201
|
|
202
|
Dynamic of the somatosensory system in postherpetic neuralgia. Pain Rep 2018; 3:e668. [PMID: 30706032 PMCID: PMC6344136 DOI: 10.1097/pr9.0000000000000668] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 05/28/2018] [Accepted: 06/08/2018] [Indexed: 01/14/2023] Open
Abstract
Introduction: In postherpetic neuralgia (PHN) different types of patients can be distinguished regarding their predominant peripheral nociceptor function. Objective: The aim was to examine somatosensory profiles in the course of disease with special regard to the different subtypes existing in PHN. Methods: Twenty patients with PHN (7 men and 13 women, age 67 ± 9.6 years) were examined at baseline (disease duration 18.1 ± 26 months) and follow-up (31.6 ± 23.8 months later) with quantitative sensory testing (protocol of the German Research Network on Neuropathic Pain). Results: Fourteen (70%) PHN patients presented with impaired (iPHN) and 6 (30%) with preserved (pPHN) C-fiber function. Groups did not differ regarding age, disease duration, or pain intensity at baseline. Both groups did not differ regarding change in pain intensity (−0.5 ± 2.3 vs −1.7 ± 2.6 numerical rating scale, P = n.s.) at follow-up. Impaired PHN improved in thermal and mechanical detection thresholds as well as allodynia independent from change in pain intensity. By contrast, pPHN showed an increase in mechanical pain sensitivity (1.4 ± 2.5 vs −0.4 ± 2.2, P < 0.05) and a trend towards a stronger loss of detection (66% vs 33%, P = n.s.) on follow-up. Conclusion: Results demonstrate that patients with preserved C-fiber function are more predisposed to develop signs of central sensitization as demonstrated by an increased mechanical pain sensitivity. Impaired C-fiber function is able to improve even in chronic cases, but a functional loss is unlikely to play a role here. The knowledge of development of somatosensory profiles in the course of the disease offers possibilities to optimize a mechanism-based treatment.
Collapse
|
203
|
Selvarajah D, Petrie J, White D, Julious S, Bortolami O, Cooper C, Bradburn M, Loban A, Bowler H, Swaby L, Sutherland K, Tesfaye S. Multicentre, double-blind, crossover trial to identify the Optimal Pathway for TreatIng neurOpathic paiN in Diabetes Mellitus (OPTION-DM): study protocol for a randomised controlled trial. Trials 2018; 19:578. [PMID: 30348206 PMCID: PMC6196556 DOI: 10.1186/s13063-018-2959-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 10/03/2018] [Indexed: 12/13/2022] Open
Abstract
Background The number of people with diabetes is growing rapidly. Diabetes can cause nerve damage leading to severe pain in the feet, legs and hands, which is known as diabetic peripheral neuropathic pain (DPNP). In the UK, the National Institute for Health and Care Excellence (NICE) recommends amitriptyline, duloxetine, pregabalin or gabapentin as initial treatment for DPNP. If this is not effective, adding one of the other drugs in combination with the first is recommended. NICE points out that these recommendations are not based on robust evidence. The OPTION-DM randomised controlled trial has been designed to address this evidence deficit, with the aims of determining the most clinically beneficial, cost-effective and tolerated treatment pathway for patients with DPNP. Methods/design A multicentre, double-blind, centre-stratified, multi-period crossover study with equal allocation to sequences (1:1:1:1:1:1) of treatment pathways. Three hundred and ninety-two participants will be recruited from secondary care DPNP centres in the UK. There are three treatment pathways: amitriptyline supplemented with pregabalin, pregabalin supplemented with amitriptyline and duloxetine supplemented with pregabalin. All participants will receive all three pathways and randomisation will determine the order in which they are received. The primary outcome is the difference between 7-day average 24-h pain scores on an 11-point NRS scale measured during the final follow-up week of the treatment pathway. Secondary outcomes for efficacy, cost-effectiveness, safety, patient-perceived tolerability and subgroup analysis will be measured at week 6 and week 16 of each pathway. Discussion The study includes direct comparisons of the mainstay treatment for DPNP. This novel study is designed to examine treatment pathways and capture clinically relevant outcomes which will make the results generalisable to current clinical practice. The study will also provide information on health economic outcomes and will include a subgroup study to provide information on whether patient phenotypes predict response to treatment. Trial registration ISRCTN17545443. Registered on 12 September 2016. Electronic supplementary material The online version of this article (10.1186/s13063-018-2959-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dinesh Selvarajah
- Department of Oncology and Human Metabolism, Medical School, University of Sheffield, Sheffield, UK
| | - Jennifer Petrie
- Clinical Trials Research Unit, University of Sheffield, Sheffield, UK.
| | - David White
- Clinical Trials Research Unit, University of Sheffield, Sheffield, UK
| | - Steven Julious
- Medical Statistics Group, School of Health and Related Research, University of Sheffield, Sheffield, UK
| | - Oscar Bortolami
- Clinical Trials Research Unit, University of Sheffield, Sheffield, UK
| | - Cindy Cooper
- Clinical Trials Research Unit, University of Sheffield, Sheffield, UK
| | - Mike Bradburn
- Clinical Trials Research Unit, University of Sheffield, Sheffield, UK
| | - Amanda Loban
- Clinical Trials Research Unit, University of Sheffield, Sheffield, UK
| | - Helen Bowler
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Lizzie Swaby
- Clinical Trials Research Unit, University of Sheffield, Sheffield, UK
| | - Katie Sutherland
- Clinical Trials Research Unit, University of Sheffield, Sheffield, UK
| | - Solomon Tesfaye
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | | |
Collapse
|
204
|
Forstenpointner J, Rice ASC, Finnerup NB, Baron R. Up-date on Clinical Management of Postherpetic Neuralgia and Mechanism-Based Treatment: New Options in Therapy. J Infect Dis 2018; 218:S120-S126. [DOI: 10.1093/infdis/jiy381] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- Julia Forstenpointner
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Andrew S C Rice
- Pain Research, Department of Surgery and Cancer, Imperial College, Chelsea and Westminster Hospital Campus, London, United Kingdom
| | - Nanna B Finnerup
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University
- Department of Neurology, Aarhus University Hospital, Denmark
| | - Ralf Baron
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
205
|
Efficacy of pregabalin in post-traumatic peripheral neuropathic pain: a randomized, double-blind, placebo-controlled phase 3 trial. J Neurol 2018; 265:2815-2824. [PMID: 30242745 PMCID: PMC6244661 DOI: 10.1007/s00415-018-9063-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 08/17/2018] [Accepted: 09/16/2018] [Indexed: 11/13/2022]
Abstract
The growing need for symptomatic treatment of post-traumatic neuropathic pain (PTNP) continues to be unmet. Studies evaluating the efficacy of pregabalin for reducing neuropathic pain following trauma and surgery yielded positive results over ≤ 8-week treatment. To assess the efficacy and tolerability of pregabalin over 3 months in patients with PTNP, a randomized, double-blind, placebo-controlled, parallel-group trial evaluated patients with PTNP at 101 centers in 11 countries—the longest, largest such trial. Adults diagnosed with PTNP were randomly assigned (1:1) to 15 weeks of pregabalin (flexibly dosed 150–600 mg/day) or matching placebo. Primary efficacy analysis was by mixed-model repeated measures comparing change from baseline to week 15 in weekly mean pain scores between active and placebo groups. Evaluable patients included 274 in the pregabalin group and 265 in the placebo group. Trauma was surgical in 49.6% of patients, non-surgical in the remainder. The primary efficacy analysis showed no statistically significant difference between pregabalin and placebo groups in the change from baseline to week 15 [mean difference, − 0.22 points (95% confidence interval, 0.54–0.10); p = 0.1823]. However, comparisons for key secondary outcome measures yielded p values < 0.05 favoring pregabalin. Consistent with the known safety profile of pregabalin, the most common adverse events were dizziness and somnolence (14.6 and 9.9% of patients, respectively) with pregabalin (vs 4.2 and 3.4% with placebo). These findings demonstrate the feasibility of conducting a large, phase 3 registration trial in the heterogeneous PTNP study population. ClinicalTrials.gov NCT01701362.
Collapse
|
206
|
Themistocleous AC, Crombez G, Baskozos G, Bennett DL. Using stratified medicine to understand, diagnose, and treat neuropathic pain. Pain 2018; 159 Suppl 1:S31-S42. [PMID: 30113945 PMCID: PMC6130809 DOI: 10.1097/j.pain.0000000000001301] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
| | - Geert Crombez
- Department of Experimental-Clinical and Health Psychology, Ghent University, Ghent, Belgium
| | - Georgios Baskozos
- The Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - David L Bennett
- The Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
207
|
Structural, functional, and symptom relations in painful distal symmetric polyneuropathies: a systematic review. Pain 2018; 160:286-297. [DOI: 10.1097/j.pain.0000000000001381] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
208
|
Han C, Themistocleous AC, Estacion M, Dib-Hajj FB, Blesneac I, Macala L, Fratter C, Bennett DL, Waxman SG, Dib-Hajj SD. The Novel Activity of Carbamazepine as an Activation Modulator Extends from Na V1.7 Mutations to the Na V1.8-S242T Mutant Channel from a Patient with Painful Diabetic Neuropathy. Mol Pharmacol 2018; 94:1256-1269. [PMID: 30135145 DOI: 10.1124/mol.118.113076] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 08/20/2018] [Indexed: 01/24/2023] Open
Abstract
Neuropathic pain in patients carrying sodium channel gain-of-function mutations is generally refractory to pharmacotherapy. However, we have shown that pretreatment of cells with clinically achievable concentration of carbamazepine (CBZ; 30 μM) depolarizes the voltage dependence of activation in some NaV1.7 mutations such as S241T, a novel CBZ mode of action of this drug. CBZ reduces the excitability of dorsal root ganglion (DRG) neurons expressing NaV1.7-S241T mutant channels, and individuals carrying the S241T mutation respond to treatment with CBZ. Whether the novel activation-modulating activity of CBZ is specific to NaV1.7, and whether this pharmacogenomic approach can be extended to other sodium channel subtypes, are not known. We report here the novel NaV1.8-S242T mutation, which corresponds to the NaV1.7-S241T mutation, in a patient with neuropathic pain and diabetic peripheral neuropathy. Voltage-clamp recordings demonstrated hyperpolarized and accelerated activation of NaV1.8-S242T. Current-clamp recordings showed that NaV1.8-S242T channels render DRG neurons hyperexcitable. Structural modeling shows that despite a substantial difference in the primary amino acid sequence of NaV1.7 and NaV1.8, the S242 (NaV1.8) and S241 (NaV1.7) residues have similar position and orientation in the domain I S4-S5 linker of the channel. Pretreatment with a clinically achievable concentration of CBZ corrected the voltage dependence of activation of NaV1.8-S242T channels and reduced DRG neuron excitability as predicted from our pharmacogenomic model. These findings extend the novel activation modulation mode of action of CBZ to a second sodium channel subtype, NaV1.8.
Collapse
Affiliation(s)
- Chongyang Han
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut (C.H., M.E., F.B.D.-H., L.M., S.G.W., S.D.D.-H.); Center for restoration of Nervous System Function, Veterans Affairs Medical Center, West Haven, Connecticut (C.H., M.E., F.B.D.-H., L.M., S.G.W., S.D.D.-H.); Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom (A.C.T., I.B., D.L.B.); Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa (A.C.T.); and Oxford Medical Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom (C.F.)
| | - Andreas C Themistocleous
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut (C.H., M.E., F.B.D.-H., L.M., S.G.W., S.D.D.-H.); Center for restoration of Nervous System Function, Veterans Affairs Medical Center, West Haven, Connecticut (C.H., M.E., F.B.D.-H., L.M., S.G.W., S.D.D.-H.); Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom (A.C.T., I.B., D.L.B.); Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa (A.C.T.); and Oxford Medical Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom (C.F.)
| | - Mark Estacion
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut (C.H., M.E., F.B.D.-H., L.M., S.G.W., S.D.D.-H.); Center for restoration of Nervous System Function, Veterans Affairs Medical Center, West Haven, Connecticut (C.H., M.E., F.B.D.-H., L.M., S.G.W., S.D.D.-H.); Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom (A.C.T., I.B., D.L.B.); Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa (A.C.T.); and Oxford Medical Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom (C.F.)
| | - Fadia B Dib-Hajj
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut (C.H., M.E., F.B.D.-H., L.M., S.G.W., S.D.D.-H.); Center for restoration of Nervous System Function, Veterans Affairs Medical Center, West Haven, Connecticut (C.H., M.E., F.B.D.-H., L.M., S.G.W., S.D.D.-H.); Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom (A.C.T., I.B., D.L.B.); Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa (A.C.T.); and Oxford Medical Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom (C.F.)
| | - Iulia Blesneac
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut (C.H., M.E., F.B.D.-H., L.M., S.G.W., S.D.D.-H.); Center for restoration of Nervous System Function, Veterans Affairs Medical Center, West Haven, Connecticut (C.H., M.E., F.B.D.-H., L.M., S.G.W., S.D.D.-H.); Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom (A.C.T., I.B., D.L.B.); Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa (A.C.T.); and Oxford Medical Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom (C.F.)
