201
|
Guo J, Sosa E, Chitiashvili T, Nie X, Rojas EJ, Oliver E, Plath K, Hotaling JM, Stukenborg JB, Clark AT, Cairns BR. Single-cell analysis of the developing human testis reveals somatic niche cell specification and fetal germline stem cell establishment. Cell Stem Cell 2021; 28:764-778.e4. [PMID: 33453151 PMCID: PMC8026516 DOI: 10.1016/j.stem.2020.12.004] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 10/07/2020] [Accepted: 12/08/2020] [Indexed: 01/18/2023]
Abstract
Human testis development in prenatal life involves complex changes in germline and somatic cell identity. To better understand, we profiled and analyzed ∼32,500 single-cell transcriptomes of testicular cells from embryonic, fetal, and infant stages. Our data show that at 6-7 weeks postfertilization, as the testicular cords are established, the Sertoli and interstitial cells originate from a common heterogeneous progenitor pool, which then resolves into fetal Sertoli cells (expressing tube-forming genes) or interstitial cells (including Leydig-lineage cells expressing steroidogenesis genes). Almost 10 weeks later, beginning at 14-16 weeks postfertilization, the male primordial germ cells exit mitosis, downregulate pluripotent transcription factors, and transition into cells that strongly resemble the state 0 spermatogonia originally defined in the infant and adult testes. Therefore, we called these fetal spermatogonia "state f0." Overall, we reveal multiple insights into the coordinated and temporal development of the embryonic, fetal, and postnatal male germline together with the somatic niche.
Collapse
Affiliation(s)
- Jingtao Guo
- Howard Hughes Medical Institute, Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| | - Enrique Sosa
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Tsotne Chitiashvili
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Xichen Nie
- Howard Hughes Medical Institute, Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Ernesto Javier Rojas
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Elizabeth Oliver
- NORDFERTIL Research Laboratory Stockholm, Childhood Cancer Research Unit, Bioclinicum J9:30, Department of Women's and Children's Health, Karolinska Institutet and Karolinska University Hospital, Solna 17164, Sweden
| | - Kathrin Plath
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - James M Hotaling
- Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Jan-Bernd Stukenborg
- NORDFERTIL Research Laboratory Stockholm, Childhood Cancer Research Unit, Bioclinicum J9:30, Department of Women's and Children's Health, Karolinska Institutet and Karolinska University Hospital, Solna 17164, Sweden
| | - Amander T Clark
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Bradley R Cairns
- Howard Hughes Medical Institute, Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| |
Collapse
|
202
|
Liu X, Li W, Yang Y, Chen K, Li Y, Zhu X, Ye H, Xu H. Transcriptome Profiling of the Ovarian Cells at the Single-Cell Resolution in Adult Asian Seabass. Front Cell Dev Biol 2021; 9:647892. [PMID: 33855024 PMCID: PMC8039529 DOI: 10.3389/fcell.2021.647892] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 02/23/2021] [Indexed: 11/13/2022] Open
Abstract
Single-cell RNA sequencing (scRNA-seq) is widely adopted for identifying the signature molecular markers or regulators in cells, as this would benefit defining or isolating various types of cells. Likewise, the signature transcriptome profile analysis at the single cell level would well illustrate the key regulators or networks involved in gametogenesis and gonad development in animals; however, there is limited scRNA-seq analysis on gonadal cells in lower vertebrates, especially in the sexual reversal fish species. In this study, we analyzed the molecular signature of several distinct cell populations of Asian seabass adult ovaries through scRNA-seq. We identified five cell types and also successfully validated some specific genes of germ cells and granulosa cells. Likewise, we found some key pathways involved in ovarian development that may concert germline-somatic interactions. Moreover, we compared the transcriptomic profiles across fruit fly, mammals, and fish, and thus uncovered the conservation and divergence in molecular mechanisms that might drive ovarian development. Our results provide a basis for studying the crucial features of germ cells and somatic cells, which will benefit the understandings of the molecular mechanisms behind gametogenesis and gonad development in fish.
Collapse
Affiliation(s)
- Xiaoli Liu
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.,Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Key Laboratory of Aquatic Sciences of Chongqing, College of Fisheries, Southwest University, Chongqing, China
| | - Wei Li
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Key Laboratory of Aquatic Sciences of Chongqing, College of Fisheries, Southwest University, Chongqing, China
| | - Yanping Yang
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Key Laboratory of Aquatic Sciences of Chongqing, College of Fisheries, Southwest University, Chongqing, China
| | - Kaili Chen
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Yulin Li
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Xinping Zhu
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Key Laboratory of Aquatic Sciences of Chongqing, College of Fisheries, Southwest University, Chongqing, China
| | - Hua Ye
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Hongyan Xu
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.,Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Key Laboratory of Aquatic Sciences of Chongqing, College of Fisheries, Southwest University, Chongqing, China
| |
Collapse
|
203
|
Gu X, Li SY, DeFalco T. Immune and vascular contributions to organogenesis of the testis and ovary. FEBS J 2021; 289:2386-2408. [PMID: 33774913 PMCID: PMC8476657 DOI: 10.1111/febs.15848] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 03/07/2021] [Accepted: 03/26/2021] [Indexed: 02/06/2023]
Abstract
Gonad development is a highly regulated process that coordinates cell specification and morphogenesis to produce sex-specific organ structures that are required for fertility, such as testicular seminiferous tubules and ovarian follicles. While sex determination occurs within specialized gonadal supporting cells, sexual differentiation is evident throughout the entire organ, including within the interstitial compartment, which contains immune cells and vasculature. While immune and vascular cells have been traditionally appreciated for their supporting roles during tissue growth and homeostasis, an increasing body of evidence supports the idea that these cell types are critical drivers of sexually dimorphic morphogenesis of the gonad. Myeloid immune cells, such as macrophages, are essential for multiple aspects of gonadogenesis and fertility, including for forming and maintaining gonadal vasculature in both sexes at varying stages of life. While vasculature is long known for supporting organ growth and serving as an export mechanism for gonadal sex steroids in utero, it is also an important component of fetal testicular morphogenesis and differentiation; additionally, it is vital for ovarian corpus luteal function and maintenance of pregnancy. These findings point toward a new paradigm in which immune cells and blood vessels are integral components of sexual differentiation and organogenesis. In this review, we discuss the state of the field regarding the diverse roles of immune and vascular cells during organogenesis of the testis and ovary and highlight outstanding questions in the field that could stimulate new research into these previously underappreciated constituents of the gonad.
Collapse
Affiliation(s)
- Xiaowei Gu
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, OH, USA
| | - Shu-Yun Li
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, OH, USA
| | - Tony DeFalco
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, OH, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, OH, USA
| |
Collapse
|
204
|
Kojima Y, Yamashiro C, Murase Y, Yabuta Y, Okamoto I, Iwatani C, Tsuchiya H, Nakaya M, Tsukiyama T, Nakamura T, Yamamoto T, Saitou M. GATA transcription factors, SOX17 and TFAP2C, drive the human germ-cell specification program. Life Sci Alliance 2021; 4:4/5/e202000974. [PMID: 33608411 PMCID: PMC7918644 DOI: 10.26508/lsa.202000974] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/07/2021] [Accepted: 02/05/2021] [Indexed: 12/28/2022] Open
Abstract
This work shows that GATA transcription factors transduce the BMP signaling and, with SOX17 and TFAP2C, induce the human germ-cell fate, delineating the mechanism for human germ-cell specification. The in vitro reconstitution of human germ-cell development provides a robust framework for clarifying key underlying mechanisms. Here, we explored transcription factors (TFs) that engender the germ-cell fate in their pluripotent precursors. Unexpectedly, SOX17, TFAP2C, and BLIMP1, which act under the BMP signaling and are indispensable for human primordial germ-cell-like cell (hPGCLC) specification, failed to induce hPGCLCs. In contrast, GATA3 or GATA2, immediate BMP effectors, combined with SOX17 and TFAP2C, generated hPGCLCs. GATA3/GATA2 knockouts dose-dependently impaired BMP-induced hPGCLC specification, whereas GATA3/GATA2 expression remained unaffected in SOX17, TFAP2C, or BLIMP1 knockouts. In cynomolgus monkeys, a key model for human development, GATA3, SOX17, and TFAP2C were co-expressed exclusively in early PGCs. Crucially, the TF-induced hPGCLCs acquired a hallmark of bona fide hPGCs to undergo epigenetic reprogramming and mature into oogonia/gonocytes in xenogeneic reconstituted ovaries. By uncovering a TF circuitry driving the germ line program, our study provides a paradigm for TF-based human gametogenesis.
Collapse
Affiliation(s)
- Yoji Kojima
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Yoshida-Konoe-cho, Kyoto, Japan .,Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Kyoto, Japan.,Center for iPS Cell Research and Application (CiRA), Kyoto University, Shogoin-Kawahara-cho, Kyoto, Japan
| | - Chika Yamashiro
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Yoshida-Konoe-cho, Kyoto, Japan.,Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Kyoto, Japan
| | - Yusuke Murase
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Yoshida-Konoe-cho, Kyoto, Japan.,Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Kyoto, Japan
| | - Yukihiro Yabuta
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Yoshida-Konoe-cho, Kyoto, Japan.,Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Kyoto, Japan
| | - Ikuhiro Okamoto
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Yoshida-Konoe-cho, Kyoto, Japan.,Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Kyoto, Japan
| | - Chizuru Iwatani
- Research Center for Animal Life Science, Shiga University of Medical Science, Seta-Tsukinowa-cho, Otsu, Japan
| | - Hideaki Tsuchiya
- Research Center for Animal Life Science, Shiga University of Medical Science, Seta-Tsukinowa-cho, Otsu, Japan
| | - Masataka Nakaya
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Yoshida-Konoe-cho, Kyoto, Japan.,Research Center for Animal Life Science, Shiga University of Medical Science, Seta-Tsukinowa-cho, Otsu, Japan
| | - Tomoyuki Tsukiyama
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Yoshida-Konoe-cho, Kyoto, Japan.,Research Center for Animal Life Science, Shiga University of Medical Science, Seta-Tsukinowa-cho, Otsu, Japan
| | - Tomonori Nakamura
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Yoshida-Konoe-cho, Kyoto, Japan.,Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Kyoto, Japan.,The Hakubi Center for Advanced Research, Kyoto University, Yoshida-Konoe-cho, Kyoto, Japan
| | - Takuya Yamamoto
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Yoshida-Konoe-cho, Kyoto, Japan.,Center for iPS Cell Research and Application (CiRA), Kyoto University, Shogoin-Kawahara-cho, Kyoto, Japan.,AMED-CREST, AMED, Tokyo, Japan.,Medical-Risk Avoidance Based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto, Japan
| | - Mitinori Saitou
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Yoshida-Konoe-cho, Kyoto, Japan .,Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Kyoto, Japan.,Center for iPS Cell Research and Application (CiRA), Kyoto University, Shogoin-Kawahara-cho, Kyoto, Japan
| |
Collapse
|
205
|
Saitou M. Mammalian Germ Cell Development: From Mechanism to In Vitro Reconstitution. Stem Cell Reports 2021; 16:669-680. [PMID: 33577794 PMCID: PMC8072030 DOI: 10.1016/j.stemcr.2021.01.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/09/2021] [Accepted: 01/14/2021] [Indexed: 12/18/2022] Open
Abstract
The germ cell lineage gives rise to totipotency and perpetuates and diversifies genetic as well as epigenetic information. Specifically, germ cells undergo epigenetic reprogramming/programming, replicate genetic information with high fidelity, and create genetic diversity through meiotic recombination. Driven by advances in our understanding of the mechanisms underlying germ cell development and stem cell/reproductive technologies, research over the past 2 decades has culminated in the in vitro reconstitution of mammalian germ cell development: mouse pluripotent stem cells (PSCs) can now be induced into primordial germ cell-like cells (PGCLCs) and then differentiated into fully functional oocytes and spermatogonia, and human PSCs can be induced into PGCLCs and into early oocytes and prospermatogonia with epigenetic reprogramming. Here, I provide my perspective on the key investigations that have led to the in vitro reconstitution of mammalian germ cell development, which will be instrumental in exploring salient themes in germ cell biology and, with further refinements/extensions, in developing innovative medical applications.
Collapse
Affiliation(s)
- Mitinori Saitou
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| |
Collapse
|
206
|
Zhao ZH, Meng TG, Zhang HY, Hou Y, Schatten H, Wang ZB, Sun QY. Single-cell RNA sequencing reveals species-specific time spans of cell cycle transitions in early oogenesis. Hum Mol Genet 2021; 30:525-535. [PMID: 33575778 DOI: 10.1093/hmg/ddab048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/16/2021] [Accepted: 02/04/2021] [Indexed: 11/14/2022] Open
Abstract
Oogenesis is a highly regulated process and its basic cellular events are evolutionarily conserved. However, the time spans of oogenesis differ substantially among species. To explore these interspecies differences in oogenesis, we performed single-cell RNA-sequencing on mouse and monkey female germ cells and downloaded the single-cell RNA-sequencing data of human female germ cells. The cell cycle analyses indicate that the period and extent of cell cycle transitions are significantly different between the species. Moreover, hierarchical clustering of critical cell cycle genes and the interacting network of cell cycle regulators also exhibit distinguished patterns across species. We propose that differences in the regulation of cell cycle transitions may underlie female germ cell developmental allochrony between species. A better understanding of the cell cycle transition machinery will provide new insights into the interspecies differences in female germ cell developmental time spans.
Collapse
Affiliation(s)
- Zheng-Hui Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Tie-Gang Meng
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Hong-Yong Zhang
- Department of Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
| | - Yi Hou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Heide Schatten
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - Zhen-Bo Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qing-Yuan Sun
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| |
Collapse
|
207
|
Zhu Q, Sang F, Withey S, Tang W, Dietmann S, Klisch D, Ramos-Ibeas P, Zhang H, Requena CE, Hajkova P, Loose M, Surani MA, Alberio R. Specification and epigenomic resetting of the pig germline exhibit conservation with the human lineage. Cell Rep 2021; 34:108735. [PMID: 33567277 PMCID: PMC7873836 DOI: 10.1016/j.celrep.2021.108735] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/17/2020] [Accepted: 01/19/2021] [Indexed: 12/14/2022] Open
Abstract
Investigations of the human germline and programming are challenging because of limited access to embryonic material. However, the pig as a model may provide insights into transcriptional network and epigenetic reprogramming applicable to both species. Here we show that, during the pre- and early migratory stages, pig primordial germ cells (PGCs) initiate large-scale epigenomic reprogramming, including DNA demethylation involving TET-mediated hydroxylation and, potentially, base excision repair (BER). There is also macroH2A1 depletion and increased H3K27me3 as well as X chromosome reactivation (XCR) in females. Concomitantly, there is dampening of glycolytic metabolism genes and re-expression of some pluripotency genes like those in preimplantation embryos. We identified evolutionarily young transposable elements and gene coding regions resistant to DNA demethylation in acutely hypomethylated gonadal PGCs, with potential for transgenerational epigenetic inheritance. Detailed insights into the pig germline will likely contribute significantly to advances in human germline biology, including in vitro gametogenesis.
