201
|
Chua XY, Salomon A. Ovalbumin Antigen-Specific Activation of Human T Cell Receptor Closely Resembles Soluble Antibody Stimulation as Revealed by BOOST Phosphotyrosine Proteomics. J Proteome Res 2021; 20:3330-3344. [PMID: 34018748 DOI: 10.1021/acs.jproteome.1c00239] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Activation of the T cell receptor (TCR) leads to a network of early signaling predominantly orchestrated by tyrosine phosphorylation in T cells. The TCR is commonly activated using soluble anti-TCR antibodies, but this approach is not antigen-specific. Alternatively, activating the TCR using specific antigens of a range of binding affinities in the form of a peptide-major histocompatibility complex (pMHC) is presumed to be more physiological. However, due to the lack of wide-scale phosphotyrosine (pTyr) proteomic studies directly comparing anti-TCR antibodies and pMHC, a comprehensive definition of these activated states remains enigmatic. Elucidation of the tyrosine phosphoproteome using quantitative pTyr proteomics enables a better understanding of the unique features of these activating agents and the role of ligand binding affinity on signaling. Here, we apply the recently established Broad-spectrum Optimization Of Selective Triggering (BOOST) to examine perturbations in tyrosine phosphorylation of human TCR triggered by anti-TCR antibodies and pMHC. Our data reveal that high-affinity ovalbumin (OVA) pMHC activation of the human TCR triggers a largely similar, albeit potentially stronger, pTyr-mediated signaling regulatory axis compared to the anti-TCR antibody. The signaling output resulting from OVA pMHC variants correlates well with their weaker affinities, enabling affinity-tunable control of signaling strength. Collectively, we provide a framework for applying BOOST to compare pTyr-mediated signaling pathways of human T cells activated in an antigen-independent and antigen-specific manner.
Collapse
Affiliation(s)
- Xien Yu Chua
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, Rhode Island 02912, United States
| | - Arthur Salomon
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
202
|
PD-1 suppresses TCR-CD8 cooperativity during T-cell antigen recognition. Nat Commun 2021; 12:2746. [PMID: 33980853 PMCID: PMC8115078 DOI: 10.1038/s41467-021-22965-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 04/09/2021] [Indexed: 12/31/2022] Open
Abstract
Despite the clinical success of blocking its interactions, how PD-1 inhibits T-cell activation is incompletely understood, as exemplified by its potency far exceeding what might be predicted from its affinity for PD-1 ligand-1 (PD-L1). This may be partially attributed to PD-1's targeting the proximal signaling of the T-cell receptor (TCR) and co-stimulatory receptor CD28 via activating Src homology region 2 domain-containing phosphatases (SHPs). Here, we report PD-1 signaling regulates the initial TCR antigen recognition manifested in a smaller spreading area, fewer molecular bonds formed, and shorter bond lifetime of T cell interaction with peptide-major histocompatibility complex (pMHC) in the presence than absence of PD-L1 in a manner dependent on SHPs and Leukocyte C-terminal Src kinase. Our results identify a PD-1 inhibitory mechanism that disrupts the cooperative TCR-pMHC-CD8 trimolecular interaction, which prevents CD8 from augmenting antigen recognition, explaining PD-1's potent inhibitory function and its value as a target for clinical intervention.
Collapse
|
203
|
Sasai M, Ma JS, Okamoto M, Nishino K, Nagaoka H, Takashima E, Pradipta A, Lee Y, Kosako H, Suh PG, Yamamoto M. Uncovering a novel role of PLCβ4 in selectively mediating TCR signaling in CD8+ but not CD4+ T cells. J Exp Med 2021; 218:212085. [PMID: 33970189 PMCID: PMC8111461 DOI: 10.1084/jem.20201763] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 02/24/2021] [Accepted: 03/23/2021] [Indexed: 11/08/2022] Open
Abstract
Because of their common signaling molecules, the main T cell receptor (TCR) signaling cascades in CD4+ and CD8+ T cells are considered qualitatively identical. Herein, we show that TCR signaling in CD8+ T cells is qualitatively different from that in CD4+ T cells, since CD8α ignites another cardinal signaling cascade involving phospholipase C β4 (PLCβ4). TCR-mediated responses were severely impaired in PLCβ4-deficient CD8+ T cells, whereas those in CD4+ T cells were intact. PLCβ4-deficient CD8+ T cells showed perturbed activation of peripheral TCR signaling pathways downstream of IP3 generation. Binding of PLCβ4 to the cytoplasmic tail of CD8α was important for CD8+ T cell activation. Furthermore, GNAQ interacted with PLCβ4, mediated double phosphorylation on threonine 886 and serine 890 positions of PLCβ4, and activated CD8+ T cells in a PLCβ4-dependent fashion. PLCβ4-deficient mice exhibited defective antiparasitic host defense and antitumor immune responses. Altogether, PLCβ4 differentiates TCR signaling in CD4+ and CD8+ T cells and selectively promotes CD8+ T cell–dependent adaptive immunity.
Collapse
Affiliation(s)
- Miwa Sasai
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan.,Laboratory of Immunoparasitology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Ji Su Ma
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan.,Laboratory of Immunoparasitology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Masaaki Okamoto
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Kohei Nishino
- Division of Cell Signaling, Fujii Memorial Institute of Medical Sciences, Tokushima University, Tokushima, Japan
| | - Hikaru Nagaoka
- Division of Malaria Research, Proteo-Science Center, Ehime University, Ehime, Japan
| | - Eizo Takashima
- Division of Malaria Research, Proteo-Science Center, Ehime University, Ehime, Japan
| | - Ariel Pradipta
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Youngae Lee
- Laboratory of Immunoparasitology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Hidetaka Kosako
- Division of Cell Signaling, Fujii Memorial Institute of Medical Sciences, Tokushima University, Tokushima, Japan
| | - Pann-Ghill Suh
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, South Korea.,Korea Brain Research Institute, Daegu, South Korea
| | - Masahiro Yamamoto
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan.,Laboratory of Immunoparasitology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
204
|
Cross-TCR Antagonism Revealed by Optogenetically Tuning the Half-Life of the TCR Ligand Binding. Int J Mol Sci 2021; 22:ijms22094920. [PMID: 34066527 PMCID: PMC8124730 DOI: 10.3390/ijms22094920] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/20/2021] [Accepted: 04/23/2021] [Indexed: 12/27/2022] Open
Abstract
Activation of T cells by agonistic peptide-MHC can be inhibited by antagonistic ones. However, the exact mechanism remains elusive. We used Jurkat cells expressing two different TCRs and tested whether stimulation of the endogenous TCR by agonistic anti-Vβ8 antibodies can be modulated by ligand-binding to the second, optogenetic TCR. The latter TCR uses phytochrome B tetramers (PhyBt) as ligand, the binding half-life of which can be altered by light. We show that this half-life determined whether the PhyBt acted as a second agonist (long half-life), an antagonist (short half-life) or did not have any influence (very short half-life) on calcium influx. A mathematical model of this cross-antagonism shows that a mechanism based on an inhibitory signal generated by early recruitment of a phosphatase and an activating signal by later recruitment of a kinase explains the data.
Collapse
|
205
|
Kent A, Longino NV, Christians A, Davila E. Naturally Occurring Genetic Alterations in Proximal TCR Signaling and Implications for Cancer Immunotherapy. Front Immunol 2021; 12:658611. [PMID: 34012443 PMCID: PMC8126620 DOI: 10.3389/fimmu.2021.658611] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Abstract
T cell-based immunotherapies including genetically engineered T cells, adoptive transfer of tumor-infiltrating lymphocytes, and immune checkpoint blockade highlight the impressive anti-tumor effects of T cells. These successes have provided new hope to many cancer patients with otherwise poor prognoses. However, only a fraction of patients demonstrates durable responses to these forms of therapies and many develop significant immune-mediated toxicity. These heterogeneous clinical responses suggest that underlying nuances in T cell genetics, phenotypes, and activation states likely modulate the therapeutic impact of these approaches. To better characterize known genetic variations that may impact T cell function, we 1) review the function of early T cell receptor-specific signaling mediators, 2) offer a synopsis of known mutations and genetic alterations within the associated molecules, 3) discuss the link between these mutations and human disease and 4) review therapeutic strategies under development or in clinical testing that target each of these molecules for enhancing anti-tumor T cell activity. Finally, we discuss novel engineering approaches that could be designed based on our understanding of the function of these molecules in health and disease.
Collapse
Affiliation(s)
- Andrew Kent
- Division of Medical Oncology, Department of Medicine, University of Colorado, Aurora, CO, United States
- Human Immunology and Immunotherapy Initiative, University of Colorado, Aurora, CO, United States
- University of Colorado Comprehensive Cancer Center, Aurora, CO, United States
| | - Natalie V. Longino
- Division of Medical Oncology, Department of Medicine, University of Colorado, Aurora, CO, United States
- Human Immunology and Immunotherapy Initiative, University of Colorado, Aurora, CO, United States
- University of Colorado Comprehensive Cancer Center, Aurora, CO, United States
- Department of Medicine, University of Colorado, Aurora, CO, United States
| | - Allison Christians
- Division of Medical Oncology, Department of Medicine, University of Colorado, Aurora, CO, United States
- Human Immunology and Immunotherapy Initiative, University of Colorado, Aurora, CO, United States
- University of Colorado Comprehensive Cancer Center, Aurora, CO, United States
| | - Eduardo Davila
- Division of Medical Oncology, Department of Medicine, University of Colorado, Aurora, CO, United States
- Human Immunology and Immunotherapy Initiative, University of Colorado, Aurora, CO, United States
- University of Colorado Comprehensive Cancer Center, Aurora, CO, United States
- Department of Medicine, University of Colorado, Aurora, CO, United States
| |
Collapse
|
206
|
Guo Y, Yu H, Song H, He J, Oyebamiji O, Kang H, Ping J, Ness S, Shyr Y, Ye F. MetaGSCA: A tool for meta-analysis of gene set differential coexpression. PLoS Comput Biol 2021; 17:e1008976. [PMID: 33945541 PMCID: PMC8121311 DOI: 10.1371/journal.pcbi.1008976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 05/14/2021] [Accepted: 04/18/2021] [Indexed: 01/24/2023] Open
Abstract
Analyses of gene set differential coexpression may shed light on molecular mechanisms underlying phenotypes and diseases. However, differential coexpression analyses of conceptually similar individual studies are often inconsistent and underpowered to provide definitive results. Researchers can greatly benefit from an open-source application facilitating the aggregation of evidence of differential coexpression across studies and the estimation of more robust common effects. We developed Meta Gene Set Coexpression Analysis (MetaGSCA), an analytical tool to systematically assess differential coexpression of an a priori defined gene set by aggregating evidence across studies to provide a definitive result. In the kernel, a nonparametric approach that accounts for the gene-gene correlation structure is used to test whether the gene set is differentially coexpressed between two comparative conditions, from which a permutation test p-statistic is computed for each individual study. A meta-analysis is then performed to combine individual study results with one of two options: a random-intercept logistic regression model or the inverse variance method. We demonstrated MetaGSCA in case studies investigating two human diseases and identified pathways highly relevant to each disease across studies. We further applied MetaGSCA in a pan-cancer analysis with hundreds of major cellular pathways in 11 cancer types. The results indicated that a majority of the pathways identified were dysregulated in the pan-cancer scenario, many of which have been previously reported in the cancer literature. Our analysis with randomly generated gene sets showed excellent specificity, indicating that the significant pathways/gene sets identified by MetaGSCA are unlikely false positives. MetaGSCA is a user-friendly tool implemented in both forms of a Web-based application and an R package "MetaGSCA". It enables comprehensive meta-analyses of gene set differential coexpression data, with an optional module of post hoc pathway crosstalk network analysis to identify and visualize pathways having similar coexpression profiles.
