201
|
Cell Surface Fibroblast Activation Protein-2 (Fap2) of Fusobacterium nucleatum as a Vaccine Candidate for Therapeutic Intervention of Human Colorectal Cancer: An Immunoinformatics Approach. Vaccines (Basel) 2023; 11:vaccines11030525. [PMID: 36992108 DOI: 10.3390/vaccines11030525] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancers and is the second-highest in cancer-related deaths worldwide. The changes in gut homeostasis and microbial dysbiosis lead to the initiation of the tumorigenesis process. Several pathogenic gram-negative bacteria including Fusobacterium nucleatum are the principal contributors to the induction and pathogenesis of CRC. Thus, inhibiting the growth and survival of these pathogens can be a useful intervention strategy. Fibroblast activation protein-2 (Fap2) is an essential membrane protein of F. nucleatum that promotes the adherence of the bacterium to the colon cells, recruitment of immune cells, and induction of tumorigenesis. The present study depicts the design of an in silico vaccine candidate comprising the B-cell and T-cell epitopes of Fap2 for improving cell-mediated and humoral immune responses against CRC. Notably, this vaccine participates in significant protein–protein interactions with human Toll-like receptors, especially with TLR6 reveals, which is most likely to be correlated with its efficacy in eliciting potential immune responses. The immunogenic trait of the designed vaccine was verified by immune simulation approach. The cDNA of the vaccine construct was cloned in silico within the expression vector pET30ax for protein expression. Collectively, the proposed vaccine construct may serve as a promising therapeutic in intervening F. nucleatum-induced human CRC.
Collapse
|
202
|
Young M, Tang M, Li H, Richard DJ, McLeod DSA, d'Emden MC, Richard K. Transthyretin binds soluble endoglin and increases its uptake by hepatocytes: A possible role for transthyretin in preeclampsia? Mol Cell Endocrinol 2023; 562:111851. [PMID: 36634839 DOI: 10.1016/j.mce.2023.111851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/11/2023]
Abstract
BACKGROUND Preeclampsia is a common but life-threatening condition of pregnancy. It is caused by poor placentation resulting in release of trophoblast material (including soluble endoglin (sEng)) into the maternal circulation leading to maternal vascular dysfunction and to the life-threatening condition of eclampsia. The only cure is early delivery, which can have lifelong consequences for the premature child. The thyroid hormone binding protein transthyretin is dysregulated in preeclampsia, however it is not known if this plays a role in disease pathology. We hypothesised that transthyretin may bind sEng and abrogate its negative effects by removing it from the maternal serum. METHODS The effect of transthyretin on hepatocyte uptake of Alexa-labelled sEng was measured using live cell imaging. Interactions between transthyretin, and sEng were investigated using molecular modelling, direct binding on CnBr Sepharose columns, confocal imaging, and measurement of fluorescence resonance energy transfer. RESULTS Transthyretin directly bound to sEng and increased its uptake by hepatocytes. This uptake was altered in the presence of transforming growth factor-β1 (TGF-β1). Molecular modelling predicted that transthyretin and TGF-β1 bind at the same site in sEng and may compete for binding. Endocytosed transthyretin and endoglin entered cells together and co-localised inside hepatocyte cells. CONCLUSION Transthyretin can bind sEng and increase its uptake from the extracellular medium. This suggests that increasing transthyretin levels or developing drugs that normalise or mimic transthyretin, may provide treatment options to reduce sEng induced vascular dysfunction.
Collapse
Affiliation(s)
- Melanie Young
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Queensland Health, Brisbane, Australia
| | - Ming Tang
- Queensland University of Technology (QUT), Cancer & Ageing Research Program, Centre for Genomics and Personalised Health, Translational Research Institute (TRI), Brisbane, Australia
| | - Huika Li
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Queensland Health, Brisbane, Australia
| | - Derek J Richard
- Queensland University of Technology (QUT), Cancer & Ageing Research Program, Centre for Genomics and Personalised Health, Translational Research Institute (TRI), Brisbane, Australia
| | - Donald S A McLeod
- Department of Endocrinology and Diabetes, Royal Brisbane and Women's Hospital, Brisbane, Australia; QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Michael C d'Emden
- Department of Endocrinology and Diabetes, Royal Brisbane and Women's Hospital, Brisbane, Australia; School of Medicine, University of Queensland, Herston, Qld, 4029, Australia
| | - Kerry Richard
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Queensland Health, Brisbane, Australia; Queensland University of Technology (QUT), Cancer & Ageing Research Program, Centre for Genomics and Personalised Health, Translational Research Institute (TRI), Brisbane, Australia; Department of Endocrinology and Diabetes, Royal Brisbane and Women's Hospital, Brisbane, Australia; School of Medicine, University of Queensland, Herston, Qld, 4029, Australia.
| |
Collapse
|
203
|
Pavinato L, Delle Vedove A, Carli D, Ferrero M, Carestiato S, Howe JL, Agolini E, Coviello DA, van de Laar I, Au PYB, Di Gregorio E, Fabbiani A, Croci S, Mencarelli MA, Bruno LP, Renieri A, Veltra D, Sofocleous C, Faivre L, Mazel B, Safraou H, Denommé-Pichon AS, van Slegtenhorst MA, Giesbertz N, van Jaarsveld RH, Childers A, Rogers RC, Novelli A, De Rubeis S, Buxbaum JD, Scherer SW, Ferrero GB, Wirth B, Brusco A. CAPRIN1 haploinsufficiency causes a neurodevelopmental disorder with language impairment, ADHD and ASD. Brain 2023; 146:534-548. [PMID: 35979925 PMCID: PMC10169411 DOI: 10.1093/brain/awac278] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 07/04/2022] [Accepted: 07/11/2022] [Indexed: 11/12/2022] Open
Abstract
We describe an autosomal dominant disorder associated with loss-of-function variants in the Cell cycle associated protein 1 (CAPRIN1; MIM*601178). CAPRIN1 encodes a ubiquitous protein that regulates the transport and translation of neuronal mRNAs critical for synaptic plasticity, as well as mRNAs encoding proteins important for cell proliferation and migration in multiple cell types. We identified 12 cases with loss-of-function CAPRIN1 variants, and a neurodevelopmental phenotype characterized by language impairment/speech delay (100%), intellectual disability (83%), attention deficit hyperactivity disorder (82%) and autism spectrum disorder (67%). Affected individuals also had respiratory problems (50%), limb/skeletal anomalies (50%), developmental delay (42%) feeding difficulties (33%), seizures (33%) and ophthalmologic problems (33%). In patient-derived lymphoblasts and fibroblasts, we showed a monoallelic expression of the wild-type allele, and a reduction of the transcript and protein compatible with a half dose. To further study pathogenic mechanisms, we generated sCAPRIN1+/- human induced pluripotent stem cells via CRISPR-Cas9 mutagenesis and differentiated them into neuronal progenitor cells and cortical neurons. CAPRIN1 loss caused reduced neuronal processes, overall disruption of the neuronal organization and an increased neuronal degeneration. We also observed an alteration of mRNA translation in CAPRIN1+/- neurons, compatible with its suggested function as translational inhibitor. CAPRIN1+/- neurons also showed an impaired calcium signalling and increased oxidative stress, two mechanisms that may directly affect neuronal networks development, maintenance and function. According to what was previously observed in the mouse model, measurements of activity in CAPRIN1+/- neurons via micro-electrode arrays indicated lower spike rates and bursts, with an overall reduced activity. In conclusion, we demonstrate that CAPRIN1 haploinsufficiency causes a novel autosomal dominant neurodevelopmental disorder and identify morphological and functional alterations associated with this disorder in human neuronal models.
Collapse
Affiliation(s)
- Lisa Pavinato
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy.,Institute of Human Genetics, Center for Molecular Medicine Cologne, Center for Rare Diseases Cologne, University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Andrea Delle Vedove
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Center for Rare Diseases Cologne, University Hospital Cologne, University of Cologne, 50931 Cologne, Germany.,Institute for Genetics, University of Cologne, 50674 Cologne, Germany
| | - Diana Carli
- Department of Public Health and Pediatrics, University of Turin, 10126 Turin, Italy.,Pediatric Onco-Hematology, Stem Cell Transplantation and Cell Therapy Division, Regina Margherita Children's Hospital, Città Della Salute e Della Scienza di Torino, 10126 Turin, Italy
| | - Marta Ferrero
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy.,Experimental Zooprophylactic Institute of Piedmont, Liguria e Valle d'Aosta, 10154 Turin, Italy
| | - Silvia Carestiato
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy
| | - Jennifer L Howe
- The Centre for Applied Genomics, Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Emanuele Agolini
- Laboratory of Medical Genetics, IRCCS, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Domenico A Coviello
- Laboratory of Human Genetics, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Ingrid van de Laar
- Clinical Genetics, Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, The Netherlands
| | - Ping Yee Billie Au
- Department of Medical Genetics, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Eleonora Di Gregorio
- Medical Genetics Unit, Città della Salute e della Scienza University Hospital, 10126 Turin, Italy
| | - Alessandra Fabbiani
- Medical Genetics Unit, Azienda Ospedaliera Universitaria Senese, 53100 Siena, Italy.,Medical Genetics, University of Siena, 53100 Siena, Italy.,Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Susanna Croci
- Medical Genetics, University of Siena, 53100 Siena, Italy.,Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | | | - Lucia P Bruno
- Medical Genetics, University of Siena, 53100 Siena, Italy.,Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Alessandra Renieri
- Medical Genetics Unit, Azienda Ospedaliera Universitaria Senese, 53100 Siena, Italy.,Medical Genetics, University of Siena, 53100 Siena, Italy.,Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Danai Veltra
- Laboratory of Medical Genetics, School of Medicine, National & Kapodistrian University of Athens, 'Aghia Sophia' Children's Hospital, 11527 Athens, Greece
| | - Christalena Sofocleous
- Laboratory of Medical Genetics, School of Medicine, National & Kapodistrian University of Athens, 'Aghia Sophia' Children's Hospital, 11527 Athens, Greece
| | - Laurence Faivre
- Centre de référence Anomalies du Développement et Syndromes Malformatifs, Fédération Hospitalo-Universitaire TRANSLAD, CHU Dijon, 21079 Dijon, France.,UMR1231 GAD, Inserm-Université Bourgogne-Franche Comté, 21078 Dijon, France
| | - Benoit Mazel
- Centre de référence Anomalies du Développement et Syndromes Malformatifs, Fédération Hospitalo-Universitaire TRANSLAD, CHU Dijon, 21079 Dijon, France
| | - Hana Safraou
- UMR1231 GAD, Inserm-Université Bourgogne-Franche Comté, 21078 Dijon, France.,Unité Fonctionnelle Innovation en Diagnostic génomique des maladies rares, FHU TRANSLAD, CHU Dijon Bourgogne, 21000 Dijon, France
| | - Anne-Sophie Denommé-Pichon
- UMR1231 GAD, Inserm-Université Bourgogne-Franche Comté, 21078 Dijon, France.,Unité Fonctionnelle Innovation en Diagnostic génomique des maladies rares, FHU TRANSLAD, CHU Dijon Bourgogne, 21000 Dijon, France
| | - Marjon A van Slegtenhorst
- Clinical Genetics, Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, The Netherlands
| | - Noor Giesbertz
- Department of Genetics, University Medical Centre Utrecht, 3584 CX, Utrecht, The Netherlands
| | - Richard H van Jaarsveld
- Department of Genetics, University Medical Centre Utrecht, 3584 CX, Utrecht, The Netherlands
| | | | | | - Antonio Novelli
- Laboratory of Medical Genetics, IRCCS, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Silvia De Rubeis
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Joseph D Buxbaum
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Stephen W Scherer
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.,McLaughlin Centre, University of Toronto, Toronto, ON M5S 1A1, Canada
| | | | - Brunhilde Wirth
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Center for Rare Diseases Cologne, University Hospital Cologne, University of Cologne, 50931 Cologne, Germany.,Institute for Genetics, University of Cologne, 50674 Cologne, Germany
| | - Alfredo Brusco
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy.,Medical Genetics Unit, Città della Salute e della Scienza University Hospital, 10126 Turin, Italy
| |
Collapse
|
204
|
Keatinge-Clay AT, Miyazawa T, Zhang J, Ray KA, Lutgens JD, Bista R, Lin SN. Crystal structures reveal the framework of cis -acyltransferase modular polyketide synthases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.11.528132. [PMID: 36798387 PMCID: PMC9934609 DOI: 10.1101/2023.02.11.528132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Although the domains of cis -acyltransferase ( cis -AT) modular polyketide synthases (PKS's) have been understood at atomic resolution for over a decade, the domain-domain interactions responsible for the architectures and activities of these giant molecular assembly lines remain largely uncharacterized. The multimeric structure of the α 6 β 6 fungal fatty acid synthase (FAS) provides 6 equivalent reaction chambers for its acyl carrier protein (ACP) domains to shuttle carbon building blocks and the growing acyl chain between surrounding, oriented enzymatic domains. The presumed homodimeric oligomerization of cis -AT assembly lines is insufficient to provide similar reaction chambers; however, the crystal structure of a ketosynthase (KS)+AT didomain presented here and three already reported show an interaction between the AT domains appropriate for lateral multimerization. This interaction was used to construct a framework for the pikromycin PKS from its KS, AT, and docking domains that contains highly-ordered reaction chambers. Its AT domains also mediate vertical interactions, both with upstream KS domains and downstream docking domains.
Collapse
|
205
|
Duran-Frigola M, Cigler M, Winter GE. Advancing Targeted Protein Degradation via Multiomics Profiling and Artificial Intelligence. J Am Chem Soc 2023; 145:2711-2732. [PMID: 36706315 PMCID: PMC9912273 DOI: 10.1021/jacs.2c11098] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Indexed: 01/28/2023]
Abstract
Only around 20% of the human proteome is considered to be druggable with small-molecule antagonists. This leaves some of the most compelling therapeutic targets outside the reach of ligand discovery. The concept of targeted protein degradation (TPD) promises to overcome some of these limitations. In brief, TPD is dependent on small molecules that induce the proximity between a protein of interest (POI) and an E3 ubiquitin ligase, causing ubiquitination and degradation of the POI. In this perspective, we want to reflect on current challenges in the field, and discuss how advances in multiomics profiling, artificial intelligence, and machine learning (AI/ML) will be vital in overcoming them. The presented roadmap is discussed in the context of small-molecule degraders but is equally applicable for other emerging proximity-inducing modalities.
