201
|
Wu N, Sun H, Tan J, Zhang Y, Su B. Comments on "MAP3K2-regulated intestinal stromal cells define a distinct stem cell niche". J Mol Cell Biol 2021; 13:458-459. [PMID: 34010396 PMCID: PMC8436688 DOI: 10.1093/jmcb/mjab026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Ningbo Wu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine‒Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongxiang Sun
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine‒Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianmei Tan
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine‒Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yao Zhang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine‒Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bing Su
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine‒Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Key Laboratory of Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
202
|
Cross-tissue organization of the fibroblast lineage. Nature 2021; 593:575-579. [PMID: 33981032 DOI: 10.1038/s41586-021-03549-5] [Citation(s) in RCA: 583] [Impact Index Per Article: 145.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 04/13/2021] [Indexed: 02/06/2023]
Abstract
Fibroblasts are non-haematopoietic structural cells that define the architecture of organs, support the homeostasis of tissue-resident cells and have key roles in fibrosis, cancer, autoimmunity and wound healing1. Recent studies have described fibroblast heterogeneity within individual tissues1. However, the field lacks a characterization of fibroblasts at single-cell resolution across tissues in healthy and diseased organs. Here we constructed fibroblast atlases by integrating single-cell transcriptomic data from about 230,000 fibroblasts across 17 tissues, 50 datasets, 11 disease states and 2 species. Mouse fibroblast atlases and a DptIRESCreERT2 knock-in mouse identified two universal fibroblast transcriptional subtypes across tissues. Our analysis suggests that these cells can serve as a reservoir that can yield specialized fibroblasts across a broad range of steady-state tissues and activated fibroblasts in disease. Comparison to an atlas of human fibroblasts from perturbed states showed that fibroblast transcriptional states are conserved between mice and humans, including universal fibroblasts and activated phenotypes associated with pathogenicity in human cancer, fibrosis, arthritis and inflammation. In summary, a cross-species and pan-tissue approach to transcriptomics at single-cell resolution has identified key organizing principles of the fibroblast lineage in health and disease.
Collapse
|
203
|
Cox CB, Storm EE, Kapoor VN, Chavarria-Smith J, Lin DL, Wang L, Li Y, Kljavin N, Ota N, Bainbridge TW, Anderson K, Roose-Girma M, Warming S, Arron JR, Turley SJ, de Sauvage FJ, van Lookeren Campagne M. IL-1R1-dependent signaling coordinates epithelial regeneration in response to intestinal damage. Sci Immunol 2021; 6:eabe8856. [PMID: 33963061 DOI: 10.1126/sciimmunol.abe8856] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 04/08/2021] [Indexed: 12/29/2022]
Abstract
Repair of the intestinal epithelium is tightly regulated to maintain homeostasis. The response after epithelial damage needs to be local and proportional to the insult. How different types of damage are coupled to repair remains incompletely understood. We report that after distinct types of intestinal epithelial damage, IL-1R1 signaling in GREM1+ mesenchymal cells increases production of R-spondin 3 (RSPO3), a Wnt agonist required for intestinal stem cell self-renewal. In parallel, IL-1R1 signaling regulates IL-22 production by innate lymphoid cells and promotes epithelial hyperplasia and regeneration. Although the regulation of both RSPO3 and IL-22 is critical for epithelial recovery from Citrobacter rodentium infection, IL-1R1-dependent RSPO3 production by GREM1+ mesenchymal cells alone is sufficient and required for recovery after dextran sulfate sodium-induced colitis. These data demonstrate how IL-1R1-dependent signaling orchestrates distinct repair programs tailored to the type of injury sustained that are required to restore intestinal epithelial barrier function.
Collapse
Affiliation(s)
- Christian B Cox
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Elaine E Storm
- Department of Molecular Oncology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Varun N Kapoor
- Department of Cancer Immunology, Genentech Inc., South San Francisco, CA 94080, USA
| | | | - David L Lin
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Lifen Wang
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Yun Li
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Noelyn Kljavin
- Department of Molecular Oncology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Naruhisa Ota
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Travis W Bainbridge
- Department of Protein Chemistry, Genentech Inc., South San Francisco, CA 94080, USA
| | - Keith Anderson
- Department of Molecular Biology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Merone Roose-Girma
- Department of Molecular Biology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Søren Warming
- Department of Molecular Biology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Joseph R Arron
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Shannon J Turley
- Department of Cancer Immunology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Frederic J de Sauvage
- Department of Molecular Oncology, Genentech Inc., South San Francisco, CA 94080, USA.
| | | |
Collapse
|
204
|
Gremlin 1 + fibroblastic niche maintains dendritic cell homeostasis in lymphoid tissues. Nat Immunol 2021; 22:571-585. [PMID: 33903764 DOI: 10.1038/s41590-021-00920-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 03/19/2021] [Indexed: 01/31/2023]
Abstract
Fibroblastic reticular cells (FRCs) are specialized stromal cells that define tissue architecture and regulate lymphocyte compartmentalization, homeostasis, and innate and adaptive immunity in secondary lymphoid organs (SLOs). In the present study, we used single-cell RNA sequencing (scRNA-seq) of human and mouse lymph nodes (LNs) to identify a subset of T cell-zone FRCs defined by the expression of Gremlin1 (Grem1) in both species. Grem1-CreERT2 knock-in mice enabled localization, multi-omics characterization and genetic depletion of Grem1+ FRCs. Grem1+ FRCs primarily localize at T-B cell junctions of SLOs, neighboring pre-dendritic cells and conventional dendritic cells (cDCs). As such, their depletion resulted in preferential loss and decreased homeostatic proliferation and survival of resident cDCs and compromised T cell immunity. Trajectory analysis of human LN scRNA-seq data revealed expression similarities to murine FRCs, with GREM1+ cells marking the endpoint of both trajectories. These findings illuminate a new Grem1+ fibroblastic niche in LNs that functions to maintain the homeostasis of lymphoid tissue-resident cDCs.
Collapse
|
205
|
Colon Fibroblasts and Inflammation: Sparring Partners in Colorectal Cancer Initiation? Cancers (Basel) 2021; 13:cancers13081749. [PMID: 33916891 PMCID: PMC8067599 DOI: 10.3390/cancers13081749] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/24/2021] [Accepted: 03/31/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Colorectal cancer (CRC) is the third most common cause of cancer-related death. Patients suffering inflammatory bowel disease have an increased risk of CRC. It is admitted that CRC found its origin within crypts of the colon mucosa, which host the intestinal stem cells (ISCs) responsible of the tissue renewal. ISC behavior is controlled by the fibroblasts that surround the crypt. During inflammation, the signals delivered by fibroblasts are altered, leading to stem cells’ dysregulation, possibly turning them into cancer-initiating cells. Here, we reviewed the interplays between the fibroblast and the ISCs, possibly leading to the initiation of CRC due to chronic inflammation. Abstract Colorectal cancer (CRC) is the third most common cause of cancer-related death. Significant improvements in CRC treatment have been made for the last 20 years, on one hand thanks to a better detection, allowing surgical resection of the incriminated area, and on the other hand, thanks to a better knowledge of CRC’s development allowing the improvement of drug strategies. Despite this crucial progress, CRC remains a public health issue. The current model for CRC initiation and progression is based on accumulation of sequential known genetic mutations in the colon epithelial cells’ genome leading to a loss of control over proliferation and survival. However, increasing evidence reveals that CRC initiation is more complex. Indeed, chronic inflammatory contexts, such as inflammatory bowel diseases, have been shown to increase the risk for CRC development in mice and humans. In this manuscript, we review whether colon fibroblasts can go from the main regulators of the ISC homeostasis, regulating not only the renewal process but also the epithelial cells’ differentiation occurring along the colon crypt, to the main player in the initiation of the colorectal cancer process due to chronic inflammation.
