201
|
Patterson AM, Zhang S, Liu L, Li H, Singh P, Liu Y, Farag SS, Pelus LM. Meloxicam with Filgrastim may Reduce Oxidative Stress in Hematopoietic Progenitor Cells during Mobilization of Autologous Peripheral Blood Stem Cells in Patients with Multiple Myeloma. Stem Cell Rev Rep 2021; 17:2124-2138. [PMID: 34510361 DOI: 10.1007/s12015-021-10259-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2021] [Indexed: 12/13/2022]
Abstract
Autologous stem cell transplantation (ASCT) is a potentially curative therapy but requires collection of sufficient blood stem cells (PBSC). Up to 40 % of patients with multiple myeloma (MM) fail to collect an optimum number of PBSC using filgrastim only and often require costly plerixafor rescue. The nonsteroidal anti-inflammatory drug meloxicam mobilizes PBSC in mice, nonhuman primates and normal volunteers, and has the potential to attenuate mobilization-induced oxidative stress on stem cells. In a single-center study, we evaluated whether a meloxicam regimen prior to filgrastim increases collection and/or homeostasis of CD34+ cells in MM patients undergoing ASCT. Mobilization was not significantly different with meloxicam in this study; a median of 2.4 × 106 CD34+ cells/kg were collected in the first apheresis and 9.2 × 106 CD34+ cells/kg were collected overall for patients mobilized with meloxicam-filgrastim, versus 4.1 × 106 in first apheresis and 7.2 × 106/kg overall for patients mobilized with filgrastim alone. CXCR4 expression was reduced on CD34+ cells and a higher CD4+/CD8+ T-cell ratio was observed after mobilization with meloxicam-filgrastim. All patients treated with meloxicam-filgrastim underwent ASCT, with neutrophil and platelet engraftment similar to filgrastim alone. RNA sequencing of purified CD34+ cells from 22 MM patients mobilized with meloxicam-filgrastim and 10 patients mobilized with filgrastim only identified > 4,800 differentially expressed genes (FDR < 0.05). Enrichment analysis indicated significant attenuation of oxidative phosphorylation and translational activity, possibly mediated by SIRT1, suggesting meloxicam may counteract oxidative stress during PBSC collection. Our results indicate that meloxicam was a safe, low-cost supplement to filgrastim mobilization, which appeared to mitigate HSPC oxidative stress, and may represent a simple means to lessen stem cell exhaustion and enhance graft quality.
Collapse
Affiliation(s)
- Andrea M Patterson
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, 980 West Walnut St, Indianapolis, IN, 46202, USA.,Department of Microbiology & Immunology, Indiana University School of Medicine, 950 West Walnut St, Indianapolis, IN, 46202, USA
| | - Shuhong Zhang
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, 980 West Walnut St, Indianapolis, IN, 46202, USA
| | - Liqiong Liu
- Department of Microbiology & Immunology, Indiana University School of Medicine, 950 West Walnut St, Indianapolis, IN, 46202, USA
| | - Hongge Li
- Department of Microbiology & Immunology, Indiana University School of Medicine, 950 West Walnut St, Indianapolis, IN, 46202, USA
| | - Pratibha Singh
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, 980 West Walnut St, Indianapolis, IN, 46202, USA.,Department of Microbiology & Immunology, Indiana University School of Medicine, 950 West Walnut St, Indianapolis, IN, 46202, USA
| | - Yunlong Liu
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, 46202, Indianapolis, IN, USA.,Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Sherif S Farag
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, 980 West Walnut St, Indianapolis, IN, 46202, USA.
| | - Louis M Pelus
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, 980 West Walnut St, Indianapolis, IN, 46202, USA. .,Department of Microbiology & Immunology, Indiana University School of Medicine, 950 West Walnut St, Indianapolis, IN, 46202, USA.
| |
Collapse
|
202
|
Almotiri A, Alzahrani H, Menendez-Gonzalez JB, Abdelfattah A, Alotaibi B, Saleh L, Greene A, Georgiou M, Gibbs A, Alsayari A, Taha S, Thomas LA, Shah D, Edkins S, Giles P, Stemmler MP, Brabletz S, Brabletz T, Boyd AS, Siebzehnrubl FA, Rodrigues NP. Zeb1 modulates hematopoietic stem cell fates required for suppressing acute myeloid leukemia. J Clin Invest 2021; 131:129115. [PMID: 33108352 PMCID: PMC7773410 DOI: 10.1172/jci129115] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 10/14/2020] [Indexed: 12/12/2022] Open
Abstract
Zeb1, a zinc finger E-box binding homeobox epithelial-mesenchymal transition (EMT) transcription factor, confers properties of "stemness," such as self-renewal, in cancer. Yet little is known about the function of Zeb1 in adult stem cells. Here, we used the hematopoietic system as a well-established paradigm of stem cell biology to evaluate Zeb1-mediated regulation of adult stem cells. We employed a conditional genetic approach using the Mx1-Cre system to specifically knock out (KO) Zeb1 in adult hematopoietic stem cells (HSCs) and their downstream progeny. Acute genetic deletion of Zeb1 led to rapid-onset thymic atrophy and apoptosis-driven loss of thymocytes and T cells. A profound cell-autonomous self-renewal defect and multilineage differentiation block were observed in Zeb1-KO HSCs. Loss of Zeb1 in HSCs activated transcriptional programs of deregulated HSC maintenance and multilineage differentiation genes and of cell polarity consisting of cytoskeleton-, lipid metabolism/lipid membrane-, and cell adhesion-related genes. Notably, epithelial cell adhesion molecule (EpCAM) expression was prodigiously upregulated in Zeb1-KO HSCs, which correlated with enhanced cell survival, diminished mitochondrial metabolism, ribosome biogenesis, and differentiation capacity and an activated transcriptomic signature associated with acute myeloid leukemia (AML) signaling. ZEB1 expression was downregulated in AML patients, and Zeb1 KO in the malignant counterparts of HSCs - leukemic stem cells (LSCs) - accelerated MLL-AF9- and Meis1a/Hoxa9-driven AML progression, implicating Zeb1 as a tumor suppressor in AML LSCs. Thus, Zeb1 acts as a transcriptional regulator in hematopoiesis, critically coordinating HSC self-renewal, apoptotic, and multilineage differentiation fates required to suppress leukemic potential in AML.
Collapse
Affiliation(s)
- Alhomidi Almotiri
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff, United Kingdom.,College of Applied Medical Sciences-Dawadmi, Shaqra University, Dawadmi, Saudi Arabia
| | - Hamed Alzahrani
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff, United Kingdom
| | | | - Ali Abdelfattah
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff, United Kingdom
| | - Badi Alotaibi
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff, United Kingdom
| | - Lubaid Saleh
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff, United Kingdom
| | - Adelle Greene
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff, United Kingdom
| | - Mia Georgiou
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff, United Kingdom
| | - Alex Gibbs
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff, United Kingdom
| | - Amani Alsayari
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff, United Kingdom
| | - Sarab Taha
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff, United Kingdom
| | - Leigh-Anne Thomas
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff, United Kingdom
| | - Dhruv Shah
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff, United Kingdom
| | - Sarah Edkins
- Wales Gene Park and Wales Cancer Research Centre, Division of Cancer and Genetics, Cardiff University, School of Medicine, Cardiff, United Kingdom
| | - Peter Giles
- Wales Gene Park and Wales Cancer Research Centre, Division of Cancer and Genetics, Cardiff University, School of Medicine, Cardiff, United Kingdom
| | - Marc P Stemmler
- Department of Experimental Medicine 1, Nikolaus-Fiebiger-Center for Molecular Medicine, FAU University Erlangen-Nürnberg, Erlangen, Germany
| | - Simone Brabletz
- Department of Experimental Medicine 1, Nikolaus-Fiebiger-Center for Molecular Medicine, FAU University Erlangen-Nürnberg, Erlangen, Germany
| | - Thomas Brabletz
- Department of Experimental Medicine 1, Nikolaus-Fiebiger-Center for Molecular Medicine, FAU University Erlangen-Nürnberg, Erlangen, Germany
| | - Ashleigh S Boyd
- Department of Surgical Biotechnology, Division of Surgery and Interventional Science, Royal Free Hospital, and.,Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Florian A Siebzehnrubl
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff, United Kingdom
| | - Neil P Rodrigues
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff, United Kingdom
| |
Collapse
|
203
|
Jun S, Mahesula S, Mathews TP, Martin-Sandoval MS, Zhao Z, Piskounova E, Agathocleous M. The requirement for pyruvate dehydrogenase in leukemogenesis depends on cell lineage. Cell Metab 2021; 33:1777-1792.e8. [PMID: 34375613 DOI: 10.1016/j.cmet.2021.07.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/19/2021] [Accepted: 07/19/2021] [Indexed: 12/20/2022]
Abstract
Cancer cells are metabolically similar to their corresponding normal tissues. Differences between cancers and normal tissues may reflect reprogramming during transformation or maintenance of the metabolism of the specific normal cell type that originated the cancer. Here, we compare glucose metabolism in hematopoiesis and leukemia. Thymus T cell progenitors were glucose avid and oxidized more glucose in the tricarboxylic acid cycle through pyruvate dehydrogenase (PDH) as compared with other hematopoietic cells. PDH deletion decreased double-positive T cell progenitor cells but had no effect on hematopoietic stem cells, myeloid progenitors, or other hematopoietic cells. PDH deletion blocked the development of Pten-deficient T cell leukemia, but not the development of a Pten-deficient myeloid neoplasm. Therefore, the requirement for PDH in leukemia reflected the metabolism of the normal cell of origin independently of the driver genetic lesion. PDH was required to prevent pyruvate accumulation and maintain glutathione levels and redox homeostasis.
Collapse
Affiliation(s)
- Sojeong Jun
- Children's Medical Center Research Institute and Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Swetha Mahesula
- Children's Medical Center Research Institute and Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Thomas P Mathews
- Children's Medical Center Research Institute and Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Misty S Martin-Sandoval
- Children's Medical Center Research Institute and Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Zhiyu Zhao
- Children's Medical Center Research Institute and Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Elena Piskounova
- Sandra and Edward Meyer Cancer Center and Department of Dermatology, Weill Cornell Medicine, New York, NY, USA
| | - Michalis Agathocleous
- Children's Medical Center Research Institute and Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
204
|
Novak JSS, Baksh SC, Fuchs E. Dietary interventions as regulators of stem cell behavior in homeostasis and disease. Genes Dev 2021; 35:199-211. [PMID: 33526586 PMCID: PMC7849367 DOI: 10.1101/gad.346973.120] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Stem cells maintain tissues by balancing self-renewal with differentiation. A stem cell's local microenvironment, or niche, informs stem cell behavior and receives inputs at multiple levels. Increasingly, it is becoming clear that the overall metabolic status of an organism or metabolites themselves can function as integral members of the niche to alter stem cell fate. Macroscopic dietary interventions such as caloric restriction, the ketogenic diet, and a high-fat diet systemically alter an organism's metabolic state in different ways. Intriguingly, however, they all converge on a propensity to enhance self-renewal. Here, we highlight our current knowledge on how dietary changes feed into stem cell behavior across a wide variety of tissues and illuminate possible explanations for why diverse interventions can result in similar stem cell phenotypes. In so doing, we hope to inspire new avenues of inquiry into the importance of metabolism in stem cell homeostasis and disease.
Collapse
Affiliation(s)
- Jesse S S Novak
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, New York 10065, USA
| | - Sanjeethan C Baksh
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, New York 10065, USA
| | - Elaine Fuchs
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, New York 10065, USA
| |
Collapse
|
205
|
Belyavsky A, Petinati N, Drize N. Hematopoiesis during Ontogenesis, Adult Life, and Aging. Int J Mol Sci 2021; 22:ijms22179231. [PMID: 34502137 PMCID: PMC8430730 DOI: 10.3390/ijms22179231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/13/2021] [Accepted: 08/24/2021] [Indexed: 12/17/2022] Open
Abstract
In the bone marrow of vertebrates, two types of stem cells coexist-hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs). Hematopoiesis only occurs when these two stem cell types and their descendants interact. The descendants of HSCs supply the body with all the mature blood cells, while MSCs give rise to stromal cells that form a niche for HSCs and regulate the process of hematopoiesis. The studies of hematopoiesis were initially based on morphological observations, later extended by the use of physiological methods, and were subsequently augmented by massive application of sophisticated molecular techniques. The combination of these methods produced a wealth of new data on the organization and functional features of hematopoiesis in the ontogenesis of mammals and humans. This review summarizes the current views on hematopoiesis in mice and humans, discusses the development of blood elements and hematopoiesis in the embryo, and describes how the hematopoietic system works in the adult organism and how it changes during aging.
