201
|
Frost RLA, Monaghan P. Sleep-Driven Computations in Speech Processing. PLoS One 2017; 12:e0169538. [PMID: 28056104 PMCID: PMC5215958 DOI: 10.1371/journal.pone.0169538] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 12/19/2016] [Indexed: 11/18/2022] Open
Abstract
Acquiring language requires segmenting speech into individual words, and abstracting over those words to discover grammatical structure. However, these tasks can be conflicting-on the one hand requiring memorisation of precise sequences that occur in speech, and on the other requiring a flexible reconstruction of these sequences to determine the grammar. Here, we examine whether speech segmentation and generalisation of grammar can occur simultaneously-with the conflicting requirements for these tasks being over-come by sleep-related consolidation. After exposure to an artificial language comprising words containing non-adjacent dependencies, participants underwent periods of consolidation involving either sleep or wake. Participants who slept before testing demonstrated a sustained boost to word learning and a short-term improvement to grammatical generalisation of the non-adjacencies, with improvements after sleep outweighing gains seen after an equal period of wake. Thus, we propose that sleep may facilitate processing for these conflicting tasks in language acquisition, but with enhanced benefits for speech segmentation.
Collapse
Affiliation(s)
- Rebecca L. A. Frost
- Department of Psychology, Lancaster University, Lancaster, United Kingdom
- * E-mail:
| | - Padraic Monaghan
- Department of Psychology, Lancaster University, Lancaster, United Kingdom
| |
Collapse
|
202
|
James EL, Cairney SA. Commentary: Knowledge Acquisition during Exam Preparation Improves Memory and Modulates Memory Formation. Front Behav Neurosci 2017; 10:245. [PMID: 28101009 PMCID: PMC5209921 DOI: 10.3389/fnbeh.2016.00245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 12/16/2016] [Indexed: 12/01/2022] Open
|
203
|
Prior knowledge is essential for the beneficial effect of targeted memory reactivation during sleep. Sci Rep 2017; 7:39763. [PMID: 28051138 PMCID: PMC5209656 DOI: 10.1038/srep39763] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 11/28/2016] [Indexed: 11/30/2022] Open
Abstract
Prior knowledge speeds up system consolidation and accelerates integration of newly acquired memories into existing neocortical knowledge networks. By using targeted memory reactivations, we demonstrate that prior knowledge is also essential for successful reactivation and consolidation of memories during sleep, both on the behavioral and oscillatory level (i.e., theta and fast spindle activity). Thus, prior knowledge is a prerequisite for new memories to enter processes of system consolidation during sleep.
Collapse
|
204
|
Chambers AM. The role of sleep in cognitive processing: focusing on memory consolidation. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2017; 8. [PMID: 28044430 DOI: 10.1002/wcs.1433] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 10/07/2016] [Accepted: 11/01/2016] [Indexed: 11/07/2022]
Abstract
Research indicates that sleep promotes various cognitive functions, such as decision-making, language, categorization, and memory. Of these, most work has focused on the influence of sleep on memory, with ample work showing that sleep enhances memory consolidation, a process that stores new memories in the brain over time. Recent psychological and neurophysiological research has vastly increased understanding of this process. Such work not only suggests that consolidation relies on plasticity-related mechanisms that reactivate and stabilize memory representations, but also that this process may be experimentally manipulated by methods that target which memory traces are reactivated during sleep. Furthermore, aside from memory storage capabilities, memory consolidation also appears to reorganize and integrate memories with preexisting knowledge, which may facilitate the discovery of underlying rules and associations that benefit other cognitive functioning, including problem solving and creativity. WIREs Cogn Sci 2017, 8:e1433. doi: 10.1002/wcs.1433 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Alexis M Chambers
- Department of Psychology, North Central College, Naperville, IL, USA
| |
Collapse
|
205
|
Mechanisms of Memory Consolidation and Transformation. COGNITIVE NEUROSCIENCE OF MEMORY CONSOLIDATION 2017. [DOI: 10.1007/978-3-319-45066-7_2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
206
|
Himmer L, Müller E, Gais S, Schönauer M. Sleep-mediated memory consolidation depends on the level of integration at encoding. Neurobiol Learn Mem 2017; 137:101-106. [DOI: 10.1016/j.nlm.2016.11.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 11/23/2016] [Accepted: 11/29/2016] [Indexed: 11/26/2022]
|
207
|
Daily Life Experiences in Dreams and Sleep-Dependent Memory Consolidation. COGNITIVE NEUROSCIENCE OF MEMORY CONSOLIDATION 2017. [DOI: 10.1007/978-3-319-45066-7_10] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
208
|
The Yin and Yang of Memory Consolidation: Hippocampal and Neocortical. PLoS Biol 2017; 15:e2000531. [PMID: 28085883 PMCID: PMC5234779 DOI: 10.1371/journal.pbio.2000531] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 12/14/2016] [Indexed: 01/06/2023] Open
Abstract
While hippocampal and cortical mechanisms of memory consolidation have long been studied, their interaction is poorly understood. We sought to investigate potential interactions with respect to trace dominance, strengthening, and interference associated with postencoding novelty or sleep. A learning procedure was scheduled in a watermaze that placed the impact of novelty and sleep in opposition. Distinct behavioural manipulations-context preexposure or interference during memory retrieval-differentially affected trace dominance and trace survival, respectively. Analysis of immediate early gene expression revealed parallel up-regulation in the hippocampus and cortex, sustained in the hippocampus in association with novelty but in the cortex in association with sleep. These findings shed light on dynamically interacting mechanisms mediating the stabilization of hippocampal and neocortical memory traces. Hippocampal memory traces followed by novelty were more dominant by default but liable to interference, whereas sleep engaged a lasting stabilization of cortical traces and consequent trace dominance after preexposure.
