 600095, Tamil Nadu, India
- Correspondence: (M.J.); (P.G.); (B.-C.A.)
| | - Naveen Jeyaraman
- Fellow in Joint Replacement, Department of Orthopaedics, Atlas Hospitals, Tiruchirappalli 620002, Tamil Nadu, India;
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea;
| | - André Atsushi Sugano
- Department of Orthopaedics, Brazilian Institute of Regenerative Medicine, Indaiatuba 13334-170, Brazil; (M.A.C.); (A.A.S.); (T.M.); (G.S.S.); (L.F.d.F.); (R.B.D.); (J.F.S.D.L.)
| | - Tomas Mosaner
- Department of Orthopaedics, Brazilian Institute of Regenerative Medicine, Indaiatuba 13334-170, Brazil; (M.A.C.); (A.A.S.); (T.M.); (G.S.S.); (L.F.d.F.); (R.B.D.); (J.F.S.D.L.)
| | - Gabriel Silva Santos
- Department of Orthopaedics, Brazilian Institute of Regenerative Medicine, Indaiatuba 13334-170, Brazil; (M.A.C.); (A.A.S.); (T.M.); (G.S.S.); (L.F.d.F.); (R.B.D.); (J.F.S.D.L.)
| | - João Vitor Bizinotto Lana
- Medical Specialties School Centre, Centro Universitário Max Planck, Indaiatuba 13343-060, Brazil; (J.V.B.L.); (A.V.S.D.L.)
| | | | - Lucas Furtado da Fonseca
- Department of Orthopaedics, Brazilian Institute of Regenerative Medicine, Indaiatuba 13334-170, Brazil; (M.A.C.); (A.A.S.); (T.M.); (G.S.S.); (L.F.d.F.); (R.B.D.); (J.F.S.D.L.)
- Department of Orthopaedics, The Federal University of São Paulo, São Paulo 04024-002, Brazil
| | - Rafael Barnabé Domingues
- Department of Orthopaedics, Brazilian Institute of Regenerative Medicine, Indaiatuba 13334-170, Brazil; (M.A.C.); (A.A.S.); (T.M.); (G.S.S.); (L.F.d.F.); (R.B.D.); (J.F.S.D.L.)
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea;
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Korea
- Correspondence: (M.J.); (P.G.); (B.-C.A.)
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea;
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Korea
- Correspondence: (M.J.); (P.G.); (B.-C.A.)
| | - José Fábio Santos Duarte Lana
- Department of Orthopaedics, Brazilian Institute of Regenerative Medicine, Indaiatuba 13334-170, Brazil; (M.A.C.); (A.A.S.); (T.M.); (G.S.S.); (L.F.d.F.); (R.B.D.); (J.F.S.D.L.)
| |
Collapse
|
215
|
Perner C, Krüger E. Endoplasmic Reticulum Stress and Its Role in Homeostasis and Immunity of Central and Peripheral Neurons. Front Immunol 2022; 13:859703. [PMID: 35572517 PMCID: PMC9092946 DOI: 10.3389/fimmu.2022.859703] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/28/2022] [Indexed: 02/04/2023] Open
Abstract
Neuronal cells are specialists for rapid transfer and translation of information. Their electrical properties relay on a precise regulation of ion levels while their communication via neurotransmitters and neuropeptides depends on a high protein and lipid turnover. The endoplasmic Reticulum (ER) is fundamental to provide these necessary requirements for optimal neuronal function. Accumulation of misfolded proteins in the ER lumen, reactive oxygen species and exogenous stimulants like infections, chemical irritants and mechanical harm can induce ER stress, often followed by an ER stress response to reinstate cellular homeostasis. Imbedded between glial-, endothelial-, stromal-, and immune cells neurons are constantly in communication and influenced by their local environment. In this review, we discuss concepts of tissue homeostasis and innate immunity in the central and peripheral nervous system with a focus on its influence on ER stress, the unfolded protein response, and implications for health and disease.
Collapse
Affiliation(s)
- Caroline Perner
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.,Department of Neurology, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Elke Krüger
- Institute of Medical Biochemistry and Molecular Biology, Universitätsmedizin Greifswald, Greifswald, Germany
| |
Collapse
|
216
|
Current and Emerging Pharmacotherapeutic Interventions for the Treatment of Peripheral Nerve Disorders. Pharmaceuticals (Basel) 2022; 15:ph15050607. [PMID: 35631433 PMCID: PMC9144529 DOI: 10.3390/ph15050607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/26/2022] [Accepted: 05/11/2022] [Indexed: 11/16/2022] Open
Abstract
Peripheral nerve disorders are caused by a range of different aetiologies. The range of causes include metabolic conditions such as diabetes, obesity and chronic kidney disease. Diabetic neuropathy may be associated with severe weakness and the loss of sensation, leading to gangrene and amputation in advanced cases. Recent studies have indicated a high prevalence of neuropathy in patients with chronic kidney disease, also known as uraemic neuropathy. Immune-mediated neuropathies including Guillain-Barré syndrome and chronic inflammatory demyelinating polyradiculoneuropathy may cause significant physical disability. As survival rates continue to improve in cancer, the prevalence of treatment complications, such as chemotherapy-induced peripheral neuropathy, has also increased in treated patients and survivors. Notably, peripheral neuropathy associated with these conditions may be chronic and long-lasting, drastically affecting the quality of life of affected individuals, and leading to a large socioeconomic burden. This review article explores some of the major emerging clinical and experimental therapeutic agents that have been investigated for the treatment of peripheral neuropathy due to metabolic, toxic and immune aetiologies.
Collapse
|
217
|
Beirowski B. Emerging evidence for compromised axonal bioenergetics and axoglial metabolic coupling as drivers of neurodegeneration. Neurobiol Dis 2022; 170:105751. [PMID: 35569720 DOI: 10.1016/j.nbd.2022.105751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/20/2022] [Accepted: 05/09/2022] [Indexed: 10/18/2022] Open
Abstract
Impaired bioenergetic capacity of the nervous system is thought to contribute to the pathogenesis of many neurodegenerative diseases (NDD). Since neuronal synapses are believed to be the major energy consumers in the nervous system, synaptic derangements resulting from energy deficits have been suggested to play a central role for the development of many of these disorders. However, long axons constitute the largest compartment of the neuronal network, require large amounts of energy, are metabolically and structurally highly vulnerable, and undergo early injurious stresses in many NDD. These stresses likely impose additional energy demands for continuous adaptations and repair processes, and may eventually overwhelm axonal maintenance mechanisms. Indeed, pathological axon degeneration (pAxD) is now recognized as an etiological focus in a wide array of NDD associated with bioenergetic abnormalities. In this paper I first discuss the recognition that a simple experimental model for pAxD is regulated by an auto-destruction program that exhausts distressed axons energetically. Provision of the energy substrate pyruvate robustly counteracts this axonal breakdown. Importantly, energy decline in axons is not only a consequence but also an initiator of this program. This opens the intriguing possibility that axon dysfunction and pAxD can be suppressed by preemptively energizing distressed axons. Second, I focus on the emerging concept that axons communicate energetically with their flanking glia. This axoglial metabolic coupling can help offset the axonal energy decline that activates the pAxD program but also jeopardize axon integrity as a result of perturbed glial metabolism. Third, I present compelling evidence that abnormal axonal energetics and compromised axoglial metabolic coupling accompany the activation of the pAxD auto-destruction pathway in models of glaucoma, a widespread neurodegenerative condition with pathogenic overlap to other common NDD. In conclusion, I propose a novel conceptual framework suggesting that therapeutic interventions focused on bioenergetic support of the nervous system should also address axons and their metabolic interactions with glia.
Collapse
Affiliation(s)
- Bogdan Beirowski
- Institute for Myelin and Glia Exploration, New York State Center of Excellence in Bioinformatics & Life Sciences (CBLS), University at Buffalo, Buffalo, NY 14203, USA; Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14214, USA.
| |
Collapse
|
218
|
Diaz MM, Caylor J, Strigo I, Lerman I, Henry B, Lopez E, Wallace MS, Ellis RJ, Simmons AN, Keltner JR. Toward Composite Pain Biomarkers of Neuropathic Pain-Focus on Peripheral Neuropathic Pain. FRONTIERS IN PAIN RESEARCH 2022; 3:869215. [PMID: 35634449 PMCID: PMC9130475 DOI: 10.3389/fpain.2022.869215] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/21/2022] [Indexed: 01/09/2023] Open
Abstract
Chronic pain affects ~10-20% of the U.S. population with an estimated annual cost of $600 billion, the most significant economic cost of any disease to-date. Neuropathic pain is a type of chronic pain that is particularly difficult to manage and leads to significant disability and poor quality of life. Pain biomarkers offer the possibility to develop objective pain-related indicators that may help diagnose, treat, and improve the understanding of neuropathic pain pathophysiology. We review neuropathic pain mechanisms related to opiates, inflammation, and endocannabinoids with the objective of identifying composite biomarkers of neuropathic pain. In the literature, pain biomarkers typically are divided into physiological non-imaging pain biomarkers and brain imaging pain biomarkers. We review both types of biomarker types with the goal of identifying composite pain biomarkers that may improve recognition and treatment of neuropathic pain.
Collapse
Affiliation(s)
- Monica M. Diaz
- Department of Neurology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
| | - Jacob Caylor
- Department of Anesthesiology, University of California, San Diego, San Diego, CA, United States
| | - Irina Strigo
- Department of Psychiatry, San Francisco Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Imanuel Lerman
- Department of Anesthesiology, University of California, San Diego, San Diego, CA, United States
| | - Brook Henry
- Department of Psychiatry, University of California, San Diego, San Diego, CA, United States
| | - Eduardo Lopez
- Department of Psychiatry, San Francisco Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Mark S. Wallace
- Department of Anesthesiology, University of California, San Diego, San Diego, CA, United States
| | - Ronald J. Ellis
- Department of Neurosciences, University of California, San Diego, San Diego, CA, United States
| | - Alan N. Simmons
- Department of Psychiatry, San Diego & Center of Excellence in Stress and Mental Health, Veteran Affairs Health Care System, University of California, San Diego, San Diego, CA, United States
| | - John R. Keltner
- Department of Psychiatry, San Diego & San Diego VA Medical Center, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
219
|
Jende JME, Mooshage C, Kender Z, Schimpfle L, Juerchott A, Heiland S, Nawroth P, Bendszus M, Kopf S, Kurz FT. Sciatic nerve microvascular permeability in type 2 diabetes decreased in patients with neuropathy. Ann Clin Transl Neurol 2022; 9:830-840. [PMID: 35488789 PMCID: PMC9186151 DOI: 10.1002/acn3.51563] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/04/2022] [Accepted: 04/08/2022] [Indexed: 11/22/2022] Open
Abstract
Objectives Clinical and histological studies have found evidence that nerve ischemia is a major contributor to diabetic neuropathy (DN) in type 2 diabetes (T2D). The aim of this study was to investigate peripheral nerve microvascular permeability using dynamic contrast enhanced (DCE) magnetic resonance neurography (MRN) to analyze potential correlations with clinical, electrophysiological, and demographic data. Methods Sixty‐five patients (35/30 with/without DN) and 10 controls matched for age and body mass index (BMI) underwent DCE MRN of the distal sciatic nerve with an axial T1‐weighted sequence. Microvascular permeability (Ktrans), plasma volume fraction (vp), and extravascular extracellular volume fraction (ve) were determined with the extended Tofts model, and subsequently correlated with clinical data. Results Ktrans and ve were lower in T2D patients with DN compared to patients without DN (0.037 min−1 ± 0.010 vs. 0.046 min−1 ± 0.014; p = 0.011, and 2.35% ± 3.87 vs. 5.11% ± 5.53; p = 0.003, respectively). In individuals with T2D, Ktrans correlated positively with tibial, peroneal, and sural NCVs (r = 0.42; 95%CI = 0.18 to 0.61, 0.50; 95%CI = 0.29 to 0.67, and 0.44; 95%CI = 0.19 to 0.63, respectively), with tibial and peroneal CMAPs (r = 0.27; 95%CI = 0.01 to 0.49 and r = 0.32; 95%CI = 0.07 to 0.53), and with the BMI (r = 0.47; 95%CI = 0.25 to 0.64). Negative correlations were found with the neuropathy deficit score (r = −0.40; 95%CI = −0.60 to −0.16) and age (r = −0.51; 95%CI = −0.67 to −0.31). No such correlations were found for vp. Conclusion This study is the first to find associations of MR nerve perfusion parameters with clinical and electrophysiological parameters related to DN in T2D. The results indicate that a decrease in microvascular permeability but not plasma volume may result in nerve ischemia that subsequently causes demyelination.