Collapse
Affiliation(s)
- Alexander Belyavsky
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia;
| | | | - Nina Drize
- National Research Center for Hematology, 125167 Moscow, Russia;
- Correspondence:
| |
Collapse
|
206
|
Sinenko SA, Starkova TY, Kuzmin AA, Tomilin AN. Physiological Signaling Functions of Reactive Oxygen Species in Stem Cells: From Flies to Man. Front Cell Dev Biol 2021; 9:714370. [PMID: 34422833 PMCID: PMC8377544 DOI: 10.3389/fcell.2021.714370] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/01/2021] [Indexed: 12/14/2022] Open
Abstract
Reactive oxygen species (ROS), superoxide anion and hydrogen peroxide, are generated as byproducts of oxidative phosphorylation in the mitochondria or via cell signaling-induced NADPH oxidases in the cytosol. In the recent two decades, a plethora of studies established that elevated ROS levels generated by oxidative eustress are crucial physiological mediators of many cellular and developmental processes. In this review, we discuss the mechanisms of ROS generation and regulation, current understanding of ROS functions in the maintenance of adult and embryonic stem cells, as well as in the process of cell reprogramming to a pluripotent state. Recently discovered cell-non-autonomous ROS functions mediated by growth factors are crucial for controlling cell differentiation and cellular immune response in Drosophila. Importantly, many physiological functions of ROS discovered in Drosophila may allow for deciphering and understanding analogous processes in human, which could potentially lead to the development of novel therapeutic approaches in ROS-associated diseases treatment.
Collapse
Affiliation(s)
- Sergey A Sinenko
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | | | - Andrey A Kuzmin
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Alexey N Tomilin
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
207
|
Di Mattia M, Mauro A, Citeroni MR, Dufrusine B, Peserico A, Russo V, Berardinelli P, Dainese E, Cimini A, Barboni B. Insight into Hypoxia Stemness Control. Cells 2021; 10:cells10082161. [PMID: 34440930 PMCID: PMC8394199 DOI: 10.3390/cells10082161] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 01/10/2023] Open
Abstract
Recently, the research on stemness and multilineage differentiation mechanisms has greatly increased its value due to the potential therapeutic impact of stem cell-based approaches. Stem cells modulate their self-renewing and differentiation capacities in response to endogenous and/or extrinsic factors that can control stem cell fate. One key factor controlling stem cell phenotype is oxygen (O2). Several pieces of evidence demonstrated that the complexity of reproducing O2 physiological tensions and gradients in culture is responsible for defective stem cell behavior in vitro and after transplantation. This evidence is still worsened by considering that stem cells are conventionally incubated under non-physiological air O2 tension (21%). Therefore, the study of mechanisms and signaling activated at lower O2 tension, such as those existing under native microenvironments (referred to as hypoxia), represent an effective strategy to define if O2 is essential in preserving naïve stemness potential as well as in modulating their differentiation. Starting from this premise, the goal of the present review is to report the status of the art about the link existing between hypoxia and stemness providing insight into the factors/molecules involved, to design targeted strategies that, recapitulating naïve O2 signals, enable towards the therapeutic use of stem cell for tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Miriam Di Mattia
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.D.M.); (M.R.C.); (A.P.); (V.R.); (P.B.); (E.D.); (B.B.)
| | - Annunziata Mauro
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.D.M.); (M.R.C.); (A.P.); (V.R.); (P.B.); (E.D.); (B.B.)
- Correspondence: ; Tel.: +39-086-1426-6888; Fax: +39-08-6126-6860
| | - Maria Rita Citeroni
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.D.M.); (M.R.C.); (A.P.); (V.R.); (P.B.); (E.D.); (B.B.)
| | - Beatrice Dufrusine
- Department of Innovative Technologies in Medicine & Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy;
- Center of Advanced Studies and Technology (CAST), 66100 Chieti, Italy
| | - Alessia Peserico
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.D.M.); (M.R.C.); (A.P.); (V.R.); (P.B.); (E.D.); (B.B.)
| | - Valentina Russo
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.D.M.); (M.R.C.); (A.P.); (V.R.); (P.B.); (E.D.); (B.B.)
| | - Paolo Berardinelli
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.D.M.); (M.R.C.); (A.P.); (V.R.); (P.B.); (E.D.); (B.B.)
| | - Enrico Dainese
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.D.M.); (M.R.C.); (A.P.); (V.R.); (P.B.); (E.D.); (B.B.)
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
- Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, Temple University, Philadelphia, PA 19122, USA
| | - Barbara Barboni
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.D.M.); (M.R.C.); (A.P.); (V.R.); (P.B.); (E.D.); (B.B.)
| |
Collapse
|
208
|
Chen S, Wang W, Tan HY, Lu Y, Li Z, Qu Y, Wang N, Wang D. Role of Autophagy in the Maintenance of Stemness in Adult Stem Cells: A Disease-Relevant Mechanism of Action. Front Cell Dev Biol 2021; 9:715200. [PMID: 34414192 PMCID: PMC8369482 DOI: 10.3389/fcell.2021.715200] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/15/2021] [Indexed: 01/07/2023] Open
Abstract
Autophagy is an intracellular scavenging mechanism induced to eliminate damaged, denatured, or senescent macromolecular substances and organelles in the body. The regulation of autophagy plays essential roles in the processes of cellular homeostasis and senescence. Dysregulated autophagy is a common feature of several human diseases, including cancers and neurodegenerative disorders. The initiation and development of these disorders have been shown to be associated with the maintenance of disease-specific stem cell compartments. In this review, we summarize recent advances in our understanding of the role of autophagy in the maintenance of stemness. Specifically, we focus on the intersection between autophagy and adult stem cells in the initiation and progression of specific diseases. Accordingly, this review highlights the role of autophagy in stemness maintenance from the perspective of disease-associated mechanisms, which may be fundamental to our understanding of the pathogeneses of human diseases and the development of effective therapies.
Collapse
Affiliation(s)
- Shanshan Chen
- School of Life Sciences, Jilin University, Changchun, China
| | - Wenqi Wang
- School of Life Sciences, Jilin University, Changchun, China
| | - Hor-Yue Tan
- Centre for Chinese Herbal Medicine Drug Development, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Yuanjun Lu
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China
| | - Zhiping Li
- School of Life Sciences, Jilin University, Changchun, China
| | - Yidi Qu
- School of Life Sciences, Jilin University, Changchun, China
| | - Ning Wang
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China
| | - Di Wang
- School of Life Sciences, Jilin University, Changchun, China.,Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China
| |
Collapse
|
209
|
Di Martino L, Tosello V, Peroni E, Piovan E. Insights on Metabolic Reprogramming and Its Therapeutic Potential in Acute Leukemia. Int J Mol Sci 2021; 22:ijms22168738. [PMID: 34445444 PMCID: PMC8395761 DOI: 10.3390/ijms22168738] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/04/2021] [Accepted: 08/11/2021] [Indexed: 12/13/2022] Open
Abstract
Acute leukemias, classified as acute myeloid leukemia and acute lymphoblastic leukemia, represent the most prevalent hematologic tumors in adolescent and young adults. In recent years, new challenges have emerged in order to improve the clinical effectiveness of therapies already in use and reduce their side effects. In particular, in this scenario, metabolic reprogramming plays a key role in tumorigenesis and prognosis, and it contributes to the treatment outcome of acute leukemia. This review summarizes the latest findings regarding the most relevant metabolic pathways contributing to the continuous growth, redox homeostasis, and drug resistance of leukemia cells. We describe the main metabolic deregulations in acute leukemia and evidence vulnerabilities that could be exploited for targeted therapy.
Collapse
Affiliation(s)
- Ludovica Di Martino
- Dipartimento di Scienze Chirurgiche, Oncologiche e Gastroenterologiche, Universita’ di Padova, 35122 Padova, Italy;
| | - Valeria Tosello
- UOC Immunologia e Diagnostica Molecolare Oncologica, Istituto Oncologico Veneto IOV—IRCCS, 35128 Padova, Italy; (V.T.); (E.P.)
| | - Edoardo Peroni
- UOC Immunologia e Diagnostica Molecolare Oncologica, Istituto Oncologico Veneto IOV—IRCCS, 35128 Padova, Italy; (V.T.); (E.P.)
| | - Erich Piovan
- Dipartimento di Scienze Chirurgiche, Oncologiche e Gastroenterologiche, Universita’ di Padova, 35122 Padova, Italy;
- UOC Immunologia e Diagnostica Molecolare Oncologica, Istituto Oncologico Veneto IOV—IRCCS, 35128 Padova, Italy; (V.T.); (E.P.)
- Correspondence: ; Tel.: +39-049-8215895
| |
Collapse
|
210
|
Stergiou IE, Kapsogeorgou EK. Autophagy and Metabolism in Normal and Malignant Hematopoiesis. Int J Mol Sci 2021; 22:8540. [PMID: 34445246 PMCID: PMC8395194 DOI: 10.3390/ijms22168540] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 02/07/2023] Open
Abstract
The hematopoietic system relies on regulation of both metabolism and autophagy to maintain its homeostasis, ensuring the self-renewal and multipotent differentiation potential of hematopoietic stem cells (HSCs). HSCs display a distinct metabolic profile from that of their differentiated progeny, while metabolic rewiring from glycolysis to oxidative phosphorylation (OXPHOS) has been shown to be crucial for effective hematopoietic differentiation. Autophagy-mediated regulation of metabolism modulates the distinct characteristics of quiescent and differentiating hematopoietic cells. In particular, mitophagy determines the cellular mitochondrial content, thus modifying the level of OXPHOS at the different differentiation stages of hematopoietic cells, while, at the same time, it ensures the building blocks and energy for differentiation. Aberrations in both the metabolic status and regulation of the autophagic machinery are implicated in the development of hematologic malignancies, especially in leukemogenesis. In this review, we aim to investigate the role of metabolism and autophagy, as well as their interconnections, in normal and malignant hematopoiesis.
Collapse
Affiliation(s)
| | - Efstathia K. Kapsogeorgou
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| |
Collapse
|
211
|
Kruta M, Sunshine MJ, Chua BA, Fu Y, Chawla A, Dillingham CH, Hidalgo San Jose L, De Jong B, Zhou FJ, Signer RAJ. Hsf1 promotes hematopoietic stem cell fitness and proteostasis in response to ex vivo culture stress and aging. Cell Stem Cell 2021; 28:1950-1965.e6. [PMID: 34388375 DOI: 10.1016/j.stem.2021.07.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 05/18/2021] [Accepted: 07/21/2021] [Indexed: 12/20/2022]
Abstract
Maintaining proteostasis is key to resisting stress and promoting healthy aging. Proteostasis is necessary to preserve stem cell function, but little is known about the mechanisms that regulate proteostasis during stress in stem cells, and whether disruptions of proteostasis contribute to stem cell aging is largely unexplored. We determined that ex-vivo-cultured mouse and human hematopoietic stem cells (HSCs) rapidly increase protein synthesis. This challenge to HSC proteostasis was associated with nuclear accumulation of Hsf1, and deletion of Hsf1 impaired HSC maintenance ex vivo. Strikingly, supplementing cultures with small molecules that enhance Hsf1 activation partially suppressed protein synthesis, rebalanced proteostasis, and supported retention of HSC serial reconstituting activity. Although Hsf1 was dispensable for young adult HSCs in vivo, Hsf1 deficiency increased protein synthesis and impaired the reconstituting activity of middle-aged HSCs. Hsf1 thus promotes proteostasis and the regenerative activity of HSCs in response to culture stress and aging.