Collapse
|
209
|
A Role of Sleep in Forming Predictive Codes. COGNITIVE NEUROSCIENCE OF MEMORY CONSOLIDATION 2017. [DOI: 10.1007/978-3-319-45066-7_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
210
|
The effects of sleep restriction and sleep deprivation in producing false memories. Neurobiol Learn Mem 2017; 137:107-113. [DOI: 10.1016/j.nlm.2016.11.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 11/17/2016] [Accepted: 11/26/2016] [Indexed: 01/27/2023]
|
211
|
Reducing future fears by suppressing the brain mechanisms underlying episodic simulation. Proc Natl Acad Sci U S A 2016; 113:E8492-E8501. [PMID: 27965391 DOI: 10.1073/pnas.1606604114] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Imagining future events conveys adaptive benefits, yet recurrent simulations of feared situations may help to maintain anxiety. In two studies, we tested the hypothesis that people can attenuate future fears by suppressing anticipatory simulations of dreaded events. Participants repeatedly imagined upsetting episodes that they feared might happen to them and suppressed imaginings of other such events. Suppressing imagination engaged the right dorsolateral prefrontal cortex, which modulated activation in the hippocampus and in the ventromedial prefrontal cortex (vmPFC). Consistent with the role of the vmPFC in providing access to details that are typical for an event, stronger inhibition of this region was associated with greater forgetting of such details. Suppression further hindered participants' ability to later freely envision suppressed episodes. Critically, it also reduced feelings of apprehensiveness about the feared scenario, and individuals who were particularly successful at down-regulating fears were also less trait-anxious. Attenuating apprehensiveness by suppressing simulations of feared events may thus be an effective coping strategy, suggesting that a deficiency in this mechanism could contribute to the development of anxiety.
Collapse
|
212
|
Lee ML, Katsuyama ÂM, Duge LS, Sriram C, Krushelnytskyy M, Kim JJ, de la Iglesia HO. Fragmentation of Rapid Eye Movement and Nonrapid Eye Movement Sleep without Total Sleep Loss Impairs Hippocampus-Dependent Fear Memory Consolidation. Sleep 2016; 39:2021-2031. [PMID: 27568801 DOI: 10.5665/sleep.6236] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 06/29/2016] [Indexed: 11/03/2022] Open
Abstract
STUDY OBJECTIVES Sleep is important for consolidation of hippocampus-dependent memories. It is hypothesized that the temporal sequence of nonrapid eye movement (NREM) sleep and rapid eye movement (REM) sleep is critical for the weakening of nonadaptive memories and the subsequent transfer of memories temporarily stored in the hippocampus to more permanent memories in the neocortex. A great body of evidence supporting this hypothesis relies on behavioral, pharmacological, neural, and/or genetic manipulations that induce sleep deprivation or stage-specific sleep deprivation. METHODS We exploit an experimental model of circadian desynchrony in which intact animals are not deprived of any sleep stage but show fragmentation of REM and NREM sleep within nonfragmented sleep bouts. We test the hypothesis that the shortening of NREM and REM sleep durations post-training will impair memory consolidation irrespective of total sleep duration. RESULTS When circadian-desynchronized animals are trained in a hippocampus-dependent contextual fear-conditioning task they show normal short-term memory but impaired long-term memory consolidation. This impairment in memory consolidation is positively associated with the post-training fragmentation of REM and NREM sleep but is not significantly associated with the fragmentation of total sleep or the total amount of delta activity. We also show that the sleep stage fragmentation resulting from circadian desynchrony has no effect on hippocampus-dependent spatial memory and no effect on hippocampus-independent cued fear-conditioning memory. CONCLUSIONS Our findings in an intact animal model, in which sleep deprivation is not a confounding factor, support the hypothesis that the stereotypic sequence and duration of sleep stages play a specific role in long-term hippocampus-dependent fear memory consolidation.