| | - Lawrence Macala
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut (C.H., M.E., F.B.D.-H., L.M., S.G.W., S.D.D.-H.); Center for restoration of Nervous System Function, Veterans Affairs Medical Center, West Haven, Connecticut (C.H., M.E., F.B.D.-H., L.M., S.G.W., S.D.D.-H.); Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom (A.C.T., I.B., D.L.B.); Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa (A.C.T.); and Oxford Medical Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom (C.F.)
| | - Carl Fratter
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut (C.H., M.E., F.B.D.-H., L.M., S.G.W., S.D.D.-H.); Center for restoration of Nervous System Function, Veterans Affairs Medical Center, West Haven, Connecticut (C.H., M.E., F.B.D.-H., L.M., S.G.W., S.D.D.-H.); Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom (A.C.T., I.B., D.L.B.); Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa (A.C.T.); and Oxford Medical Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom (C.F.)
| | - David L Bennett
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut (C.H., M.E., F.B.D.-H., L.M., S.G.W., S.D.D.-H.); Center for restoration of Nervous System Function, Veterans Affairs Medical Center, West Haven, Connecticut (C.H., M.E., F.B.D.-H., L.M., S.G.W., S.D.D.-H.); Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom (A.C.T., I.B., D.L.B.); Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa (A.C.T.); and Oxford Medical Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom (C.F.)
| | - Stephen G Waxman
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut (C.H., M.E., F.B.D.-H., L.M., S.G.W., S.D.D.-H.); Center for restoration of Nervous System Function, Veterans Affairs Medical Center, West Haven, Connecticut (C.H., M.E., F.B.D.-H., L.M., S.G.W., S.D.D.-H.); Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom (A.C.T., I.B., D.L.B.); Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa (A.C.T.); and Oxford Medical Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom (C.F.)
| | - Sulayman D Dib-Hajj
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut (C.H., M.E., F.B.D.-H., L.M., S.G.W., S.D.D.-H.); Center for restoration of Nervous System Function, Veterans Affairs Medical Center, West Haven, Connecticut (C.H., M.E., F.B.D.-H., L.M., S.G.W., S.D.D.-H.); Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom (A.C.T., I.B., D.L.B.); Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa (A.C.T.); and Oxford Medical Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom (C.F.)
| |
Collapse
|
209
|
Sensory phenotype and risk factors for painful diabetic neuropathy: a cross-sectional observational study. Pain 2018; 158:2340-2353. [PMID: 28858986 PMCID: PMC5690294 DOI: 10.1097/j.pain.0000000000001034] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Supplemental Digital Content is Available in the Text. Cross-sectional observational study in a cohort of 232 diabetic polyneuropathy patients confirmed higher severity of neuropathy and predominant loss-of-function sensory profile in painful cases. Different sensory profiles in diabetic distal symmetrical sensory-motor polyneuropathy (DSPN) may be associated with pain and the responsiveness to analgesia. We aimed to characterize sensory phenotypes of patients with painful and painless diabetic neuropathy and to assess demographic, clinical, metabolic, and electrophysiological parameters related to the presence of neuropathic pain in a large cohort of well-defined DSPN subjects. This observational cross-sectional multi-center cohort study (performed as part of the ncRNAPain EU consortium) of 232 subjects with nonpainful (n = 74) and painful (n = 158) DSPN associated with diabetes mellitus of type 1 and 2 (median age 63 years, range 21-87 years; 92 women) comprised detailed history taking, laboratory tests, neurological examination, quantitative sensory testing, nerve conduction studies, and neuropathy severity scores. All parameters were analyzed with regard to the presence and severity of neuropathic pain. Neuropathic pain was positively correlated with the severity of neuropathy and thermal hyposensitivity (P < 0.001). A minority of patients with painful DSPN (14.6%) had a sensory profile, indicating thermal hypersensitivity that was associated with less severe neuropathy. Neuropathic pain was further linked to female sex and higher cognitive appraisal of pain as assessed by the pain catastrophizing scale (P < 0.001), while parameters related to diabetes showed no influence on neuropathic pain with the exception of laboratory signs of nephropathy. This study confirms the value of comprehensive DSPN phenotyping and underlines the importance of the severity of neuropathy for the presence of pain. Different sensory phenotypes might be useful for stratification of patients with painful DSPN for analgesic treatment and drug trials.
Collapse
|
210
|
Shiao R, Lee-Kubli CA. Neuropathic Pain After Spinal Cord Injury: Challenges and Research Perspectives. Neurotherapeutics 2018; 15:635-653. [PMID: 29736857 PMCID: PMC6095789 DOI: 10.1007/s13311-018-0633-4] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Neuropathic pain is a debilitating consequence of spinal cord injury (SCI) that remains difficult to treat because underlying mechanisms are not yet fully understood. In part, this is due to limitations of evaluating neuropathic pain in animal models in general, and SCI rodents in particular. Though pain in patients is primarily spontaneous, with relatively few patients experiencing evoked pains, animal models of SCI pain have primarily relied upon evoked withdrawals. Greater use of operant tasks for evaluation of the affective dimension of pain in rodents is needed, but these tests have their own limitations such that additional studies of the relationship between evoked withdrawals and operant outcomes are recommended. In preclinical SCI models, enhanced reflex withdrawal or pain responses can arise from pathological changes that occur at any point along the sensory neuraxis. Use of quantitative sensory testing for identification of optimal treatment approach may yield improved identification of treatment options and clinical trial design. Additionally, a better understanding of the differences between mechanisms contributing to at- versus below-level neuropathic pain and neuropathic pain versus spasticity may shed insights into novel treatment options. Finally, the role of patient characteristics such as age and sex in pathogenesis of neuropathic SCI pain remains to be addressed.
Collapse
Affiliation(s)
- Rani Shiao
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 N. Torrey Pines, La Jolla, California, 92073, USA
| | - Corinne A Lee-Kubli
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 N. Torrey Pines, La Jolla, California, 92073, USA.
| |
Collapse
|
211
|
Helfert S, Reimer M, Barnscheid L, Hüllemann P, Rengelshausen J, Keller T, Baron R, Binder A. Impact of suggestion on the human experimental model of cold hyperalgesia after topical application of high-concentration menthol [40%]. Eur J Pain 2018; 22:1517-1527. [PMID: 29756270 DOI: 10.1002/ejp.1240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2018] [Indexed: 11/11/2022]
Abstract
BACKGROUND Human experimental pain models in healthy subjects offer unique possibilities to study mechanisms of pain within a defined setting of expected pain symptoms, signs and mechanisms. Previous trials in healthy subjects demonstrated that topical application of 40% menthol is suitable to induce cold hyperalgesia. The objective of this study was to evaluate the impact of suggestion on this experimental human pain model. METHODS The study was performed within a single-centre, randomized, placebo-controlled, double-blind, two-period crossover trial in a cohort of 16 healthy subjects. Subjects were tested twice after topical menthol application (40% dissolved in ethanol) and twice after ethanol (as placebo) application. In the style of a balanced placebo trial design, the subjects received during half of the testing the correct information about the applied substance (topical menthol or ethanol) and during half of the testing the incorrect information, leading to four tested conditions (treatment conditions: menthol-told-menthol and menthol-told-ethanol; placebo conditions: ethanol-told-menthol and ethanol-told-ethanol). RESULTS Cold but not mechanical hyperalgesia was reliably induced by the model. The cold pain threshold decreased in both treatment conditions regardless whether true or false information was given. Minor suggestion effects were found in subjects with prior ethanol application. CONCLUSIONS The menthol model is a reliable, nonsuggestible model to induce cold hyperalgesia. Mechanical hyperalgesia is not as reliable to induce. SIGNIFICANCE Cold hyperalgesia may be investigated under unbiased and suggestion-free conditions using the menthol model of pain.
Collapse
Affiliation(s)
- S Helfert
- Division of Neurological Pain Research and Therapy, Department of Neurology, Christian-Albrechts-Universität Kiel, Germany
| | - M Reimer
- Division of Neurological Pain Research and Therapy, Department of Neurology, Christian-Albrechts-Universität Kiel, Germany
| | - L Barnscheid
- Early Clinical Science, Translational Science and Strategy, Grünenthal GmbH, Aachen, Germany
| | - P Hüllemann
- Division of Neurological Pain Research and Therapy, Department of Neurology, Christian-Albrechts-Universität Kiel, Germany
| | - J Rengelshausen
- Early Clinical Science, Translational Science and Strategy, Grünenthal GmbH, Aachen, Germany
| | - T Keller
- StatConsult GmbH, Magdeburg, Germany
| | - R Baron
- Division of Neurological Pain Research and Therapy, Department of Neurology, Christian-Albrechts-Universität Kiel, Germany
| | - A Binder
- Division of Neurological Pain Research and Therapy, Department of Neurology, Christian-Albrechts-Universität Kiel, Germany
| |
Collapse
|
212
|
Ilhan E, Chee E, Hush J, Moloney N. The prevalence of neuropathic pain is high after treatment for breast cancer: a systematic review. Pain 2018; 158:2082-2091. [PMID: 28797014 DOI: 10.1097/j.pain.0000000000001004] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pain is common, but often poorly managed after breast cancer treatment. Screening questionnaires and the Neuropathic Pain Special Interest Group (NeuPSIG) criteria are 2 clinical approaches used to determine whether pain has neuropathic components, which may enable better pain management. The aims of this review were (1) to synthesise data from the literature on neuropathic pain prevalence in women after breast cancer treatment; (2) to investigate whether the prevalence of neuropathic pain differed between studies using screening questionnaires and the NeuPSIG criteria. We searched for studies that administered a validated neuropathic pain screening questionnaire and/or the NeuPSIG criteria to women treated for early-stage (I-III) breast cancer. Thirteen studies using screening questionnaires (N = 3792) and 3 studies using components of the NeuPSIG criteria (N = 621) were included. Meta-analyses were conducted for questionnaire data but not for NeuPSIG criteria data because of inadequate homogeneity. Among all participants treated for early-stage breast cancer, pooled prevalence estimates (95% confidence interval) ranged between 14.2% (8.3-21.4) and 27.2% (24.7-88.4) for studies using screening questionnaires; studies using NeuPSIG criteria reported prevalence rates from 24.1% to 31.3%. Among those who reported pain after treatment, the pooled prevalence estimate (95% confidence interval) of neuropathic pain from screening questionnaires ranged from 32.6% (24.2-41.6) to 58.2% (24.7-88.4); studies using NeuPSIG criteria reported prevalence rates from 29.5% to 57.1%. These prevalence estimates are higher than those reported for other types of cancer, and emphasise the need to assess the contribution of neuropathic pain after breast cancer treatment. TRIAL REGISTRATION PROSPERO registration CRD42015029987.
Collapse
Affiliation(s)
- Emre Ilhan
- Faculty of Medicine and Health Sciences, Department of Health Professions, Macquarie University, Sydney, Australia
| | | | | | | |
Collapse
|
213
|
Patel R, Montagut‐Bordas C, Dickenson AH. Calcium channel modulation as a target in chronic pain control. Br J Pharmacol 2018; 175:2173-2184. [PMID: 28320042 PMCID: PMC5980588 DOI: 10.1111/bph.13789] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/03/2017] [Accepted: 03/05/2017] [Indexed: 01/13/2023] Open
Abstract
Neuropathic pain remains poorly treated for large numbers of patients, and little progress has been made in developing novel classes of analgesics. To redress this issue, ziconotide (Prialt™) was developed and approved as a first-in-class synthetic version of ω-conotoxin MVIIA, a peptide blocker of Cav 2.2 channels. Unfortunately, the impracticalities of intrathecal delivery, low therapeutic index and severe neurological side effects associated with ziconotide have restricted its use to exceptional circumstances. Ziconotide exhibits no state or use-dependent block of Cav 2.2 channels; activation state-dependent blockers were hypothesized to circumvent the side effects of state-independent blockers by selectively targeting high-frequency firing of nociceptive neurones in chronic pain states, thus alleviating aberrant pain but not affecting normal sensory transduction. Unfortunately, numerous drugs, including state-dependent calcium channel blockers, have displayed efficacy in preclinical models but have subsequently been disappointing in clinical trials. In recent years, it has become more widely acknowledged that trans-aetiological sensory profiles exist amongst chronic pain patients and may indicate similar underlying mechanisms and drug sensitivities. Heterogeneity amongst patients, a reliance on stimulus-evoked endpoints in preclinical studies and a failure to utilize translatable endpoints, all are likely to have contributed to negative clinical trial results. We provide an overview of how electrophysiological and operant-based assays provide insight into sensory and affective aspects of pain in animal models and how these may relate to chronic pain patients in order to improve the bench-to-bedside translation of calcium channel modulators. LINKED ARTICLES This article is part of a themed section on Recent Advances in Targeting Ion Channels to Treat Chronic Pain. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.12/issuetoc.