Collapse
Affiliation(s)
- Yan Guo
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Hui Yu
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Haocan Song
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Jiapeng He
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Olufunmilola Oyebamiji
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Huining Kang
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Jie Ping
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Scott Ness
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Yu Shyr
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Vanderbilt Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Fei Ye
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Vanderbilt Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| |
Collapse
|
207
|
Zeng L, Palaia I, Šarić A, Su X. PLCγ1 promotes phase separation of T cell signaling components. J Cell Biol 2021; 220:212040. [PMID: 33929486 PMCID: PMC8094118 DOI: 10.1083/jcb.202009154] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/21/2021] [Accepted: 03/05/2021] [Indexed: 02/07/2023] Open
Abstract
The T cell receptor (TCR) pathway receives, processes, and amplifies the signal from pathogenic antigens to the activation of T cells. Although major components in this pathway have been identified, the knowledge on how individual components cooperate to effectively transduce signals remains limited. Phase separation emerges as a biophysical principle in organizing signaling molecules into liquid-like condensates. Here, we report that phospholipase Cγ1 (PLCγ1) promotes phase separation of LAT, a key adaptor protein in the TCR pathway. PLCγ1 directly cross-links LAT through its two SH2 domains. PLCγ1 also protects LAT from dephosphorylation by the phosphatase CD45 and promotes LAT-dependent ERK activation and SLP76 phosphorylation. Intriguingly, a nonmonotonic effect of PLCγ1 on LAT clustering was discovered. Computer simulations, based on patchy particles, revealed how the cluster size is regulated by protein compositions. Together, these results define a critical function of PLCγ1 in promoting phase separation of the LAT complex and TCR signal transduction.
Collapse
Affiliation(s)
- Longhui Zeng
- Department of Cell Biology, Yale School of Medicine, New Haven, CT
| | - Ivan Palaia
- Department of Physics and Astronomy, Institute for the Physics of Living Systems, University College London, London, UK.,Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Anđela Šarić
- Department of Physics and Astronomy, Institute for the Physics of Living Systems, University College London, London, UK.,Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Xiaolei Su
- Department of Cell Biology, Yale School of Medicine, New Haven, CT.,Yale Cancer Center, Yale University, New Haven, CT
| |
Collapse
|
208
|
Różycki B, Weikl TR. Cooperative Stabilization of Close-Contact Zones Leads to Sensitivity and Selectivity in T-Cell Recognition. Cells 2021; 10:1023. [PMID: 33926103 PMCID: PMC8145674 DOI: 10.3390/cells10051023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 11/30/2022] Open
Abstract
T cells are sensitive to 1 to 10 foreign-peptide-MHC complexes among a vast majority of self-peptide-MHC complexes, and discriminate selectively between peptide-MHC complexes that differ not much in their binding affinity to T-cell receptors (TCRs). Quantitative models that aim to explain this sensitivity and selectivity largely focus on single TCR/peptide-MHC complexes, but T cell adhesion involves a multitude of different complexes. In this article, we demonstrate in a three-dimensional computational model of T-cell adhesion that the cooperative stabilization of close-contact zones is sensitive to one to three foreign-peptide-MHC complexes and occurs at a rather sharp threshold affinity of these complexes, which implies selectivity. In these close-contact zones with lateral extensions of hundred to several hundred nanometers, few TCR/foreign-peptide-MHC complexes and many TCR/self-peptide-MHC complexes are segregated from LFA-1/ICAM-1 complexes that form at larger membrane separations. Previous high-resolution microscopy experiments indicate that the sensitivity and selectivity in the formation of closed-contact zones reported here are relevant for T-cell recognition, because the stabilization of close-contact zones by foreign, agonist peptide-MHC complexes precedes T-cell signaling and activation in the experiments.
Collapse
Affiliation(s)
- Bartosz Różycki
- Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland;
| | - Thomas R. Weikl
- Department of Theory and Bio-Systems, Max Planck Institut of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| |
Collapse
|
209
|
Ma J, Ayres CM, Hellman LM, Devlin JR, Baker BM. Dynamic allostery controls the peptide sensitivity of the Ly49C natural killer receptor. J Biol Chem 2021; 296:100686. [PMID: 33891944 PMCID: PMC8138769 DOI: 10.1016/j.jbc.2021.100686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 11/30/2022] Open
Abstract
Using a variety of activating and inhibitory receptors, natural killer (NK) cells protect against disease by eliminating cells that have downregulated class I major histocompatibility complex (MHC) proteins, such as in response to cell transformation or viral infection. The inhibitory murine NK receptor Ly49C specifically recognizes the class I MHC protein H-2Kb. Unusual among NK receptors, Ly49C exhibits a peptide-dependent sensitivity to H-2Kb recognition, which has not been explained despite detailed structural studies. To gain further insight into Ly49C peptide sensitivity, we examined Ly49C recognition biochemically and through the lens of dynamic allostery. We found that the peptide sensitivity of Ly49C arises through small differences in H-2Kb-binding affinity. Although molecular dynamics simulations supported a role for peptide-dependent protein dynamics in producing these differences in binding affinity, calorimetric measurements indicated an enthalpically as opposed to entropically driven process. A quantitative linkage analysis showed that this emerges from peptide-dependent dynamic tuning of electrostatic interactions across the Ly49C–H-2Kb interface. We propose a model whereby different peptides alter the flexibility of H-2Kb, which in turn changes the strength of electrostatic interactions across the protein–protein interface. Our results provide a quantitative assessment of how peptides alter Ly49C-binding affinity, suggest the underlying mechanism, and demonstrate peptide-driven allostery at work in class I MHC proteins. Lastly, our model provides a solution for how dynamic allostery could impact binding of some, but not all, class I MHC partners depending on the structural and chemical composition of the interfaces.
Collapse
Affiliation(s)
- Jiaqi Ma
- Department of Chemistry & Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana, USA
| | - Cory M Ayres
- Department of Chemistry & Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana, USA
| | - Lance M Hellman
- Department of Physical and Life Sciences, Nevada State College, Henderson, Nevada, USA
| | - Jason R Devlin
- Department of Chemistry & Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana, USA
| | - Brian M Baker
- Department of Chemistry & Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana, USA.
| |
Collapse
|
210
|
Lo WL, Weiss A. Adapting T Cell Receptor Ligand Discrimination Capability via LAT. Front Immunol 2021; 12:673196. [PMID: 33936119 PMCID: PMC8085316 DOI: 10.3389/fimmu.2021.673196] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 03/29/2021] [Indexed: 12/19/2022] Open
Abstract
Self- and non-self ligand discrimination is a core principle underlying T cell-mediated immunity. Mature αβ T cells can respond to a foreign peptide ligand presented by major histocompatibility complex molecules (pMHCs) on antigen presenting cells, on a background of continuously sensed self-pMHCs. How αβ T cells can properly balance high sensitivity and high specificity to foreign pMHCs, while surrounded by a sea of self-peptide ligands is not well understood. Such discrimination cannot be explained solely by the affinity parameters of T cell antigen receptor (TCR) and pMHC interaction. In this review, we will discuss how T cell ligand discrimination may be molecularly defined by events downstream of the TCR-pMHC interaction. We will discuss new evidence in support of the kinetic proofreading model of TCR ligand discrimination, and in particular how the kinetics of specific phosphorylation sites within the adaptor protein linker for activation of T cells (LAT) determine the outcome of TCR signaling. In addition, we will discuss emerging data regarding how some kinases, including ZAP-70 and LCK, may possess scaffolding functions to more efficiently direct their kinase activities.
Collapse
Affiliation(s)
- Wan-Lin Lo
- Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Arthritis Research Center, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Arthur Weiss
- Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Arthritis Research Center, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
211
|
Tu H, Wu Z, Xia Y, Chen H, Hu H, Ding Z, Zhou F, Guo S. Profiling of immune-cancer interactions at the single-cell level using a microfluidic well array. Analyst 2021; 145:4138-4147. [PMID: 32409799 DOI: 10.1039/d0an00110d] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cancer immunotherapy has achieved great success in hematological cancers. However, immune cells are a highly heterogeneous population and can vary highly in clonal expansion, migration and function status, making it difficult to evaluate and predict patient response to immune therapy. Conventional technologies only yield information on the average population information of the treatment, masking the heterogeneity of the individual T cell activation status, the formation of immune synapse, as well as the efficacy of tumor cell killing at the single-cell level. To fully interrogate these single-cell events in detail, herein, we present a microfluidic microwell array device that enables the massive parallel analysis of the immunocyte's heterogeneity upon its interaction pairs with tumor cells at the single-cell level. By precisely controlling the number and ratio of tumor cells and T cells, our technique can interrogate the dynamics of the CD8+ T cell and leukemia cell interaction inside 6400 microfluidic wells simultaneously. We have demonstrated that by investigating the interactions of T cell and tumor cell pairs at the single-cell level using our microfluidic chip, details hidden in bulk investigations, such as heterogeneity in T cell killing capacity, time-dependent killing dynamics, as well as drug treatment-induced dynamic shifts, can be revealed. This method opens up avenues to investigate the efficacy of cancer immunotherapy and resistance at the single-cell level and can explore our understanding of fundamental cancer immunity as well as determine cancer immunotherapy efficacy for personalized therapy.
Collapse
Affiliation(s)
- Honglei Tu
- Department of Clinical Hematology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, People's Republic of China.
| | - Zhuhao Wu
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China.
| | - Yu Xia
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China.
| | - Hui Chen
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China.
| | - Hang Hu
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430072, People's Republic of China
| | - Zhao Ding
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430072, People's Republic of China
| | - Fuling Zhou
- Department of Clinical Hematology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, People's Republic of China.
| | - Shishang Guo
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
212
|
Aguado E, Compeer EB, Miazek A. Editorial: Regulatory Mechanisms of Early Intracellular Signaling in T Lymphocytes. Front Cell Dev Biol 2021; 9:676949. [PMID: 33898470 PMCID: PMC8063108 DOI: 10.3389/fcell.2021.676949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 03/15/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Enrique Aguado
- Institute of Biomedical Research Cadiz (INIBICA), Cádiz, Spain.,Department of Biomedicine, Biotechnology and Public Health (Immunology), University of Cádiz, Cádiz, Spain
| | - Ewoud B Compeer
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Arkadiusz Miazek
- Department of Biochemistry and Molecular Biology, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| |
Collapse
|
213
|
Targeting galectins in T cell-based immunotherapy within tumor microenvironment. Life Sci 2021; 277:119426. [PMID: 33785342 DOI: 10.1016/j.lfs.2021.119426] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/07/2021] [Accepted: 03/17/2021] [Indexed: 01/01/2023]
Abstract
Over the past few years, tumor immunotherapy has emerged as an innovative tumor treatment and owned incomparable advantages over other tumor therapy. With unique complexity and uncertainty, immunotherapy still need helper to apply in the clinic. Galectins, modulated in tumor microenvironment, can regulate the disorders of innate and adaptive immune system resisting tumor growth. Considering the role of galectins in tumor immunosuppression, combination therapy of targeted anti-galectins and immunotherapy may be a promising tumor treatment. This brief review summarizes the expression and immune functions of different galectins in tumor microenvironment and discusses the potential value of anti-galectins in combination with checkpoint inhibitors in tumor immunotherapy.