Collapse
Affiliation(s)
- Michael L Lee
- Department of Biology, University of Washington, Seattle, WA.,Graduate Program in Neuroscience, University of Washington, Seattle, WA
| | | | - Leanne S Duge
- Department of Biology, University of Washington, Seattle, WA
| | - Chaitra Sriram
- Department of Biology, University of Washington, Seattle, WA
| | | | - Jeansok J Kim
- Graduate Program in Neuroscience, University of Washington, Seattle, WA.,Department of Psychology, University of Washington, Seattle WA
| | - Horacio O de la Iglesia
- Department of Biology, University of Washington, Seattle, WA.,Graduate Program in Neuroscience, University of Washington, Seattle, WA
| |
Collapse
|
213
|
Honma M, Plass J, Brang D, Florczak SM, Grabowecky M, Paller KA. Sleeping on the rubber-hand illusion: Memory reactivation during sleep facilitates multisensory recalibration. Neurosci Conscious 2016; 2016:niw020. [PMID: 28184322 PMCID: PMC5294922 DOI: 10.1093/nc/niw020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 09/21/2016] [Indexed: 11/18/2022] Open
Abstract
Plasticity is essential in body perception so that physical changes in the body can be accommodated and assimilated. Multisensory integration of visual, auditory, tactile, and proprioceptive signals contributes both to conscious perception of the body's current state and to associated learning. However, much is unknown about how novel information is assimilated into body perception networks in the brain. Sleep-based consolidation can facilitate various types of learning via the reactivation of networks involved in prior encoding or through synaptic down-scaling. Sleep may likewise contribute to perceptual learning of bodily information by providing an optimal time for multisensory recalibration. Here we used methods for targeted memory reactivation (TMR) during slow-wave sleep to examine the influence of sleep-based reactivation of experimentally induced alterations in body perception. The rubber-hand illusion was induced with concomitant auditory stimulation in 24 healthy participants on 3 consecutive days. While each participant was sleeping in his or her own bed during intervening nights, electrophysiological detection of slow-wave sleep prompted covert stimulation with either the sound heard during illusion induction, a counterbalanced novel sound, or neither. TMR systematically enhanced feelings of bodily ownership after subsequent inductions of the rubber-hand illusion. TMR also enhanced spatial recalibration of perceived hand location in the direction of the rubber hand. This evidence for a sleep-based facilitation of a body-perception illusion demonstrates that the spatial recalibration of multisensory signals can be altered overnight to stabilize new learning of bodily representations. Sleep-based memory processing may thus constitute a fundamental component of body-image plasticity.
Collapse
Affiliation(s)
| | - John Plass
- Northwestern University, Evanston, IL, 60208-2710, USA
| | - David Brang
- Northwestern University, Evanston, IL, 60208-2710, USA
| | | | | | - Ken A. Paller
- Northwestern University, Evanston, IL, 60208-2710, USA
| |
Collapse
|
214
|
The differential effects of emotional salience on direct associative and relational memory during a nap. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2016; 16:1150-1163. [PMID: 27670288 DOI: 10.3758/s13415-016-0460-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
215
|
Feld GB, Weis PP, Born J. The Limited Capacity of Sleep-Dependent Memory Consolidation. Front Psychol 2016; 7:1368. [PMID: 27679589 PMCID: PMC5020097 DOI: 10.3389/fpsyg.2016.01368] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 08/29/2016] [Indexed: 11/13/2022] Open
Abstract
Sleep supports memory consolidation. However, the conceptually important influence of the amount of items encoded in a memory test on this effect has not been investigated. In two experiments, participants (n = 101) learned lists of word-pairs varying in length (40, 160, 320 word-pairs) in the evening before a night of sleep (sleep group) or of sleep deprivation (wake group). After 36 h (including a night allowing recovery sleep) retrieval was tested. Compared with wakefulness, post-learning sleep enhanced retention for the 160 word-pair condition (p < 0.01), importantly, this effect completely vanished for the 320 word-pair condition. This result indicates a limited capacity for sleep-dependent memory consolidation, which is consistent with an active system consolidation view on sleep's role for memory, if it is complemented by processes of active forgetting and/or gist abstraction. Whereas the absolute benefit from sleep should have increased with increasing amounts of successfully encoded items, if sleep only passively protected memory from interference. Moreover, the finding that retention performance was significantly diminished for the 320 word-pair condition compared to the 160 word-pair condition in the sleep group, makes it tempting to speculate that with increasing loads of information encoded during wakefulness, sleep might favor processes of forgetting over consolidation.