Collapse
Affiliation(s)
- Miriama Kruta
- Division of Regenerative Medicine, Department of Medicine, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Mary Jean Sunshine
- Division of Regenerative Medicine, Department of Medicine, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Bernadette A Chua
- Division of Regenerative Medicine, Department of Medicine, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yunpeng Fu
- Division of Regenerative Medicine, Department of Medicine, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ashu Chawla
- La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Christopher H Dillingham
- Division of Regenerative Medicine, Department of Medicine, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA; La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Lorena Hidalgo San Jose
- Division of Regenerative Medicine, Department of Medicine, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Bijou De Jong
- Division of Regenerative Medicine, Department of Medicine, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Fanny J Zhou
- Division of Regenerative Medicine, Department of Medicine, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Robert A J Signer
- Division of Regenerative Medicine, Department of Medicine, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
212
|
Stiekema LCA, Willemsen L, Kaiser Y, Prange KHM, Wareham NJ, Boekholdt SM, Kuijk C, de Winther MPJ, Voermans C, Nahrendorf M, Stroes ESG, Kroon J. Impact of cholesterol on proinflammatory monocyte production by the bone marrow. Eur Heart J 2021; 42:4309-4320. [PMID: 34343254 PMCID: PMC8572558 DOI: 10.1093/eurheartj/ehab465] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 02/22/2021] [Accepted: 07/08/2021] [Indexed: 12/20/2022] Open
Abstract
AIM Preclinical work indicates that low-density lipoprotein cholesterol (LDL-C) not only drives atherosclerosis by directing the innate immune response at plaque level but also augments proinflammatory monocyte production in the bone marrow (BM) compartment. In this study, we aim to unravel the impact of LDL-C on monocyte production in the BM compartment in human subjects. METHODS AND RESULTS A multivariable linear regression analysis in 12 304 individuals of the EPIC-Norfolk prospective population study showed that LDL-C is associated with monocyte percentage (β = 0.131 [95% CI: 0.036-0.225]; P = 0.007), at the expense of granulocytes (β = -0.876 [95% CI: -1.046 to -0.705]; P < 0.001). Next, we investigated whether altered haematopoiesis could explain this monocytic skewing by characterizing CD34+ BM haematopoietic stem and progenitor cells (HSPCs) of patients with familial hypercholesterolaemia (FH) and healthy normocholesterolaemic controls. The HSPC transcriptomic profile of untreated FH patients showed increased gene expression in pathways involved in HSPC migration and, in agreement with our epidemiological findings, myelomonocytic skewing. Twelve weeks of cholesterol-lowering treatment reverted the myelomonocytic skewing, but transcriptomic enrichment of monocyte-associated inflammatory and migratory pathways persisted in HSPCs post-treatment. Lastly, we link hypercholesterolaemia to perturbed lipid homeostasis in HSPCs, characterized by lipid droplet formation and transcriptomic changes compatible with increased intracellular cholesterol availability. CONCLUSIONS Collectively, these data highlight that LDL-C impacts haematopoiesis, promoting both the number and the proinflammatory activation of circulating monocytes. Furthermore, this study reveals a potential contributory role of HSPC transcriptomic reprogramming to residual inflammatory risk in FH patients despite cholesterol-lowering therapy.
Collapse
Affiliation(s)
- Lotte C A Stiekema
- Department of Vascular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, Meibergdreef 9, Amsterdam 1105 AZ, The Netherlands
| | - Lisa Willemsen
- Department of Medical Biochemistry, Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, Meibergdreef 9, Amsterdam 1105 AZ, The Netherlands
| | - Yannick Kaiser
- Department of Vascular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, Meibergdreef 9, Amsterdam 1105 AZ, The Netherlands
| | - Koen H M Prange
- Department of Medical Biochemistry, Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, Meibergdreef 9, Amsterdam 1105 AZ, The Netherlands
| | - Nicholas J Wareham
- Medical Research Council Epidemiology Unit, University of Cambridge, Cambridge CB2 0QQ, UK
| | - S Matthijs Boekholdt
- Amsterdam UMC, University of Amsterdam, Department of Cardiology, Amsterdam Cardiovascular Sciences, Meibergdreef 9, Amsterdam 1105 AZ, The Netherlands
| | - Carlijn Kuijk
- Sanquin Research and Landsteiner Laboratory, Department of Hematopoiesis, University of Amsterdam, Plesmanlaan 125, Amsterdam 1066 CX, The Netherlands
| | - Menno P J de Winther
- Department of Medical Biochemistry, Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, Meibergdreef 9, Amsterdam 1105 AZ, The Netherlands.,Department of Medical Biochemistry, Amsterdam UMC, University of Amsterdam, Amsterdam Infection and Immunity, Meibergdreef 9, Amsterdam 1105 AZ, The Netherlands
| | - Carlijn Voermans
- Sanquin Research and Landsteiner Laboratory, Department of Hematopoiesis, University of Amsterdam, Plesmanlaan 125, Amsterdam 1066 CX, The Netherlands
| | - Matthias Nahrendorf
- Center for Systems Biology, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 185 Cambridge Street, Boston, MA 02114, USA
| | - Erik S G Stroes
- Department of Vascular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, Meibergdreef 9, Amsterdam 1105 AZ, The Netherlands
| | - Jeffrey Kroon
- Department of Experimental Vascular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, Meibergdreef 9, Amsterdam 1105 AZ, The Netherlands
| |
Collapse
|
213
|
Patrolling human SLE haematopoietic progenitors demonstrate enhanced extramedullary colonisation; implications for peripheral tissue injury. Sci Rep 2021; 11:15759. [PMID: 34344937 PMCID: PMC8333421 DOI: 10.1038/s41598-021-95224-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/06/2021] [Indexed: 12/28/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease where bone-marrow-derived haematopoietic cells have a key role in its pathogenesis with accumulating evidence suggesting an aberrant function of haematopoietic stem/progenitor cells (HSPCs). We examined whether patrolling HSPCs differ from bone-marrow HSPCs both in SLE and healthy individuals, and how they participate in peripheral tissue injury. By employing next-generation RNA sequencing, the transcriptomes of CD34+ HSPCs deriving from the bone marrow and those patrolling the bloodstream of both healthy and individuals with SLE were compared. Patrolling SLE and Healthy human HSPC kinetics were examined through their inoculation into humanised mice. Patrolling and bone-marrow HSPCs have distinct molecular signatures, while patrolling SLE HSPCs showed an enhanced extramedullary gene expression profile. Non-mobilised, SLE-derived circulating HSPCs demonstrated altered homing capacities. Xenotransplantation of circulating HSPCs in humanised mice showed that human peripheral blood HSPCs possess the ability for extramedullary organ colonisation to the kidneys. Circulating and bone marrow-derived HSPCs are distinct in steady and diseased states. Patrolling SLE CD34+ HSPCs are able to home at extramedullary sites such as the spleen and kidneys, potentially participating in peripheral tissue injury.
Collapse
|
214
|
Nakajima H, Murakami K. O-GlcNAcylation: Implications in normal and malignant hematopoiesis. Exp Hematol 2021; 101-102:16-24. [PMID: 34302904 DOI: 10.1016/j.exphem.2021.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 10/20/2022]
Abstract
Posttranslational protein modification through addition of the O-linked β-N-acetyl-D-glucosamine (O-GlcNAc) moiety to serine or threonine residues, termed O-GlcNAcylation, is a highly dynamic process conserved throughout eukaryotes. O-GlcNAcylation is reversibly catalyzed by a single pair of enzymes, O-GlcNAc transferase and O-GlcNAcase, and it acts as a fundamental regulator for a wide variety of biological processes including gene expression, cell cycle regulation, metabolism, stress response, cellular signaling, epigenetics, and proteostasis. O-GlcNAcylation is regulated by various intracellular or extracellular cues such as metabolic status, nutrient availability, and stress. Studies over decades have unveiled the profound biological significance of this unique protein modification in normal physiology and pathologic processes of diverse cell types or tissues. In hematopoiesis, recent studies have indicated the essential and pleiotropic roles of O-GlcNAcylation in differentiation, proliferation, and function of hematopoietic cells including T cells, B cells, myeloid progenitors, and hematopoietic stem and progenitor cells. Moreover, aberrant O-GlcNAcylation is implicated in the development of hematologic malignancies with dysregulated epigenetics, metabolism, and gene transcription. Thus, it is now recognized that O-GlcNAcylation is one of the key regulators of normal and malignant hematopoiesis.
Collapse
Affiliation(s)
- Hideaki Nakajima
- Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| | - Koichi Murakami
- Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
215
|
Meng X, Pang H, Sun F, Jin X, Wang B, Yao K, Yao L, Wang L, Hu Z. Simultaneous 3-Nitrophenylhydrazine Derivatization Strategy of Carbonyl, Carboxyl and Phosphoryl Submetabolome for LC-MS/MS-Based Targeted Metabolomics with Improved Sensitivity and Coverage. Anal Chem 2021; 93:10075-10083. [PMID: 34270209 DOI: 10.1021/acs.analchem.1c00767] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Metabolomics is a powerful and essential technology for profiling metabolic phenotypes and exploring metabolic reprogramming, which enables the identification of biomarkers and provides mechanistic insights into physiology and disease. However, its applications are still limited by the technical challenges particularly in its detection sensitivity for the analysis of biological samples with limited amount, necessitating the development of highly sensitive approaches. Here, we developed a highly sensitive liquid chromatography tandem mass spectrometry method based on a 3-nitrophenylhydrazine (3-NPH) derivatization strategy that simultaneously targets carbonyl, carboxyl, and phosphoryl groups for targeted metabolomic analysis (HSDccp-TM) in biological samples. By testing 130 endogenous metabolites including organic acids, amino acids, carbohydrates, nucleotides, carnitines, and vitamins, we showed that the derivatization strategy resulted in significantly improved detection sensitivity and chromatographic separation capability. Metabolic profiling of merely 60 oocytes and 5000 hematopoietic stem cells primarily isolated from mice demonstrated that this method enabled routine metabolomic analysis in trace amounts of biospecimens. Moreover, the derivatization strategy bypassed the tediousness of inferring the MS fragmentation patterns and simplified the complexity of monitoring ion pairs of metabolites, which greatly facilitated the metabolic flux analysis (MFA) for glycolysis, the tricarboxylic acid (TCA) cycle, and pentose phosphate pathway (PPP) in cell cultures. In summary, the novel 3-NPH derivatization-based method with high sensitivity, good chromatographic separation, and broad coverage showed great potential in promoting metabolomics and MFA, especially in trace amounts of biospecimens.
Collapse
Affiliation(s)
- Xiangjun Meng
- School of Pharmaceutical Sciences, Tsinghua-Peking Joint Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing 100084, China
| | - Huanhuan Pang
- School of Pharmaceutical Sciences, Tsinghua-Peking Joint Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing 100084, China
| | - Fei Sun
- School of Pharmaceutical Sciences, Tsinghua-Peking Joint Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing 100084, China
| | - Xiaohan Jin
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing 100069, China
| | - Bohong Wang
- School of Pharmaceutical Sciences, Tsinghua-Peking Joint Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing 100084, China
| | - Ke Yao
- School of Pharmaceutical Sciences, Tsinghua-Peking Joint Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing 100084, China
| | - LiAng Yao
- School of Pharmaceutical Sciences, Tsinghua-Peking Joint Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing 100084, China
| | - Lijuan Wang
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zeping Hu
- School of Pharmaceutical Sciences, Tsinghua-Peking Joint Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing 100084, China
| |
Collapse
|
216
|
Wu MJ, Chen CJ, Lin TY, Liu YY, Tseng LL, Cheng ML, Chuu CP, Tsai HK, Kuo WL, Kung HJ, Wang WC. Targeting KDM4B that coactivates c-Myc-regulated metabolism to suppress tumor growth in castration-resistant prostate cancer. Theranostics 2021; 11:7779-7796. [PMID: 34335964 PMCID: PMC8315051 DOI: 10.7150/thno.58729] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 06/18/2021] [Indexed: 12/13/2022] Open
Abstract
Rationale: The progression of prostate cancer (PCa) to castration-resistant PCa (CRPC) despite continuous androgen deprivation therapy is a major clinical challenge. Over 90% of patients with CRPC exhibit sustained androgen receptor (AR) signaling. KDM4B that removes the repressive mark H3K9me3/2 is a transcriptional activator of AR and has been implicated in the development of CRPC. However, the mechanisms of KDM4B involvement in CRPC remain largely unknown. Here, we sought to demonstrate the molecular pathway mediated by KDM4B in CRPC and to provide proof-of-concept evidence that KDM4B is a potential CRPC target. Methods: CRPC cells (C4-2B or CWR22Rv1) depleted with KDM4B followed by cell proliferation (in vitro and xenograft), microarray, qRT-PCR, Seahorse Flux, and metabolomic analyses were employed to identify the expression and metabolic profiles mediated by KDM4B. Immunoprecipitation was used to determine the KDM4B-c-Myc interaction region. Reporter activity assay and ChIP analysis were used to characterize the KDM4B-c-Myc complex-mediated mechanistic actions. The clinical relevance between KDM4B and c-Myc was determined using UCSC Xena analysis and immunohistochemistry. Results: We showed that KDM4B knockdown impaired CRPC proliferation, switched Warburg to OXPHOS metabolism, and suppressed gene expressions including those targeted by c-Myc. We further demonstrated that KDM4B physically interacted with c-Myc and they were co-recruited to the c-Myc-binding sequence on the promoters of metabolic genes (LDHA, ENO1, and PFK). Importantly, KDM4B and c-Myc synergistically promoted the transactivation of the LDHA promoter in a demethylase-dependent manner. We also provided evidence that KDM4B and c-Myc are co-expressed in PCa tissue and that high expression of both is associated with worse clinical outcome. Conclusions: KDM4B partners with c-Myc and serves as a coactivator of c-Myc to directly enhance c-Myc-mediated metabolism, hence promoting CRPC progression. Targeting KDM4B is thus an alternative therapeutic strategy for advanced prostate cancers driven by c-Myc and AR.