Collapse
|
214
|
T cells: a dedicated effector kinase pathways for every trait? Biochem J 2021; 478:1303-1307. [PMID: 33755101 DOI: 10.1042/bcj20210006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 11/17/2022]
Abstract
Signaling pathways play critical roles in regulating the activation of T cells. Recognition of foreign peptide presented by MHC to the T cell receptor (TCR) triggers a signaling cascade of proximal kinases and adapter molecules that lead to the activation of Effector kinase pathways. These effector kinase pathways play pivotal roles in T cell activation, differentiation, and proliferation. RNA sequencing-based methods have provided insights into the gene expression programs that support the above-mentioned cell biological responses. The proteome is often overlooked. A recent study by Damasio et al. [Biochem. J. (2021) 478, 79-98. doi:10.1042/BCJ20200661] focuses on characterizing the effect of extracellular signal-regulated kinase (ERK) on the remodeling of the proteome of activated CD8+ T cells using Mass spectrometric analysis. Surprisingly, the Effector kinase ERK pathway is responsible for only a select proportion of the proteome that restructures during T cell activation. The primary targets of ERK signaling are transcription factors, cytokines, and cytokine receptors. In this commentary, we discuss the recent findings by Damasio et al. [Biochem. J. (2021) 478, 79-98. doi:10.1042/BCJ20200661] in the context of different Effector kinase pathways in activated T cells.
Collapse
|
215
|
Csizmar CM, Ansell SM. Engaging the Innate and Adaptive Antitumor Immune Response in Lymphoma. Int J Mol Sci 2021; 22:3302. [PMID: 33804869 PMCID: PMC8038124 DOI: 10.3390/ijms22073302] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 12/24/2022] Open
Abstract
Immunotherapy has emerged as a powerful therapeutic strategy for many malignancies, including lymphoma. As in solid tumors, early clinical trials have revealed that immunotherapy is not equally efficacious across all lymphoma subtypes. For example, immune checkpoint inhibition has a higher overall response rate and leads to more durable outcomes in Hodgkin lymphomas compared to non-Hodgkin lymphomas. These observations, combined with a growing understanding of tumor biology, have implicated the tumor microenvironment as a major determinant of treatment response and prognosis. Interactions between lymphoma cells and their microenvironment facilitate several mechanisms that impair the antitumor immune response, including loss of major histocompatibility complexes, expression of immunosuppressive ligands, secretion of immunosuppressive cytokines, and the recruitment, expansion, and skewing of suppressive cell populations. Accordingly, treatments to overcome these barriers are being rapidly developed and translated into clinical trials. This review will discuss the mechanisms of immune evasion, current avenues for optimizing the antitumor immune response, clinical successes and failures of lymphoma immunotherapy, and outstanding hurdles that remain to be addressed.
Collapse
Affiliation(s)
| | - Stephen M. Ansell
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Division of Hematology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
216
|
Connolly A, Panes R, Tual M, Lafortune R, Bellemare-Pelletier A, Gagnon E. TMEM16F mediates bystander TCR-CD3 membrane dissociation at the immunological synapse and potentiates T cell activation. Sci Signal 2021; 14:eabb5146. [PMID: 33758060 DOI: 10.1126/scisignal.abb5146] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Electrostatic interactions regulate many aspects of T cell receptor (TCR) activity, including enabling the dynamic binding of the TCR-associated CD3ε and CD3ζ chains to anionic lipids in the plasma membrane to prevent spontaneous phosphorylation. Substantial changes in the electrostatic potential of the plasma membrane occur at the immunological synapse, the interface between a T cell and an antigen-presenting cell. Here, we investigated how the electrostatic interactions that promote dynamic membrane binding of the TCR-CD3 cytoplasmic domains are modulated during signaling and affect T cell activation. We found that Ca2+-dependent activation of the phosphatidylserine scramblase TMEM16F, which was previously implicated in T cell activation, reduced the electrostatic potential of the plasma membrane during immunological synapse formation by locally redistributing phosphatidylserine. This, in turn, increased the dissociation of bystander TCR-CD3 cytoplasmic domains from the plasma membrane and enhanced TCR-dependent signaling and consequently T cell activation. This study establishes the molecular basis for the role of TMEM16F in bystander TCR-induced signal amplification and identifies enhancement of TMEM16F function as a potential therapeutic strategy for promoting T cell activation.
Collapse
Affiliation(s)
- Audrey Connolly
- Institut de Recherche en Immunologie et Cancérologie, 2950 Chemin de la Polytechnique, Montréal, Québec H3T1J4, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal, 2900 Édouard-Montpetit, Montréal, Québec H3T1J4, Canada
| | - Rébecca Panes
- Institut de Recherche en Immunologie et Cancérologie, 2950 Chemin de la Polytechnique, Montréal, Québec H3T1J4, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal, 2900 Édouard-Montpetit, Montréal, Québec H3T1J4, Canada
| | - Margaux Tual
- Institut de Recherche en Immunologie et Cancérologie, 2950 Chemin de la Polytechnique, Montréal, Québec H3T1J4, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal, 2900 Édouard-Montpetit, Montréal, Québec H3T1J4, Canada
| | - Raphaël Lafortune
- Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal, 2900 Édouard-Montpetit, Montréal, Québec H3T1J4, Canada
| | - Angélique Bellemare-Pelletier
- Institut de Recherche en Immunologie et Cancérologie, 2950 Chemin de la Polytechnique, Montréal, Québec H3T1J4, Canada
| | - Etienne Gagnon
- Institut de Recherche en Immunologie et Cancérologie, 2950 Chemin de la Polytechnique, Montréal, Québec H3T1J4, Canada.
- Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal, 2900 Édouard-Montpetit, Montréal, Québec H3T1J4, Canada
| |
Collapse
|
217
|
Peltier D, Radosevich M, Ravikumar V, Pitchiaya S, Decoville T, Wood SC, Hou G, Zajac C, Oravecz-Wilson K, Sokol D, Henig I, Wu J, Kim S, Taylor A, Fujiwara H, Sun Y, Rao A, Chinnaiyan AM, Goldstein DR, Reddy P. RNA-seq of human T cells after hematopoietic stem cell transplantation identifies Linc00402 as a regulator of T cell alloimmunity. Sci Transl Med 2021; 13:13/585/eaaz0316. [PMID: 33731431 PMCID: PMC8589011 DOI: 10.1126/scitranslmed.aaz0316] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 08/11/2020] [Accepted: 01/27/2021] [Indexed: 01/26/2023]
Abstract
Mechanisms governing allogeneic T cell responses after solid organ and allogeneic hematopoietic stem cell transplantation (HSCT) are incompletely understood. To identify lncRNAs that regulate human donor T cells after clinical HSCT, we performed RNA sequencing on T cells from healthy individuals and donor T cells from three different groups of HSCT recipients that differed in their degree of major histocompatibility complex (MHC) mismatch. We found that lncRNA differential expression was greatest in T cells after MHC-mismatched HSCT relative to T cells after either MHC-matched or autologous HSCT. Differential expression was validated in an independent patient cohort and in mixed lymphocyte reactions using ex vivo healthy human T cells. We identified Linc00402, an uncharacterized lncRNA, among the lncRNAs differentially expressed between the mismatched unrelated and matched unrelated donor T cells. We found that Linc00402 was conserved and exhibited an 88-fold increase in human T cells relative to all other samples in the FANTOM5 database. Linc00402 was also increased in donor T cells from patients who underwent allogeneic cardiac transplantation and in murine T cells. Linc00402 was reduced in patients who subsequently developed acute graft-versus-host disease. Linc00402 enhanced the activity of ERK1 and ERK2, increased FOS nuclear accumulation, and augmented expression of interleukin-2 and Egr-1 after T cell receptor engagement. Functionally, Linc00402 augmented the T cell proliferative response to an allogeneic stimulus but not to a nominal ovalbumin peptide antigen or polyclonal anti-CD3/CD28 stimulus. Thus, our studies identified Linc00402 as a regulator of allogeneic T cell function.
Collapse
Affiliation(s)
- Daniel Peltier
- Division of Hematology and Oncology, Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA, 48109
| | - Molly Radosevich
- Division of Hematology and Oncology, Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA, 48109
| | - Visweswaran Ravikumar
- Department of Computational Medicine & Bioinformatics, Biostatistics, Radiation Oncology, and Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA, 48109
| | | | - Thomas Decoville
- Division of Hematology and Oncology, Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA, 48109
| | - Sherri C. Wood
- Department of Internal Medicine, Ann Arbor, MI, USA, 48109
| | - Guoqing Hou
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA, 48109
| | - Cynthia Zajac
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA, 48109
| | - Katherine Oravecz-Wilson
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA, 48109
| | - David Sokol
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA, 48109
| | - Israel Henig
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA, 48109
| | - Julia Wu
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA, 48109
| | - Stephanie Kim
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA, 48109
| | - Austin Taylor
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA, 48109
| | - Hideaki Fujiwara
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA, 48109
| | - Yaping Sun
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA, 48109
| | - Arvind Rao
- Department of Computational Medicine & Bioinformatics, Biostatistics, Radiation Oncology, and Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA, 48109
| | - Arul M. Chinnaiyan
- Michigan Center for Translational Pathology, Department of Pathology, Howard Hughes Medical Institute, University of Michigan, Ann Arbor, Michigan, USA, 48109
| | - Daniel R. Goldstein
- Department of Internal Medicine, Institute of Gerontology, Department of Microbiology and Immunology, Program of Michigan Biology of Cardiovascular Aging, Ann Arbor, MI, USA, 48109
| | - Pavan Reddy
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA, 48109.,Corresponding Author: Pavan Reddy,
| |
Collapse
|
218
|
Pelletier L, Moreau M. Ca v1 channels is also a story of non excitable cells: Application to calcium signalling in two different non related models. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:118996. [PMID: 33675852 DOI: 10.1016/j.bbamcr.2021.118996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 02/22/2021] [Indexed: 12/12/2022]
Abstract
Calcium is a second messenger essential, in all cells, for most cell functions. The spatio-temporal control of changes in intracellular calcium concentration is partly due to the activation of calcium channels. Voltage-operated calcium channels are present in excitable and non-excitable cells. If the mechanism of voltage-operated calcium channels is well known in excitable cells the Ca2+ toolkit used in non-excitable cells to activate the calcium channels is less described. Herein we discuss about very similar pathways involving voltage activated Cav1 channels in two unrelated non-excitable cells; ectoderm cells undergoing neural development and effector Th2 lymphocytes responsible for parasite elimination and also allergic diseases. We will examine the way by which these channels operate and are regulated, as well as the consequences in terms of gene transcription. Finally, we will consider the questions that remain unsolved and how they might be a challenge for the future.
Collapse
Affiliation(s)
- Lucette Pelletier
- Infinity - Toulouse Institute For Infectious and Inflammatory Diseases INSERM UMR1291, CNRS UMR5051, University Toulouse III CHU Purpan, BP 3028, 31024 Toulouse CEDEX 3, France
| | - Marc Moreau
- Université Toulouse3, Centre de biologie du développement, CNRS UMR5547, 118 route de Narbonne, F31062 Toulouse Cedex 04, France.
| |
Collapse
|
219
|
Sripada A, Sirohi K, Michalec L, Guo L, McKay JT, Yadav S, Verma M, Good J, Rollins D, Gorska MM, Alam R. Sprouty2 positively regulates T cell function and airway inflammation through regulation of CSK and LCK kinases. PLoS Biol 2021; 19:e3001063. [PMID: 33684096 PMCID: PMC7971865 DOI: 10.1371/journal.pbio.3001063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 03/18/2021] [Accepted: 02/12/2021] [Indexed: 11/19/2022] Open
Abstract
The function of Sprouty2 (Spry2) in T cells is unknown. Using 2 different (inducible and T cell-targeted) knockout mouse strains, we found that Spry2 positively regulated extracellular signal-regulated kinase 1/2 (ERK1/2) signaling by modulating the activity of LCK. Spry2-/- CD4+ T cells were unable to activate LCK, proliferate, differentiate into T helper cells, or produce cytokines. Spry2 deficiency abrogated type 2 inflammation and airway hyperreactivity in a murine model of asthma. Spry2 expression was higher in blood and airway CD4+ T cells from patients with asthma, and Spry2 knockdown impaired human T cell proliferation and cytokine production. Spry2 deficiency up-regulated the lipid raft protein caveolin-1, enhanced its interaction with CSK, and increased CSK interaction with LCK, culminating in augmented inhibitory phosphorylation of LCK. Knockdown of CSK or dislodgment of caveolin-1-bound CSK restored ERK1/2 activation in Spry2-/- T cells, suggesting an essential role for Spry2 in LCK activation and T cell function.