Collapse
Affiliation(s)
- Ryan Patel
- Department of Neuroscience, Physiology and PharmacologyUniversity College LondonLondonUK
| | | | - Anthony H Dickenson
- Department of Neuroscience, Physiology and PharmacologyUniversity College LondonLondonUK
| |
Collapse
|
214
|
Costa YM, Ariji Y, Ferreira DMAO, Bonjardim LR, Conti PCR, Ariji E, Svensson P. Muscle hardness and masticatory myofascial pain: Assessment and clinical relevance. J Oral Rehabil 2018; 45:640-646. [PMID: 29745983 DOI: 10.1111/joor.12644] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2018] [Indexed: 11/29/2022]
Abstract
The impression of increased muscle hardness in painful muscles is commonly reported in the clinical practice but may be difficult to assess. Therefore, the aim of this review was to present and discuss relevant aspects regarding the assessment of muscle hardness and its association with myofascial temporomandibular disorder (TMD) pain. A non-systematic search for studies of muscle hardness assessment in patients with pain-related TMDs was carried out in PubMed, Cochrane Library, Embase and Google Scholar. Mechanical devices and ultrasound imaging (strain and shear wave elastography) have been consistently used to measure masticatory muscle hardness, although an undisputable reference standard is yet to be determined. Strain elastography has identified greater masseter hardness of the symptomatic side in patients with unilateral myofascial TMD pain when compared to the contralateral side and healthy controls (HC). Likewise, shear wave elastography has shown greater masseter elasticity modulus in patients with myofascial TMD pain when compared to HC, which may be an indication of muscle hardness. Although assessment bias could partly explain these preliminary findings, future randomised controlled trials are encouraged to investigate this relationship. This qualitative review indicates that the muscle hardness of masticatory muscles is still a rather unexplored field of investigation with a good potential to improve the assessment and potentially also the management of myofascial TMD pain. Nonetheless, the current evidence in favour of increased hardness in masticatory muscles in patients with myofascial TMD pain is weak, and the pathophysiological importance and clinical usefulness of such information remain unclear.
Collapse
Affiliation(s)
- Y M Costa
- Section of Head and Face Physiology, Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil.,Bauru Orofacial Pain Group, University of São Paulo, Bauru, Brazil
| | - Y Ariji
- Department of Oral and Maxillofacial Radiology, Aichi-Gakuin University School of Dentistry, Nagoya, Japan
| | - D M A O Ferreira
- Bauru Orofacial Pain Group, University of São Paulo, Bauru, Brazil.,Department of Prosthodontics, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | - L R Bonjardim
- Section of Head and Face Physiology, Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil.,Bauru Orofacial Pain Group, University of São Paulo, Bauru, Brazil
| | - P C R Conti
- Bauru Orofacial Pain Group, University of São Paulo, Bauru, Brazil.,Department of Prosthodontics, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | - E Ariji
- Department of Oral and Maxillofacial Radiology, Aichi-Gakuin University School of Dentistry, Nagoya, Japan
| | - P Svensson
- Section of Orofacial Pain and Jaw Function, Department of Dentistry and Oral Health, Aarhus University, Aarhus, Denmark.,Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden.,Scandinavian Center for Orofacial Neurosciences (SCON), Aarhus, Denmark
| |
Collapse
|
215
|
O'Leary H, Smart KM, Moloney NA, Blake C, Doody CM. Pain sensitization associated with nonresponse after physiotherapy in people with knee osteoarthritis. Pain 2018; 159:1877-1886. [DOI: 10.1097/j.pain.0000000000001288] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
216
|
Rice ASC, Finnerup NB, Kemp HI, Currie GL, Baron R. Sensory profiling in animal models of neuropathic pain: a call for back-translation. Pain 2018; 159:819-824. [PMID: 29300280 PMCID: PMC5911154 DOI: 10.1097/j.pain.0000000000001138] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Andrew S C Rice
- Pain Research, Department of Surgery and Cancer, Imperial College, London, United Kingdom
| | - Nanna B Finnerup
- Department of Clinical Medicine, Danish Pain Research Center, Aarhus University, Aarhus, Denmark
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | - Harriet I Kemp
- Pain Research, Department of Surgery and Cancer, Imperial College, London, United Kingdom
| | - Gillian L Currie
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Ralf Baron
- Division of Neurological Pain Research and Therapy, Department of Neurology, Universitatsklinikum Schleswig-Holstein, Campus Kiel, Germany
| |
Collapse
|
217
|
Attal N, Bouhassira D, Baron R. Diagnosis and assessment of neuropathic pain through questionnaires. Lancet Neurol 2018; 17:456-466. [DOI: 10.1016/s1474-4422(18)30071-1] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 01/30/2018] [Accepted: 02/02/2018] [Indexed: 12/15/2022]
|
218
|
Chimenti RL, Frey-Law LA, Sluka KA. A Mechanism-Based Approach to Physical Therapist Management of Pain. Phys Ther 2018; 98:302-314. [PMID: 29669091 PMCID: PMC6256939 DOI: 10.1093/ptj/pzy030] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 02/12/2018] [Indexed: 12/11/2022]
Abstract
Pain reduction is a primary goal of physical therapy for patients who present with acute or persistent pain conditions. The purpose of this review is to describe a mechanism-based approach to physical therapy pain management. It is increasingly clear that patients need to be evaluated for changes in peripheral tissues and nociceptors, neuropathic pain signs and symptoms, reduced central inhibition and enhanced central excitability, psychosocial factors, and alterations of the movement system. In this Perspective, 5 categories of pain mechanisms (nociceptive, central, neuropathic, psychosocial, and movement system) are defined, and principles on how to evaluate signs and symptoms for each mechanism are provided. In addition, the underlying mechanisms targeted by common physical therapist treatments and how they affect each of the 5 categories are described. Several different mechanisms can simultaneously contribute to a patient's pain; alternatively, 1 or 2 primary mechanisms may cause a patient's pain. Further, within a single pain mechanism, there are likely many possible subgroups. For example, reduced central inhibition does not necessarily correlate with enhanced central excitability. To individualize care, common physical therapist interventions, such as education, exercise, manual therapy, and transcutaneous electrical nerve stimulation, can be used to target specific pain mechanisms. Although the evidence elucidating these pain mechanisms will continue to evolve, the approach outlined here provides a conceptual framework for applying new knowledge as advances are made.
Collapse
Affiliation(s)
- Ruth L Chimenti
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, Iowa
| | - Laura A Frey-Law
- Department of Physical Therapy and Rehabilitation Science, University of Iowa
| | - Kathleen A Sluka
- Department of Physical Therapy and Rehabilitation Science, 1-242 MEB, University of Iowa, Iowa City, IA 52242 (USA)
| |
Collapse
|
219
|
Stratifying patients with peripheral neuropathic pain based on sensory profiles: algorithm and sample size recommendations. Pain 2018; 158:1446-1455. [PMID: 28595241 PMCID: PMC5515640 DOI: 10.1097/j.pain.0000000000000935] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Supplemental Digital Content is Available in the Text. Phenotype stratification of patients with peripheral neuropathic pain can be conducted with a novel algorithm based on sensory profiles. In a recent cluster analysis, it has been shown that patients with peripheral neuropathic pain can be grouped into 3 sensory phenotypes based on quantitative sensory testing profiles, which are mainly characterized by either sensory loss, intact sensory function and mild thermal hyperalgesia and/or allodynia, or loss of thermal detection and mild mechanical hyperalgesia and/or allodynia. Here, we present an algorithm for allocation of individual patients to these subgroups. The algorithm is nondeterministic—ie, a patient can be sorted to more than one phenotype—and can separate patients with neuropathic pain from healthy subjects (sensitivity: 78%, specificity: 94%). We evaluated the frequency of each phenotype in a population of patients with painful diabetic polyneuropathy (n = 151), painful peripheral nerve injury (n = 335), and postherpetic neuralgia (n = 97) and propose sample sizes of study populations that need to be screened to reach a subpopulation large enough to conduct a phenotype-stratified study. The most common phenotype in diabetic polyneuropathy was sensory loss (83%), followed by mechanical hyperalgesia (75%) and thermal hyperalgesia (34%, note that percentages are overlapping and not additive). In peripheral nerve injury, frequencies were 37%, 59%, and 50%, and in postherpetic neuralgia, frequencies were 31%, 63%, and 46%. For parallel study design, either the estimated effect size of the treatment needs to be high (>0.7) or only phenotypes that are frequent in the clinical entity under study can realistically be performed. For crossover design, populations under 200 patients screened are sufficient for all phenotypes and clinical entities with a minimum estimated treatment effect size of 0.5.
Collapse
|
220
|
Abstract
PURPOSE OF REVIEW This review aims to describe the recent findings on epidemiology, pathophysiology, and management of neuropathic symptoms of the ocular surface, with a focus on potential similarities between sensations of dry eye, pain and itch. RECENT FINDINGS A narrative review of the literature was undertaken. Key references from research in dry eye, neuropathic symptoms of the ocular surface, ocular pain and itch, as well as general references on itch and pain neurobiology were included. Recent findings suggest aspects of dry eye, chronic ocular pain and itch symptomatology are driven by neuropathic pain mechanisms involving peripheral and central sensitization processes. SUMMARY Ocular dryness, pain, and itch are prevalent complaints with several of shared features. Multiple lines of evidence suggest that peripheral and central neuronal sensitization processes are involved in generating and maintaining ocular sensory symptoms. Research is warranted on the epidemiology of ocular sensations, molecular mechanisms involved in nociception and pruriception in the eye, electrophysiological alterations in animal models of eye conditions, and therapeutic modalities that can alleviate unpleasant ocular sensations.
Collapse
|
221
|
Iqbal Z, Azmi S, Yadav R, Ferdousi M, Kumar M, Cuthbertson DJ, Lim J, Malik RA, Alam U. Diabetic Peripheral Neuropathy: Epidemiology, Diagnosis, and Pharmacotherapy. Clin Ther 2018; 40:828-849. [PMID: 29709457 DOI: 10.1016/j.clinthera.2018.04.001] [Citation(s) in RCA: 280] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 03/26/2018] [Accepted: 04/02/2018] [Indexed: 12/18/2022]
Abstract
PURPOSE Diabetic peripheral neuropathy (DPN) is the commonest cause of neuropathy worldwide, and its prevalence increases with the duration of diabetes. It affects approximately half of patients with diabetes. DPN is symmetric and predominantly sensory, starting distally and gradually spreading proximally in a glove-and-stocking distribution. It causes substantial morbidity and is associated with increased mortality. The unrelenting nature of pain in this condition can negatively affect a patient's sleep, mood, and functionality and result in a poor quality of life. The purpose of this review was to critically review the current literature on the diagnosis and treatment of DPN, with a focus on the treatment of neuropathic pain in DPN. METHODS A comprehensive literature review was undertaken, incorporating article searches in electronic databases (EMBASE, PubMed, OVID) and reference lists of relevant articles with the authors' expertise in DPN. This review considers seminal and novel research in epidemiology; diagnosis, especially in relation to novel surrogate end points; and the treatment of neuropathic pain in DPN. We also consider potential new pharmacotherapies for painful DPN. FINDINGS DPN is often misdiagnosed and inadequately treated. Other than improving glycemic control, there is no licensed pathogenetic treatment for diabetic neuropathy. Management of painful DPN remains challenging due to difficulties in personalizing therapy and ascertaining the best dosing strategy, choice of initial pharmacotherapy, consideration of combination therapy, and deciding on defining treatment for poor analgesic responders. Duloxetine and pregabalin remain first-line therapy for neuropathic pain in DPN in all 5 of the major published guidelines by the American Association of Clinical Endocrinologists, American Academy of Neurology, European Federation of Neurological Societies, National Institute of Clinical Excellence (United Kingdom), and the American Diabetes Association, and their use has been approved by the US Food and Drug Administration. IMPLICATIONS Clinical recognition of DPN is imperative for allowing timely symptom management to reduce the morbidity associated with this condition.