Collapse
Affiliation(s)
- Meng-Jen Wu
- Institute of Molecular and Cellular Biology and Department of Life Science, National Tsing-Hua University, Hsinchu 30013, Taiwan
| | - Chih-Jung Chen
- Department of Pathology and Laboratory Medicine, Taichung Veterans General Hospital, Taichung 40705, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, 40201, Taiwan
| | - Ting-Yu Lin
- Institute of Molecular and Cellular Biology and Department of Life Science, National Tsing-Hua University, Hsinchu 30013, Taiwan
| | - Ying-Yuan Liu
- Institute of Molecular and Cellular Biology and Department of Life Science, National Tsing-Hua University, Hsinchu 30013, Taiwan
| | - Lin-Lu Tseng
- Institute of Molecular and Cellular Biology and Department of Life Science, National Tsing-Hua University, Hsinchu 30013, Taiwan
| | - Mei-Ling Cheng
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Chih-Pin Chuu
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Huai-Kuang Tsai
- Institute of Information Science, Academia Sinica, Taipei, 11529, Taiwan
| | - Wen-Ling Kuo
- Division of Breast Surgery, General Surgery, Department of Surgery, Chang Gung Memorial Hospital Linko Medical Center, Taoyuan 333, Taiwan
| | - Hsing-Jien Kung
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei 110, Taiwan
- Department of Biochemistry and Molecular Medicine, University of California Davis School of Medicine, University of California Davis Cancer Centre, Sacramento, CA 95817, USA
| | - Wen-Ching Wang
- Institute of Molecular and Cellular Biology and Department of Life Science, National Tsing-Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
217
|
Bruno S, Mancini M, De Santis S, Monaldi C, Cavo M, Soverini S. The Role of Hypoxic Bone Marrow Microenvironment in Acute Myeloid Leukemia and Future Therapeutic Opportunities. Int J Mol Sci 2021; 22:ijms22136857. [PMID: 34202238 PMCID: PMC8269413 DOI: 10.3390/ijms22136857] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 12/28/2022] Open
Abstract
Acute myeloid leukemia (AML) is a hematologic malignancy caused by a wide range of alterations responsible for a high grade of heterogeneity among patients. Several studies have demonstrated that the hypoxic bone marrow microenvironment (BMM) plays a crucial role in AML pathogenesis and therapy response. This review article summarizes the current literature regarding the effects of the dynamic crosstalk between leukemic stem cells (LSCs) and hypoxic BMM. The interaction between LSCs and hypoxic BMM regulates fundamental cell fate decisions, including survival, self-renewal, and proliferation capacity as a consequence of genetic, transcriptional, and metabolic adaptation of LSCs mediated by hypoxia-inducible factors (HIFs). HIF-1α and some of their targets have been associated with poor prognosis in AML. It has been demonstrated that the hypoxic BMM creates a protective niche that mediates resistance to therapy. Therefore, we also highlight how hypoxia hallmarks might be targeted in the future to hit the leukemic population to improve AML patient outcomes.
Collapse
MESH Headings
- Animals
- Bone Marrow/metabolism
- Bone Marrow/pathology
- Cell Line, Tumor
- Cellular Reprogramming
- Disease Management
- Disease Susceptibility
- Energy Metabolism
- Epigenesis, Genetic
- Gene Expression Regulation, Leukemic
- Humans
- Hypoxia/metabolism
- Hypoxia-Inducible Factor 1/metabolism
- Leukemia, Myeloid, Acute/etiology
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/therapy
- Molecular Targeted Therapy
- Neoplastic Stem Cells/metabolism
- Signal Transduction
- Tumor Microenvironment
Collapse
Affiliation(s)
- Samantha Bruno
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40138 Bologna, Italy; (S.B.); (S.D.S.); (C.M.); (M.C.)
| | - Manuela Mancini
- Istituto di Ematologia “Seràgnoli”, IRCCS Azienda Ospedaliero, Universitaria di Bologna, 40138 Bologna, Italy;
| | - Sara De Santis
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40138 Bologna, Italy; (S.B.); (S.D.S.); (C.M.); (M.C.)
| | - Cecilia Monaldi
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40138 Bologna, Italy; (S.B.); (S.D.S.); (C.M.); (M.C.)
| | - Michele Cavo
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40138 Bologna, Italy; (S.B.); (S.D.S.); (C.M.); (M.C.)
- Istituto di Ematologia “Seràgnoli”, IRCCS Azienda Ospedaliero, Universitaria di Bologna, 40138 Bologna, Italy;
| | - Simona Soverini
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40138 Bologna, Italy; (S.B.); (S.D.S.); (C.M.); (M.C.)
- Correspondence:
| |
Collapse
|
218
|
Chen PM, Wilson PC, Shyer JA, Veselits M, Steach HR, Cui C, Moeckel G, Clark MR, Craft J. Kidney tissue hypoxia dictates T cell-mediated injury in murine lupus nephritis. Sci Transl Med 2021; 12:12/538/eaay1620. [PMID: 32269165 DOI: 10.1126/scitranslmed.aay1620] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 11/06/2019] [Accepted: 02/28/2020] [Indexed: 12/12/2022]
Abstract
The kidney is a frequent target of autoimmune injury, including in systemic lupus erythematosus; however, how immune cells adapt to kidney's unique environment and contribute to tissue damage is unknown. We found that renal tissue, which normally has low oxygen tension, becomes more hypoxic in lupus nephritis. In the injured mouse tissue, renal-infiltrating CD4+ and CD8+ T cells express hypoxia-inducible factor-1 (HIF-1), which alters their cellular metabolism and prevents their apoptosis in hypoxia. HIF-1-dependent gene-regulated pathways were also up-regulated in renal-infiltrating T cells in human lupus nephritis. Perturbation of these environmental adaptations by selective HIF-1 blockade inhibited infiltrating T cells and reversed tissue hypoxia and injury in murine models of lupus. The results suggest that targeting HIF-1 might be effective for treating renal injury in autoimmune diseases.
Collapse
Affiliation(s)
- Ping-Min Chen
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Parker C Wilson
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Justin A Shyer
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Margaret Veselits
- Section of Rheumatology and Gwen Knapp Center for Lupus and Immunology Research, Departments of Medicine and Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Holly R Steach
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Can Cui
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Gilbert Moeckel
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Marcus R Clark
- Section of Rheumatology and Gwen Knapp Center for Lupus and Immunology Research, Departments of Medicine and Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Joe Craft
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA. .,Department of Internal Medicine (Rheumatology, Allergy and Immunology), Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
219
|
Autophagy a Close Relative of AML Biology. BIOLOGY 2021; 10:biology10060552. [PMID: 34207482 PMCID: PMC8235674 DOI: 10.3390/biology10060552] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/10/2021] [Accepted: 06/18/2021] [Indexed: 12/12/2022]
Abstract
Simple Summary Acute myeloid leukemia (AML) is the most common acute leukemia in adults. Despite a high rate of complete remission following conventional chemotherapy, the prognosis remains poor due to frequent relapses caused by relapse-initiating leukemic cells (RICs), which are resistant to chemotherapies. While the development of new targeted therapies holds great promise (e.g., molecules targeting IDH1/2, FLT3, BCL2), relapses still occur. Therefore, a paramount issue in the elimination of RICs is to decipher the AML resistance mechanisms. Thus, it has been recently shown that AML cells exhibit metabolic changes in response to chemotherapy or targeted therapies. Autophagy is a major regulator of cell metabolism, involved in maintaining cancer state, metastasis, and resistance to anticancer therapy. However, whether autophagy acts as a tumor suppressor or promoter in AML is still a matter of debate. Therefore, depending on molecular AML subtypes or treatments used, a better understanding of the role of autophagy is needed to determine whether its modulation could result in a clinical benefit. Abstract Autophagy, which literally means “eat yourself”, is more than just a lysosomal degradation pathway. It is a well-known regulator of cellular metabolism and a mechanism implicated in tumor initiation/progression and therapeutic resistance in many cancers. However, whether autophagy acts as a tumor suppressor or promoter is still a matter of debate. In acute myeloid leukemia (AML), it is now proven that autophagy supports cell proliferation in vitro and leukemic progression in vivo. Mitophagy, the specific degradation of mitochondria through autophagy, was recently shown to be required for leukemic stem cell functions and survival, highlighting the prominent role of this selective autophagy in leukemia initiation and progression. Moreover, autophagy in AML sustains fatty acid oxidation through lipophagy to support mitochondrial oxidative phosphorylation (OxPHOS), a hallmark of chemotherapy-resistant cells. Nevertheless, in the context of therapy, in AML, as well as in other cancers, autophagy could be either cytoprotective or cytotoxic, depending on the drugs used. This review summarizes the recent findings that mechanistically show how autophagy favors leukemic transformation of normal hematopoietic stem cells, as well as AML progression and also recapitulates its ambivalent role in resistance to chemotherapies and targeted therapies.
Collapse
|
220
|
Bispo DSC, Jesus CSH, Marques IMC, Romek KM, Oliveira MB, Mano JF, Gil AM. Metabolomic Applications in Stem Cell Research: a Review. Stem Cell Rev Rep 2021; 17:2003-2024. [PMID: 34131883 DOI: 10.1007/s12015-021-10193-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2021] [Indexed: 12/17/2022]
Abstract
This review describes the use of metabolomics to study stem cell (SC) characteristics and function, excluding SCs in cancer research, suited to a fully dedicated text. The interest in employing metabolomics in SC research has consistently grown and emphasis is, here, given to developments reported in the past five years. This text informs on the existing methodologies and their complementarity regarding the information provided, comprising untargeted/targeted approaches, which couple mass spectrometry or nuclear magnetic resonance spectroscopy with multivariate analysis (and, in some cases, pathway analysis and integration with other omics), and more specific analytical approaches, namely isotope tracing to highlight particular metabolic pathways, or in tandem microscopic strategies to pinpoint characteristics within a single cell. The bulk of this review covers the existing applications in various aspects of mesenchymal SC behavior, followed by pluripotent and neural SCs, with a few reports addressing other SC types. Some of the central ideas investigated comprise the metabolic/biological impacts of different tissue/donor sources and differentiation conditions, including the importance of considering 3D culture environments, mechanical cues and/or media enrichment to guide differentiation into specific lineages. Metabolomic analysis has considered cell endometabolomes and exometabolomes (fingerprinting and footprinting, respectively), having measured both lipid species and polar metabolites involved in a variety of metabolic pathways. This review clearly demonstrates the current enticing promise of metabolomics in significantly contributing towards a deeper knowledge on SC behavior, and the discovery of new biomarkers of SC function with potential translation to in vivo clinical practice.
Collapse
Affiliation(s)
- Daniela S C Bispo
- Department of Chemistry, CICECO - Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Campus Universitario de Santiago, 3810-193, Aveiro, Portugal
| | - Catarina S H Jesus
- Department of Chemistry, CICECO - Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Campus Universitario de Santiago, 3810-193, Aveiro, Portugal
| | - Inês M C Marques
- Department of Chemistry, CICECO - Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Campus Universitario de Santiago, 3810-193, Aveiro, Portugal
| | - Katarzyna M Romek
- Department of Chemistry, CICECO - Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Campus Universitario de Santiago, 3810-193, Aveiro, Portugal
| | - Mariana B Oliveira
- Department of Chemistry, CICECO - Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Campus Universitario de Santiago, 3810-193, Aveiro, Portugal
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Campus Universitario de Santiago, 3810-193, Aveiro, Portugal
| | - Ana M Gil
- Department of Chemistry, CICECO - Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Campus Universitario de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
221
|
Dodson M, Anandhan A, Zhang DD, Madhavan L. An NRF2 Perspective on Stem Cells and Ageing. FRONTIERS IN AGING 2021; 2:690686. [PMID: 36213179 PMCID: PMC9536878 DOI: 10.3389/fragi.2021.690686] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 06/03/2021] [Indexed: 04/24/2023]
Abstract
Redox and metabolic mechanisms lie at the heart of stem cell survival and regenerative activity. NRF2 is a major transcriptional controller of cellular redox and metabolic homeostasis, which has also been implicated in ageing and lifespan regulation. However, NRF2's role in stem cells and their functioning with age is only just emerging. Here, focusing mainly on neural stem cells, which are core to adult brain plasticity and function, we review recent findings that identify NRF2 as a fundamental player in stem cell biology and ageing. We also discuss NRF2-based molecular programs that may govern stem cell state and function with age, and implications of this for age-related pathologies.