Collapse
Affiliation(s)
- Johann M E Jende
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Christoph Mooshage
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Zoltan Kender
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Heidelberg, Germany
| | - Lukas Schimpfle
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Heidelberg, Germany
| | - Alexander Juerchott
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Sabine Heiland
- Division of Experimental Radiology, Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Peter Nawroth
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Heidelberg, Germany
| | - Martin Bendszus
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Stefan Kopf
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Heidelberg, Germany.,German Center of Diabetes Research, associated partner in the DZD, München-Neuherberg, Germany
| | - Felix T Kurz
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany.,Division of Radiology, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
220
|
Chandrasekaran K, Najimi N, Sagi AR, Yarlagadda S, Salimian M, Arvas MI, Hedayat AF, Kevas Y, Kadakia A, Russell JW. NAD + Precursors Repair Mitochondrial Function in Diabetes and Prevent Experimental Diabetic Neuropathy. Int J Mol Sci 2022; 23:4887. [PMID: 35563288 PMCID: PMC9102948 DOI: 10.3390/ijms23094887] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/18/2022] [Accepted: 04/26/2022] [Indexed: 12/04/2022] Open
Abstract
Axon degeneration in diabetic peripheral neuropathy (DPN) is associated with impaired NAD+ metabolism. We tested whether the administration of NAD+ precursors, nicotinamide mononucleotide (NMN) or nicotinamide riboside (NR), prevents DPN in models of Type 1 and Type 2 diabetes. NMN was administered to streptozotocin (STZ)-induced diabetic rats and STZ-induced diabetic mice by intraperitoneal injection at 50 or 100 mg/kg on alternate days for 2 months. mice The were fed with a high fat diet (HFD) for 2 months with or without added NR at 150 or 300 mg/kg for 2 months. The administration of NMN to STZ-induced diabetic rats or mice or dietary addition of NR to HFD-fed mice improved sensory function, normalized sciatic and tail nerve conduction velocities, and prevented loss of intraepidermal nerve fibers in skin samples from the hind-paw. In adult dorsal root ganglion (DRG) neurons isolated from HFD-fed mice, there was a decrease in NAD+ levels and mitochondrial maximum reserve capacity. These impairments were normalized in isolated DRG neurons from NR-treated mice. The results indicate that the correction of NAD+ depletion in DRG may be sufficient to prevent DPN but does not significantly affect glucose tolerance, insulin levels, or insulin resistance.
Collapse
Affiliation(s)
- Krish Chandrasekaran
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.C.); (N.N.); (A.R.S.); (S.Y.); (M.S.); (M.I.A.); (A.F.H.); (Y.K.); (A.K.)
- Veterans Affairs Medical Center, Baltimore, MD 21201, USA
| | - Neda Najimi
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.C.); (N.N.); (A.R.S.); (S.Y.); (M.S.); (M.I.A.); (A.F.H.); (Y.K.); (A.K.)
| | - Avinash R. Sagi
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.C.); (N.N.); (A.R.S.); (S.Y.); (M.S.); (M.I.A.); (A.F.H.); (Y.K.); (A.K.)
| | - Sushuma Yarlagadda
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.C.); (N.N.); (A.R.S.); (S.Y.); (M.S.); (M.I.A.); (A.F.H.); (Y.K.); (A.K.)
| | - Mohammad Salimian
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.C.); (N.N.); (A.R.S.); (S.Y.); (M.S.); (M.I.A.); (A.F.H.); (Y.K.); (A.K.)
| | - Muhammed Ikbal Arvas
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.C.); (N.N.); (A.R.S.); (S.Y.); (M.S.); (M.I.A.); (A.F.H.); (Y.K.); (A.K.)
| | - Ahmad F. Hedayat
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.C.); (N.N.); (A.R.S.); (S.Y.); (M.S.); (M.I.A.); (A.F.H.); (Y.K.); (A.K.)
| | - Yanni Kevas
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.C.); (N.N.); (A.R.S.); (S.Y.); (M.S.); (M.I.A.); (A.F.H.); (Y.K.); (A.K.)
| | - Anand Kadakia
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.C.); (N.N.); (A.R.S.); (S.Y.); (M.S.); (M.I.A.); (A.F.H.); (Y.K.); (A.K.)
| | - James W. Russell
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.C.); (N.N.); (A.R.S.); (S.Y.); (M.S.); (M.I.A.); (A.F.H.); (Y.K.); (A.K.)
- Veterans Affairs Medical Center, Baltimore, MD 21201, USA
- CAMC Institute for Academic Medicine, 415 Morris Street Suite 300, Charleston, WV 25301, USA
| |
Collapse
|
221
|
Ahmad S, Srivastava RK, Singh P, Naik UP, Srivastava AK. Role of Extracellular Vesicles in Glia-Neuron Intercellular Communication. Front Mol Neurosci 2022; 15:844194. [PMID: 35493327 PMCID: PMC9043804 DOI: 10.3389/fnmol.2022.844194] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 02/23/2022] [Indexed: 11/13/2022] Open
Abstract
Cross talk between glia and neurons is crucial for a variety of biological functions, ranging from nervous system development, axonal conduction, synaptic transmission, neural circuit maturation, to homeostasis maintenance. Extracellular vesicles (EVs), which were initially described as cellular debris and were devoid of biological function, are now recognized as key components in cell-cell communication and play a critical role in glia-neuron communication. EVs transport the proteins, lipids, and nucleic acid cargo in intercellular communication, which alters target cells structurally and functionally. A better understanding of the roles of EVs in glia-neuron communication, both in physiological and pathological conditions, can aid in the discovery of novel therapeutic targets and the development of new biomarkers. This review aims to demonstrate that different types of glia and neuronal cells secrete various types of EVs, resulting in specific functions in intercellular communications.
Collapse
Affiliation(s)
- Shahzad Ahmad
- Department of Medical Elementology and Toxicology, Jamia Hamdard University, New Delhi, India
| | - Rohit K. Srivastava
- Department of Pediatric Surgery, Texas Children’s Hospital, Houston, TX, United States
- M.E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
| | - Pratibha Singh
- Department of Biochemistry and Cell Biology, Biosciences Research Collaborative, Rice University, Houston, TX, United States
| | - Ulhas P. Naik
- Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Cardeza Foundation for Hematologic Research, Philadelphia, PA, United States
| | - Amit K. Srivastava
- Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Cardeza Foundation for Hematologic Research, Philadelphia, PA, United States
- *Correspondence: Amit K. Srivastava,
| |
Collapse
|
222
|
Du SH, Zheng YL, Zhang YH, Wang MW, Wang XQ. The Last Decade Publications on Diabetic Peripheral Neuropathic Pain: A Bibliometric Analysis. Front Mol Neurosci 2022; 15:854000. [PMID: 35493329 PMCID: PMC9043347 DOI: 10.3389/fnmol.2022.854000] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/07/2022] [Indexed: 01/12/2023] Open
Abstract
BackgroundDiabetic peripheral neuropathic pain (DPNP) is a usual complication of diabetes with a high incidence and mortality. Many diabetes-related studies have been published in various journals. However, bibliometrics and visual analyses in the domain of DPNP research are still lacking. The study aimed to offer a visual method to observe the systematic overview of global research in this field from 2011 to 2021.MethodsThe publications from the Science Citation Index Expanded in Web of Science (WOS) in the past 11 years (from 2011 to 2021) were collected and sorted out, and those related to DPNP were extracted and analyzed. The article language was limited in English. Then, CiteSpace V was used for the bibliometric analysis of the extracted literature.ResultsA total of 1,422 articles met the inclusion criteria. A continuous but unstable growth in the amounts of papers published on DPNP was observed over the last 11 years. The subject sort of the 1,422 papers mainly concentrates on Endocrinology Metabolism, Clinical neurology and Neurosciences from the WOS. According to the research contribution in the field of DPNP, the United States occupies a leading position, with the highest amounts of publications, citations, open access, and the H- index.ConclusionThis study provides a visual analysis method for the trend of DPNP, and offers some hidden serviceable information that may define new directions for future research.
Collapse
Affiliation(s)
- Shu-Hao Du
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Yi-Li Zheng
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Yong-Hui Zhang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Ming-Wen Wang
- Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China
- *Correspondence: Ming-Wen Wang,
| | - Xue-Qiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China
- Xue-Qiang Wang,
| |
Collapse
|
223
|
Busa P, Kuthati Y, Huang N, Wong CS. New Advances on Pathophysiology of Diabetes Neuropathy and Pain Management: Potential Role of Melatonin and DPP-4 Inhibitors. Front Pharmacol 2022; 13:864088. [PMID: 35496279 PMCID: PMC9039240 DOI: 10.3389/fphar.2022.864088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/14/2022] [Indexed: 12/14/2022] Open
Abstract
Pre-diabetes and diabetes are growing threats to the modern world. Diabetes mellitus (DM) is associated with comorbidities such as hypertension (83.40%), obesity (90.49%), and dyslipidemia (93.43%), creating a substantial burden on patients and society. Reductive and oxidative (Redox) stress level imbalance and inflammation play an important role in DM progression. Various therapeutics have been investigated to treat these neuronal complications. Melatonin and dipeptidyl peptidase IV inhibitors (DPP-4i) are known to possess powerful antioxidant and anti-inflammatory properties and have garnered significant attention in the recent years. In this present review article, we have reviewed the recently published reports on the therapeutic efficiency of melatonin and DPP-4i in the treatment of DM. We summarized the efficacy of melatonin and DPP-4i in DM and associated complications of diabetic neuropathy (DNP) and neuropathic pain. Furthermore, we discussed the mechanisms of action and their efficacy in the alleviation of oxidative stress in DM.