Collapse
Affiliation(s)
- Miquel Duran-Frigola
- CeMM
Research Center for Molecular Medicine of the Austrian Academy of
Sciences, 1090 Vienna, Austria
- Ersilia
Open Source Initiative, 28 Belgrave Road, CB1 3DE, Cambridge, United Kingdom
| | - Marko Cigler
- CeMM
Research Center for Molecular Medicine of the Austrian Academy of
Sciences, 1090 Vienna, Austria
| | - Georg E. Winter
- CeMM
Research Center for Molecular Medicine of the Austrian Academy of
Sciences, 1090 Vienna, Austria
| |
Collapse
|
206
|
Desta IT, Kotelnikov S, Jones G, Ghani U, Abyzov M, Kholodov Y, Standley DM, Sabitova M, Beglov D, Vajda S, Kozakov D. Mapping of antibody epitopes based on docking and homology modeling. Proteins 2023; 91:171-182. [PMID: 36088633 PMCID: PMC9822860 DOI: 10.1002/prot.26420] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/25/2022] [Accepted: 09/06/2022] [Indexed: 01/11/2023]
Abstract
Antibodies are key proteins produced by the immune system to target pathogen proteins termed antigens via specific binding to surface regions called epitopes. Given an antigen and the sequence of an antibody the knowledge of the epitope is critical for the discovery and development of antibody based therapeutics. In this work, we present a computational protocol that uses template-based modeling and docking to predict epitope residues. This protocol is implemented in three major steps. First, a template-based modeling approach is used to build the antibody structures. We tested several options, including generation of models using AlphaFold2. Second, each antibody model is docked to the antigen using the fast Fourier transform (FFT) based docking program PIPER. Attention is given to optimally selecting the docking energy parameters depending on the input data. In particular, the van der Waals energy terms are reduced for modeled antibodies relative to x-ray structures. Finally, ranking of antigen surface residues is produced. The ranking relies on the docking results, that is, how often the residue appears in the docking poses' interface, and also on the energy favorability of the docking pose in question. The method, called PIPER-Map, has been tested on a widely used antibody-antigen docking benchmark. The results show that PIPER-Map improves upon the existing epitope prediction methods. An interesting observation is that epitope prediction accuracy starting from antibody sequence alone does not significantly differ from that of starting from unbound (i.e., separately crystallized) antibody structure.
Collapse
Affiliation(s)
- Israel T. Desta
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Sergei Kotelnikov
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794, USA
| | - George Jones
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Usman Ghani
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | | | | | - Daron M. Standley
- Department of Genome Informatics, Osaka University, Osaka, 565-0871, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka, 565-0871, Japan
| | - Maria Sabitova
- Department of Mathematics, CUNY Queens College, Flushing, NY 11367, USA
| | - Dmitri Beglov
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Sandor Vajda
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Dima Kozakov
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
207
|
Reverse vaccinology assisted design of a novel multi-epitope vaccine to target Wuchereria bancrofti cystatin: An immunoinformatics approach. Int Immunopharmacol 2023; 115:109639. [PMID: 36586276 DOI: 10.1016/j.intimp.2022.109639] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/05/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022]
Abstract
Proteases are the critical mediators of immunomodulation exerted by the filarial parasites to bypass and divert host immunity. Cystatin is a small (∼15 kDa) immunomodulatory filarial protein and known to contribute in the immunomodulation strategy by inducing anti-inflammatory response through alternative activation of macrophages. Recently, Wuchereria bancrofti cystatin has been discovered as a ligand of human toll-like receptor 4 which is key behind the cystatin-induced anti-inflammatory response in major human antigen-presenting cells. Considering the pivotal role of cystatin in the immunobiology of filariasis, cystatin could be an efficacious target for developing vaccine. Herein, we present the design and in-silico analyses of a multi-epitope-based peptide vaccine to target W. bancrofti cystatin through immune-informatics approaches. The 262 amino acid long antigen construct comprises 9 MHC-I epitopes and MHC-II epitopes linked together by GPGPG peptide alongside an adjuvant (50S ribosomal protein L7/L12) at N terminus and 6 His tags at C terminus. Molecular docking study reveals that the peptide could trigger TLR4-MD2 to induce protective innate immune responses while the induced adaptive responses were found to be mediated by IgG, IgM and Th1 mediated responses. Notably, the designed vaccine exhibits high stability and no allergenicity in-silico. Furthermore, the muti epitope-vaccine was also predicted for its RNA structure and cloned in pET30ax for further experimental validation. Taken together, this study presents a novel multi-epitope peptide vaccine for triggering efficient innate and adaptive immune responses against W. bancrofti to intervene LF through immunotherapy.
Collapse
|
208
|
Rosales-Hernández MC, Bello M, Toledano JV, Feregrino BCE, Correa Basurto J, Fragoso Morales LG, Torres-Ramos MA. Molecular dynamics simulations depict structural motions of the whole human aryl hydrocarbon receptor influencing its binding of ligands and HSP90. J Biomol Struct Dyn 2023; 41:13138-13153. [PMID: 36705144 DOI: 10.1080/07391102.2023.2171132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 01/15/2023] [Indexed: 01/28/2023]
Abstract
The aryl hydrocarbon receptor (AhR) has broad biological functions when its ligands activate it; the non-binding interactions with AhR have not been fully elucidated due to the absence of a complete tridimensional (3D) structure. Therefore, utilization of the whole 3D structure from Homo sapiens AhR by in silico studies will allow us to better study and analyze the binding mode of its full and partial agonists, and antagonists, as well as its interaction with the HSP90 chaperone. The 3D AhR structure was obtained from I-TASSER and subjected to molecular dynamics (MD) simulations to obtain different structural conformations and determine the most populated AhR conformer by clustering analyses. The AhR-3D structures selected from MD simulations and those from clustering analyses were used to achieve docking studies with some of its ligands and protein-protein docking with HSP90. Once the AhR-3D structure was built, its Ramachandran maps and energy showed a well-qualified 3D model. MD simulations showed that the per-Arnt-Sim homology (PAS) PAS A, PAS B, and Q domains underwent conformational changes, identifying the conformation when agonists were binding also, and HSP90 was binding near the PAS A, PAS B, and Q domains. However, when antagonists are binding, HSP90 does not bind near the PAS A, PAS B, and Q domains. These studies show that the complex agonist-AhR-HSP90 can be formed, but this complex is not formed when an antagonist is binding. Knowing the conformations when the ligands bind to AHR and the behavior of HSP90 allows for an understanding of its activity.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Martha Cecilia Rosales-Hernández
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrago e Investigación. Escuela Superior de Medicina, Instituto Politécnico Nacional. Plan de San Luis y Díaz Mirón s/n, Ciudad de México, Mexico
| | - Martiniano Bello
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Seccion de Estudios de Posgrado. Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, México City, Mexico
| | - Jazziel Velazquez Toledano
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrago e Investigación. Escuela Superior de Medicina, Instituto Politécnico Nacional. Plan de San Luis y Díaz Mirón s/n, Ciudad de México, Mexico
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Seccion de Estudios de Posgrado. Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, México City, Mexico
| | - Barbara Citlali Escudero Feregrino
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrago e Investigación. Escuela Superior de Medicina, Instituto Politécnico Nacional. Plan de San Luis y Díaz Mirón s/n, Ciudad de México, Mexico
- Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City, México
| | - José Correa Basurto
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Seccion de Estudios de Posgrado. Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, México City, Mexico
| | - Leticia Guadalupe Fragoso Morales
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrago e Investigación. Escuela Superior de Medicina, Instituto Politécnico Nacional. Plan de San Luis y Díaz Mirón s/n, Ciudad de México, Mexico
| | | |
Collapse
|
209
|
Bayani F, Safaei Hashkavaei N, Karamian MR, Uskoković V, Sefidbakht Y. In silico design of a multi-epitope vaccine against the spike and the nucleocapsid proteins of the Omicron variant of SARS-CoV-2. J Biomol Struct Dyn 2023; 41:11748-11762. [PMID: 36703619 DOI: 10.1080/07391102.2023.2170470] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 12/22/2022] [Indexed: 01/28/2023]
Abstract
Computational studies can comprise an effective approach to treating and preventing viral infections. Since 2019, the world has been dealing with the outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The most important achievement in this short period of time in the effort to reduce morbidity and mortality was the production of vaccines and effective antiviral drugs. Although the virus has been significantly suppressed, it continues to evolve, spread, and evade the host's immune system. Recently, researchers have turned to immunoinformatics tools to reduce side effects and save the time and cost of traditional vaccine production methods. In the present study, an attempt has been made to design a multi-epitope vaccine with humoral and cellular immune response stimulation against the Omicron variant of SARS-CoV-2 by investigating new mutations in spike (S) and nucleocapsid (N) proteins. The population coverage of the vaccine was evaluated as appropriate compared to other studies. The results of molecular dynamics simulation and molecular mechanics/generalized Born surface area (MM/GBSA) calculations predict the stability and proper interaction of the vaccine with Toll-like receptor 4 (TLR-4) as an innate immune receptor. The results of the immune simulation show a significant increase in the coordinated response of IgM and IgG after the third injection of the vaccine. Also, in the continuation of the research, spike proteins from BA.4 and BA.5 lineages were screened by immunoinformatics filters and effective epitopes were suggested for vaccine design. Despite the high precision of computational studies, in-vivo and in-vitro research is needed for final confirmation.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Fatemeh Bayani
- Protein Research Center, Shahid Beheshti University, Tehran, Iran
| | | | - Mohammad Reza Karamian
- Department of Cell and Molecular Biology, Faculty of Science, Kharazmi University, Tehran, Iran
| | - Vuk Uskoković
- TardigradeNano LLC, Irvine, CA, USA
- Department of Mechanical Engineering, San Diego State University, San Diego, CA, USA
| | - Yahya Sefidbakht
- Protein Research Center, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
210
|
Negi H, Saxena H, Singh IK, Singh A. Herbivory-inducible lipid-transfer proteins (LTPs) of Cicer arietinum as potential human allergens. J Biomol Struct Dyn 2023; 41:12863-12879. [PMID: 36703620 DOI: 10.1080/07391102.2023.2169353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/10/2023] [Indexed: 01/28/2023]
Abstract
Lipid-transfer proteins (LTPs) are lipid-binding small proteins, ubiquitously distributed amongst plant kingdom. Apart from their involvement in plant defense, it has also been discovered that they induce allergic reactions in humans. A plethora of LTPs have been identified in vegetables, fruits, pollens, nuts, and latex, among which Pru p 3, a LTP allergen from peach fruit, is extensively studied and exhibits cross-reactivity with potential allergens from different species. In Cicer arietinum, a family of LTPs (CaLTPs) has been identified and their importance in plant defense during Helicoverpa armigera-infestation has been recognized. However, the determination of the allergenicity potential of CaLTPs has not been attempted. In this study, we aim to decipher the allergenicity potential of defense-related CaLTPs. The allergenicity potential prediction, and identification of B-cell epitope binding regions showed that the CaLTPs had conserved domains and B-cell epitopes in the same regions as Prup3 (a marker allergen for LTPs). Using molecular docking and simulations, we observed that the CaLTPs successfully interacted with the Immunoglobin E(IgE)with docking energies ranging from -315.5 to -268.4 and the structures were stabilized within 10 ns of simulation. Through this study, we intend to embellish our present knowledge and understanding of the sensitization and allergenicity potential of CaLTPs.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Harshita Negi
- Department of Botany, Hans Raj College, University of Delhi, Delhi, India
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Harshita Saxena
- Department of Botany, Hans Raj College, University of Delhi, Delhi, India
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Griffin, GA, USA
| | - Indrakant K Singh
- Department of Zoology, Deshbandhu College, University of Delhi, New Delhi, India
| | - Archana Singh
- Department of Botany, Hans Raj College, University of Delhi, Delhi, India
- J C Bose Centre for Plant Genomics, Hansraj College, University of Delhi, Delhi, India
- Delhi School of Climate Change and Sustainability, Institution of Eminence, Maharishi Karnad Bhawan, University of Delhi, Delhi, India
| |
Collapse
|
211
|
Bacteriocin-Nanoconjugates (Bac10307-AgNPs) Biosynthesized from Lactobacillus acidophilus-Derived Bacteriocins Exhibit Enhanced and Promising Biological Activities. Pharmaceutics 2023; 15:pharmaceutics15020403. [PMID: 36839725 PMCID: PMC9967518 DOI: 10.3390/pharmaceutics15020403] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
The proteinaceous compounds produced by lactic acid bacteria are called bacteriocins and have a wide variety of bioactive properties. However, bacteriocin's commercial availability is limited due to short stability periods and low yields. Therefore, the objective of this study was to synthesize bacteriocin-derived silver nanoparticles (Bac10307-AgNPs) extracted from Lactobacillus acidophilus (L. acidophilus), which may have the potential to increase the bioactivity of bacteriocins and overcome the hurdles. It was found that extracted and purified Bac10307 had a broad range of stability for both temperature (20-100 °C) and pH (3-12). Further, based on Sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis, its molecular weight was estimated to be 4.2 kDa. The synthesized Bac10307-AgNPs showed a peak of surface plasmon resonance at 430 nm λmax. Fourier transform infrared (FTIR) confirmed the presence of biological moieties, and transmission electron microscopy (TEM) coupled with Energy dispersive X-Ray (EDX) confirmed that AgNPs were spherical and irregularly shaped, with a size range of 9-20 nm. As a result, the Bac10307-AgNPs displayed very strong antibacterial activity with MIC values as low as 8 μg/mL for Staphylococcus aureus (S. aureus) and Pseudomonas aeruginosa (P. aeruginosa), when compared to Bac10307 alone. In addition, Bac10307-AgNPs demonstrated promising in vitro antioxidant activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH) (IC50 = 116.04 μg/mL) and in vitro cytotoxicity against human liver cancer cells (HepG2) (IC50 = 135.63 μg/mL), more than Bac10307 alone (IC50 = 139.82 μg/mL against DPPH and 158.20 μg/mL against HepG2). Furthermore, a protein-protein molecular docking simulation study of bacteriocins with target proteins of different biological functions was also carried out in order to ascertain the interactions between bacteriocins and target proteins.