Collapse
Affiliation(s)
- Anand Sripada
- Division of Allergy and Immunology, Department of Medicine, National Jewish Health, Denver, Colorado, United States of America
| | - Kapil Sirohi
- Division of Allergy and Immunology, Department of Medicine, National Jewish Health, Denver, Colorado, United States of America
| | - Lidia Michalec
- Division of Allergy and Immunology, Department of Medicine, National Jewish Health, Denver, Colorado, United States of America
| | - Lei Guo
- Division of Allergy and Immunology, Department of Medicine, National Jewish Health, Denver, Colorado, United States of America
| | - Jerome T McKay
- Division of Allergy and Immunology, Department of Medicine, National Jewish Health, Denver, Colorado, United States of America
| | - Sangya Yadav
- Division of Allergy and Immunology, Department of Medicine, National Jewish Health, Denver, Colorado, United States of America
| | - Mukesh Verma
- Division of Allergy and Immunology, Department of Medicine, National Jewish Health, Denver, Colorado, United States of America
| | - James Good
- Division of Pulmonary and Critical Care, Department of Medicine, National Jewish Health, Denver, Colorado, United States of America
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Donald Rollins
- Division of Pulmonary and Critical Care, Department of Medicine, National Jewish Health, Denver, Colorado, United States of America
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Magdalena M Gorska
- Division of Allergy and Immunology, Department of Medicine, National Jewish Health, Denver, Colorado, United States of America
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Rafeul Alam
- Division of Allergy and Immunology, Department of Medicine, National Jewish Health, Denver, Colorado, United States of America
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| |
Collapse
|
220
|
Zheng S, Huang K, Xia W, Shi J, Liu Q, Zhang X, Li G, Chen J, Wang T, Chen X, Xiang AP. Mesenchymal Stromal Cells Rapidly Suppress TCR Signaling-Mediated Cytokine Transcription in Activated T Cells Through the ICAM-1/CD43 Interaction. Front Immunol 2021; 12:609544. [PMID: 33692786 PMCID: PMC7937648 DOI: 10.3389/fimmu.2021.609544] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 02/01/2021] [Indexed: 12/15/2022] Open
Abstract
Cell-cell contact participates in the process of mesenchymal stromal cell (MSC)-mediated T cell modulation and thus contributes to MSC-based therapies for various inflammatory diseases, especially T cell-mediated diseases. However, the mechanisms underlying the adhesion interactions between MSCs and T cells are still poorly understood. In this study, we explored the interaction between MSCs and T cells and found that activated T cells could rapidly adhere to MSCs, leading to significant reduction of TNF-α and IFN-γ mRNA expression. Furthermore, TCR-proximal signaling in activated T cells was also dramatically suppressed in the MSC co-culture, resulting in weakened Ca2+ signaling. MSCs rapidly suppressed TCR signaling and its downstream signaling in a cell-cell contact-dependent manner, partially through the ICAM-1/CD43 adhesion interaction. Blockade of either ICAM-1 on MSCs or CD43 on T cells significantly reversed this rapid suppression of proinflammatory cytokine expression in T cells. Mechanistically, MSC-derived ICAM-1 likely disrupts CD43-mediated TCR microcluster formation to limit T cell activation. Taken together, our results reveal a fast mechanism of activated T cell inhibition by MSCs, which provides new clues to unravel the MSC-mediated immunoregulatory mechanism for aGVHD and other severe acute T cell-related diseases.
Collapse
Affiliation(s)
- Shuwei Zheng
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Center for Stem Cell Biology and Tissue Engineering, Sun Yat-sen University, Guangzhou, China
| | - Ke Huang
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Wenjie Xia
- Guangzhou Blood Centre, Institute of Blood Transfusion, Guangzhou, China
| | - Jiahao Shi
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Center for Stem Cell Biology and Tissue Engineering, Sun Yat-sen University, Guangzhou, China
| | - Qiuli Liu
- The Biotherapy Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoran Zhang
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Center for Stem Cell Biology and Tissue Engineering, Sun Yat-sen University, Guangzhou, China
| | - Gang Li
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Center for Stem Cell Biology and Tissue Engineering, Sun Yat-sen University, Guangzhou, China
| | - Jieying Chen
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Center for Stem Cell Biology and Tissue Engineering, Sun Yat-sen University, Guangzhou, China
| | - Tao Wang
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Center for Stem Cell Biology and Tissue Engineering, Sun Yat-sen University, Guangzhou, China
| | - Xiaoyong Chen
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Center for Stem Cell Biology and Tissue Engineering, Sun Yat-sen University, Guangzhou, China.,Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Andy Peng Xiang
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Center for Stem Cell Biology and Tissue Engineering, Sun Yat-sen University, Guangzhou, China.,Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| |
Collapse
|
221
|
|
222
|
A Novel, LAT/Lck Double Deficient T Cell Subline J.CaM1.7 for Combined Analysis of Early TCR Signaling. Cells 2021; 10:cells10020343. [PMID: 33562083 PMCID: PMC7915312 DOI: 10.3390/cells10020343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 11/21/2022] Open
Abstract
Intracellular signaling through the T cell receptor (TCR) is essential for T cell development and function. Proper TCR signaling requires the sequential activities of Lck and ZAP-70 kinases, which result in the phosphorylation of tyrosine residues located in the CD3 ITAMs and the LAT adaptor, respectively. LAT, linker for the activation of T cells, is a transmembrane adaptor protein that acts as a scaffold coupling the early signals coming from the TCR with downstream signaling pathways leading to cellular responses. The leukemic T cell line Jurkat and its derivative mutants J.CaM1.6 (Lck deficient) and J.CaM2 (LAT deficient) have been widely used to study the first signaling events upon TCR triggering. In this work, we describe the loss of LAT adaptor expression found in a subline of J.CaM1.6 cells and analyze cis-elements responsible for the LAT expression defect. This new cell subline, which we have called J.CaM1.7, can re-express LAT adaptor after Protein Kinase C (PKC) activation, which suggests that activation-induced LAT expression is not affected in this new cell subline. Contrary to J.CaM1.6 cells, re-expression of Lck in J.CaM1.7 cells was not sufficient to recover TCR-associated signals, and both LAT and Lck had to be introduced to recover activatory intracellular signals triggered after CD3 crosslinking. Overall, our work shows that the new LAT negative J.CaM1.7 cell subline could represent a new model to study the functions of the tyrosine kinase Lck and the LAT adaptor in TCR signaling, and their mutual interaction, which seems to constitute an essential early signaling event associated with the TCR/CD3 complex.
Collapse
|
223
|
Zhang W, Yang Y, Cui B. New perspectives on the roles of nanoscale surface topography in modulating intracellular signaling. CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE 2021; 25:100873. [PMID: 33364912 PMCID: PMC7751896 DOI: 10.1016/j.cossms.2020.100873] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The physical properties of biomaterials, such as elasticity, stiffness, and surface nanotopography, are mechanical cues that regulate a broad spectrum of cell behaviors, including migration, differentiation, proliferation, and reprogramming. Among them, nanoscale surface topography, i.e. nanotopography, defines the nanoscale shape and spatial arrangement of surface elements, which directly interact with the cell membranes and stimulate changes in the cell signaling pathways. In biological systems, the effects of nanotopography are often entangled with those of other mechanical and biochemical factors. Precise engineering of 2D nanopatterns and 3D nanostructures with well-defined features has provided a powerful means to study the cellular responses to specific topographic features. In this Review, we discuss efforts in the last three years to understand how nanotopography affects membrane receptor activation, curvature-induced cell signaling, and stem cell differentiation.
Collapse
Affiliation(s)
| | | | - Bianxiao Cui
- Department of Chemistry, Stanford University, ChEM-H/Wu Tsai Neuroscience Research Complex, S285, 290 Jane Stanford Way, Stanford, CA, 94305, United States
| |
Collapse
|
224
|
Trefzer A, Kadam P, Wang SH, Pennavaria S, Lober B, Akçabozan B, Kranich J, Brocker T, Nakano N, Irmler M, Beckers J, Straub T, Obst R. Dynamic adoption of anergy by antigen-exhausted CD4 + T cells. Cell Rep 2021; 34:108748. [PMID: 33567282 DOI: 10.1016/j.celrep.2021.108748] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 09/21/2020] [Accepted: 01/19/2021] [Indexed: 12/11/2022] Open
Abstract
Exhausted immune responses to chronic diseases represent a major challenge to global health. We study CD4+ T cells in a mouse model with regulatable antigen presentation. When the cells are driven through the effector phase and are then exposed to different levels of persistent antigen, they lose their T helper 1 (Th1) functions, upregulate exhaustion markers, resemble naturally anergic cells, and modulate their MAPK, mTORC1, and Ca2+/calcineurin signaling pathways with increasing dose and time. They also become unable to help B cells and, at the highest dose, undergo apoptosis. Transcriptomic analyses show the dynamic adjustment of gene expression and the accumulation of T cell receptor (TCR) signals over a period of weeks. Upon antigen removal, the cells recover their functionality while losing exhaustion and anergy markers. Our data suggest an adjustable response of CD4+ T cells to different levels of persisting antigen and contribute to a better understanding of chronic disease.
Collapse
Affiliation(s)
- Anne Trefzer
- Institute for Immunology, Biomedical Center, Medical Faculty, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Pallavi Kadam
- Institute for Immunology, Biomedical Center, Medical Faculty, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Shu-Hung Wang
- Institute for Immunology, Biomedical Center, Medical Faculty, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Stefanie Pennavaria
- Institute for Immunology, Biomedical Center, Medical Faculty, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Benedikt Lober
- Institute for Immunology, Biomedical Center, Medical Faculty, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Batuhan Akçabozan
- Institute for Immunology, Biomedical Center, Medical Faculty, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Jan Kranich
- Institute for Immunology, Biomedical Center, Medical Faculty, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Thomas Brocker
- Institute for Immunology, Biomedical Center, Medical Faculty, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Naoko Nakano
- Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba 278-0022, Japan
| | - Martin Irmler
- Institute of Experimental Genetics, Helmholtz Zentrum München GmbH, 85764 Neuherberg, Germany
| | - Johannes Beckers
- Institute of Experimental Genetics, Helmholtz Zentrum München GmbH, 85764 Neuherberg, Germany; Chair of Experimental Genetics, Technische Universität München, 85354 Freising, Germany; German Center for Diabetes Research (DZD e. V.), Neuherberg, Germany
| | - Tobias Straub
- Bioinformatics Core Facility, Biomedical Center, Medical Faculty, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Reinhard Obst
- Institute for Immunology, Biomedical Center, Medical Faculty, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany.
| |
Collapse
|
225
|
Calcineurin and Systemic Lupus Erythematosus: The Rationale for Using Calcineurin Inhibitors in the Treatment of Lupus Nephritis. Int J Mol Sci 2021; 22:ijms22031263. [PMID: 33514066 PMCID: PMC7865978 DOI: 10.3390/ijms22031263] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 12/18/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease with a broad spectrum of clinical presentations that can affect almost all organ systems. Lupus nephritis (LN) is a severe complication that affects approximately half of the systemic erythematosus lupus (SLE) patients, which significantly increases the morbidity and the mortality risk. LN is characterized by the accumulation of immune complexes, ultimately leading to renal failure. Aberrant activation of T cells plays a critical role in the pathogenesis of both SLE and LN and is involved in the production of inflammatory cytokines, the recruitment of inflammatory cells to the affected tissues and the co-stimulation of B cells. Calcineurin is a serine-threonine phosphatase that, as a consequence of the T cell hyperactivation, induces the production of inflammatory mediators. Moreover, calcineurin is also involved in the alterations of the podocyte phenotype, which contribute to proteinuria and kidney damage observed in LN patients. Therefore, calcineurin inhibitors have been postulated as a potential treatment strategy in LN, since they reduce T cell activation and promote podocyte cytoskeleton stabilization, both being key aspects in the development of LN. Here, we review the role of calcineurin in SLE and the latest findings about calcineurin inhibitors and their mechanisms of action in the treatment of LN.