Collapse
Affiliation(s)
- Prabhakar Busa
- Department of Anesthesiology, Cathay General Hospital, Taipei, Taiwan
| | - Yaswanth Kuthati
- Department of Anesthesiology, Cathay General Hospital, Taipei, Taiwan
| | - Niancih Huang
- Department of Anesthesiology, Tri-Service General Hospital, Taipei, Taiwan
- Grauate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Chih-Shung Wong
- Department of Anesthesiology, Cathay General Hospital, Taipei, Taiwan
- Department of Anesthesiology, Tri-Service General Hospital, Taipei, Taiwan
- Grauate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
224
|
Xie YK, Luo H, Zhang SX, Chen XY, Guo R, Qiu XY, Liu S, Wu H, Chen WB, Zhen XH, Ma Q, Tian JL, Li S, Chen X, Han Q, Duan S, Shen C, Yang F, Xu ZZ. GPR177 in A-fiber sensory neurons drives diabetic neuropathic pain via WNT-mediated TRPV1 activation. Sci Transl Med 2022; 14:eabh2557. [PMID: 35385340 DOI: 10.1126/scitranslmed.abh2557] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Diabetic neuropathic pain (DNP) is a common and devastating complication in patients with diabetes. The mechanisms mediating DNP are not completely elucidated, and effective treatments are lacking. A-fiber sensory neurons have been shown to mediate the development of mechanical allodynia in neuropathic pain, yet the molecular basis underlying the contribution of A-fiber neurons is still unclear. Here, we report that the orphan G protein-coupled receptor 177 (GPR177) in A-fiber neurons drives DNP via WNT5a-mediated activation of transient receptor potential vanilloid receptor-1 (TRPV1) ion channel. GPR177 is mainly expressed in large-diameter A-fiber dorsal root ganglion (DRG) neurons and required for the development of DNP in mice. Mechanistically, we found that GPR177 mediated the secretion of WNT5a from A-fiber DRG neurons into cerebrospinal fluid (CSF), which was necessary for the maintenance of DNP. Extracellular perfusion of WNT5a induced rapid currents in both TRPV1-expressing heterologous cells and nociceptive DRG neurons. Computer simulations revealed that WNT5a has the potential to bind the residues at the extracellular S5-S6 loop of TRPV1. Using a peptide able to disrupt the predicted WNT5a/TRPV1 interaction suppressed DNP- and WNT5a-induced neuropathic pain symptoms in rodents. We confirmed GPR177/WNT5A coexpression in human DRG neurons and WNT5A secretion in CSF from patients with DNP. Thus, our results reveal a role for WNT5a as an endogenous and potent TRPV1 agonist, and the GPR177-WNT5a-TRPV1 axis as a driver of DNP pathogenesis in rodents. Our findings identified a potential analgesic target that might relieve neuropathic pain in patients with diabetes.
Collapse
Affiliation(s)
- Ya-Kai Xie
- Department of Neurobiology and Department of Anesthesiology of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Hao Luo
- Department of Neurobiology and Department of Anesthesiology of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Shan-Xin Zhang
- Department of Neurobiology and Department of Anesthesiology of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xiao-Ying Chen
- Department of Biophysics, and Kidney Disease Center of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Ran Guo
- Department of Pain, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Xiao-Yun Qiu
- Department of Neurobiology and Department of Anesthesiology of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Shuai Liu
- State Key Laboratory of Medical Neurobiology and MOE Frontier Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200433, China
| | - Hui Wu
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Wen-Bo Chen
- Department of Neurobiology and Department of Anesthesiology of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xing-Hua Zhen
- Department of Neurobiology and Department of Anesthesiology of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Qiang Ma
- Department of Neurobiology and Department of Anesthesiology of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jin-Lan Tian
- Department of Neurobiology and Department of Anesthesiology of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Shun Li
- Department of Pain, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Xinzhong Chen
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Qingjian Han
- State Key Laboratory of Medical Neurobiology and MOE Frontier Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200433, China
| | - Shumin Duan
- Department of Neurobiology and Department of Anesthesiology of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Chengyong Shen
- Department of Neurobiology and Department of Anesthesiology of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Fan Yang
- Department of Biophysics, and Kidney Disease Center of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Zhen-Zhong Xu
- Department of Neurobiology and Department of Anesthesiology of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
225
|
Effect of Riluzole on the Expression of HCN2 in Dorsal Root Ganglion Neurons of Diabetic Neuropathic Pain Rats. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:8313415. [PMID: 35432830 PMCID: PMC9007632 DOI: 10.1155/2022/8313415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/09/2022] [Accepted: 03/12/2022] [Indexed: 11/18/2022]
Abstract
Neuropathic pain since early diabetes swamps patients' lives, and diabetes mellitus has become an increasingly worldwide epidemic. No agent, so far, can terminate the ongoing diabetes. Therefore, strategies that delay the process and the further complications are preferred, such as diabetic neuropathic pain (DNP). Dysfunction of ion channels is generally accepted as the central mechanism of diabetic associated neuropathy, of which hyperpolarization-activated cyclic nucleotide-gated 2 (HCN2) ion channel has been verified the involvement of neuropathic pain in dorsal root ganglion (DRG) neurons. Riluzole is a benzothiazole compound with neuroprotective properties on intervention to various ion channels, including hyperpolarization-activated voltage-dependent channels. To investigate the effect of riluzole within lumbar (L3-5) DRG neurons from DNP models, streptozocin (STZ, 70 mg/kg) injection was recruited subcutaneously followed by paw withdrawal mechanical threshold (PWMT) and paw withdrawal thermal latency (PWTL), which both show significant reduction, whilst relieved by riluzole (4 mg/kg/d) administration, which was performed once daily for 7 consecutive days for 14 days. HCN2 expression was also decreased in line with alleviated behavioral tests. Our results indicate riluzole as the alleviator to STZ-induced DNP with involvement of downregulated HCN2 in lumbar DRG by continual systemic administration in rats.
Collapse
|
226
|
Abstract
Diabetic neuropathy is a commonly occurring complication of diabetes that affects hundreds of millions of patients worldwide. Patients suffering from diabetic neuropathy experience abnormal sensations and have damage in their peripheral nerve axons as well as myelin, a tightly packed Schwann cell sheath that wraps around axons to provide insulation and increases electrical conductivity along the nerve fibers. The molecular events underlying myelin damage in diabetic neuropathy are largely unknown, and there is no efficacious treatment for the disease. The current study, using a diabetic mouse model and human patient nerve samples, uncovered a molecular mechanism underlying myelin sheath damage in diabetic neuropathy and provides a potential treatment strategy for the disease. Demyelination is a pathological feature of diabetic neuropathy, a common and painful complication of diabetes, yet the mechanisms underlying diabetes-induced demyelination remain unclear. Here, we show that targeting mixed lineage kinase domain–like protein (MLKL), a protein critical in necroptosis, using Schwann cell–specific genetic knockout, S441A single–amino acid knockin mutation, or pharmacological inhibition all blocked myelin sheath decompaction and prevented the decrease of nerve conduction velocity in streptozotocin-induced diabetic mice. The decompaction of the myelin sheaths of sural nerves was observed in biopsy samples from diabetic patients, and the MLKL-mediated myelin breakdown was activated in human diabetic neuropathy patients. Our study establishes a direct myelin degradation–related role for MLKL in diabetic neuropathy and defines MLKL as a druggable target for developing agents to prevent or treat diabetic neuropathy.
Collapse
|
227
|
Pham VM, Thakor N. Insulin enhances neurite extension and myelination of diabetic neuropathy neurons. Korean J Pain 2022; 35:160-172. [PMID: 35354679 PMCID: PMC8977202 DOI: 10.3344/kjp.2022.35.2.160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/03/2022] [Accepted: 03/09/2022] [Indexed: 11/24/2022] Open
Abstract
Background The authors established an in vitro model of diabetic neuropathy based on the culture system of primary neurons and Schwann cells (SCs) to mimic similar symptoms observed in in vivo models of this complication, such as impaired neurite extension and impaired myelination. The model was then utilized to investigate the effects of insulin on enhancing neurite extension and myelination of diabetic neurons. Methods SCs and primary neurons were cultured under conditions mimicking hyperglycemia prepared by adding glucose to the basal culture medium. In a single culture, the proliferation and maturation of SCs and the neurite extension of neurons were evaluated. In a co-culture, the percentage of myelination of diabetic neurons was investigated. Insulin at different concentrations was supplemented to culture media to examine its effects on neurite extension and myelination. Results The cells showed similar symptoms observed in in vivo models of this complication. In a single culture, hyperglycemia attenuated the proliferation and maturation of SCs, induced apoptosis, and impaired neurite extension of both sensory and motor neurons. In a co-culture of SCs and neurons, the percentage of myelinated neurites in the hyperglycemia-treated group was significantly lower than that in the control group. This impaired neurite extension and myelination was reversed by the introduction of insulin to the hyperglycemic culture media. Conclusions Insulin may be a potential candidate for improving diabetic neuropathy. Insulin can function as a neurotrophic factor to support both neurons and SCs. Further research is needed to discover the potential of insulin in improving diabetic neuropathy.
Collapse
Affiliation(s)
- Vuong M Pham
- Singapore Institute for Neurotechnology, National University of Singapore, Singapore.,Department of Biotechnology, Ho Chi Minh City University of Food Industry, Ho Chi Minh City, Vietnam
| | - Nitish Thakor
- Singapore Institute for Neurotechnology, National University of Singapore, Singapore.,Department of Biomedical Engineering, National University of Singapore, Singapore.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
228
|
Rajabinejad M, Asadi G, Ranjbar S, Varmaziar FR, Karimi M, Salari F, Karaji AG, Rezaiemanesh A, Hezarkhani LA. The MALAT1-H19/miR-19b-3p axis can be a fingerprint for diabetic neuropathy. Immunol Lett 2022; 245:69-78. [DOI: 10.1016/j.imlet.2022.03.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 01/05/2022] [Accepted: 03/15/2022] [Indexed: 02/06/2023]
|
229
|
Königs V, Pierre S, Schicht M, Welss J, Hahnefeld L, Rimola V, Lütjen-Drecoll E, Geisslinger G, Scholich K. GPR40 Activation Abolishes Diabetes-Induced Painful Neuropathy by Suppressing VEGF-A Expression. Diabetes 2022; 71:774-787. [PMID: 35061031 DOI: 10.2337/db21-0711] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 01/11/2022] [Indexed: 11/13/2022]
Abstract
G-protein-coupled receptor 40 (GPR40) is a promising target to support glucose-induced insulin release in patients with type 2 diabetes. We studied the role of GPR40 in the regulation of blood-nerve barrier integrity and its involvement in diabetes-induced neuropathies. Because GPR40 modulates insulin release, we used the streptozotocin model for type 1 diabetes, in which GPR40 functions can be investigated independently of its effects on insulin release. Diabetic wild-type mice exhibited increased vascular endothelial permeability and showed epineural microlesions in sciatic nerves, which were also observed in naïve GPR40-/- mice. Fittingly, expression of vascular endothelial growth factor-A (VEGF-A), an inducer of vascular permeability, was increased in diabetic wild-type and naïve GPR40-/- mice. GPR40 antagonists increased VEGF-A expression in murine and human endothelial cells as well as permeability of transendothelial barriers. In contrast, GPR40 agonists suppressed VEGF-A release and mRNA expression. The VEGF receptor inhibitor axitinib prevented diabetes-induced hypersensitivities and reduced endothelial and epineural permeability. Importantly, the GPR40 agonist GW9508 reverted established diabetes-induced hypersensitivity, an effect that was blocked by VEGF-A administration. Thus, GPR40 activation suppresses VEGF-A expression, thereby reducing diabetes-induced blood-nerve barrier permeability and reverting diabetes-induced hypersensitivities.