Collapse
Affiliation(s)
- Qifan Zhu
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Fei Sang
- School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Sarah Withey
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Walfred Tang
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Sabine Dietmann
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Doris Klisch
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Priscila Ramos-Ibeas
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Haixin Zhang
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Cristina E Requena
- MRC London Institute of Medical Sciences (LMS), London, UK; Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Petra Hajkova
- MRC London Institute of Medical Sciences (LMS), London, UK; Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Matt Loose
- School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - M Azim Surani
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK; Wellcome Trust Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK.
| | - Ramiro Alberio
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK.
| |
Collapse
|
208
|
Gómez-Redondo I, Planells B, Cánovas S, Ivanova E, Kelsey G, Gutiérrez-Adán A. Genome-wide DNA methylation dynamics during epigenetic reprogramming in the porcine germline. Clin Epigenetics 2021; 13:27. [PMID: 33536045 PMCID: PMC7860200 DOI: 10.1186/s13148-021-01003-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 01/04/2021] [Indexed: 01/03/2023] Open
Abstract
Background Prior work in mice has shown that some retrotransposed elements remain substantially methylated during DNA methylation reprogramming of germ cells. In the pig, however, information about this process is scarce. The present study was designed to examine the methylation profiles of porcine germ cells during the time course of epigenetic reprogramming. Results Sows were artificially inseminated, and their fetuses were collected 28, 32, 36, 39, and 42 days later. At each time point, genital ridges were dissected from the mesonephros and germ cells were isolated through magnetic-activated cell sorting using an anti-SSEA-1 antibody, and recovered germ cells were subjected to whole-genome bisulphite sequencing. Methylation levels were quantified using SeqMonk software by performing an unbiased analysis, and persistently methylated regions (PMRs) in each sex were determined to extract those regions showing 50% or more methylation. Most genomic elements underwent a dramatic loss of methylation from day 28 to day 36, when the lowest levels were shown. By day 42, there was evidence for the initiation of genomic re-methylation. We identified a total of 1456 and 1122 PMRs in male and female germ cells, respectively, and large numbers of transposable elements (SINEs, LINEs, and LTRs) were found to be located within these PMRs. Twenty-one percent of the introns located in these PMRs were found to be the first introns of a gene, suggesting their regulatory role in the expression of these genes. Interestingly, most of the identified PMRs were demethylated at the blastocyst stage. Conclusions Our findings indicate that methylation reprogramming in pig germ cells follows the general dynamics shown in mice and human, unveiling genomic elements that behave differently between male and female germ cells.
Collapse
Affiliation(s)
| | | | - Sebastián Cánovas
- Physiology of Reproduction Group, Department of Physiology, Universidad de Murcia, Campus Mare Nostrum, Murcia, Spain.,Instituto Murciano de Investigación Biosanitaria, IMIB-Arrixaca-UMU, Murcia, Spain
| | - Elena Ivanova
- Epigenetics Programme, The Babraham Institute, Cambridge, UK
| | - Gavin Kelsey
- Epigenetics Programme, The Babraham Institute, Cambridge, UK.,Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
209
|
Zhang B, Li H, Zhu L, He X, Luo H, Huang K, Xu W. Single-cell transcriptomics uncovers potential marker genes of ochratoxin A-sensitive renal cells in an acute toxicity rat model. Cell Biol Toxicol 2021; 37:7-13. [PMID: 32468156 DOI: 10.1007/s10565-020-09531-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 04/28/2020] [Indexed: 01/10/2023]
Affiliation(s)
- Boyang Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China
| | - Hongyu Li
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China
| | - Liye Zhu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China
| | - Xiaoyun He
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture and Rural Affairs, Beijing, 100083, China
| | - Haoshu Luo
- Department of Animal Physiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Kunlun Huang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture and Rural Affairs, Beijing, 100083, China
| | - Wentao Xu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China.
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture and Rural Affairs, Beijing, 100083, China.
| |
Collapse
|
210
|
Kurek M, Åkesson E, Yoshihara M, Oliver E, Cui Y, Becker M, Alves-Lopes JP, Bjarnason R, Romerius P, Sundin M, Norén Nyström U, Langenskiöld C, Vogt H, Henningsohn L, Petersen C, Söder O, Guo J, Mitchell RT, Jahnukainen K, Stukenborg JB. Spermatogonia Loss Correlates with LAMA 1 Expression in Human Prepubertal Testes Stored for Fertility Preservation. Cells 2021; 10:241. [PMID: 33513766 PMCID: PMC7911157 DOI: 10.3390/cells10020241] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/23/2020] [Accepted: 01/21/2021] [Indexed: 02/07/2023] Open
Abstract
Fertility preservation for male childhood cancer survivors not yet capable of producing mature spermatozoa, relies on experimental approaches such as testicular explant culture. Although the first steps in somatic maturation can be observed in human testicular explant cultures, germ cell depletion is a common obstacle. Hence, understanding the spermatogonial stem cell (SSC) niche environment and in particular, specific components such as the seminiferous basement membrane (BM) will allow progression of testicular explant cultures. Here, we revealed that the seminiferous BM is established from 6 weeks post conception with the expression of laminin alpha 1 (LAMA 1) and type IV collagen, which persist as key components throughout development. With prepubertal testicular explant culture we found that seminiferous LAMA 1 expression is disrupted and depleted with culture time correlating with germ cell loss. These findings highlight the importance of LAMA 1 for the human SSC niche and its sensitivity to culture conditions.
Collapse
Affiliation(s)
- Magdalena Kurek
- NORDFERTIL Research Lab Stockholm, Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, and Karolinska University Hospital, 171 64 Solna, Sweden; (E.O.); (Y.C.); (J.P.A.-L.); (C.P.); (O.S.); (K.J.)
| | - Elisabet Åkesson
- Division of Neurogeriatrics, Department of Neurobiology Care Sciences & Society, Karolinska Institutet, 141 83 Huddinge, Sweden;
- The R & D Unit, Stockholms Sjukhem, 112 19 Stockholm, Sweden
| | - Masahito Yoshihara
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 83 Huddinge, Sweden;
| | - Elizabeth Oliver
- NORDFERTIL Research Lab Stockholm, Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, and Karolinska University Hospital, 171 64 Solna, Sweden; (E.O.); (Y.C.); (J.P.A.-L.); (C.P.); (O.S.); (K.J.)
| | - Yanhua Cui
- NORDFERTIL Research Lab Stockholm, Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, and Karolinska University Hospital, 171 64 Solna, Sweden; (E.O.); (Y.C.); (J.P.A.-L.); (C.P.); (O.S.); (K.J.)
| | - Martin Becker
- Center of Neurodevelopmental Disorders (KIND), Department of Women’s and Children’s Health, Karolinska Institutet, Centre for Psychiatry Research, Region Stockholm and Astrid Lindgren Children’s Hospital, Karolinska University Hospital, 171 64 Solna, Sweden;
| | - João Pedro Alves-Lopes
- NORDFERTIL Research Lab Stockholm, Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, and Karolinska University Hospital, 171 64 Solna, Sweden; (E.O.); (Y.C.); (J.P.A.-L.); (C.P.); (O.S.); (K.J.)
| | - Ragnar Bjarnason
- Children’s Medical Center, Landspítali University Hospital, 101 Reykjavik, Iceland;
- Department of Paediatrics Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland
| | - Patrik Romerius
- Department of Paediatric Oncology and Haematology, Clinical Sciences, Lund University, Barn-och Ungdomssjukhuset Lund, Skånes Universitetssjukhus, 221 85 Lund, Sweden;
| | - Mikael Sundin
- Division of Paediatrics, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, 141 52 Huddinge, Sweden;
- Pediatric Blood Disorders, Immunodeficiency and Stem Cell Transplantation Unit, Astrid Lindgren Children’s Hospital, Karolinska University Hospital, 141 86 Huddinge, Sweden
| | - Ulrika Norén Nyström
- Division of Paediatrics, Department of Clinical Science, Umeå University, 901 87 Umeå, Sweden;
| | - Cecilia Langenskiöld
- Department of Paediatric Oncology, The Queen Silvia Children’s Hospital, 416 50 Gothenburg, Sweden;
| | - Hartmut Vogt
- Crown Princess Victoria’s Child and Youth Hospital, and Department of Biomedical and Clinical Sciences, Linköping University, 581 83 Linköping, Sweden;
| | - Lars Henningsohn
- Division of Urology, Institution for Clinical Science Intervention and Technology, Karolinska Institutet, 141 52 Huddinge, Sweden;
| | - Cecilia Petersen
- NORDFERTIL Research Lab Stockholm, Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, and Karolinska University Hospital, 171 64 Solna, Sweden; (E.O.); (Y.C.); (J.P.A.-L.); (C.P.); (O.S.); (K.J.)
| | - Olle Söder
- NORDFERTIL Research Lab Stockholm, Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, and Karolinska University Hospital, 171 64 Solna, Sweden; (E.O.); (Y.C.); (J.P.A.-L.); (C.P.); (O.S.); (K.J.)
| | - Jingtao Guo
- Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT 84112, USA;
| | - Rod T. Mitchell
- MRC Centre for Reproductive Health, The Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK;
- Edinburgh Royal Hospital for Sick Children, Edinburgh EH9 1LF, UK
| | - Kirsi Jahnukainen
- NORDFERTIL Research Lab Stockholm, Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, and Karolinska University Hospital, 171 64 Solna, Sweden; (E.O.); (Y.C.); (J.P.A.-L.); (C.P.); (O.S.); (K.J.)
- Division of Haematology-Oncology and Stem Cell Transplantation, Children’s Hospital, University of Helsinki, Helsinki University Central Hospital, 00029 Helsinki, Finland
| | - Jan-Bernd Stukenborg
- NORDFERTIL Research Lab Stockholm, Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, and Karolinska University Hospital, 171 64 Solna, Sweden; (E.O.); (Y.C.); (J.P.A.-L.); (C.P.); (O.S.); (K.J.)
| |
Collapse
|
211
|
Rodríguez-Casuriaga R, Geisinger A. Contributions of Flow Cytometry to the Molecular Study of Spermatogenesis in Mammals. Int J Mol Sci 2021; 22:1151. [PMID: 33503798 PMCID: PMC7865295 DOI: 10.3390/ijms22031151] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/12/2021] [Accepted: 01/17/2021] [Indexed: 12/18/2022] Open
Abstract
Mammalian testes are very heterogeneous organs, with a high number of different cell types. Testicular heterogeneity, together with the lack of reliable in vitro culture systems of spermatogenic cells, have been an obstacle for the characterization of the molecular bases of the unique events that take place along the different spermatogenic stages. In this context, flow cytometry has become an invaluable tool for the analysis of testicular heterogeneity, and for the purification of stage-specific spermatogenic cell populations, both for basic research and for clinical applications. In this review, we highlight the importance of flow cytometry for the advances on the knowledge of the molecular groundwork of spermatogenesis in mammals. Moreover, we provide examples of different approaches to the study of spermatogenesis that have benefited from flow cytometry, including the characterization of mutant phenotypes, transcriptomics, epigenetic and genome-wide chromatin studies, and the attempts to establish cell culture systems for research and/or clinical aims such as infertility treatment.
Collapse
Affiliation(s)
- Rosana Rodríguez-Casuriaga
- Department of Molecular Biology, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), 11600 Montevideo, Uruguay
| | - Adriana Geisinger
- Department of Molecular Biology, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), 11600 Montevideo, Uruguay
- Biochemistry-Molecular Biology, Facultad de Ciencias, Universidad de la República (UdelaR), 11400 Montevideo, Uruguay
| |
Collapse
|
212
|
La H, Yoo H, Lee EJ, Thang NX, Choi HJ, Oh J, Park JH, Hong K. Insights from the Applications of Single-Cell Transcriptomic Analysis in Germ Cell Development and Reproductive Medicine. Int J Mol Sci 2021; 22:E823. [PMID: 33467661 PMCID: PMC7829788 DOI: 10.3390/ijms22020823] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 12/21/2022] Open
Abstract
Mechanistic understanding of germ cell formation at a genome-scale level can aid in developing novel therapeutic strategies for infertility. Germ cell formation is a complex process that is regulated by various mechanisms, including epigenetic regulation, germ cell-specific gene transcription, and meiosis. Gonads contain a limited number of germ cells at various stages of differentiation. Hence, genome-scale analysis of germ cells at the single-cell level is challenging. Conventional genome-scale approaches cannot delineate the landscape of genomic, transcriptomic, and epigenomic diversity or heterogeneity in the differentiating germ cells of gonads. Recent advances in single-cell genomic techniques along with single-cell isolation methods, such as microfluidics and fluorescence-activated cell sorting, have helped elucidate the mechanisms underlying germ cell development and reproductive disorders in humans. In this review, the history of single-cell transcriptomic analysis and their technical advantages over the conventional methods have been discussed. Additionally, recent applications of single-cell transcriptomic analysis for analyzing germ cells have been summarized.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Kwonho Hong
- Department of Stem Cell and Regenerative Biotechnology, Institute of Advanced Regenerative Science, Konkuk University, Seoul 05029, Korea; (H.L.); (H.Y.); (E.J.L.); (N.X.T.); (H.J.C.); (J.O.); (J.H.P.)
| |
Collapse
|
213
|
Advances in Female Germ Cell Induction from Pluripotent Stem Cells. Stem Cells Int 2021; 2021:8849230. [PMID: 33510796 PMCID: PMC7822693 DOI: 10.1155/2021/8849230] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 12/15/2020] [Accepted: 12/30/2020] [Indexed: 12/31/2022] Open
Abstract
Germ cells are capable of maintaining species continuity through passing genetic and epigenetic information across generations. Female germ cells mainly develop during the embryonic stage and pass through subsequent developmental stages including primordial germ cells, oogonia, and oocyte. However, due to the limitation of using early human embryos as in vivo research model, in vitro research models are needed to reveal the early developmental process and related mechanisms of female germ cells. After birth, the number of follicles gradually decreases with age. Various conditions which damage ovarian functions would cause premature ovarian failure. Alternative treatments to solve these problems need to be investigated. Germ cell differentiation from pluripotent stem cells in vitro can simulate early embryonic development of female germ cells and clarify unresolved issues during the development process. In addition, pluripotent stem cells could potentially provide promising applications for female fertility preservation after proper in vitro differentiation. Mouse female germ cells have been successfully reconstructed in vitro and delivered to live offspring. However, the derivation of functional human female germ cells has not been fully achieved due to technical limitations and ethical issues. To provide an updated and comprehensive information, this review centers on the major studies on the differentiation of mouse and human female germ cells from pluripotent stem cells and provides references to further studies of developmental mechanisms and potential therapeutic applications of female germ cells.