Collapse
Affiliation(s)
- Zohaib Iqbal
- Department of Endocrinology, Pennine Acute Hospitals NHS Trust, Greater Manchester, United Kingdom
| | - Shazli Azmi
- Institute of Cardiovascular Science, University of Manchester and the Manchester Royal Infirmary, Central Manchester Hospital Foundation Trust, Manchester, United Kingdom
| | - Rahul Yadav
- Department of Endocrinology, Warrington and Halton Hospitals NHS Foundation Trust, Warrington, United Kingdom
| | - Maryam Ferdousi
- Institute of Cardiovascular Science, University of Manchester and the Manchester Royal Infirmary, Central Manchester Hospital Foundation Trust, Manchester, United Kingdom
| | - Mohit Kumar
- Department of Endocrinology, Wrightington, Wigan and Leigh NHS Foundation Trust, Wigan, United Kingdom
| | - Daniel J Cuthbertson
- Diabetes and Endocrinology Research, Department of Eye and Vision Sciences and Pain Research Institute, Institute of Ageing and Chronic Disease, University of Liverpool and Aintree University Hospital NHS Foundation Trust, Liverpool, United Kingdom
| | - Jonathan Lim
- Diabetes and Endocrinology Research, Department of Eye and Vision Sciences and Pain Research Institute, Institute of Ageing and Chronic Disease, University of Liverpool and Aintree University Hospital NHS Foundation Trust, Liverpool, United Kingdom
| | - Rayaz A Malik
- Institute of Cardiovascular Science, University of Manchester and the Manchester Royal Infirmary, Central Manchester Hospital Foundation Trust, Manchester, United Kingdom; Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Uazman Alam
- Diabetes and Endocrinology Research, Department of Eye and Vision Sciences and Pain Research Institute, Institute of Ageing and Chronic Disease, University of Liverpool and Aintree University Hospital NHS Foundation Trust, Liverpool, United Kingdom; Department of Diabetes and Endocrinology, Royal Liverpool and Broadgreen University NHS Hospital Trust, Liverpool, United Kingdom; Division of Endocrinology, Diabetes and Gastroenterology, University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
222
|
Sdrulla AD, Guan Y, Raja SN. Spinal Cord Stimulation: Clinical Efficacy and Potential Mechanisms. Pain Pract 2018. [PMID: 29526043 DOI: 10.1111/papr.12692] [Citation(s) in RCA: 212] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Spinal cord stimulation (SCS) is a minimally invasive therapy used for the treatment of chronic neuropathic pain. SCS is a safe and effective alternative to medications such as opioids, and multiple randomized controlled studies have demonstrated efficacy for difficult-to-treat neuropathic conditions such as failed back surgery syndrome. Conventional SCS is believed mediate pain relief via activation of dorsal column Aβ fibers, resulting in variable effects on sensory and pain thresholds, and measurable alterations in higher order cortical processing. Although potentiation of inhibition, as suggested by Wall and Melzack's gate control theory, continues to be the leading explanatory model, other segmental and supraspinal mechanisms have been described. Novel, non-standard, stimulation waveforms such as high-frequency and burst have been shown in some studies to be clinically superior to conventional SCS, however their mechanisms of action remain to be determined. Additional studies are needed, both mechanistic and clinical, to better understand optimal stimulation strategies for different neuropathic conditions, improve patient selection and optimize efficacy.
Collapse
Affiliation(s)
- Andrei D Sdrulla
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, Oregon, U.S.A
| | - Yun Guan
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, U.S.A.,Department of Neurological Surgery, School of Medicine, Johns Hopkins University, Baltimore, Maryland, U.S.A
| | - Srinivasa N Raja
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, U.S.A
| |
Collapse
|
223
|
Kerckhove N, Pereira B, Soriot-Thomas S, Alchaar H, Deleens R, Hieng VS, Serra E, Lanteri-Minet M, Arcagni P, Picard P, Lefebvre-Kuntz D, Maindet C, Mick G, Balp L, Lucas C, Creach C, Letellier M, Martinez V, Navez M, Delbrouck D, Kuhn E, Piquet E, Bozzolo E, Brosse C, Lietar B, Marcaillou F, Hamdani A, Leroux-Bromberg N, Perier Y, Vergne-Salle P, Gov C, Delage N, Gillet D, Romettino S, Richard D, Mallet C, Bernard L, Lambert C, Dubray C, Duale C, Eschalier A. Efficacy and safety of a T-type calcium channel blocker in patients with neuropathic pain: A proof-of-concept, randomized, double-blind and controlled trial. Eur J Pain 2018; 22:1321-1330. [PMID: 29577519 DOI: 10.1002/ejp.1221] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2018] [Indexed: 01/12/2023]
Abstract
BACKGROUND T-type calcium channels have been shown to play an important role in the initiation and maintenance of neuropathic pain and represent a promising therapeutic target for new analgesic treatments. Ethosuximide (ETX), an anticonvulsant and a T-type channel blocker has shown analgesic effect in several chronic pain models but has not yet been evaluated in patients with neuropathic pain. METHODS This proof-of-concept, multicentre, double-blind, controlled and randomized trial compared the efficacy and safety of ETX (given as add-on therapy) to an inactive control (IC) in 114 patients with non-diabetic peripheral neuropathic pain. After a 7-day run-in period, eligible patients aged over 18 years were randomly assigned (1:1) to ETX or IC for 6 weeks. The primary outcome was the difference between groups in the pain intensity (% of change from the baseline to end of treatment) assessed in the intention-to-treat population. This study is registered with EudraCT (2013-004801-26) and ClinicalTrials.gov (NCT02100046). RESULTS The study was stopped during the interim analysis due to the high number of adverse events in the active treatment group. ETX failed to reduce total pain and showed a poor tolerance in comparison to IC. In the per-protocol analysis, ETX significantly reduced pain intensity by 15.6% (95% CI -25.8; -5.4) from baseline compared to IC (-7.8%, 95% CI -14.3; -1.3; p = 0.033), but this result must be interpreted with caution because of a small subgroup of patients. CONCLUSION Ethosuximide did not reduce the severity of neuropathic pain and induces, at the doses used, many adverse events. SIGNIFICANCE This article shows that ETX is not effective to treat neuropathic pain. Nevertheless, per-protocol analysis suggests a possible analgesic effect of ETX. Thus, our work adds significant knowledge to preclinical and clinical data on the benefits of T-type calcium channel inhibition for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- N Kerckhove
- Service de Pharmacologie Médicale, Direction de la Recherche Clinique et de l'Innovation, CETD, CIC, CNRS, SIGMA Clermont, ICCF, Service de Pharmacie, Université Clermont Auvergne, CHU Clermont-Ferrand, INSERM - NEURO-DOL, Clermont-Ferrand, France.,Analgesia Institute, Université Clermont Auvergne, Clermont-Ferrand, France
| | - B Pereira
- Service de Pharmacologie Médicale, Direction de la Recherche Clinique et de l'Innovation, CETD, CIC, CNRS, SIGMA Clermont, ICCF, Service de Pharmacie, Université Clermont Auvergne, CHU Clermont-Ferrand, INSERM - NEURO-DOL, Clermont-Ferrand, France
| | | | - H Alchaar
- Université Nice Côte-d'Azur, CHU Nice - Hôpital de Cimiez, Fédération Hospitalo-Universitaire INOVPAIN, CETD, Nice, France
| | | | | | - E Serra
- CHU Amiens Picardie, CETD, CRC, Amiens, France
| | - M Lanteri-Minet
- Service de Pharmacologie Médicale, Direction de la Recherche Clinique et de l'Innovation, CETD, CIC, CNRS, SIGMA Clermont, ICCF, Service de Pharmacie, Université Clermont Auvergne, CHU Clermont-Ferrand, INSERM - NEURO-DOL, Clermont-Ferrand, France.,Université Nice Côte-d'Azur, CHU Nice - Hôpital de Cimiez, Fédération Hospitalo-Universitaire INOVPAIN, CETD, Nice, France
| | - P Arcagni
- CHU Saint-Etienne, CETD, Saint-Etienne, France
| | - P Picard
- Service de Pharmacologie Médicale, Direction de la Recherche Clinique et de l'Innovation, CETD, CIC, CNRS, SIGMA Clermont, ICCF, Service de Pharmacie, Université Clermont Auvergne, CHU Clermont-Ferrand, INSERM - NEURO-DOL, Clermont-Ferrand, France
| | | | - C Maindet
- CHU Grenoble Alpes, CETD, Grenoble, France
| | - G Mick
- CH Voiron, UETD, Voiron, France
| | - L Balp
- CH Lons-le-Saunier, CETD, Lons-le-Saunier, France
| | - C Lucas
- Université Lille Nord de France, CHRU Lille, CETD, Lille, France
| | - C Creach
- CHU Saint-Etienne, CETD, Saint-Etienne, France
| | | | - V Martinez
- AP-HP - Hôpital Raymond Poincaré, CETD, Paris, France
| | - M Navez
- CHU Saint-Etienne, CETD, Saint-Etienne, France
| | | | - E Kuhn
- CHU Nantes, CETD, Nantes, France
| | - E Piquet
- Université Nice Côte-d'Azur, CHU Nice - Hôpital de Cimiez, Fédération Hospitalo-Universitaire INOVPAIN, CETD, Nice, France
| | - E Bozzolo
- Université Nice Côte-d'Azur, CHU Nice - Hôpital de Cimiez, Fédération Hospitalo-Universitaire INOVPAIN, CETD, Nice, France
| | - C Brosse
- CHU Saint-Etienne, CETD, Saint-Etienne, France
| | - B Lietar
- CHU Saint-Etienne, CETD, Saint-Etienne, France
| | - F Marcaillou
- Service de Pharmacologie Médicale, Direction de la Recherche Clinique et de l'Innovation, CETD, CIC, CNRS, SIGMA Clermont, ICCF, Service de Pharmacie, Université Clermont Auvergne, CHU Clermont-Ferrand, INSERM - NEURO-DOL, Clermont-Ferrand, France
| | - A Hamdani
- Cancer Centre Oscar-Lambret, Lille, France
| | | | - Y Perier
- CH Avranches, CETD, Avranches, France
| | | | - C Gov
- HCL - Hôpital Neurologique, CETD, Lyon, France
| | - N Delage
- Service de Pharmacologie Médicale, Direction de la Recherche Clinique et de l'Innovation, CETD, CIC, CNRS, SIGMA Clermont, ICCF, Service de Pharmacie, Université Clermont Auvergne, CHU Clermont-Ferrand, INSERM - NEURO-DOL, Clermont-Ferrand, France
| | | | - S Romettino
- Université Nice Côte-d'Azur, CHU Nice - Hôpital de Cimiez, Fédération Hospitalo-Universitaire INOVPAIN, CETD, Nice, France
| | - D Richard
- Service de Pharmacologie Médicale, Direction de la Recherche Clinique et de l'Innovation, CETD, CIC, CNRS, SIGMA Clermont, ICCF, Service de Pharmacie, Université Clermont Auvergne, CHU Clermont-Ferrand, INSERM - NEURO-DOL, Clermont-Ferrand, France
| | - C Mallet
- Service de Pharmacologie Médicale, Direction de la Recherche Clinique et de l'Innovation, CETD, CIC, CNRS, SIGMA Clermont, ICCF, Service de Pharmacie, Université Clermont Auvergne, CHU Clermont-Ferrand, INSERM - NEURO-DOL, Clermont-Ferrand, France
| | - L Bernard
- Service de Pharmacologie Médicale, Direction de la Recherche Clinique et de l'Innovation, CETD, CIC, CNRS, SIGMA Clermont, ICCF, Service de Pharmacie, Université Clermont Auvergne, CHU Clermont-Ferrand, INSERM - NEURO-DOL, Clermont-Ferrand, France
| | - C Lambert
- Service de Pharmacologie Médicale, Direction de la Recherche Clinique et de l'Innovation, CETD, CIC, CNRS, SIGMA Clermont, ICCF, Service de Pharmacie, Université Clermont Auvergne, CHU Clermont-Ferrand, INSERM - NEURO-DOL, Clermont-Ferrand, France
| | - C Dubray
- Service de Pharmacologie Médicale, Direction de la Recherche Clinique et de l'Innovation, CETD, CIC, CNRS, SIGMA Clermont, ICCF, Service de Pharmacie, Université Clermont Auvergne, CHU Clermont-Ferrand, INSERM - NEURO-DOL, Clermont-Ferrand, France.,Analgesia Institute, Université Clermont Auvergne, Clermont-Ferrand, France
| | - C Duale
- Service de Pharmacologie Médicale, Direction de la Recherche Clinique et de l'Innovation, CETD, CIC, CNRS, SIGMA Clermont, ICCF, Service de Pharmacie, Université Clermont Auvergne, CHU Clermont-Ferrand, INSERM - NEURO-DOL, Clermont-Ferrand, France.,Analgesia Institute, Université Clermont Auvergne, Clermont-Ferrand, France
| | - A Eschalier
- Service de Pharmacologie Médicale, Direction de la Recherche Clinique et de l'Innovation, CETD, CIC, CNRS, SIGMA Clermont, ICCF, Service de Pharmacie, Université Clermont Auvergne, CHU Clermont-Ferrand, INSERM - NEURO-DOL, Clermont-Ferrand, France.,Analgesia Institute, Université Clermont Auvergne, Clermont-Ferrand, France
| |
Collapse
|
224
|
Andersen HH, Akiyama T, Nattkemper LA, van Laarhoven A, Elberling J, Yosipovitch G, Arendt-Nielsen L. Alloknesis and hyperknesis—mechanisms, assessment methodology, and clinical implications of itch sensitization. Pain 2018; 159:1185-1197. [DOI: 10.1097/j.pain.0000000000001220] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
225
|
Efficacy of the Nav1.7 blocker PF-05089771 in a randomised, placebo-controlled, double-blind clinical study in subjects with painful diabetic peripheral neuropathy. Pain 2018; 159:1465-1476. [DOI: 10.1097/j.pain.0000000000001227] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
226
|
Abstract
Neuropathic pain is the result of neuroplastic and neuroinflammatory changes from trauma or diseases that damage the somatosensory system. Cancer-related neuropathic pain is caused by treatment, cancer, or paraneoplastic reactions to cancer. Approximately 30% of patients with cancer have neuropathic pain, mostly mixed nociceptive and neuropathic pain. History, physical examination, quantitative sensory testing, skin punch biopsies, and functional MRIs help to divide pain into phenotypes that may facilitate analgesic choices. Guidelines for treating cancer-related neuropathic pain are not consistent and are highly dependent on trials in patients without cancer. Combinations of analgesics are promising, whereas evidence for cannabinoids is meager.