Collapse
|
206
|
Tamura Y, Takata K, Eguchi A, Maeda M, Kataoka Y. Age-related changes in NG2-expressing telocytes of rat stomach. PLoS One 2021; 16:e0249729. [PMID: 33822814 PMCID: PMC8023479 DOI: 10.1371/journal.pone.0249729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/23/2021] [Indexed: 11/18/2022] Open
Abstract
NG2 immunoreactive cells (NG2 cells) are found in the brain and peripheral tissues including the skin, intestinal tracts, and bladder. In a previous study, we observed the presence of NG2 cells in the stomach using bioluminescence imaging techniques in NG2-firefly luciferase (fLuc) transgenic (Tg) rats. Here, we aimed to identify and characterize NG2 cells in the adult rat stomach. Immunohistochemical studies showed that NG2 cells were mainly present in the lamina propria and most of the cells were gastric telocytes, co-expressing CD34, and platelet-derived growth factor receptor alpha (PDGFRα), with a small oval-shaped cell body and extremely long and thin cellular prolongations. In the rat stomach, NG2-expressing telocytes comprised two subpopulations: NG2+/CD34+/PDGFRα+ and NG2+/CD34+/PDGFRα-. Furthermore, we showed that the expression of NG2 gene in the aged rat stomach decreased relative to that of the young rat stomach and the decline of NG2 expression in aged rats was mainly observed in NG2+/CD34+/PDGFRα+ telocytes. These findings suggested age-related alterations in NG2+/CD34+/PDGFRα+ telocytes of rat stomach.
Collapse
Affiliation(s)
- Yasuhisa Tamura
- Laboratory for Cellular Function Imaging, RIKEN Center for Biosystems Dynamics Research, Chuo-ku, Kobe, Japan
- Multi-Modal Microstructure Analysis Unit, RIKEN-JEOL Collaboration Center, Chuo-ku, Kobe, Japan
| | - Kumi Takata
- Laboratory for Cellular Function Imaging, RIKEN Center for Biosystems Dynamics Research, Chuo-ku, Kobe, Japan
- Multi-Modal Microstructure Analysis Unit, RIKEN-JEOL Collaboration Center, Chuo-ku, Kobe, Japan
| | - Asami Eguchi
- Laboratory for Cellular Function Imaging, RIKEN Center for Biosystems Dynamics Research, Chuo-ku, Kobe, Japan
- Multi-Modal Microstructure Analysis Unit, RIKEN-JEOL Collaboration Center, Chuo-ku, Kobe, Japan
| | - Mitsuyo Maeda
- Laboratory for Cellular Function Imaging, RIKEN Center for Biosystems Dynamics Research, Chuo-ku, Kobe, Japan
- Multi-Modal Microstructure Analysis Unit, RIKEN-JEOL Collaboration Center, Chuo-ku, Kobe, Japan
| | - Yosky Kataoka
- Laboratory for Cellular Function Imaging, RIKEN Center for Biosystems Dynamics Research, Chuo-ku, Kobe, Japan
- Multi-Modal Microstructure Analysis Unit, RIKEN-JEOL Collaboration Center, Chuo-ku, Kobe, Japan
| |
Collapse
|
207
|
Martino PA, Heitman N, Rendl M. The dermal sheath: An emerging component of the hair follicle stem cell niche. Exp Dermatol 2021; 30:512-521. [PMID: 33006790 PMCID: PMC8016715 DOI: 10.1111/exd.14204] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/15/2020] [Accepted: 09/20/2020] [Indexed: 12/17/2022]
Abstract
Hair follicles cyclically regenerate throughout adult mammalian life, owing to a resident population of epithelial hair follicle stem cells. Stem cell (SC) activity drives bouts of follicle growth, which are periodically interrupted by follicle regression and rest. These phases and the transitions between them are tightly spatiotemporally coordinated by signalling crosstalk between stem/progenitor cells and the various cell types of the microenvironment, or niche. The dermal papilla (DP) is a cluster of specialized mesenchymal cells that have long been recognized for important niche roles in regulating hair follicle SC activation, as well as progenitor proliferation and differentiation during follicle growth. In addition to the DP, the mesenchyme of the murine pelage follicle is also comprised of a follicle-lining smooth muscle known as the dermal sheath (DS), which has been far less studied than the DP yet may be equally specialized and important for hair cycling. In this review, we define the murine pelage DS in comparison with human DS and discuss recent work that highlights the emergent importance of the DS in the hair follicle SC niche. Last, we examine potential therapeutic applications for the DS in hair regeneration and wound healing.
Collapse
Affiliation(s)
- Pieter A. Martino
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, Atran Building AB7-10C, Box 1020; 1428 Madison Ave, New York, NY 10029, USA
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, Atran Building AB7-10C, Box 1020; 1428 Madison Ave, New York, NY 10029, USA
| | - Nicholas Heitman
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, Atran Building AB7-10C, Box 1020; 1428 Madison Ave, New York, NY 10029, USA
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, Atran Building AB7-10C, Box 1020; 1428 Madison Ave, New York, NY 10029, USA
| | - Michael Rendl
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, Atran Building AB7-10C, Box 1020; 1428 Madison Ave, New York, NY 10029, USA
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, Atran Building AB7-10C, Box 1020; 1428 Madison Ave, New York, NY 10029, USA
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, Atran Building AB7-10C, Box 1020; 1428 Madison Ave, New York, NY 10029, USA
| |
Collapse
|
208
|
Holloway EM, Czerwinski M, Tsai YH, Wu JH, Wu A, Childs CJ, Walton KD, Sweet CW, Yu Q, Glass I, Treutlein B, Camp JG, Spence JR. Mapping Development of the Human Intestinal Niche at Single-Cell Resolution. Cell Stem Cell 2021; 28:568-580.e4. [PMID: 33278341 PMCID: PMC7935765 DOI: 10.1016/j.stem.2020.11.008] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 08/27/2020] [Accepted: 11/11/2020] [Indexed: 12/12/2022]
Abstract
The human intestinal stem cell niche supports self-renewal and epithelial function, but little is known about its development. We used single-cell mRNA sequencing with in situ validation approaches to interrogate human intestinal development from 7-21 weeks post conception, assigning molecular identities and spatial locations to cells and factors that comprise the niche. Smooth muscle cells of the muscularis mucosa, in close proximity to proliferative crypts, are a source of WNT and RSPONDIN ligands, whereas EGF is expressed far from crypts in the villus epithelium. Instead, an PDGFRAHI/F3HI/DLL1HI mesenchymal population lines the crypt-villus axis and is the source of the epidermal growth factor (EGF) family member NEUREGULIN1 (NRG1). In developing intestine enteroid cultures, NRG1, but not EGF, permitted increased cellular diversity via differentiation of secretory lineages. This work highlights the complexities of intestinal EGF/ERBB signaling and delineates key niche cells and signals of the developing intestine.
Collapse
Affiliation(s)
- Emily M Holloway
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Michael Czerwinski
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Yu-Hwai Tsai
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Joshua H Wu
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Angeline Wu
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Charlie J Childs
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Katherine D Walton
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Caden W Sweet
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Qianhui Yu
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland
| | - Ian Glass
- Department of Pediatrics, Genetic Medicine, University of Washington, Seattle, WA 98195, USA
| | - Barbara Treutlein
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - J Gray Camp
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Jason R Spence
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, MI, USA.
| |
Collapse
|
209
|
Wu N, Sun H, Zhao X, Zhang Y, Tan J, Qi Y, Wang Q, Ng M, Liu Z, He L, Niu X, Chen L, Liu Z, Li HB, Zeng YA, Roulis M, Liu D, Cheng J, Zhou B, Ng LG, Zou D, Ye Y, Flavell RA, Ginhoux F, Su B. MAP3K2-regulated intestinal stromal cells define a distinct stem cell niche. Nature 2021; 592:606-610. [PMID: 33658717 DOI: 10.1038/s41586-021-03283-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/25/2021] [Indexed: 01/07/2023]
Abstract
Intestinal stromal cells are known to modulate the propagation and differentiation of intestinal stem cells1,2. However, the precise cellular and molecular mechanisms by which this diverse stromal cell population maintains tissue homeostasis and repair are poorly understood. Here we describe a subset of intestinal stromal cells, named MAP3K2-regulated intestinal stromal cells (MRISCs), and show that they are the primary cellular source of the WNT agonist R-spondin 1 following intestinal injury in mice. MRISCs, which are epigenetically and transcriptomically distinct from subsets of intestinal stromal cells that have previously been reported3-6, are strategically localized at the bases of colon crypts, and function to maintain LGR5+ intestinal stem cells and protect against acute intestinal damage through enhanced R-spondin 1 production. Mechanistically, this MAP3K2 specific function is mediated by a previously unknown reactive oxygen species (ROS)-MAP3K2-ERK5-KLF2 axis to enhance production of R-spondin 1. Our results identify MRISCs as a key component of an intestinal stem cell niche that specifically depends on MAP3K2 to augment WNT signalling for the regeneration of damaged intestine.