Collapse
|
214
|
Chen T, Li J, Jia Y, Wang J, Sang R, Zhang Y, Rong R. Single-cell Sequencing in the Field of Stem Cells. Curr Genomics 2021; 21:576-584. [PMID: 33414679 PMCID: PMC7770636 DOI: 10.2174/1389202921999200624154445] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/13/2020] [Accepted: 05/19/2020] [Indexed: 11/24/2022] Open
Abstract
Variation and heterogeneity between cells are the basic characteristics of stem cells. Traditional sequencing analysis methods often cover up this difference. Single-cell sequencing technology refers to the technology of high-throughput sequencing analysis of genomes at the single-cell level. It can effectively analyze cell heterogeneity and identify a small number of cell populations. With the continuous progress of cell sorting, nucleic acid extraction and other technologies, single-cell sequencing technology has also made great progress. Encouraging new discoveries have been made in stem cell research, including pluripotent stem cells, tissue-specific stem cells and cancer stem cells. In this review, we discuss the latest progress and future prospects of single-cell sequencing technology in the field of stem cells.
Collapse
Affiliation(s)
- Tian Chen
- 1Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, P.R. China; 2Shanghai Key Laboratory of Organ Transplantation, Shanghai, P.R. China; 3Biomedical Research Center, Institute for Clinical Sciences, Zhongshan Hospital, Fudan University, Shanghai, P.R. China; 4Department of Urology, Shanghai Public Health Clinical Center, Shanghai, P.R. China; 5Department of Transfusion, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Jiawei Li
- 1Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, P.R. China; 2Shanghai Key Laboratory of Organ Transplantation, Shanghai, P.R. China; 3Biomedical Research Center, Institute for Clinical Sciences, Zhongshan Hospital, Fudan University, Shanghai, P.R. China; 4Department of Urology, Shanghai Public Health Clinical Center, Shanghai, P.R. China; 5Department of Transfusion, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Yichen Jia
- 1Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, P.R. China; 2Shanghai Key Laboratory of Organ Transplantation, Shanghai, P.R. China; 3Biomedical Research Center, Institute for Clinical Sciences, Zhongshan Hospital, Fudan University, Shanghai, P.R. China; 4Department of Urology, Shanghai Public Health Clinical Center, Shanghai, P.R. China; 5Department of Transfusion, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Jiyan Wang
- 1Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, P.R. China; 2Shanghai Key Laboratory of Organ Transplantation, Shanghai, P.R. China; 3Biomedical Research Center, Institute for Clinical Sciences, Zhongshan Hospital, Fudan University, Shanghai, P.R. China; 4Department of Urology, Shanghai Public Health Clinical Center, Shanghai, P.R. China; 5Department of Transfusion, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Ruirui Sang
- 1Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, P.R. China; 2Shanghai Key Laboratory of Organ Transplantation, Shanghai, P.R. China; 3Biomedical Research Center, Institute for Clinical Sciences, Zhongshan Hospital, Fudan University, Shanghai, P.R. China; 4Department of Urology, Shanghai Public Health Clinical Center, Shanghai, P.R. China; 5Department of Transfusion, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Yi Zhang
- 1Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, P.R. China; 2Shanghai Key Laboratory of Organ Transplantation, Shanghai, P.R. China; 3Biomedical Research Center, Institute for Clinical Sciences, Zhongshan Hospital, Fudan University, Shanghai, P.R. China; 4Department of Urology, Shanghai Public Health Clinical Center, Shanghai, P.R. China; 5Department of Transfusion, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Ruiming Rong
- 1Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, P.R. China; 2Shanghai Key Laboratory of Organ Transplantation, Shanghai, P.R. China; 3Biomedical Research Center, Institute for Clinical Sciences, Zhongshan Hospital, Fudan University, Shanghai, P.R. China; 4Department of Urology, Shanghai Public Health Clinical Center, Shanghai, P.R. China; 5Department of Transfusion, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| |
Collapse
|
215
|
Yuan W, Yao Z, Veerapandian V, Yang X, Wang X, Chen D, Ma L, Li C, Zheng Y, Luo F, Zhao XY. The histone demethylase KDM2B regulates human primordial germ cell-like cells specification. Int J Biol Sci 2021; 17:527-538. [PMID: 33613110 PMCID: PMC7893587 DOI: 10.7150/ijbs.55873] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 12/12/2020] [Indexed: 11/21/2022] Open
Abstract
Germline specification is a fundamental step for human reproduction and this biological phenomenon possesses technical challenges to study in vivo as it occurs immediately after blastocyst implantation. The establishment of in vitro human primordial germ cell-like cells (hPGCLCs) induction system allows sophisticated characterization of human primordial germ cells (hPGCs) development. However, the underlying molecular mechanisms of hPGCLC specification are not fully elucidated. Here, we observed particularly high expression of the histone demethylase KDM2B in male fetal germ cells (FGCs) but not in male somatic cells. Besides, KDM2B shared similar expression pattern with hPGC marker genes in hPGCLCs, suggesting an important role of KDM2B in germ cell development. Although deletion of KDM2B had no significant effects on human embryonic stem cell (hESC)'s pluripotency, loss of KDM2B dramatically impaired hPGCLCs differentiation whereas ectopically expressed KDM2B could efficiently rescue such defect, indicating this defect was due to KDM2B's loss in hPGCLC specification. Mechanistically, as revealed by the transcriptional profiling, KDM2B suppressed the expression of somatic genes thus inhibited somatic differentiation during hPGCLC specification. These data collectively indicate that KDM2B is an indispensable epigenetic regulator for hPGCLC specification, shedding lights on how epigenetic regulations orchestrate transcriptional events in hPGC development for future investigation.
Collapse
Affiliation(s)
- Weiyan Yuan
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhaokai Yao
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Veeramohan Veerapandian
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Shunde Hospital of Southern Medical University, Shunde, Guangdong, China
| | - Xinyan Yang
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaoman Wang
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, China
| | - Dingyao Chen
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Linzi Ma
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Chaohui Li
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Shunde Hospital of Southern Medical University, Shunde, Guangdong, China
| | - Yi Zheng
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Fang Luo
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiao-yang Zhao
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
- Sino-America Joint Research Center for Translational Medicine in Developmental Disabilities
- Department of Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- National Clinical Research Center for Kidney Disease, Guangzhou, China
| |
Collapse
|
216
|
Peng Y, Qiao H. The Application of Single-Cell RNA Sequencing in Mammalian Meiosis Studies. Front Cell Dev Biol 2021; 9:673642. [PMID: 34485276 PMCID: PMC8416306 DOI: 10.3389/fcell.2021.673642] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 07/05/2021] [Indexed: 12/14/2022] Open
Abstract
Meiosis is a cellular division process that produces gametes for sexual reproduction. Disruption of complex events throughout meiosis, such as synapsis and homologous recombination, can lead to infertility and aneuploidy. To reveal the molecular mechanisms of these events, transcriptome studies of specific substages must be conducted. However, conventional methods, such as bulk RNA-seq and RT-qPCR, are not able to detect the transcriptional variations effectively and precisely, especially for identifying cell types and stages with subtle differences. In recent years, mammalian meiotic transcriptomes have been intensively studied at the single-cell level by using single-cell RNA-seq (scRNA-seq) approaches, especially through two widely used platforms, Smart-seq2 and Drop-seq. The scRNA-seq protocols along with their downstream analysis enable researchers to accurately identify cell heterogeneities and investigate meiotic transcriptomes at a higher resolution. In this review, we compared bulk RNA-seq and scRNA-seq to show the advantages of the scRNA-seq in meiosis studies; meanwhile, we also pointed out the challenges and limitations of the scRNA-seq. We listed recent findings from mammalian meiosis (male and female) studies where scRNA-seq applied. Next, we summarized the scRNA-seq analysis methods and the meiotic marker genes from spermatocytes and oocytes. Specifically, we emphasized the different features of the two scRNA-seq protocols (Smart-seq2 and Drop-seq) in the context of meiosis studies and discussed their strengths and weaknesses in terms of different research purposes. Finally, we discussed the future applications of scRNA-seq in the meiosis field.
Collapse
Affiliation(s)
- Yiheng Peng
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Huanyu Qiao
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
217
|
Fan X, Tang D, Liao Y, Li P, Zhang Y, Wang M, Liang F, Wang X, Gao Y, Wen L, Wang D, Wang Y, Tang F. Single-cell RNA-seq analysis of mouse preimplantation embryos by third-generation sequencing. PLoS Biol 2020; 18:e3001017. [PMID: 33378329 PMCID: PMC7773192 DOI: 10.1371/journal.pbio.3001017] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 12/03/2020] [Indexed: 12/19/2022] Open
Abstract
The development of next generation sequencing (NGS) platform-based single-cell RNA sequencing (scRNA-seq) techniques has tremendously changed biological researches, while there are still many questions that cannot be addressed by them due to their short read lengths. We developed a novel scRNA-seq technology based on third-generation sequencing (TGS) platform (single-cell amplification and sequencing of full-length RNAs by Nanopore platform, SCAN-seq). SCAN-seq exhibited high sensitivity and accuracy comparable to NGS platform-based scRNA-seq methods. Moreover, we captured thousands of unannotated transcripts of diverse types, with high verification rate by reverse transcription PCR (RT-PCR)–coupled Sanger sequencing in mouse embryonic stem cells (mESCs). Then, we used SCAN-seq to analyze the mouse preimplantation embryos. We could clearly distinguish cells at different developmental stages, and a total of 27,250 unannotated transcripts from 9,338 genes were identified, with many of which showed developmental stage-specific expression patterns. Finally, we showed that SCAN-seq exhibited high accuracy on determining allele-specific gene expression patterns within an individual cell. SCAN-seq makes a major breakthrough for single-cell transcriptome analysis field. This study describes a novel single-cell RNA-seq technology called SCAN-seq which can capture the full-length transcripts in single cells based on the third-generation Nanopore sequencing platform, and demonstrates its performance on mouse preimplantation embryos.
Collapse
Affiliation(s)
- Xiaoying Fan
- Beijing Advanced Innovation Center for Genomics, Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Dong Tang
- GrandOmics Biosciences, Beijing, China
| | - Yuhan Liao
- Beijing Advanced Innovation Center for Genomics, Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing, China
| | - Pidong Li
- GrandOmics Biosciences, Beijing, China
| | - Yu Zhang
- Beijing Advanced Innovation Center for Genomics, Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing, China
| | | | - Fan Liang
- GrandOmics Biosciences, Beijing, China
| | - Xiao Wang
- Beijing Advanced Innovation Center for Genomics, Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing, China
| | - Yun Gao
- Beijing Advanced Innovation Center for Genomics, Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing, China
| | - Lu Wen
- Beijing Advanced Innovation Center for Genomics, Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing, China
| | | | - Yang Wang
- GrandOmics Biosciences, Beijing, China
- * E-mail: (YW); (FT)
| | - Fuchou Tang
- Beijing Advanced Innovation Center for Genomics, Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing, China
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- * E-mail: (YW); (FT)
| |
Collapse
|
218
|
Yu DCW, Wu FC, Wu CE, Chow LP, Ho HN, Chen HF. Human pluripotent stem cell-derived DDX4 and KRT-8 positive cells participate in ovarian follicle-like structure formation. iScience 2020; 24:102003. [PMID: 33490911 PMCID: PMC7811146 DOI: 10.1016/j.isci.2020.102003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 07/21/2020] [Accepted: 12/23/2020] [Indexed: 12/18/2022] Open
Abstract
Understanding the mechanisms of human pluripotent stem cells (hPSCs) specification, development and differentiation to gametes are useful for elucidating the causes of infertility and potential treatment. This study aims to examine whether hPSCs can be induced to DDX4 extracellularly expressing primordial germ cell-like cells (DDX4ec PGCLCs) and further into ovarian follicle stage in a combined in vitro and in vivo model. The transcriptional signatures show that these DDX4ec PGCLCs are characteristic of PGCs and express ovarian folliculogenesis markers. We also verify that keratin (KRT)-8 is highly expressed in the DDX4ec PGCLCs and plays a crucial role in germ cell migration. By co-culturing DDX4ec PGCLCs with human granulosa cells (GCs), these cells are further induced into ovarian follicle-like structures in a xenograft mice model. This approach can in the future design practical strategies for treating germ cell-associated issues of infertility. hPSC-derived DDX4 PGCLCs participate ovarian follicle-like structure formation Human granulosa cells as a niche environment are participating folliculogenesis Keratin 8 plays an essential role in primordial germ cell migration
Collapse
Affiliation(s)
- Danny C W Yu
- Department of Obstetrics and Gynecology, College of Medicine and the Hospital, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan.,Institute of Immunotherapy, Fujian Medical University, Fujian, China.,Aging and Disease Prevention Research Center, and Department of Medical Laboratory Sciences and Biotechnology, Fooyin University, Kaohsiung, Taiwan
| | - Fang-Chun Wu
- Department of Obstetrics and Gynecology, College of Medicine and the Hospital, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chia-Eng Wu
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Lu-Ping Chow
- Graduate Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hong-Nerng Ho
- Department of Obstetrics and Gynecology, College of Medicine and the Hospital, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsin-Fu Chen
- Department of Obstetrics and Gynecology, College of Medicine and the Hospital, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
219
|
Li L, Yang R, Yin C, Kee K. Studying human reproductive biology through single-cell analysis and in vitro differentiation of stem cells into germ cell-like cells. Hum Reprod Update 2020; 26:670-688. [PMID: 32464645 DOI: 10.1093/humupd/dmaa021] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 04/15/2020] [Accepted: 04/27/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Understanding the molecular and cellular mechanisms of human reproductive development has been limited by the scarcity of human samples and ethical constraints. Recently, in vitro differentiation of human pluripotent stem cells into germ cells and single-cell analyses have opened new avenues to directly study human germ cells and identify unique mechanisms in human reproductive development. OBJECTIVE AND RATIONALE The goal of this review is to collate novel findings and insightful discoveries with these new methodologies, aiming at introducing researchers and clinicians to the use of these tools to study human reproductive biology and develop treatments for infertility. SEARCH METHODS PubMed was used to search articles and reviews with the following main keywords: in vitro differentiation, human stem cells, single-cell analysis, spermatogenesis, oogenesis, germ cells and other key terms related to these subjects. The search period included all publications from 2000 until now. OUTCOMES Single-cell analyses of human gonads have identified many important gene markers at different developmental stages and in subpopulations of cells. To validate the functional roles of these gene markers, researchers have used the in vitro differentiation of human pluripotent cells into germ cells and confirmed that some genetic requirements are unique in human germ cells and are not conserved in mouse models. Moreover, transcriptional regulatory networks and the interaction of germ and somatic cells in gonads were elucidated in these studies. WIDER IMPLICATIONS Single-cell analyses allow researchers to identify gene markers and potential regulatory networks using limited clinical samples. On the other hand, in vitro differentiation methods provide clinical researchers with tools to examine these newly identify gene markers and study the causative effects of mutations previously associated with infertility. Combining these two methodologies, researchers can identify gene markers and networks which are essential and unique in human reproductive development, thereby producing more accurate diagnostic tools for assessing reproductive disorders and developing treatments for infertility.