Collapse
|
212
|
Eckfeld C, Schoeps B, Häußler D, Frädrich J, Bayerl F, Böttcher JP, Knolle P, Heisz S, Prokopchuk O, Hauner H, Munkhbaatar E, Demir IE, Hermann CD, Krüger A. TIMP-1 is a novel ligand of Amyloid Precursor Protein and triggers a proinflammatory phenotype in human monocytes. J Cell Biol 2023; 222:213799. [PMID: 36629908 PMCID: PMC9837626 DOI: 10.1083/jcb.202206095] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/21/2022] [Accepted: 11/28/2022] [Indexed: 01/12/2023] Open
Abstract
The emerging cytokine tissue inhibitor of metalloproteinases-1 (TIMP-1) correlates with the progression of inflammatory diseases, including cancer. However, the effects of TIMP-1 on immune cell activation and underlying molecular mechanisms are largely unknown. Unbiased ligand-receptor-capture-screening revealed TIMP-1-interaction with Amyloid Precursor Protein (APP) family members, namely APP and Amyloid Precursor-like Protein-2 (APLP2), which was confirmed by pull-down assays and confocal microscopy. We found that TIMP-1 triggered glucose uptake and proinflammatory cytokine expression in human monocytes. In cancer patients, TIMP-1 expression positively correlated with proinflammatory cytokine expression and processes associated with monocyte activation. In pancreatic cancer, TIMP-1 plasma levels correlated with the monocyte activation marker sCD163, and the combined use of both clinically accessible plasma proteins served as a powerful prognostic indicator. Mechanistically, TIMP-1 triggered monocyte activation by its C-terminal domain and via APP as demonstrated by in vitro interference, in silico docking, and the employment of recombinant TIMP-1 variants. Identification of TIMP-1 as a trigger of monocyte activation opens new therapeutic perspectives for inflammatory diseases.
Collapse
Affiliation(s)
- Celina Eckfeld
- https://ror.org/02kkvpp62School of Medicine, Institute of Experimental Oncology and Therapy Research, Technical University of Munich, Munich, Germany
| | - Benjamin Schoeps
- https://ror.org/02kkvpp62School of Medicine, Institute of Experimental Oncology and Therapy Research, Technical University of Munich, Munich, Germany
| | - Daniel Häußler
- https://ror.org/02kkvpp62School of Medicine, Institute of Experimental Oncology and Therapy Research, Technical University of Munich, Munich, Germany
| | - Julian Frädrich
- https://ror.org/02kkvpp62School of Medicine, Institute of Experimental Oncology and Therapy Research, Technical University of Munich, Munich, Germany
| | - Felix Bayerl
- School of Medicine, Institute of Molecular Immunology, Technical University of Munich, Munich, Germany
| | - Jan Philipp Böttcher
- School of Medicine, Institute of Molecular Immunology, Technical University of Munich, Munich, Germany
| | - Percy Knolle
- School of Medicine, Institute of Molecular Immunology, Technical University of Munich, Munich, Germany
| | - Simone Heisz
- School of Life Sciences, Else Kröner-Fresenius-Center for Nutritional Medicine, Chair of Nutritional Medicine, Technical University of Munich, Freising-Weihenstephan, Germany
| | - Olga Prokopchuk
- https://ror.org/02kkvpp62School of Medicine, Institute of Experimental Oncology and Therapy Research, Technical University of Munich, Munich, Germany,Department of Surgery, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Hans Hauner
- School of Life Sciences, Else Kröner-Fresenius-Center for Nutritional Medicine, Chair of Nutritional Medicine, Technical University of Munich, Freising-Weihenstephan, Germany,School of Life Sciences, Institute for Nutritional Medicine, Technical University of Munich, Munich, Germany
| | - Enkhtsetseg Munkhbaatar
- Department of Surgery, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Ihsan Ekin Demir
- Department of Surgery, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Chris D. Hermann
- https://ror.org/02kkvpp62School of Medicine, Institute of Experimental Oncology and Therapy Research, Technical University of Munich, Munich, Germany
| | - Achim Krüger
- https://ror.org/02kkvpp62School of Medicine, Institute of Experimental Oncology and Therapy Research, Technical University of Munich, Munich, Germany,Correspondence to Achim Krüger:
| |
Collapse
|
213
|
Kuri P, Goswami P. Current Update on Rotavirus in-Silico Multiepitope Vaccine Design. ACS OMEGA 2023; 8:190-207. [PMID: 36643547 PMCID: PMC9835168 DOI: 10.1021/acsomega.2c07213] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/14/2022] [Indexed: 06/06/2023]
Abstract
Rotavirus gastroenteritis is one of the leading causes of pediatric morbidity and mortality worldwide in infants and under-five populations. The World Health Organization (WHO) recommended global incorporation of the rotavirus vaccine in national immunization programs to alleviate the burden of the disease. Implementation of the rotavirus vaccination in certain regions of the world brought about a significant and consistent reduction of rotavirus-associated hospitalizations. However, the efficacy of licensed vaccines remains suboptimal in low-income countries where the incidences of rotavirus gastroenteritis continue to happen unabated. The problem of low efficacy of currently licensed oral rotavirus vaccines in low-income countries necessitates continuous exploration, design, and development of new rotavirus vaccines. Traditional vaccine development is a complex, expensive, labor-intensive, and time-consuming process. Reverse vaccinology essentially utilizes the genome and proteome information on pathogens and has opened new avenues for in-silico multiepitope vaccine design for a plethora of pathogens, promising time reduction in the complete vaccine development pipeline by complementing the traditional vaccinology approach. A substantial number of reviews on licensed rotavirus vaccines and those under evaluation are already available in the literature. However, a collective account of rotavirus in-silico vaccines is lacking in the literature, and such an account may further fuel the interest of researchers to use reverse vaccinology to expedite the vaccine development process. Therefore, the main focus of this review is to summarize the research endeavors undertaken for the design and development of rotavirus vaccines by the reverse vaccinology approach utilizing the tools of immunoinformatics.
Collapse
|
214
|
Qiu H, Hosking C, Rothzerg E, Samantha A, Chen K, Kuek V, Jin H, Zhu S, Vrielink A, Lim K, Foley M, Xu J. ADR3, a next generation i-body to human RANKL, inhibits osteoclast formation and bone resorption. J Biol Chem 2023; 299:102889. [PMID: 36634847 PMCID: PMC9929471 DOI: 10.1016/j.jbc.2023.102889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 01/11/2023] Open
Abstract
Osteoporosis is a chronic skeletal condition characterized by low bone mass and deteriorated microarchitecture of bone tissue and puts tens of millions of people at high risk of fractures. New therapeutic agents like i-bodies, a class of next-generation single-domain antibodies, are needed to overcome some limitations of conventional treatments. An i-body is a human immunoglobulin scaffold with two long binding loops that mimic the shape and position of those found in shark antibodies, the variable new antigen receptors of sharks. Its small size (∼12 kDa) and long binding loops provide access to drug targets, which are considered undruggable by traditional monoclonal antibodies. Here, we have successfully identified a human receptor activator of nuclear factor-κB ligand (RANKL) i-body, ADR3, which demonstrates a high binding affinity to human RANKL (hRANKL) with no adverse effect on the survival or proliferation of bone marrow-derived macrophages. Differential scanning fluorimetry suggested that ADR3 is stable and able to tolerate a wide range of physical environments (including both temperature and pH). In addition, in vitro studies showed a dose-dependent inhibitory effect of ADR3 on osteoclast differentiation, podosome belt formation, and bone resorption activity. Further investigation on the mechanism of action of ADR3 revealed that it can inhibit hRANKL-mediated signaling pathways, supporting the in vitro functional observations. These clues collectively indicate that hRANKL antagonist ADR3 attenuates osteoclast differentiation and bone resorption, with the potential to serve as a novel therapeutic to protect against bone loss.
Collapse
Affiliation(s)
- Heng Qiu
- School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Christopher Hosking
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Victoria, Australia,AdAlta Pty. Ltd, Bundoora, Victoria, Australia
| | - Emel Rothzerg
- School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Ariela Samantha
- School of Molecular Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Kai Chen
- School of Molecular Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Vincent Kuek
- School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia,Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, Western Australia, Australia
| | - Haiming Jin
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Sipin Zhu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Alice Vrielink
- School of Molecular Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Kevin Lim
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Victoria, Australia,AdAlta Pty. Ltd, Bundoora, Victoria, Australia
| | - Michael Foley
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Victoria, Australia,AdAlta Pty. Ltd, Bundoora, Victoria, Australia
| | - Jiake Xu
- School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia.
| |
Collapse
|
215
|
Naseer F, Ahmad T, Kousar K, Kakar S, Gul R, Anjum S, Shareef U. Formulation for the Targeted Delivery of a Vaccine Strain of Oncolytic Measles Virus (OMV) in Hyaluronic Acid Coated Thiolated Chitosan as a Green Nanoformulation for the Treatment of Prostate Cancer: A Viro-Immunotherapeutic Approach. Int J Nanomedicine 2023; 18:185-205. [PMID: 36643861 PMCID: PMC9838128 DOI: 10.2147/ijn.s386560] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/25/2022] [Indexed: 01/11/2023] Open
Abstract
Background Oncolytic viruses are reported as dynamite against cancer treatment nowadays. Methodology In the present work, a live attenuated oral measles vaccine (OMV) strain was used to formulate a polymeric surface-functionalized ligand-based nanoformulation (NF). OMV (half dose: not less than 500 TCID units; 0.25 mL) was encapsulated in thiolated chitosan and outermost coating with hyaluronic acid by ionic gelation method characterizing parameters was performed. Results and Discussion CD44 high expression was confirmed in prostatic adenocarcinoma (PRAD) by GEPIA which extracted data of normal and cancer tissue from GTEx and TCGA. Bioinformatics tools confirmed the viral hemagglutinin capsid protein interaction with human Caspase-I, NLRP3, and TNF-α and viral fusion protein interaction with COX-II and Caspase-I after successful delivery of MV encapsulated in NFs due to high affinity of hyaluronic acid with CD44 on the surface of prostate cancer cells. Particle size = 275.6 mm, PDI = 0.372, and ±11.5 zeta potential were shown by zeta analysis, while the thiolated group in NFs was confirmed by FTIR and Raman analysis. SEM and XRD showed a spherical smooth surface and crystalline nature, respectively, while TEM confirmed virus encapsulation within nanoparticles, which makes it very useful in targeted virus delivery systems. The virus was released from NFs in a sustained but continuous release pattern till 48 h. The encapsulated virus titer was calculated as 2.34×107 TCID50/mL units, which showed syncytia formation on post-day infection 7. Multiplicities of infection 0.1, 0.5, 1, 3, 5, 10, 15, and 20 of HA-coated OMV-loaded NFs as compared to MV vaccine on PC3 was inoculated with IC50 of 5.1 and 3.52, respectively, and growth inhibition was seen after 72 h via MTT assay which showed apoptotic cancer cell death. Conclusion Active targeted, efficacious, and sustained delivery of formulated oncolytic MV is a potent moiety in cancer treatment at lower doses with safe potential for normal prostate cells.
Collapse
Affiliation(s)
- Faiza Naseer
- Industrial Biotechnology, Atta-ur-Rehman School of Applied Biosciences, National University of Science and Technology, Islamabad, Pakistan
- Shifa College of Pharmaceutical Sciences, Shifa Tameer e Millat University, Islamabad, Pakistan
| | - Tahir Ahmad
- Industrial Biotechnology, Atta-ur-Rehman School of Applied Biosciences, National University of Science and Technology, Islamabad, Pakistan
| | - Kousain Kousar
- Industrial Biotechnology, Atta-ur-Rehman School of Applied Biosciences, National University of Science and Technology, Islamabad, Pakistan
| | - Salik Kakar
- Healthcare Biotechnology, Atta-ur-Rehman School of Applied Biosciences, National University of Science and Technology, Islamabad, Pakistan
| | - Rabia Gul
- Shifa College of Pharmaceutical Sciences, Shifa Tameer e Millat University, Islamabad, Pakistan
| | - Sadia Anjum
- Department of Biology, University of Hail, Hail, Saudia Arabia
| | - Usman Shareef
- Shifa College of Pharmaceutical Sciences, Shifa Tameer e Millat University, Islamabad, Pakistan
| |
Collapse
|
216
|
Shao J, Liu G, Lv G. Mutation in the D1 domain of CD4 receptor modulates the binding affinity to HIV-1 gp120. RSC Adv 2023; 13:2070-2080. [PMID: 36712621 PMCID: PMC9832346 DOI: 10.1039/d2ra06628a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/23/2022] [Indexed: 01/13/2023] Open
Abstract
The gp120 surface subunit of HIV-1 envelope lycoprotein (Env) is the key component for the viral entry process through interaction with the CD4 binding site (CD4bs) of the primary receptor CD4. The point mutant was introduced into SD1, a CD4 D1 variant, to enhance the interaction with HIV-1 gp120.The three-dimensional structures of gp120 and SD1 were determined using homology modeling based on the results previously determined by X-ray crystallography. The binding models were carried out via protein-protein docking tools. The 5 best docking solutions were retained according to the docking scores and were used for structural assessment. Our results demonstrated the consistency between the 3D models of gp120 and SD1 predicted by molecular docking calculations and the co-crystallized data available. We first discovered that most residues in SD1 that interacted with gp120 were located within the region 6-94 of the first N-terminal D1 domain of CD4. SD1 bound to gp120 stably at which 15 residues formed 20 hydrogen bonds with 16 residues of gp120. Five pairs of electrostatic interactions between positively and negatively charged side chains of amino acids were identified in the SD1-gp120 interface, which showed an increased number of electrostatic interactions with gp120. The mutant in the D1 domain of human CD4 receptor could strengthen binding affinity with HIV-1 gp120 and might improve the interaction pattern of the neighboring residues. The sequence analysis of gp120 suggested that Asp186, Asn189, Arg191, Glu293, Phe318 and Tyr319 were located in the variable regions of gp120, which may be HIV-1 AE strain-specific amino acid residues. Together, the results presented in this study contributed to a better understanding of the changes in the interaction between the gp120 protein and the human host CD4 receptor associated with point mutation in the D1 domain. The stabilized derivative of human CD4 D1 should serve as a promising target for therapeutics development in HIV-1 vaccine and viral entry inhibitor and may warrant further investigation.