Collapse
Affiliation(s)
- Gordon B Feld
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen Tübingen, Germany
| | - Patrick P Weis
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen Tübingen, Germany
| | - Jan Born
- Institute of Medical Psychology and Behavioral Neurobiology, University of TübingenTübingen, Germany; Centre for Integrative Neuroscience, University of TübingenTübingen, Germany
| |
Collapse
|
216
|
A psychoengineering paradigm for the neurocognitive mechanisms of biofeedback and neurofeedback. Neurosci Biobehav Rev 2016; 68:891-910. [DOI: 10.1016/j.neubiorev.2016.06.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 06/03/2016] [Accepted: 06/14/2016] [Indexed: 01/02/2023]
|
217
|
Calvillo DP, Parong JA, Peralta B, Ocampo D, Van Gundy R. Sleep Increases Susceptibility to the Misinformation Effect. APPLIED COGNITIVE PSYCHOLOGY 2016. [DOI: 10.1002/acp.3259] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Dustin P. Calvillo
- Psychology Department; California State University San Marcos; San Marcos USA
| | - Jocelyn A. Parong
- Psychology Department; California State University San Marcos; San Marcos USA
| | - Briana Peralta
- Psychology Department; California State University San Marcos; San Marcos USA
| | - Derrick Ocampo
- Psychology Department; California State University San Marcos; San Marcos USA
| | - Rachael Van Gundy
- Psychology Department; California State University San Marcos; San Marcos USA
| |
Collapse
|
218
|
van Kesteren MTR, Brown TI, Wagner AD. Interactions between Memory and New Learning: Insights from fMRI Multivoxel Pattern Analysis. Front Syst Neurosci 2016; 10:46. [PMID: 27303274 PMCID: PMC4880566 DOI: 10.3389/fnsys.2016.00046] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 05/09/2016] [Indexed: 01/28/2023] Open
Affiliation(s)
- Marlieke T R van Kesteren
- Department of Psychology, Stanford UniversityStanford, CA, USA; Section Educational Neuroscience, Faculty of Behavioural and Movement Sciences, Institute for Brain and Behaviour, Vrije Universiteit AmsterdamAmsterdam, Netherlands
| | | | | |
Collapse
|
219
|
Cousins JN, El-Deredy W, Parkes LM, Hennies N, Lewis PA. Cued Reactivation of Motor Learning during Sleep Leads to Overnight Changes in Functional Brain Activity and Connectivity. PLoS Biol 2016; 14:e1002451. [PMID: 27137944 PMCID: PMC4854410 DOI: 10.1371/journal.pbio.1002451] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 04/04/2016] [Indexed: 12/29/2022] Open
Abstract
Sleep plays a role in memory consolidation. This is demonstrated by improved performance and neural plasticity underlying that improvement after sleep. Targeted memory reactivation (TMR) allows the manipulation of sleep-dependent consolidation through intentionally biasing the replay of specific memories in sleep, but the underlying neural basis of these altered memories remains unclear. We use functional magnetic resonance imaging (fMRI) to show a change in the neural representation of a motor memory after targeted reactivation in slow-wave sleep (SWS). Participants learned two serial reaction time task (SRTT) sequences associated with different auditory tones (high or low pitch). During subsequent SWS, one sequence was reactivated by replaying the associated tones. Participants were retested on both sequences the following day during fMRI. As predicted, they showed faster reaction times for the cued sequence after targeted memory reactivation. Furthermore, increased activity in bilateral caudate nucleus and hippocampus for the cued relative to uncued sequence was associated with time in SWS, while increased cerebellar and cortical motor activity was related to time in rapid eye movement (REM) sleep. Functional connectivity between the caudate nucleus and hippocampus was also increased after targeted memory reactivation. These findings suggest that the offline performance gains associated with memory reactivation are supported by altered functional activity in key cognitive and motor networks, and that this consolidation is differentially mediated by both REM sleep and SWS. Slow-wave sleep and rapid eye movement sleep are associated with the reactivation and consolidation of a motor skill within distinct brain networks. After a motor skill is learned, the memory undergoes "offline" processing so that improvement occurs even without further practice. Sleep has been shown to enhance this consolidation and, in the process, to reorganize the brain regions involved. However, it remains unclear how sleep does this, and whether different sleep stages have different contributions. One popular idea is that the memory trace is reactivated during slow-wave sleep—a period of sleep characterized by synchronized activity at a slow frequency and high amplitude, as recorded by electroencephalography (EEG)—which drives memory reorganization within the brain. To test this in humans, we took advantage of "targeted memory reactivation," where replay of specific memories is cued by presentation of a sound that was present during learning. After sleep, motor performance was faster for cued memories, suggesting that the trace was consolidated during sleep. Coupled with this, brain activation and connectivity in several motor-learning areas was enhanced for the cued memory. Furthermore, some changes in brain activity were associated with time spent in slow-wave sleep, while others were associated with time spent in rapid-eye movement sleep. These observations provide further insight into sleep's unique role in memory consolidation by showing that offline skill enhancement depends on the reactivation of specific memories, and the associated changes in neural activity may rely upon processing that unfolds across different stages of sleep.