Collapse
Affiliation(s)
- Lin Li
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Chaoyang, Beijing 100026, China
| | - Risako Yang
- Department of Biology, Colgate University, Hamilton, NY 13346, USA
| | - Chenghong Yin
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Chaoyang, Beijing 100026, China
| | - Kehkooi Kee
- Department of Basic Medical Sciences, Center for Stem Cell Biology and Regenerative Medicine, School of Medicine, Tsinghua University, Beijing 100084, China
| |
Collapse
|
220
|
Panda A, Zylicz JJ, Pasque V. New Insights into X-Chromosome Reactivation during Reprogramming to Pluripotency. Cells 2020; 9:E2706. [PMID: 33348832 PMCID: PMC7766869 DOI: 10.3390/cells9122706] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 02/06/2023] Open
Abstract
Dosage compensation between the sexes results in one X chromosome being inactivated during female mammalian development. Chromosome-wide transcriptional silencing from the inactive X chromosome (Xi) in mammalian cells is erased in a process termed X-chromosome reactivation (XCR), which has emerged as a paradigm for studying the reversal of chromatin silencing. XCR is linked with germline development and induction of naive pluripotency in the epiblast, and also takes place upon reprogramming somatic cells to induced pluripotency. XCR depends on silencing of the long non-coding RNA (lncRNA) X inactive specific transcript (Xist) and is linked with the erasure of chromatin silencing. Over the past years, the advent of transcriptomics and epigenomics has provided new insights into the transcriptional and chromatin dynamics with which XCR takes place. However, multiple questions remain unanswered about how chromatin and transcription related processes enable XCR. Here, we review recent work on establishing the transcriptional and chromatin kinetics of XCR, as well as discuss a model by which transcription factors mediate XCR not only via Xist repression, but also by direct targeting of X-linked genes.
Collapse
Affiliation(s)
- Amitesh Panda
- Laboratory of Cellular Reprogramming and Epigenetic Regulation, Department of Development and Regeneration, Leuven Stem Cell Institute, KU Leuven-University of Leuven, 3000 Leuven, Belgium;
| | - Jan J. Zylicz
- The Novo Nordisk Foundation Center for Stem Cell Biology, University of Copenhagen, 2200 Copenhagen, Denmark;
| | - Vincent Pasque
- Laboratory of Cellular Reprogramming and Epigenetic Regulation, Department of Development and Regeneration, Leuven Stem Cell Institute, KU Leuven-University of Leuven, 3000 Leuven, Belgium;
| |
Collapse
|
221
|
Abdyyev VK, Sant DW, Kiseleva EV, Spangenberg VE, Kolomiets OL, Andrade NS, Dashinimaev EB, Vorotelyak EA, Vasiliev AV. In vitro derived female hPGCLCs are unable to complete meiosis in embryoid bodies. Exp Cell Res 2020; 397:112358. [PMID: 33160998 DOI: 10.1016/j.yexcr.2020.112358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/27/2020] [Accepted: 10/31/2020] [Indexed: 11/19/2022]
Abstract
The fundamental question about the functionality of in vitro derived human primordial germ cell-like cells remains unanswered, despite ongoing research in this area. Attempts have been made to imitate the differentiation of human primordial germ cells (hPGCs) and meiocytes in vitro from human pluripotent stem cells (hPSCs). A defined system for developing human haploid cells in vitro is the challenge that scientists face to advance the knowledge of human germ cell development. To develop human primordial germ cell-like cells (hPGCLCs) from human pluripotent stem cells (hPSCs) that are capable of giving rise to haploid cells, we applied a sequential induction protocol via the early mesodermal push of female human embryonic and induced pluripotent stem cells. BMP4-induced early mesoderm-like cells showed significant alterations in their expression profiles toward early (PRDM1 and NANOS3) and late (VASA and DAZL) germ cell markers. Furthermore, using retinoic acid (RA), we induced hPGCLCs in embryoid bodies and identified positive staining for the meiotic initiation marker STRA8. Efforts to find the cells exhibiting progression to meiosis were unsuccessful. The validation by the expression of SCP3 did not correspond to the natural pattern. Regarding the 20-day meiotic induction, the derived hPGCLCs containing two X-chromosomes were unable to complete the meiotic division. We observed the expression of the oocyte marker PIWIL1 and PIWIL4. RNAseq analysis and cluster dendrogram showed a similar clustering of hPGCLC groups and meiotic like cell groups as compared to previously published data. This reproducible in vitro model for deriving hPGCLCs provides opportunities for studying the molecular mechanisms involved in the specification of hPGCs. Moreover, our results will support a further elucidation of gametogenesis and meiosis of female hPGCs.
Collapse
Affiliation(s)
- Vepa K Abdyyev
- Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia; Department of Biology, Lomonosov Moscow State University, Moscow, Russia.
| | - David W Sant
- Department of Biomedical Informatics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Ekaterina V Kiseleva
- Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Victor E Spangenberg
- Vavilov Institute of General Genetics, The Russian Academy of Sciences, Moscow, Russia
| | - Oksana L Kolomiets
- Vavilov Institute of General Genetics, The Russian Academy of Sciences, Moscow, Russia
| | - Nadja S Andrade
- Department of Psychiatry and Behavioral Studies, Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Erdem B Dashinimaev
- Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia; Pirogov Russian National Research Medical University (RNRMU), Moscow, Russia
| | - Ekaterina A Vorotelyak
- Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia; Department of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Andrei V Vasiliev
- Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia; Department of Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
222
|
Chitiashvili T, Dror I, Kim R, Hsu FM, Chaudhari R, Pandolfi E, Chen D, Liebscher S, Schenke-Layland K, Plath K, Clark A. Female human primordial germ cells display X-chromosome dosage compensation despite the absence of X-inactivation. Nat Cell Biol 2020; 22:1436-1446. [PMID: 33257808 PMCID: PMC7717582 DOI: 10.1038/s41556-020-00607-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 10/27/2020] [Indexed: 12/19/2022]
Abstract
X-chromosome dosage compensation in female placental mammals is achieved by X-chromosome inactivation (XCI). Human pre-implantation embryos are an exception, in which dosage compensation occurs by X-chromosome dampening (XCD). Here, we examined whether XCD extends to human prenatal germ cells given their similarities to naive pluripotent cells. We found that female human primordial germ cells (hPGCs) display reduced X-linked gene expression before entering meiosis. Moreover, in hPGCs, both X chromosomes are active and express the long non-coding RNAs X active coating transcript (XACT) and X inactive specific transcript (XIST)-the master regulator of XCI-which are silenced after entry into meiosis. We find that XACT is a hPGC marker, describe XCD associated with XIST expression in hPGCs and suggest that XCD evolved in humans to regulate X-linked genes in pre-implantation embryos and PGCs. Furthermore, we found a unique mechanism of X-chromosome regulation in human primordial oocytes. Therefore, future studies of human germline development must consider the sexually dimorphic X-chromosome dosage compensation mechanisms in the prenatal germline.
Collapse
Affiliation(s)
- Tsotne Chitiashvili
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Molecular Cell and Developmental Biology Department, University of California Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Iris Dror
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Rachel Kim
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA, USA
| | - Fei-Man Hsu
- Molecular Cell and Developmental Biology Department, University of California Los Angeles, Los Angeles, CA, USA
| | - Rohan Chaudhari
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Molecular Cell and Developmental Biology Department, University of California Los Angeles, Los Angeles, CA, USA
| | - Erica Pandolfi
- Molecular Cell and Developmental Biology Department, University of California Los Angeles, Los Angeles, CA, USA
| | - Di Chen
- Molecular Cell and Developmental Biology Department, University of California Los Angeles, Los Angeles, CA, USA
| | - Simone Liebscher
- Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Katja Schenke-Layland
- Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University Tübingen, Tübingen, Germany
- NMI Natural and Medical Sciences Institute, University Tübingen, Reutlingen, Germany
- Department of Medicine/Cardiology, Cardiovascular Research Laboratories, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Kathrin Plath
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA.
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA, USA.
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA, USA.
| | - Amander Clark
- Molecular Cell and Developmental Biology Department, University of California Los Angeles, Los Angeles, CA, USA.
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA.
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA, USA.
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
223
|
Single-Cell Transcriptomics Reveal Immune Mechanisms of the Onset and Progression of IgA Nephropathy. Cell Rep 2020; 33:108525. [PMID: 33357427 DOI: 10.1016/j.celrep.2020.108525] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/07/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022] Open
Abstract
IgA nephropathy (IgAN) is the leading cause of kidney failure due to an incomplete understanding of its pathogenesis. We perform single-cell RNA sequencing (RNA-seq) on kidneys and CD14+ peripheral blood mononuclear cells (PBMCs) collected from IgAN and normal samples. In IgAN, upregulation of JCHAIN in mesangial cells provides insight into the trigger mechanism for the dimerization and deposition of IgA1 in situ. The pathological mesangium also demonstrates a prominent inflammatory signature and increased cell-cell communication with other renal parenchymal cells and immune cells, suggesting disease progress from the mesangium to the entire kidney. Specific gene expression of kidney-resident macrophages and CD8+ T cells further indicates abnormal regulation associated with proliferation and inflammation. A transitional cell type among intercalated cells with fibrosis signatures is identified, suggesting an adverse outcome of interstitial fibrosis. Altogether, we systematically analyze the molecular events in the onset and progression of IgAN, providing a promising landscape for disease treatment.
Collapse
|
224
|
An In Vitro Differentiation Protocol for Human Embryonic Bipotential Gonad and Testis Cell Development. Stem Cell Reports 2020; 15:1377-1391. [PMID: 33217324 PMCID: PMC7724470 DOI: 10.1016/j.stemcr.2020.10.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 10/21/2020] [Accepted: 10/21/2020] [Indexed: 01/12/2023] Open
Abstract
Currently an in vitro model that fully recapitulates the human embryonic gonad is lacking. Here we describe a fully defined feeder-free protocol to generate early testis-like cells with the ability to be cultured as an organoid, from human induced pluripotent stem cells. This stepwise approach uses small molecules to mimic embryonic development, with upregulation of bipotential gonad markers (LHX9, EMX2, GATA4, and WT1) at day 10 of culture, followed by induction of testis Sertoli cell markers (SOX9, WT1, and AMH) by day 15. Aggregation into 3D structures and extended culture on Transwell filters yielded organoids with defined tissue structures and distinct Sertoli cell marker expression. These studies provide insight into human gonadal development, suggesting that a population of precursor cells may originate from a more lateral region of the mesoderm. Our protocol represents a significant advance toward generating a much-needed human gonad organoid for studying disorders/differences of sex development.
Collapse
|
225
|
Baruah VJ, Paul R, Gogoi D, Mazumder N, Chakraborty S, Das A, Mondal TK, Sarmah B. Integrated computational approach toward discovery of multi-targeted natural products from Thumbai ( Leucas aspera) for attuning NKT cells. J Biomol Struct Dyn 2020; 40:2893-2907. [PMID: 33179569 DOI: 10.1080/07391102.2020.1844056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A multi-omics-based approach targeting the plant-based natural products from Thumbai (Leucas aspera), an important yet untapped potential source of many therapeutic agents for myriads of immunological conditions and genetic disorders, was conceptualized to reconnoiter its potential biomedical application. A library of 79 compounds from this plant was created, out of which 9 compounds qualified the pharmacokinetics parameters. Reverse pharmacophore technique for target fishing of the screened compounds was executed through which renin receptor (ATP6AP2) and thymidylate kinase (DTYMK) were identified as potential targets. Network biology approaches were used to comprehend and validate the functional, biochemical and clinical relevance of the targets. The target-ligand interaction and subsequent stability parameters at molecular scale were investigated using multiple strategies including molecular modeling, pharmacophore approaches and molecular dynamics simulation. Herein, isololiolide and 4-hydroxy-2-methoxycinnamaldehyde were substantiated as the lead molecules exhibiting comparatively the best binding affinity against the two putative protein targets. These natural lead products from L. aspera and the combinatorial effects may have plausible medical applications in a wide variety of neurodegenerative, genetic and developmental disorders. The lead molecules also exhibit promising alternative in diagnostics and therapeutics through immuno-modulation targeting natural killer T-cell function in transplantation-related pathogenesis, autoimmune and other immunological disorders.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Vishwa Jyoti Baruah
- Centre for Biotechnology and Bioinformatics, Dibrugarh University, Dibrugarh, Assam, India
| | - Rasana Paul
- Centre for Biotechnology and Bioinformatics, Dibrugarh University, Dibrugarh, Assam, India
| | - Dhrubajyoti Gogoi
- Centre for Biotechnology and Bioinformatics, Dibrugarh University, Dibrugarh, Assam, India
| | - Nirmal Mazumder
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | | | - Aparoopa Das
- Centre for Biotechnology and Bioinformatics, Dibrugarh University, Dibrugarh, Assam, India
| | - Tapan Kumar Mondal
- ICAR-National Institute for Plant Biotechnology, LBS Centre, IARI Campus, New Delhi, India
| | - Bhaswati Sarmah
- Department of Plant Breeding and Genetics, Assam Agricultural University, Jorhat, Assam, India
| |
Collapse
|
226
|
Hwang YS, Suzuki S, Seita Y, Ito J, Sakata Y, Aso H, Sato K, Hermann BP, Sasaki K. Reconstitution of prospermatogonial specification in vitro from human induced pluripotent stem cells. Nat Commun 2020; 11:5656. [PMID: 33168808 PMCID: PMC7653920 DOI: 10.1038/s41467-020-19350-3] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/09/2020] [Indexed: 12/13/2022] Open
Abstract
Establishment of spermatogonia throughout the fetal and postnatal period is essential for production of spermatozoa and male fertility. Here, we establish a protocol for in vitro reconstitution of human prospermatogonial specification whereby human primordial germ cell (PGC)-like cells differentiated from human induced pluripotent stem cells are further induced into M-prospermatogonia-like cells and T1 prospermatogonia-like cells (T1LCs) using long-term cultured xenogeneic reconstituted testes. Single cell RNA-sequencing is used to delineate the lineage trajectory leading to T1LCs, which closely resemble human T1-prospermatogonia in vivo and exhibit gene expression related to spermatogenesis and diminished proliferation, a hallmark of quiescent T1 prospermatogonia. Notably, this system enables us to visualize the dynamic and stage-specific regulation of transposable elements during human prospermatogonial specification. Together, our findings pave the way for understanding and reconstructing human male germline development in vitro. Spermatogonia establishment in the fetal and postnatal period is essential for spermatozoa production. Here the authors present a protocol for in vitro reconstitution of human prospermatogonial specification and perform single cell RNA-sequencing to delineate lineage trajectories.