Collapse
Affiliation(s)
- Matthew Dodson
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, United States
| | - Annadurai Anandhan
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, United States
- Department of Neurology, University of Arizona, Tucson, AZ, United States
| | - Donna D. Zhang
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, United States
| | - Lalitha Madhavan
- Department of Neurology, University of Arizona, Tucson, AZ, United States
- Evelyn F. McKnight Brain Institute and Bio5 Institute, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
222
|
Metabolic alterations mediated by STAT3 promotes drug persistence in CML. Leukemia 2021; 35:3371-3382. [PMID: 34120146 PMCID: PMC8632690 DOI: 10.1038/s41375-021-01315-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 05/16/2021] [Accepted: 05/28/2021] [Indexed: 01/07/2023]
Abstract
Leukemic stem cells (LSCs) can acquire non-mutational resistance following drug treatment leading to therapeutic failure and relapse. However, oncogene-independent mechanisms of drug persistence in LSCs are incompletely understood, which is the primary focus of this study. We integrated proteomics, transcriptomics, and metabolomics to determine the contribution of STAT3 in promoting metabolic changes in tyrosine kinase inhibitor (TKI) persistent chronic myeloid leukemia (CML) cells. Proteomic and transcriptional differences in TKI persistent CML cells revealed BCR-ABL-independent STAT3 activation in these cells. While knockout of STAT3 inhibited the CML cells from developing drug-persistence, inhibition of STAT3 using a small molecule inhibitor sensitized the persistent CML cells to TKI treatment. Interestingly, given the role of phosphorylated STAT3 as a transcription factor, it localized uniquely to genes regulating metabolic pathways in the TKI-persistent CML stem and progenitor cells. Subsequently, we observed that STAT3 dysregulated mitochondrial metabolism forcing the TKI-persistent CML cells to depend on glycolysis, unlike TKI-sensitive CML cells, which are more reliant on oxidative phosphorylation. Finally, targeting pyruvate kinase M2, a rate-limiting glycolytic enzyme, specifically eradicated the TKI-persistent CML cells. By exploring the role of STAT3 in altering metabolism, we provide critical insight into identifying potential therapeutic targets for eliminating TKI-persistent LSCs.
Collapse
|
223
|
Samimi A, Khodayar MJ, Alidadi H, Khodadi E. The Dual Role of ROS in Hematological Malignancies: Stem Cell Protection and Cancer Cell Metastasis. Stem Cell Rev Rep 2021; 16:262-275. [PMID: 31912368 DOI: 10.1007/s12015-019-09949-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND OBJECTIVE Reactive oxygen species (ROS) play crucial role in hematopoiesis, regulation of differentiation, self-renewal, and the balance between quiescence and proliferation of hematopoietic stem cells (HSCs). The HSCs are a small population of undifferentiated cells that reside in the bone marrow (BM) and can undergo self-renewal by giving rise to mature cells. METHODS Relevant literature was identified through a PubMed search (2000-2019) of English-language papers using the following terms: reactive oxygen species, hematopoietic stem cell, leukemic stem cell, leukemia and chemotherapy. RESULTS HSCs are very sensitive to high levels of ROS and increased production of ROS have been attributed to HSC aging. HSC aging induced by both cell intrinsic and extrinsic factors is linked to impaired HSC self-renewal and regeneration. In addition, the elevated ROS levels might even trigger differentiation of Leukemic stem cells (LSCs) and ROS may be involved in the initiation and progression of hematological malignancies, such as leukemia. CONCLUSION Targeting genes involved in ROS in LSCs and HSCs are increasingly being used as a critical target for therapeutic interventions. Appropriate concentration of ROS may be an optimal therapeutic target for treatment of leukemia during chemotherapy, but still more studies are required to better understanding of the of ROS role in blood disorders.
Collapse
Affiliation(s)
- Azin Samimi
- Department of Toxicology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Legal Medicine Organization, Legal Medicine Research Center, Ahvaz, Iran
| | - Mohammad Javad Khodayar
- Department of Toxicology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Toxicology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hadis Alidadi
- Department of Toxicology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Toxicology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Elahe Khodadi
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
224
|
Abstract
The expanding field of stem cell metabolism has been supported by technical advances in metabolite profiling and novel functional analyses. While use of these methodologies has been fruitful, many challenges are posed by the intricacies of culturing stem cells in vitro, along with the distinctive scarcity of adult tissue stem cells and the complexities of their niches in vivo. This review provides an examination of the methodologies used to characterize stem cell metabolism, highlighting their utility while placing a sharper focus on their limitations and hurdles the field needs to overcome for the optimal study of stem cell metabolic networks.
Collapse
|
225
|
Chakrabarty RP, Chandel NS. Mitochondria as Signaling Organelles Control Mammalian Stem Cell Fate. Cell Stem Cell 2021; 28:394-408. [PMID: 33667360 DOI: 10.1016/j.stem.2021.02.011] [Citation(s) in RCA: 224] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recent evidence supports the notion that mitochondrial metabolism is necessary for the determination of stem cell fate. Historically, mitochondrial metabolism is linked to the production of ATP and tricarboxylic acid (TCA) cycle metabolites to support stem cell survival and growth, respectively. However, it is now clear that beyond these canonical roles, mitochondria as signaling organelles dictate stem cell fate and function. In this review, we focus on key conceptual ideas on how mitochondria control mammalian stem cell fate and function through reactive oxygen species (ROS) generation, TCA cycle metabolite production, NAD+/NADH ratio regulation, pyruvate metabolism, and mitochondrial dynamics.
Collapse
Affiliation(s)
- Ram Prosad Chakrabarty
- Department of Medicine, Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Navdeep S Chandel
- Department of Medicine, Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
226
|
Redox Control in Acute Lymphoblastic Leukemia: From Physiology to Pathology and Therapeutic Opportunities. Cells 2021; 10:cells10051218. [PMID: 34067520 PMCID: PMC8155968 DOI: 10.3390/cells10051218] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/04/2021] [Accepted: 05/13/2021] [Indexed: 02/07/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) is a hematological malignancy originating from B- or T-lymphoid progenitor cells. Recent studies have shown that redox dysregulation caused by overproduction of reactive oxygen species (ROS) has an important role in the development and progression of leukemia. The application of pro-oxidant therapy, which targets redox dysregulation, has achieved satisfactory results in alleviating the conditions of and improving the survival rate for patients with ALL. However, drug resistance and side effects are two major challenges that must be addressed in pro-oxidant therapy. Oxidative stress can activate a variety of antioxidant mechanisms to help leukemia cells escape the damage caused by pro-oxidant drugs and develop drug resistance. Hematopoietic stem cells (HSCs) are extremely sensitive to oxidative stress due to their low levels of differentiation, and the use of pro-oxidant drugs inevitably causes damage to HSCs and may even cause severe bone marrow suppression. In this article, we reviewed research progress regarding the generation and regulation of ROS in normal HSCs and ALL cells as well as the impact of ROS on the biological behavior and fate of cells. An in-depth understanding of the regulatory mechanisms of redox homeostasis in normal and malignant HSCs is conducive to the formulation of rational targeted treatment plans to effectively reduce oxidative damage to normal HSCs while eradicating ALL cells.
Collapse
|
227
|
Sun X, Cao B, Naval-Sanchez M, Pham T, Sun YBY, Williams B, Heazlewood SY, Deshpande N, Li J, Kraus F, Rae J, Nguyen Q, Yari H, Schröder J, Heazlewood CK, Fulton M, Hatwell-Humble J, Das Gupta K, Kapetanovic R, Chen X, Sweet MJ, Parton RG, Ryan MT, Polo JM, Nefzger CM, Nilsson SK. Nicotinamide riboside attenuates age-associated metabolic and functional changes in hematopoietic stem cells. Nat Commun 2021; 12:2665. [PMID: 33976125 PMCID: PMC8113506 DOI: 10.1038/s41467-021-22863-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 03/29/2021] [Indexed: 12/13/2022] Open
Abstract
With age, hematopoietic stem cells (HSC) undergo changes in function, including reduced regenerative potential and loss of quiescence, which is accompanied by a significant expansion of the stem cell pool that can lead to haematological disorders. Elevated metabolic activity has been implicated in driving the HSC ageing phenotype. Here we show that nicotinamide riboside (NR), a form of vitamin B3, restores youthful metabolic capacity by modifying mitochondrial function in multiple ways including reduced expression of nuclear encoded metabolic pathway genes, damping of mitochondrial stress and a decrease in mitochondrial mass and network-size. Metabolic restoration is dependent on continuous NR supplementation and accompanied by a shift of the aged transcriptome towards the young HSC state, more youthful bone marrow cellular composition and an improved regenerative capacity in a transplant setting. Consequently, NR administration could support healthy ageing by re-establishing a more youthful hematopoietic system.
Collapse
Affiliation(s)
- Xuan Sun
- Biomedical Manufacturing Commonwealth Scientific and Industrial Research Organisation (CSIRO), Melbourne, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Benjamin Cao
- Biomedical Manufacturing Commonwealth Scientific and Industrial Research Organisation (CSIRO), Melbourne, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Marina Naval-Sanchez
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Tony Pham
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Yu Bo Yang Sun
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
- Monash Biomedicine Discovery Institute, Melbourne, VIC, Australia
- Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, Australia
| | - Brenda Williams
- Biomedical Manufacturing Commonwealth Scientific and Industrial Research Organisation (CSIRO), Melbourne, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Shen Y Heazlewood
- Biomedical Manufacturing Commonwealth Scientific and Industrial Research Organisation (CSIRO), Melbourne, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Nikita Deshpande
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Jinhua Li
- Monash Biomedicine Discovery Institute, Melbourne, VIC, Australia
- Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, Australia
| | - Felix Kraus
- Monash Biomedicine Discovery Institute, Melbourne, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - James Rae
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Quan Nguyen
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Hamed Yari
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Jan Schröder
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
- Monash Biomedicine Discovery Institute, Melbourne, VIC, Australia
- Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, Australia
| | - Chad K Heazlewood
- Biomedical Manufacturing Commonwealth Scientific and Industrial Research Organisation (CSIRO), Melbourne, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Madeline Fulton
- Biomedical Manufacturing Commonwealth Scientific and Industrial Research Organisation (CSIRO), Melbourne, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Jessica Hatwell-Humble
- Biomedical Manufacturing Commonwealth Scientific and Industrial Research Organisation (CSIRO), Melbourne, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Kaustav Das Gupta
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
- IMB Centre for Inflammation and Disease Research, The University of Queensland, St. Lucia, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, QLD, Australia
| | - Ronan Kapetanovic
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
- IMB Centre for Inflammation and Disease Research, The University of Queensland, St. Lucia, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, QLD, Australia
| | - Xiaoli Chen
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Matthew J Sweet
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
- IMB Centre for Inflammation and Disease Research, The University of Queensland, St. Lucia, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, QLD, Australia
| | - Robert G Parton
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
- Centre for Microscopy and Microanalysis, The University of Queensland, St. Lucia, QLD, Australia
| | - Michael T Ryan
- Monash Biomedicine Discovery Institute, Melbourne, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - Jose M Polo
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
- Monash Biomedicine Discovery Institute, Melbourne, VIC, Australia
- Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, Australia
| | - Christian M Nefzger
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia.
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia.
- Monash Biomedicine Discovery Institute, Melbourne, VIC, Australia.
- Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, Australia.
| | - Susan K Nilsson
- Biomedical Manufacturing Commonwealth Scientific and Industrial Research Organisation (CSIRO), Melbourne, VIC, Australia.
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
228
|
Sendker S, Waack K, Reinhardt D. Far from Health: The Bone Marrow Microenvironment in AML, A Leukemia Supportive Shelter. CHILDREN (BASEL, SWITZERLAND) 2021; 8:371. [PMID: 34066861 PMCID: PMC8150304 DOI: 10.3390/children8050371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 12/28/2022]
Abstract
Acute myeloid leukemia (AML) is the second most common leukemia among children. Although significant progress in AML therapy has been achieved, treatment failure is still associated with poor prognosis, emphasizing the need for novel, innovative therapeutic approaches. To address this major obstacle, extensive knowledge about leukemogenesis and the complex interplay between leukemic cells and their microenvironment is required. The tremendous role of this bone marrow microenvironment in providing a supportive and protective shelter for leukemic cells, leading to disease development, progression, and relapse, has been emphasized by recent research. It has been revealed that the interplay between leukemic cells and surrounding cellular as well as non-cellular components is critical in the process of leukemogenesis. In this review, we provide a comprehensive overview of recently gained knowledge about the importance of the microenvironment in AML whilst focusing on promising future therapeutic targets. In this context, we describe ongoing clinical trials and future challenges for the development of targeted therapies for AML.