Collapse
Affiliation(s)
- Jiping Shao
- Department of Pathogen Biology, Hainan Medical UniversityHaikou 571199P. R. China
| | - Gezhi Liu
- University of MarylandMaryland 20850USA
| | - Gang Lv
- Department of Pathogen Biology, Hainan Medical UniversityHaikou 571199P. R. China,Key Laboratory of Translation Medicine Tropical Diseases, Hainan Medical UniversityHaikou 571199P. R. China,Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical UniversityHaikou 571199P. R. China
| |
Collapse
|
217
|
Heparin-Induced Changes of Vascular Endothelial Growth Factor (VEGF 165) Structure. Biomolecules 2023; 13:biom13010098. [PMID: 36671483 PMCID: PMC9856036 DOI: 10.3390/biom13010098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/28/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023] Open
Abstract
Vascular endothelial growth factor-A (VEGF-A), a secreted homodimeric glycoprotein, is a critical regulator of angiogenesis in normal and pathological states. The binding of heparin (HE) to VEGF165 (the major form of VEGF-A) modulates the angiogenesis-related cascade, but the mechanism of the observed changes at the structural level is still insufficiently explored. In the present study, we examined the effect of HE on the structural and physicochemical properties of recombinant human VEGF165 (rhVEGF165). The HE binding results in an increase of hydrophobic surface exposure in rhVEGF165 without changes in its secondary structure. Differential scanning calorimetry measurements for intact and HE-bound rhVEGF165 reveals the absence of any pronounced thermally induced transitions in the protein in the temperature range from 20 to 100 °C. The apolar area increase during the heparin binding explains the pronounced HE-induced oligomerization/aggregation of rhVEGF165, as studied by chemical glutaraldehyde cross-linking and dynamic light scattering. Molecular modeling and docking techniques were used to model the full structure of dimeric VEGF165 and to reveal putative molecular mechanisms underlying the function of the VEGF165/HE system. In general, the results obtained can be a basis for explaining the modulating effect of HE on the biological activity of VEGF-A.
Collapse
|
218
|
SARS-CoV-2 accessory proteins ORF7a and ORF3a use distinct mechanisms to down-regulate MHC-I surface expression. Proc Natl Acad Sci U S A 2023; 120:e2208525120. [PMID: 36574644 PMCID: PMC9910621 DOI: 10.1073/pnas.2208525120] [Citation(s) in RCA: 49] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Major histocompatibility complex class I (MHC-I) molecules, which are dimers of a glycosylated polymorphic transmembrane heavy chain and the small-protein β2-microglobulin (β2m), bind peptides in the endoplasmic reticulum that are generated by the cytosolic turnover of cellular proteins. In virus-infected cells, these peptides may include those derived from viral proteins. Peptide-MHC-I complexes then traffic through the secretory pathway and are displayed at the cell surface where those containing viral peptides can be detected by CD8+ T lymphocytes that kill infected cells. Many viruses enhance their in vivo survival by encoding genes that down-regulate MHC-I expression to avoid CD8+ T cell recognition. Here, we report that two accessory proteins encoded by SARS-CoV-2, the causative agent of the ongoing COVID-19 pandemic, down-regulate MHC-I expression using distinct mechanisms. First, ORF3a, a viroporin, reduces the global trafficking of proteins, including MHC-I, through the secretory pathway. The second, ORF7a, interacts specifically with the MHC-I heavy chain, acting as a molecular mimic of β2m to inhibit its association. This slows the exit of properly assembled MHC-I molecules from the endoplasmic reticulum. We demonstrate that ORF7a reduces antigen presentation by the human MHC-I allele HLA-A*02:01. Thus, both ORF3a and ORF7a act post-translationally in the secretory pathway to lower surface MHC-I expression, with ORF7a exhibiting a specific mechanism that allows immune evasion by SARS-CoV-2.
Collapse
|
219
|
Rahman MM, Masum MHU, Talukder A, Akter R. An in silico reverse vaccinology approach to design a novel multiepitope peptide vaccine for non-small cell lung cancers. INFORMATICS IN MEDICINE UNLOCKED 2023. [DOI: 10.1016/j.imu.2023.101169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
220
|
Vivekanandam R, Rajagopalan K, Jeevanandam M, Ganesan H, Jagannathan V, Selvan Christyraj JD, Kalimuthu K, Selvan Christyraj JRS, Mohan M. Designing of cytotoxic T lymphocyte-based multi-epitope vaccine against SARS-CoV2: a reverse vaccinology approach. J Biomol Struct Dyn 2022; 40:13711-13726. [PMID: 34696708 DOI: 10.1080/07391102.2021.1993338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
SARS-CoV2 is a single-stranded RNA virus, gaining much attention after it out broke in China in December 2019. The virus rapidly spread to several countries around the world and caused severe respiratory illness to humans. Since the outbreak, researchers around the world have devoted maximum resources and effort to develop a potent vaccine that would offer protection to uninfected individuals against SARS-CoV2. Reverse vaccinology is a relatively new approach that thrives faster in vaccine research. In this study, we constructed Cytotoxic T Lymphocytes (CTL)-based multi-epitope vaccine using hybrid epitope prediction methods. A total of 121 immunogenic CTL epitopes were screened by various sequence-based prediction methods and docked with their respective HLA alleles using the AutoDock Vina v1.1.2. In all, 17 epitopes were selected based on their binding affinity, followed by the construction of multi-epitope vaccine by placing the appropriate linkers between the epitopes and tuberculosis heparin-binding hemagglutinin (HBHA) adjuvant. The final vaccine construct was modeled by the I-TASSER server and the best model was further validated by ERRAT, ProSA, and PROCHECK servers. Furthermore, the molecular interaction of the constructed vaccine with TLR4 was assessed by ClusPro 2.0 and PROtein binDIng enerGY prediction (PRODIGY) server. The immune simulation analysis confirms that the constructed vaccine was capable of inducing long-lasting memory T helper (Th) and CTL responses. Finally, the nucleotide sequence was codon-optimized by the JCAT tool and cloned into the pET21a (+) vector. The current results reveal that the candidate vaccine is capable of provoking robust CTL response against the SARS-CoV2.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Reethu Vivekanandam
- Department of Biotechnology, Bharathiyar University, Coimbatore, Tamilnadu, India
| | - Kamarajan Rajagopalan
- Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, Tamilnadu, India
| | - Madesh Jeevanandam
- Department of Biochemistry, PSG college of Arts and Science, Coimbatore, Tamilnadu, India
| | - Harsha Ganesan
- Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, Tamilnadu, India
| | - Vaishnavi Jagannathan
- Institute of Forest Genetics and Tree Breeding (IFGTB), Coimbatore, Tamilnadu, India
| | - Jackson Durairaj Selvan Christyraj
- Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, Tamilnadu, India
| | - Kalishwaralal Kalimuthu
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Johnson Retnaraj Samuel Selvan Christyraj
- Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, Tamilnadu, India
| | - Manikandan Mohan
- Vaxigen International Research Center Private Limited, Coimbatore, Tamilnadu, India.,Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA, USA
| |
Collapse
|
221
|
Ramlal A, Samanta A. In Silico functional and phylogenetic analyses of fungal immunomodulatory proteins of some edible mushrooms. AMB Express 2022; 12:159. [PMID: 36571664 PMCID: PMC9791630 DOI: 10.1186/s13568-022-01503-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/13/2022] [Indexed: 12/27/2022] Open
Abstract
Mushrooms are a well known source of many bioactive and nutritional compounds with immense applicability in both the pharmaceutical and food industries. They are widely used to cure various kinds of ailments in traditional medicines. They have a low amount of fats and cholesterol and possess a high number of proteins. Immunomodulators have the ability which can improve immunity and act as defensive agents against pathogens. One such class of immunomodulators is fungal immunomodulatory proteins (FIPs). FIPs have potential roles in the treatment of cancer, and immunostimulatory effects and show anti-tumor activities. In the current study, 19 FIPs from edible mushrooms have been used for comparison and analysis of the conserved motifs. Phylogenetic analysis was also carried out using the FIPs. The conserved motif analysis revealed that some of the motifs strongly supported their identity as FIPs while some are novel. The fungal immunomodulatory proteins are important and have many properties which can be used for treating ailments and diseases and this preliminary study can be used for the identification and functional characterization of the proposed novel motifs and in unraveling the potential roles of FIPs for developing newer drugs.
Collapse
Affiliation(s)
- Ayyagari Ramlal
- grid.8195.50000 0001 2109 4999Department of Botany, University of Delhi, New Delhi, Delhi 110007 India ,grid.11875.3a0000 0001 2294 3534School of Biological Sciences, Universiti Sains Malaysia (USM), 11800 Georgetown, Penang Malaysia
| | - Aveek Samanta
- Department of Botany, Prabhat Kumar College, Contai, 721401 West Bengal India
| |
Collapse
|
222
|
Cross-Linking and Functional Analyses for Dimerization of a Cysteine Mutant of Glycine Transporter 1. Int J Mol Sci 2022; 23:ijms232416157. [PMID: 36555800 PMCID: PMC9781295 DOI: 10.3390/ijms232416157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/10/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Glycine transporter 1 (GlyT1) is responsible for the reuptake of glycine, which regulates glutamate signaling as a co-agonist with N-methyl-D-aspartic acid (NMDA) receptors in the excitatory synapse and has been proposed to be a potential target in the development of therapies for a broad range of disorders of the central nervous system. Despite significant progress in characterizing structure and transport mechanism of the transporter, the regulation of transport function through oligomerization remains to be understood. In the present work, association of two forms of GlyT1 into dimers and higher order oligomers was detected by coimmunoprecipitation. To investigate functional properties of dimers of a GlyT1 cysteine mutant L288C, we performed oxidative cross-linking of the positioned cysteine residues in extracellular loop 3 (EL3) near the extracellular end of TM6. By analyzing the effect of copper phenanthroline (CuP)-induced dimerization on transport function, cross-linking of L288C was found to inhibit transport activity. In addition, an intramolecular ion pair Lys286-Glu289 was revealed to be critical for stabilizing EL3 in a conformation that modulates CuP-induced dimerization and transport function of the GlyT1 L288C mutant. Furthermore, the influence of transporter conformation on GlyT1 L288C dimerization was investigated. The substrate glycine, in the presence of both Na+ and Cl-, significantly reduced oxidative cross-linking, suggesting a large-scale rotation of the bundle domain during substrate transport impairs interfacial interactions between L288C protomers. The present study provides new insights into structural and functional elements regulating GlyT1 transport activity through its dimerization or oligomerization.
Collapse
|
223
|
Specific S100 Proteins Bind Tumor Necrosis Factor and Inhibit Its Activity. Int J Mol Sci 2022; 23:ijms232415956. [PMID: 36555597 PMCID: PMC9783754 DOI: 10.3390/ijms232415956] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/05/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Tumor necrosis factor (TNF) inhibitors (anti-TNFs) represent a cornerstone of the treatment of various immune-mediated inflammatory diseases and are among the most commercially successful therapeutic agents. Knowledge of TNF binding partners is critical for identification of the factors able to affect clinical efficacy of the anti-TNFs. Here, we report that among eighteen representatives of the multifunctional S100 protein family, only S100A11, S100A12 and S100A13 interact with the soluble form of TNF (sTNF) in vitro. The lowest equilibrium dissociation constants (Kd) for the complexes with monomeric sTNF determined using surface plasmon resonance spectroscopy range from 2 nM to 28 nM. The apparent Kd values for the complexes of multimeric sTNF with S100A11/A12 estimated from fluorimetric titrations are 0.1-0.3 µM. S100A12/A13 suppress the cytotoxic activity of sTNF against Huh-7 cells, as evidenced by the MTT assay. Structural modeling indicates that the sTNF-S100 interactions may interfere with the sTNF recognition by the therapeutic anti-TNFs. Bioinformatics analysis reveals dysregulation of TNF and S100A11/A12/A13 in numerous disorders. Overall, we have shown a novel potential regulatory role of the extracellular forms of specific S100 proteins that may affect the efficacy of anti-TNF treatment in various diseases.
Collapse
|
224
|
Yang S, Tang Y, Liu Y, Brown AJ, Schaks M, Ding B, Kramer DA, Mietkowska M, Ding L, Alekhina O, Billadeau DD, Chowdhury S, Wang J, Rottner K, Chen B. Arf GTPase activates the WAVE regulatory complex through a distinct binding site. SCIENCE ADVANCES 2022; 8:eadd1412. [PMID: 36516255 PMCID: PMC9750158 DOI: 10.1126/sciadv.add1412] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 11/10/2022] [Indexed: 06/02/2023]
Abstract
Cross-talk between Rho- and Arf-family guanosine triphosphatases (GTPases) plays an important role in linking the actin cytoskeleton to membrane protrusions, organelle morphology, and vesicle trafficking. The central actin regulator, WAVE regulatory complex (WRC), integrates Rac1 (a Rho-family GTPase) and Arf signaling to promote Arp2/3-mediated actin polymerization in many processes, but how WRC senses Arf signaling is unknown. Here, we have reconstituted a direct interaction between Arf and WRC. This interaction is greatly enhanced by Rac1 binding to the D site of WRC. Arf1 binds to a previously unidentified, conserved surface on the Sra1 subunit of WRC, which, in turn, drives WRC activation using a mechanism distinct from that of Rac1. Mutating the Arf binding site abolishes Arf1-WRC interaction, disrupts Arf1-mediated WRC activation, and impairs lamellipodia formation and cell migration. This work uncovers a new mechanism underlying WRC activation and provides a mechanistic foundation for studying how WRC-mediated actin polymerization links Arf and Rac signaling in cells.