Collapse
Affiliation(s)
- James N Cousins
- School of Psychological Sciences, University of Manchester, Manchester, United Kingdom
- Cognitive Neuroscience Laboratory, Duke-NUS Graduate Medical School, Singapore
| | - Wael El-Deredy
- School of Psychological Sciences, University of Manchester, Manchester, United Kingdom
- School of Biomedical Engineering, University of Valparaiso, Valparaiso, Chile
| | - Laura M Parkes
- Centre for Imaging Sciences, University of Manchester, Manchester, United Kingdom
| | - Nora Hennies
- School of Psychological Sciences, University of Manchester, Manchester, United Kingdom
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf Martinistr, Hamburg, Germany
| | - Penelope A Lewis
- School of Psychological Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
220
|
|
221
|
Diekelmann S, Born J, Rasch B. Increasing Explicit Sequence Knowledge by Odor Cueing during Sleep in Men but not Women. Front Behav Neurosci 2016; 10:74. [PMID: 27147995 PMCID: PMC4828435 DOI: 10.3389/fnbeh.2016.00074] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 03/31/2016] [Indexed: 02/06/2023] Open
Abstract
Sleep consolidates newly acquired memories. Beyond stabilizing memories, sleep is thought to reorganize memory representations such that invariant structures, statistical regularities and even new explicit knowledge are extracted. Whereas increasing evidence suggests that the stabilization of memories during sleep can be facilitated by cueing with learning-associated stimuli, the effect of cueing on memory reorganization is less well understood. Here we asked whether olfactory cueing during sleep enhances the generation of explicit knowledge about an implicitly learned procedural memory task. Subjects were trained on a serial reaction time task (SRTT) containing a hidden 12-element sequence in the presence of an odor. During subsequent sleep, half of the subjects were re-exposed to the odor during periods of slow wave sleep (SWS), while the other half received odorless vehicle. In the next morning, subjects were tested on their explicit knowledge about the underlying sequence in a free recall test and a generation task. Although odor cueing did not significantly affect overall explicit knowledge, differential effects were evident when analyzing male and female subjects separately. Explicit sequence knowledge, both in free recall and the generation task, was enhanced by odor cueing in men, whereas women showed no cueing effect. Procedural skill in the SRTT was not affected by cueing, neither in men nor in women. These findings suggest that olfactory memory reactivation can increase explicit knowledge about implicitly learned information, but only in men. Hormonal differences due to menstrual cycle phase and/or hormonal contraceptives might explain the lacking effect in women.
Collapse
Affiliation(s)
- Susanne Diekelmann
- Institute of Medical Psychology and Behavioral Neurobiology, University of TübingenTübingen, Germany
| | - Jan Born
- Institute of Medical Psychology and Behavioral Neurobiology, University of TübingenTübingen, Germany
- Center for Integrative Neuroscience (CIN), University of TübingenTübingen, Germany
| | - Björn Rasch
- Division of Cognitive Biopsychology and Methods, Department of Psychology, University of FribourgFribourg, Switzerland
- Zurich Center for Interdisciplinary Sleep Research (ZiS), University of ZurichZurich, Switzerland
| |
Collapse
|
222
|
Mirković J, Gaskell MG. Does Sleep Improve Your Grammar? Preferential Consolidation of Arbitrary Components of New Linguistic Knowledge. PLoS One 2016; 11:e0152489. [PMID: 27046022 PMCID: PMC4821602 DOI: 10.1371/journal.pone.0152489] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 03/15/2016] [Indexed: 11/24/2022] Open
Abstract
We examined the role of sleep-related memory consolidation processes in learning new form-meaning mappings. Specifically, we examined a Complementary Learning Systems account, which implies that sleep-related consolidation should be more beneficial for new hippocampally dependent arbitrary mappings (e.g. new vocabulary items) relative to new systematic mappings (e.g. grammatical regularities), which can be better encoded neocortically. The hypothesis was tested using a novel language with an artificial grammatical gender system. Stem-referent mappings implemented arbitrary aspects of the new language, and determiner/suffix+natural gender mappings implemented systematic aspects (e.g. tibscoiffesh+ ballerina, tibmofeem + bride; kedjorool + cowboy, kedheefaff + priest). Importantly, the determiner-gender and the suffix-gender mappings varied in complexity and salience, thus providing a range of opportunities to detect beneficial effects of sleep for this type of mapping. Participants were trained on the new language using a word-picture matching task, and were tested after a 2-hour delay which included sleep or wakefulness. Participants in the sleep group outperformed participants in the wake group on tests assessing memory for the arbitrary aspects of the new mappings (individual vocabulary items), whereas we saw no evidence of a sleep benefit in any of the tests assessing memory for the systematic aspects of the new mappings: Participants in both groups extracted the salient determiner-natural gender mapping, but not the more complex suffix-natural gender mapping. The data support the predictions of the complementary systems account and highlight the importance of the arbitrariness/systematicity dimension in the consolidation process for declarative memories.