Collapse
Affiliation(s)
- Mellar P Davis
- Department of Palliative Care, Geisinger Medical Center, 100 North Academy Avenue, Danville, PA 17822, USA.
| |
Collapse
|
227
|
Mücke M, Phillips T, Radbruch L, Petzke F, Häuser W. Cannabis-based medicines for chronic neuropathic pain in adults. Cochrane Database Syst Rev 2018; 2018:CD012182. [PMID: 29513392 PMCID: PMC6494210 DOI: 10.1002/14651858.cd012182.pub2] [Citation(s) in RCA: 198] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND This review is one of a series on drugs used to treat chronic neuropathic pain. Estimates of the population prevalence of chronic pain with neuropathic components range between 6% and 10%. Current pharmacological treatment options for neuropathic pain afford substantial benefit for only a few people, often with adverse effects that outweigh the benefits. There is a need to explore other treatment options, with different mechanisms of action for treatment of conditions with chronic neuropathic pain. Cannabis has been used for millennia to reduce pain. Herbal cannabis is currently strongly promoted by some patients and their advocates to treat any type of chronic pain. OBJECTIVES To assess the efficacy, tolerability, and safety of cannabis-based medicines (herbal, plant-derived, synthetic) compared to placebo or conventional drugs for conditions with chronic neuropathic pain in adults. SEARCH METHODS In November 2017 we searched CENTRAL, MEDLINE, Embase, and two trials registries for published and ongoing trials, and examined the reference lists of reviewed articles. SELECTION CRITERIA We selected randomised, double-blind controlled trials of medical cannabis, plant-derived and synthetic cannabis-based medicines against placebo or any other active treatment of conditions with chronic neuropathic pain in adults, with a treatment duration of at least two weeks and at least 10 participants per treatment arm. DATA COLLECTION AND ANALYSIS Three review authors independently extracted data of study characteristics and outcomes of efficacy, tolerability and safety, examined issues of study quality, and assessed risk of bias. We resolved discrepancies by discussion. For efficacy, we calculated the number needed to treat for an additional beneficial outcome (NNTB) for pain relief of 30% and 50% or greater, patient's global impression to be much or very much improved, dropout rates due to lack of efficacy, and the standardised mean differences for pain intensity, sleep problems, health-related quality of life (HRQoL), and psychological distress. For tolerability, we calculated number needed to treat for an additional harmful outcome (NNTH) for withdrawal due to adverse events and specific adverse events, nervous system disorders and psychiatric disorders. For safety, we calculated NNTH for serious adverse events. Meta-analysis was undertaken using a random-effects model. We assessed the quality of evidence using GRADE and created a 'Summary of findings' table. MAIN RESULTS We included 16 studies with 1750 participants. The studies were 2 to 26 weeks long and compared an oromucosal spray with a plant-derived combination of tetrahydrocannabinol (THC) and cannabidiol (CBD) (10 studies), a synthetic cannabinoid mimicking THC (nabilone) (two studies), inhaled herbal cannabis (two studies) and plant-derived THC (dronabinol) (two studies) against placebo (15 studies) and an analgesic (dihydrocodeine) (one study). We used the Cochrane 'Risk of bias' tool to assess study quality. We defined studies with zero to two unclear or high risks of bias judgements to be high-quality studies, with three to five unclear or high risks of bias to be moderate-quality studies, and with six to eight unclear or high risks of bias to be low-quality studies. Study quality was low in two studies, moderate in 12 studies and high in two studies. Nine studies were at high risk of bias for study size. We rated the quality of the evidence according to GRADE as very low to moderate.Primary outcomesCannabis-based medicines may increase the number of people achieving 50% or greater pain relief compared with placebo (21% versus 17%; risk difference (RD) 0.05 (95% confidence interval (CI) 0.00 to 0.09); NNTB 20 (95% CI 11 to 100); 1001 participants, eight studies, low-quality evidence). We rated the evidence for improvement in Patient Global Impression of Change (PGIC) with cannabis to be of very low quality (26% versus 21%;RD 0.09 (95% CI 0.01 to 0.17); NNTB 11 (95% CI 6 to 100); 1092 participants, six studies). More participants withdrew from the studies due to adverse events with cannabis-based medicines (10% of participants) than with placebo (5% of participants) (RD 0.04 (95% CI 0.02 to 0.07); NNTH 25 (95% CI 16 to 50); 1848 participants, 13 studies, moderate-quality evidence). We did not have enough evidence to determine if cannabis-based medicines increase the frequency of serious adverse events compared with placebo (RD 0.01 (95% CI -0.01 to 0.03); 1876 participants, 13 studies, low-quality evidence).Secondary outcomesCannabis-based medicines probably increase the number of people achieving pain relief of 30% or greater compared with placebo (39% versus 33%; RD 0.09 (95% CI 0.03 to 0.15); NNTB 11 (95% CI 7 to 33); 1586 participants, 10 studies, moderate quality evidence). Cannabis-based medicines may increase nervous system adverse events compared with placebo (61% versus 29%; RD 0.38 (95% CI 0.18 to 0.58); NNTH 3 (95% CI 2 to 6); 1304 participants, nine studies, low-quality evidence). Psychiatric disorders occurred in 17% of participants using cannabis-based medicines and in 5% using placebo (RD 0.10 (95% CI 0.06 to 0.15); NNTH 10 (95% CI 7 to 16); 1314 participants, nine studies, low-quality evidence).We found no information about long-term risks in the studies analysed.Subgroup analysesWe are uncertain whether herbal cannabis reduces mean pain intensity (very low-quality evidence). Herbal cannabis and placebo did not differ in tolerability (very low-quality evidence). AUTHORS' CONCLUSIONS The potential benefits of cannabis-based medicine (herbal cannabis, plant-derived or synthetic THC, THC/CBD oromucosal spray) in chronic neuropathic pain might be outweighed by their potential harms. The quality of evidence for pain relief outcomes reflects the exclusion of participants with a history of substance abuse and other significant comorbidities from the studies, together with their small sample sizes.
Collapse
Affiliation(s)
- Martin Mücke
- Department of Palliative Medicine, University Hospital of Bonn, Sigmund-Freud-Str. 25, Bonn, Germany, 53127
| | | | | | | | | |
Collapse
|
228
|
|
229
|
Binder A, Baron R. The Pharmacological Therapy of Chronic Neuropathic Pain. DEUTSCHES ARZTEBLATT INTERNATIONAL 2018; 113:616-625. [PMID: 27697147 DOI: 10.3238/arztebl.2016.0616] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 05/09/2015] [Accepted: 05/09/2016] [Indexed: 11/27/2022]
Abstract
BACKGROUND Chronic neuropathic pain, including painful peripheral polyneuropathy and post-herpetic neuralgia, affects 6.9-10% of the general population. METHODS In this article, we present current treatment recommendations on the basis of a selective review of the literature. RESULTS Neuropathic pain does not respond consistently to classic non-opioid analgesic drugs and is better treated with co-analgesic, antidepressant, and anticonvulsant drugs and topical agents. Under certain conditions, however, neuropathic pain can be treated with opioids, even chronically. It was concluded in a large-scale m eta- analysis that tricyclic antidepressants, selective serotonin- norepinephrine reuptake inhibitors, and calcium-channel anticonvulsants are the drugs of first choice, with a number needed to treat (NNT) of 3.5-7.7 for a 50% reduction of pain. An analysis of all studies yielded an estimated publication bias of 10%. Treatment planning must include adequate consideration of the patient's age and comorbidities, concomitant medication, and potential side effects. CONCLUSION Drugs are now chosen to treat neuropathic pain independently of the cause and symptoms of the pain. Topical agents are used only to treat peripheral neuropathy. The utility of a treatment approach based on the patient's symptoms and pathological mechanisms was recently demonstrated for the first time in a randomized trial. The goal of current research is to facilitate treatment planning on the basis of the clinical phenotype.
Collapse
Affiliation(s)
- Andreas Binder
- University Hospital Schleswig-Holstein, Kiel, Division of Neurological Pain Research and Therapy, Department of Neurology
| | | |
Collapse
|
230
|
Schliessbach J, Siegenthaler A, Bütikofer L, Vuilleumier P, Jüni P, Stamer U, Arendt-Nielsen L, Curatolo M. Predicting drug efficacy in chronic low back pain by quantitative sensory tests. Eur J Pain 2018; 22:973-988. [PMID: 29363217 DOI: 10.1002/ejp.1183] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2017] [Indexed: 01/25/2023]
Abstract
BACKGROUND Drugs are prescribed for chronic low back pain without knowing in advance whether a patient will respond to them or not. Quantitative sensory tests (QST) can discriminate patients according to sensory phenotype, possibly reflecting underlying mechanisms of pain processing. QST may therefore be a screening tool to identify potential responders to a certain drug. The aim of this study was to investigate whether QST can predict analgesic effects of oxycodone, imipramine and clobazam in chronic low back pain. METHODS Oxycodone 15 mg (n = 50), imipramine 75 mg (n = 50) and clobazam 20 mg (n = 49) were compared to active placebo tolterodine 1 mg in a randomized, double-blinded, crossover fashion. Electrical, pressure and thermal QST were performed at baseline and after 1 and 2 h. Pain intensity was assessed on a 0-10 numeric rating scale every 30 min for up to 2 h. The ability of baseline QST to predict pain reduction after 2 h was analysed using linear mixed models. Genetic variants of drug-metabolizing enzymes and genes affecting pain sensitivity were examined as covariables. RESULTS No predictor of analgesic effect was found for oxycodone and clobazam. Thermal QST was associated with analgesic effect of imipramine: patients more sensitive to heat or cold were more likely to experience an effect of imipramine. Pharmacogenetic variants and pain-related candidate genes were not associated with drug efficacy. CONCLUSIONS Thermal QST have the potential to predict imipramine effect in chronic low back pain. Oxycodone and clobazam effects could not be predicted by any of the selected QST or genetic variants. SIGNIFICANCE Predicting drug efficacy in chronic low back pain remains difficult. There is some evidence that patients more sensitive to heat and cold pain respond better to imipramine.
Collapse
Affiliation(s)
- J Schliessbach
- Department of Anesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland.,Institute of Anesthesiology, University Hospital Zurich, Switzerland
| | - A Siegenthaler
- Chronic Pain Management, Lindenhof Hospital, Lindenhof Group Bern, Switzerland
| | - L Bütikofer
- CTU Bern, and Institute of Social and Preventive Medicine (ISPM), University of Bern, Switzerland
| | - P Vuilleumier
- Department of Anesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - P Jüni
- Department of Medicine, Applied Health Research Centre (AHRC), Li Ka Shing Knowledge Institute of St. Michael's Hospital, University of Toronto, ON, Canada
| | - U Stamer
- Department of Anesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - L Arendt-Nielsen
- Centre of Sensory Motor Interaction SMI, University of Aalborg, Denmark
| | - M Curatolo
- Centre of Sensory Motor Interaction SMI, University of Aalborg, Denmark.,Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
231
|
|
232
|
Seidel S, Aigner M, Wildner B, Sycha T, Pablik E. Antipsychotics for the treatment of neuropathic pain in adults. THE COCHRANE DATABASE OF SYSTEMATIC REVIEWS 2018. [DOI: 10.1002/14651858.cd012916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Stefan Seidel
- Medical University of Vienna; Department of Neurology; Währinger Straße 13a Vienna Austria
| | - Martin Aigner
- Medical University of Vienna; Department of Psychiatry; Währinger Gürtel 18-20 Vienna Austria AT-1090
| | - Brigitte Wildner
- University Library of the Medical University of Vienna; Information Retrieval Office; Währinger Gürtel 18-20 Vienna Austria 1090
| | - Thomas Sycha
- Medical University of Vienna; Department of Neurology; Währinger Straße 13a Vienna Austria
| | - Eleonore Pablik
- Medical University of Vienna; CeMSIIS, Section for Medical Statistics; Vienna Austria
| |
Collapse
|
233
|
Abstract
The sensation of pain plays a vital protecting role, alerting organisms about potentially damaging stimuli. Tissue injury is detected by nerve endings of specialized peripheral sensory neurons called nociceptors that are equipped with different ion channels activated by thermal, mechanic, and chemical stimuli. Several transient receptor potential channels have been identified as molecular transducers of thermal stimuli in pain-sensing neurons. Skin injury or inflammation leads to increased sensitivity to thermal and mechanic stimuli, clinically defined as allodynia or hyperalgesia. This hypersensitivity is also characteristic of systemic inflammatory disorders and neuropathic pain conditions. Mechanisms of thermal hyperalgesia include peripheral sensitization of nociceptor afferents and maladaptive changes in pain-encoding neurons within the central nervous system. An important aspect of pain management involves attempts to minimize the development of nociceptor hypersensitivity. However, knowledge about the cellular and molecular mechanisms causing thermal hyperalgesia and allodynia in human subjects is still limited, and such knowledge would be an essential step for the development of more effective therapies.