Collapse
Affiliation(s)
- Ningbo Wu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,The State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongxiang Sun
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,The State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyun Zhao
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,The State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yao Zhang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Gastroenterology, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Jianmei Tan
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,The State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanyuan Qi
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qun Wang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Melissa Ng
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Zhaoyuan Liu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,The State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lingjuan He
- The State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xiaoyin Niu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Chen
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,The State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Center for Microbiota & Immunological Diseases, Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiduo Liu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,The State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hua-Bing Li
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,The State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Arial Zeng
- The State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Manolis Roulis
- Department of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA
| | - Dou Liu
- Department of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA
| | - Jinke Cheng
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Zhou
- The State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Lai Guan Ng
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Duowu Zou
- Department of Gastroenterology, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Youqiong Ye
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,The State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Richard A Flavell
- Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA
| | - Florent Ginhoux
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.,Translational Immunology Institute, SingHealth/Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Bing Su
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,The State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Center for Microbiota & Immunological Diseases, Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Key Laboratory of Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
210
|
Kobayashi H, Gieniec KA, Wright JA, Wang T, Asai N, Mizutani Y, Lida T, Ando R, Suzuki N, Lannagan TRM, Ng JQ, Hara A, Shiraki Y, Mii S, Ichinose M, Vrbanac L, Lawrence MJ, Sammour T, Uehara K, Davies G, Lisowski L, Alexander IE, Hayakawa Y, Butler LM, Zannettino ACW, Din MO, Hasty J, Burt AD, Leedham SJ, Rustgi AK, Mukherjee S, Wang TC, Enomoto A, Takahashi M, Worthley DL, Woods SL. The Balance of Stromal BMP Signaling Mediated by GREM1 and ISLR Drives Colorectal Carcinogenesis. Gastroenterology 2021; 160:1224-1239.e30. [PMID: 33197448 PMCID: PMC7617122 DOI: 10.1053/j.gastro.2020.11.011] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 10/16/2020] [Accepted: 11/09/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Cancer-associated fibroblasts (CAFs), key constituents of the tumor microenvironment, either promote or restrain tumor growth. Attempts to therapeutically target CAFs have been hampered by our incomplete understanding of these functionally heterogeneous cells. Key growth factors in the intestinal epithelial niche, bone morphogenetic proteins (BMPs), also play a critical role in colorectal cancer (CRC) progression. However, the crucial proteins regulating stromal BMP balance and the potential application of BMP signaling to manage CRC remain largely unexplored. METHODS Using human CRC RNA expression data, we identified CAF-specific factors involved in BMP signaling, then verified and characterized their expression in the CRC stroma by in situ hybridization. CRC tumoroids and a mouse model of CRC hepatic metastasis were used to test approaches to modify BMP signaling and treat CRC. RESULTS We identified Grem1 and Islr as CAF-specific genes involved in BMP signaling. Functionally, GREM1 and ISLR acted to inhibit and promote BMP signaling, respectively. Grem1 and Islr marked distinct fibroblast subpopulations and were differentially regulated by transforming growth factor β and FOXL1, providing an underlying mechanism to explain fibroblast biological dichotomy. In patients with CRC, high GREM1 and ISLR expression levels were associated with poor and favorable survival, respectively. A GREM1-neutralizing antibody or fibroblast Islr overexpression reduced CRC tumoroid growth and promoted Lgr5+ intestinal stem cell differentiation. Finally, adeno-associated virus 8 (AAV8)-mediated delivery of Islr to hepatocytes increased BMP signaling and improved survival in our mouse model of hepatic metastasis. CONCLUSIONS Stromal BMP signaling predicts and modifies CRC progression and survival, and it can be therapeutically targeted by novel AAV-directed gene delivery to the liver.
Collapse
Affiliation(s)
- Hiroki Kobayashi
- Adelaide Medical School, University of Adelaide, Adelaide, Australia; South Australian Health and Medical Research Institute, Adelaide, Australia; Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan; Division of Molecular Pathology, Center for Neurological Disease and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Krystyna A Gieniec
- Adelaide Medical School, University of Adelaide, Adelaide, Australia; South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Josephine A Wright
- South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Tongtong Wang
- Adelaide Medical School, University of Adelaide, Adelaide, Australia; South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Naoya Asai
- Department of Molecular Pathology, Graduate School of Medicine, Fujita Health University, Toyoake, Japan
| | - Yasuyuki Mizutani
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan; Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tadashi Lida
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan; Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ryota Ando
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Nobumi Suzuki
- Adelaide Medical School, University of Adelaide, Adelaide, Australia; South Australian Health and Medical Research Institute, Adelaide, Australia; Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tamsin R M Lannagan
- Adelaide Medical School, University of Adelaide, Adelaide, Australia; South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Jia Q Ng
- Adelaide Medical School, University of Adelaide, Adelaide, Australia; South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Akitoshi Hara
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yukihiro Shiraki
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinji Mii
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan; Division of Molecular Pathology, Center for Neurological Disease and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mari Ichinose
- Adelaide Medical School, University of Adelaide, Adelaide, Australia; South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Laura Vrbanac
- Adelaide Medical School, University of Adelaide, Adelaide, Australia; South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Matthew J Lawrence
- Colorectal Unit, Department of Surgery, Royal Adelaide Hospital, Adelaide, Australia
| | - Tarik Sammour
- Adelaide Medical School, University of Adelaide, Adelaide, Australia; South Australian Health and Medical Research Institute, Adelaide, Australia; Colorectal Unit, Department of Surgery, Royal Adelaide Hospital, Adelaide, Australia
| | - Kay Uehara
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | - Leszek Lisowski
- Translational Vectorology Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia; Vector and Genome Engineering Facility, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia; Military Institute of Hygiene and Epidemiology, The Biological Threats Identification and Countermeasure Centre, Puławy, Poland
| | - Ian E Alexander
- Gene Therapy Research Unit, Sydney Children's Hospitals Network and Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia; Discipline of Child and Adolescent Health, Faculty of Medicine and Health, The University of Sydney, Australia
| | - Yoku Hayakawa
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Lisa M Butler
- Adelaide Medical School, University of Adelaide, Adelaide, Australia; South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Andrew C W Zannettino
- Adelaide Medical School, University of Adelaide, Adelaide, Australia; South Australian Health and Medical Research Institute, Adelaide, Australia
| | | | - Jeff Hasty
- Department of Bioengineering, University of California, San Diego, La Jolla, California
| | - Alastair D Burt
- Adelaide Medical School, University of Adelaide, Adelaide, Australia; Precision and Molecular Pathology, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Simon J Leedham
- Intestinal Stem Cell Biology Lab, Wellcome Trust Centre Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Anil K Rustgi
- Herbert Irving Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, New York
| | - Siddhartha Mukherjee
- Department of Medicine and Irving Cancer Research Center, Columbia University, New York, New York
| | - Timothy C Wang
- Department of Medicine and Irving Cancer Research Center, Columbia University, New York, New York
| | - Atsushi Enomoto
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Masahide Takahashi
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan; Division of Molecular Pathology, Center for Neurological Disease and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan; International Center for Cell and Gene Therapy, Fujita Health University, Toyoake, Japan.
| | - Daniel L Worthley
- South Australian Health and Medical Research Institute, Adelaide, Australia.
| | - Susan L Woods
- Adelaide Medical School, University of Adelaide, Adelaide, Australia; South Australian Health and Medical Research Institute, Adelaide, Australia.