Collapse
Affiliation(s)
- Vanessa Königs
- Fraunhofer Institute for Translational Medicine and Pharmacology, Frankfurt am Main, Germany
- Fraunhofer Cluster of Excellence for Immune-Mediated Diseases, Frankfurt am Main, Germany
| | - Sandra Pierre
- Institute of Clinical Pharmacology, Hospital of the Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Martin Schicht
- Institute of Functional and Clinical Anatomy, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Jessica Welss
- Institute of Functional and Clinical Anatomy, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Lisa Hahnefeld
- Fraunhofer Institute for Translational Medicine and Pharmacology, Frankfurt am Main, Germany
- Fraunhofer Cluster of Excellence for Immune-Mediated Diseases, Frankfurt am Main, Germany
- Institute of Clinical Pharmacology, Hospital of the Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Vittoria Rimola
- Institute of Clinical Pharmacology, Hospital of the Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Elke Lütjen-Drecoll
- Institute of Functional and Clinical Anatomy, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Gerd Geisslinger
- Fraunhofer Institute for Translational Medicine and Pharmacology, Frankfurt am Main, Germany
- Fraunhofer Cluster of Excellence for Immune-Mediated Diseases, Frankfurt am Main, Germany
- Institute of Clinical Pharmacology, Hospital of the Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Klaus Scholich
- Fraunhofer Institute for Translational Medicine and Pharmacology, Frankfurt am Main, Germany
- Fraunhofer Cluster of Excellence for Immune-Mediated Diseases, Frankfurt am Main, Germany
- Institute of Clinical Pharmacology, Hospital of the Goethe University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
230
|
Joksimovic SL, Jevtovic-Todorovic V, Todorovic SM. The Mechanisms of Plasticity of Nociceptive Ion Channels in Painful Diabetic Neuropathy. FRONTIERS IN PAIN RESEARCH 2022; 3:869735. [PMID: 35419564 PMCID: PMC8995507 DOI: 10.3389/fpain.2022.869735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Treating pain in patients suffering from small fiber neuropathies still represents a therapeutic challenge for health care providers and drug developers worldwide. Unfortunately, none of the currently available treatments can completely reverse symptoms of either gain or loss of peripheral nerve sensation. Therefore, there is a clear need for novel mechanism-based therapies for peripheral diabetic neuropathy (PDN) that would improve treatment of this serious condition. In this review, we summarize the current knowledge on the mechanisms and causes of peripheral sensory neurons damage in diabetes. In particular, we focused on the subsets of voltage-gated sodium channels, TRP family of ion channels and a CaV3.2 isoform of T-type voltage-gated calcium channels. However, even though their potential is well-validated in multiple rodent models of painful PDN, clinical trials with specific pharmacological blockers of these channels have failed to exhibit therapeutic efficacy. We argue that understanding the development of diabetes and causal relationship between hyperglycemia, glycosylation, and other post-translational modifications may lead to the development of novel therapeutics that would efficiently alleviate painful PDN by targeting disease-specific mechanisms rather than individual nociceptive ion channels.
Collapse
Affiliation(s)
- Sonja L Joksimovic
- Department of Anesthesiology, University of Colorado Denver, Aurora, CO, United States
| | | | - Slobodan M Todorovic
- Department of Anesthesiology, University of Colorado Denver, Aurora, CO, United States
- Neuroscience Graduate Program, University of Colorado Denver, Aurora, CO, United States
| |
Collapse
|
231
|
Hall BE, Macdonald E, Cassidy M, Yun S, Sapio MR, Ray P, Doty M, Nara P, Burton MD, Shiers S, Ray-Chaudhury A, Mannes AJ, Price TJ, Iadarola MJ, Kulkarni AB. Transcriptomic analysis of human sensory neurons in painful diabetic neuropathy reveals inflammation and neuronal loss. Sci Rep 2022; 12:4729. [PMID: 35304484 PMCID: PMC8933403 DOI: 10.1038/s41598-022-08100-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 02/25/2022] [Indexed: 01/02/2023] Open
Abstract
Pathological sensations caused by peripheral painful neuropathy occurring in Type 2 diabetes mellitus (T2DM) are often described as 'sharp' and 'burning' and are commonly spontaneous in origin. Proposed etiologies implicate dysfunction of nociceptive sensory neurons in dorsal root ganglia (DRG) induced by generation of reactive oxygen species, microvascular defects, and ongoing axonal degeneration and regeneration. To investigate the molecular mechanisms contributing to diabetic pain, DRGs were acquired postmortem from patients who had been experiencing painful diabetic peripheral neuropathy (DPN) and subjected to transcriptome analyses to identify genes contributing to pathological processes and neuropathic pain. DPN occurs in distal extremities resulting in the characteristic "glove and stocking" pattern. Accordingly, the L4 and L5 DRGs, which contain the perikarya of primary afferent neurons innervating the foot, were analyzed from five DPN patients and compared with seven controls. Transcriptome analyses identified 844 differentially expressed genes. We observed increases in levels of inflammation-associated transcripts from macrophages in DPN patients that may contribute to pain hypersensitivity and, conversely, there were frequent decreases in neuronally-related genes. The elevated inflammatory gene profile and the accompanying downregulation of multiple neuronal genes provide new insights into intraganglionic pathology and mechanisms causing neuropathic pain in DPN patients with T2DM.
Collapse
Affiliation(s)
- Bradford E Hall
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Room 130, Bethesda, MD, 20892, USA
| | - Emma Macdonald
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Room 130, Bethesda, MD, 20892, USA
- Present Affiliation: NIH Graduate Partnerships Program, Brown University, Providence, RI, 02912, USA
| | - Margaret Cassidy
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Room 130, Bethesda, MD, 20892, USA
| | - Sijung Yun
- Yotta Biomed, LLC, Bethesda, MD, 20814, USA
| | - Matthew R Sapio
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Pradipta Ray
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Megan Doty
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Room 130, Bethesda, MD, 20892, USA
| | - Pranavi Nara
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Michael D Burton
- Neuroimmunology and Behavior Group, School of Behavior and Brain Sciences, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Stephanie Shiers
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Abhik Ray-Chaudhury
- Surgical Neurology Branch, Disorders and Stroke, National Institute of Neurological, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Andrew J Mannes
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Theodore J Price
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Michael J Iadarola
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ashok B Kulkarni
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Room 130, Bethesda, MD, 20892, USA.
| |
Collapse
|
232
|
Yang X, Li X, Zhu Y, Gao Y, Xu L. Paeoniflorin Upregulates Mitochondrial Thioredoxin of Schwann Cells to Improve Diabetic Peripheral Neuropathy Indicated by 4D Label-Free Quantitative Proteomics. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4775645. [PMID: 35340203 PMCID: PMC8956397 DOI: 10.1155/2022/4775645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/06/2022] [Accepted: 03/01/2022] [Indexed: 12/12/2022]
Abstract
Diabetic peripheral neuropathy (DPN) is a diabetic complication characterized by demyelination. The pathogenesis of DPN has not been fully elucidated, thus lacking therapies. In the current study, we aimed to confirm whether paeoniflorin (PF) could improve DPN by upregulating mitochondrial thioredoxin (Trx2) based on 4D Label-free proteomic experiments of Schwann cells (SCs) mitochondria. Firstly, PF increased the expression of mitochondrial processing peptidase α (Pmpca) and small ubiquitin-related modifier 1 (Sumo1) to increase mitochondrial protein processing of Trx2. Then, PF increased the protein expression of Trx reductase 2 (TrxR2) and peroxiredoxin 3 (Prx3), which belong to mitochondrial Trx systems. Accordingly, PF decreased mitochondrial reactive oxygen species (ROS) while increasing mtDNA and mitochondrial membrane potential to improve mitochondria function under high glucose environment. Furthermore, total glucosides of paeony capsules (TGP), containing more than 90% PF, increased the Trx2, TrxR2, and Prx3 levels in sciatic nerve of DPN rats, thus reducing demyelination as well as improving mechanical pain threshold, thermal pain threshold, motor nerve conduction velocity (MNCV), and sensor nerve conduction velocity (SNCV). Overall, these results suggest that PF could provide protection for DPN by upregulating Trx2.
Collapse
Affiliation(s)
- Xinwei Yang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
- Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing 100069, China
| | - Xiao Li
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
- Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing 100069, China
| | - Yanbo Zhu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
- Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing 100069, China
| | - YingYing Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
- Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing 100069, China
| | - Liping Xu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
- Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing 100069, China
| |
Collapse
|
233
|
Li Y, Yao W, Gao Y. Effects of Tang Luo Ning on diabetic peripheral neuropathy in rats revealed by LC-MS metabolomics approach. Biomed Chromatogr 2022; 36:e5374. [PMID: 35302257 DOI: 10.1002/bmc.5374] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 03/13/2022] [Accepted: 03/16/2022] [Indexed: 11/07/2022]
Abstract
Diabetic peripheral neuropathy (DPN) is one of the most common complications of diabetes with limited therapies. Tang Luo Ning (TLN), a traditional Chinese medicine compound, has been proved to be effective in the treatment of DPN in clinical and experimental studies. However, the potential metabolic mechanism of TLN for the treatment of DPN is still unclear. Here the therapeutic effect of TLN on DPN was studied, and HPLC-IT-TOF/MS was used to explore the metabolic changes related to DPN and to explore the mechanism of TLN on DPN induced by high glucose. Furthermore, metabolic pathway analysis was used to explore the metabolic changes induced by DPN and TLN. As a result, TLN could improve the peripheral nerve function of DPN rats, and TLN could reduce the demyelination of the sciatic nerve in DPN rats. Metabolomics analysis showed that 14 potential biomarkers (citrate, creatine, fumarate, glyceric acid, glycine, succinate, etc.) of both DPN and TLN treatment were identified. Pathway analysis showed that the changes in these metabolites were mainly related to the citrate cycle (TCA cycle), glycine, serine and threonine metabolism, and glyoxylate and dicarboxylate metabolism.