Collapse
Affiliation(s)
- Félix Viana
- Alicante Institute of Neurosciences, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, San Juan de Alicante, Spain.
| |
Collapse
|
234
|
|
235
|
Abstract
BACKGROUND Several anticonvulsant drugs are used in the management of neuropathic pain. Oxcarbazepine is an anticonvulsant drug closely related to carbamazepine. Oxcarbazepine has been reported to be efficacious in the treatment of neuropathic pain, but evidence from randomised controlled trials (RCTs) is conflicting. Oxcarbazepine is reportedly better tolerated than carbamazepine. This is the first update of a review published in 2013. OBJECTIVES To assess the benefits and harms of oxcarbazepine for different types of neuropathic pain. SEARCH METHODS On 21 November 2016, we searched the Cochrane Neuromuscular Specialised Register, CENTRAL, MEDLINE and Embase. We searched the Chinese Biomedical Retrieval System (January 1978 to November 2016). We searched the US National Institutes of Health (NIH) databases and the World Health Organization (WHO) International Clinical Trials Registry Platform for ongoing trials in January 2017, and we wrote to the companies who make oxcarbazepine and to pain experts requesting additional information. SELECTION CRITERIA All RCTs and randomised cross-over studies of oxcarbazepine for the treatment of people of any age or sex with any neuropathic pain were eligible. We planned to include trials of oxcarbazepine compared with placebo or any other intervention with a treatment duration of at least six weeks, regardless of administration route and dose. DATA COLLECTION AND ANALYSIS We used standard methodological procedures expected by Cochrane. MAIN RESULTS Five multicentre, randomised, placebo-controlled, double-blind trials with a total of 862 participants were eligible for inclusion in this updated review. Three trials involved participants with painful diabetic peripheral neuropathy (DPN) (n = 634), one included people with neuropathic pain due to radiculopathy (n = 145), and one, which was newly identified at this update, involved participants with peripheral neuropathic pain of mixed origin (polyneuropathy, peripheral nerve injury or postherpetic neuralgia) (n = 83). Some studies did not report all outcomes of interest. For painful DPN, compared to the baseline, the proportion of participants who reported at least a 50% or 30% reduction of pain scores after 16 weeks of treatment in the oxcarbazepine group versus the placebo group were: at least 50% reduction: 34.8% with oxcarbazepine versus 18.2% with placebo (risk ratio (RR) 1.91, 95% confidence interval (CI) 1.08 to 3.39, number of people needed to treat for an additional beneficial outcome (NNTB) 6, 95% CI 3 to 41); and at least 30% reduction: 44.9% with oxcarbazepine versus 28.6% with placebo (RR 1.57, 95% CI 1.01 to 2.44; NNTB 6, 95% CI 3 to 114; n = 146). Both results were based on data from a single trial, since two trials that found little or no benefit did not provide data that could be included in a meta-analysis. Although these trials were well designed, incomplete outcome data and possible unblinding of participants due to obvious adverse effects placed the results at a high risk of bias. There was also serious imprecision and a high risk of publication bias. The radiculopathy trial reported no benefit for the outcome 'at least 50% pain relief' from oxcarbazepine. In mixed neuropathies, 19.3% of people receiving oxcarbazepine versus 4.8% receiving placebo had at least 50% pain relief. These small trials had low event rates and provided, at best, low-quality evidence for any outcome. The proportion of people with 'improved' or 'very much improved' pain was 45.9% with oxcarbazepine versus 30.1% with placebo in DPN (RR 1.46, 95% CI 1.13 to 1.88; n = 493; 2 trials; very-low-quality evidence) and 23.9% with oxcarbazepine versus 14.9% with placebo in radiculopathy (RR 1.61, 95% CI 0.81 to 3.20; n = 145).We found no trials in other types of neuropathic pain such as trigeminal neuralgia.Trial reports stated that most adverse effects were mild to moderate in severity. Based on moderate-quality evidence from the three DPN trials, serious adverse effects occurred in 8.3% with oxcarbazepine and 2.5% with placebo (RR 3.65, 95% CI 1.45 to 9.20; n = 634; moderate-quality evidence). The number needed to treat for an additional harmful (serious adverse effect) outcome (NNTH) was 17 (95% CI 11 to 42). The RR for serious adverse effects in the radiculopathy trial was 3.13 (95% CI 0.65 to 14.98, n = 145). The fifth trial did not provide data.More people withdrew because of adverse effects with oxcarbazepine than with placebo (DPN: 25.6% with oxcarbazepine versus 6.8% with placebo; RR 3.83, 95% CI 2.29 to 6.40; radiculopathy: 42.3% with oxcarbazepine versus 14.9% with placebo; RR 2.84, 95% CI 1.55 to 5.23; mixed neuropathic pain: 13.5% with oxcarbazepine versus 1.2% with placebo; RR 11.51, 95% CI 1.54 to 86.15). AUTHORS' CONCLUSIONS This review found little evidence to support the effectiveness of oxcarbazepine in painful diabetic neuropathy, neuropathic pain from radiculopathy and a mixture of neuropathies. Some very-low-quality evidence suggests efficacy but small trials, low event rates, heterogeneity in some measures and a high risk of publication bias means that we have very low confidence in the measures of effect. Adverse effects, serious adverse effects and adverse effects leading to discontinuation are probably more common with oxcarbazepine than placebo; however, the numbers of participants and event rates are low. More well-designed, multicentre RCTs investigating oxcarbazepine for various types of neuropathic pain are needed, and selective publication of studies or data should be avoided.
Collapse
Affiliation(s)
- Muke Zhou
- West China Hospital, Sichuan UniversityDepartment of NeurologyNo. 37, Guo Xue XiangChengduSichuanChina610041
| | - Ning Chen
- West China Hospital, Sichuan UniversityDepartment of NeurologyNo. 37, Guo Xue XiangChengduSichuanChina610041
| | - Li He
- West China Hospital, Sichuan UniversityDepartment of NeurologyNo. 37, Guo Xue XiangChengduSichuanChina610041
| | - Mi Yang
- West China Hospital, Sichuan UniversityDepartment of NeurologyNo. 37, Guo Xue XiangChengduSichuanChina610041
| | - Cairong Zhu
- School of Public Health, Sichuan UniversityEpidemic Disease & Health Statistics DepartmentChengduChina
| | - Fengbo Wu
- West China Hospital, Sichuan UniversityDepartment of PharmacyNo. 37, Guo Xue XiangChengduSichuanChina60041
| | | |
Collapse
|
236
|
Abstract
More than 1100 patients with neuropathic pain were examined using quantitative sensory testing. Independent of the etiology, 3 subtypes with distinct sensory profiles were identified and replicated. Patients with neuropathic pain are heterogeneous in etiology, pathophysiology, and clinical appearance. They exhibit a variety of pain-related sensory symptoms and signs (sensory profile). Different sensory profiles might indicate different classes of neurobiological mechanisms, and hence subgroups with different sensory profiles might respond differently to treatment. The aim of the investigation was to identify subgroups in a large sample of patients with neuropathic pain using hypothesis-free statistical methods on the database of 3 large multinational research networks (German Research Network on Neuropathic Pain (DFNS), IMI-Europain, and Neuropain). Standardized quantitative sensory testing was used in 902 (test cohort) and 233 (validation cohort) patients with peripheral neuropathic pain of different etiologies. For subgrouping, we performed a cluster analysis using 13 quantitative sensory testing parameters. Three distinct subgroups with characteristic sensory profiles were identified and replicated. Cluster 1 (sensory loss, 42%) showed a loss of small and large fiber function in combination with paradoxical heat sensations. Cluster 2 (thermal hyperalgesia, 33%) was characterized by preserved sensory functions in combination with heat and cold hyperalgesia and mild dynamic mechanical allodynia. Cluster 3 (mechanical hyperalgesia, 24%) was characterized by a loss of small fiber function in combination with pinprick hyperalgesia and dynamic mechanical allodynia. All clusters occurred across etiologies but frequencies differed. We present a new approach of subgrouping patients with peripheral neuropathic pain of different etiologies according to intrinsic sensory profiles. These 3 profiles may be related to pathophysiological mechanisms and may be useful in clinical trial design to enrich the study population for treatment responders.
Collapse
|
237
|
Abstract
Diabetic polyneuropathy (DPN) is a major cause of neuropathic pain and a frequent target condition in analgesic treatment trials. Differences in the clinical symptoms and signs associated with DPN suggest distinct pathophysiological mechanisms underlying nerve damage and dysfunction that are likely to have therapeutic relevance. The aim of this study was to develop a tool for the bedside assessment of painful neuropathies such as DPN that captures the diversity of phenotypes. Sixty-one patients with type 2 diabetes and painful neuropathy, 19 patients with painless DPN, 25 patients with type 2 diabetes but no clinical evidence of neuropathy, and 20 healthy control subjects completed a structured interview (47 items) and a standardized physical examination (39 items). After analyzing critical features of pain and painless symptoms and examining the outcome of physical tests of sensory function, we determined principal components of the phenotypic variance among patients. Increased sensitivity to mechanical or thermal stimuli and, to a lesser extent, the sensory quality of pain or paresthesia were the most discriminating elements of DPN phenotypes. Correlation patterns of symptoms and signs indicated the involvement of functionally distinct nerve fiber populations. We combined interview questions and physical tests identifying these differences in a shortened assessment protocol that we named Standardized Evaluation of Pain and Somatosensory Function (StEPS). The protocol StEPS generates a phenotypic profile of patients with neuropathy. Separate intensity ratings for spontaneous painful symptoms and pain evoked by standard stimuli support a detailed documentation of neuropathic pain and its response to analgesic treatment.
Collapse
|
238
|
Schutzer-Weissmann J, Farquhar-Smith P. Post-herpetic neuralgia - a review of current management and future directions. Expert Opin Pharmacother 2017; 18:1739-1750. [PMID: 29025327 DOI: 10.1080/14656566.2017.1392508] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Post-herpetic neuralgia (PHN) is common and treatment is often suboptimal with less than half of patients achieving adequate 50% pain relief. As an area of unmet clinical need and as an archetype of neuropathic pain, it deserves the attention of clinicians and researchers. Areas covered: This review summarises the epidemiology, pathophysiology, risk factors and clinical features of varicella infection. It describes the current and possible future management strategies for preventing varicella infection and reactivation and for treating PHN. Expert opinion: A highly successful Varicella Zoster (VZV) vaccine has not been universally adopted due to fears that it may increase Herpes Zoster (HZ) incidence - and thus PHN - in older, unvaccinated generations. This is a controversial theory but advances in the efficacy of vaccines against HZ may allay these fears and encourage more widespread adoption of the VZV vaccine. Treatment of PHN, as for any neuropathic pain, must be multidisciplinary and multimodal. Advances in sensory phenotyping technology and genomics may allow more individualised treatment. Traditional research methodologies are ill-suited to assess the kind of complex interventions that are necessary to achieve better clinical outcomes in this challenging field.
Collapse
Affiliation(s)
- John Schutzer-Weissmann
- a Department of Anaesthesia , Critical Care and Pain Medicine, The Royal Marsden Hospital , London , UK
| | - Paul Farquhar-Smith
- a Department of Anaesthesia , Critical Care and Pain Medicine, The Royal Marsden Hospital , London , UK
| |
Collapse
|
239
|
Nicol AL, Hurley RW, Benzon HT. Alternatives to Opioids in the Pharmacologic Management of Chronic Pain Syndromes: A Narrative Review of Randomized, Controlled, and Blinded Clinical Trials. Anesth Analg 2017; 125:1682-1703. [PMID: 29049114 DOI: 10.1213/ane.0000000000002426] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Chronic pain exerts a tremendous burden on individuals and societies. If one views chronic pain as a single disease entity, then it is the most common and costly medical condition. At present, medical professionals who treat patients in chronic pain are recommended to provide comprehensive and multidisciplinary treatments, which may include pharmacotherapy. Many providers use nonopioid medications to treat chronic pain; however, for some patients, opioid analgesics are the exclusive treatment of chronic pain. However, there is currently an epidemic of opioid use in the United States, and recent guidelines from the Centers for Disease Control (CDC) have recommended that the use of opioids for nonmalignant chronic pain be used only in certain circumstances. The goal of this review was to report the current body of evidence-based medicine gained from prospective, randomized-controlled, blinded studies on the use of nonopioid analgesics for the most common noncancer chronic pain conditions. A total of 9566 studies were obtained during literature searches, and 271 of these met inclusion for this review. Overall, while many nonopioid analgesics have been found to be effective in reducing pain for many chronic pain conditions, it is evident that the number of high-quality studies is lacking, and the effect sizes noted in many studies are not considered to be clinically significant despite statistical significance. More research is needed to determine effective and mechanism-based treatments for the chronic pain syndromes discussed in this review. Utilization of rigorous and homogeneous research methodology would likely allow for better consistency and reproducibility, which is of utmost importance in guiding evidence-based care.