Collapse
Affiliation(s)
- Sheng Yang
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, 2437 Pammel Drive, Ames, IA 50011, USA
| | - Yubo Tang
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Yijun Liu
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, 2437 Pammel Drive, Ames, IA 50011, USA
| | - Abbigale J. Brown
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, 2437 Pammel Drive, Ames, IA 50011, USA
| | - Matthias Schaks
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Bojian Ding
- Department of Biochemistry and Cell Biology, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794, USA
| | - Daniel A. Kramer
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, 2437 Pammel Drive, Ames, IA 50011, USA
| | - Magdalena Mietkowska
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Li Ding
- Division of Oncology Research, College of Medicine, Mayo Clinic, Rochester MN 55905, USA
| | - Olga Alekhina
- Division of Oncology Research, College of Medicine, Mayo Clinic, Rochester MN 55905, USA
| | - Daniel D. Billadeau
- Division of Oncology Research, College of Medicine, Mayo Clinic, Rochester MN 55905, USA
| | - Saikat Chowdhury
- Department of Biochemistry and Cell Biology, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794, USA
- CSIR–Centre for Cellular and Molecular Biology, Hyderabad, Telangana 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Junmei Wang
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, 3501 Terrace St., Pittsburgh, PA 15261, USA
| | - Klemens Rottner
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), Rebenring 56, 38106 Braunschweig, Germany
| | - Baoyu Chen
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, 2437 Pammel Drive, Ames, IA 50011, USA
| |
Collapse
|
225
|
Molecular Characterization, Purification, and Mode of Action of Enterocin KAE01 from Lactic Acid Bacteria and Its In Silico Analysis against MDR/ESBL Pseudomonas aeruginosa. Genes (Basel) 2022; 13:genes13122333. [PMID: 36553599 PMCID: PMC9777700 DOI: 10.3390/genes13122333] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/01/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Bacteriocins are gaining immense importance in therapeutics since they show significant antibacterial potential. This study reports the bacteriocin KAE01 from Enterococcus faecium, along with its characterization, molecular modeling, and antibacterial potency, by targeting the matrix protein of Pseudomonas aeruginosa. The bacteriocin was purified by using ammonium sulfate precipitation and fast protein liquid chromatography (FPLC), and its molecular weight was estimated as 55 kDa by means of SDS-PAGE. The bacteriocin was found to show stability in a wide range of pH values (2.0-10.0) and temperatures (100 °C for 1 h and 121 °C for 15 min). Antimicrobial screening of the purified peptide against different strains of P. aeruginosa showed its significant antibacterial potential. Scanning electron microscopy of bacteriocin-induced bacterial cultures revealed significant changes in the cellular morphology of the pathogens. In silico molecular modeling of KAE01, followed by molecular docking of the matrix protein (qSA) of P. aeruginosa and KAE01, supported the antibacterial potency and SEM findings of this study.
Collapse
|
226
|
Behairy MY, Soltan MA, Eldeen MA, Abdulhakim JA, Alnoman MM, Abdel-Daim MM, Otifi H, Al-Qahtani SM, Zaki MSA, Alsharif G, Albogami S, Jafri I, Fayad E, Darwish KM, Elhady SS, Eid RA. HBD-2 variants and SARS-CoV-2: New insights into inter-individual susceptibility. Front Immunol 2022; 13:1008463. [PMID: 36569842 PMCID: PMC9780532 DOI: 10.3389/fimmu.2022.1008463] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 11/17/2022] [Indexed: 12/13/2022] Open
Abstract
Background A deep understanding of the causes of liability to SARS-CoV-2 is essential to develop new diagnostic tests and therapeutics against this serious virus in order to overcome this pandemic completely. In the light of the discovered role of antimicrobial peptides [such as human b-defensin-2 (hBD-2) and cathelicidin LL-37] in the defense against SARS-CoV-2, it became important to identify the damaging missense mutations in the genes of these molecules and study their role in the pathogenesis of COVID-19. Methods We conducted a comprehensive analysis with multiple in silico approaches to identify the damaging missense SNPs for hBD-2 and LL-37; moreover, we applied docking methods and molecular dynamics analysis to study the impact of the filtered mutations. Results The comprehensive analysis reveals the presence of three damaging SNPs in hBD-2; these SNPs were predicted to decrease the stability of hBD-2 with a damaging impact on hBD-2 structure as well. G51D and C53G mutations were located in highly conserved positions and were associated with differences in the secondary structures of hBD-2. Docking-coupled molecular dynamics simulation analysis revealed compromised binding affinity for hBD-2 SNPs towards the SARS-CoV-2 spike domain. Different protein-protein binding profiles for hBD-2 SNPs, in relation to their native form, were guided through residue-wise levels and differential adopted conformation/orientation. Conclusions The presented model paves the way for identifying patients prone to COVID-19 in a way that would guide the personalization of both the diagnostic and management protocols for this serious disease.
Collapse
Affiliation(s)
- Mohammed Y. Behairy
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Sadat City, Sadat City, Egypt,*Correspondence: Mohamed A Soltan, ; Mohammed Y. Behairy,
| | - Mohamed A. Soltan
- Department of Microbiology and immunology, Faculty of Pharmacy, Sinai University – Kantara Branch, Ismailia, Egypt,*Correspondence: Mohamed A Soltan, ; Mohammed Y. Behairy,
| | - Muhammad Alaa Eldeen
- Cell Biology, Histology & Genetics Division, Biology Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Jawaher A. Abdulhakim
- Medical Laboratory Department, College of Applied Medical Sciences, Taibah University, Yanbu, Saudi Arabia
| | - Maryam M. Alnoman
- Biology Department, Faculty of Science, Taibah University, Yanbu, Saudi Arabia
| | - Mohamed M. Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah, Saudi Arabia,Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Hassan Otifi
- Pathology Department, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Saleh M. Al-Qahtani
- Department of Child Health, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Mohamed Samir A. Zaki
- Anatomy Department, College of Medicine, King Khalid University, Abha, Saudi Arabia,Department of Histology and Cell Biology, College of Medicine, Zagazig University, Zagazig, Egypt
| | - Ghadi Alsharif
- College of Clinical Laboratory Sciences, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Sarah Albogami
- Department of Biotechnology, College of Sciences, Taif University, Taif, Saudi Arabia
| | - Ibrahim Jafri
- Department of Biotechnology, College of Sciences, Taif University, Taif, Saudi Arabia
| | - Eman Fayad
- Department of Biotechnology, College of Sciences, Taif University, Taif, Saudi Arabia
| | - Khaled M. Darwish
- Department of Medicinal Chemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Sameh S. Elhady
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Refaat A. Eid
- Pathology Department, College of Medicine, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
227
|
Systematic search for peptide and protein ligands of human serum albumin capable of affecting its interaction with amyloid β peptide. ACTA BIOMEDICA SCIENTIFICA 2022. [DOI: 10.29413/abs.2022-7.5-1.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background. Human serum albumin (HSA) is a natural buffer of amyloid-β peptide (Aβ), a key factor in the development of Alzheimer’s disease (AD). A promising approach to the AD prevention is to reduce the concentration of free Aβ by targeted stimulation of the interaction between HSA and Aβ. This approach can be implemented by increasing the affinity of HSA to Aβ through the action of HSA ligands, which was previously demonstrated for some low molecular weight ligands. The aim of the study was to search for peptide and protein ligands of human serum albumin capable of affecting its interaction with Aβ. Materials and methods. To perform a systematic search for peptides/proteins, HSA ligands that are capable of affecting Aβ-HSA interaction, we analyzed the DrugBank, BioGRID, and IntAct databases. As criteria for selecting candidates, along with physicochemical characteristics (molecular weight, solubility, blood-brain barrier passage, molar concentration), we used the requirements of extracellular proteins localization and strict association with AD, according to the DisGeNET and Open Targets Platform databases as well as Alzforum online resource. The algorithms for searching and analyzing the obtained data were implemented using the high-level programming language Python. Results. A candidate panel of 11 peptides and 34 proteins was formed. The most promising candidates include 4 peptides (liraglutide, exenatide, semaglutide, insulin detemir) and 4 proteins (S100A8, transferrin, C1 esterase inhibitor, cystatin C). Conclusions. Selected peptide and protein candidates are subject to experimental verification regarding their effect on the HSA-Aβ interaction and can become the basis for the development of first-in-class drugs for the prevention of Alzheimer’s disease.
Collapse
|
228
|
Duarte T, Silva MDM, Michelotti P, Barbosa NBDV, Feltes BC, Dorn M, Rocha JBTD, Dalla Corte CL. The Drosophila melanogaster ACE2 ortholog genes are differently expressed in obesity/diabetes and aging models: Implications for COVID-19 pathology. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166551. [PMID: 36116726 PMCID: PMC9474972 DOI: 10.1016/j.bbadis.2022.166551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/08/2022] [Accepted: 09/12/2022] [Indexed: 11/29/2022]
Abstract
The Spike glycoprotein of SARS-CoV-2, the virus responsible for coronavirus disease 2019, binds to its ACE2 receptor for internalization in the host cells. Elderly individuals or those with subjacent disorders, such as obesity and diabetes, are more susceptible to COVID-19 severity. Additionally, several SARS-CoV-2 variants appear to enhance the Spike-ACE2 interaction, which increases transmissibility and death. Considering that the fruit fly is a robust animal model in metabolic research and has two ACE2 orthologs, Ance and Acer, in this work, we studied the effects of two hypercaloric diets (HFD and HSD) and aging on ACE2 orthologs mRNA expression levels in Drosophila melanogaster. To complement our work, we analyzed the predicted binding affinity between the Spike protein with Ance and Acer. We show for the first time that Ance and Acer genes are differentially regulated and dependent on diet and age in adult flies. At the molecular level, Ance and Acer proteins exhibit the potential to bind to the Spike protein in different regions, as shown by a molecular docking approach. Acer, in particular, interacts with the Spike protein in the same region as in humans. Overall, we suggest that the D. melanogaster is a promising animal model for translational studies on COVID-19 associated risk factors and ACE2.
Collapse
Affiliation(s)
- Tâmie Duarte
- Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Mônica de Medeiros Silva
- Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Paula Michelotti
- Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Nilda Berenice de Vargas Barbosa
- Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Bruno César Feltes
- Institute of Informatics, Federal University of Rio Grande do Sul, 9500 Bento Gonçalves Avenue, Porto Alegre, RS 91501-970, Brazil; Institute of Biosciences, Federal University of Rio Grande do Sul, 9500 Bento Gonçalves Avenue, Porto Alegre, RS 91501-970, Brazil
| | - Márcio Dorn
- Institute of Informatics, Federal University of Rio Grande do Sul, 9500 Bento Gonçalves Avenue, Porto Alegre, RS 91501-970, Brazil; Center of Biotechnology, Federal University of Rio Grande do Sul, 9500 Bento Gonçalves Avenue, Porto Alegre, RS 91501-970, Brazil; National Institute of Science and Technology - Forensic Science, 6681 Ipiranga Avenue, Porto Alegre, RS 90619-900, Brazil
| | - João Batista Teixeira da Rocha
- Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Cristiane Lenz Dalla Corte
- Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil.
| |
Collapse
|
229
|
Ranaudo A, Cosentino U, Greco C, Moro G, Bonardi A, Maiocchi A, Moroni E. Evaluation of docking procedures reliability in affitins-partners interactions. Front Chem 2022; 10:1074249. [DOI: 10.3389/fchem.2022.1074249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/17/2022] [Indexed: 12/02/2022] Open
Abstract
Affitins constitute a class of small proteins belonging to Sul7d family, which, in microorganisms such as Sulfolobus acidocaldarius, bind DNA preventing its denaturation. Thanks to their stability and small size (60–66 residues in length) they have been considered as ideal candidates for engineering and have been used for more than 10 years now, for different applications. The individuation of a mutant able to recognize a specific target does not imply the knowledge of the binding geometry between the two proteins. However, its identification is of undoubted importance but not always experimentally accessible. For this reason, computational approaches such as protein-protein docking can be helpful for an initial structural characterization of the complex. This method, which produces tens of putative binding geometries ordered according to a binding score, needs to be followed by a further reranking procedure for finding the most plausible one. In the present paper, we use the server ClusPro for generating docking models of affitins with different protein partners whose experimental structures are available in the Protein Data Bank. Then, we apply two protocols for reranking the docking models. The first one investigates their stability by means of Molecular Dynamics simulations; the second one, instead, compares the docking models with the interacting residues predicted by the Matrix of Local Coupling Energies method. Results show that the more efficient way to deal with the reranking problem is to consider the information given by the two protocols together, i.e. employing a consensus approach.
Collapse
|
230
|
Tsuchiya Y, Yamamori Y, Tomii K. Protein-protein interaction prediction methods: from docking-based to AI-based approaches. Biophys Rev 2022; 14:1341-1348. [PMID: 36570321 PMCID: PMC9759050 DOI: 10.1007/s12551-022-01032-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
Protein-protein interactions (PPIs), such as protein-protein inhibitor, antibody-antigen complex, and supercomplexes play diverse and important roles in cells. Recent advances in structural analysis methods, including cryo-EM, for the determination of protein complex structures are remarkable. Nevertheless, much room remains for improvement and utilization of computational methods to predict PPIs because of the large number and great diversity of unresolved complex structures. This review introduces a wide array of computational methods, including our own, for estimating PPIs including antibody-antigen interactions, offering both historical and forward-looking perspectives.