Collapse
|
226
|
Balagopalan L, Raychaudhuri K, Samelson LE. Microclusters as T Cell Signaling Hubs: Structure, Kinetics, and Regulation. Front Cell Dev Biol 2021; 8:608530. [PMID: 33575254 PMCID: PMC7870797 DOI: 10.3389/fcell.2020.608530] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/10/2020] [Indexed: 11/16/2022] Open
Abstract
When T cell receptors (TCRs) engage with stimulatory ligands, one of the first microscopically visible events is the formation of microclusters at the site of T cell activation. Since the discovery of these structures almost 20 years ago, they have been studied extensively in live cells using confocal and total internal reflection fluorescence (TIRF) microscopy. However, due to limits in image resolution and acquisition speed, the spatial relationships of signaling components within microclusters, the kinetics of their assembly and disassembly, and the role of vesicular trafficking in microcluster formation and maintenance were not finely characterized. In this review, we will summarize how new microscopy techniques have revealed novel insights into the assembly of these structures. The sub-diffraction organization of microclusters as well as the finely dissected kinetics of recruitment and disassociation of molecules from microclusters will be discussed. The role of cell surface molecules in microcluster formation and the kinetics of molecular recruitment via intracellular vesicular trafficking to microclusters is described. Finally, the role of post-translational modifications such as ubiquitination in the downregulation of cell surface signaling molecules is also discussed. These results will be related to the role of these structures and processes in T cell activation.
Collapse
Affiliation(s)
- Lakshmi Balagopalan
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Kumarkrishna Raychaudhuri
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Lawrence E Samelson
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
227
|
Yuan B, Clark CA, Wu B, Yang J, Drerup JM, Li T, Jin VX, Hu Y, Curiel TJ, Li R. Estrogen receptor beta signaling in CD8 + T cells boosts T cell receptor activation and antitumor immunity through a phosphotyrosine switch. J Immunother Cancer 2021; 9:jitc-2020-001932. [PMID: 33462142 PMCID: PMC7816924 DOI: 10.1136/jitc-2020-001932] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2020] [Indexed: 12/23/2022] Open
Abstract
The non-overlapping functions of the two estrogen receptor subtypes, ERα (Estrogen Receptor α)and ERβ (Estrogen Receptor β), in tumor cells have been studied extensively. However, their counterparts in host cells is vastly underinterrogated. Even less is known about how ERα and ERβ activities are regulated in a subtype-specific manner. We previously identified a phosphotyrosine residue (pY36) of human ERβ that is important for tumor ERβ to inhibit growth of breast cancer cells in vitro and in vivo. A role of this ERβ phosphotyrosine switch in regulating host ERβ remains unclear.Conventional gene editing was used to mutate the corresponding tyrosine residue of endogenous mouse ERβ (Y55F) in mouse embryonic stem cells. The derived homozygous mutant Esr2Y55F/Y55F mouse strain and its wild-type (WT) counterpart were compared in various transplant tumor models for their ability to support tumor growth. In addition, flow cytometry-based immunophenotyping was carried out to assess antitumor immunity of WT and mutant hosts. Adoptive transfer of bone marrow and purified CD8+ T cells were performed to identify the host cell type that harbors ERβ-dependent antitumor function. Furthermore, cell signaling assays were conducted to compare T cell receptor (TCR)-initiated signaling cascade in CD8+ T cells of WT and mutant mice. Lastly, the ERβ-selective agonist S-equol was evaluated for its efficacy to boost immune checkpoint blockade (ICB)-based anticancer immunotherapy.Disabling the ERβ-specific phosphotyrosine switch in tumor-bearing hosts exacerbates tumor growth. Further, a cell-autonomous ERβ function was defined in CD8+ effector T cells. Mechanistically, TCR activation triggers ERβ phosphorylation, which in turn augments the downstream TCR signaling cascade via a non-genomic action of ERβ. S-equol facilitates TCR activation that stimulates the ERβ phosphotyrosine switch and boosts anti-PD-1 (Programmed cell death protein 1) ICB immunotherapy. Our mouse genetic study clearly demonstrates a role of the ERβ phosphotyrosine switch in regulating ERβ-dependent antitumor immunity in CD8+ T cells. Our findings support the development of ERβ agonists including S-equol in combination with ICB immunotherapy for cancer treatment.
Collapse
Affiliation(s)
- Bin Yuan
- Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Curtis A Clark
- Department of Medicine, The Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Bogang Wu
- Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Jing Yang
- Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Justin M Drerup
- Department of Medicine, The Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Tianbao Li
- Department of Molecular Medicine, The Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Victor X Jin
- Department of Molecular Medicine, The Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Yanfen Hu
- Department of Anatomy & Cell Biology, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Tyler J Curiel
- Department of Medicine, The Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Rong Li
- Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia, USA
| |
Collapse
|
228
|
Abstract
T-cell cancer therapy is a clinical field flush with opportunity. It is part of the revolution in immuno-oncology, most apparent in the dramatic clinical success of PD-1/CTLA-4 antibodies and chimeric antigen receptor T-cells (CAR-Ts) to cure certain melanomas and lymphomas, respectively. Therapeutics based on T cells ultimately hold more promise because of their capacity to carry out complex behaviors and their ease of modification via genetic engineering. But to overcome the substantial obstacles of effective solid-tumor treatment, T-cell therapy must access novel molecular targets or exploit existing ones in new ways. As always, tumor selectivity is the key. T-cell therapy has the potential to address target opportunities afforded by its own unique capacity for signal integration and high sensitivity. With a history of breathtaking innovation, the scientific foundation for the cellular modality has often been bypassed in favor of rapid advance in the clinic. This situation is changing, as the mechanistic basis for activity of CAR-Ts and TCR-Ts is backfilled by painstaking, systematic experiments—harking back to last century’s evolution and maturation of the small-molecule drug discovery field. We believe this trend must continue for T-cell therapy to reach its enormous potential. We support an approach that integrates sound reductionist scientific principles with well-informed, thorough preclinical and translational clinical experiments.
Collapse
Affiliation(s)
- Alexander Kamb
- A2 Biotherapeutics, Agoura Hills, California, 91301, USA
| | - William Y Go
- A2 Biotherapeutics, Agoura Hills, California, 91301, USA
| |
Collapse
|
229
|
Pathan-Chhatbar S, Drechsler C, Richter K, Morath A, Wu W, OuYang B, Xu C, Schamel WW. Direct Regulation of the T Cell Antigen Receptor's Activity by Cholesterol. Front Cell Dev Biol 2021; 8:615996. [PMID: 33490080 PMCID: PMC7820176 DOI: 10.3389/fcell.2020.615996] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 12/09/2020] [Indexed: 11/14/2022] Open
Abstract
Biological membranes consist of hundreds of different lipids that together with the embedded transmembrane (TM) proteins organize themselves into small nanodomains. In addition to this function of lipids, TM regions of proteins bind to lipids in a very specific manner, but the function of these TM region-lipid interactions is mostly unknown. In this review, we focus on the role of plasma membrane cholesterol, which directly binds to the αβ T cell antigen receptor (TCR), and has at least two opposing functions in αβ TCR activation. On the one hand, cholesterol binding to the TM domain of the TCRβ subunit keeps the TCR in an inactive, non-signaling conformation by stabilizing this conformation. This assures that the αβ T cell remains quiescent in the absence of antigenic peptide-MHC (the TCR's ligand) and decreases the sensitivity of the T cell toward stimulation. On the other hand, cholesterol binding to TCRβ leads to an increased formation of TCR nanoclusters, increasing the avidity of the TCRs toward the antigen, thus increasing the sensitivity of the αβ T cell. In mouse models, pharmacological increase of the cholesterol concentration in T cells caused an increase in TCR clustering, and thereby enhanced anti-tumor responses. In contrast, the γδ TCR does not bind to cholesterol and might be regulated in a different manner. The goal of this review is to put these seemingly controversial findings on the impact of cholesterol on the αβ TCR into perspective.
Collapse
Affiliation(s)
- Salma Pathan-Chhatbar
- Centre for Biological Signalling Studies and Centre for Integrative Biological Signalling Studies, University Freiburg, Freiburg, Germany
- Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Centre for Chronic Immunodeficiency (CCI), University of Freiburg, Freiburg, Germany
| | - Carina Drechsler
- Centre for Biological Signalling Studies and Centre for Integrative Biological Signalling Studies, University Freiburg, Freiburg, Germany
- Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Centre for Chronic Immunodeficiency (CCI), University of Freiburg, Freiburg, Germany
| | - Kirsten Richter
- Immunology, Infectious Diseases and Ophthalmology Disease Translational Area, Roche Innovation Center Basel, Basel, Switzerland
| | - Anna Morath
- Centre for Biological Signalling Studies and Centre for Integrative Biological Signalling Studies, University Freiburg, Freiburg, Germany
- Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Centre for Chronic Immunodeficiency (CCI), University of Freiburg, Freiburg, Germany
| | - Wei Wu
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Bo OuYang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Chenqi Xu
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Wolfgang W. Schamel
- Centre for Biological Signalling Studies and Centre for Integrative Biological Signalling Studies, University Freiburg, Freiburg, Germany
- Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Centre for Chronic Immunodeficiency (CCI), University of Freiburg, Freiburg, Germany
| |
Collapse
|
230
|
Kreileder M, Barrett I, Bendtsen C, Brennan D, Kolch W. Signaling Dynamics Regulating Crosstalks between T-Cell Activation and Immune Checkpoints. Trends Cell Biol 2020; 31:224-235. [PMID: 33388215 DOI: 10.1016/j.tcb.2020.12.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/06/2020] [Accepted: 12/07/2020] [Indexed: 12/18/2022]
Abstract
Immune checkpoint inhibitors (ICIs) targeting cytotoxic T lymphocyte-associated protein-4 (CTLA-4) and programmed cell death protein-1 (PD-1) have been hailed as major advances in cancer therapeutics; however, in many cancers response rates remain low. Extensive research efforts are underway to improve the efficacy of ICIs. The signaling pathways regulated by immune checkpoints (ICs) may be an important lever as they interfere with T-cell activation when activated by ICIs. Here, we review the current understanding of T-cell receptor signaling and their intersection with IC signaling pathways. As these signaling processes are highly dynamic and controlled by intricate spatiotemporal mechanisms, we focus on aspects of kinetic regulation that are modulated by ICs. Recent advances in computational modeling and experimental methods that can resolve spatiotemporal dynamics provide insights that reveal molecular mechanisms and new potential approaches for improving the design and application of ICIs.