Collapse
Affiliation(s)
| | | | - Dirk Reinhardt
- Department of Pediatric Hematology and Oncology, Clinic of Pediatrics III, Essen University Hospital, 45147 Essen, Germany; (S.S.); (K.W.)
| |
Collapse
|
229
|
Tiwari SK, Mandal S. Mitochondrial Control of Stem Cell State and Fate: Lessons From Drosophila. Front Cell Dev Biol 2021; 9:606639. [PMID: 34012959 PMCID: PMC8128071 DOI: 10.3389/fcell.2021.606639] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 04/06/2021] [Indexed: 01/09/2023] Open
Abstract
Over the years, Drosophila has served as a wonderful genetically tractable model system to unravel various facets of tissue-resident stem cells in their microenvironment. Studies in different stem and progenitor cell types of Drosophila have led to the discovery of cell-intrinsic and extrinsic factors crucial for stem cell state and fate. Though initially touted as the ATP generating machines for carrying various cellular processes, it is now increasingly becoming clear that mitochondrial processes alone can override the cellular program of stem cells. The last few years have witnessed a surge in our understanding of mitochondria's contribution to governing different stem cell properties in their subtissular niches in Drosophila. Through this review, we intend to sum up and highlight the outcome of these in vivo studies that implicate mitochondria as a central regulator of stem cell fate decisions; to find the commonalities and uniqueness associated with these regulatory mechanisms.
Collapse
Affiliation(s)
- Satish Kumar Tiwari
- Developmental Genetics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, India
| | - Sudip Mandal
- Molecular Cell and Developmental Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, India
| |
Collapse
|
230
|
Ludikhuize MC, Rodríguez Colman MJ. Metabolic Regulation of Stem Cells and Differentiation: A Forkhead Box O Transcription Factor Perspective. Antioxid Redox Signal 2021; 34:1004-1024. [PMID: 32847377 DOI: 10.1089/ars.2020.8126] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Significance: Stem cell activation and differentiation occur along changes in cellular metabolism. Metabolic transitions translate into changes in redox balance, cell signaling, and epigenetics, thereby regulating these processes. Metabolic transitions are key regulators of cell fate and exemplify the moonlighting nature of many metabolic enzymes and their associated metabolites. Recent Advances: Forkhead box O transcription factors (FOXOs) are bona fide regulators of cellular homeostasis. FOXOs are multitasking proteins able to regulate cell cycle, cellular metabolism, and redox state. Recent and ongoing research poses FOXOs as key factors in stem cell maintenance and differentiation in several tissues. Critical Issues: The multitasking nature of FOXOs and their tissue-specific expression patterns hinders to disclose a possible conserved mechanism of regulation of stem cell maintenance and differentiation. Moreover, cellular metabolism, cell signaling, and epigenetics establish complex regulatory interactions, which challenge the establishment of the causal/temporal nature of metabolic changes and stem cell activation and differentiation. Future Directions: The development of single-cell technologies and in vitro models able to reproduce the dynamics of stem cell differentiation are actively contributing to define the role of metabolism in this process. This knowledge is key to understanding and designing therapies for those pathologies where the balance between proliferation and differentiation is lost. Importantly, metabolic interventions could be applied to optimize stem cell cultures meant for therapeutical applications, such as transplantations, to treat autoimmune and degenerative disorders. Antioxid. Redox Signal. 34, 1004-1024.
Collapse
Affiliation(s)
- Marlies Corine Ludikhuize
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - María José Rodríguez Colman
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
231
|
Mochizuki-Kashio M, Shiozaki H, Suda T, Nakamura-Ishizu A. Mitochondria Turnover and Lysosomal Function in Hematopoietic Stem Cell Metabolism. Int J Mol Sci 2021; 22:4627. [PMID: 33924874 PMCID: PMC8124492 DOI: 10.3390/ijms22094627] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 01/17/2023] Open
Abstract
Hematopoietic stem cells (HSCs) reside in a hypoxic microenvironment that enables glycolysis-fueled metabolism and reduces oxidative stress. Nonetheless, metabolic regulation in organelles such as the mitochondria and lysosomes as well as autophagic processes have been implicated as essential for the determination of HSC cell fate. This review encompasses the current understanding of anaerobic metabolism in HSCs as well as the emerging roles of mitochondrial metabolism and lysosomal regulation for hematopoietic homeostasis.
Collapse
Affiliation(s)
- Makiko Mochizuki-Kashio
- Microanatomy and Developmental Biology, Tokyo Women’s Medical University, 8-1 Kawadacho, Shinjuku-ku, Tokyo 162-8666, Japan;
| | - Hiroko Shiozaki
- Department of Hematology, Tokyo Women’s Medical University, 8-1 Kawadacho, Shinjuku-ku, Tokyo 162-8666, Japan;
| | - Toshio Suda
- Cancer Science Institute, National University of Singapore, 14 Medical Drive, MD6, Singapore 117599, Singapore;
- International Research Center for Medical Sciences, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto City 860-0811, Japan
| | - Ayako Nakamura-Ishizu
- Microanatomy and Developmental Biology, Tokyo Women’s Medical University, 8-1 Kawadacho, Shinjuku-ku, Tokyo 162-8666, Japan;
| |
Collapse
|
232
|
Mamouni K, Kim J, Lokeshwar BL, Kallifatidis G. ARRB1 Regulates Metabolic Reprogramming to Promote Glycolysis in Stem Cell-Like Bladder Cancer Cells. Cancers (Basel) 2021; 13:cancers13081809. [PMID: 33920080 PMCID: PMC8069028 DOI: 10.3390/cancers13081809] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/29/2021] [Accepted: 04/08/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Bladder cancer (BC) ranks second in incidence and mortality among all genitourinary cancers. The high recurrence of BC is attributed to the presence of cancer stem cells (CSCs), which are the driving force behind tumor growth. Increasing evidence suggests that stem cells exhibit a distinct metabolic program compared to differentiated cells. Understanding their metabolic preference for maintaining stem cell properties is essential for developing novel therapeutics targeting CSCs. The current work shows for the first time that the scaffold protein β-arrestin1 (ARRB1) functions as a metabolic switch regulating the metabolic reprogramming of CSC-like cells towards glycolysis by regulating the mitochondrial pyruvate carrier MPC1 and glucose transporter GLUT1. The balance between glycolysis and oxidative phosphorylation plays a crucial role in regulating the fate of stem cells. Our findings will potentially open new therapeutic avenues for targeting bladder cancer cells and/or the CSC-like cells within aggressive bladder tumors. Abstract β-arrestin 1 (ARRB1) is a scaffold protein that regulates signaling downstream of G protein-coupled receptors (GPCRs). In the current work, we investigated the role of ARRB1 in regulating the metabolic preference of cancer stem cell (CSC)-like cells in bladder cancer (BC). We show that ARRB1 is crucial for spheroid formation and tumorigenic potential. Furthermore, we measured mitochondrial respiration, glucose uptake, glycolytic rate, mitochondrial/glycolytic ATP production and fuel oxidation in previously established ARRB1 knock out (KO) cells and corresponding controls. Our results demonstrate that depletion of ARRB1 decreased glycolytic rate and induced metabolic reprogramming towards oxidative phosphorylation. Mechanistically, the depletion of ARRB1 dramatically increased the mitochondrial pyruvate carrier MPC1 protein levels and reduced the glucose transporter GLUT1 protein levels along with glucose uptake. Overexpression of ARRB1 in ARRB1 KO cells reversed the phenotype and resulted in the upregulation of glycolysis. In conclusion, we show that ARRB1 regulates the metabolic preference of BC CSC-like cells and functions as a molecular switch that promotes reprogramming towards glycolysis by negatively regulating MPC1 and positively regulating GLUT1/ glucose uptake. These observations open new therapeutic avenues for targeting the metabolic preferences of cancer stem cell (CSC)-like BC cells.
Collapse
Affiliation(s)
- Kenza Mamouni
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA; (K.M.); (J.K.)
- Research Service, Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Jeongheun Kim
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA; (K.M.); (J.K.)
| | - Bal L. Lokeshwar
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA; (K.M.); (J.K.)
- Research Service, Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
- Correspondence: (B.L.L.); (G.K.); Tel.: +1-706-723-0033 (B.L.L.); +1-706-446 4976 (G.K.); Fax: +1-706-721-0101 (B.L.L. & G.K.)
| | - Georgios Kallifatidis
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA; (K.M.); (J.K.)
- Research Service, Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
- Department of Biological Sciences, Augusta University, Augusta, GA 30912, USA
- Correspondence: (B.L.L.); (G.K.); Tel.: +1-706-723-0033 (B.L.L.); +1-706-446 4976 (G.K.); Fax: +1-706-721-0101 (B.L.L. & G.K.)
| |
Collapse
|
233
|
Bone marrow regeneration requires mitochondrial transfer from donor Cx43-expressing hematopoietic progenitors to stroma. Blood 2021; 136:2607-2619. [PMID: 32929449 DOI: 10.1182/blood.2020005399] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 08/24/2020] [Indexed: 02/06/2023] Open
Abstract
The fate of hematopoietic stem and progenitor cells (HSPC) is tightly regulated by their bone marrow (BM) microenvironment (ME). BM transplantation (BMT) frequently requires irradiation preconditioning to ablate endogenous hematopoietic cells. Whether the stromal ME is damaged and how it recovers after irradiation is unknown. We report that BM mesenchymal stromal cells (MSC) undergo massive damage to their mitochondrial function after irradiation. Donor healthy HSPC transfer functional mitochondria to the stromal ME, thus improving mitochondria activity in recipient MSC. Mitochondrial transfer to MSC is cell-contact dependent and mediated by HSPC connexin-43 (Cx43). Hematopoietic Cx43-deficient chimeric mice show reduced mitochondria transfer, which was rescued upon re-expression of Cx43 in HSPC or culture with isolated mitochondria from Cx43 deficient HSPCs. Increased intracellular adenosine triphosphate levels activate the purinergic receptor P2RX7 and lead to reduced activity of adenosine 5'-monophosphate-activated protein kinase (AMPK) in HSPC, dramatically increasing mitochondria transfer to BM MSC. Host stromal ME recovery and donor HSPC engraftment were augmented after mitochondria transfer. Deficiency of Cx43 delayed mesenchymal and osteogenic regeneration while in vivo AMPK inhibition increased stromal recovery. As a consequence, the hematopoietic compartment reconstitution was improved because of the recovery of the supportive stromal ME. Our findings demonstrate that healthy donor HSPC not only reconstitute the hematopoietic system after transplantation, but also support and induce the metabolic recovery of their irradiated, damaged ME via mitochondria transfer. Understanding the mechanisms regulating stromal recovery after myeloablative stress are of high clinical interest to optimize BMT procedures and underscore the importance of accessory, non-HSC to accelerate hematopoietic engraftment.
Collapse
|
234
|
Guo W, Spiller KV, Tang J, Karner CM, Hilton MJ, Wu C. Hypoxia depletes contaminating CD45 + hematopoietic cells from murine bone marrow stromal cell (BMSC) cultures: Methods for BMSC culture purification. Stem Cell Res 2021; 53:102317. [PMID: 33848794 DOI: 10.1016/j.scr.2021.102317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 03/01/2021] [Accepted: 03/25/2021] [Indexed: 12/28/2022] Open
Abstract
Culture expanded bone marrow stromal cells (BMSCs) are easily isolated, can be grown rapidly en masse, and contain both skeletal stem cells (SSCs) and multipotent mesenchymal progenitors (MMPs). Despite this functional heterogeneity, BMSCs continue to be utilized for many applications due to the lack of definitive and universally accepted markers to prospectively identify and purify SSCs. Isolation is widely based on adherence to tissue culture plastic; however, high hematopoietic contamination is a significant impediment in murine models. Remarkably, when cultured at a physiological oxygen tension of 1% O2, a 10-fold reduction in CD45+ hematopoietic cells associated with a concomitant increase in PDGFRα+ stromal cells occur. This is due, in part, to a differential response of the two populations to hypoxia. In standard tissue culture conditions of 21% O2, CD45+ cells showed increased proliferation coupled with no changes in cell death compared to their counterparts grown at 1% O2. In contrast, PDGFR α+ stromal cells responded to hypoxia by increasing proliferation and exhibiting a 10-fold decrease in cell death. In summary, we describe a simple and reliable method exploiting the divergent biological response of hematopoietic and stromal cells to hypoxia to significantly increase the PDGFR α+ stromal cell population in murine BMSC cultures.
Collapse
Affiliation(s)
- Wendi Guo
- Department of Orthopaedic Surgery, Duke University School of Medicine, USA; Department of Pharmacology & Cancer Biology, Duke University School of Medicine, USA
| | | | - Jackie Tang
- Department of Orthopaedic Surgery, Duke University School of Medicine, USA
| | - Courtney M Karner
- Department of Orthopaedic Surgery, Duke University School of Medicine, USA; Department of Cell Biology, Duke University School of Medicine, USA
| | - Matthew J Hilton
- Department of Orthopaedic Surgery, Duke University School of Medicine, USA; Department of Cell Biology, Duke University School of Medicine, USA
| | - Colleen Wu
- Department of Orthopaedic Surgery, Duke University School of Medicine, USA; Department of Cell Biology, Duke University School of Medicine, USA; Department of Pharmacology & Cancer Biology, Duke University School of Medicine, USA.
| |
Collapse
|
235
|
van Gastel N, Scadden DT. Young haematopoietic stem cells are picky eaters. Cell Res 2021; 31:377-378. [PMID: 33633351 PMCID: PMC8115117 DOI: 10.1038/s41422-021-00488-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Nick van Gastel
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA, 02138, USA
- de Duve Institute, Brussels, Belgium
| | - David T Scadden
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA, 02138, USA.