Collapse
Affiliation(s)
- Andrea L Nicol
- From the *Department of Anesthesiology, University of Kansas School of Medicine, Kansas City, Kansas; †Department of Anesthesiology, Wake Forest Baptist Medical Center, Winston-Salem, North Carolina; and ‡Department of Anesthesiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | | | | |
Collapse
|
240
|
|
241
|
Landmann G, Chang EC, Dumat W, Lutz A, Müller R, Scheel-Sailer A, Schwerzmann K, Sigajew N, Ljutow A. [Pain in patients with paraplegia]. Schmerz 2017; 31:527-545. [PMID: 28940094 DOI: 10.1007/s00482-017-0250-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chronic pain is one of the most reported health problems in patients suffering from spinal cord injuries and is described by the patients as one of the most burdensome sequelae of paraplegia. Various types of pain, such as nociceptive, neuropathic and other types of pain can occur. In addition, multiple pathophysiological mechanisms based on the biopsychosocial pain model play a role in the origins of the pain. These aspects necessitate a multimodal pain management approach in this patient group. This article presents an overview of the occurrence, importance and pathophysiology of chronic pain following spinal cord injury as well as diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- G Landmann
- Zentrum für Schmerzmedizin, Schweizer Paraplegiker-Zentrum, 6207, Nottwil, Guido-A.-Zäch-Str. 1, Schweiz.
| | - E-C Chang
- Zentrum für Schmerzmedizin, Schweizer Paraplegiker-Zentrum, 6207, Nottwil, Guido-A.-Zäch-Str. 1, Schweiz
| | - W Dumat
- Wenckebach-Klinikum, Klinik für Psychiatrie, Psychotherapie und Psychosomatik, Berlin, Deutschland
| | - A Lutz
- Ergotherapie, Schweizer Paraplegiker-Zentrum, Nottwil, Schweiz
| | - R Müller
- Schweizer Paraplegiker-Forschung, Nottwil, Schweiz.,Department Gesundheitswissenschaften und Gesundheitspolitik, Universität Luzern, Luzern, Schweiz
| | - A Scheel-Sailer
- Department Gesundheitswissenschaften und Gesundheitspolitik, Universität Luzern, Luzern, Schweiz.,Forschung Rehabilitation Qualitätsmanagement, Schweizer Paraplegiker-Zentrum, Nottwil, Schweiz
| | - K Schwerzmann
- Zentrum für Schmerzmedizin, Schweizer Paraplegiker-Zentrum, 6207, Nottwil, Guido-A.-Zäch-Str. 1, Schweiz
| | - N Sigajew
- Zentrum für Schmerzmedizin, Schweizer Paraplegiker-Zentrum, 6207, Nottwil, Guido-A.-Zäch-Str. 1, Schweiz
| | - A Ljutow
- Zentrum für Schmerzmedizin, Schweizer Paraplegiker-Zentrum, 6207, Nottwil, Guido-A.-Zäch-Str. 1, Schweiz
| |
Collapse
|
242
|
|
243
|
Neuropathic pain and spasticity: intricate consequences of spinal cord injury. Spinal Cord 2017; 55:1046-1050. [PMID: 28695904 DOI: 10.1038/sc.2017.70] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 05/17/2017] [Accepted: 05/18/2017] [Indexed: 12/18/2022]
Abstract
STUDY DESIGN The 2016 International Spinal Cord Society Sir Ludwig Guttmann Lecture. OBJECTIVES The aim of this review is to identify different symptoms and signs of neuropathic pain and spasticity after spinal cord injury (SCI) and to present different methods of assessing them. The objective is to discuss how a careful characterization of different symptoms and signs, and a better translation of preclinical findings may improve our understanding of the complex and entangled mechanisms of neuropathic pain and spasticity. METHODS A MEDLINE search was performed using the following terms: 'pain', 'neuropathic', 'spasticity', 'spasms' and 'spinal cord injury'. RESULTS This review identified different domains of neuropathic pain and spasticity after SCI and methods to assess them in preclinical and clinical research. Different factors important for pain description include location, onset, pain descriptors and somatosensory function, while muscle tone, spasms, reflexes and clonus are important aspects of spasticity. Similarities and differences between neuropathic pain and spasticity are discussed. CONCLUSIONS Understanding that neuropathic pain and spasticity are multidimensional consequences of SCI, and a careful examination and characterization of the symptoms and signs, are a prerequisite for understanding the relationship between neuropathic pain and spasticity and the intricate underlying mechanisms.
Collapse
|
244
|
Eitner L, Vollert J, Maier C, Attal N. [Botulinum toxin A injections in neuropathic pain : A post-hoc subgroup analysis of patients with peripheral nerve injury]. Schmerz 2017; 31:524-526. [PMID: 28660416 DOI: 10.1007/s00482-017-0235-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The randomized controlled trial (RCT) presented in this article showed significant relief in neuropathic pain following subcutaneous injections of botulinum toxin A over 24 weeks compared to placebo. This result was confirmed in a novel post-hoc analysis of the subgroup of 46 patients with peripheral nerve injury. Relevant adverse effects did not occur during the RCT.
Collapse
Affiliation(s)
- L Eitner
- Abteilung für Schmerzmedizin, Berufsgenossenschaftliches Universitätsklinikum Bergmannsheil gGmbH, Ruhr-Universität Bochum, Bürkle de la Camp-Platz 1, 44789, Bochum, Deutschland.
| | - J Vollert
- Abteilung für Schmerzmedizin, Berufsgenossenschaftliches Universitätsklinikum Bergmannsheil gGmbH, Ruhr-Universität Bochum, Bürkle de la Camp-Platz 1, 44789, Bochum, Deutschland
| | - C Maier
- Abteilung für Schmerzmedizin, Berufsgenossenschaftliches Universitätsklinikum Bergmannsheil gGmbH, Ruhr-Universität Bochum, Bürkle de la Camp-Platz 1, 44789, Bochum, Deutschland
| | - N Attal
- INSERM U‑987, Centre d'Evaluation et de Traitement de la Douleur, Hôpital Ambroise Paré, AP-HP, Boulogne-Billancourt, Université Versailles-Saint-Quentin, Paris, Frankreich
| |
Collapse
|
245
|
Smith SM, Dworkin RH, Turk DC, Baron R, Polydefkis M, Tracey I, Borsook D, Edwards RR, Harris RE, Wager TD, Arendt-Nielsen L, Burke LB, Carr DB, Chappell A, Farrar JT, Freeman R, Gilron I, Goli V, Haeussler J, Jensen T, Katz NP, Kent J, Kopecky EA, Lee DA, Maixner W, Markman JD, McArthur JC, McDermott MP, Parvathenani L, Raja SN, Rappaport BA, Rice ASC, Rowbotham MC, Tobias JK, Wasan AD, Witter J. The Potential Role of Sensory Testing, Skin Biopsy, and Functional Brain Imaging as Biomarkers in Chronic Pain Clinical Trials: IMMPACT Considerations. THE JOURNAL OF PAIN 2017; 18:757-777. [PMID: 28254585 PMCID: PMC5484729 DOI: 10.1016/j.jpain.2017.02.429] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 01/19/2017] [Accepted: 02/16/2017] [Indexed: 02/08/2023]
Abstract
Valid and reliable biomarkers can play an important role in clinical trials as indicators of biological or pathogenic processes or as a signal of treatment response. Currently, there are no biomarkers for pain qualified by the U.S. Food and Drug Administration or the European Medicines Agency for use in clinical trials. This article summarizes an Initiative on Methods, Measurement, and Pain Assessment in Clinical Trials meeting in which 3 potential biomarkers were discussed for use in the development of analgesic treatments: 1) sensory testing, 2) skin punch biopsy, and 3) brain imaging. The empirical evidence supporting the use of these tests is described within the context of the 4 categories of biomarkers: 1) diagnostic, 2) prognostic, 3) predictive, and 4) pharmacodynamic. Although sensory testing, skin punch biopsy, and brain imaging are promising tools for pain in clinical trials, additional evidence is needed to further support and standardize these tests for use as biomarkers in pain clinical trials. PERSPECTIVE The applicability of sensory testing, skin biopsy, and brain imaging as diagnostic, prognostic, predictive, and pharmacodynamic biomarkers for use in analgesic treatment trials is considered. Evidence in support of their use and outlining problems is presented, as well as a call for further standardization and demonstrations of validity and reliability.
Collapse
|
246
|
Rolim LC, Koga da Silva EM, De Sá JR, Dib SA. A Systematic Review of Treatment of Painful Diabetic Neuropathy by Pain Phenotype versus Treatment Based on Medical Comorbidities. Front Neurol 2017; 8:285. [PMID: 28676788 PMCID: PMC5476928 DOI: 10.3389/fneur.2017.00285] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 06/01/2017] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Painful diabetic neuropathy (PDN) is a serious, polymorphic, and prevalent complication of diabetes mellitus. Most PDN treatment guidelines recommend a selection of drugs based on patient comorbidities. Despite the large numbers of medications available, most randomized clinical trials (RCTs) conducted so far have yielded unsatisfactory outcomes. Therefore, treatment may require a personalized approach based on pain phenotype or comorbidities. METHODS To evaluate whether or not a patient's pain phenotype or comorbidities can influence the response to a specific PDN treatment, we conducted a systematic review using two different approaches: pain phenotype and associated comorbidities-based treatment. RESULTS Out of 45 identified papers, 7 were thoroughly reviewed. We found four RCTs stratified according to pain phenotype with three main results: (1) paroxysmal pain had a better response to pregabalin; (2) the preservation of thermal sensation or nociception anticipated a positive response to the topical treatment of pain; and, (3) after a failure to duloxetine (60 mg/day), the patients with evoked pain or severe deep pain had a better response to association of duloxetine/pregabalin while those with paresthesia/dysesthesia benefited from duloxetine monotherapy (120 mg/day). By contrast, the other three papers provided weak and even contradictory evidence about PDN treatment based on comorbidities. CONCLUSION Although more studies are needed to provide an adequate recommendation for clinical practice, our systematic review has provided some evidence that PDN phenotyping may optimize clinical outcomes and could, in the future, lead to both less empirical medicine and more personalized pain therapeutics.
Collapse
Affiliation(s)
- Luiz Clemente Rolim
- Endocrinology Division, Diabetes Center of Universidade Federal de São Paulo (UNIFESP), Escola Paulista de Medicina, São Paulo, Brazil
| | - Edina M Koga da Silva
- Brazilian Cochrane Center of Universidade Federal de São Paulo (UNIFESP), Escola Paulista de Medicina, São Paulo, Brazil
| | - João Roberto De Sá
- Endocrinology Division, Diabetes Center of Universidade Federal de São Paulo (UNIFESP), Escola Paulista de Medicina, São Paulo, Brazil
| | - Sérgio Atala Dib
- Endocrinology Division, Diabetes Center of Universidade Federal de São Paulo (UNIFESP), Escola Paulista de Medicina, São Paulo, Brazil
| |
Collapse
|
247
|
Warendorf J, Vrancken AFJE, van Schaik IN, Hughes RAC, Notermans NC. Drug therapy for chronic idiopathic axonal polyneuropathy. Cochrane Database Syst Rev 2017; 6:CD003456. [PMID: 28631805 PMCID: PMC6481404 DOI: 10.1002/14651858.cd003456.pub3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Chronic idiopathic axonal polyneuropathy (CIAP) is an insidiously progressive sensory or sensorimotor polyneuropathy that affects elderly people. Although severe disability or handicap does not occur, CIAP reduces quality of life. CIAP is diagnosed in 10% to 25% of people referred for evaluation of polyneuropathy. There is a need to gather and review emerging evidence on treatments, as the number of people affected is likely to increase in ageing populations. This is an update of a review first published in 2004 and previously updated in 2006, 2008, 2011 and 2013. OBJECTIVES To assess the effects of drug therapy for chronic idiopathic axonal polyneuropathy for reducing disability and ameliorating neurological symptoms and associated impairments, and to assess any adverse effects of treatment. SEARCH METHODS In July 2016, we searched Cochrane Central Register of Controlled Trials and the Cochrane Database of Systematic Reviews in the Cochrane Library, MEDLINE, Embase, and the Web of Science. We searched two trials registries for ongoing trials. We also handsearched the reference lists of relevant articles, reviews and textbooks identified electronically, and we would have contacted authors and other experts in the field to identify additional studies if this seemed useful. SELECTION CRITERIA We sought all randomised or quasi-randomised (alternate or other systematic treatment allocation) trials that examined the effects of any drug therapy in people with CIAP at least one year after the onset of treatment. People with CIAP had to fulfil the following criteria: age 40 years or older, distal sensory or sensorimotor polyneuropathy, absence of systemic or other neurological disease, chronic clinical course not reaching a nadir in less than two months, exclusion of any recognised cause of the polyneuropathy by medical history taking, clinical or laboratory investigations, and electrophysiological studies in agreement with axonal polyneuropathy, without evidence of demyelinating features. The primary outcome was the proportion of participants with a significant improvement in disability. Secondary outcomes were change in the mean disability score, change in the proportion of participants who make use of walking aids, change in the mean Medical Research Council sum score, degree of pain relief and/or reduction of other positive sensory symptoms, change in the proportion of participants with pain or other positive sensory symptoms, and frequency of adverse effects. DATA COLLECTION AND ANALYSIS Two review authors independently reviewed the results of the literature search and extracted details of trial methodology and outcome data of all potentially relevant trials. MAIN RESULTS We identified 39 studies and assessed them for possible inclusion in the review, but we excluded all of them because of insufficient quality or lack of relevance. We summarised evidence from non-randomised studies in the Discussion. AUTHORS' CONCLUSIONS Even though CIAP has been clearly described and delineated, no adequate randomised or quasi-randomised controlled clinical treatment trials have been performed. In their absence there is no proven efficacious drug therapy.