Collapse
Affiliation(s)
- Yangfan Li
- Department of Traditional Chinese Medcine, Beijing Friendship Hospital, Capital Medical University
| | - Weijie Yao
- Department of pharmacy, Beijing Maternity Hospital, Capital Medical University
| | - Yanbin Gao
- College of Traditional Chinese Medicine, Capital Medical University, No.10, Youanmenwai Xitoutiao, Fengtai District, Beijing, China
| |
Collapse
|
234
|
Khan A, Pasquier J, Ramachandran V, Ponirakis G, Petropoulos IN, Chidiac O, Thomas B, Robay A, Jayyousi A, Al Suwaidi J, Rafii A, Menzies RA, Talal TK, Najafi-Shoushtari SH, Abi Khalil C, Malik RA. Altered Circulating microRNAs in Patients with Diabetic Neuropathy and Corneal Nerve Loss: A Pilot Study. J Clin Med 2022; 11:jcm11061632. [PMID: 35329958 PMCID: PMC8956033 DOI: 10.3390/jcm11061632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/09/2022] [Accepted: 02/27/2022] [Indexed: 02/05/2023] Open
Abstract
An alteration in circulating miRNAs may have important diagnostic and therapeutic relevance in diabetic neuropathy. Patients with type 2 diabetes mellitus (T2DM) underwent an assessment of neuropathic symptoms using Douleur Neuropathique 4 (DN4), the vibration perception threshold (VPT) using a Neurothesiometer, sudomotor function using the Sudoscan, corneal nerve morphology using corneal confocal microscopy (CCM) and circulating miRNAs using high-throughput miRNA expression profiling. Patients with T2DM, with (n = 9) and without (n = 7) significant corneal nerve loss were comparable in age, gender, diabetes duration, BMI, HbA1c, eGFR, blood pressure, and lipid profile. The VPT was significantly higher (p < 0.05), and electrochemical skin conductance (p < 0.05), corneal nerve fiber density (p = 0.001), corneal nerve branch density (p = 0.013), and corneal nerve fiber length (p < 0.001) were significantly lower in T2DM patients with corneal nerve loss compared to those without corneal nerve loss. Following a q-PCR-based analysis of total plasma microRNAs, we found that miR-92b-3p (p = 0.008) was significantly downregulated, while miR-22-3p (p = 0.0001) was significantly upregulated in T2DM patients with corneal nerve loss. A network analysis revealed that these miRNAs regulate axonal guidance and neuroinflammation genes. These data support the need for more extensive studies to better understand the role of dysregulated miRNAs’ in diabetic neuropathy.
Collapse
Affiliation(s)
- Adnan Khan
- Department of Medicine, Weill Cornell Medicine-Qatar, Doha P.O. Box 24144, Qatar; (A.K.); (G.P.); (I.N.P.)
- Faculty of Health Sciences, Khyber Medical University, Peshawar P.O. Box 25100, Pakistan
| | - Jennifer Pasquier
- Epigenetics Cardiovascular Laboratory, Department of Genetic Medicine, Weill Cornell Medicine-Qatar, Doha P.O. Box 24144, Qatar; (J.P.); (O.C.); (B.T.); (A.R.); (A.R.)
| | - Vimal Ramachandran
- MicroRNA Core Laboratory, Research Division, Weill Cornell Medicine-Qatar, Doha P.O. Box 24144, Qatar; (V.R.); (S.H.N.-S.)
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Georgios Ponirakis
- Department of Medicine, Weill Cornell Medicine-Qatar, Doha P.O. Box 24144, Qatar; (A.K.); (G.P.); (I.N.P.)
| | - Ioannis N. Petropoulos
- Department of Medicine, Weill Cornell Medicine-Qatar, Doha P.O. Box 24144, Qatar; (A.K.); (G.P.); (I.N.P.)
| | - Omar Chidiac
- Epigenetics Cardiovascular Laboratory, Department of Genetic Medicine, Weill Cornell Medicine-Qatar, Doha P.O. Box 24144, Qatar; (J.P.); (O.C.); (B.T.); (A.R.); (A.R.)
| | - Binitha Thomas
- Epigenetics Cardiovascular Laboratory, Department of Genetic Medicine, Weill Cornell Medicine-Qatar, Doha P.O. Box 24144, Qatar; (J.P.); (O.C.); (B.T.); (A.R.); (A.R.)
| | - Amal Robay
- Epigenetics Cardiovascular Laboratory, Department of Genetic Medicine, Weill Cornell Medicine-Qatar, Doha P.O. Box 24144, Qatar; (J.P.); (O.C.); (B.T.); (A.R.); (A.R.)
| | - Amin Jayyousi
- Hamad Medical Corporation, Doha P.O. Box 24144, Qatar; (A.J.); (J.A.S.); (R.A.M.); (T.K.T.)
| | - Jassim Al Suwaidi
- Hamad Medical Corporation, Doha P.O. Box 24144, Qatar; (A.J.); (J.A.S.); (R.A.M.); (T.K.T.)
| | - Arash Rafii
- Epigenetics Cardiovascular Laboratory, Department of Genetic Medicine, Weill Cornell Medicine-Qatar, Doha P.O. Box 24144, Qatar; (J.P.); (O.C.); (B.T.); (A.R.); (A.R.)
| | - Robert A. Menzies
- Hamad Medical Corporation, Doha P.O. Box 24144, Qatar; (A.J.); (J.A.S.); (R.A.M.); (T.K.T.)
| | - Talal K. Talal
- Hamad Medical Corporation, Doha P.O. Box 24144, Qatar; (A.J.); (J.A.S.); (R.A.M.); (T.K.T.)
| | - Seyed Hani Najafi-Shoushtari
- MicroRNA Core Laboratory, Research Division, Weill Cornell Medicine-Qatar, Doha P.O. Box 24144, Qatar; (V.R.); (S.H.N.-S.)
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Charbel Abi Khalil
- Epigenetics Cardiovascular Laboratory, Department of Genetic Medicine, Weill Cornell Medicine-Qatar, Doha P.O. Box 24144, Qatar; (J.P.); (O.C.); (B.T.); (A.R.); (A.R.)
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
- Correspondence: (C.A.K.); (R.A.M.); Tel.: +974-4492-8484 (C.A.K.); +974-4492-8256 (R.A.M.)
| | - Rayaz A. Malik
- Department of Medicine, Weill Cornell Medicine-Qatar, Doha P.O. Box 24144, Qatar; (A.K.); (G.P.); (I.N.P.)
- Correspondence: (C.A.K.); (R.A.M.); Tel.: +974-4492-8484 (C.A.K.); +974-4492-8256 (R.A.M.)
| |
Collapse
|
235
|
Kan HW, Hsieh JH, Wang SW, Yeh TY, Chang MF, Tang TY, Chao CC, Feng FP, Hsieh ST. Nonpermissive skin environment impairs nerve regeneration in diabetes via Sec31a. Ann Neurol 2022; 91:821-833. [PMID: 35285061 DOI: 10.1002/ana.26347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 02/09/2022] [Accepted: 03/02/2022] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Although the microenvironment for peripheral nerve regeneration is permissive, such a mechanism is defective in diabetes, and the molecular mediators remain elusive. This study aimed to (1) investigate the relationship between skin innervation and collagen pathology in diabetic neuropathy and to (2) clarify the molecular alterations that occur in response to hyperglycemia and their effects on axon regeneration. METHODS We addressed this issue using two complementary systems: (1) human skin from patients with diabetic neuropathy and to (2) a coculture model of human dermal fibroblasts (HDFs) with rat dorsal root ganglia neurons in the context of intrinsic neuronal factor and extrinsic microenvironmental collagen and its biosynthetic pathways. RESULTS In diabetic neuropathy, the skin innervation of intraepidermal nerve fiber density (IENFd), a measure of sensory nerve degeneration, was reduced with similar expression of a growth associated protein 43, a marker of nerve regeneration. In contrast, the content and packing of collagen in the diabetic skin became more rigid than the control skin. Sec31a, a protein that regulates the collagen biosynthetic pathway, was upregulated and inversely correlated with IENFd. In the cell model, activated HDFs exposed to high-glucose medium enhanced the expression of Sec31a and collagen I through the activation of transforming growth factor β, a profibrotic molecule. Sec31a upregulation impaired neurite outgrowth. This effect was reversed by silencing Sec31a expression and neurite outgrowth was resumed. INTERPRETATION The current study provides evidence that Sec31a plays a key role in inhibiting nerve regeneration in diabetic neuropathy. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hung-Wei Kan
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung, 824005, Taiwan
| | - Jung-Hsien Hsieh
- Department of Surgery, National Taiwan University Hospital, Taipei, 100225, Taiwan
| | - Shih-Wei Wang
- Division of Rheumatology and Immunology, E-DA Hospital/I-Shou University, Kaohsiung, 824005, Taiwan
| | - Ti-Yen Yeh
- Department of Anatomy and Cell Biology, National Taiwan University, Taipei, 100233, Taiwan
| | - Ming-Fong Chang
- Department of Anatomy and Cell Biology, National Taiwan University, Taipei, 100233, Taiwan
| | - Tsz-Yi Tang
- Department of Anatomy and Cell Biology, National Taiwan University, Taipei, 100233, Taiwan
| | - Chi-Chao Chao
- Department of Neurology, National Taiwan University Hospital, Taipei, 100225, Taiwan
| | - Fang-Ping Feng
- Department of Neurology, National Taiwan University Hospital, Taipei, 100225, Taiwan
| | - Sung-Tsang Hsieh
- Department of Anatomy and Cell Biology, National Taiwan University, Taipei, 100233, Taiwan.,Department of Neurology, National Taiwan University Hospital, Taipei, 100225, Taiwan.,Center of Precision Medicine, College of Medicine, National Taiwan University, Taipei, 100233, Taiwan
| |
Collapse
|
236
|
Sivakumar PM, Prabhakar PK, Cetinel S, R N, Prabhawathi V. Molecular Insights on the Therapeutic Effect of Selected Flavonoids on Diabetic Neuropathy. Mini Rev Med Chem 2022; 22:1828-1846. [PMID: 35264089 DOI: 10.2174/1389557522666220309140855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/16/2021] [Accepted: 12/14/2021] [Indexed: 11/22/2022]
Abstract
One of the common clinical complications of diabetes is diabetic neuropathy affecting the nervous system. Painful diabetic neuropathy is widespread and highly prevalent. At least 50% of diabetes patients develop diabetic neuropathy eventually. The four main types of diabetic neuropathy are peripheral neuropathy, autonomic neuropathy, proximal neuropathy (diabetic polyradiculopathy), and mononeuropathy (Focal neuropathy). Glucose control remains the common therapy for diabetic neuropathy due to limited knowledge on early biomarkers that are expressed during nerve damage, thereby limiting the cure through pharmacotherapy. Glucose control dramatically reduces the onset of neuropathy in type 1 diabetes but proves less effective in type 2 diabetes. Therefore, the focus is on various herbal remedies for prevention and treatment. There is numerous research on the use of anticonvulsants and antidepressants for the management of pain in diabetic neuropathy. Extensive research is being done on natural products including the isolation of pure compounds like flavonoids from plants and their effect on diabetic neuropathy. This review focuses on the use of an important of flavonoids such as flavanols (e.g., quercetin, rutin, kaempferol, and isorhamnetin), flavanones (e.g., hesperidin, naringenin and c,lass eriodictyol), and flavones (e.g., apigenin, luteolin, tangeretin, chrysin, and diosmin) for the prevention and treatment of diabetic neuropathy. The mechanisms of action of flavonoids against diabetic neuropathy by their antioxidant, anti-inflammation, anti-glycation properties, etc. are also covered in this review article.