Collapse
Affiliation(s)
- Yuko Tsuchiya
- Artificial Intelligence Research Center (AIRC), National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-Ku, Tokyo, 135-0064 Japan
| | - Yu Yamamori
- Artificial Intelligence Research Center (AIRC), National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-Ku, Tokyo, 135-0064 Japan
| | - Kentaro Tomii
- Artificial Intelligence Research Center (AIRC), National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-Ku, Tokyo, 135-0064 Japan
| |
Collapse
|
231
|
Grones P, De Meyer A, Pleskot R, Mylle E, Kraus M, Vandorpe M, Yperman K, Eeckhout D, Dragwidge JM, Jiang Q, Nolf J, Pavie B, De Jaeger G, De Rybel B, Van Damme D. The endocytic TPLATE complex internalizes ubiquitinated plasma membrane cargo. NATURE PLANTS 2022; 8:1467-1483. [PMID: 36456802 PMCID: PMC7613989 DOI: 10.1038/s41477-022-01280-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 10/19/2022] [Indexed: 05/12/2023]
Abstract
Endocytosis controls the perception of stimuli by modulating protein abundance at the plasma membrane. In plants, clathrin-mediated endocytosis is the most prominent internalization pathway and relies on two multimeric adaptor complexes, the AP-2 and the TPLATE complex (TPC). Ubiquitination is a well-established modification triggering endocytosis of cargo proteins, but how this modification is recognized to initiate the endocytic event remains elusive. Here we show that TASH3, one of the large subunits of TPC, recognizes ubiquitinated cargo at the plasma membrane via its SH3 domain-containing appendage. TASH3 lacking this evolutionary specific appendage modification allows TPC formation but the plants show severely reduced endocytic densities, which correlates with reduced endocytic flux. Moreover, comparative plasma membrane proteomics identified differential accumulation of multiple ubiquitinated cargo proteins for which we confirm altered trafficking. Our findings position TPC as a key player for ubiquitinated cargo internalization, allowing future identification of target proteins under specific stress conditions.
Collapse
Affiliation(s)
- Peter Grones
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.
- Center for Plant Systems Biology, VIB, Ghent, Belgium.
| | - Andreas De Meyer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Roman Pleskot
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Evelien Mylle
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Michael Kraus
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Michael Vandorpe
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Klaas Yperman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Dominique Eeckhout
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Jonathan Michael Dragwidge
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Qihang Jiang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Jonah Nolf
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Benjamin Pavie
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- BioImaging Core, VIB, 9052 Ghent, Belgium
| | - Geert De Jaeger
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Bert De Rybel
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Daniël Van Damme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.
- Center for Plant Systems Biology, VIB, Ghent, Belgium.
| |
Collapse
|
232
|
Structural Studies of Bypass of Forespore Protein C from Bacillus Subtilis to Reveal Its Inhibitory Molecular Mechanism for SpoIVB. Catalysts 2022. [DOI: 10.3390/catal12121530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Activation of pro-σK processing requires a signaling protease SpoIVB that is secreted from the forespore into the space between the two cells during sporulation in Bacillus subtilis. Bypass of forespore protein C (BofC) is an inhibitor preventing the autoproteolysis of SpoIVB, ensuring the factor σK operates regularly at the correct time during the sporulation. However, the regulatory mechanisms of BofC on pro-σK processing are still unclear, especially in the aspect of the interaction between BofC and SpoIVB. Herein, the recombinant BofC (rBofC) was expressed in the periplasm by the E. coli expression system, and crystal growth conditions were obtained and optimized. Further, the crystal structure of rBofC was determined by X-ray crystallography, which is nearly identical to the structures determined by NMR and predicted by AlphaFold. In addition, the modeled structure of the BofC–SpoIVB complex provides insights into the molecular mechanism by which domain 1 of BofC occupies the active site of the SpoIVB serine protease domain, leading to the inhibition of the catalytical activity of SpoIVB and prevention of the substrate of SpoIVB (SpoIVFA) from binding to the active site.
Collapse
|
233
|
Shaik NA, Saud Al-Saud NB, Abdulhamid Aljuhani T, Jamil K, Alnuman H, Aljeaid D, Sultana N, El-Harouni AA, Awan ZA, Elango R, Banaganapalli B. Structural characterization and conformational dynamics of alpha-1 antitrypsin pathogenic variants causing alpha-1-antitrypsin deficiency. Front Mol Biosci 2022; 9:1051511. [PMID: 36504721 PMCID: PMC9730039 DOI: 10.3389/fmolb.2022.1051511] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/02/2022] [Indexed: 11/25/2022] Open
Abstract
Background: Alpha-1 antitrypsin deficiency (A1ATD) is a progressive lung disease caused by inherited pathogenic variants in the SERPINA1 gene. However, their actual role in maintenance of structural and functional characteristics of the corresponding α-1 anti-trypsin (A1AT) protein is not well characterized. Methods: The A1ATD causative SERPINA1 missense variants were initially collected from variant databases, and they were filtered based on their pathogenicity potential. Then, the tertiary protein models were constructed and the impact of individual variants on secondary structure, stability, protein-protein interactions, and molecular dynamic (MD) features of the A1AT protein was studied using diverse computational methods. Results: We identified that A1ATD linked SERPINA1 missense variants like F76S, S77F, L278P, E288V, G216C, and H358R are highly deleterious as per the consensual prediction scores of SIFT, PolyPhen, FATHMM, M-CAP and REVEL computational methods. All these variants were predicted to alter free energy dynamics and destabilize the A1AT protein. These variants were seen to cause minor structural drifts at residue level (RMSD = <2Å) of the protein. Interestingly, S77F and L278P variants subtly alter the size of secondary structural elements like beta pleated sheets and loops. The residue level fluctuations at 100 ns simulation confirm the highly damaging structural consequences of all the six missense variants on the conformation dynamics of the A1AT protein. Moreover, these variants were also predicted to cause functional deformities by negatively impacting the binding energy of A1AT protein with NE ligand molecule. Conclusion: This study adds a new computational biology dimension to interpret the genotype-protein phenotype relationship between SERPINA1 pathogenic variants with its structural plasticity and functional behavior with NE ligand molecule contributing to the Alpha-1-antitrypsin deficiency. Our results support that A1ATD complications correlates with the conformational flexibility and its propensity of A1AT protein polymerization when misfolded.
Collapse
Affiliation(s)
- Noor Ahmad Shaik
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia,Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Najla Bint Saud Al-Saud
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Kaiser Jamil
- Department of Genetics, Bhagwan Mahavir Medical Research Centre, Hyderabad, India
| | - Huda Alnuman
- Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Deema Aljeaid
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nasreen Sultana
- Department of Biotechnology, Acharya Nagarjuna University, Guntur, India
| | | | - Zuhier Ahmed Awan
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia,Department of Genetics, Al Borg Medical Laboratories, Jeddah, Saudi Arabia
| | - Ramu Elango
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia,Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Babajan Banaganapalli
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia,Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia,*Correspondence: Babajan Banaganapalli,
| |
Collapse
|
234
|
Katase N, Nishimatsu SI, Yamauchi A, Okano S, Fujita S. Establishment of anti-DKK3 peptide for the cancer control in head and neck squamous cell carcinoma (HNSCC). Cancer Cell Int 2022; 22:352. [PMID: 36376957 PMCID: PMC9664703 DOI: 10.1186/s12935-022-02783-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/04/2022] [Indexed: 11/16/2022] Open
Abstract
Background Head and neck squamous cell carcinoma (HNSCC) is the most common malignant tumor of the head and neck. We identified cancer-specific genes in HNSCC and focused on DKK3 expression. DKK3 gene codes two isoforms of proteins (secreted and non-secreted) with two distinct cysteine rich domains (CRDs). It is reported that DKK3 functions as a negative regulator of oncogenic Wnt signaling and, is therefore, considered to be a tumor suppressor gene. However, our series of studies have demonstrated that DKK3 expression is specifically high in HNSCC tissues and cells, and that DKK3 might determine the malignant potentials of HNSCC cells via the activation of Akt. Further analyses strongly suggested that both secreted DKK3 and non-secreted DKK3 could activate Akt signaling in discrete ways, and consequently exert tumor promoting effects. We hypothesized that DKK3 might be a specific druggable target, and it is necessary to establish a DKK3 inhibitor that can inhibit both secreted and non-secreted isoforms of DKK3. Methods Using inverse polymerase chain reaction, we generated mutant expression plasmids that express DKK3 without CRD1, CRD2, or both CRD1 and CRD2 (DKK3ΔC1, DKK3ΔC2, and DKK3ΔC1ΔC2, respectively). These plasmids were then transfected into HNSCC-derived cells to determine the domain responsible for DKK3-mediated Akt activation. We designed antisense peptides using the MIMETEC program, targeting DKK3-specific amino acid sequences within CRD1 and CRD2. The structural models for peptides and DKK3 were generated using Raptor X, and then a docking simulation was performed using CluPro2. Afterward, the best set of the peptides was applied into HNSCC-derived cells, and the effects on Akt phosphorylation, cellular proliferation, invasion, and migration were assessed. We also investigated the therapeutic effects of the peptides in the xenograft models. Results Transfection of mutant expression plasmids and subsequent functional analyses revealed that it is necessary to delete both CRD1 and CRD2 to inhibit Akt activation and inhibition of proliferation, migration, and invasion. The inhibitory peptides for CRD1 and CRD2 of DKK3 significantly reduced the phosphorylation of Akt, and consequently suppressed cellular proliferation, migration, invasion and in vivo tumor growth at very low doses. Conclusions This inhibitory peptide represents a promising new therapeutic strategy for HNSCC treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02783-9.
Collapse
|
235
|
Qi Z, Pi X, Xu Y, Zhang Q, Wangkahart E, Meng F, Wang Z. Molecular characterization of the evolutionary conserved signaling intermediate in Toll pathways (ECSIT) of soiny mullet (Liza haematocheila). FISH & SHELLFISH IMMUNOLOGY 2022; 130:79-85. [PMID: 36087818 DOI: 10.1016/j.fsi.2022.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/02/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
Mammalian evolutionary conserved signaling intermediate in Toll pathways (ECSIT) is an important intracellular protein that involves in innate immunity, embryogenesis, and assembly or stability of the mitochondrial complex I. In the present study, the ECSIT was characterized in soiny mullet (Liza haematocheila). The full-length cDNA of mullet ECSIT was 1860 bp, encoding 449 amino acids. Mullet ECSIT shared 60.4%∼78.2% sequence identities with its teleost counterparts. Two conserved protein domains, ECSIT domain and C-terminal domain, were found in mullet ECSIT. Realtime qPCR analysis revealed that mullet ECSIT was distributed in all examined tissues with high expressions in spleen, head kidney (HK) and gill. Further analysis showed that mullet ECSIT in spleen was up-regulated from 6 h to 48 h after Streptococcus dysgalactiae infection. In addition, the co-immunoprecipitation (co-IP) assay confirmed that mullet ECSIT could interact with tumor necrosis factor receptor-associated factor 6 (TRAF6). Molecular docking revealed that the polar interaction and hydrophobic interaction play crucial roles in the forming of ECSIT-TRAF6 complex. The resides of mullet ECSIT that involved in the interaction between ECSIT and TRAF6 were Arg107, Glu113, Phe114, Glu124, Lys120 and Lys121, which mainly located in the ECSIT domain. Our results demonstrated that mullet ECSIT involved in the immune defense against bacterial and regulation of TLRs signaling pathway by interaction with TRAF6. To the best of our knowledge, this is the first report on ECSIT of soiny mullet, which deepen the understanding of ECSIT and its functions in the immune response of teleosts.
Collapse
Affiliation(s)
- Zhitao Qi
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, Yancheng Institute of Technology, Yancheng, China.
| | - Xiangyu Pi
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, Yancheng Institute of Technology, Yancheng, China
| | - Yang Xu
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, Yancheng Institute of Technology, Yancheng, China
| | - Qihuan Zhang
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, Yancheng Institute of Technology, Yancheng, China
| | - Eakapol Wangkahart
- Laboratory of Fish Immunology and Nutrigenomics, Applied Animal and Aquatic Sciences Research Unit, Division of Fisheries, Faculty of Technology, Mahasarakham University, Maha Sarakham, Thailand
| | - Fancui Meng
- Tianjin Institute of Pharmaceutical Research, Tianjin, 300193, China
| | - Zisheng Wang
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, Yancheng Institute of Technology, Yancheng, China
| |
Collapse
|
236
|
Varela D, Karlin V, André I. A memetic algorithm enables efficient local and global all-atom protein-protein docking with backbone and side-chain flexibility. Structure 2022; 30:1550-1558.e3. [DOI: 10.1016/j.str.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/12/2022] [Accepted: 09/25/2022] [Indexed: 11/06/2022]
|
237
|
Fernandes V, Sood A, Preeti K, Khatri DK, Singh SB. Neuroepigenetic alterations in the prefrontal cortex of type 2 diabetic mice through DNA hypermethylation. Mol Biol Rep 2022; 49:12017-12028. [DOI: 10.1007/s11033-022-08018-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 10/07/2022] [Indexed: 11/28/2022]
|
238
|
Alsowayeh N, Albutti A. Designing a novel chimeric multi-epitope vaccine against Burkholderia pseudomallei, a causative agent of melioidosis. Front Med (Lausanne) 2022; 9:945938. [PMID: 36330071 PMCID: PMC9623267 DOI: 10.3389/fmed.2022.945938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 09/20/2022] [Indexed: 06/04/2024] Open
Abstract
Burkholderia pseudomallei, a gram-negative soil-dwelling bacterium, is primarily considered a causative agent of melioidosis infection in both animals and humans. Despite the severity of the disease, there is currently no licensed vaccine on the market. The development of an effective vaccine against B. pseudomallei could help prevent the spread of infection. The purpose of this study was to develop a multi-epitope-based vaccine against B. pseudomallei using advanced bacterial pan-genome analysis. A total of four proteins were prioritized for epitope prediction by using multiple subtractive proteomics filters. Following that, a multi-epitopes based chimeric vaccine construct was modeled and joined with an adjuvant to improve the potency of the designed vaccine construct. The structure of the construct was predicted and analyzed for flexibility. A population coverage analysis was performed to evaluate the broad-spectrum applicability of B. pseudomallei. The computed combined world population coverage was 99.74%. Molecular docking analysis was applied further to evaluate the binding efficacy of the designed vaccine construct with the human toll-like receptors-5 (TLR-5). Furthermore, the dynamic behavior and stability of the docked complexes were investigated using molecular dynamics simulation, and the binding free energy determined for Vaccine-TLR-5 was delta total -168.3588. The docking result revealed that the vaccine construct may elicit a suitable immunological response within the host body. Hence, we believe that the designed in-silico vaccine could be helpful for experimentalists in the formulation of a highly effective vaccine for B. pseudomallei.