Collapse
Affiliation(s)
- Jelena Mirković
- Faculty of Health and Life Sciences, York St John University, Lord Mayor's Walk, York, YO31 7EX, United Kingdom
- Department of Psychology, University of York, York, YO10 5DD, United Kingdom
- * E-mail: (JM); (MGG)
| | - M. Gareth Gaskell
- Department of Psychology, University of York, York, YO10 5DD, United Kingdom
- * E-mail: (JM); (MGG)
| |
Collapse
|
223
|
Investigating the Neural Correlates of Schemas: Ventromedial Prefrontal Cortex Is Necessary for Normal Schematic Influence on Memory. J Neurosci 2016; 35:15746-51. [PMID: 26609165 DOI: 10.1523/jneurosci.2767-15.2015] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Schemas, as memory representations of typical contexts, allow for generalization from previous experiences while often improving memory organization and accuracy. However, these advantageous characteristics of schematic memory may come at the cost of episode-specific information. In the human brain, this tradeoff between general and specific knowledge has been linked to differential contributions of the medial temporal lobes (MTL) to episode-specific memory and the ventromedial prefrontal cortex (vmPFC) to generalized, schematic memory. Here, we used a neuropsychological approach to test whether participants with focal vmPFC damage (n = 6) would show a reduced influence of schematic memory relative to healthy normal comparison participants (n = 12) in a recognition task that presented schematically congruent or incongruent contexts at study. As predicted, normal comparison participants were more likely to identify items as old after studying them in congruent contexts, and this effect was reflected in increased true and false recognition. These effects of prior context on recognition were not observed in the vmPFC group, suggesting that vmPFC damage reduced the influence of schematic memory. These findings are consistent with the proposition that the vmPFC plays an important role in integrating previous experience into ongoing memory processes while acting as part of a larger memory network. SIGNIFICANCE STATEMENT In the human brain, new memories are strongly influenced by existing knowledge of relevant context (sometimes called "schemas"). Schemas can benefit memory by expediting learning and increasing capacity in familiar contexts, but these benefits may simultaneously reduce episode-specific memory. Here we show that damage to the human ventromedial prefrontal cortex (vmPFC) reduced the influence of existing knowledge on new memories. Our findings suggest that the vmPFC plays a key role in schematic memory processes by integrating previous experiences and contextual information to influence memory. These findings provide novel insight into the brain regions necessary for normal schematic memory and enhance our understanding of the brain networks supporting memory processes.
Collapse
|
224
|
Zhang W. A Supplement to Self-Organization Theory of Dreaming. Front Psychol 2016; 7:332. [PMID: 27014141 PMCID: PMC4782025 DOI: 10.3389/fpsyg.2016.00332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 02/22/2016] [Indexed: 12/04/2022] Open
Affiliation(s)
- Wei Zhang
- School of psychology, Nanjing Normal UniversityNanjing, China
| |
Collapse
|
225
|
Marisch C, Genzel L, Steiger A, Dresler M. Kreativität und Schlaf. SOMNOLOGIE 2016. [DOI: 10.1007/s11818-015-0039-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
226
|
Durrant SJ, Cairney SA, Lewis PA. Cross-modal transfer of statistical information benefits from sleep. Cortex 2016; 78:85-99. [PMID: 27017231 DOI: 10.1016/j.cortex.2016.02.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 01/23/2016] [Accepted: 02/17/2016] [Indexed: 11/30/2022]
Abstract
Extracting regularities from a sequence of events is essential for understanding our environment. However, there is no consensus regarding the extent to which such regularities can be generalised beyond the modality of learning. One reason for this could be the variation in consolidation intervals used in different paradigms, also including an opportunity to sleep. Using a novel statistical learning paradigm in which structured information is acquired in the auditory domain and tested in the visual domain over either 30 min or 24 h consolidation intervals, we show that cross-modal transfer can occur, but this transfer is only seen in the 24 h group. Importantly, the extent of cross-modal transfer is predicted by the amount of slow wave sleep (SWS) obtained. Additionally, cross-modal transfer is associated with the same pattern of decreasing medial temporal lobe and increasing striatal involvement which has previously been observed to occur across 24 h in unimodal statistical learning. We also observed enhanced functional connectivity after 24 h in a network of areas which have been implicated in cross-modal integration including the precuneus and the middle occipital gyrus. Finally, functional connectivity between the striatum and the precuneus was also enhanced, and this strengthening was predicted by SWS. These results demonstrate that statistical learning can generalise to some extent beyond the modality of acquisition, and together with our previously published unimodal results, support the notion that statistical learning is both domain-general and domain-specific.