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, 02138, USA.
| |
Collapse
|
236
|
Dias IB, Bouma HR, Henning RH. Unraveling the Big Sleep: Molecular Aspects of Stem Cell Dormancy and Hibernation. Front Physiol 2021; 12:624950. [PMID: 33867999 PMCID: PMC8047423 DOI: 10.3389/fphys.2021.624950] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 03/11/2021] [Indexed: 12/14/2022] Open
Abstract
Tissue-resident stem cells may enter a dormant state, also known as quiescence, which allows them to withstand metabolic stress and unfavorable conditions. Similarly, hibernating mammals can also enter a state of dormancy used to evade hostile circumstances, such as food shortage and low ambient temperatures. In hibernation, the dormant state of the individual and its cells is commonly known as torpor, and is characterized by metabolic suppression in individual cells. Given that both conditions represent cell survival strategies, we here compare the molecular aspects of cellular quiescence, particularly of well-studied hematopoietic stem cells, and torpor at the cellular level. Critical processes of dormancy are reviewed, including the suppression of the cell cycle, changes in metabolic characteristics, and cellular mechanisms of dealing with damage. Key factors shared by hematopoietic stem cell quiescence and torpor include a reversible activation of factors inhibiting the cell cycle, a shift in metabolism from glucose to fatty acid oxidation, downregulation of mitochondrial activity, key changes in hypoxia-inducible factor one alpha (HIF-1α), mTOR, reversible protein phosphorylation and autophagy, and increased radiation resistance. This similarity is remarkable in view of the difference in cell populations, as stem cell quiescence regards proliferating cells, while torpor mainly involves terminally differentiated cells. A future perspective is provided how to advance our understanding of the crucial pathways that allow stem cells and hibernating animals to engage in their 'great slumbers.'
Collapse
Affiliation(s)
- Itamar B. Dias
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Hjalmar R. Bouma
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Robert H. Henning
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
237
|
Wan L, Su Z, Li F, Gao P, Zhang X. MiR-122-5p suppresses neuropathic pain development by targeting PDK4. Neurochem Res 2021; 46:957-963. [PMID: 33566299 DOI: 10.1007/s11064-020-03213-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 12/17/2020] [Accepted: 12/22/2020] [Indexed: 12/17/2022]
Abstract
The complex pathogenesis and limited efficacy of available treatment make neuropathic pain difficult for long periods of time. Several findings suggested the regulatory role of microRNA in the development of neuropathic pain. This study aims to investigate the functional role of miR-122-5p in the development of neuropathic pain. Down-regulation of miR-122-5p was observed in spinal cords of rats with neuropathic pain. We also found that overexpressing miR-122-5p by intrathecal injection of miR-122-5p lentivirus in a mouse model of chronic sciatic nerve injury (CCI) prevented neuropathic pain behavior. In HEK-293 T cells, luciferase activity was significantly decreased in the transfection group with mimic-miR-122-5p in wild-type PDK4 reporter, compared with mutant PDK4 reporter. Increased PDK4 expression was also observed during the progression of neuropathic pain. Intrathecal injection of both mimic-miR-122-5p and shPDK4 in CCI mice downregulated PDK4 expression to a lower level when compared with injected with shPDK4. In CCI mice, transfection of shPDK4 suppressed mechanical allodynia and thermal hyperalgesia, while co-transfection of shPDK4 and LV-miR-122-5p resulted in stronger levels of mechanical allodynia and thermal hyperalgesia inhibition. Taken together, the data suggest that miR-122-5p inhibits PDK4 expression, attenuating neuropathic pain. This result suggests the potential role of miR-122-5p acting as a target for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Lanlan Wan
- Department of Otolaryngological, The Affiliated Huai'an NO.1 People's Hospital of Nanjing Medical University, Huai'an Jiangsu, China
| | - Zhen Su
- Department of Anesthesiology, The Affiliated Huai'an NO.1 People's Hospital of Nanjing Medical University, Huai'an Jiangsu, China
| | - Fayin Li
- Department of Anesthesiology, The Affiliated Huai'an NO.1 People's Hospital of Nanjing Medical University, Huai'an Jiangsu, China
| | - Pengfei Gao
- Department of Anesthesiology, The Affiliated Huai'an NO.1 People's Hospital of Nanjing Medical University, Huai'an Jiangsu, China
| | - Xianlong Zhang
- Department of Anesthesiology, The Affiliated Huai'an NO.1 People's Hospital of Nanjing Medical University, Huai'an Jiangsu, China.
| |
Collapse
|
238
|
Gene Regulation and Cellular Metabolism: An Essential Partnership. Trends Genet 2021; 37:389-400. [PMID: 33092903 PMCID: PMC7969386 DOI: 10.1016/j.tig.2020.09.018] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/18/2020] [Accepted: 09/25/2020] [Indexed: 01/09/2023]
Abstract
It is recognized that cell metabolism is tightly connected to other cellular processes such as regulation of gene expression. Metabolic pathways not only provide the precursor molecules necessary for gene expression, but they also provide ATP, the primary fuel driving gene expression. However, metabolic conditions are highly variable since nutrient uptake is not a uniform process. Thus, cells must continually calibrate gene expression to their changing metabolite and energy budgets. This review discusses recent advances in understanding the molecular and biophysical mechanisms that connect metabolism and gene regulation as cells navigate their growth, proliferation, and differentiation. Particular focus is given to these mechanisms in the context of organismal development.
Collapse
|
239
|
Abstract
Hematopoiesis is the process that leads to multiple leukocyte lineage generation within the bone marrow. This process is maintained throughout life thanks to a nonstochastic division of hematopoietic stem cells (HSCs), where during each division, one daughter cell retains pluripotency while the other differentiates into a restricted multipotent progenitor (MPP) that converts into mature, committed circulating cell. This process is tightly regulated at the level of cellular metabolism and the shift from anaerobic glycolysis, typical of quiescent HSC, to oxidative metabolism fosters HSCs proliferation and commitment. Systemic and local factors influencing metabolism alter HSCs balance under pathological conditions, with chronic metabolic and inflammatory diseases driving HSCs commitment toward activated blood immune cell subsets. This is the case of atherosclerosis, where impaired systemic lipid metabolism affects HSCs epigenetics that reflects into increased differentiation toward activated circulating subsets. Aim of this review is to discuss the impact of lipids and lipoproteins on HSCs pathophysiology, with a focus on the molecular mechanisms influencing cellular metabolism. A better understanding of these aspects will shed light on innovative strategies to target atherosclerosis-associated inflammation.
Collapse
|
240
|
Büeler H. Mitochondrial and Autophagic Regulation of Adult Neurogenesis in the Healthy and Diseased Brain. Int J Mol Sci 2021; 22:ijms22073342. [PMID: 33805219 PMCID: PMC8036818 DOI: 10.3390/ijms22073342] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 02/07/2023] Open
Abstract
Adult neurogenesis is a highly regulated process during which new neurons are generated from neural stem cells in two discrete regions of the adult brain: the subventricular zone of the lateral ventricle and the subgranular zone of the dentate gyrus in the hippocampus. Defects of adult hippocampal neurogenesis have been linked to cognitive decline and dysfunction during natural aging and in neurodegenerative diseases, as well as psychological stress-induced mood disorders. Understanding the mechanisms and pathways that regulate adult neurogenesis is crucial to improving preventative measures and therapies for these conditions. Accumulating evidence shows that mitochondria directly regulate various steps and phases of adult neurogenesis. This review summarizes recent findings on how mitochondrial metabolism, dynamics, and reactive oxygen species control several aspects of adult neural stem cell function and their differentiation to newborn neurons. It also discusses the importance of autophagy for adult neurogenesis, and how mitochondrial and autophagic dysfunction may contribute to cognitive defects and stress-induced mood disorders by compromising adult neurogenesis. Finally, I suggest possible ways to target mitochondrial function as a strategy for stem cell-based interventions and treatments for cognitive and mood disorders.
Collapse
Affiliation(s)
- Hansruedi Büeler
- School of Life Sciences and Technology, Harbin Institute of Technology, Harbin 150080, China
| |
Collapse
|
241
|
Gurnari C, Pagliuca S, Visconte V. The Interactome between Metabolism and Gene Mutations in Myeloid Malignancies. Int J Mol Sci 2021; 22:ijms22063135. [PMID: 33808599 PMCID: PMC8003366 DOI: 10.3390/ijms22063135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/10/2021] [Accepted: 03/16/2021] [Indexed: 12/19/2022] Open
Abstract
The study of metabolic deregulation in myeloid malignancies has led to the investigation of metabolic-targeted therapies considering that cells undergoing leukemic transformation have excessive energy demands for growth and proliferation. However, the most difficult challenge in agents targeting metabolism is to determine a window of therapeutic opportunities between normal and neoplastic cells, considering that all or most of the metabolic pathways important for cancer ontogeny may also regulate physiological cell functions. Targeted therapies have used the properties of leukemic cells to produce altered metabolic products when mutated. This is the case of IDH1/2 mutations generating the abnormal conversion of α-ketoglutarate (KG) to 2-hydroxyglutarate, an oncometabolite inhibiting KG-dependent enzymes, such as the TET family of genes (pivotal in characterizing leukemia cells either by mutations, e.g., TET2, or by altered expression, e.g., TET1/2/3). Additional observations derive from the high sensitivity of leukemic cells to oxidative phosphorylation and its amelioration using BCL-2 inhibitors (Venetoclax) or by disrupting the mitochondrial respiration. More recently, nicotinamide metabolism has been described to mediate resistance to Venetoclax in patients with acute myeloid leukemia. Herein, we will provide an overview of the latest research on the link between metabolic pathways interactome and leukemogenesis with a comprehensive analysis of the metabolic consequences of driver genetic lesions and exemplificative druggable pathways.
Collapse
Affiliation(s)
- Carmelo Gurnari
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (C.G.); (S.P.)
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
- Immunology, Molecular Medicine and Applied Biotechnology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Simona Pagliuca
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (C.G.); (S.P.)
| | - Valeria Visconte
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (C.G.); (S.P.)
- Correspondence:
| |
Collapse
|
242
|
Sorimachi Y, Karigane D, Ootomo Y, Kobayashi H, Morikawa T, Otsu K, Kubota Y, Okamoto S, Goda N, Takubo K. p38α plays differential roles in hematopoietic stem cell activity dependent on aging contexts. J Biol Chem 2021; 296:100563. [PMID: 33745970 PMCID: PMC8065231 DOI: 10.1016/j.jbc.2021.100563] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/04/2021] [Accepted: 03/17/2021] [Indexed: 12/12/2022] Open
Abstract
Hematopoietic stem cells (HSCs) and their progeny sustain lifetime hematopoiesis. Aging alters HSC function, number, and composition and increases risk of hematological malignancies, but how these changes occur in HSCs remains unclear. Signaling via p38 mitogen-activated kinase (p38MAPK) has been proposed as a candidate mechanism underlying induction of HSC aging. Here, using genetic models of both chronological and premature aging, we describe a multimodal role for p38α, the major p38MAPK isozyme in hematopoiesis, in HSC aging. We report that p38α regulates differentiation bias and sustains transplantation capacity of HSCs in the early phase of chronological aging. However, p38α decreased HSC transplantation capacity in the late progression phase of chronological aging. Furthermore, codeletion of p38α in mice deficient in ataxia–telangiectasia mutated, a model of premature aging, exacerbated aging-related HSC phenotypes seen in ataxia–telangiectasia mutated single-mutant mice. Overall, these studies provide new insight into multiple functions of p38MAPK, which both promotes and suppresses HSC aging context dependently.