Collapse
Affiliation(s)
- Ponnurengam Malliappan Sivakumar
- Center for Molecular Biology, Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang, Vietnam.
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey
| | | | - Sibel Cetinel
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey.
- Center of Excellence for Functional Surfaces and Interfaces for Nano Diagnostics (EFSUN), Sabanci University, Istanbul 34956, Turkey
| | - Neelakandan R
- Department of Textile Technology, Anna University, Chennai, Tamil Nadu, India
| | - Veluchamy Prabhawathi
- Multidisciplinary Research Unit, Coimbatore Medical College, Coimbatore - 641014, Tamil Nadu, India
| |
Collapse
|
237
|
de Oliveira AA, Mendoza VO, Rastogi S, Nunes KP. New insights into the role and therapeutic potential of HSP70 in diabetes. Pharmacol Res 2022; 178:106173. [PMID: 35278625 DOI: 10.1016/j.phrs.2022.106173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/06/2022] [Accepted: 03/07/2022] [Indexed: 10/18/2022]
Abstract
Emerging evidence indicates that HSP70 represents a key mechanism in the pathophysiology of β-cell dysfunction, insulin resistance, and various diabetic complications, including micro- and macro-vascular alterations, as well as impaired hemostasis. Hyperglycemia, a hallmark of both types of diabetes, increases the circulating levels of HSP70 (eHSP70), but there is still divergence about whether diabetes up- or down-regulates the intracellular fraction of this protein (iHSP70). Here, we consider that iHSP70 levels reduce in diabetic arterial structures and that the vascular system is in direct contact with all other systems in the body suggesting that a systemic response might also be happening for iHSP70, which is characterized by decreased levels of HSP70 in the vasculature. Furthermore, although many pathways have been proposed to explain HSP70's functions in diabetes, and organs/tissues/cells-specific variations occur, the membrane-bound receptor of the innate immune system, Toll-like receptor 4, and its downstream signal transduction pathways appear to be a constant, not only when we explore the actions of eHSP70, but also when we assess the contributions of iHSP70. In this review, we focus on discussing the multiple roles of HSP70 across organs/tissues/cells affected by hyperglycemia to further explore the possibility of targeting this protein with pharmacological and non-pharmacological approaches in the context of diabetes.
Collapse
Affiliation(s)
- Amanda Almeida de Oliveira
- Laboratory of Vascular Biology, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, United States
| | - Valentina Ochoa Mendoza
- Laboratory of Vascular Biology, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, United States
| | - Swasti Rastogi
- Laboratory of Vascular Biology, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, United States
| | - Kenia Pedrosa Nunes
- Laboratory of Vascular Biology, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, United States.
| |
Collapse
|
238
|
Taams NE, Knol MJ, Hanewinckel R, Drenthen J, Adams HHH, van Doorn PA, Ikram MA. Genetic evidence for the most common risk factors of chronic axonal polyneuropathy in the general population. Eur J Neurol 2022; 29:2066-2073. [PMID: 35247017 PMCID: PMC9314974 DOI: 10.1111/ene.15311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/24/2022] [Indexed: 11/28/2022]
Abstract
Background and purpose Chronic axonal polyneuropathy is a common disease, but the etiology remains only partially understood. Previous etiologic studies have identified clinical risk factors, but genetic evidence supporting causality between these factors and polyneuropathy are largely lacking. In this study, we investigate whether there is a genetic association of clinically established important risk factors (diabetes, body mass index [BMI], vitamin B12 levels, and alcohol intake) with chronic axonal polyneuropathy. Methods This study was performed within the population‐based Rotterdam Study and included 1565 participants (median age = 73.6 years, interquartile range = 64.6–78.8, 53.5% female), of whom 215 participants (13.7%) had polyneuropathy. Polygenic scores (PGSs) for diabetes, BMI, vitamin B12 levels, and alcohol intake were calculated at multiple significance thresholds based on published genome‐wide association studies. Results Higher PGSs of diabetes, BMI, and alcohol intake were associated with higher prevalence of chronic axonal polyneuropathy, whereas higher PGS of vitamin B12 levels was associated with lower prevalence of polyneuropathy. These effects were most pronounced for PGSs with lenient significance thresholds for diabetes and BMI (odds ratio [OR]diabetes, p < 1.0 = 1.21, 95% confidence interval [CI] = 1.05–1.39 and ORBMI, p < 1.0 = 1.21, 95% CI = 1.04–1.41) and for the strictest significance thresholds for vitamin B12 level and alcohol intake (OR vitamin B12, p < 5e‐6 = 0.79, 95% CI = 0.68–0.92 and ORalcohol, p < 5e‐8 = 1.17, 95% CI = 1.02–1.35). We did not find an association between different PGSs and sural sensory nerve action potential amplitude, nor between individual lead variants of PGSp < 5e‐8 and polyneuropathy. Conclusions This study provides evidence for polygenic associations of diabetes, BMI, vitamin B12 level, and alcohol intake with chronic axonal polyneuropathy. This supports the hypothesis of causal associations between well‐known clinical risk factors and polyneuropathy.
Collapse
Affiliation(s)
- Noor E Taams
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands.,Department of Neurology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Maria J Knol
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Rens Hanewinckel
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands.,Department of Neurology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Judith Drenthen
- Department of Clinical Neurophysiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Hieab H H Adams
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands.,Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Pieter A van Doorn
- Department of Neurology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
239
|
Hossain MJ, Kendig MD, Letton ME, Morris MJ, Arnold R. Peripheral Neuropathy Phenotyping in Rat Models of Type 2 Diabetes Mellitus: Evaluating Uptake of the Neurodiab Guidelines and Identifying Future Directions. Diabetes Metab J 2022; 46:198-221. [PMID: 35385634 PMCID: PMC8987683 DOI: 10.4093/dmj.2021.0347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/25/2022] [Indexed: 11/08/2022] Open
Abstract
Diabetic peripheral neuropathy (DPN) affects over half of type 2 diabetes mellitus (T2DM) patients, with an urgent need for effective pharmacotherapies. While many rat and mouse models of T2DM exist, the phenotyping of DPN has been challenging with inconsistencies across laboratories. To better characterize DPN in rodents, a consensus guideline was published in 2014 to accelerate the translation of preclinical findings. Here we review DPN phenotyping in rat models of T2DM against the 'Neurodiab' criteria to identify uptake of the guidelines and discuss how DPN phenotypes differ between models and according to diabetes duration and sex. A search of PubMed, Scopus and Web of Science databases identified 125 studies, categorised as either diet and/or chemically induced models or transgenic/spontaneous models of T2DM. The use of diet and chemically induced T2DM models has exceeded that of transgenic models in recent years, and the introduction of the Neurodiab guidelines has not appreciably increased the number of studies assessing all key DPN endpoints. Combined high-fat diet and low dose streptozotocin rat models are the most frequently used and well characterised. Overall, we recommend adherence to Neurodiab guidelines for creating better animal models of DPN to accelerate translation and drug development.
Collapse
Affiliation(s)
- Md Jakir Hossain
- Department of Pharmacology, School of Medical Sciences, University of New South Wales (UNSW) Sydney, Sydney, Australia
| | - Michael D. Kendig
- Department of Pharmacology, School of Medical Sciences, University of New South Wales (UNSW) Sydney, Sydney, Australia
| | - Meg E. Letton
- Department of Exercise Physiology, School of Medical Sciences, University of New South Wales (UNSW) Sydney, Sydney, Australia
| | - Margaret J. Morris
- Department of Pharmacology, School of Medical Sciences, University of New South Wales (UNSW) Sydney, Sydney, Australia
| | - Ria Arnold
- Department of Pharmacology, School of Medical Sciences, University of New South Wales (UNSW) Sydney, Sydney, Australia
- Department of Exercise Physiology, School of Medical Sciences, University of New South Wales (UNSW) Sydney, Sydney, Australia
- Department of Exercise and Rehabilitation, School of Medical, Indigenous and Health Science, University of Wollongong, Wollongong, Australia
- Corresponding author: Ria Arnold https://orcid.org/0000-0002-7469-6587 Department of Exercise Physiology, School of Health Sciences, UNSW Sydney, Sydney, NSW 2052, Australia E-mail:
| |
Collapse
|
240
|
Influence of intermittent fasting on prediabetes-induced neuropathy: Insights on a novel mechanistic pathway. Metabol Open 2022; 14:100175. [PMID: 35402890 PMCID: PMC8991399 DOI: 10.1016/j.metop.2022.100175] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 11/23/2022] Open
Abstract
Aims Peripheral neuropathy (PN) is correlated with obesity and metabolic syndrome. Intermittent fasting (IF) has been described as the cornerstone in the management of obesity; however, its role in prediabetic complications is not well elucidated. Cytochromes P450 Monooxygenases (CYP450) are major sources of Reactive Oxygen Species (ROS) that orchestrate the onset and development of diabetic complications. One of the CYP-metabolites, Expoxyecosatetraenoic Acids (EETs), are considered to be negative regulators of ROS production. In this study, we elucidated the role of IF on ROS production and investigated its influence on prediabetes-induced PN. Methods C57/BL6 control mice, prediabetic, prediabetic that underwent alternate day fasting with different diet composition, and prediabetic mice treated with EET-metabolizing sEH-inhibitor, AUDA. Body mass composition, metabolic, behavioral, and molecular tests were performed. Results High-fat diet (HFD) led to an increase in NADPH-induced ROS production; that was due to an alteration in the epoxygenase pathway assessed by the decrease in CYP1a1/1a2 expression. IF reinstated the homeostatic levels of EETs in HFD-fed mice. Moreover, treatment with AUDA mimicked the beneficial effect observed with IF. Conclusion IF and EETs bioavailability have a protective role in prediabetes-induced PN, suggesting a novel interventional strategy in the management of prediabetes and its associated complications.
Collapse
|
241
|
The characteristics of pain and dysesthesia in patients with diabetic polyneuropathy. PLoS One 2022; 17:e0263831. [PMID: 35176062 PMCID: PMC8853492 DOI: 10.1371/journal.pone.0263831] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/28/2022] [Indexed: 12/25/2022] Open
Abstract
Introduction/aims Patients with diabetic polyneuropathy (DPN) may experience paresthesia, dysesthesia, and pain. We aimed to characterize the predictors, symptoms, somatosensory profile, neuropathy severity, and impact of painful DPN and dysesthetic DPN. Methods This study was a cross-sectional study of type 2 diabetes patients with confirmed DPN, diagnosed using widely accepted methods including a clinical examination, skin biopsy, and nerve conduction studies. Findings Of 126 patients with confirmed DPN, 52 had DPN without pain or dysesthesia, 21 had dysesthetic DPN, and 53 painful DPN. Patients with painful DPN were less physically active and suffered from more pain elsewhere than in the feet compared to patients with DPN without pain. Patients with painful DPN had the largest loss of small and large sensory fiber function, and there was a gradient of larger spatial distribution of sensory loss from DPN without dysesthesia/pain to dysesthetic DPN and to painful DPN. This could indicate that patients with dysesthesia had more severe neuropathy than patients without dysesthesia but less than patients with painful DPN. Patients with dysesthetic and painful DPN had higher symptom scores for depression and fatigue than those without dysesthesia/pain with no difference between dysesthetic and painful DPN. Conclusions There was a gradient of increasing sensory loss from DPN without dysesthesia/pain to dysesthetic DPN and to painful DPN. Pain and dysesthesia are common in DPN and both interfere with daily life. It is therefore important to consider dysesthesia when diagnosing and treating patients with neuropathy.