Collapse
Affiliation(s)
- Young Sun Hwang
- Institute for Regenerative Medicine, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Shinnosuke Suzuki
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Yasunari Seita
- Institute for Regenerative Medicine, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.,Bell Research Center for Reproductive Health and Cancer, Nagoya, Aichi, Japan
| | - Jumpei Ito
- Division of Systems Virology, Department of infectious Disease Control, International Research Center for infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo, 1088639, Japan
| | - Yuka Sakata
- Institute for Regenerative Medicine, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Hirofumi Aso
- Division of Systems Virology, Department of infectious Disease Control, International Research Center for infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo, 1088639, Japan
| | - Kei Sato
- Division of Systems Virology, Department of infectious Disease Control, International Research Center for infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo, 1088639, Japan
| | - Brian P Hermann
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Kotaro Sasaki
- Institute for Regenerative Medicine, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.
| |
Collapse
|
227
|
Chemicals orchestrate reprogramming with hierarchical activation of master transcription factors primed by endogenous Sox17 activation. Commun Biol 2020; 3:629. [PMID: 33128002 PMCID: PMC7603307 DOI: 10.1038/s42003-020-01346-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 09/11/2020] [Indexed: 11/26/2022] Open
Abstract
Mouse somatic cells can be chemically reprogrammed into pluripotent stem cells (CiPSCs) through an intermediate extraembryonic endoderm (XEN)-like state. However, it is elusive how the chemicals orchestrate the cell fate alteration. In this study, we analyze molecular dynamics in chemical reprogramming from fibroblasts to a XEN-like state. We find that Sox17 is initially activated by the chemical cocktails, and XEN cell fate specialization is subsequently mediated by Sox17 activated expression of other XEN master genes, such as Sall4 and Gata4. Furthermore, this stepwise process is differentially regulated. The core reprogramming chemicals CHIR99021, 616452 and Forskolin are all necessary for Sox17 activation, while differently required for Gata4 and Sall4 expression. The addition of chemical boosters in different phases further improves the generation efficiency of XEN-like cells. Taken together, our work demonstrates that chemical reprogramming is regulated in 3 distinct “prime–specify–transit” phases initiated with endogenous Sox17 activation, providing a new framework to understand cell fate determination. Yang, Xu, Gu et al. demonstrate that activation of endogenous Sox17 pushes fibroblasts to an extraembryonic endoderm-like state in chemically induced reprogramming of somatic cells into stem cells. This study provides insights into how chemicals prime the transition of somatic cells into stem cells.
Collapse
|
228
|
Single-cell patterning and axis characterization in the murine and human definitive endoderm. Cell Res 2020; 31:326-344. [PMID: 33106598 DOI: 10.1038/s41422-020-00426-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 09/28/2020] [Indexed: 12/20/2022] Open
Abstract
Defining the precise regionalization of specified definitive endoderm progenitors is critical for understanding the mechanisms underlying the generation and regeneration of respiratory and digestive organs, yet the patterning of endoderm progenitors remains unresolved, particularly in humans. We performed single-cell RNA sequencing on endoderm cells during the early somitogenesis stages in mice and humans. We developed molecular criteria to define four major endoderm regions (foregut, lip of anterior intestinal portal, midgut, and hindgut) and their developmental pathways. We identified the cell subpopulations in each region and their spatial distributions and characterized key molecular features along the body axes. Dorsal and ventral pancreatic progenitors appear to originate from the midgut population and follow distinct pathways to develop into an identical cell type. Finally, we described the generally conserved endoderm patterning in humans and clear differences in dorsal cell distribution between species. Our study comprehensively defines single-cell endoderm patterning and provides novel insights into the spatiotemporal process that drives establishment of early endoderm domains.
Collapse
|
229
|
Harpelunde Poulsen K, Nielsen JE, Frederiksen H, Melau C, Juul Hare K, Langhoff Thuesen L, Perlman S, Lundvall L, Mitchell RT, Juul A, Rajpert-De Meyts E, Jørgensen A. Dysregulation of FGFR signalling by a selective inhibitor reduces germ cell survival in human fetal gonads of both sexes and alters the somatic niche in fetal testes. Hum Reprod 2020; 34:2228-2243. [PMID: 31734698 PMCID: PMC6994936 DOI: 10.1093/humrep/dez191] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 08/08/2019] [Indexed: 01/03/2023] Open
Abstract
STUDY QUESTION Does experimental manipulation of fibroblast growth factor 9 (FGF9)-signalling in human fetal gonads alter sex-specific gonadal differentiation? SUMMARY ANSWER Inhibition of FGFR signalling following SU5402 treatment impaired germ cell survival in both sexes and severely altered the developing somatic niche in testes, while stimulation of FGF9 signalling promoted Sertoli cell proliferation in testes and inhibited meiotic entry of germ cells in ovaries. WHAT IS KNOWN ALREADY Sex-specific differentiation of bipotential gonads involves a complex signalling cascade that includes a combination of factors promoting either testicular or ovarian differentiation and inhibition of the opposing pathway. In mice, FGF9/FGFR2 signalling has been shown to promote testicular differentiation and antagonize the female developmental pathway through inhibition of WNT4. STUDY DESIGN, SIZE, DURATION FGF signalling was manipulated in human fetal gonads in an established ex vivo culture model by treatments with recombinant FGF9 (25 ng/ml) and the tyrosine kinase inhibitor SU5402 (10 μM) that was used to inhibit FGFR signalling. Human fetal testis and ovary tissues were cultured for 14 days and effects on gonadal development and expression of cell lineage markers were determined. PARTICIPANTS/MATERIALS, SETTING, METHODS Gonadal tissues from 44 male and 33 female embryos/fetuses from first trimester were used for ex vivo culture experiments. Tissues were analyzed by evaluation of histology and immunohistochemical analysis of markers for germ cells, somatic cells, proliferation and apoptosis. Culture media were collected throughout the experimental period and production of steroid hormone metabolites was analyzed in media from fetal testis cultures by liquid chromatography-tandem mass spectrometry (LC-MS/MS). MAIN RESULTS AND THE ROLE OF CHANCE Treatment with SU5402 resulted in near complete loss of gonocytes (224 vs. 14 OCT4+ cells per mm2, P < 0.05) and oogonia (1456 vs. 28 OCT4+ cells per mm2, P < 0.001) in human fetal testes and ovaries, respectively. This was a result of both increased apoptosis and reduced proliferation in the germ cells. Addition of exogenous FGF9 to the culture media resulted in a reduced number of germ cells entering meiosis in fetal ovaries (102 vs. 60 γH2AX+ germ cells per mm2, P < 0.05), while in fetal testes FGF9 stimulation resulted in an increased number of Sertoli cells (2503 vs. 3872 SOX9+ cells per mm2, P < 0.05). In fetal testes, inhibition of FGFR signalling by SU5402 treatment altered seminiferous cord morphology and reduced the AMH expression as well as the number of SOX9-positive Sertoli cells (2503 vs. 1561 SOX9+ cells per mm2, P < 0.05). In interstitial cells, reduced expression of COUP-TFII and increased expression of CYP11A1 and CYP17A1 in fetal Leydig cells was observed, although there were no subsequent changes in steroidogenesis. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION Ex vivo culture may not replicate all aspects of fetal gonadal development and function in vivo. Although the effects of FGF9 were studied in ex vivo culture experiments, there is no direct evidence that FGF9 acts in vivo during human fetal gonadogenesis. The FGFR inhibitor (SU5402) used in this study is not specific to FGFR2 but inhibits all FGF receptors and off-target effects on unrelated tyrosine kinases should be considered. WIDER IMPLICATIONS OF THE FINDINGS The findings of this study suggest that dysregulation of FGFR-mediated signalling may affect both testicular and ovarian development, in particular impacting the fetal germ cell populations in both sexes. STUDY FUNDING/COMPETING INTEREST(S) This work was supported in part by an ESPE Research Fellowship, sponsored by Novo Nordisk A/S to A.JØ. Additional funding was obtained from the Erichsen Family Fund (A.JØ.), the Aase and Ejnar Danielsens Fund (A.JØ.), the Danish Government's support for the EDMaRC programme (A.JU.) and a Wellcome Trust Intermediate Clinical Fellowship (R.T.M., Grant no. 098522). The Medical Research Council (MRC) Centre for Reproductive Health (R.T.M.) is supported by an MRC Centre Grant (MR/N022556/1). The authors have no conflict of interest to disclose.
Collapse
Affiliation(s)
- K Harpelunde Poulsen
- Department of Growth and Reproduction, Copenhagen University Hospital (Rigshospitalet), Blegdamsvej 9, 2100 Copenhagen, Denmark.,International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - J E Nielsen
- Department of Growth and Reproduction, Copenhagen University Hospital (Rigshospitalet), Blegdamsvej 9, 2100 Copenhagen, Denmark.,International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - H Frederiksen
- Department of Growth and Reproduction, Copenhagen University Hospital (Rigshospitalet), Blegdamsvej 9, 2100 Copenhagen, Denmark.,International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - C Melau
- Department of Growth and Reproduction, Copenhagen University Hospital (Rigshospitalet), Blegdamsvej 9, 2100 Copenhagen, Denmark.,International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - K Juul Hare
- Department of Obstetrics and Gynaecology, Hvidovre University Hospital, Kettegård Alle 30, 2650 Hvidovre, Denmark
| | - L Langhoff Thuesen
- Department of Obstetrics and Gynaecology, Hvidovre University Hospital, Kettegård Alle 30, 2650 Hvidovre, Denmark
| | - S Perlman
- Department of Gynaecology, Copenhagen University Hospital (Rigshospitalet), Blegdamsvej 9, Copenhagen 2100, Denmark
| | - L Lundvall
- Department of Gynaecology, Copenhagen University Hospital (Rigshospitalet), Blegdamsvej 9, Copenhagen 2100, Denmark
| | - R T Mitchell
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - A Juul
- Department of Growth and Reproduction, Copenhagen University Hospital (Rigshospitalet), Blegdamsvej 9, 2100 Copenhagen, Denmark.,International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - E Rajpert-De Meyts
- Department of Growth and Reproduction, Copenhagen University Hospital (Rigshospitalet), Blegdamsvej 9, 2100 Copenhagen, Denmark.,International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - A Jørgensen
- Department of Growth and Reproduction, Copenhagen University Hospital (Rigshospitalet), Blegdamsvej 9, 2100 Copenhagen, Denmark.,International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Blegdamsvej 9, 2100 Copenhagen, Denmark
| |
Collapse
|
230
|
Hao J, Yang X, Zhang C, Zhang XT, Shi M, Wang SH, Mi L, Zhao YT, Cao H, Wang Y. KLF3 promotes the 8-cell-like transcriptional state in pluripotent stem cells. Cell Prolif 2020; 53:e12914. [PMID: 32990380 PMCID: PMC7653263 DOI: 10.1111/cpr.12914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/05/2020] [Accepted: 09/06/2020] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVES Mouse embryonic stem cell (mESC) culture contains various heterogeneous populations, which serve as excellent models to study gene regulation in early embryo development. The heterogeneity is typically defined by transcriptional activities, for example, the expression of Nanog or Rex1 mRNA. Our objectives were to identify mESC heterogeneity that are caused by mechanisms other than transcriptional control. MATERIALS AND METHODS Klf3 mRNA and protein were analysed by RT-qPCR, Western blotting or immunofluorescence in mESCs, C2C12 cells, early mouse embryos and various mouse tissues. An ESC reporter line expressing KLF3-GFP fusion protein was made to study heterogeneity of KLF3 protein expression in ESCs. GFP-positive mESCs were sorted for further analysis including RT-qPCR and RNA-seq. RESULTS In the majority of mESCs, KLF3 protein is actively degraded due to its proline-rich sequence and highly disordered structure. Interestingly, KLF3 protein is stabilized in a small subset of mESCs. Transcriptome analysis indicates that KLF3-positive mESCs upregulate genes that are initially activated in 8-cell embryos. Consistently, KLF3 protein but not mRNA is dramatically increased in 8-cell embryos. Forced expression of KLF3 protein in mESCs promotes the expression of 8-cell-embryo activated genes. CONCLUSIONS Our study identifies previously unrecognized heterogeneity due to KLF3 protein expression in mESCs.
Collapse
Affiliation(s)
- Jing Hao
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Xi Yang
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Chao Zhang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Xue-Tao Zhang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Ming Shi
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Shao-Hua Wang
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Li Mi
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Yu-Ting Zhao
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Huiqing Cao
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Yangming Wang
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| |
Collapse
|
231
|
Murase Y, Yabuta Y, Ohta H, Yamashiro C, Nakamura T, Yamamoto T, Saitou M. Long-term expansion with germline potential of human primordial germ cell-like cells in vitro. EMBO J 2020; 39:e104929. [PMID: 32954504 DOI: 10.15252/embj.2020104929] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 12/22/2022] Open
Abstract
Human germ cells perpetuate human genetic and epigenetic information. However, the underlying mechanism remains elusive, due to a lack of appropriate experimental systems. Here, we show that human primordial germ cell-like cells (hPGCLCs) derived from human-induced pluripotent stem cells (hiPSCs) can be propagated to at least ~106 -fold over a period of 4 months under a defined condition in vitro. During expansion, hPGCLCs maintain an early hPGC-like transcriptome and preserve their genome-wide DNA methylation profiles, most likely due to retention of maintenance DNA methyltransferase activity. These characteristics contrast starkly with those of mouse PGCLCs, which, under an analogous condition, show a limited propagation (up to ~50-fold) and persist only around 1 week, yet undergo cell-autonomous genome-wide DNA demethylation. Importantly, upon aggregation culture with mouse embryonic ovarian somatic cells in xenogeneic-reconstituted ovaries, expanded hPGCLCs initiate genome-wide DNA demethylation and differentiate into oogonia/gonocyte-like cells, demonstrating their germline potential. By creating a paradigm for hPGCLC expansion, our study uncovers critical divergences in expansion potential and the mechanism for epigenetic reprogramming between the human and mouse germ cell lineage.
Collapse
Affiliation(s)
- Yusuke Murase
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan.,Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yukihiro Yabuta
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan.,Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroshi Ohta
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan.,Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Chika Yamashiro
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan.,Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tomonori Nakamura
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan.,Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takuya Yamamoto
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan.,Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan.,AMED-CREST, AMED, Tokyo, Japan.,Medical-risk Avoidance Based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto, Japan
| | - Mitinori Saitou
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan.,Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| |
Collapse
|
232
|
Dissecting the epigenomic dynamics of human fetal germ cell development at single-cell resolution. Cell Res 2020; 31:463-477. [PMID: 32884136 PMCID: PMC8115345 DOI: 10.1038/s41422-020-00401-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 08/09/2020] [Indexed: 12/14/2022] Open
Abstract
Proper development of fetal germ cells (FGCs) is vital for the precise transmission of genetic and epigenetic information through generations. The transcriptional landscapes of human FGC development have been revealed; however, the epigenetic reprogramming process of FGCs remains elusive. Here, we profiled the genome-wide DNA methylation and chromatin accessibility of human FGCs at different phases as well as gonadal niche cells at single-cell resolution. First, we found that DNA methylation levels of FGCs changed in a temporal manner, whereas FGCs at different phases in the same embryo exhibited comparable DNA methylation levels and patterns. Second, we revealed the phase-specific chromatin accessibility signatures at the promoter regions of a large set of critical transcription factors and signaling pathway genes. We also identified potential distal regulatory elements including enhancers in FGCs. Third, compared with other hominid-specific retrotransposons, SVA_D might have a broad spectrum of binding capacity for transcription factors, including SOX15 and SOX17. Finally, using an in vitro culture system of human FGCs, we showed that the BMP signaling pathway promoted the cell proliferation of FGCs, and regulated the WNT signaling pathway by orchestrating the chromatin accessibility of its ligand genes. Our single-cell epigenomic atlas and functional assays provide valuable insights for understanding the strongly heterogeneous, unsynchronized, yet highly robust nature of human germ cell development.