| |
Collapse
|
211
|
Sphyris N, Hodder MC, Sansom OJ. Subversion of Niche-Signalling Pathways in Colorectal Cancer: What Makes and Breaks the Intestinal Stem Cell. Cancers (Basel) 2021; 13:1000. [PMID: 33673710 PMCID: PMC7957493 DOI: 10.3390/cancers13051000] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 12/12/2022] Open
Abstract
The intestinal epithelium fulfils pleiotropic functions in nutrient uptake, waste elimination, and immune surveillance while also forming a barrier against luminal toxins and gut-resident microbiota. Incessantly barraged by extraneous stresses, the intestine must continuously replenish its epithelial lining and regenerate the full gamut of specialized cell types that underpin its functions. Homeostatic remodelling is orchestrated by the intestinal stem cell (ISC) niche: a convergence of epithelial- and stromal-derived cues, which maintains ISCs in a multipotent state. Following demise of homeostatic ISCs post injury, plasticity is pervasive among multiple populations of reserve stem-like cells, lineage-committed progenitors, and/or fully differentiated cell types, all of which can contribute to regeneration and repair. Failure to restore the epithelial barrier risks seepage of toxic luminal contents, resulting in inflammation and likely predisposing to tumour formation. Here, we explore how homeostatic niche-signalling pathways are subverted in tumorigenesis, enabling ISCs to gain autonomy from niche restraints ("ISC emancipation") and transform into cancer stem cells capable of driving tumour initiation, progression, and therapy resistance. We further consider the implications of the pervasive plasticity of the intestinal epithelium for the trajectory of colorectal cancer, the emergence of distinct molecular subtypes, the propensity to metastasize, and the development of effective therapeutic strategies.
Collapse
Affiliation(s)
- Nathalie Sphyris
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK; (N.S.); (M.C.H.)
| | - Michael C. Hodder
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK; (N.S.); (M.C.H.)
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK
| | - Owen J. Sansom
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK; (N.S.); (M.C.H.)
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK
| |
Collapse
|
212
|
Abstract
The hedgehog (Hh) signaling pathway plays several diverse regulatory and patterning roles during organogenesis of the intestine and in the regulation of adult intestinal homeostasis. In the embryo, fetus, and adult, intestinal Hh signaling is paracrine: Hh ligands are expressed in the endodermally derived epithelium, while signal transduction is confined to the mesenchymal compartment, where at least a dozen distinct cell types are capable of responding to Hh signals. Epithelial Hh ligands not only regulate a variety of mesenchymal cell behaviors, but they also direct these mesenchymal cells to secrete additional soluble factors (e.g., Wnts, Bmps, inflammatory mediators) that feed back to regulate the epithelial cells themselves. Evolutionary conservation of the core Hh signaling pathway, as well as conservation of epithelial/mesenchymal cross talk in the intestine, has meant that work in many diverse model systems has contributed to our current understanding of the role of this pathway in intestinal organogenesis, which is reviewed here.
Collapse
Affiliation(s)
- Katherine D Walton
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA; ,
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Deborah L Gumucio
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA; ,
| |
Collapse
|
213
|
Hageman JH, Heinz MC, Kretzschmar K, van der Vaart J, Clevers H, Snippert HJG. Intestinal Regeneration: Regulation by the Microenvironment. Dev Cell 2021; 54:435-446. [PMID: 32841594 DOI: 10.1016/j.devcel.2020.07.009] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/18/2020] [Accepted: 07/13/2020] [Indexed: 01/05/2023]
Abstract
Damage to the intestinal stem cell niche can result from mechanical stress, infections, chronic inflammation or cytotoxic therapies. Progenitor cells can compensate for insults to the stem cell population through dedifferentiation. The microenvironment modulates this regenerative response by influencing the activity of signaling pathways, including Wnt, Notch, and YAP/TAZ. For instance, mesenchymal cells and immune cells become more abundant after damage and secrete signaling molecules that promote the regenerative process. Furthermore, regeneration is influenced by the nutritional state, microbiome, and extracellular matrix. Here, we review how all these components cooperate to restore epithelial homeostasis in the intestine after injury.
Collapse
Affiliation(s)
- Joris H Hageman
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, the Netherlands; Oncode Institute, 3521 AL Utrecht, the Netherlands
| | - Maria C Heinz
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, the Netherlands; Oncode Institute, 3521 AL Utrecht, the Netherlands
| | - Kai Kretzschmar
- Oncode Institute, 3521 AL Utrecht, the Netherlands; Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands; Mildred-Scheel Early Career Centre (MSNZ) for Cancer Research, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Jelte van der Vaart
- Oncode Institute, 3521 AL Utrecht, the Netherlands; Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands
| | - Hans Clevers
- Oncode Institute, 3521 AL Utrecht, the Netherlands; Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands; Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, the Netherlands
| | - Hugo J G Snippert
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, the Netherlands; Oncode Institute, 3521 AL Utrecht, the Netherlands.
| |
Collapse
|
214
|
Verhulsel M, Simon A, Bernheim-Dennery M, Gannavarapu VR, Gérémie L, Ferraro D, Krndija D, Talini L, Viovy JL, Vignjevic DM, Descroix S. Developing an advanced gut on chip model enabling the study of epithelial cell/fibroblast interactions. LAB ON A CHIP 2021; 21:365-377. [PMID: 33306083 PMCID: PMC9930731 DOI: 10.1039/d0lc00672f] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Organoids are widely used as a model system to study gut pathophysiology; however, they fail to fully reproduce the complex, multi-component structure of the intestinal wall. We present here a new gut on chip model that allows the co-culture of primary epithelial and stromal cells. The device has the topography and dimensions of the mouse gut and is based on a 3D collagen I scaffold. The scaffold is coated with a thin layer of laminin to mimic the basement membrane. To maintain the scaffold structure while preserving its cytocompatibility, the collagen scaffold was rigidified by threose-based post-polymerization treatment. This treatment being cytocompatible enabled the incorporation of primary intestinal fibroblasts inside the scaffold, reproducing the gut stromal compartment. We observed that mouse organoids, when deposited into crypts, opened up and epithelialized the scaffold, generating a polarized epithelial monolayer. Proper segregation of dividing and differentiated cells along the crypt-villus axis was achieved under these conditions. Finally, we show that the application of fluid shear stress allows the long-term culture of this intestinal epithelium. Our device represents a new biomimetic tool that captures key features of the gut complexity and could be used to study gut pathophysiology.
Collapse
Affiliation(s)
- Marine Verhulsel
- Institut Curie, CNRS, UMR 168, IPGG, PSL Research University, 6 rue Jean Calvin, F-75005 Paris, France.
- Institut Curie, CNRS, UMR 144, PSL Research University, 12 rue Lhomond, F-75005 Paris, France.
| | - Anthony Simon
- Institut Curie, CNRS, UMR 144, PSL Research University, 12 rue Lhomond, F-75005 Paris, France.
| | - Moencopi Bernheim-Dennery
- Institut Curie, CNRS, UMR 168, IPGG, PSL Research University, 6 rue Jean Calvin, F-75005 Paris, France.
| | - Venkata Ram Gannavarapu
- Institut Curie, CNRS, UMR 144, PSL Research University, 12 rue Lhomond, F-75005 Paris, France.
| | - Lauriane Gérémie
- Institut Curie, CNRS, UMR 168, IPGG, PSL Research University, 6 rue Jean Calvin, F-75005 Paris, France.
| | - Davide Ferraro
- Institut Curie, CNRS, UMR 168, IPGG, PSL Research University, 6 rue Jean Calvin, F-75005 Paris, France.
| | - Denis Krndija
- Institut Curie, CNRS, UMR 144, PSL Research University, 12 rue Lhomond, F-75005 Paris, France.
| | - Laurence Talini
- CNRS, UMR 7615, ESPCI Paris, UPMC, Sorbonne-Universités, PSL Research University, F-75005 Paris, France
| | - Jean-Louis Viovy
- Institut Curie, CNRS, UMR 168, IPGG, PSL Research University, 6 rue Jean Calvin, F-75005 Paris, France.
| | | | - Stéphanie Descroix
- Institut Curie, CNRS, UMR 168, IPGG, PSL Research University, 6 rue Jean Calvin, F-75005 Paris, France.