Collapse
|
242
|
Themistocleous AC, Kristensen AG, Sola R, Gylfadottir SS, Bennedsgaard K, Itani M, Krøigård T, Ventzel L, Sindrup SH, Jensen TS, Bostock H, Serra J, Finnerup NB, Tankisi H, Bennett DLH. Axonal excitability does not differ between painful and painless diabetic or chemotherapy-induced distal symmetrical polyneuropathy in a multi-centre observational study. Ann Neurol 2022; 91:506-520. [PMID: 35150149 PMCID: PMC9313833 DOI: 10.1002/ana.26319] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 01/18/2022] [Accepted: 02/07/2022] [Indexed: 11/16/2022]
Abstract
Objective Axonal excitability reflects ion channel function, and it is proposed that this may be a biomarker in painful (vs painless) polyneuropathy. Our objective was to investigate the relationship between axonal excitability parameters and chronic neuropathic pain in deeply phenotyped cohorts with diabetic or chemotherapy‐induced distal symmetrical polyneuropathy. Methods Two hundred thirty‐nine participants with diabetic polyneuropathy were recruited from sites in the UK and Denmark, and 39 participants who developed chemotherapy‐induced polyneuropathy were recruited from Denmark. Participants were separated into those with probable or definite neuropathic pain and those without neuropathic pain. Axonal excitability of large myelinated fibers was measured with the threshold tracking technique. The stimulus site was the median nerve, and the recording sites were the index finger (sensory studies) and abductor pollicis brevis muscle (motor studies). Results Participants with painless and painful polyneuropathy were well matched across clinical variables. Sensory and motor axonal excitability measures, including recovery cycle, threshold electrotonus, strength–duration time constant, and current–threshold relationship, did not show differences between participants with painful and painless diabetic polyneuropathy, and there were only minor changes for chemotherapy‐induced polyneuropathy. Interpretation Axonal excitability did not significantly differ between painful and painless diabetic or chemotherapy‐induced polyneuropathy in a multicenter observational study. Threshold tracking assesses the excitability of myelinated axons; the majority of nociceptors are unmyelinated, and although there is some overlap of the "channelome" between these axonal populations, our results suggest that alternative measures such as microneurography are required to understand the relationship between sensory neuron excitability and neuropathic pain. ANN NEUROL 2022;91:506–520
Collapse
Affiliation(s)
| | - Alexander Gramm Kristensen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Clinical Neurophysiology, Aarhus University Hospital, Aarhus, Denmark
| | - Roma Sola
- Neuroscience Technologies, Barcelona, Spain.,MC Mutual, Barcelona, Spain
| | - Sandra Sif Gylfadottir
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | - Kristine Bennedsgaard
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | - Mustapha Itani
- Department of Neurology, Odense University Hospital, Odense, Denmark
| | - Thomas Krøigård
- Department of Neurology, Odense University Hospital, Odense, Denmark
| | - Lise Ventzel
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Troels Staehelin Jensen
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | - Hugh Bostock
- UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Jordi Serra
- Neuroscience Technologies, Barcelona, Spain.,MC Mutual, Barcelona, Spain
| | - Nanna B Finnerup
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | - Hatice Tankisi
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Clinical Neurophysiology, Aarhus University Hospital, Aarhus, Denmark
| | - David L H Bennett
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
243
|
Durán AM, Beeson WL, Firek A, Cordero-MacIntyre Z, De León M. Dietary Omega-3 Polyunsaturated Fatty-Acid Supplementation Upregulates Protective Cellular Pathways in Patients with Type 2 Diabetes Exhibiting Improvement in Painful Diabetic Neuropathy. Nutrients 2022; 14:nu14040761. [PMID: 35215418 PMCID: PMC8876723 DOI: 10.3390/nu14040761] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/04/2022] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
Abstract
Background: Omega-3 polyunsaturated fatty acids (PUFAs) have been proposed to improve chronic neuroinflammatory diseases in peripheral and central nervous systems. For instance, docosahexaenoic acid (DHA) protects nerve cells from noxious stimuli in vitro and in vivo. Recent reports link PUFA supplementation to improving painful diabetic neuropathy (pDN) symptoms, but cellular mechanisms responsible for this therapeutic effect are not well understood. The objective of this study is to identify distinct cellular pathways elicited by dietary omega-3 PUFA supplementation in patients with type 2 diabetes mellitus (T2DM) affected by pDN. Methods: Forty volunteers diagnosed with type 2 diabetes were enrolled in the “En Balance-PLUS” diabetes education study. The volunteers participated in weekly lifestyle/nutrition education and daily supplementation with 1000 mg DHA and 200 mg eicosapentaenoic acid. The Short-Form McGill Pain Questionnaire validated clinical determination of baseline and post-intervention pain complaints. Laboratory and untargeted metabolomics analyses were conducted using blood plasma collected at baseline and after three months of participation in the dietary regimen. The metabolomics data were analyzed using random forest, hierarchical clustering, ingenuity pathway analysis, and metabolic pathway mapping. Results: The data show that metabolites involved in oxidative stress and glutathione production shifted significantly to a more anti-inflammatory state post supplementation. Example of these metabolites include cystathionine (+90%), S-methylmethionine (+9%), glycine cysteine-glutathione disulfide (+157%) cysteinylglycine (+19%), glutamate (−11%), glycine (+11%), and arginine (+13.4%). In addition, the levels of phospholipids associated with improved membrane fluidity such as linoleoyl-docosahexaenoyl-glycerol (18:2/22:6) (+253%) were significantly increased. Ingenuity pathway analysis suggested several key bio functions associated with omega-3 PUFA supplementation such as formation of reactive oxygen species (p = 4.38 × 10−4, z-score = −1.96), peroxidation of lipids (p = 2.24 × 10−5, z-score = −1.944), Ca2+ transport (p = 1.55 × 10−4, z-score = −1.969), excitation of neurons (p = 1.07 ×10−4, z-score = −1.091), and concentration of glutathione (p = 3.06 × 10−4, z-score = 1.974). Conclusion: The reduction of pro-inflammatory and oxidative stress pathways following dietary omega-3 PUFA supplementation is consistent with the promising role of these fatty acids in reducing adverse symptoms associated with neuroinflammatory diseases and painful neuropathy.
Collapse
Affiliation(s)
- Alfonso M. Durán
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (A.M.D.); (W.L.B.); (Z.C.-M.)
| | - W. Lawrence Beeson
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (A.M.D.); (W.L.B.); (Z.C.-M.)
- Center for Nutrition, Healthy Lifestyle and Disease Prevention, School of Public Health, Loma Linda University, Loma Linda, CA 92350, USA
| | - Anthony Firek
- Comparative Effectiveness and Clinical Outcomes Research Center, Riverside University Health System Medical Center, Moreno Valley, CA 92555, USA;
| | - Zaida Cordero-MacIntyre
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (A.M.D.); (W.L.B.); (Z.C.-M.)
- Center for Nutrition, Healthy Lifestyle and Disease Prevention, School of Public Health, Loma Linda University, Loma Linda, CA 92350, USA
| | - Marino De León
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (A.M.D.); (W.L.B.); (Z.C.-M.)
- Correspondence: ; Tel.: +1-909-558-9474
| |
Collapse
|
244
|
Yim AKY, Wang PL, Bermingham JR, Hackett A, Strickland A, Miller TM, Ly C, Mitra RD, Milbrandt J. Disentangling glial diversity in peripheral nerves at single-nuclei resolution. Nat Neurosci 2022; 25:238-251. [PMID: 35115729 PMCID: PMC9060899 DOI: 10.1038/s41593-021-01005-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 12/14/2021] [Indexed: 11/09/2022]
Abstract
The peripheral nerve contains diverse cell types that support its proper function and maintenance. In this study, we analyzed multiple peripheral nerves using single-nuclei RNA sequencing, which allowed us to circumvent difficulties encountered in analyzing cells with complex morphologies via conventional single-cell methods. The resultant mouse peripheral nerve cell atlas highlights a diversity of cell types, including multiple subtypes of Schwann cells (SCs), immune cells and stromal cells. We identified a distinct myelinating SC subtype that expresses Cldn14, Adamtsl1 and Pmp2 and preferentially ensheathes motor axons. The number of these motor-associated Pmp2+ SCs is reduced in both an amyotrophic lateral sclerosis (ALS) SOD1G93A mouse model and human ALS nerve samples. Our findings reveal the diversity of SCs and other cell types in peripheral nerve and serve as a reference for future studies of nerve biology and disease.
Collapse
Affiliation(s)
- Aldrin K Y Yim
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Peter L Wang
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - John R Bermingham
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Amber Hackett
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Amy Strickland
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Timothy M Miller
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Cindy Ly
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Robi D Mitra
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Jeffrey Milbrandt
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
245
|
Omar N, Ismail CAN, Long I. Tannins in the Treatment of Diabetic Neuropathic Pain: Research Progress and Future Challenges. Front Pharmacol 2022; 12:805854. [PMID: 35082680 PMCID: PMC8784866 DOI: 10.3389/fphar.2021.805854] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/15/2021] [Indexed: 12/04/2022] Open
Abstract
Diabetes mellitus and its consequences continue to put a significant demand on medical resources across the world. Diabetic neuropathic pain (DNP) is a frequent diabetes mellitus chronic microvascular outcome. Allodynia, hyperalgesia, and aberrant or lack of nerve fibre sensation are all symptoms of DNP. These clinical characteristics will lead to worse quality of life, sleep disruption, depression, and increased mortality. Although the availability of numerous medications that alleviate the symptoms of DNP, the lack of long-term efficacy and unfavourable side effects highlight the urgent need for novel treatment strategies. This review paper systematically analysed the preclinical research on the treatment of DNP using plant phytochemicals that contain only tannins. A total of 10 original articles involved in in-vivo and in-vitro experiments addressing the promising benefits of phytochemical tannins on DNP were examined between 2008 and 2021. The information given implies that these phytochemicals may have relevant pharmacological effects on DNP symptoms through their antihyperalgesic, anti-inflammatory, and antioxidant properties; however, because of the limited sample size and limitations of the studies conducted so far, we were unable to make definitive conclusions. Before tannins may be employed as therapeutic agents for DNP, more study is needed to establish the specific molecular mechanism for all of these activities along the pain pathway and examine the side effects of tannins in the treatment of DNP.