Collapse
|
233
|
Kim T, Chen IR, Lin Y, Wang AYY, Yang JYH, Yang P. Impact of similarity metrics on single-cell RNA-seq data clustering. Brief Bioinform 2020; 20:2316-2326. [PMID: 30137247 DOI: 10.1093/bib/bby076] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/01/2018] [Accepted: 08/02/2018] [Indexed: 12/16/2022] Open
Abstract
Advances in high-throughput sequencing on single-cell gene expressions [single-cell RNA sequencing (scRNA-seq)] have enabled transcriptome profiling on individual cells from complex samples. A common goal in scRNA-seq data analysis is to discover and characterise cell types, typically through clustering methods. The quality of the clustering therefore plays a critical role in biological discovery. While numerous clustering algorithms have been proposed for scRNA-seq data, fundamentally they all rely on a similarity metric for categorising individual cells. Although several studies have compared the performance of various clustering algorithms for scRNA-seq data, currently there is no benchmark of different similarity metrics and their influence on scRNA-seq data clustering. Here, we compared a panel of similarity metrics on clustering a collection of annotated scRNA-seq datasets. Within each dataset, a stratified subsampling procedure was applied and an array of evaluation measures was employed to assess the similarity metrics. This produced a highly reliable and reproducible consensus on their performance assessment. Overall, we found that correlation-based metrics (e.g. Pearson's correlation) outperformed distance-based metrics (e.g. Euclidean distance). To test if the use of correlation-based metrics can benefit the recently published clustering techniques for scRNA-seq data, we modified a state-of-the-art kernel-based clustering algorithm (SIMLR) using Pearson's correlation as a similarity measure and found significant performance improvement over Euclidean distance on scRNA-seq data clustering. These findings demonstrate the importance of similarity metrics in clustering scRNA-seq data and highlight Pearson's correlation as a favourable choice. Further comparison on different scRNA-seq library preparation protocols suggests that they may also affect clustering performance. Finally, the benchmarking framework is available at http://www.maths.usyd.edu.au/u/SMS/bioinformatics/software.html.
Collapse
Affiliation(s)
- Taiyun Kim
- School of Mathematics and Statistics, The University of Sydney, Sydney, NSW 2006, Australia
| | - Irene Rui Chen
- School of Mathematics and Statistics, The University of Sydney, Sydney, NSW 2006, Australia
| | - Yingxin Lin
- School of Mathematics and Statistics, The University of Sydney, Sydney, NSW 2006, Australia
| | - Andy Yi-Yang Wang
- Department of Anaesthesia, The University of Sydney Northern Clinical School, The University of Sydney, Sydney, NSW 2006, Australia
| | - Jean Yee Hwa Yang
- School of Mathematics and Statistics, The University of Sydney, Sydney, NSW 2006, Australia
| | - Pengyi Yang
- School of Mathematics and Statistics, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
234
|
Li Y, Shen Y, Li J, Cai M, Qin Z. Transcriptomic analysis identifies early cellular and molecular events by which estrogen disrupts testis differentiation and causes feminization in Xenopus laevis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 226:105557. [PMID: 32645606 DOI: 10.1016/j.aquatox.2020.105557] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/23/2020] [Accepted: 06/26/2020] [Indexed: 06/11/2023]
Abstract
Extensive studies have shown that estrogenic endocrine-disrupting chemicals (EDCs) can disrupt testis differentiation and even cause feminization in vertebrates. However, little is known about the mechanisms by which estrogenic EDCs disrupt testis differentiation. Here, we employed Xenopus laevis, a model amphibian species sensitive to estrogenic EDCs, to explore the molecular and cellular events by which 17β-estradiol (E2) disrupts testis differentiation and causes feminization. Following waterborne exposure to E2 from stage 45/46, genetically male X. laevis were confirmed to undergo testis differentiation inhibition and ovary differentiation activation at stages 52 and 53, ultimately displaying gonadal feminization at stage 66. Using a time-course RNA sequencing approach, we then identified thousands of differentially expressed transcripts (DETs) in genetically male gonad-mesonephros complexes at stages 48, 50 and 52 (the window for testis differentiation) between E2 treatment and the control. Enrichment analysis suggests alterations in cell proliferation, extracellular matrix, and cell motility following E2 exposure. Further verification by multiple methods demonstrated that E2 inhibited cell proliferation, disrupted extracellular matrix, and altered cell motility in the genetically male gonads compared with controls, implying that these events together contributed to testis differentiation disruptions and feminization in X. laevis. This study for the first time uncovered some of the early molecular and cellular events by which estrogen disrupts testicular differentiation and causes feminization in X. laevis. These new findings improve our understanding of the mechanisms by which estrogenic EDCs disrupt testicular differentiation in vertebrates.
Collapse
Affiliation(s)
- Yuanyuan Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanping Shen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinbo Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Man Cai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Zhanfen Qin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
235
|
Shangguan Y, Li C, Lin H, Ou M, Tang D, Dai Y, Yan Q. Application of single-cell RNA sequencing in embryonic development. Genomics 2020; 112:4547-4551. [PMID: 32781204 DOI: 10.1016/j.ygeno.2020.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 12/20/2022]
Abstract
Embryonic development is a complex process that is regulated by a series of precise cellular behaviours. The limited number of cells in the early stages of embryonic development represents a challenge for studying early gene regulation and maintaining cell sternness. Single-cell sequencing is a new technology for high-throughput sequencing analysis at the single-cell level that not only reflects the heterogeneity between cells but also reveals gene expression characteristics in different cells from limited samples. Currently, the widespread application of single-cell RNA sequencing technology is gradually changing our understanding of disease pathogenesis. This article reviews the application of single-cell RNA sequencing in embryonic development in recent years and provides innovative ideas for research on embryonic development and the treatment of diseases related to embryonic development.
Collapse
Affiliation(s)
- Yu Shangguan
- College of Life Science, Guangxi Normal University, Guilin, Guangxi 541004, China; Organ transplantion center of Guilin 924st Hospital, Guangxi Key Laboratory of Metabolic Disease Research, Guilin, Guangxi 541002, China; Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen 518020, China
| | - Chunhong Li
- College of Life Science, Guangxi Normal University, Guilin, Guangxi 541004, China; Organ transplantion center of Guilin 924st Hospital, Guangxi Key Laboratory of Metabolic Disease Research, Guilin, Guangxi 541002, China; Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen 518020, China
| | - Hua Lin
- Organ transplantion center of Guilin 924st Hospital, Guangxi Key Laboratory of Metabolic Disease Research, Guilin, Guangxi 541002, China
| | - Minglin Ou
- Organ transplantion center of Guilin 924st Hospital, Guangxi Key Laboratory of Metabolic Disease Research, Guilin, Guangxi 541002, China
| | - Donge Tang
- Organ transplantion center of Guilin 924st Hospital, Guangxi Key Laboratory of Metabolic Disease Research, Guilin, Guangxi 541002, China; Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen 518020, China.
| | - Yong Dai
- Organ transplantion center of Guilin 924st Hospital, Guangxi Key Laboratory of Metabolic Disease Research, Guilin, Guangxi 541002, China; Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen 518020, China.
| | - Qiang Yan
- College of Life Science, Guangxi Normal University, Guilin, Guangxi 541004, China; Organ transplantion center of Guilin 924st Hospital, Guangxi Key Laboratory of Metabolic Disease Research, Guilin, Guangxi 541002, China.
| |
Collapse
|
236
|
Du X, Wu S, Wei Y, Yu X, Ma F, Zhai Y, Yang D, Zhang M, Liu W, Zhu H, Wu J, Liao M, Li N, Bai C, Li G, Hua J. PAX7 promotes CD49f-positive dairy goat spermatogonial stem cells' self-renewal. J Cell Physiol 2020; 236:1481-1493. [PMID: 32692417 DOI: 10.1002/jcp.29954] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 01/15/2023]
Abstract
Spermatogenesis is a complex process that originates from and depends on the spermatogonial stem cells (SSCs). The number of SSCs is rare, which makes the separation and enrichment of SSCs difficult and inefficient. The transcription factor PAX7 maintains fertility in normal spermatogenesis in mice. However, for large animals, much less is known about the SSCs' self-renewal regulation, especially in dairy goats. We isolated and enriched the CD49f-positive and negative dairy goat testicular cells by magnetic-activated cell sorting strategies. The RNA- sequencing and experimental data revealed that cells with a high CD49f and PAX7 expression are undifferentiated spermatogonia in goat testis. Our findings indicated that ZBTB16 (PLZF), PAX7, LIN28A, BMPR1B, FGFR1, and FOXO1 were expressed higher in CD49f-positive cells as compared to negative cells and goat fibroblasts cells. The expression and distribution of PAX7 in dairy goat also have been detected, which gradually decreased in testis tissue along with the increasing age. When the PAX7 gene was overexpressed in dairy goat immortal mGSCs-I-SB germ cell lines, the expression of PLZF, GFRα1, ID4, and OCT4 was upregulated. Together, our data demonstrated that there is a subset of spermatogonial stem cells with a high expression of PAX7 among the CD49f+ spermatogonia, and PAX7 can maintain the self-renewal of CD49f-positive SSCs.
Collapse
Affiliation(s)
- Xiaomin Du
- College of Veterinary Medicine, Northwest A&F University, Shaanxi Centre of Stem Cells Engineering & Technology, Yangling, Shaanxi, China
| | - Siyu Wu
- College of Veterinary Medicine, Northwest A&F University, Shaanxi Centre of Stem Cells Engineering & Technology, Yangling, Shaanxi, China
| | - Yudong Wei
- College of Veterinary Medicine, Northwest A&F University, Shaanxi Centre of Stem Cells Engineering & Technology, Yangling, Shaanxi, China
| | - Xiuwei Yu
- College of Veterinary Medicine, Northwest A&F University, Shaanxi Centre of Stem Cells Engineering & Technology, Yangling, Shaanxi, China
| | - Fanglin Ma
- College of Veterinary Medicine, Northwest A&F University, Shaanxi Centre of Stem Cells Engineering & Technology, Yangling, Shaanxi, China
| | - Yuanxin Zhai
- College of Veterinary Medicine, Northwest A&F University, Shaanxi Centre of Stem Cells Engineering & Technology, Yangling, Shaanxi, China
| | - Donghui Yang
- College of Veterinary Medicine, Northwest A&F University, Shaanxi Centre of Stem Cells Engineering & Technology, Yangling, Shaanxi, China
| | - Mengfei Zhang
- College of Veterinary Medicine, Northwest A&F University, Shaanxi Centre of Stem Cells Engineering & Technology, Yangling, Shaanxi, China
| | - Wenqing Liu
- College of Veterinary Medicine, Northwest A&F University, Shaanxi Centre of Stem Cells Engineering & Technology, Yangling, Shaanxi, China
| | - Haijing Zhu
- College of Veterinary Medicine, Northwest A&F University, Shaanxi Centre of Stem Cells Engineering & Technology, Yangling, Shaanxi, China.,Life Science Research Center, Yulin University, Yulin, Shaanxi, China
| | - Jiang Wu
- College of Veterinary Medicine, Northwest A&F University, Shaanxi Centre of Stem Cells Engineering & Technology, Yangling, Shaanxi, China.,College of Agriculture, Guangdong Ocean University, Zhanjiang, China
| | - Mingzhi Liao
- College of Life Science, Northwest A&F University, Yangling, Shaanxi, China
| | - Na Li
- College of Veterinary Medicine, Northwest A&F University, Shaanxi Centre of Stem Cells Engineering & Technology, Yangling, Shaanxi, China
| | - Chunling Bai
- Key Laboratory for Mammalian Reproductive Biology and Biotechnology, Ministry of Education, Inner Mongolia University, Hohhot, China
| | - Guangpeng Li
- Key Laboratory for Mammalian Reproductive Biology and Biotechnology, Ministry of Education, Inner Mongolia University, Hohhot, China
| | - Jinlian Hua
- College of Veterinary Medicine, Northwest A&F University, Shaanxi Centre of Stem Cells Engineering & Technology, Yangling, Shaanxi, China
| |
Collapse
|
237
|
Lu CJ, Fan XY, Guo YF, Cheng ZC, Dong J, Chen JZ, Li LY, Wang MW, Wu ZK, Wang F, Tong XJ, Luo LF, Tang FC, Zhu ZY, Zhang B. Single-cell analyses identify distinct and intermediate states of zebrafish pancreatic islet development. J Mol Cell Biol 2020; 11:435-447. [PMID: 30407522 PMCID: PMC6604604 DOI: 10.1093/jmcb/mjy064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 10/31/2018] [Accepted: 11/08/2018] [Indexed: 12/13/2022] Open
Abstract
Pancreatic endocrine islets are vital for glucose homeostasis. However, the islet developmental trajectory and its regulatory network are not well understood. To define the features of these specification and differentiation processes, we isolated individual islet cells from TgBAC(neurod1:EGFP) transgenic zebrafish and analyzed islet developmental dynamics across four different embryonic stages using a single-cell RNA-seq strategy. We identified proliferative endocrine progenitors, which could be further categorized by different cell cycle phases with the G1/S subpopulation displaying a distinct differentiation potential. We identified endocrine precursors, a heterogeneous intermediate-state population consisting of lineage-primed alpha, beta and delta cells that were characterized by the expression of lineage-specific transcription factors and relatively low expression of terminally differentiation markers. The terminally differentiated alpha, beta, and delta cells displayed stage-dependent differentiation states, which were related to their functional maturation. Our data unveiled distinct states, events and molecular features during the islet developmental transition, and provided resources to comprehensively understand the lineage hierarchy of islet development at the single-cell level.