Collapse
Affiliation(s)
- Janna Warendorf
- Brain Center Rudolf Magnus, University Medical Center UtrechtDepartment of NeurologyHeidelberglaan 100UtrechtNetherlands3584 CX
| | - Alexander FJE Vrancken
- University Medical Center Utrecht, Brain Center Rudolf MagnusDepartment of NeurologyUtrechtNetherlands
| | - Ivo N van Schaik
- Academic Medical Centre, University of AmsterdamDepartment of NeurologyMeibergdreef 9PO Box 22700AmsterdamNetherlands1100 DE
| | - Richard AC Hughes
- National Hospital for Neurology and NeurosurgeryMRC Centre for Neuromuscular DiseasesPO Box 114Queen SquareLondonUKWC1N 3BG
| | - Nicolette C Notermans
- Brain Center Rudolf Magnus, University Medical Center UtrechtDepartment of NeurologyHeidelberglaan 100UtrechtNetherlands3584 CX
| | | |
Collapse
|
248
|
Abstract
BACKGROUND This review is an update of a review of tramadol for neuropathic pain, published in 2006; updating was to bring the review in line with current standards. Neuropathic pain, which is caused by a lesion or disease affecting the somatosensory system, may be central or peripheral in origin. Peripheral neuropathic pain often includes symptoms such as burning or shooting sensations, abnormal sensitivity to normally painless stimuli, or an increased sensitivity to normally painful stimuli. Neuropathic pain is a common symptom in many diseases of the peripheral nervous system. OBJECTIVES To assess the analgesic efficacy of tramadol compared with placebo or other active interventions for chronic neuropathic pain in adults, and the adverse events associated with its use in clinical trials. SEARCH METHODS We searched CENTRAL, MEDLINE, and Embase for randomised controlled trials from inception to January 2017. We also searched the reference lists of retrieved studies and reviews, and online clinical trial registries. SELECTION CRITERIA We included randomised, double-blind trials of two weeks' duration or longer, comparing tramadol (any route of administration) with placebo or another active treatment for neuropathic pain, with subjective pain assessment by the participant. DATA COLLECTION AND ANALYSIS Two review authors independently extracted data and assessed trial quality and potential bias. Primary outcomes were participants with substantial pain relief (at least 50% pain relief over baseline or very much improved on Patient Global Impression of Change scale (PGIC)), or moderate pain relief (at least 30% pain relief over baseline or much or very much improved on PGIC). Where pooled analysis was possible, we used dichotomous data to calculate risk ratio (RR) and number needed to treat for an additional beneficial outcome (NNT) or harmful outcome (NNH), using standard methods. We assessed the quality of the evidence using GRADE and created 'Summary of findings' tables. MAIN RESULTS We identified six randomised, double-blind studies involving 438 participants with suitably characterised neuropathic pain. In each, tramadol was started at a dose of about 100 mg daily and increased over one to two weeks to a maximum of 400 mg daily or the maximum tolerated dose, and then maintained for the remainder of the study. Participants had experienced moderate or severe neuropathic pain for at least three months due to cancer, cancer treatment, postherpetic neuralgia, peripheral diabetic neuropathy, spinal cord injury, or polyneuropathy. The mean age was 50 to 67 years with approximately equal numbers of men and women. Exclusions were typically people with other significant comorbidity or pain from other causes. Study duration for treatments was four to six weeks, and two studies had a cross-over design.Not all studies reported all the outcomes of interest, and there were limited data for pain outcomes. At least 50% pain intensity reduction was reported in three studies (265 participants, 110 events). Using a random-effects analysis, 70/132 (53%) had at least 50% pain relief with tramadol, and 40/133 (30%) with placebo; the risk ratio (RR) was 2.2 (95% confidence interval (CI) 1.02 to 4.6). The NNT calculated from these data was 4.4 (95% CI 2.9 to 8.8). We downgraded the evidence for this outcome by two levels to low quality because of the small size of studies and of the pooled data set, because there were only 110 actual events, the analysis included different types of neuropathic pain, the studies all had at least one high risk of potential bias, and because of the limited duration of the studies.Participants experienced more adverse events with tramadol than placebo. Report of any adverse event was higher with tramadol (58%) than placebo (34%) (4 studies, 266 participants, 123 events; RR 1.6 (95% CI 1.2 to 2.1); NNH 4.2 (95% CI 2.8 to 8.3)). Adverse event withdrawal was higher with tramadol (16%) than placebo (3%) (6 studies, 485 participants, 45 events; RR 4.1 (95% CI 2.0 to 8.4); NNH 8.2 (95% CI 5.8 to 14)). Only four serious adverse events were reported, without obvious attribution to treatment, and no deaths were reported. We downgraded the evidence for this outcome by two or three levels to low or very low quality because of small study size, because there were few actual events, and because of the limited duration of the studies. AUTHORS' CONCLUSIONS There is only modest information about the use of tramadol in neuropathic pain, coming from small, largely inadequate studies with potential risk of bias. That bias would normally increase the apparent benefits of tramadol. The evidence of benefit from tramadol was of low or very low quality, meaning that it does not provide a reliable indication of the likely effect, and the likelihood is very high that the effect will be substantially different from the estimate in this systematic review.
Collapse
Affiliation(s)
| | - Sheena Derry
- University of OxfordPain Research and Nuffield Department of Clinical Neurosciences (Nuffield Division of Anaesthetics)Pain Research UnitChurchill HospitalOxfordOxfordshireUKOX3 7LE
| | - Philip J Wiffen
- University of OxfordPain Research and Nuffield Department of Clinical Neurosciences (Nuffield Division of Anaesthetics)Pain Research UnitChurchill HospitalOxfordOxfordshireUKOX3 7LE
| | - Rae F Bell
- Haukeland University HospitalRegional Centre of Excellence in Palliative CareBergenNorway
| | | | - R Andrew Moore
- University of OxfordPain Research and Nuffield Department of Clinical Neurosciences (Nuffield Division of Anaesthetics)Pain Research UnitChurchill HospitalOxfordOxfordshireUKOX3 7LE
| | | |
Collapse
|
249
|
|
250
|
Wiffen PJ, Derry S, Bell RF, Rice ASC, Tölle TR, Phillips T, Moore RA. Gabapentin for chronic neuropathic pain in adults. Cochrane Database Syst Rev 2017; 6:CD007938. [PMID: 28597471 PMCID: PMC6452908 DOI: 10.1002/14651858.cd007938.pub4] [Citation(s) in RCA: 184] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Gabapentin is commonly used to treat neuropathic pain (pain due to nerve damage). This review updates a review published in 2014, and previous reviews published in 2011, 2005 and 2000. OBJECTIVES To assess the analgesic efficacy and adverse effects of gabapentin in chronic neuropathic pain in adults. SEARCH METHODS For this update we searched CENTRAL), MEDLINE, and Embase for randomised controlled trials from January 2014 to January 2017. We also searched the reference lists of retrieved studies and reviews, and online clinical trials registries. SELECTION CRITERIA We included randomised, double-blind trials of two weeks' duration or longer, comparing gabapentin (any route of administration) with placebo or another active treatment for neuropathic pain, with participant-reported pain assessment. DATA COLLECTION AND ANALYSIS Two review authors independently extracted data and assessed trial quality and potential bias. Primary outcomes were participants with substantial pain relief (at least 50% pain relief over baseline or very much improved on Patient Global Impression of Change scale (PGIC)), or moderate pain relief (at least 30% pain relief over baseline or much or very much improved on PGIC). We performed a pooled analysis for any substantial or moderate benefit. Where pooled analysis was possible, we used dichotomous data to calculate risk ratio (RR) and number needed to treat for an additional beneficial outcome (NNT) or harmful outcome (NNH). We assessed the quality of the evidence using GRADE and created 'Summary of findings' tables. MAIN RESULTS We included four new studies (530 participants), and excluded three previously included studies (126 participants). In all, 37 studies provided information on 5914 participants. Most studies used oral gabapentin or gabapentin encarbil at doses of 1200 mg or more daily in different neuropathic pain conditions, predominantly postherpetic neuralgia and painful diabetic neuropathy. Study duration was typically four to 12 weeks. Not all studies reported important outcomes of interest. High risk of bias occurred mainly due to small size (especially in cross-over studies), and handling of data after study withdrawal.In postherpetic neuralgia, more participants (32%) had substantial benefit (at least 50% pain relief or PGIC very much improved) with gabapentin at 1200 mg daily or greater than with placebo (17%) (RR 1.8 (95% CI 1.5 to 2.1); NNT 6.7 (5.4 to 8.7); 8 studies, 2260 participants, moderate-quality evidence). More participants (46%) had moderate benefit (at least 30% pain relief or PGIC much or very much improved) with gabapentin at 1200 mg daily or greater than with placebo (25%) (RR 1.8 (95% CI 1.6 to 2.0); NNT 4.8 (4.1 to 6.0); 8 studies, 2260 participants, moderate-quality evidence).In painful diabetic neuropathy, more participants (38%) had substantial benefit (at least 50% pain relief or PGIC very much improved) with gabapentin at 1200 mg daily or greater than with placebo (21%) (RR 1.9 (95% CI 1.5 to 2.3); NNT 5.9 (4.6 to 8.3); 6 studies, 1277 participants, moderate-quality evidence). More participants (52%) had moderate benefit (at least 30% pain relief or PGIC much or very much improved) with gabapentin at 1200 mg daily or greater than with placebo (37%) (RR 1.4 (95% CI 1.3 to 1.6); NNT 6.6 (4.9 to 9.9); 7 studies, 1439 participants, moderate-quality evidence).For all conditions combined, adverse event withdrawals were more common with gabapentin (11%) than with placebo (8.2%) (RR 1.4 (95% CI 1.1 to 1.7); NNH 30 (20 to 65); 22 studies, 4346 participants, high-quality evidence). Serious adverse events were no more common with gabapentin (3.2%) than with placebo (2.8%) (RR 1.2 (95% CI 0.8 to 1.7); 19 studies, 3948 participants, moderate-quality evidence); there were eight deaths (very low-quality evidence). Participants experiencing at least one adverse event were more common with gabapentin (63%) than with placebo (49%) (RR 1.3 (95% CI 1.2 to 1.4); NNH 7.5 (6.1 to 9.6); 18 studies, 4279 participants, moderate-quality evidence). Individual adverse events occurred significantly more often with gabapentin. Participants taking gabapentin experienced dizziness (19%), somnolence (14%), peripheral oedema (7%), and gait disturbance (14%). AUTHORS' CONCLUSIONS Gabapentin at doses of 1800 mg to 3600 mg daily (1200 mg to 3600 mg gabapentin encarbil) can provide good levels of pain relief to some people with postherpetic neuralgia and peripheral diabetic neuropathy. Evidence for other types of neuropathic pain is very limited. The outcome of at least 50% pain intensity reduction is regarded as a useful outcome of treatment by patients, and the achievement of this degree of pain relief is associated with important beneficial effects on sleep interference, fatigue, and depression, as well as quality of life, function, and work. Around 3 or 4 out of 10 participants achieved this degree of pain relief with gabapentin, compared with 1 or 2 out of 10 for placebo. Over half of those treated with gabapentin will not have worthwhile pain relief but may experience adverse events. Conclusions have not changed since the previous update of this review.
Collapse
Affiliation(s)
| | | | - Rae Frances Bell
- Haukeland University HospitalRegional Centre of Excellence in Palliative CareBergenNorway
| | - Andrew SC Rice
- Imperial College LondonPain Research, Department of Surgery and Cancer, Faculty of MedicineLondonUKSW10 9NH
| | - Thomas Rudolf Tölle
- Technische Universität MünchenDepartment of Neurology, Klinikum Rechts der IsarMöhlstrasse 28MunichGermany81675
| | - Tudor Phillips
- University of OxfordPain Research and Nuffield Department of Clinical Neurosciences (Nuffield Division of Anaesthetics)Churchill HospitalOxfordUKOX3 7LJ
| | | | | |
Collapse
|