Collapse
Affiliation(s)
- Norsuhana Omar
- Department of Physiology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Che Aishah Nazariah Ismail
- Department of Physiology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Idris Long
- Biomedical Science programme, School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| |
Collapse
|
246
|
Jende JME, Kender Z, Morgenstern J, Renn P, Mooshage C, Juerchott A, Kopf S, Nawroth PP, Bendszus M, Kurz FT. Fractional Anisotropy and Troponin T Parallel Structural Nerve Damage at the Upper Extremities in a Group of Patients With Prediabetes and Type 2 Diabetes – A Study Using 3T Magnetic Resonance Neurography. Front Neurosci 2022; 15:741494. [PMID: 35140582 PMCID: PMC8818845 DOI: 10.3389/fnins.2021.741494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 12/17/2021] [Indexed: 12/14/2022] Open
Abstract
Background Recent studies have found that troponin T parallels the structural and functional decay of peripheral nerves at the level of the lower limbs in patients with type 2 diabetes (T2D). The aim of this study was to determine whether this finding can also be reproduced at the level of the upper limbs. Methods Ten patients with fasting glucose levels >100 mg/dl (five with prediabetes and five with T2D) underwent magnetic resonance neurography of the right upper arm comprising T2-weighted and diffusion weighted sequences. The fractional anisotropy (FA), an indicator for the structural integrity of peripheral nerves, was calculated in an automated approach for the median, ulnar, and radial nerve. All participants underwent additional clinical, serological, and electrophysiological assessments. Results High sensitivity Troponin T (hsTNT) and HbA1c were negatively correlated with the average FA of the median, ulnar and radial nerve (r = −0.84; p = 0.002 and r = −0.68; p = 0.032). Both FA and hsTNT further showed correlations with items of the Michigan Hand Outcome Questionnaire (r = −0.76; p = 0.010 and r = 0.87; p = 0.001, respectively). A negative correlation was found for hsTNT and HbA1c with the total Purdue Pegboard Test Score (r = −0.87; p = 0.001 and r = −0.68; p = 0.031). Conclusion This study is the first to find that hsTNT and HbA1c are associated with functional and structural parameters of the nerves at the level of the upper limbs in patients with impaired glucose tolerance and T2D. Our results support the hypothesis that hyperglycemia-related microangiopathy, represented by elevated hsTNT levels, is a contributor to nerve damage in diabetic polyneuropathy.
Collapse
Affiliation(s)
- Johann M. E. Jende
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Zoltan Kender
- Department of Endocrinology, Diabetology and Clinical Chemistry, Heidelberg University Hospital, Heidelberg, Germany
| | - Jakob Morgenstern
- Department of Endocrinology, Diabetology and Clinical Chemistry, Heidelberg University Hospital, Heidelberg, Germany
| | - Pascal Renn
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Alexander Juerchott
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Stefan Kopf
- Department of Endocrinology, Diabetology and Clinical Chemistry, Heidelberg University Hospital, Heidelberg, Germany
- German Center of Diabetes Research, München, Germany
| | - Peter P. Nawroth
- Department of Endocrinology, Diabetology and Clinical Chemistry, Heidelberg University Hospital, Heidelberg, Germany
- German Center of Diabetes Research, München, Germany
- Joint Institute for Diabetes and Cancer at Helmholtz-Zentrum Munich and Heidelberg University, Heidelberg, Germany
| | - Martin Bendszus
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Felix T. Kurz
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Research Center, Radiology E010, Heidelberg, Germany
- *Correspondence: Felix T. Kurz,
| |
Collapse
|
247
|
Shinotsuka N, Denk F. Fibroblasts: the neglected cell type in peripheral sensitisation and chronic pain? A review based on a systematic search of the literature. BMJ OPEN SCIENCE 2022; 6:e100235. [PMID: 35128075 PMCID: PMC8768938 DOI: 10.1136/bmjos-2021-100235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/12/2021] [Indexed: 11/15/2022] Open
Abstract
Chronic pain and its underlying biological mechanisms have been studied for many decades, with a myriad of molecules, receptors and cell types known to contribute to abnormal pain sensations. Besides an obvious role for neurons, immune cells like microglia, macrophages and T cells are also important drivers of persistent pain. While neuroinflammation has therefore been widely studied in pain research, there is one cell type that appears to be rather neglected in this context: the humble fibroblast. Fibroblasts may seem unassuming but actually play a major part in regulating immune cell function and driving chronic inflammation. Here, our aim was to determine the breadth and quality of research that implicates fibroblasts in chronic pain conditions and models. OBJECTIVES We set out to analyse the current literature on this topic-using systematic screening and data extraction methods to obtain a balanced view on what has been published. METHODS We categorised the articles we included-stratifying them according to what was investigated, the estimated quality of results and any common conclusions. RESULTS We found that there has been surprisingly little research in this area: 134 articles met our inclusion criteria, only a tiny minority of which directly investigated interactions between fibroblasts and peripheral neurons. CONCLUSIONS Fibroblasts are a ubiquitous cell type and a prominent source of many proalgesic mediators in a wide variety of tissues. We think that they deserve a more central role in pain research and propose a new, testable model of how fibroblasts might drive peripheral neuron sensitisation.
Collapse
Affiliation(s)
- Naomi Shinotsuka
- Laboratory for Pharmacology, Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, Izunokuni, Shizuoka, Japan
| | - Franziska Denk
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
248
|
Role of miRNAs in diabetic neuropathy: mechanisms and possible interventions. Mol Neurobiol 2022; 59:1836-1849. [PMID: 35023058 DOI: 10.1007/s12035-021-02662-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/19/2021] [Indexed: 10/19/2022]
Abstract
Accelerating cases of diabetes worldwide have given rise to higher incidences of diabetic complications. MiRNAs, a much-explored class of non-coding RNAs, play a significant role in the pathogenesis of diabetes mellitus by affecting insulin release, β-cell proliferation, and dysfunction. Besides, disrupted miRNAs contribute to various complications, diabetic retinopathy, nephropathy, and neuropathy as well as severe conditions like diabetic foot. MiRNAs regulate various processes involved in diabetic complications like angiogenesis, vascularization, inflammations, and various signaling pathways like PI3K, MAPK, SMAD, and NF-KB signaling pathways. Diabetic neuropathy is the most common diabetic complication, characterized mainly by pain and numbness, especially in the legs and feet. MiRNAs implicated in diabetic neuropathy include mir-9, mir-106a, mir-146a, mir-182, miR-23a and b, miR-34a, and miR-503. The diabetic foot is the most common diabetic neuropathy, often leading to amputations. Mir-203, miR-23c, miR-145, miR-29b and c, miR-126, miR-23a and b, miR-503, and miR-34a are associated with diabetic foot. This review has been compiled to summarize miRNA involved in initiation, progression, and miRNAs affecting various signaling pathways involved in diabetic neuropathy including the diabetic foot. Besides, potential applications of miRNAs as biomarkers and therapeutic targets in this microvascular complication will also be discussed.
Collapse
|
249
|
Zhang F, Ma Y, Yu Y, Sun M, Li H, Lou J, Cao J, Liu Y, Niu M, Wang L, Mi W. Type 2 Diabetes Increases Risk of Unfavorable Survival Outcome for Postoperative Ischemic Stroke in Patients Who Underwent Non-cardiac Surgery: A Retrospective Cohort Study. Front Aging Neurosci 2022; 13:810050. [PMID: 35087397 PMCID: PMC8786912 DOI: 10.3389/fnagi.2021.810050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/10/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: Diabetes mellitus (DM) has been critically associated with unfavorable outcomes in the general population. We aimed to investigate the association between type 2 DM and long-term survival outcomes for postoperative ischemic stroke in patients who underwent non-cardiac surgery. Research Design and Methods: This was a retrospective cohort study of patients with non-cardiac surgery who had suffered from postoperative ischemic stroke between January 2008 and August 2019. Diabetic individuals were included in postoperative ischemic stroke patients with the DM group. The outcome of interest was long-term overall survival (OS). We conducted propensity score matching (PSM) and inverse probability treatment weighting (IPTW) to adjust for baseline characteristic differences between groups. Multivariate Cox regression analysis with stepwise selection was used to calculate the adjusted hazard ratio (HR) of OS and type 2 DM. Results: During a median follow-up of 46.2 month [interquartile range (IQR), 21.1, 84.2], 200 of 408 patients (49.0%) died. The OS rates at 3, 5, and 10 years were significantly lower for postoperative ischemic stroke patients with DM than those without DM (3 years OS: 52.2 vs. 69.5%, p < 0.001; 5 years OS: 41.6 vs. 62.4%, p < 0.001; 10 years OS: 37.2 vs. 56.6%, p < 0.001). All covariates were between-group balanced after using PSM or IPTW. The postoperative ischemic stroke patients with type 2 DM had a shortened OS in primary analysis (HR: 1.947; 95% CI: 1.397-2.713; p < 0.001), PSM analysis (HR: 2.190; 95% CI: 1.354-3.540; p = 0.001), and IPTW analysis (HR: 2.551; 95% CI: 1.769-3.679; p < 0.001). Conclusion: Type 2 DM was associated with an unfavorable survival outcome for postoperative ischemic stroke in patients who underwent non-cardiac surgery. When postoperative ischemic stroke co-occurred with type 2 DM, the potential synergies would have multiplicative mortality risk. Further research to assess the adverse effects of type 2 DM on long-term survival may be warranted.
Collapse
Affiliation(s)
- Faqiang Zhang
- School of Medicine, Nankai University, Tianjin, China,Anesthesia and Operation Center, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yulong Ma
- Anesthesia and Operation Center, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yao Yu
- Anesthesia and Operation Center, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Miao Sun
- Anesthesia and Operation Center, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Hao Li
- Anesthesia and Operation Center, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jingsheng Lou
- Anesthesia and Operation Center, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jiangbei Cao
- Anesthesia and Operation Center, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yanhong Liu
- Anesthesia and Operation Center, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Mu Niu
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China,*Correspondence: Mu Niu,
| | - Long Wang
- Department of Pain Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing, China,Long Wang,
| | - Weidong Mi
- School of Medicine, Nankai University, Tianjin, China,Anesthesia and Operation Center, The First Medical Center, Chinese PLA General Hospital, Beijing, China,Weidong Mi,
| |
Collapse
|
250
|
Papanas N, Stamatiou I, Papachristou S. Carpal Tunnel Syndrome in Diabetes Mellitus. Curr Diabetes Rev 2022; 18:e010921196025. [PMID: 34468300 DOI: 10.2174/1573399817666210901114610] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 11/22/2022]
Abstract
The aim of the present brief review was to discuss carpal tunnel syndrome (CTS) in diabetes mellitus (DM). Generally, CTS is more common in DM, especially in subjects with coexisting diabetic polyneuropathy (DPN) and/or long DM duration. There is no agreement if it is more frequent in type 1 or type 2 DM. The precise underlying mechanisms are not entirely clear but appear to involve hyperglycaemia-induced median nerve oedema, increased sensitivity to exogenous trauma and nerve myelin ischaemia and axonal degeneration. More recently, increased vascular endothelial growth factor (VEGF) and advanced glycation endproducts (AGEs) appear to also play an important role. Median nerve conduction study remains the cornerstone of CTS diagnosis in DM, being more sensitive than clinical examination. CTS can be treated medically or surgically. The latter appears now to be equally effective in subjects with vs. without DM in terms of recurrence rates and quality of life.
Collapse
Affiliation(s)
- Nikolaos Papanas
- Diabetes Centre, Second Department of Internal Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Iliana Stamatiou
- Diabetes Centre, Second Department of Internal Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Stella Papachristou
- Diabetes Centre, Second Department of Internal Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| |
Collapse
|