Collapse
Affiliation(s)
- Chong-Jian Lu
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - Xiao-Ying Fan
- Beijing Advanced Innovation Center for Genomics (ICG), College of Life Sciences, Peking University, Beijing, China
| | - Yue-Feng Guo
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - Zhen-Chao Cheng
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - Ji Dong
- Beijing Advanced Innovation Center for Genomics (ICG), College of Life Sciences, Peking University, Beijing, China
| | - Jin-Zi Chen
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Chongqing, China
| | - Lian-Yan Li
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - Mei-Wen Wang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - Ze-Kai Wu
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - Fei Wang
- National Center for Protein Sciences, Peking University, Beijing, China
| | - Xiang-Jun Tong
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - Ling-Fei Luo
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Chongqing, China
| | - Fu-Chou Tang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China.,Beijing Advanced Innovation Center for Genomics (ICG), College of Life Sciences, Peking University, Beijing, China
| | - Zuo-Yan Zhu
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - Bo Zhang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| |
Collapse
|
238
|
Zheng W, Zhou Z, Sha Q, Niu X, Sun X, Shi J, Zhao L, Zhang S, Dai J, Cai S, Meng F, Hu L, Gong F, Li X, Fu J, Shi R, Lu G, Chen B, Fan H, Wang L, Lin G, Sang Q. Homozygous Mutations in BTG4 Cause Zygotic Cleavage Failure and Female Infertility. Am J Hum Genet 2020; 107:24-33. [PMID: 32502391 DOI: 10.1016/j.ajhg.2020.05.010] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/12/2020] [Indexed: 02/07/2023] Open
Abstract
Zygotic cleavage failure (ZCF) is a unique early embryonic phenotype resulting in female infertility and recurrent failure of in vitro fertilization (IVF) and/or intracytoplasmic sperm injection (ICSI). With this phenotype, morphologically normal oocytes can be retrieved and successfully fertilized, but they fail to undergo cleavage. Until now, whether this phenotype has a Mendelian inheritance pattern and which underlying genetic factors play a role in its development remained to be elucidated. B cell translocation gene 4 (BTG4) is a key adaptor of the CCR4-NOT deadenylase complex, which is involved in maternal mRNA decay in mice, but no human diseases caused by mutations in BTG4 have previously been reported. Here, we identified four homozygous mutations in BTG4 (GenBank: NM_017589.4) that are responsible for the phenotype of ZCF, and we found they followed a recessive inheritance pattern. Three of them-c.73C>T (p.Gln25Ter), c.1A>G (p.?), and c.475_478del (p.Ile159LeufsTer15)-resulted in complete loss of full-length BTG4 protein. For c.166G>A (p.Ala56Thr), although the protein level and distribution of mutant BTG4 was not altered in zygotes from affected individuals or in HeLa cells, the interaction between BTG4 and CNOT7 was abolished. In vivo studies further demonstrated that the process of maternal mRNA decay was disrupted in the zygotes of the affected individuals, which provides a mechanistic explanation for the phenotype of ZCF. Thus, we provide evidence that ZCF is a Mendelian phenotype resulting from mutations in BTG4. These findings contribute to our understanding of the role of BTG4 in human early embryonic development and provide a genetic marker for female infertility.
Collapse
Affiliation(s)
- Wei Zheng
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410078, China
| | - Zhou Zhou
- Institute of Pediatrics, Children's Hospital of Fudan University and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology and Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Qianqian Sha
- Fertility Preservation Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Xiangli Niu
- Reproductive Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Xiaoxi Sun
- Shanghai Ji Ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Juanzi Shi
- Reproductive Medicine Center, Shaanxi Maternal and Child Care Service Center, Shaanxi, 710069, China
| | - Lei Zhao
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410078, China
| | - Shuoping Zhang
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410078, China
| | - Jing Dai
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410078, China
| | - Sufen Cai
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410078, China
| | - Fei Meng
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410078, China
| | - Liang Hu
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410078, China; Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410078, China; Laboratory of Reproductive and Stem Cell Engineering, National Health and Family Planning Commission, Changsha, 410078, China
| | - Fei Gong
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410078, China; Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410078, China; Laboratory of Reproductive and Stem Cell Engineering, National Health and Family Planning Commission, Changsha, 410078, China
| | - Xiaoran Li
- Reproductive Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Jing Fu
- Shanghai Ji Ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Rong Shi
- Reproductive Medicine Center, Shaanxi Maternal and Child Care Service Center, Shaanxi, 710069, China
| | - Guangxiu Lu
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410078, China; Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410078, China; Laboratory of Reproductive and Stem Cell Engineering, National Health and Family Planning Commission, Changsha, 410078, China
| | - Biaobang Chen
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai, 200032, China
| | - Hengyu Fan
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Lei Wang
- Institute of Pediatrics, Children's Hospital of Fudan University and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology and Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China; Shanghai Center for Women and Children's Health, Shanghai, 200062, China
| | - Ge Lin
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410078, China; Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410078, China; Laboratory of Reproductive and Stem Cell Engineering, National Health and Family Planning Commission, Changsha, 410078, China.
| | - Qing Sang
- Institute of Pediatrics, Children's Hospital of Fudan University and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology and Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
239
|
Li J, Wang R, Zhou X, Wang W, Gao S, Mao Y, Wu X, Guo L, Liu H, Wen L, Fu W, Tang F. Genomic and transcriptomic profiling of carcinogenesis in patients with familial adenomatous polyposis. Gut 2020; 69:1283-1293. [PMID: 31744909 PMCID: PMC7306982 DOI: 10.1136/gutjnl-2019-319438] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 10/22/2019] [Accepted: 10/24/2019] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Familial adenomatous polyposis (FAP) is characterised by the development of hundreds to thousands of adenomas at different evolutionary stages in the colon and rectum that will inevitably progress to adenocarcinomas if left untreated. Here, we investigated the genetic alterations and transcriptomic transitions from precancerous adenoma to carcinoma. DESIGN Whole-exome sequencing, whole-genome sequencing and single-cell RNA sequencing were performed on matched adjacent normal tissues, multiregionally sampled adenomas at different stages and carcinomas from six patients with FAP and one patient with MUTYH-associated polyposis (n=56 exomes, n=56 genomes and n=8,757 single cells). Genomic alterations (including copy number alterations and somatic mutations), clonal architectures and transcriptome dynamics during adenocarcinoma carcinogenesis were comprehensively investigated. RESULTS Genomic evolutionary analysis showed that adjacent lesions from the same patient with FAP can originate from the same cancer-primed cell. In addition, the tricarboxylic acid cycle pathway was strongly repressed in adenomas and was then slightly alleviated in carcinomas. Cells from the 'normal' colon epithelium of patients with FAP already showed metabolic reprogramming compared with cells from the normal colon epithelium of patients with sporadic colorectal cancer. CONCLUSIONS The process described in the previously reported field cancerisation model also occurs in patients with FAP and can contribute to the formation of adjacent lesions in patients with FAP. Reprogramming of carbohydrate metabolism has already occurred at the precancerous adenoma stage. Our study provides an accurate picture of the genomic and transcriptomic landscapes during the initiation and progression of carcinogenesis, especially during the transition from adenoma to carcinoma.
Collapse
Affiliation(s)
- Jingyun Li
- Beijing Advanced Innovation Center for Genomics, Department of General Surgery, College of Life Sciences, Third Hospital, Peking University, Beijing, China,Biomedical Pioneering Innovation Center & Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China,Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Rui Wang
- Beijing Advanced Innovation Center for Genomics, Department of General Surgery, College of Life Sciences, Third Hospital, Peking University, Beijing, China,Biomedical Pioneering Innovation Center & Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China,Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Xin Zhou
- Beijing Advanced Innovation Center for Genomics, Department of General Surgery, College of Life Sciences, Third Hospital, Peking University, Beijing, China
| | - Wendong Wang
- Beijing Advanced Innovation Center for Genomics, Department of General Surgery, College of Life Sciences, Third Hospital, Peking University, Beijing, China
| | - Shuai Gao
- Beijing Advanced Innovation Center for Genomics, Department of General Surgery, College of Life Sciences, Third Hospital, Peking University, Beijing, China
| | - Yunuo Mao
- Beijing Advanced Innovation Center for Genomics, Department of General Surgery, College of Life Sciences, Third Hospital, Peking University, Beijing, China
| | - Xinglong Wu
- Beijing Advanced Innovation Center for Genomics, Department of General Surgery, College of Life Sciences, Third Hospital, Peking University, Beijing, China
| | - Limei Guo
- Department of Pathology, School of Basic Medical Sciences, Third Hospital, Peking University Health Science Center, Peking University, Beijing, China
| | - Haijing Liu
- Department of Pathology, School of Basic Medical Sciences, Third Hospital, Peking University Health Science Center, Peking University, Beijing, China
| | - Lu Wen
- Beijing Advanced Innovation Center for Genomics, Department of General Surgery, College of Life Sciences, Third Hospital, Peking University, Beijing, China
| | - Wei Fu
- Beijing Advanced Innovation Center for Genomics, Department of General Surgery, College of Life Sciences, Third Hospital, Peking University, Beijing, China
| | - Fuchou Tang
- Beijing Advanced Innovation Center for Genomics, Department of General Surgery, College of Life Sciences, Third Hospital, Peking University, Beijing, China .,Biomedical Pioneering Innovation Center & Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.,Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| |
Collapse
|
240
|
Liu X, Chen Y, Tang W, Zhang L, Chen W, Yan Z, Yuan P, Yang M, Kong S, Yan L, Qiao J. Single-cell transcriptome analysis of the novel coronavirus (SARS-CoV-2) associated gene ACE2 expression in normal and non-obstructive azoospermia (NOA) human male testes. SCIENCE CHINA. LIFE SCIENCES 2020; 63:1006-1015. [PMID: 32361911 PMCID: PMC7195615 DOI: 10.1007/s11427-020-1705-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 04/21/2020] [Indexed: 01/05/2023]
Abstract
Being infected by SARS-CoV-2 may cause damage to multiple organs in patients, such as the lung, liver and heart. Angiotensin-converting enzyme 2 (ACE2), reported as a SARS-CoV-2 receptor, is also expressed in human male testes. This suggests a potential risk in human male reproductive system. However, the characteristics of ACE2-positive cells and the expression of other SARS-CoV-2 process-related genes are still worthy of further investigation. Here, we performed singlecell RNA seq (scRNA-seq) analysis on 853 male embryo primordial germ cells (PGCs) and 2,854 normal testis cells to assess the effects of the SARS-CoV-2 virus on the male reproductive system from embryonic stage to adulthood. We also collected and constructed the scRNA-seq library on 228 Sertoli cells from three non-obstructive azoospermia (NOA) patients to assess the effects at disease state. We found that ACE2 expressing cells existed in almost all testis cell types and Sertoli cells had highest expression level and positive cells ratio. Moreover, ACE2 was also expressed in human male PGCs. In adulthood, the level of ACE2 expression decreased with the increase of age. We also found that ACE2 positive cells had high expressions of stress response and immune activation-related genes. Interestingly, some potential SARS-CoV-2 process-related genes such as TMPRSS2, BSG, CTSL and CTSB had different expression patterns in the same cell type. Furthermore, ACE2 expression level in NOA donors' Sertoli cells was significantly decreased. Our work would help to assess the risk of SARS-CoV-2 infection in the male reproductive system.
Collapse
Affiliation(s)
- Xixi Liu
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, Third Hospital, College of Life Sciences, Peking University, Beijing, 100871, China
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
| | - Yidong Chen
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, Third Hospital, College of Life Sciences, Peking University, Beijing, 100871, China
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Wenhao Tang
- Department of Urology, Peking University Third Hospital, Beijing, 100191, China
| | - Li Zhang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Wei Chen
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, Third Hospital, College of Life Sciences, Peking University, Beijing, 100871, China
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Zhiqiang Yan
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, Third Hospital, College of Life Sciences, Peking University, Beijing, 100871, China
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Peng Yuan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
| | - Ming Yang
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, Third Hospital, College of Life Sciences, Peking University, Beijing, 100871, China
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Siming Kong
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, Third Hospital, College of Life Sciences, Peking University, Beijing, 100871, China
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Liying Yan
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, Third Hospital, College of Life Sciences, Peking University, Beijing, 100871, China.
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China.
- National Clinical Research Center for Obstetrics and Gynecology, Beijing, 100191, China.
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China.
| | - Jie Qiao
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, Third Hospital, College of Life Sciences, Peking University, Beijing, 100871, China.
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China.
- National Clinical Research Center for Obstetrics and Gynecology, Beijing, 100191, China.
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China.
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.
| |
Collapse
|
241
|
Liu B, Li C, Li Z, Wang D, Ren X, Zhang Z. An entropy-based metric for assessing the purity of single cell populations. Nat Commun 2020; 11:3155. [PMID: 32572028 PMCID: PMC7308400 DOI: 10.1038/s41467-020-16904-3] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 05/29/2020] [Indexed: 12/26/2022] Open
Abstract
Single-cell RNA sequencing (scRNA-seq) is a versatile tool for discovering and annotating cell types and states, but the determination and annotation of cell subtypes is often subjective and arbitrary. Often, it is not even clear whether a given cluster is uniform. Here we present an entropy-based statistic, ROGUE, to accurately quantify the purity of identified cell clusters. We demonstrate that our ROGUE metric is broadly applicable, and enables accurate, sensitive and robust assessment of cluster purity on a wide range of simulated and real datasets. Applying this metric to fibroblast, B cell and brain data, we identify additional subtypes and demonstrate the application of ROGUE-guided analyses to detect precise signals in specific subpopulations. ROGUE can be applied to all tested scRNA-seq datasets, and has important implications for evaluating the quality of putative clusters, discovering pure cell subtypes and constructing comprehensive, detailed and standardized single cell atlas.