| |
Collapse
|
215
|
Fawkner-Corbett D, Antanaviciute A, Parikh K, Jagielowicz M, Gerós AS, Gupta T, Ashley N, Khamis D, Fowler D, Morrissey E, Cunningham C, Johnson PRV, Koohy H, Simmons A. Spatiotemporal analysis of human intestinal development at single-cell resolution. Cell 2021; 184:810-826.e23. [PMID: 33406409 PMCID: PMC7864098 DOI: 10.1016/j.cell.2020.12.016] [Citation(s) in RCA: 300] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/10/2020] [Accepted: 12/10/2020] [Indexed: 12/11/2022]
Abstract
Development of the human intestine is not well understood. Here, we link single-cell RNA sequencing and spatial transcriptomics to characterize intestinal morphogenesis through time. We identify 101 cell states including epithelial and mesenchymal progenitor populations and programs linked to key morphogenetic milestones. We describe principles of crypt-villus axis formation; neural, vascular, mesenchymal morphogenesis, and immune population of the developing gut. We identify the differentiation hierarchies of developing fibroblast and myofibroblast subtypes and describe diverse functions for these including as vascular niche cells. We pinpoint the origins of Peyer’s patches and gut-associated lymphoid tissue (GALT) and describe location-specific immune programs. We use our resource to present an unbiased analysis of morphogen gradients that direct sequential waves of cellular differentiation and define cells and locations linked to rare developmental intestinal disorders. We compile a publicly available online resource, spatio-temporal analysis resource of fetal intestinal development (STAR-FINDer), to facilitate further work. Multimodal atlas of human intestinal development maps 101 cell types onto tissue Charts developmental origins of diverse cellular compartments and their progenitors Functional diversity of fibroblasts in stem cell, vasculature, and GALT formation Resource applied to interrogate pathology of in utero intestinal diseases
Collapse
Affiliation(s)
- David Fawkner-Corbett
- Medical Research Council (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK; Translational Gastroenterology Unit, John Radcliffe Hospital, Oxford OX3 9DU, UK; Academic Paediatric Surgery Unit (APSU), Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 9DU, UK
| | - Agne Antanaviciute
- Medical Research Council (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK; MRC WIMM Centre For Computational Biology, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Kaushal Parikh
- Medical Research Council (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK; Translational Gastroenterology Unit, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Marta Jagielowicz
- Medical Research Council (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK; Translational Gastroenterology Unit, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Ana Sousa Gerós
- Medical Research Council (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK; Translational Gastroenterology Unit, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Tarun Gupta
- Medical Research Council (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK; Translational Gastroenterology Unit, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Neil Ashley
- MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Doran Khamis
- MRC WIMM Centre For Computational Biology, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Darren Fowler
- Paediatric Pathology, Department of Cellular Pathology, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| | - Edward Morrissey
- MRC WIMM Centre For Computational Biology, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Chris Cunningham
- Colorectal Surgery Department, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| | - Paul R V Johnson
- Academic Paediatric Surgery Unit (APSU), Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 9DU, UK
| | - Hashem Koohy
- Medical Research Council (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK; MRC WIMM Centre For Computational Biology, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK.
| | - Alison Simmons
- Medical Research Council (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK; Translational Gastroenterology Unit, John Radcliffe Hospital, Oxford OX3 9DU, UK.
| |
Collapse
|
216
|
Zhu G, Hu J, Xi R. The cellular niche for intestinal stem cells: a team effort. CELL REGENERATION 2021; 10:1. [PMID: 33385259 PMCID: PMC7775856 DOI: 10.1186/s13619-020-00061-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/07/2020] [Indexed: 12/31/2022]
Abstract
The rapidly self-renewing epithelium in the mammalian intestine is maintained by multipotent intestinal stem cells (ISCs) located at the bottom of the intestinal crypt that are interspersed with Paneth cells in the small intestine and Paneth-like cells in the colon. The ISC compartment is also closely associated with a sub-epithelial compartment that contains multiple types of mesenchymal stromal cells. With the advances in single cell and gene editing technologies, rapid progress has been made for the identification and characterization of the cellular components of the niche microenvironment that is essential for self-renewal and differentiation of ISCs. It has become increasingly clear that a heterogeneous population of mesenchymal cells as well as the Paneth cells collectively provide multiple secreted niche signals to promote ISC self-renewal. Here we review and summarize recent advances in the regulation of ISCs with a main focus on the definition of niche cells that sustain ISCs.
Collapse
Affiliation(s)
- Guoli Zhu
- National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing, 102206, China
| | - Jiulong Hu
- National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing, 102206, China.,School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Rongwen Xi
- National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing, 102206, China. .,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China.
| |
Collapse
|
217
|
Chen L, Cao W, Aita R, Aldea D, Flores J, Gao N, Bonder EM, Ellison CE, Verzi MP. Three-dimensional interactions between enhancers and promoters during intestinal differentiation depend upon HNF4. Cell Rep 2021; 34:108679. [PMID: 33503426 PMCID: PMC7899294 DOI: 10.1016/j.celrep.2020.108679] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/23/2020] [Accepted: 12/30/2020] [Indexed: 12/20/2022] Open
Abstract
Cells in renewing tissues exhibit dramatic transcriptional changes as they differentiate. The contribution of chromatin looping to tissue renewal is incompletely understood. Enhancer-promoter interactions could be relatively stable as cells transition from progenitor to differentiated states; alternatively, chromatin looping could be as dynamic as the gene expression from their loci. The intestinal epithelium is the most rapidly renewing mammalian tissue. Proliferative cells in crypts of Lieberkühn sustain a stream of differentiated cells that are continually shed into the lumen. We apply chromosome conformation capture combined with chromatin immunoprecipitation (HiChIP) and sequencing to measure enhancer-promoter interactions in progenitor and differentiated cells of the intestinal epithelium. Despite dynamic gene regulation across the differentiation axis, we find that enhancer-promoter interactions are relatively stable. Functionally, we find HNF4 transcription factors are required for chromatin looping at target genes. Depletion of HNF4 disrupts local chromatin looping, histone modifications, and target gene expression. This study provides insights into transcriptional regulatory mechanisms governing homeostasis in renewing tissues. Chen et al. provide a survey of enhancer-promoter 3D looping in the intestinal epithelium by HiChIP, in vivo. They find that enhancer-promoter interactions are highly dependent upon the key intestinal transcription factor HNF4. Their findings provide insights into transcriptional regulatory mechanisms governing homeostasis in renewing tissues.
Collapse
Affiliation(s)
- Lei Chen
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA; Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
| | - Weihuan Cao
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Rohit Aita
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Dennis Aldea
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Juan Flores
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| | - Nan Gao
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| | - Edward M Bonder
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| | - Christopher E Ellison
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Michael P Verzi
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA; Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA; Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition & Health, Rutgers University, New Brunswick, NJ 08901, USA.
| |
Collapse
|
218
|
Sprangers J, Zaalberg IC, Maurice MM. Organoid-based modeling of intestinal development, regeneration, and repair. Cell Death Differ 2021; 28:95-107. [PMID: 33208888 PMCID: PMC7852609 DOI: 10.1038/s41418-020-00665-z] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 02/07/2023] Open
Abstract
The intestinal epithelium harbors a remarkable adaptability to undergo injury-induced repair. A key part of the regenerative response is the transient reprogramming of epithelial cells into a fetal-like state, which drives uniform proliferation, tissue remodeling, and subsequent restoration of the homeostatic state. In this review, we discuss how Wnt and YAP signaling pathways control the intestinal repair response and the transitioning of cell states, in comparison with the process of intestinal development. Furthermore, we highlight how organoid-based applications have contributed to the characterization of the mechanistic principles and key players that guide these developmental and regenerative events.
Collapse
Affiliation(s)
- Joep Sprangers
- Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Irene C Zaalberg
- Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Madelon M Maurice
- Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands.