Collapse
Affiliation(s)
- Martina Kreileder
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Ian Barrett
- Discovery Sciences, R&D, AstraZeneca, Cambridge Science Park, Milton Road, Cambridge CB4 0WG, UK
| | - Claus Bendtsen
- Discovery Sciences, R&D, AstraZeneca, Cambridge Science Park, Milton Road, Cambridge CB4 0WG, UK
| | - Donal Brennan
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland; Ireland East Gynaecological Oncology Group, Mater Misericordiae University Hospital, Dublin 7, Ireland; St Vincent's University Hospital, Dublin 4, Ireland.
| | - Walter Kolch
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland; Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
231
|
Kishore C, Bhadra P. Current advancements and future perspectives of immunotherapy in colorectal cancer research. Eur J Pharmacol 2020; 893:173819. [PMID: 33347822 DOI: 10.1016/j.ejphar.2020.173819] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 11/17/2020] [Accepted: 12/08/2020] [Indexed: 12/24/2022]
Abstract
5-Fluorouracil (5-FU) is the first-line chemotherapy drug for colorectal cancer but most of the patients get resistant to the drug on a longer course of treatment. After the successful use of immunotherapy in melanoma treatment, it was explored with enthusiasm in different types of solid cancers including colorectal cancer. Nivolumab and pembrolizumab (Programmed cell death-1 blocking antibodies) have shown efficacy in the mismatch repair deficient high microsatellite instability (dMMR-MSI-H) subtype of metastatic colorectal cancer (CRC) patients. Immunotherapy has shown long time remission in a subset of metastatic CRC patients. The molecular mechanism and emerging roles of immunotherapy in colorectal cancer are explored in this review article and future directions for the proper utilization of the development in immunobiology are suggested.
Collapse
Affiliation(s)
- Chandra Kishore
- Life Science Building, Fatki Kutti, Madhepur, Madhubani, Patna, 847408, Bihar, India.
| | - Priyanka Bhadra
- Boral Tripursundari Road, Kolkata, 700154, West Bengal, India
| |
Collapse
|
232
|
The Activity and Stability of p56Lck and TCR Signaling Do Not Depend on the Co-Chaperone Cdc37. Int J Mol Sci 2020; 22:ijms22010126. [PMID: 33374422 PMCID: PMC7795971 DOI: 10.3390/ijms22010126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 11/16/2022] Open
Abstract
Lymphocyte-specific protein tyrosine kinase (Lck) is a pivotal tyrosine kinase involved in T cell receptor (TCR) signaling. Because of its importance, the activity of Lck is regulated at different levels including phosphorylation of tyrosine residues, protein-protein interactions, and localization. It has been proposed that the co-chaperone Cdc37, which assists the chaperone heat shock protein 90 (Hsp90) in the folding of client proteins, is also involved in the regulation of the activity/stability of Lck. Nevertheless, the available experimental data do not clearly support this conclusion. Thus, we assessed whether or not Cdc37 regulates Lck. We performed experiments in which the expression of Cdc37 was either augmented or suppressed in Jurkat T cells. The results of our experiments indicated that neither the overexpression nor the suppression of Cdc37 affected Lck stability and activity. Moreover, TCR signaling proceeded normally in T cells in which Cdc37 expression was either augmented or suppressed. Finally, we demonstrated that also under stress conditions Cdc37 was dispensable for the regulation of Lck activity/stability. In conclusion, our data do not support the idea that Lck is a Cdc37 client.
Collapse
|
233
|
Castro-Sanchez P, Teagle AR, Prade S, Zamoyska R. Modulation of TCR Signaling by Tyrosine Phosphatases: From Autoimmunity to Immunotherapy. Front Cell Dev Biol 2020; 8:608747. [PMID: 33425916 PMCID: PMC7793860 DOI: 10.3389/fcell.2020.608747] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/18/2020] [Indexed: 02/06/2023] Open
Abstract
Early TCR signaling is dependent on rapid phosphorylation and dephosphorylation of multiple signaling and adaptor proteins, leading to T cell activation. This process is tightly regulated by an intricate web of interactions between kinases and phosphatases. A number of tyrosine phosphatases have been shown to modulate T cell responses and thus alter T cell fate by negatively regulating early TCR signaling. Mutations in some of these enzymes are associated with enhanced predisposition to autoimmunity in humans, and mouse models deficient in orthologous genes often show T cell hyper-activation. Therefore, phosphatases are emerging as potential targets in situations where it is desirable to enhance T cell responses, such as immune responses to tumors. In this review, we summarize the current knowledge about tyrosine phosphatases that regulate early TCR signaling and discuss their involvement in autoimmunity and their potential as targets for tumor immunotherapy.
Collapse
Affiliation(s)
- Patricia Castro-Sanchez
- Ashworth Laboratories, Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Alexandra R Teagle
- Ashworth Laboratories, Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Sonja Prade
- Ashworth Laboratories, Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Rose Zamoyska
- Ashworth Laboratories, Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
234
|
Ansell SM. Fundamentals of immunology for understanding immunotherapy for lymphoma. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2020; 2020:585-589. [PMID: 33275742 PMCID: PMC7727535 DOI: 10.1182/hematology.2020002537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
An effective antitumor immune response in patients with lymphoma would eradicate the malignant B cells and cure the patient of the disease. This, however, does not occur, and a suboptimal antitumor response results in persistence and subsequent progression of the patient's disease. The goals of immunotherapy are therefore to restore an effective antitumor immune response by promoting immune recognition, optimizing immune activation, and supporting persistence of the immune response resulting in subsequent immunological memory. Multiple mechanisms, however, are present within the tumor microenvironment that account for an inadequate immune response. These include loss of major histocompatibility complex expression on tumor cells and subsequent inadequate antigen presentation, increased expression of immunosuppressive ligands on malignant cells, populations of immune cells with suppressive function present in the tumor, and cytokines secreted by the malignant cell or other cells in the microenvironment that promote immune exhaustion or suppress the immune response. Successful immunotherapeutic strategies are specifically addressing these issues by promoting antigen presentation, improving recognition of the malignant cell, directly activating T cells and natural killer cells, and blocking immune checkpoint signaling that would suppress the immune response. Many of these approaches have proven highly successful in patients with various subtypes of lymphoma and are now being incorporated into standard clinical practice.
Collapse
|
235
|
Modelling of Immune Checkpoint Network Explains Synergistic Effects of Combined Immune Checkpoint Inhibitor Therapy and the Impact of Cytokines in Patient Response. Cancers (Basel) 2020; 12:cancers12123600. [PMID: 33276543 PMCID: PMC7761568 DOI: 10.3390/cancers12123600] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/23/2020] [Accepted: 11/30/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary The future of cancer immunotherapy relies on a combination of individually targeted therapies. However, a lot of experiments are needed to define the most effective combinations of drugs. A computational and modelling approach could help reduce the number of experiments and suggest optimal treatments to test. This article presents a logical model of T cell activation influenced by immune checkpoints, and explores the effect of these checkpoints, suggests mechanisms that would explain why some treatments might be better suited than others. The model includes not only programmed cell death protein 1 (PD1) and cytotoxic T-lymphocyte-associated protein 4 (CTL4) downstream pathways but also those of other immune checkpoints such as T cell immunoglobulin and ITIM (immunoreceptor tyrosine-based inhibition motif) domain (TIGIT), lymphocyte activation gene 3 (LAG3), T cell immunoglobulin and mucin domain-containing protein 3 (TIM3), cluster of differentiation 226 (CD226), inducible T-cell costimulator (ICOS), and tumour necrosis factor receptors (TNFRs). Abstract After the success of the new generation of immune therapies, immune checkpoint receptors have become one important center of attention of molecular oncologists. The initial success and hopes of anti-programmed cell death protein 1 (anti-PD1) and anti-cytotoxic T-lymphocyte-associated protein 4 (anti-CTLA4) therapies have shown some limitations since a majority of patients have continued to show resistance. Other immune checkpoints have raised some interest and are under investigation, such as T cell immunoglobulin and ITIM (immunoreceptor tyrosine-based inhibition motif) domain (TIGIT), inducible T-cell costimulator (ICOS), and T cell immunoglobulin and mucin domain-containing protein 3 (TIM3), which appear as promising targets for immunotherapy. To explore their role and study possible synergetic effects of these different checkpoints, we have built a model of T cell receptor (TCR) regulation including not only PD1 and CTLA4, but also other well studied checkpoints (TIGIT, TIM3, lymphocyte activation gene 3 (LAG3), cluster of differentiation 226 (CD226), ICOS, and tumour necrosis factor receptors (TNFRs)) and simulated different aspects of T cell biology. Our model shows good correspondence with observations from available experimental studies of anti-PD1 and anti-CTLA4 therapies and suggest efficient combinations of immune checkpoint inhibitors (ICI). Among the possible candidates, TIGIT appears to be the most promising drug target in our model. The model predicts that signal transducer and activator of transcription 1 (STAT1)/STAT4-dependent pathways, activated by cytokines such as interleukin 12 (IL12) and interferon gamma (IFNG), could improve the effect of ICI therapy via upregulation of Tbet, suggesting that the effect of the cytokines related to STAT3/STAT1 activity is dependent on the balance between STAT1 and STAT3 downstream signalling.
Collapse
|
236
|
Ansell SM. Fundamentals of immunology for understanding immunotherapy for lymphoma. Blood Adv 2020; 4:5863-5867. [PMID: 33232478 PMCID: PMC7686892 DOI: 10.1182/bloodadvances.2020002537] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 10/11/2020] [Indexed: 02/08/2023] Open
Abstract
An effective antitumor immune response in patients with lymphoma would eradicate the malignant B cells and cure the patient of the disease. This, however, does not occur, and a suboptimal antitumor response results in persistence and subsequent progression of the patient's disease. The goals of immunotherapy are therefore to restore an effective antitumor immune response by promoting immune recognition, optimizing immune activation, and supporting persistence of the immune response resulting in subsequent immunological memory. Multiple mechanisms, however, are present within the tumor microenvironment that account for an inadequate immune response. These include loss of major histocompatibility complex expression on tumor cells and subsequent inadequate antigen presentation, increased expression of immunosuppressive ligands on malignant cells, populations of immune cells with suppressive function present in the tumor, and cytokines secreted by the malignant cell or other cells in the microenvironment that promote immune exhaustion or suppress the immune response. Successful immunotherapeutic strategies are specifically addressing these issues by promoting antigen presentation, improving recognition of the malignant cell, directly activating T cells and natural killer cells, and blocking immune checkpoint signaling that would suppress the immune response. Many of these approaches have proven highly successful in patients with various subtypes of lymphoma and are now being incorporated into standard clinical practice.
Collapse
|
237
|
Prigge AD, Ma R, Coates BM, Singer BD, Ridge KM. Age-Dependent Differences in T-Cell Responses to Influenza A Virus. Am J Respir Cell Mol Biol 2020; 63:415-423. [PMID: 32609537 DOI: 10.1165/rcmb.2020-0169tr] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Respiratory infections from influenza A virus (IAV) cause substantial morbidity and mortality in children relative to adults. T cells play a critical role in the host response to IAV by supporting the innate and humoral responses, mediating cytotoxic activity, and promoting recovery. There are age-dependent differences in the number, subsets, and localization of T cells, which impact the host response to pathogens. In this article, we first review how T cells recognize IAV and examine differences in the resting T-cell populations between juveniles and adults. Next, we describe how the juvenile CD4+, CD8+, and regulatory T-cell responses compare with those in adults and discuss the potential physiologic and clinical consequences of the differences. Finally, we explore the roles of two unconventional T-cell types in the juvenile response to influenza, natural-killer T cells and γδ T cells. A clear understanding of age-dependent differences in the T-cell response is essential to developing therapies to prevent or reverse the deleterious effects of IAV in children.