Collapse
Affiliation(s)
- Noorah Alsowayeh
- Department of Biology, College of Education (Majmaah), Majmaah University, Al Majmaah, Saudi Arabia
| | - Aqel Albutti
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
239
|
Kazakov AS, Deryusheva EI, Permyakova ME, Sokolov AS, Rastrygina VA, Uversky VN, Permyakov EA, Permyakov SE. Calcium-Bound S100P Protein Is a Promiscuous Binding Partner of the Four-Helical Cytokines. Int J Mol Sci 2022; 23:ijms231912000. [PMID: 36233301 PMCID: PMC9569990 DOI: 10.3390/ijms231912000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022] Open
Abstract
S100 proteins are multifunctional calcium-binding proteins of vertebrates that act intracellularly, extracellularly, or both, and are engaged in the progression of many socially significant diseases. Their extracellular action is typically mediated by the recognition of specific receptor proteins. Recent studies indicate the ability of some S100 proteins to affect cytokine signaling through direct interaction with cytokines. S100P was shown to be the S100 protein most actively involved in interactions with some four-helical cytokines. To assess the selectivity of the S100P protein binding to four-helical cytokines, we have probed the interaction of Ca2+-bound recombinant human S100P with a panel of 32 four-helical human cytokines covering all structural families of this fold, using surface plasmon resonance spectroscopy. A total of 22 cytokines from all families of four-helical cytokines are S100P binders with the equilibrium dissociation constants, Kd, ranging from 1 nM to 3 µM (below the Kd value for the S100P complex with the V domain of its conventional receptor, receptor for advanced glycation end products, RAGE). Molecular docking and mutagenesis studies revealed the presence in the S100P molecule of a cytokine-binding site, which overlaps with the RAGE-binding site. Since S100 binding to four-helical cytokines inhibits their signaling in some cases, the revealed ability of the S100P protein to interact with ca. 71% of the four-helical cytokines indicates that S100P may serve as a poorly selective inhibitor of their action.
Collapse
Affiliation(s)
- Alexey S. Kazakov
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Evgenia I. Deryusheva
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Maria E. Permyakova
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Andrey S. Sokolov
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Victoria A. Rastrygina
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Vladimir N. Uversky
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, 142290 Pushchino, Russia
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Correspondence: (V.N.U.); (S.E.P.); Tel.: +7-(495)-143-7740 (S.E.P.); Fax: +7-(4967)-33-05-22 (S.E.P.)
| | - Eugene A. Permyakov
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Sergei E. Permyakov
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, 142290 Pushchino, Russia
- Correspondence: (V.N.U.); (S.E.P.); Tel.: +7-(495)-143-7740 (S.E.P.); Fax: +7-(4967)-33-05-22 (S.E.P.)
| |
Collapse
|
240
|
Kiyan Y, Schultalbers A, Chernobrivaia E, Tkachuk S, Rong S, Shushakova N, Haller H. Calcium dobesilate reduces SARS-CoV-2 entry into endothelial cells by inhibiting virus binding to heparan sulfate. Sci Rep 2022; 12:16878. [PMID: 36207386 PMCID: PMC9542452 DOI: 10.1038/s41598-022-20973-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Recent reports demonstrate that SARS-CoV-2 utilizes cell surface heparan sulfate as an attachment factor to facilitate the initial interaction with host cells. Heparan sulfate interacts with the receptor binding domain of SARS-CoV-2 spike glycoprotein, and blocking this interaction can decrease cell infection. We and others reported recently that the family of compounds of 2,5-dihydroxyphenylic acid interferes with the binding of the positively charged groove in growth factor molecules to negatively charged cell surface heparan sulfate. We hypothesized that Calcium Dobesilate (CaD)-calcium salt of 2,5-dihydroxyphenylic acid-may also interfere with the binding of SARS-CoV-2 spike protein to heparan sulfate. Using lentiviral SARS-CoV-2 spike protein pseudotyped particles we show that CaD could significantly reduce pseudovirus uptake into endothelial cells. On the contrary, CaD did not affect cell infection with VSVG-expressing lentivirus. CaD could also prevent retention of SARS-CoV-2 spike protein in ex vivo perfused mouse kidney. Using microfluidic culture of endothelial cells under flow, we show that CaD prevents spike protein interaction with heparan sulfate glycocalyx. Since CaD has no adverse side effects and is approved in humans for other medical indications, our findings can rapidly translate into clinical studies.
Collapse
Affiliation(s)
- Yulia Kiyan
- Department of Nephrology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| | - Anna Schultalbers
- Department of Nephrology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
- Mount Desert Biological Laboratory MDIBL, Bar Harbor, USA
| | - Ekaterina Chernobrivaia
- Department of Nephrology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Sergey Tkachuk
- Department of Nephrology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Song Rong
- Department of Nephrology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
- Phenos GmbH, Hannover, Germany
| | - Nelli Shushakova
- Department of Nephrology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
- Phenos GmbH, Hannover, Germany
| | - Hermann Haller
- Department of Nephrology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
- Mount Desert Biological Laboratory MDIBL, Bar Harbor, USA
| |
Collapse
|
241
|
The ataxia-linked E1081Q mutation affects the sub-plasma membrane Ca 2+-microdomains by tuning PMCA3 activity. Cell Death Dis 2022; 13:855. [PMID: 36207321 PMCID: PMC9546857 DOI: 10.1038/s41419-022-05300-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 01/23/2023]
Abstract
Calcium concentration must be finely tuned in all eukaryotic cells to ensure the correct performance of its signalling function. Neuronal activity is exquisitely dependent on the control of Ca2+ homeostasis: its alterations ultimately play a pivotal role in the origin and progression of many neurodegenerative processes. A complex toolkit of Ca2+ pumps and exchangers maintains the fluctuation of cytosolic Ca2+ concentration within the appropriate threshold. Two ubiquitous (isoforms 1 and 4) and two neuronally enriched (isoforms 2 and 3) of the plasma membrane Ca2+ATPase (PMCA pump) selectively regulate cytosolic Ca2+ transients by shaping the sub-plasma membrane (PM) microdomains. In humans, genetic mutations in ATP2B1, ATP2B2 and ATP2B3 gene have been linked with hearing loss, cerebellar ataxia and global neurodevelopmental delay: all of them were found to impair pump activity. Here we report three additional mutations in ATP2B3 gene corresponding to E1081Q, R1133Q and R696H amino acids substitution, respectively. Among them, the novel missense mutation (E1081Q) immediately upstream the C-terminal calmodulin-binding domain (CaM-BD) of the PMCA3 protein was present in two patients originating from two distinct families. Our biochemical and molecular studies on PMCA3 E1081Q mutant have revealed a splicing variant-dependent effect of the mutation in shaping the sub-PM [Ca2+]. The E1081Q substitution in the full-length b variant abolished the capacity of the pump to reduce [Ca2+] in the sub-PM microdomain (in line with the previously described ataxia-related PMCA mutations negatively affecting Ca2+ pumping activity), while, surprisingly, its introduction in the truncated a variant selectively increased Ca2+ extrusion activity in the sub-PM Ca2+ microdomains. These results highlight the importance to set a precise threshold of [Ca2+] by fine-tuning the sub-PM microdomains and the different contribution of the PMCA splice variants in this regulation.
Collapse
|
242
|
Palatnik-de-Sousa I, Wallace ZS, Cavalcante SC, Ribeiro MPF, Silva JABM, Cavalcante RC, Scheuermann RH, Palatnik-de-Sousa CB. A novel vaccine based on SARS-CoV-2 CD4 + and CD8 + T cell conserved epitopes from variants Alpha to Omicron. Sci Rep 2022; 12:16731. [PMID: 36202985 PMCID: PMC9537284 DOI: 10.1038/s41598-022-21207-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 09/23/2022] [Indexed: 12/03/2022] Open
Abstract
COVID-19 caused, as of September, 1rst, 2022, 599,825,400 confirmed cases, including 6,469,458 deaths. Currently used vaccines reduced severity and mortality but not virus transmission or reinfection by different strains. They are based on the Spike protein of the Wuhan reference virus, which although highly antigenic suffered many mutations in SARS-CoV-2 variants, escaping vaccine-generated immune responses. Multiepitope vaccines based on 100% conserved epitopes of multiple proteins of all SARS-CoV-2 variants, rather than a single highly mutating antigen, could offer more long-lasting protection. In this study, a multiepitope multivariant vaccine was designed using immunoinformatics and in silico approaches. It is composed of highly promiscuous and strong HLA binding CD4+ and CD8+ T cell epitopes of the S, M, N, E, ORF1ab, ORF 6 and ORF8 proteins. Based on the analysis of one genome per WHO clade, the epitopes were 100% conserved among the Wuhan-Hu1, Alpha, Beta, Gamma, Delta, Omicron, Mµ, Zeta, Lambda and R1 variants. An extended epitope-conservancy analysis performed using GISAID metadata of 3,630,666 SARS-CoV-2 genomes of these variants and the additional genomes of the Epsilon, Lota, Theta, Eta, Kappa and GH490 R clades, confirmed the high conservancy of the epitopes. All but one of the CD4 peptides showed a level of conservation greater than 97% among all genomes. All but one of the CD8 epitopes showed a level of conservation greater than 96% among all genomes, with the vast majority greater than 99%. A multiepitope and multivariant recombinant vaccine was designed and it was stable, mildly hydrophobic and non-toxic. The vaccine has good molecular docking with TLR4 and promoted, without adjuvant, strong B and Th1 memory immune responses and secretion of high levels of IL-2, IFN-γ, lower levels of IL-12, TGF-β and IL-10, and no IL-6. Experimental in vivo studies should validate the vaccine's further use as preventive tool with cross-protective properties.
Collapse
Affiliation(s)
- Iam Palatnik-de-Sousa
- Department of Electrical Engeneering, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Zachary S Wallace
- Department of Informatics, J. Craig Venter Institute, La Jolla, CA, USA
- Department of Computer Science and Engineering, University of California, San Diego, CA, USA
| | - Stephany Christiny Cavalcante
- Department of General Microbiology, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria Paula Fonseca Ribeiro
- Department of General Microbiology, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - João Antônio Barbosa Martins Silva
- Department of General Microbiology, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rafael Ciro Cavalcante
- Department of Pharmacy, Campus Professor Antônio Garcia Filho, Federal University of Sergipe, Lagarto, Sergipe, Brazil
| | - Richard H Scheuermann
- Department of Informatics, J. Craig Venter Institute, La Jolla, CA, USA
- Department of Pathology, University of California, San Diego, CA, USA
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, USA
- Global Virus Network, Baltimore, MD, USA
| | - Clarisa Beatriz Palatnik-de-Sousa
- Department of General Microbiology, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
- Institute for Immunological Investigation (III), INCT, National Council for Scientific and Technological Development (CNPq), São Paulo, Brazil.
| |
Collapse
|
243
|
Cho SG, Song M, Chuon K, Shim JG, Meas S, Jung KH. Heliorhodopsin binds and regulates glutamine synthetase activity. PLoS Biol 2022; 20:e3001817. [PMID: 36190943 PMCID: PMC9529153 DOI: 10.1371/journal.pbio.3001817] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 09/06/2022] [Indexed: 11/05/2022] Open
Abstract
Photoreceptors are light-sensitive proteins found in various organisms that respond to light and relay signals into the cells. Heliorhodopsin, a retinal-binding membrane protein, has been recently discovered, however its function remains unknown. Herein, we investigated the relationship between Actinobacteria bacterium IMCC26103 heliorhodopsin (AbHeR) and an adjacent glutamine synthetase (AbGS) in the same operon. We demonstrate that AbHeR binds to AbGS and regulates AbGS activity. More specifically, the dissociation constant (Kd) value of the binding between AbHeR and AbGS is 6.06 μM. Moreover, the absence of positively charged residues within the intracellular loop of AbHeR impacted Kd value as they serve as critical binding sites for AbGS. We also confirm that AbHeR up-regulates the biosynthetic enzyme activity of AbGS both in vitro and in vivo in the presence of light. GS is a key enzyme involved in nitrogen assimilation that catalyzes the conversion of glutamate and ammonia to glutamine. Hence, the interaction between AbHeR and AbGS may be critical for nitrogen assimilation in Actinobacteria bacterium IMCC26103 as it survives in low-nutrient environments. Overall, the findings of our study describe, for the first time, to the best of our knowledge, a novel function of heliorhodopsin as a regulatory rhodopsin with the capacity to bind and regulate enzyme activity required for nitrogen assimilation. A study of heliorhodopsin, an actinobacterial photoreceptor of unknown function, reveals that it interacts with glutamine synthetase, an enzyme involved in nitrogen assimilation, and regulates its activity in the presence of light, highlighting the diverse functions of rhodopsins in different organisms.