Collapse
Affiliation(s)
- Baolin Liu
- School of Life Sciences, BIOPIC and Beijing Advanced Innovation Centre for Genomics, Peking University, Beijing, China
| | - Chenwei Li
- Peking-Tsinghua Centre for Life Sciences, Peking University, Beijing, China.,Analytical Biosciences Limited, Beijing, China
| | - Ziyi Li
- School of Life Sciences, BIOPIC and Beijing Advanced Innovation Centre for Genomics, Peking University, Beijing, China
| | - Dongfang Wang
- School of Life Sciences, BIOPIC and Beijing Advanced Innovation Centre for Genomics, Peking University, Beijing, China
| | - Xianwen Ren
- School of Life Sciences, BIOPIC and Beijing Advanced Innovation Centre for Genomics, Peking University, Beijing, China
| | - Zemin Zhang
- School of Life Sciences, BIOPIC and Beijing Advanced Innovation Centre for Genomics, Peking University, Beijing, China. .,Peking-Tsinghua Centre for Life Sciences, Peking University, Beijing, China. .,Analytical Biosciences Limited, Beijing, China.
| |
Collapse
|
242
|
Darde TA, Lecluze E, Lardenois A, Stévant I, Alary N, Tüttelmann F, Collin O, Nef S, Jégou B, Rolland AD, Chalmel F. The ReproGenomics Viewer: a multi-omics and cross-species resource compatible with single-cell studies for the reproductive science community. Bioinformatics 2020; 35:3133-3139. [PMID: 30668675 DOI: 10.1093/bioinformatics/btz047] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 01/07/2019] [Accepted: 01/17/2019] [Indexed: 12/22/2022] Open
Abstract
MOTIVATION Recent advances in transcriptomics have enabled unprecedented insight into gene expression analysis at a single-cell resolution. While it is anticipated that the number of publications based on such technologies will increase in the next decade, there is currently no public resource to centralize and enable scientists to explore single-cell datasets published in the field of reproductive biology. RESULTS Here, we present a major update of the ReproGenomics Viewer, a cross-species and cross-technology web-based resource of manually-curated sequencing datasets related to reproduction. The redesign of the ReproGenomics Viewer's architecture is accompanied by significant growth of the database content including several landmark single-cell RNA-sequencing datasets. The implementation of additional tools enables users to visualize and browse the complex, high-dimensional data now being generated in the reproductive field. AVAILABILITY AND IMPLEMENTATION The ReproGenomics Viewer resource is freely accessible at http://rgv.genouest.org. The website is implemented in Python, JavaScript and MongoDB, and is compatible with all major browsers. Source codes can be downloaded from https://github.com/fchalmel/RGV. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Thomas A Darde
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes F-35000, France
| | - Estelle Lecluze
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes F-35000, France
| | - Aurélie Lardenois
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes F-35000, France
| | - Isabelle Stévant
- Department of Genetic Medicine and Development, University of Geneva, Geneva 1211, Switzerland
| | - Nathan Alary
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes F-35000, France
| | - Frank Tüttelmann
- Institute of Human Genetics, University of Münster, Münster, Germany
| | - Olivier Collin
- Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA/INRIA) - GenOuest platform, Université de Rennes 1, Rennes F-35042, France
| | - Serge Nef
- Department of Genetic Medicine and Development, University of Geneva, Geneva 1211, Switzerland
| | - Bernard Jégou
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes F-35000, France
| | - Antoine D Rolland
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes F-35000, France
| | - Frédéric Chalmel
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes F-35000, France
| |
Collapse
|
243
|
Lin S, Fang L, Kang X, Liu S, Liu M, Connor EE, Baldwin RL, Liu G, Li CJ. Establishment and transcriptomic analyses of a cattle rumen epithelial primary cells (REPC) culture by bulk and single-cell RNA sequencing to elucidate interactions of butyrate and rumen development. Heliyon 2020; 6:e04112. [PMID: 32551379 PMCID: PMC7287249 DOI: 10.1016/j.heliyon.2020.e04112] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/28/2020] [Accepted: 05/28/2020] [Indexed: 11/26/2022] Open
Abstract
As a critical and high-value tool to study the development of rumen, we established a stable rumen epithelial primary cell (REPC) culture from a two-week-old Holstein bull calf rumen epithelial tissue. The transcriptomic profiling of the REPC and the direct effects of butyrate on gene expression were assessed. Correlated gene networks elucidated the putative roles and mechanisms of butyrate action in rumen epithelial development. The top networks perturbed by butyrate were associated with epithelial tissue development. Additionally, two critical upstream regulators, E2F1 and TGFB1, were identified to play critical roles in the differentiation, development, and growth of epithelial cells. Significant expression changes of upstream regulators and transcription factors provided further evidence in support that butyrate plays a specific and central role in regulating genomic and epigenomic activities influencing rumen development. This work is the essential component to obtain a complete global landscape of regulatory elements in cattle and to explore the dynamics of chromatin states in rumen epithelial cells induced by butyrate at early developmental stages.
Collapse
Affiliation(s)
- Shudai Lin
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, MD, USA.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science of South China Agricultural University, Guangzhou, 510642, China
| | - Lingzhao Fang
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, MD, USA.,Medical Research Council Human Genetics Unit at the Medical Research Council Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, United Kingdom
| | - Xiaolong Kang
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, MD, USA.,College of Agriculture, Ningxia University, Yinchuan, 750021, China
| | - Shuli Liu
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, MD, USA.,College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Mei Liu
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, MD, USA.,College of Animal Science and Technology, Shaanxi Key Laboratory of Agricultural Molecular Biology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Erin E Connor
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, MD, USA
| | - Ransom L Baldwin
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, MD, USA
| | - George Liu
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, MD, USA
| | - Cong-Jun Li
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, MD, USA
| |
Collapse
|
244
|
Cabello-Aguilar S, Alame M, Kon-Sun-Tack F, Fau C, Lacroix M, Colinge J. SingleCellSignalR: inference of intercellular networks from single-cell transcriptomics. Nucleic Acids Res 2020; 48:e55. [PMID: 32196115 PMCID: PMC7261168 DOI: 10.1093/nar/gkaa183] [Citation(s) in RCA: 223] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/23/2020] [Accepted: 03/10/2020] [Indexed: 12/17/2022] Open
Abstract
Single-cell transcriptomics offers unprecedented opportunities to infer the ligand-receptor (LR) interactions underlying cellular networks. We introduce a new, curated LR database and a novel regularized score to perform such inferences. For the first time, we try to assess the confidence in predicted LR interactions and show that our regularized score outperforms other scoring schemes while controlling false positives. SingleCellSignalR is implemented as an open-access R package accessible to entry-level users and available from https://github.com/SCA-IRCM. Analysis results come in a variety of tabular and graphical formats. For instance, we provide a unique network view integrating all the intercellular interactions, and a function relating receptors to expressed intracellular pathways. A detailed comparison of related tools is conducted. Among various examples, we demonstrate SingleCellSignalR on mouse epidermis data and discover an oriented communication structure from external to basal layers.
Collapse
Affiliation(s)
- Simon Cabello-Aguilar
- Institut de Recherche en Cancérologie de Montpellier, Inserm, F-34298 Montpellier, France
- Institut régional du Cancer Montpellier, F-34298 Montpellier, France
- Université de Montpellier, F-34090 Montpellier, France
| | - Mélissa Alame
- Institut de Recherche en Cancérologie de Montpellier, Inserm, F-34298 Montpellier, France
- Institut régional du Cancer Montpellier, F-34298 Montpellier, France
- Université de Montpellier, F-34090 Montpellier, France
- Département d’Hématologie Biologique, CHU Montpellier, Hôpital Saint Eloi, F-34090 Montpellier, France
| | - Fabien Kon-Sun-Tack
- Institut de Recherche en Cancérologie de Montpellier, Inserm, F-34298 Montpellier, France
- Institut régional du Cancer Montpellier, F-34298 Montpellier, France
- Université de Montpellier, F-34090 Montpellier, France
| | - Caroline Fau
- Institut de Recherche en Cancérologie de Montpellier, Inserm, F-34298 Montpellier, France
- Institut régional du Cancer Montpellier, F-34298 Montpellier, France
- Université de Montpellier, F-34090 Montpellier, France
| | - Matthieu Lacroix
- Institut de Recherche en Cancérologie de Montpellier, Inserm, F-34298 Montpellier, France
- Institut régional du Cancer Montpellier, F-34298 Montpellier, France
- Université de Montpellier, F-34090 Montpellier, France
| | - Jacques Colinge
- Institut de Recherche en Cancérologie de Montpellier, Inserm, F-34298 Montpellier, France
- Institut régional du Cancer Montpellier, F-34298 Montpellier, France
- Université de Montpellier, F-34090 Montpellier, France
| |
Collapse
|
245
|
Shao X, Lu X, Liao J, Chen H, Fan X. New avenues for systematically inferring cell-cell communication: through single-cell transcriptomics data. Protein Cell 2020; 11:866-880. [PMID: 32435978 PMCID: PMC7719148 DOI: 10.1007/s13238-020-00727-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/12/2020] [Indexed: 12/13/2022] Open
Abstract
For multicellular organisms, cell-cell communication is essential to numerous biological processes. Drawing upon the latest development of single-cell RNA-sequencing (scRNA-seq), high-resolution transcriptomic data have deepened our understanding of cellular phenotype heterogeneity and composition of complex tissues, which enables systematic cell-cell communication studies at a single-cell level. We first summarize a common workflow of cell-cell communication study using scRNA-seq data, which often includes data preparation, construction of communication networks, and result validation. Two common strategies taken to uncover cell-cell communications are reviewed, e.g., physically vicinal structure-based and ligand-receptor interaction-based one. To conclude, challenges and current applications of cell-cell communication studies at a single-cell resolution are discussed in details and future perspectives are proposed.
Collapse
Affiliation(s)
- Xin Shao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaoyan Lu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jie Liao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Huajun Chen
- College of Computer Science and Technology, Zhejiang University, Hangzhou, 310027, China.,The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Xiaohui Fan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China. .,The Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2000, Australia.
| |
Collapse
|
246
|
Deciphering human macrophage development at single-cell resolution. Nature 2020; 582:571-576. [DOI: 10.1038/s41586-020-2316-7] [Citation(s) in RCA: 177] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 03/11/2020] [Indexed: 01/20/2023]
|
247
|
Abstract
PURPOSE OF REVIEW Emerging single-cell RNA sequencing technologies hold great promises to boost our understanding of the heterogeneity and molecular regulation of diverse cell phenotypes during organ development. In this review, we aimed at summarizing recent advances in employing single-cell transcriptomic analysis to depict the landscape of embryonic heart development, in particular, focusing on cardiac progenitor (CP) differentiation. RECENT FINDINGS Recent studies unbiasedly cataloged and characterized cardiac cell types in the spatial and temporal resolution during early heart development. Pseudo-time analysis revealed a temporal continuum of the differentiation progress from embryonic day (E) 6.5 to E9.5, implicating early cardiac lineage restriction during mouse gastrulation. First and second heart field (FHF and SHF) CPs adopted different differentiation strategies and underwent distinct transcriptional regulation. Collectively, the comprehensive molecular atlases yield a rich resource for identification of the key cardiac regulators and signaling molecules within the key cardiac gene regulatory network (GRN) governing cardiac cell fate determinations. This review offers insights into the exquisite process and its regulation of CP differentiation at single-cell resolution. As single-cell technologies continuously grow and evolve, computational integration of multimodal single-cell data with well-designed experimental validation promises to further delineate molecular basis in deploying cardiac progenitors of distinct sources with anatomical information.
Collapse
|
248
|
Chakraborty C, Bhattacharya M, Agoramoorthy G. Single-cell sequencing of miRNAs: A modified technology. Cell Biol Int 2020; 44:1773-1780. [PMID: 32379363 DOI: 10.1002/cbin.11376] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 03/07/2020] [Accepted: 05/05/2020] [Indexed: 12/19/2022]
Abstract
The recent development of next-generation sequencing technologies has offered valuable insights into individual cells. This technology is centered on the characterization of single cells for epigenomics, genomics, and transcriptomics. Ever since the first report appeared in 2009, the single-cell RNA-sequencing saga started to explore deeper into the mechanics intrigued within a single cell. microRNA (miRNA) has been increasingly recognized as an essential molecule triggering an additional layer for gene regulation. Therefore, single-cell sequencing of miRNAs is crucial to explore the logical riddles surrounding the epigenomics, genomics, and transcriptomics of an individual cell. Scientists from the Vienna Biocenter Campus have lately performed single-cell sequencing of miRNAs in the fly, Drosophila, and nematode, Caenorhabditis elegans. In this review, we present the latest scientific explorations supported by all-inclusive data on this novel subject matter of next-generation sequencing.
Collapse
Affiliation(s)
- Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal, India
| | - Manojit Bhattacharya
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore, Odisha, India
| | | |
Collapse
|
249
|
Godoy-Parejo C, Deng C, Zhang Y, Liu W, Chen G. Roles of vitamins in stem cells. Cell Mol Life Sci 2020; 77:1771-1791. [PMID: 31676963 PMCID: PMC11104807 DOI: 10.1007/s00018-019-03352-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/12/2019] [Accepted: 10/21/2019] [Indexed: 12/13/2022]
Abstract
Stem cells can differentiate to diverse cell types in our body, and they hold great promises in both basic research and clinical therapies. For specific stem cell types, distinctive nutritional and signaling components are required to maintain the proliferation capacity and differentiation potential in cell culture. Various vitamins play essential roles in stem cell culture to modulate cell survival, proliferation and differentiation. Besides their common nutritional functions, specific vitamins are recently shown to modulate signal transduction and epigenetics. In this article, we will first review classical vitamin functions in both somatic and stem cell cultures. We will then focus on how stem cells could be modulated by vitamins beyond their nutritional roles. We believe that a better understanding of vitamin functions will significantly benefit stem cell research, and help realize their potentials in regenerative medicine.
Collapse
Affiliation(s)
- Carlos Godoy-Parejo
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Chunhao Deng
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Yumeng Zhang
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Weiwei Liu
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
- Bioimaging and Stem Cell Core Facility, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Guokai Chen
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China.
- Bioimaging and Stem Cell Core Facility, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China.
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China.
| |
Collapse
|
250
|
Gulati GS, Sikandar SS, Wesche DJ, Manjunath A, Bharadwaj A, Berger MJ, Ilagan F, Kuo AH, Hsieh RW, Cai S, Zabala M, Scheeren FA, Lobo NA, Qian D, Yu FB, Dirbas FM, Clarke MF, Newman AM. Single-cell transcriptional diversity is a hallmark of developmental potential. Science 2020; 367:405-411. [PMID: 31974247 PMCID: PMC7694873 DOI: 10.1126/science.aax0249] [Citation(s) in RCA: 572] [Impact Index Per Article: 114.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 08/03/2019] [Accepted: 12/18/2019] [Indexed: 12/12/2022]
Abstract
Single-cell RNA sequencing (scRNA-seq) is a powerful approach for reconstructing cellular differentiation trajectories. However, inferring both the state and direction of differentiation is challenging. Here, we demonstrate a simple, yet robust, determinant of developmental potential-the number of expressed genes per cell-and leverage this measure of transcriptional diversity to develop a computational framework (CytoTRACE) for predicting differentiation states from scRNA-seq data. When applied to diverse tissue types and organisms, CytoTRACE outperformed previous methods and nearly 19,000 annotated gene sets for resolving 52 experimentally determined developmental trajectories. Additionally, it facilitated the identification of quiescent stem cells and revealed genes that contribute to breast tumorigenesis. This study thus establishes a key RNA-based feature of developmental potential and a platform for delineation of cellular hierarchies.
Collapse
Affiliation(s)
- Gunsagar S Gulati
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305, USA
| | - Shaheen S Sikandar
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305, USA
| | - Daniel J Wesche
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305, USA
| | - Anoop Manjunath
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305, USA
| | - Anjan Bharadwaj
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305, USA
| | - Mark J Berger
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA
| | - Francisco Ilagan
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305, USA
| | - Angera H Kuo
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305, USA
| | - Robert W Hsieh
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305, USA
| | - Shang Cai
- School of Life Sciences, Westlake University, Zhejiang Province, China
| | - Maider Zabala
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305, USA
| | - Ferenc A Scheeren
- Department of Medical Oncology, Leiden University Medical Center, 2333 ZA Leiden, Netherlands
| | - Neethan A Lobo
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305, USA
| | - Dalong Qian
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305, USA
| | - Feiqiao B Yu
- Chan Zuckerberg Biohub, San Francisco, CA 94305, USA
| | - Frederick M Dirbas
- Department of Surgery, Stanford Cancer Institute, Stanford University, Stanford, CA 94305, USA
| | - Michael F Clarke
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305, USA.,Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Aaron M Newman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305, USA. .,Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|