Collapse
Affiliation(s)
- Andrew D Prigge
- Division of Critical Care Medicine, Department of Pediatrics.,Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | - Ruihua Ma
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| | - Bria M Coates
- Division of Critical Care Medicine, Department of Pediatrics.,Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | - Benjamin D Singer
- Division of Pulmonary and Critical Care Medicine, Department of Medicine.,Department of Biochemistry and Molecular Genetics.,Simpson Querrey Center for Epigenetics, and
| | - Karen M Ridge
- Division of Pulmonary and Critical Care Medicine, Department of Medicine.,Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Northwestern University, Chicago, Illinois; and
| |
Collapse
|
238
|
Kästle M, Merten C, Hartig R, Kaehne T, Liaunardy-Jopeace A, Woessner NM, Schamel WW, James J, Minguet S, Simeoni L, Schraven B. Tyrosine 192 within the SH2 domain of the Src-protein tyrosine kinase p56 Lck regulates T-cell activation independently of Lck/CD45 interactions. Cell Commun Signal 2020; 18:183. [PMID: 33225946 PMCID: PMC7682018 DOI: 10.1186/s12964-020-00673-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 10/13/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Upon engagement of the T-cell receptor (TCR), the Src-family protein tyrosine kinase p56Lck phosphorylates components of the TCR (e.g. the TCRζ chains), thereby initiating T-cell activation. The enzymatic activity of Lck is primarily regulated via reversible and dynamic phosphorylation of two tyrosine residues, Y394 and Y505. Lck possesses an additional highly conserved tyrosine Y192, located within the SH2 domain, whose role in T-cell activation is not fully understood. METHODS Knock-in mice expressing a phospho-mimetic (Y192E) form of Lck were generated. Cellular and biochemical characterization was performed to elucidate the function of Y192 in primary T cells. HEK 293T and Jurkat T cells were used for in vitro studies. RESULTS Co-immunoprecipitation studies and biochemical analyses using T cells from LckY192E knock-in mice revealed a diminished binding of LckY192E to CD45 and a concomitant hyperphosphorylation of Y505, thus corroborating previous data obtained in Jurkat T cells. Surprisingly however, in vitro kinase assays showed that LckY192E possesses a normal enzymatic activity in human and murine T cells. FLIM/FRET measurements employing an LckY192E biosensor further indicated that the steady state conformation of the LckY192E mutant is similar to Lckwt. These data suggest that Y192 might regulate Lck functions also independently from the Lck/CD45-association. Indeed, when LckY192E was expressed in CD45-/-/Csk-/- non-T cells (HEK 293T cells), phosphorylation of Y505 was similar to Lckwt, but LckY192E still failed to optimally phosphorylate and activate the Lck downstream substrate ZAP70. Furthermore, LckY19E was recruited less to CD3 after TCR stimulation. CONCLUSIONS Taken together, phosphorylation of Y192 regulates Lck functions in T cells at least twofold, by preventing Lck association to CD45 and by modulating ligand-induced recruitment of Lck to the TCR. MAJOR FINDINGS Our data change the current view on the function of Y192 and suggest that Y192 also regulates Lck activity in a manner independent of Y505 phosphorylation. Video Abstract.
Collapse
Affiliation(s)
- Matthias Kästle
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, Leipziger Str.44, Building 26, 39120, Magdeburg, Germany.,Health Campus Immunology, Infectiology and Inflammation (GC-I3), Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Camilla Merten
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, Leipziger Str.44, Building 26, 39120, Magdeburg, Germany.,Health Campus Immunology, Infectiology and Inflammation (GC-I3), Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Roland Hartig
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, Leipziger Str.44, Building 26, 39120, Magdeburg, Germany.,Health Campus Immunology, Infectiology and Inflammation (GC-I3), Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Thilo Kaehne
- Institute of Experimental Internal Medicine, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | | | - Nadine M Woessner
- Spemann Graduate School of Biology and Medicine (SGBM), Albert-Ludwigs-University Freiburg, Freiburg, Germany.,Faculty of Biology, Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.,Center of Chronic Immunodeficiency CCI, University Clinics and Medical Faculty, Freiburg, Germany
| | - Wolfgang W Schamel
- Faculty of Biology, Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.,Center of Chronic Immunodeficiency CCI, University Clinics and Medical Faculty, Freiburg, Germany
| | - John James
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC-LMB, Cambridge, UK.,Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Gibbet Hill, Coventry, UK
| | - Susana Minguet
- Faculty of Biology, Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.,Center of Chronic Immunodeficiency CCI, University Clinics and Medical Faculty, Freiburg, Germany
| | - Luca Simeoni
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, Leipziger Str.44, Building 26, 39120, Magdeburg, Germany. .,Health Campus Immunology, Infectiology and Inflammation (GC-I3), Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany.
| | - Burkhart Schraven
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, Leipziger Str.44, Building 26, 39120, Magdeburg, Germany. .,Health Campus Immunology, Infectiology and Inflammation (GC-I3), Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany.
| |
Collapse
|
239
|
Chua XY, Aballo T, Elnemer W, Tran M, Salomon A. Quantitative Interactomics of Lck-TurboID in Living Human T Cells Unveils T Cell Receptor Stimulation-Induced Proximal Lck Interactors. J Proteome Res 2020; 20:715-726. [PMID: 33185455 DOI: 10.1021/acs.jproteome.0c00616] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
While Lck has been widely recognized to play a pivotal role in the initiation of the T cell receptor (TCR) signaling pathway, an understanding of the precise regulation of Lck in T cells upon TCR activation remains elusive. Investigation of protein-protein interaction (PPI) using proximity labeling techniques such as TurboID has the potential to provide valuable molecular insights into Lck regulatory networks. By expressing Lck-TurboID in Jurkat T cells, we have uncovered a dynamic, short-range Lck protein interaction network upon 30 min of TCR stimulation. In this novel application of TurboID, we detected 27 early signaling-induced Lck-proximal interactors in living T cells, including known and novel Lck interactors, validating the discovery power of this tool. Our results revealed previously unappreciated Lck PPI which may be associated with cytoskeletal rearrangement, ubiquitination of TCR signaling proteins, activation of the mitogen-activated protein kinase cascade, coalescence of the LAT signalosome, and formation of the immunological synapse. In this study, we demonstrated for the first time in immune cells and for the kinase Lck that TurboID can be utilized to unveil PPI dynamics in living cells at a time scale consistent with early TCR signaling. Data are available via ProteomeXchange with identifier PXD020759.
Collapse
Affiliation(s)
- Xien Yu Chua
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, Rhode Island, United States
| | - Timothy Aballo
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, United States
| | - William Elnemer
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, United States
| | - Melanie Tran
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, United States
| | - Arthur Salomon
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, United States
| |
Collapse
|
240
|
Shen H, Gu C, Liang T, Liu H, Guo F, Liu X. Unveiling the heterogeneity of NKT cells in the liver through single cell RNA sequencing. Sci Rep 2020; 10:19453. [PMID: 33173202 PMCID: PMC7655820 DOI: 10.1038/s41598-020-76659-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 10/29/2020] [Indexed: 11/10/2022] Open
Abstract
CD1d-dependent type I NKT cells, which are activated by lipid antigen, are known to play important roles in innate and adaptive immunity, as are a portion of type II NKT cells. However, the heterogeneity of NKT cells, especially NKT-like cells, remains largely unknown. Here, we report the profiling of NKT (NK1.1+CD3e+) cells in livers from wild type (WT), Jα18-deficient and CD1d-deficient mice by single-cell RNA sequencing. Unbiased transcriptional clustering revealed distinct cell subsets. The transcriptomic profiles identified the well-known CD1d-dependent NKT cells and defined two CD1d-independent NKT cell subsets. In addition, validation of marker genes revealed the differential organ distribution and landscape of NKT cell subsets during liver tumor progression. More importantly, we found that CD1d-independent Sca-1−CD62L+ NKT cells showed a strong ability to secrete IFN-γ after costimulation with IL-2, IL-12 and IL-18 in vitro. Collectively, our findings provide a comprehensive characterization of NKT cell heterogeneity and unveil a previously undefined functional NKT cell subset.
Collapse
Affiliation(s)
- Hao Shen
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Chan Gu
- Center for Translational Medicine, Ministry of Education Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Tao Liang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Haifeng Liu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Fan Guo
- Center for Translational Medicine, Ministry of Education Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu, 610041, Sichuan, China. .,Ministry of Education Key Laboratory of Bio-Resource and Eco-Environment, College of Life Sciences, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Xiaolong Liu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China. .,School of Life Sciences, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310024, China. .,School of Life Science and Technology, ShanghaiTech University, Shanghai, 200031, China.
| |
Collapse
|
241
|
Yang X, Chatterjee V, Ma Y, Zheng E, Yuan SY. Protein Palmitoylation in Leukocyte Signaling and Function. Front Cell Dev Biol 2020; 8:600368. [PMID: 33195285 PMCID: PMC7655920 DOI: 10.3389/fcell.2020.600368] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 09/30/2020] [Indexed: 12/12/2022] Open
Abstract
Palmitoylation is a post-translational modification (PTM) based on thioester-linkage between palmitic acid and the cysteine residue of a protein. This covalent attachment of palmitate is reversibly and dynamically regulated by two opposing sets of enzymes: palmitoyl acyltransferases containing a zinc finger aspartate-histidine-histidine-cysteine motif (PAT-DHHCs) and thioesterases. The reversible nature of palmitoylation enables fine-tuned regulation of protein conformation, stability, and ability to interact with other proteins. More importantly, the proper function of many surface receptors and signaling proteins requires palmitoylation-meditated partitioning into lipid rafts. A growing number of leukocyte proteins have been reported to undergo palmitoylation, including cytokine/chemokine receptors, adhesion molecules, pattern recognition receptors, scavenger receptors, T cell co-receptors, transmembrane adaptor proteins, and signaling effectors including the Src family of protein kinases. This review provides the latest findings of palmitoylated proteins in leukocytes and focuses on the functional impact of palmitoylation in leukocyte function related to adhesion, transmigration, chemotaxis, phagocytosis, pathogen recognition, signaling activation, cytotoxicity, and cytokine production.
Collapse
Affiliation(s)
- Xiaoyuan Yang
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Victor Chatterjee
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Yonggang Ma
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Ethan Zheng
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Sarah Y Yuan
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.,Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| |
Collapse
|
242
|
Borowicz P, Chan H, Hauge A, Spurkland A. Adaptor proteins: Flexible and dynamic modulators of immune cell signalling. Scand J Immunol 2020; 92:e12951. [DOI: 10.1111/sji.12951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/22/2020] [Accepted: 07/26/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Paweł Borowicz
- Department of Molecular Medicine Institute of Basic Medical Sciences University of Oslo Oslo Norway
| | - Hanna Chan
- Department of Molecular Medicine Institute of Basic Medical Sciences University of Oslo Oslo Norway
| | - Anette Hauge
- Department of Molecular Medicine Institute of Basic Medical Sciences University of Oslo Oslo Norway
| | - Anne Spurkland
- Department of Molecular Medicine Institute of Basic Medical Sciences University of Oslo Oslo Norway
| |
Collapse
|
243
|
Mastrogiovanni M, Juzans M, Alcover A, Di Bartolo V. Coordinating Cytoskeleton and Molecular Traffic in T Cell Migration, Activation, and Effector Functions. Front Cell Dev Biol 2020; 8:591348. [PMID: 33195256 PMCID: PMC7609836 DOI: 10.3389/fcell.2020.591348] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 09/24/2020] [Indexed: 12/28/2022] Open
Abstract
Dynamic localization of receptors and signaling molecules at the plasma membrane and within intracellular vesicular compartments is crucial for T lymphocyte sensing environmental cues, triggering membrane receptors, recruiting signaling molecules, and fine-tuning of intracellular signals. The orchestrated action of actin and microtubule cytoskeleton and intracellular vesicle traffic plays a key role in all these events that together ensure important steps in T cell physiology. These include extravasation and migration through lymphoid and peripheral tissues, T cell interactions with antigen-presenting cells, T cell receptor (TCR) triggering by cognate antigen-major histocompatibility complex (MHC) complexes, immunological synapse formation, cell activation, and effector functions. Cytoskeletal and vesicle traffic dynamics and their interplay are coordinated by a variety of regulatory molecules. Among them, polarity regulators and membrane-cytoskeleton linkers are master controllers of this interplay. Here, we review the various ways the T cell plasma membrane, receptors, and their signaling machinery interplay with the actin and microtubule cytoskeleton and with intracellular vesicular compartments. We highlight the importance of this fine-tuned crosstalk in three key stages of T cell biology involving cell polarization: T cell migration in response to chemokines, immunological synapse formation in response to antigen cues, and effector functions. Finally, we discuss two examples of perturbation of this interplay in pathological settings, such as HIV-1 infection and mutation of the polarity regulator and tumor suppressor adenomatous polyposis coli (Apc) that leads to familial polyposis and colorectal cancer.