Collapse
Affiliation(s)
- Yuriko Sorimachi
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan; Department of Life Sciences and Medical BioScience, Waseda University School of Advanced Science and Engineering, Tokyo, Japan
| | - Daiki Karigane
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan; Division of Hematology, Department of Medicine, Keio University School of Medicine, Tokyo, Japan.
| | - Yukako Ootomo
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan; Department of Life Sciences and Medical BioScience, Waseda University School of Advanced Science and Engineering, Tokyo, Japan
| | - Hiroshi Kobayashi
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Takayuki Morikawa
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Kinya Otsu
- School of Cardiovascular Medicine and Sciences, King's College London, London, United Kingdom
| | - Yoshiaki Kubota
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
| | - Shinichiro Okamoto
- Division of Hematology, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Nobuhito Goda
- Department of Life Sciences and Medical BioScience, Waseda University School of Advanced Science and Engineering, Tokyo, Japan
| | - Keiyo Takubo
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan.
| |
Collapse
|
243
|
β3-Adrenoreceptors as ROS Balancer in Hematopoietic Stem Cell Transplantation. Int J Mol Sci 2021; 22:ijms22062835. [PMID: 33799536 PMCID: PMC8000316 DOI: 10.3390/ijms22062835] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/01/2021] [Accepted: 03/07/2021] [Indexed: 12/18/2022] Open
Abstract
In the last decades, the therapeutic potential of hematopoietic stem cell transplantation (HSCT) has acquired a primary role in the management of a broad spectrum of diseases including cancer, hematologic conditions, immune system dysregulations, and inborn errors of metabolism. The different types of HSCT, autologous and allogeneic, include risks of severe complications including acute and chronic graft-versus-host disease (GvHD) complications, hepatic veno-occlusive disease, lung injury, and infections. Despite being a dangerous procedure, it improved patient survival. Hence, its use was extended to treat autoimmune diseases, metabolic disorders, malignant infantile disorders, and hereditary skeletal dysplasia. HSCT is performed to restore or treat various congenital conditions in which immunologic functions are compromised, for instance, by chemo- and radiotherapy, and involves the administration of hematopoietic stem cells (HSCs) in patients with depleted or dysfunctional bone marrow (BM). Since HSCs biology is tightly regulated by oxidative stress (OS), the control of reactive oxygen species (ROS) levels is important to maintain their self-renewal capacity. In quiescent HSCs, low ROS levels are essential for stemness maintenance; however, physiological ROS levels promote HSC proliferation and differentiation. High ROS levels are mainly involved in short-term repopulation, whereas low ROS levels are associated with long-term repopulating ability. In this review, we aim summarize the current state of knowledge about the role of β3-adrenoreceptors (β3-ARs) in regulating HSCs redox homeostasis. β3-ARs play a major role in regulating stromal cell differentiation, and the antagonist SR59230A promotes differentiation of different progenitor cells in hematopoietic tumors, suggesting that β3-ARs agonism and antagonism could be exploited for clinical benefit.
Collapse
|
244
|
Metabolomic Alteration of Oral Keratinocytes and Fibroblasts in Hypoxia. J Clin Med 2021; 10:jcm10061156. [PMID: 33801898 PMCID: PMC8001958 DOI: 10.3390/jcm10061156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 02/24/2021] [Accepted: 03/02/2021] [Indexed: 12/13/2022] Open
Abstract
The oxygen concentration in normal human tissue under physiologic conditions is lower than the atmospheric oxygen concentration. The more hypoxic condition has been observed in the cells with wound healing and cancer. Somatic stem cells reside in a hypoxic microenvironment in vivo and prefer hypoxic culture conditions in vitro. Oral mucosa contains tissue-specific stem cells, which is an excellent tissue source for regenerative medicine. For clinical usage, maintaining the stem cell in cultured cells is important. We previously reported that hypoxic culture conditions maintained primary oral keratinocytes in an undifferentiated and quiescent state and enhanced their clonogenicity. However, the metabolic mechanism of these cells is unclear. Stem cell biological and pathological findings have shown that metabolic reprogramming is important in hypoxic culture conditions, but there has been no report on oral mucosal keratinocytes and fibroblasts. Herein, we conducted metabolomic analyses of oral mucosal keratinocytes and fibroblasts under hypoxic conditions. Hypoxic oral keratinocytes and fibroblasts showed a drastic change of metabolite concentrations in urea cycle metabolites and polyamine pathways. The changes of metabolic profiles in glycolysis and the pentose phosphate pathway under hypoxic conditions in the oral keratinocytes were consistent with those of other somatic stem cells. The metabolic profiles in oral fibroblasts showed only little changes in any pathway under hypoxia except for a significant increase in the antioxidant 2-oxoglutaric acid. This report firstly provides the holistic changes of various metabolic pathways of hypoxic cultured oral keratinocytes and fibroblasts.
Collapse
|
245
|
Zumbaugh MD, Geiger AE, Luo J, Shen Z, Shi H, Gerrard DE. O-GlcNAc transferase is required to maintain satellite cell function. STEM CELLS (DAYTON, OHIO) 2021; 39:945-958. [PMID: 33634918 DOI: 10.1002/stem.3361] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 01/06/2021] [Indexed: 11/05/2022]
Abstract
O-GlcNAcylation is a posttranslational modification considered to be a nutrient sensor that reports nutrient scarcity or surplus. Although O-GlcNAcylation exists in a wide range of cells and/or tissues, its functional role in muscle satellite cells (SCs) remains largely unknown. Using a genetic approach, we ablated O-GlcNAc transferase (OGT), and thus O-GlcNAcylation, in SCs. We first evaluated SC function in vivo using a muscle injury model and found that OGT deficient SCs had compromised capacity to repair muscle after an acute injury compared with the wild-type SCs. By tracing SC cycling rates in vivo using the doxycycline-inducible H2B-GFP mouse model, we found that SCs lacking OGT cycled at lower rates and reduced in abundance with time. Additionally, the self-renewal ability of OGT-deficient SCs after injury was decreased compared to that of the wild-type SCs. Moreover, in vivo, in vitro, and ex vivo proliferation assays revealed that SCs lacking OGT were incapable of expanding compared with their wild-type counterparts, a phenotype that may be explained, at least in part, by an HCF1-mediated arrest in the cell cycle. Taken together, our findings suggest that O-GlcNAcylation plays a critical role in the maintenance of SC health and function in normal and injured skeletal muscle.
Collapse
Affiliation(s)
- Morgan D Zumbaugh
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Ashley E Geiger
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Jing Luo
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Zhengxing Shen
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Hao Shi
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - David E Gerrard
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| |
Collapse
|
246
|
New routes to eradicating chronic myelogenous leukemia stem cells by targeting metabolism. Int J Hematol 2021; 113:648-655. [PMID: 33666817 DOI: 10.1007/s12185-021-03112-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 02/02/2023]
Abstract
Chronic myelogenous leukemia (CML) stem cells are the cellular source of the vast majority of mature CML cells and responsible for relapse of CML disease post-tyrosine kinase inhibitor (TKI) therapy. Although mature CML cells, whose active division is driven by BCR-ABL1 oncogene-dependent signaling, are reduced by TKI therapy, CML stem cells are resistant because they become quiescent via a heretofore elusive mechanism that is independent of oncogene signaling. Recent advances in highly sensitive metabolomics analyses, however, have unveiled new metabolic pathways that are essential for the survival of CML stem cells. With respect to glucose metabolism, CML stem cells elevate anaplerosis to sustain the TCA cycle. Blast crisis (BC)-CML stem cells increase their branched-chained amino acid (BCAA) metabolism. Recently, we showed that CML stem cell quiescence in vivo is regulated by lysophospholipid metabolism that is specific to these cells, namely cooperation between the stemness factors FOXO and β-catenin. These findings reveal biologically significant links between CML stemness and novel metabolic mechanisms. In this review, I describe these links in the contexts of glucose, amino acid, and lipid metabolism, and speculate on how innovative therapeutics might be designed to eradicate CML stem cells in vivo and overcome disease relapse post-TKI therapy.
Collapse
|
247
|
Jones CL, Inguva A, Jordan CT. Targeting Energy Metabolism in Cancer Stem Cells: Progress and Challenges in Leukemia and Solid Tumors. Cell Stem Cell 2021; 28:378-393. [PMID: 33667359 PMCID: PMC7951949 DOI: 10.1016/j.stem.2021.02.013] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Malignant stem cells have long been considered a key therapeutic target in leukemia. Therapeutic strategies designed to target the fundamental biology of leukemia stem cells while sparing normal hematopoietic cells may provide better outcomes for leukemia patients. One process in leukemia stem cell biology that has intriguing therapeutic potential is energy metabolism. In this article we discuss the metabolic properties of leukemia stem cells and how targeting energy metabolism may provide more effective therapeutic regimens for leukemia patients. In addition, we highlight the similarities and differences in energy metabolism between leukemia stem cells and malignant stem cells from solid tumors.
Collapse
Affiliation(s)
- Courtney L Jones
- Princess Margaret Cancer Centre, 101 College St. Toronto, ON M5G 1L7, Canada
| | - Anagha Inguva
- Division of Hematology, University of Colorado, 12700 East 19th Ave., Aurora, CO 80045, USA
| | - Craig T Jordan
- Division of Hematology, University of Colorado, 12700 East 19th Ave., Aurora, CO 80045, USA.
| |
Collapse
|
248
|
Mendoza RP, Fudge DH, Brown JM. Cellular Energetics of Mast Cell Development and Activation. Cells 2021; 10:524. [PMID: 33801300 PMCID: PMC7999080 DOI: 10.3390/cells10030524] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 12/14/2022] Open
Abstract
Mast cells are essential first responder granulocytes in the innate immune system that are well known for their role in type 1 immune hypersensitivity reactions. Although mostly recognized for their role in allergies, mast cells have a range of influences on other systems throughout the body and can respond to a wide range of agonists to properly prime an appropriate immune response. Mast cells have a dynamic energy metabolism to allow rapid responsiveness to their energetic demands. However, our understanding of mast cell metabolism and its impact on mast cell activation and development is still in its infancy. Mast cell metabolism during stimulation and development shifts between both arms of metabolism: catabolic metabolism-such as glycolysis and oxidative phosphorylation-and anabolic metabolism-such as the pentose phosphate pathway. The potential for metabolic pathway shifts to precede and perhaps even control activation and differentiation provides an exciting opportunity to explore energy metabolism for clues in deciphering mast cell function. In this review, we discuss literature pertaining to metabolic environments and fluctuations during different sources of activation, especially IgE mediated vs. non-IgE mediated, and mast cell development, including progenitor cell types leading to the well-known resident mast cell.
Collapse
Affiliation(s)
| | | | - Jared M. Brown
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80016, USA; (R.P.M.); (D.H.F.)
| |
Collapse
|
249
|
Abstract
Purpose of Review The well-established crosstalk between hematopoietic stem cells (HSC) and bone marrow (BM) microenvironment is critical for the homeostasis and hematopoietic regeneration in response to blood formation emergencies. Past decade has witnessed that the intercellular communication mediated by the transfer of cytoplasmic material and organelles between cells can regenerate and/or repair the damaged cells. Mitochondria have recently emerged as a potential regulator of HSC fate. This review intends to discuss recent advances in the understanding of the mitochondrial dynamics, specifically focused on the role of mitochondrial transfer, in the maintenance of HSC activity with clear implications in stem cell transplantation and regenerative medicine. Recent Findings HSC are highly heterogeneous in their mitochondrial metabolism, and the quiescence and potency of HSC depend on the status of mitochondrial dynamics and the clearance of damaged mitochondria. Recent evidence has shown that in stress response, BM stromal cells transfer healthy mitochondria to HSC, facilitate HSC bioenergetics shift towards oxidative phosphorylation, and subsequently stimulate leukocyte expansion. Furthermore, metabolic rewiring following mitochondria transfer from HSPC to BM stromal cells likely to repair the damaged BM niche and accelerate limiting HSC transplantation post myeloablative conditioning.
Collapse
|
250
|
Mohrin M. Mito-managing ROS & redox to reboot the immune system: Tapping mitochondria & redox management to extend the reach of hematopoietic stem cell transplantation. Free Radic Biol Med 2021; 165:38-53. [PMID: 33486089 DOI: 10.1016/j.freeradbiomed.2021.01.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 12/31/2022]
Abstract
Hematopoietic stem cells (HSCs) are responsible for life-long production of blood and immune cells. HSC transplantation (HSCT) is the original cell therapy which can cure hematological disorders but also has the potential to treat other diseases if technical and safety barriers are overcome. To maintain homeostatic hematopoiesis or to restore hematopoiesis during transplantation HSCs must perform both self-renewal, replication of themselves, and differentiation, generation of mature blood and immune cells. These are just two of the cell fate choices HSCs have; the transitional phases where HSCs undergo these cell fate decisions are regulated by reduction-oxidation (redox) signaling, mitochondrial activity, and cellular metabolism. Recent studies revealed that mitochondria, a key source of redox signaling components, are central to HSC cell fate decisions. Here we highlight how mitochondria serve as hubs in HSCs to manage redox signaling and metabolism and thus guide HSC fate choices. We focus on how mitochondrial activity is modulated by their clearance, biogenesis, dynamics, distribution, and quality control in HSCs. We also note how modulating mitochondria in HSCs can help overcome technical barriers limiting further use of HSCT.
Collapse
Affiliation(s)
- Mary Mohrin
- Immunology Discovery, Genentech, Inc. 1 DNA Way, South San Francisco, CA, 94080, USA.
| |
Collapse
|