Collapse
Affiliation(s)
- Simon J Durrant
- School of Psychology, University of Lincoln, Lincoln, United Kingdom.
| | - Scott A Cairney
- Department of Psychology, University of York, United Kingdom
| | - Penelope A Lewis
- School of Psychological Sciences, University of Manchester, United Kingdom
| |
Collapse
|
227
|
Sommer T. The Emergence of Knowledge and How it Supports the Memory for Novel Related Information. Cereb Cortex 2016; 27:1906-1921. [DOI: 10.1093/cercor/bhw031] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
228
|
Berkers RMWJ, Klumpers F, Fernández G. Medial prefrontal-hippocampal connectivity during emotional memory encoding predicts individual differences in the loss of associative memory specificity. Neurobiol Learn Mem 2016; 134 Pt A:44-54. [PMID: 26868478 DOI: 10.1016/j.nlm.2016.01.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 01/25/2016] [Accepted: 01/31/2016] [Indexed: 11/16/2022]
Abstract
Emotionally charged items are often remembered better, whereas a paradoxical loss of specificity is found for associative emotional information (specific memory). The balance between specific and generalized emotional memories appears to show large individual differences, potentially related to differences in (the risk for) affective disorders that are characterized by 'overgeneralized' emotional memories. Here, we investigate the neural underpinnings of individual differences in emotional associative memory. A large group of healthy male participants were scanned while encoding associations of face-photographs and written occupational identities that were of either neutral ('driver') or negative ('murderer') valence. Subsequently, memory was tested by prompting participants to retrieve the occupational identities corresponding to each face. Whereas in both valence categories a similar amount of faces was labeled correctly with 'neutral' and 'negative' identities, (gist memory), specific associations were found to be less accurately remembered when the occupational identity was negative compared to neutral (specific memory). This pattern of results suggests reduced memory specificity for associations containing a negatively valenced component. The encoding of these negative associations was paired with a selective increase in medial prefrontal cortex activity and medial prefrontal-hippocampal connectivity. Individual differences in valence-specific neural connectivity were predictive of valence-specific reduction of memory specificity. The relationship between loss of emotional memory specificity and medial prefrontal-hippocampal connectivity is in line with the hypothesized role of a medial prefrontal-hippocampal circuit in regulating memory specificity, and warrants further investigations in individuals displaying 'overgeneralized' emotional memories.
Collapse
Affiliation(s)
- Ruud M W J Berkers
- Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands.
| | - Floris Klumpers
- Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Guillén Fernández
- Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
229
|
Miendlarzewska EA, Bavelier D, Schwartz S. Influence of reward motivation on human declarative memory. Neurosci Biobehav Rev 2016; 61:156-76. [DOI: 10.1016/j.neubiorev.2015.11.015] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 10/13/2015] [Accepted: 11/28/2015] [Indexed: 12/13/2022]
|
230
|
Jurewicz K, Cordi MJ, Staudigl T, Rasch B. No Evidence for Memory Decontextualization across One Night of Sleep. Front Hum Neurosci 2016; 10:7. [PMID: 26858622 PMCID: PMC4727184 DOI: 10.3389/fnhum.2016.00007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 01/11/2016] [Indexed: 11/17/2022] Open
Abstract
Sleep after learning strengthens memory consolidation. According to the active system consolidation hypothesis, sleep supports the integration of newly acquired memories into cortical knowledge networks, presumably accompanied by a process of decontextualization of the memory trace (i.e., a gradual loss of memory for the learning context). However, the availability of contextual information generally facilitates memory recall and studies on the interaction of sleep and context on memory retrieval have revealed inconsistent results. Here, we do not find any evidence for a role of sleep in the decontextualization of newly learned declarative memories. In two separate studies, 104 healthy young adults incidentally learned words associated with a context. After a 12 h retention interval filled with either sleep or wakefulness, recall (Experiment 1) or recognition (Experiment 2) was tested with the same or different context. Overall, memory retrieval was significantly improved when the learning context was reinstated, as compared to a different context. However, this context effect of memory was not modulated by sleep vs. wakefulness. These findings argue against a decontextualization of memories, at least across a single night of sleep.
Collapse
Affiliation(s)
- Katarzyna Jurewicz
- Department of Neurophysiology, Nencki Institute of Experimental Biology Warsaw, Poland
| | - Maren Jasmin Cordi
- Division of Biopsychology, Institute of Psychology, University of ZurichZurich, Switzerland; Zurich Center for Interdisciplinary Sleep Research (ZiS), University of ZurichZurich, Switzerland
| | - Tobias Staudigl
- Department of Psychology, University of KonstanzKonstanz, Germany; Donders Institute for Brain, Cognition and Behaviour, Radboud University NijmegenNijmegen, Netherlands
| | - Björn Rasch
- Zurich Center for Interdisciplinary Sleep Research (ZiS), University of ZurichZurich, Switzerland; Department of Psychology, Division of Cognitive Biopsychology and Methods, University of FribourgFribourg, Switzerland
| |
Collapse
|
231
|
Negrón-Oyarzo I, Aboitiz F, Fuentealba P. Impaired Functional Connectivity in the Prefrontal Cortex: A Mechanism for Chronic Stress-Induced Neuropsychiatric Disorders. Neural Plast 2016; 2016:7539065. [PMID: 26904302 PMCID: PMC4745936 DOI: 10.1155/2016/7539065] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 11/25/2015] [Accepted: 12/16/2015] [Indexed: 12/20/2022] Open
Abstract
Chronic stress-related psychiatric diseases, such as major depression, posttraumatic stress disorder, and schizophrenia, are characterized by a maladaptive organization of behavioral responses that strongly affect the well-being of patients. Current evidence suggests that a functional impairment of the prefrontal cortex (PFC) is implicated in the pathophysiology of these diseases. Therefore, chronic stress may impair PFC functions required for the adaptive orchestration of behavioral responses. In the present review, we integrate evidence obtained from cognitive neuroscience with neurophysiological research with animal models, to put forward a hypothesis that addresses stress-induced behavioral dysfunctions observed in stress-related neuropsychiatric disorders. We propose that chronic stress impairs mechanisms involved in neuronal functional connectivity in the PFC that are required for the formation of adaptive representations for the execution of adaptive behavioral responses. These considerations could be particularly relevant for understanding the pathophysiology of chronic stress-related neuropsychiatric disorders.