- Oncode Institute, Utrecht, The Netherlands.
| |
Collapse
|
219
|
Kurokawa K, Hayakawa Y, Koike K. Plasticity of Intestinal Epithelium: Stem Cell Niches and Regulatory Signals. Int J Mol Sci 2020; 22:ijms22010357. [PMID: 33396437 PMCID: PMC7795504 DOI: 10.3390/ijms22010357] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/26/2020] [Accepted: 12/27/2020] [Indexed: 12/13/2022] Open
Abstract
The discovery of Lgr5+ intestinal stem cells (ISCs) triggered a breakthrough in the field of ISC research. Lgr5+ ISCs maintain the homeostasis of the intestinal epithelium in the steady state, while these cells are susceptible to epithelial damage induced by chemicals, pathogens, or irradiation. During the regeneration process of the intestinal epithelium, more quiescent +4 stem cells and short-lived transit-amplifying (TA) progenitor cells residing above Lgr5+ ISCs undergo dedifferentiation and act as stem-like cells. In addition, several recent reports have shown that a subset of terminally differentiated cells, including Paneth cells, tuft cells, or enteroendocrine cells, may also have some degree of plasticity in specific situations. The function of ISCs is maintained by the neighboring stem cell niches, which strictly regulate the key signal pathways in ISCs. In addition, various inflammatory cytokines play critical roles in intestinal regeneration and stem cell functions following epithelial injury. Here, we summarize the current understanding of ISCs and their niches, review recent findings regarding cellular plasticity and its regulatory mechanism, and discuss how inflammatory cytokines contribute to epithelial regeneration.
Collapse
Affiliation(s)
| | - Yoku Hayakawa
- Correspondence: ; Tel.: +81-3-3815-5411; Fax: +81-3-5800-8812
| | | |
Collapse
|
220
|
Loe AKH, Rao-Bhatia A, Kim JE, Kim TH. Mesenchymal Niches for Digestive Organ Development, Homeostasis, and Disease. Trends Cell Biol 2020; 31:152-165. [PMID: 33349527 DOI: 10.1016/j.tcb.2020.11.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 02/08/2023]
Abstract
Mesenchymal-epithelial crosstalk plays a crucial role in organ development and stem cell function. However, the identity of the mesenchymal cells involved in this exchange was unclear. Recent significant advances in single-cell transcriptomics have defined the heterogeneity of these mesenchymal niches. By combining multiomic profiling, animal models, and organoid culture, new studies have not only demonstrated the roles of diverse mesenchymal cell populations but also defined the mechanisms underlying their regulation of niche signals. Focusing on several digestive organs, we describe how similar and diverse mesenchymal cell populations promote organ development and maintain proper stem cell activity, and how the heterogeneity of mesenchymal niches is altered in digestive diseases such as inflammation and cancer.
Collapse
Affiliation(s)
- Adrian Kwan Ho Loe
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Abilasha Rao-Bhatia
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Ji-Eun Kim
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Tae-Hee Kim
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
221
|
Elmentaite R, Ross ADB, Roberts K, James KR, Ortmann D, Gomes T, Nayak K, Tuck L, Pritchard S, Bayraktar OA, Heuschkel R, Vallier L, Teichmann SA, Zilbauer M. Single-Cell Sequencing of Developing Human Gut Reveals Transcriptional Links to Childhood Crohn's Disease. Dev Cell 2020; 55:771-783.e5. [PMID: 33290721 PMCID: PMC7762816 DOI: 10.1016/j.devcel.2020.11.010] [Citation(s) in RCA: 187] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 09/04/2020] [Accepted: 11/06/2020] [Indexed: 02/07/2023]
Abstract
Human gut development requires the orchestrated interaction of differentiating cell types. Here, we generate an in-depth single-cell map of the developing human intestine at 6–10 weeks post-conception. Our analysis reveals the transcriptional profile of cycling epithelial precursor cells; distinct from LGR5-expressing cells. We propose that these cells may contribute to differentiated cell subsets via the generation of LGR5-expressing stem cells and receive signals from surrounding mesenchymal cells. Furthermore, we draw parallels between the transcriptomes of ex vivo tissues and in vitro fetal organoids, revealing the maturation of organoid cultures in a dish. Lastly, we compare scRNA-seq profiles from pediatric Crohn’s disease epithelium alongside matched healthy controls to reveal disease-associated changes in the epithelial composition. Contrasting these with the fetal profiles reveals the re-activation of fetal transcription factors in Crohn’s disease. Our study provides a resource available at www.gutcellatlas.org, and underscores the importance of unraveling fetal development in understanding disease. Single-cell RNA-seq map of the developing and pediatric human intestine Cycling BEX5+ epithelial precursors are distinct from adult LGR5+ stem cells Human fetal intestinal organoids mature in culture Fetal transcription factors are reactivated in the Crohn’s disease epithelium
Collapse
Affiliation(s)
- Rasa Elmentaite
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Alexander D B Ross
- Wellcome Trust, MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0SZ, UK; Department of Surgery, University of Cambridge, Cambridge CB2 0QQ, UK; Department of Paediatrics, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Kenny Roberts
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Kylie R James
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Daniel Ortmann
- Wellcome Trust, MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0SZ, UK; Department of Surgery, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Tomás Gomes
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Komal Nayak
- Department of Paediatrics, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Liz Tuck
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Sophie Pritchard
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | | | - Robert Heuschkel
- Department of Paediatric Gastroenterology, Hepatology and Nutrition, Cambridge University Hospitals Trust, Cambridge CB2 0QQ, UK
| | - Ludovic Vallier
- Wellcome Trust, MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0SZ, UK; Department of Surgery, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK; Theory of Condensed Matter, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, UK; European Molecular Biology Laboratory, European Bioinformatics Institute (EBI), Wellcome Genome Campus, Hinxton CB10 1SA, UK.
| | - Matthias Zilbauer
- Wellcome Trust, MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0SZ, UK; Department of Paediatrics, University of Cambridge, Cambridge CB2 0QQ, UK; Department of Paediatric Gastroenterology, Hepatology and Nutrition, Cambridge University Hospitals Trust, Cambridge CB2 0QQ, UK.
| |
Collapse
|
222
|
Antfolk M, Jensen KB. A bioengineering perspective on modelling the intestinal epithelial physiology in vitro. Nat Commun 2020; 11:6244. [PMID: 33288759 PMCID: PMC7721730 DOI: 10.1038/s41467-020-20052-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 11/12/2020] [Indexed: 02/07/2023] Open
Abstract
The small intestine is a specialised organ, essential for nutrient digestion and absorption. It is lined with a complex epithelial cell layer. Intestinal epithelial cells can be cultured in three-dimensional (3D) scaffolds as self-organising entities with distinct domains containing stem cells and differentiated cells. Recent developments in bioengineering provide new possibilities for directing the organisation of cells in vitro. In this Perspective, focusing on the small intestine, we discuss how studies at the interface between bioengineering and intestinal biology provide new insights into organ function. Specifically, we focus on engineered biomaterials, complex 3D structures resembling the intestinal architecture, and micro-physiological systems.
Collapse
Affiliation(s)
- Maria Antfolk
- BRIC - Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
- Department of Biomedical Engineering, Lund University, Lund, Sweden.
| | - Kim B Jensen
- BRIC - Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
223
|
Brügger MD, Valenta T, Fazilaty H, Hausmann G, Basler K. Distinct populations of crypt-associated fibroblasts act as signaling hubs to control colon homeostasis. PLoS Biol 2020; 18:e3001032. [PMID: 33306673 PMCID: PMC7758045 DOI: 10.1371/journal.pbio.3001032] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 12/23/2020] [Accepted: 11/25/2020] [Indexed: 12/13/2022] Open
Abstract
Despite recent progress in recognizing the importance of mesenchymal cells for the homeostasis of the intestinal system, the current picture of how these cells communicate with the associated epithelial layer remains unclear. To describe the relevant cell populations in an unbiased manner, we carried out a single-cell transcriptome analysis of the adult murine colon, producing a high-quality atlas of matched colonic epithelium and mesenchyme. We identify two crypt-associated colonic fibroblast populations that are demarcated by different strengths of platelet-derived growth factor receptor A (Pdgfra) expression. Crypt-bottom fibroblasts (CBFs), close to the intestinal stem cells, express low levels of Pdgfra and secrete canonical Wnt ligands, Wnt potentiators, and bone morphogenetic protein (Bmp) inhibitors. Crypt-top fibroblasts (CTFs) exhibit high Pdgfra levels and secrete noncanonical Wnts and Bmp ligands. While the Pdgfralow cells maintain intestinal stem cell proliferation, the Pdgfrahigh cells induce differentiation of the epithelial cells. Our findings enhance our understanding of the crosstalk between various colonic epithelial cells and their associated mesenchymal signaling hubs along the crypt axis-placing differential Pdgfra expression levels in the spotlight of intestinal fibroblast identity.