Collapse
Affiliation(s)
- Shin-Gyu Cho
- Department of Life Science and Institute of Biological Interfaces, Sogang University, Seoul, Korea,Research Institute for Basic Science, Sogang University, Seoul, Korea
| | - Myungchul Song
- Department of Life Science and Institute of Biological Interfaces, Sogang University, Seoul, Korea
| | - Kimleng Chuon
- Department of Life Science and Institute of Biological Interfaces, Sogang University, Seoul, Korea
| | - Jin-gon Shim
- Department of Life Science and Institute of Biological Interfaces, Sogang University, Seoul, Korea
| | - Seanghun Meas
- Department of Life Science and Institute of Biological Interfaces, Sogang University, Seoul, Korea,Department of Biology, Faculty of Science, Royal University of Phnom Penh, Phnom Penh, Cambodia
| | - Kwang-Hwan Jung
- Department of Life Science and Institute of Biological Interfaces, Sogang University, Seoul, Korea,* E-mail:
| |
Collapse
|
244
|
Berselli A, Alberini G, Benfenati F, Maragliano L. Computational study of ion permeation through claudin-4 paracellular channels. Ann N Y Acad Sci 2022; 1516:162-174. [PMID: 35811406 PMCID: PMC9796105 DOI: 10.1111/nyas.14856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Claudins (Cldns) form a large family of protein homologs that are essential for the assembly of paracellular tight junctions (TJs), where they form channels or barriers with tissue-specific selectivity for permeants. In contrast to several family members whose physiological role has been identified, the function of claudin 4 (Cldn4) remains elusive, despite experimental evidence suggesting that it can form anion-selective TJ channels in the renal epithelium. Computational approaches have recently been employed to elucidate the molecular basis of Cldns' function, and hence could help in clarifying the role of Cldn4. In this work, we use structural modeling and all-atom molecular dynamics simulations to transfer two previously introduced structural models of Cldn-based paracellular complexes to Cldn4 to reproduce a paracellular anion channel. Free energy calculations for ionic transport through the pores allow us to establish the thermodynamic properties driving the ion-selectivity of the structures. While one model shows a cavity permeable to chloride and repulsive to cations, the other forms barrier to the passage of all the major physiological ions. Furthermore, our results confirm the charge selectivity role of the residue Lys65 in the first extracellular loop of the protein, rationalizing Cldn4 control of paracellular permeability.
Collapse
Affiliation(s)
- Alessandro Berselli
- Center for Synaptic Neuroscience and Technology (NSYN@UniGe)Istituto Italiano di TecnologiaGenovaItaly
- Department of Experimental MedicineUniversità degli Studi di GenovaGenovaItaly
| | - Giulio Alberini
- Center for Synaptic Neuroscience and Technology (NSYN@UniGe)Istituto Italiano di TecnologiaGenovaItaly
- IRCCS Ospedale Policlinico San MartinoGenovaItaly
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology (NSYN@UniGe)Istituto Italiano di TecnologiaGenovaItaly
- IRCCS Ospedale Policlinico San MartinoGenovaItaly
| | - Luca Maragliano
- Center for Synaptic Neuroscience and Technology (NSYN@UniGe)Istituto Italiano di TecnologiaGenovaItaly
- Department of Life and Environmental SciencesPolytechnic University of MarcheAnconaItaly
| |
Collapse
|
245
|
Tamjid N, Eskandari S, Karimi Z, Nezafat N, Negahdaripour M. Vaccinomics strategy to design an epitope peptide vaccine against Helicobacter pylori. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
246
|
Tersteeg S, Mrozowich T, Henrickson A, Demeler B, Patel TR. Purification and characterization of inorganic pyrophosphatase for in vitro RNA transcription. Biochem Cell Biol 2022; 100:425-436. [PMID: 35926232 PMCID: PMC10311840 DOI: 10.1139/bcb-2022-0118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Inorganic pyrophosphatase (iPPase) is an enzyme that cleaves pyrophosphate into two phosphate molecules. This enzyme is an essential component of in vitro transcription (IVT) reactions for RNA preparation as it prevents pyrophosphate from precipitating with magnesium, ultimately increasing the rate of the IVT reaction. Large-scale RNA production is often required for biochemical and biophysical characterization studies of RNA, therefore requiring large amounts of IVT reagents. Commercially purchased iPPase is often the most expensive component of any IVT reaction. In this paper, we demonstrate that iPPase can be produced in large quantities and high quality using a reasonably generic laboratory facility and that laboratory-purified iPPase is as effective as commercially available iPPase. Furthermore, using size exclusion chromatography coupled with multi-angle light scattering and dynamic light scattering, analytical ultracentrifugation, and small-angle X-ray scattering, we demonstrate that yeast iPPase can form tetramers and hexamers in solution as well as the enzymatically active dimer. Our work provides a robust protocol for laboratories involved with RNA in vitro transcription to efficiently produce active iPPase, significantly reducing the financial strain of large-scale RNA production.
Collapse
Affiliation(s)
- Scott Tersteeg
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
| | - Tyler Mrozowich
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
| | - Amy Henrickson
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
| | - Borries Demeler
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
- Department of Chemistry and Biochemistry, University of Montana, Missoula, MT 59812, USA
| | - Trushar R. Patel
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Department of Microbiology, Immunology & Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
247
|
Gül N, Yıldız A. An in silico study of how histone tail conformation affects the binding affinity of ING family proteins. PeerJ 2022; 10:e14029. [PMID: 36199288 PMCID: PMC9528904 DOI: 10.7717/peerj.14029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/16/2022] [Indexed: 01/19/2023] Open
Abstract
Background Due to its intrinsically disordered nature, the histone tail is conformationally heterogenic. Therefore, it provides specific binding sites for different binding proteins or factors through reversible post-translational modifications (PTMs). For instance, experimental studies stated that the ING family binds with the histone tail that has methylation on the lysine in position 4. However, numerous complexes featuring a methylated fourth lysine residue of the histone tail can be found in the UniProt database. So the question arose if other factors like the conformation of the histone tail affect the binding affinity. Methods The crystal structure of the PHD finger domain from the proteins ING1, ING2, ING4, and ING5 are docked to four histone H3 tails with two different conformations using Haddock 2.4 and ClusPro. The best four models for each combination are selected and a two-sample t-test is performed to compare the binding affinities of helical conformations vs. linear conformations using Prodigy. The protein-protein interactions are examined using LigPlot. Results The linear histone conformations in predicted INGs-histone H3 complexes exhibit statistically significant higher binding affinity than their helical counterparts (confidence level of 99%). The outputs of predicted models generated by the molecular docking programs Haddock 2.4 and ClusPro are comparable, and the obtained protein-protein interaction patterns are consistent with experimentally confirmed binding patterns. Conclusion The results show that the conformation of the histone tail is significantly affecting the binding affinity of the docking protein. Herewith, this in silico study demonstrated in detail the binding preference of the ING protein family to histone H3 tail. Further research on the effect of certain PTMs on the final tail conformation and the interaction between those factors seem to be promising for a better understanding of epigenetics.
Collapse
Affiliation(s)
- Nadir Gül
- Faculty of Natural Sciences, Turkish-German University, Istanbul, Turkey
| | - Ahmet Yıldız
- Faculty of Engineering, Turkish-German University, Istanbul, Turkey
| |
Collapse
|
248
|
The effect of lactoferrin on ULK1 and ATG13 genes expression in breast cancer cell line MCF7 and bioinformatics studies of protein interaction between lactoferrin and the autophagy initiation complex. Cell Biochem Biophys 2022; 80:795-806. [PMID: 36169801 DOI: 10.1007/s12013-022-01097-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 09/12/2022] [Indexed: 11/03/2022]
Abstract
Recently, the study of autophagy and its mechanism on the cancer cell growth process has received much attention. lactoferrin (Lf) is a glycoprotein with various biological activities, including antibacterial, antiviral, anti-cancer, etc. In the present study, the effect of different concentrations of lactoferrin on the expression of ULK1 and ATG13 genes was evaluated in breast cancer cell line MCF7 using real-time PCR technique as well as the molecular mechanism of these two genes and their proteins in the autophagy pathway and the relationship between lactoferrin and these proteins were investigated by bioinformatics studies. The result showed that the expression of the ULK1 gene at a concentration of 500 μg/ml of lactoferrin was significantly (P < 0.007) increased compared to the control and two other concentrations. Also, the expression of the ATG13 gene at all three concentrations was not significantly different from each other and compared to the control (P = 0.635). In the immunoblot of ULK1 protein at a concentration of 500 µg, more protein expression was observed. The binding mode of lactoferrin with ULK1, ATG13, and ATG101 proteins was obtained using docking. According to docking results, the N-lobe region of lactoferrin interacts with the PS domain of the ULK1 protein, and the N-lobe region of lactoferrin interacts with the horma domain of the ATG 13 and ATG101 proteins. The results show that lactoferrin, in addition to acting on the gene, interacts with ULK1, ATG13, and ATG101 proteins. Since all three proteins are components of the autophagy initiation complex, lactoferrin can induce autophagy in this way.
Collapse
|
249
|
Naveed M, Hassan JU, Ahmad M, Naeem N, Mughal MS, Rabaan AA, Aljeldah M, Shammari BRA, Alissa M, Sabour AA, Alaeq RA, Alshiekheid MA, Turkistani SA, Elmi AH, Ahmed N. Designing mRNA- and Peptide-Based Vaccine Construct against Emerging Multidrug-Resistant Citrobacter freundii: A Computational-Based Subtractive Proteomics Approach. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:1356. [PMID: 36295517 PMCID: PMC9610710 DOI: 10.3390/medicina58101356] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/13/2022] [Accepted: 09/20/2022] [Indexed: 11/23/2022]
Abstract
Background and Objectives: Citrobacter freundii (C. freundii) is an emerging and opportunistic Gram-negative bacteria of the human gastrointestinal tract associated with nosocomial and severe respiratory tract infections. It has also been associated with pneumonia, bloodstream, and urinary tract infections. Intrinsic and adaptive virulence characteristics of C. freundii have become a significant source of diarrheal infections and food poisoning among immune-compromised patients and newborns. Impulsive usage of antibiotics and these adaptive virulence characteristics has modulated the C. freundii into multidrug-resistant (MDR) bacteria. Conventional approaches are futile against MDR C. freundii. Materials and Methods: The current study exploits the modern computational-based vaccine design approach to treat infections related to MDR C. freundii. A whole proteome of C. freundii (strain: CWH001) was retrieved to screen pathogenic and nonhomologous proteins. Six proteins were shortlisted for the selection of putative epitopes for vaccine construct. Highly antigenic, nonallergen, and nontoxic eleven B-cell, HTL, and TCL epitopes were selected for mRNA- and peptide-based multi-epitope vaccine construct. Secondary and tertiary structures of the multi-epitope vaccine (MEVC) were designed, refined, and validated. Results: Evaluation of population coverage of MHC-I and MHC-II alleles were 72% and 90%, respectively. Docking MEVC with TLR-3 receptor with the binding affinity of 21.46 (kcal/mol) occurred through the mmGBSA process. Further validations include codon optimization with an enhanced CAI value of 0.95 and GC content of about 51%. Immune stimulation and molecular dynamic simulation ensure the antibody production upon antigen interaction with the host and stability of the MEVC construct, respectively. Conclusions: These interpretations propose a new strategy to combat MDR C. freundii. Further, in vivo and in vitro trials of this vaccine will be valuable in combating MDR pathogens.
Collapse
Affiliation(s)
- Muhammad Naveed
- Department of Biotechnology, Faculty of Science and Technology, University of Central Punjab, Lahore 54590, Pakistan
| | - Jawad-ul Hassan
- Department of Biotechnology, Faculty of Science and Technology, University of Central Punjab, Lahore 54590, Pakistan
| | - Muneeb Ahmad
- Department of Medical Education, Rawalpindi Medical University, Rawalpindi 46000, Pakistan
| | - Nida Naeem
- Department of Biotechnology, Faculty of Science and Technology, University of Central Punjab, Lahore 54590, Pakistan
| | - Muhammad Saad Mughal
- Department of Biotechnology, Faculty of Science and Technology, University of Central Punjab, Lahore 54590, Pakistan
| | - Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| | - Mohammed Aljeldah
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hafr Al Batin, Hafr Al Batin 39831, Saudi Arabia
| | - Basim R. Al Shammari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hafr Al Batin, Hafr Al Batin 39831, Saudi Arabia
| | - Mohammed Alissa
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Amal A. Sabour
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Rana A. Alaeq
- Department of Medical Laboratories Technology, Faculty of Applied Medical Science, Taibah University, Al Madinah Al Munawarh 42353, Saudi Arabia
| | - Maha A. Alshiekheid
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Safaa A. Turkistani
- Department of Medical Laboratory, Fakeeh College for Medical Science, Jeddah 21134, Saudi Arabia
| | - Abdirahman Hussein Elmi
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia
| | - Naveed Ahmed
- Department of Biotechnology, Faculty of Science and Technology, University of Central Punjab, Lahore 54590, Pakistan
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia
| |
Collapse
|
250
|
Molecular Docking and In-Silico Analysis of Natural Biomolecules against Dengue, Ebola, Zika, SARS-CoV-2 Variants of Concern and Monkeypox Virus. Int J Mol Sci 2022; 23:ijms231911131. [PMID: 36232431 PMCID: PMC9569982 DOI: 10.3390/ijms231911131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/12/2022] [Accepted: 09/16/2022] [Indexed: 11/20/2022] Open
Abstract
The emergence and rapid evolution of human pathogenic viruses, combined with the difficulties in developing effective vaccines, underline the need to develop innovative broad-spectrum antiviral therapeutic agents. The present study aims to determine the in silico antiviral potential of six bacterial antimicrobial peptides (AMPs), two phytochemicals (silvestrol, andrographolide), and two bacterial secondary metabolites (lyngbyabellin A, hapalindole H) against dengue virus, Zika virus, Ebola virus, the major variants of SARS-CoV-2 and monkeypox virus. The comparison of docking scores obtained with natural biomolecules was performed with specific neutralizing antibodies (positive controls for ClusPro) and antiviral drugs (negative controls for Autodock Vina). Glycocin F was the only natural biomolecule tested to show high binding energies to all viral surface proteins and the corresponding viral cell receptors. Lactococcin G and plantaricin ASM1 also achieved high docking scores with all viral surface proteins and most corresponding cell surface receptors. Silvestrol, andrographolide, hapalindole H, and lyngbyabellin A showed variable docking scores depending on the viral surface proteins and cell receptors tested. Three glycocin F mutants with amino acid modifications showed an increase in their docking energy to the spike proteins of SARS-CoV-2 B.1.617.2 Indian variant, and of the SARS-CoV-2 P.1 Japan/Brazil variant, and the dengue DENV envelope protein. All mutant AMPs indicated a frequent occurrence of valine and proline amino acid rotamers. AMPs and glycocin F in particular are the most promising biomolecules for the development of broad-spectrum antiviral treatments targeting the attachment and entry of viruses into their target cell.
Collapse
|