Collapse
Affiliation(s)
- Marta Mastrogiovanni
- Ligue Nationale Contre le Cancer – Equipe Labellisée LIGUE 2018, Lymphocyte Cell Biology Unit, INSERM-U1221, Department of Immunology, Institut Pasteur, Paris, France
- Collège Doctoral, Sorbonne Université, Paris, France
| | - Marie Juzans
- Ligue Nationale Contre le Cancer – Equipe Labellisée LIGUE 2018, Lymphocyte Cell Biology Unit, INSERM-U1221, Department of Immunology, Institut Pasteur, Paris, France
| | - Andrés Alcover
- Ligue Nationale Contre le Cancer – Equipe Labellisée LIGUE 2018, Lymphocyte Cell Biology Unit, INSERM-U1221, Department of Immunology, Institut Pasteur, Paris, France
| | - Vincenzo Di Bartolo
- Ligue Nationale Contre le Cancer – Equipe Labellisée LIGUE 2018, Lymphocyte Cell Biology Unit, INSERM-U1221, Department of Immunology, Institut Pasteur, Paris, France
| |
Collapse
|
244
|
Anderson MK, Selvaratnam JS. Interaction between γδTCR signaling and the E protein-Id axis in γδ T cell development. Immunol Rev 2020; 298:181-197. [PMID: 33058287 DOI: 10.1111/imr.12924] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/24/2020] [Accepted: 08/28/2020] [Indexed: 02/06/2023]
Abstract
γδ T cells acquire their functional properties in the thymus, enabling them to exert rapid innate-like responses. To understand how distinct γδ T cell subsets are generated, we have developed a Two-Stage model for γδ T cell development. This model is predicated on the finding that γδTCR signal strength impacts E protein activity through graded upregulation of Id3. Our model proposes that cells enter Stage 1 in response to a γδTCR signaling event in the cortex that activates a γδ T cell-specific gene network. Part of this program includes the upregulation of chemokine receptors that guide them to the medulla. In the medulla, Stage 1 cells receive distinct combinations of γδTCR, cytokine, and/co-stimulatory signals that induce their transit into Stage 2, either toward the γδT1 or the γδT17 lineage. The intersection between γδTCR and cytokine signals can tune Id3 expression, leading to different outcomes even in the presence of strong γδTCR signals. The thymic signaling niches required for γδT17 development are segregated in time and space, providing transient windows of opportunity during ontogeny. Understanding the regulatory context in which E proteins operate at different stages will be key in defining how their activity levels impose functional outcomes.
Collapse
Affiliation(s)
- Michele K Anderson
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada.,Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Johanna S Selvaratnam
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada.,Department of Immunology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
245
|
Ding M, Baker D. Recent advances in high-throughput flow cytometry for drug discovery. Expert Opin Drug Discov 2020; 16:303-317. [PMID: 33054417 DOI: 10.1080/17460441.2021.1826433] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION High-throughput flow cytometry (HTFC) has proven to be an important technology in drug discovery. The use of HTFC enables multi-parametric screening of suspension cells containing heterogenous cell populations and coated particles for screening proteins of interest. Novel targets, novel cell markers and compound clusters for drug development have been identified from HTFC screens. AREAS COVERED In this article, the authors focus on reviewing the recent HTFC applications reported during the last 5-6 years, including drug discovery screens and studies for immune, immune-oncology, infectious and inflammatory diseases. The main HTFC approaches, development of HTFC systems, and automated sample preparation systems for HTFC are also discussed. EXPERT OPINION The advance of HTFC technology coupled with automated sample acquisition and sample preparation has demonstrated its utility in screening large numbers of compounds using suspension cells, facilitated screening of disease-relevant human primary cells, and enabled deep understanding of mechanism of action by analyzing multiple parameters. The authors see HTFC as a very valuable tool in immune, immune-oncology, infectious and inflammatory diseases where immune cells play essential roles.
Collapse
Affiliation(s)
- Mei Ding
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - David Baker
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| |
Collapse
|
246
|
Lee HS, Jeong GS. Aromadendrin Inhibits T Cell Activation via Regulation of Calcium Influx and NFAT Activity. Molecules 2020; 25:molecules25194590. [PMID: 33050076 PMCID: PMC7582607 DOI: 10.3390/molecules25194590] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/04/2020] [Accepted: 10/06/2020] [Indexed: 01/02/2023] Open
Abstract
The objective of this study was to assess the inhibitory effect of the flavonoid aromadendrin on T cell activity to identify a non-cytotoxic immunosuppressive reagent. Conventional and qualitative PCR, MTT assays, flow cytometry and Western blotting were used to evaluate the effect of aromadendrin on the activity, cell viability and confluency, and proximal signal transduction of activated T cells. Aromadendrin effectively regulated IL-2 and IFNγ production in vitro from activated Jurkat T cells without cytotoxicity. Pre-treatment with aromadendrin also suppressed the expression levels of surface molecules CD69, CD25, and CD40L. Reduced calcium (Ca2+) influx in activated T cells pre-treated with aromadendrin was observed. Western blotting revealed that aromadendrin blocked the dephosphorylation of nuclear factor of activated T (NFAT) cells and its nuclear translocation. Involvement of the NFκB and MAPK pathways in the inhibitory effect of aromadendrin was also demonstrated. Results obtained demonstrated the suppressive effect of aromadendrin on T cell activation by Ca2+ influx regulation through NFAT activity suppression of the activated T cells.
Collapse
Affiliation(s)
| | - Gil-Saeng Jeong
- Correspondence: ; Tel.: +82-53-580-6649; Fax: +82-53-580-6645
| |
Collapse
|
247
|
Abstract
Virtually all aspects of T and B lymphocyte development, homeostasis, activation, and effector function are impacted by the interaction of their clonally distributed antigen receptors with antigens encountered in their respective environments. Antigen receptors mediate their effects by modulating intracellular signaling pathways that ultimately impinge on the cytoskeleton, bioenergetic pathways, transcription, and translation. Although these signaling pathways are rather well described at this point, especially those steps that are most receptor-proximal, how such pathways contribute to more quantitative aspects of lymphocyte function is still being elucidated. One of the signaling pathways that appears to be involved in this “tuning” process is controlled by the lipid kinase PI3K. Here we review recent key findings regarding both the triggering/enhancement of PI3K signals (via BCAP and ICOS) as well as their regulation (via PIK3IP1 and PHLPP) and how these signals integrate and determine cellular processes. Lymphocytes display tremendous functional plasticity, adjusting their metabolism and gene expression programs to specific conditions depending on their tissue of residence and the nature of the infectious threat to which they are responding. We give an overview of recent findings that have contributed to this model, with a focus on T cells, including what has been learned from patients with gain-of-function mutations in PI3K as well as lessons from cancer immunotherapy approaches.
Collapse
Affiliation(s)
- Benjamin Murter
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - Lawrence P Kane
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| |
Collapse
|
248
|
Wang A, Chao T, Ji Z, Xuan R, Liu S, Guo M, Wang G, Wang J. Transcriptome analysis reveals potential immune function-related regulatory genes/pathways of female Lubo goat submandibular glands at different developmental stages. PeerJ 2020; 8:e9947. [PMID: 33083113 PMCID: PMC7547598 DOI: 10.7717/peerj.9947] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 08/25/2020] [Indexed: 01/03/2023] Open
Abstract
Background The submandibular glands, as major salivary glands, participate in rumen digestion in goats. Sialic acid, lysozyme, immunoglobulin A (IgA), lactoferrin and other biologically active substances secreted in the submandibular glands were reported in succession, which suggests that the submandibular gland may have immune functions in addition to participating in digestion. The aim of this study was to map the expression profile of differentially expressed genes (DEGs) at three different stages by transcriptome sequencing, screen immune-related genes and pathways by bioinformatics methods, and predict the immune function of submandibular glands at different developmental stages. Methods Nine submandibular gland tissue samples were collected from groups of 1-month-old kids, 12-month-old adolescent goats and 24-month-old adult goats (3 samples from each group), and high-throughput transcriptome sequencing was conducted on these samples. The DEGs among the three stages were screened and analysed. Key genes and signalling pathways were selected via protein-protein interaction (PPI) network analysis. Results The results revealed 2,706, 2,525 and 52 DEGs between 1-month-old and 12-month-old goats, between 1-month-old and 24-month-old goats, and between 12-month-old and 24-month-old goats, respectively. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses indicated that most of the DEGs were enriched in immune- related GO terms and pathways. Based on functional enrichment analysis and network analysis, 10 genes (PTPRC, CD28, SELL, LCP2, MYC, LCK, ZAP70, ITGB2, SYK and CCR7), two signalling pathways (the T cell receptor signalling pathway and the NF-κβ signalling pathway) and eight GO terms (T cell receptor signalling pathway, neutrophil mediated immunity, B cell mediated immunity, regulation of alpha-beta T cell activation, positive regulation of T cell proliferation, regulation of leukocyte differentiation, positive regulation of antigen receptor-mediated signalling pathway, positive regulation of lymphocyte proliferation) that may play key roles in the immune functions of the goat submandibular glands at different developmental stages were identified. Moreover, we found that eight antibacterial peptide-encoding genes were downregulated in the tuberculosis and salivary secretion pathways, while all immunoglobulins were upregulated in 10 immune system pathways. These findings indicate that the submandibular glands may be important immunological organs during the growth process of goats and that the immune function of these glands gradually weakens with age up to 12 months but remains relatively stable after 12 months of age. Overall, this study will improve our understanding of transcriptional regulation related to goat submandibular gland immune function.
Collapse
Affiliation(s)
- Aili Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, P.R. China
| | - Tianle Chao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, P.R. China
| | - Zhibin Ji
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, P.R. China
| | - Rong Xuan
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, P.R. China
| | - Shuang Liu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, P.R. China
| | - Maosen Guo
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, P.R. China
| | - Guizhi Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, P.R. China
| | - Jianmin Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, P.R. China
| |
Collapse
|
249
|
How the T cell signaling network processes information to discriminate between self and agonist ligands. Proc Natl Acad Sci U S A 2020; 117:26020-26030. [PMID: 33020303 DOI: 10.1073/pnas.2008303117] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
T cells exhibit remarkable sensitivity and selectivity in detecting and responding to agonist peptides (p) bound to MHC molecules in a sea of self pMHC molecules. Despite much work, understanding of the underlying mechanisms of distinguishing such ligands remains incomplete. Here, we quantify T cell discriminatory capacity using channel capacity, a direct measure of the signaling network's ability to discriminate between antigen-presenting cells (APCs) displaying either self ligands or a mixture of self and agonist ligands. This metric shows how differences in information content between these two types of peptidomes are decoded by the topology and rates of kinetic proofreading signaling steps inside T cells. Using channel capacity, we constructed numerically substantiated hypotheses to explain the discriminatory role of a recently identified slow LAT Y132 phosphorylation step. Our results revealed that in addition to the number and kinetics of sequential signaling steps, a key determinant of discriminatory capability is spatial localization of a minimum number of these steps to the engaged TCR. Biochemical and imaging experiments support these findings. Our results also reveal the discriminatory role of early negative feedback and necessary amplification conferred by late positive feedback.
Collapse
|
250
|
Ferreira LM, Li AM, Serafim TL, Sobral MC, Alpoim MC, Urbano AM. Intermediary metabolism: An intricate network at the crossroads of cell fate and function. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165887. [DOI: 10.1016/j.bbadis.2020.165887] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/01/2020] [Accepted: 06/17/2020] [Indexed: 12/16/2022]
|