Collapse
Affiliation(s)
| | - Tomas Valenta
- Department of Molecular Life Sciences, University of Zurich, Switzerland
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Hassan Fazilaty
- Department of Molecular Life Sciences, University of Zurich, Switzerland
| | - George Hausmann
- Department of Molecular Life Sciences, University of Zurich, Switzerland
| | - Konrad Basler
- Department of Molecular Life Sciences, University of Zurich, Switzerland
| |
Collapse
|
224
|
Abstract
The cardinal properties of adult tissue stem cells are self-renewal and the ability to generate diverse resident cell types. The daily losses of terminally differentiated intestinal, skin, and blood cells require "professional" stem cells to produce replacements. This occurs by continuous expansion of stem cells and their immediate progeny, followed by coordinated activation of divergent transcriptional programs to generate stable cells with diverse functions. Other tissues turn over slowly, if at all, and vary widely in strategies for facultative stem cell activity or interconversion among mature resident cell types (transdifferentiation). Cell fate potential is programmed in tissue-specific configurations of chromatin, which restrict the complement of available genes and cis-regulatory elements, hence allowing specific cell types to arise. Using as a model the transcriptional and chromatin basis of cell differentiation and dedifferentiation in intestinal crypts, we discuss here how self-renewing and other tissues execute homeostatic and injury-responsive stem cell activity.
Collapse
Affiliation(s)
- Madhurima Saxena
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA; .,Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Harvard University, Boston, Massachusetts 02215, USA.,Current affiliation: Translational Medicine, Bristol-Myers-Squibb, Cambridge, Massachusetts 02142, USA;
| | - Ramesh A Shivdasani
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA; .,Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Harvard University, Boston, Massachusetts 02215, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
225
|
Matsumura S, Kurashima Y, Murasaki S, Morimoto M, Arai F, Saito Y, Katayama N, Kim D, Inagaki Y, Kudo T, Ernst PB, Shimizu T, Kiyono H. Stratified layer analysis reveals intrinsic leptin stimulates cryptal mesenchymal cells for controlling mucosal inflammation. Sci Rep 2020; 10:18351. [PMID: 33110098 PMCID: PMC7591933 DOI: 10.1038/s41598-020-75186-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 10/07/2020] [Indexed: 12/30/2022] Open
Abstract
Mesenchymal cells in the crypt play indispensable roles in the maintenance of intestinal epithelial homeostasis through their contribution to the preservation of stem cells. However, the acquisition properties of the production of stem cell niche factors by the mesenchymal cells have not been well elucidated, due to technical limitations regarding the isolation and subsequent molecular and cellular analyses of cryptal mesenchymal cells. To evaluate the function of mesenchymal cells located at the large intestinal crypt, we established a novel method through which cells are harvested according to the histologic layers of mouse colon, and we compared cellular properties between microenvironmental niches, the luminal mucosa and crypts. The gene expression pattern in the cryptal mesenchymal cells showed that receptors of the hormone/cytokine leptin were highly expressed, and we found a decrease in Wnt2b expression under conditions of leptin receptor deficiency, which also induced a delay in cryptal epithelial proliferation. Our novel stratified layer isolation strategies thus revealed new microenvironmental characteristics of colonic mesenchymal cells, including the intrinsic involvement of leptin in the control of mucosal homeostasis.
Collapse
Affiliation(s)
- Seiichi Matsumura
- Department of Innovative Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba, 260-8670, Japan.,Department of Mucosal Immunology, The University of Tokyo Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan.,Department of Pediatrics, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Yosuke Kurashima
- Department of Innovative Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba, 260-8670, Japan. .,Department of Mucosal Immunology, The University of Tokyo Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan. .,International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan. .,Division of Gastroenterology, Department of Medicine, CU-UCSD Center for Mucosal Immunology, Allergy and Vaccines (CU-UCSD cMAV), University of California, San Diego, CA, 92093-0956, USA. .,Division of Comparative Pathology and Medicine, Department of Pathology, University of California San Diego, San Diego, CA, 92093-0956, USA.
| | - Sayuri Murasaki
- Department of Mucosal Immunology, The University of Tokyo Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Masako Morimoto
- Department of Innovative Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba, 260-8670, Japan
| | - Fujimi Arai
- Department of Mucosal Immunology, The University of Tokyo Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Yukari Saito
- Department of Innovative Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba, 260-8670, Japan
| | - Nana Katayama
- Department of Mucosal Immunology, The University of Tokyo Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Dayoung Kim
- Department of Mucosal Immunology, The University of Tokyo Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Yutaka Inagaki
- Center for Matrix Biology and Medicine, Graduate School of Medicine, Tokai University, Kanagawa, Japan
| | - Takahiro Kudo
- Department of Pediatrics, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Peter B Ernst
- Division of Gastroenterology, Department of Medicine, CU-UCSD Center for Mucosal Immunology, Allergy and Vaccines (CU-UCSD cMAV), University of California, San Diego, CA, 92093-0956, USA.,Division of Comparative Pathology and Medicine, Department of Pathology, University of California San Diego, San Diego, CA, 92093-0956, USA.,Center for Veterinary Sciences and Comparative Medicine, University of California, San Diego, CA, 92093-0956, USA
| | - Toshiaki Shimizu
- Department of Pediatrics, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Hiroshi Kiyono
- Department of Mucosal Immunology, The University of Tokyo Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan.,International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan.,Division of Gastroenterology, Department of Medicine, CU-UCSD Center for Mucosal Immunology, Allergy and Vaccines (CU-UCSD cMAV), University of California, San Diego, CA, 92093-0956, USA
| |
Collapse
|
226
|
Alison MR. The cellular origins of cancer with particular reference to the gastrointestinal tract. Int J Exp Pathol 2020; 101:132-151. [PMID: 32794627 PMCID: PMC7495846 DOI: 10.1111/iep.12364] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/11/2020] [Accepted: 06/13/2020] [Indexed: 12/18/2022] Open
Abstract
Stem cells or their closely related committed progenitor cells are the likely founder cells of most neoplasms. In the continually renewing and hierarchically organized epithelia of the oesophagus, stomach and intestine, homeostatic stem cells are located at the beginning of the cell flux, in the basal layer of the oesophagus, the isthmic region of gastric oxyntic glands and at the bottom of gastric pyloric-antral glands and colonic crypts. The introduction of mutant oncogenes such as KrasG12D or loss of Tp53 or Apc to specific cell types expressing the likes of Lgr5 and Mist1 can be readily accomplished in genetically engineered mouse models to initiate tumorigenesis. Other origins of cancer are discussed including 'reserve' stem cells that may be activated by damage or through disruption of morphogen gradients along the crypt axis. In the liver and pancreas, with little cell turnover and no obvious stem cell markers, the importance of regenerative hyperplasia associated with chronic inflammation to tumour initiation is vividly apparent, though inflammatory conditions in the renewing populations are also permissive for tumour induction. In the liver, hepatocytes, biliary epithelial cells and hepatic progenitor cells are embryologically related, and all can give rise to hepatocellular carcinoma and cholangiocarcinoma. In the exocrine pancreas, both acinar and ductal cells can give rise to pancreatic ductal adenocarcinoma (PDAC), although the preceding preneoplastic states are quite different: acinar-ductal metaplasia gives rise to pancreatic intraepithelial neoplasia culminating in PDAC, while ducts give rise to PDAC via. mucinous cell metaplasia that may have a polyclonal origin.
Collapse
Affiliation(s)
- Malcolm R. Alison
- Centre for Tumour BiologyBarts Cancer Institute, Charterhouse SquareBarts and The London School of Medicine and DentistryLondonUK
| |
Collapse
|
227
|
The role of stem cell niche in intestinal aging. Mech Ageing Dev 2020; 191:111330. [DOI: 10.1016/j.mad.2020.111330] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 12/16/2022]
|
228
|
McCarthy N, Kraiczy J, Shivdasani RA. Cellular and molecular architecture of the intestinal stem cell niche. Nat Cell Biol 2020; 22:1033-1041. [PMID: 32884148 DOI: 10.1038/s41556-020-0567-z] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/29/2020] [Indexed: 12/23/2022]
Abstract
Intestinal stem and progenitor cells replicate and differentiate in distinct compartments, influenced by Wnt, BMP, and other subepithelial cues. The cellular sources of these signals were long obscure because intestinal mesenchyme was insufficiently characterised. In this Review, we discuss how recent mRNA profiles of mouse and human intestinal submucosa, coupled with fine-resolution microscopy and gene and cell disruptions, reveal a coherent picture of an organised tissue carrying cells with distinct molecular properties and functions.
Collapse
Affiliation(s)
- Neil McCarthy
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Judith Kraiczy
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Ramesh A Shivdasani
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA. .,Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
229
|
Jardé T, Chan WH, Rossello FJ, Kaur Kahlon T, Theocharous M, Kurian Arackal T, Flores T, Giraud M, Richards E, Chan E, Kerr G, Engel RM, Prasko M, Donoghue JF, Abe SI, Phesse TJ, Nefzger CM, McMurrick PJ, Powell DR, Daly RJ, Polo JM, Abud HE. Mesenchymal Niche-Derived Neuregulin-1 Drives Intestinal Stem Cell Proliferation and Regeneration of Damaged Epithelium. Cell Stem Cell 2020; 27:646-662.e7. [PMID: 32693086 DOI: 10.1016/j.stem.2020.06.021] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/13/2020] [Accepted: 06/23/2020] [Indexed: 12/11/2022]
Abstract
Epidermal growth factor (EGF) maintains intestinal stem cell (ISC) proliferation and is a key component of organoid growth media yet is dispensable for intestinal homeostasis, suggesting roles for multiple EGF family ligands in ISC function. Here, we identified neuregulin 1 (NRG1) as a key EGF family ligand that drives tissue repair following injury. NRG1, but not EGF, is upregulated upon damage and is expressed in mesenchymal stromal cells, macrophages, and Paneth cells. NRG1 deletion reduces proliferation in intestinal crypts and compromises regeneration capacity. NRG1 robustly stimulates proliferation in crypts and induces budding in organoids, in part through elevated and sustained activation of mitogen-activated protein kinase (MAPK) and AKT. Consistently, NRG1 treatment induces a proliferative gene signature and promotes organoid formation from progenitor cells and enhances regeneration following injury. These data suggest mesenchymal-derived NRG1 is a potent mediator of tissue regeneration and may inform the development of therapies for enhancing intestinal repair after injury.
Collapse
Affiliation(s)
- Thierry Jardé
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia; Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia.
| | - Wing Hei Chan
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia
| | - Fernando J Rossello
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia; University of Melbourne Centre for Cancer Research, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Tanvir Kaur Kahlon
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia
| | - Mandy Theocharous
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia; Cancer Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia
| | - Teni Kurian Arackal
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia
| | - Tracey Flores
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia
| | - Mégane Giraud
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia
| | - Elizabeth Richards
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia
| | - Eva Chan
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia
| | - Genevieve Kerr
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia
| | - Rebekah M Engel
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia; Cabrini Monash University Department of Surgery, Cabrini Hospital, Malvern, VIC 3144, Australia
| | - Mirsada Prasko
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia
| | - Jacqueline F Donoghue
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; Department of Obstetrics and Gynaecology, Royal Women's Hospital, Melbourne University, Melbourne, VIC 3052, Australia
| | - Shin-Ichi Abe
- Center for Education, Kumamoto Health Science University, Kumamoto 861-5598, Japan
| | - Toby J Phesse
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff CF24 4HQ, UK; Doherty Institute of Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Christian M Nefzger
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia; Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Paul J McMurrick
- Cabrini Monash University Department of Surgery, Cabrini Hospital, Malvern, VIC 3144, Australia
| | - David R Powell
- Monash Bioinformatics Platform, Monash University, Clayton, VIC 3800, Australia
| | - Roger J Daly
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia; Cancer Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia
| | - Jose M Polo
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Helen E Abud
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia.
| |
Collapse
|
230
|
Gooding S, Leedham SJ. Gremlin 1 - small protein, big impact: the multiorgan consequences of disrupted BMP antagonism †. J Pathol 2020; 251:349-352. [PMID: 32472605 PMCID: PMC8576570 DOI: 10.1002/path.5479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 05/19/2020] [Accepted: 05/24/2020] [Indexed: 12/31/2022]
Abstract
Highly conserved, complex and interacting morphogen signalling pathways regulate adult stem cells and control cell fate determination across numerous different organs. In homeostasis, the bone morphogenetic protein (BMP) pathway predominantly promotes cell differentiation. Localised expression of ligand sequestering BMP antagonists, such as Gremlin 1 (Grem1), necessarily restricts BMP activity within the stem cell niche and facilitate stemness and self‐renewal. In a new paper, Rowan, Jahns et al show that acute deletion of Grem1 in adult mice, using a ubiquitous ROSA26‐Cre recombinase, induced not only severe intestinal enteropathy but also hypocellular bone marrow failure suggestive of stem cell niche collapse in both tissues. Grem1 has an increasingly recognised pleiotrophic role in a number of organ systems and is implicated across a wide range of disease states. Although the importance of Grem1 in intestinal stem cell regulation has been well described, a putative function in haematopoietic niche maintenance is novel and requires further exploration. Moreover, the complex and context‐specific regulation of Grem1, among a host of functionally convergent but structurally disparate BMP antagonists, warrants further research as we learn more about the pathogenic consequences of deranged expression of this small, but important, protein. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Sarah Gooding
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Simon J Leedham
- Intestinal Stem Cell Biology Laboratory, Oxford Centre for Cancer Gene Research, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
231
|
Rowan SC, Jahns H, Mthunzi L, Piouceau L, Cornwell J, Doody R, Frohlich S, Callanan JJ, McLoughlin P. Gremlin 1 depletion in vivo causes severe enteropathy and bone marrow failure. J Pathol 2020; 251:117-122. [PMID: 32297672 PMCID: PMC7384058 DOI: 10.1002/path.5450] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 03/11/2020] [Accepted: 04/02/2020] [Indexed: 12/19/2022]
Abstract
The intestinal epithelium is perpetually renewed from a stem cell niche in the base of crypts to maintain a healthy bowel mucosa. Exit from this niche and maturation of epithelial cells requires tightly controlled gradients in BMP signalling, progressing from low BMP signalling at the crypt base to high signalling at the luminal surface. The BMP antagonist gremlin 1 (Grem1) is highly expressed by subepithelial myofibroblasts adjacent to the intestinal crypts but its role in regulating the stem cell niche and epithelial renewal in vivo has not been explored. To explore the effects of Grem1 loss in adulthood following normal growth and development, we bred mice (ROSA26CreER‐Grem1flx/flx) in which Grem1 could be deleted by tamoxifen administration. While Grem1 remained intact, these mice were healthy, grew normally, and reproduced successfully. Following Grem1 depletion, the mice became unwell and were euthanised (at 7–13 days). Post‐mortem examination revealed extensive mucosal abnormalities throughout the small and large intestines with failure of epithelial cell replication and maturation, villous atrophy, and features of malabsorption. Bone marrow hypoplasia was also observed with associated early haematopoietic failure. These results demonstrate an essential homeostatic role for gremlin 1 in maintaining normal bowel epithelial function in adulthood, suggesting that abnormalities in gremlin 1 expression can contribute to enteropathies. We also identified a previously unsuspected requirement for gremlin 1 in normal haematopoiesis. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Simon C Rowan
- University College Dublin, School of Medicine and Conway Institute, Dublin, Ireland
| | - Hanne Jahns
- University College Dublin, School of Veterinary Medicine, Dublin, Ireland
| | - Liberty Mthunzi
- University College Dublin, School of Medicine and Conway Institute, Dublin, Ireland
| | - Lucie Piouceau
- University College Dublin, School of Medicine and Conway Institute, Dublin, Ireland
| | - Joanna Cornwell
- University College Dublin, School of Medicine and Conway Institute, Dublin, Ireland
| | - Róisín Doody
- University College Dublin, School of Medicine and Conway Institute, Dublin, Ireland
| | | | - John J Callanan
- University College Dublin, School of Veterinary Medicine, Dublin, Ireland
| | - Paul McLoughlin
- University College Dublin, School of Medicine and Conway Institute, Dublin, Ireland
| |
Collapse
|