Collapse
Affiliation(s)
- Ignacio Negrón-Oyarzo
- Departamento de Psiquiatría, Facultad de Medicina, Centro Interdisciplinario de Neurociencia, Pontificia Universidad Católica de Chile, Avenida Marcoleta No. 391, 8320000 Santiago, Chile
| | - Francisco Aboitiz
- Departamento de Psiquiatría, Facultad de Medicina, Centro Interdisciplinario de Neurociencia, Pontificia Universidad Católica de Chile, Avenida Marcoleta No. 391, 8320000 Santiago, Chile
| | - Pablo Fuentealba
- Departamento de Psiquiatría, Facultad de Medicina, Centro Interdisciplinario de Neurociencia, Pontificia Universidad Católica de Chile, Avenida Marcoleta No. 391, 8320000 Santiago, Chile
| |
Collapse
|
232
|
Moscovitch M, Cabeza R, Winocur G, Nadel L. Episodic Memory and Beyond: The Hippocampus and Neocortex in Transformation. Annu Rev Psychol 2016; 67:105-34. [PMID: 26726963 PMCID: PMC5060006 DOI: 10.1146/annurev-psych-113011-143733] [Citation(s) in RCA: 589] [Impact Index Per Article: 65.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The last decade has seen dramatic technological and conceptual changes in research on episodic memory and the brain. New technologies, and increased use of more naturalistic observations, have enabled investigators to delve deeply into the structures that mediate episodic memory, particularly the hippocampus, and to track functional and structural interactions among brain regions that support it. Conceptually, episodic memory is increasingly being viewed as subject to lifelong transformations that are reflected in the neural substrates that mediate it. In keeping with this dynamic perspective, research on episodic memory (and the hippocampus) has infiltrated domains, from perception to language and from empathy to problem solving, that were once considered outside its boundaries. Using the component process model as a framework, and focusing on the hippocampus, its subfields, and specialization along its longitudinal axis, along with its interaction with other brain regions, we consider these new developments and their implications for the organization of episodic memory and its contribution to functions in other domains.
Collapse
Affiliation(s)
- Morris Moscovitch
- Department of Psychology, University of Toronto, Toronto, Ontario M5S 3G3, Canada;
- Rotman Research Institute, Baycrest Center, Toronto, Ontario, M6A 2E1 Canada
- Department of Psychology, Baycrest Center, Toronto, Ontario M6A 2E1, Canada
| | - Roberto Cabeza
- Center for Cognitive Neuroscience, Duke University, Durham, North Carolina 27708;
| | - Gordon Winocur
- Rotman Research Institute, Baycrest Center, Toronto, Ontario, M6A 2E1 Canada
- Department of Psychology, Trent University, Peterborough, Ontario K9J 7B8, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario M5T 1R8, Canada;
| | - Lynn Nadel
- Department of Psychology and Cognitive Science Program, University of Arizona, Tucson, Arizona 85721;
| |
Collapse
|
233
|
Fan JE, Turk-Browne NB. Incidental biasing of attention from visual long-term memory. J Exp Psychol Learn Mem Cogn 2015; 42:970-7. [PMID: 26618914 DOI: 10.1037/xlm0000209] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Holding recently experienced information in mind can help us achieve our current goals. However, such immediate and direct forms of guidance from working memory are less helpful over extended delays or when other related information in long-term memory is useful for reaching these goals. Here we show that information that was encoded in the past but is no longer present or relevant to the task also guides attention. We examined this by associating multiple unique features with novel shapes in visual long-term memory (VLTM), and subsequently testing how memories for these objects biased the deployment of attention. In Experiment 1, VLTM for associated features guided visual search for the shapes, even when these features had never been task-relevant. In Experiment 2, associated features captured attention when presented in isolation during a secondary task that was completely unrelated to the shapes. These findings suggest that long-term memory enables a durable and automatic type of memory-based attentional control. (PsycINFO Database Record
Collapse
|
234
|
Schlichting ML, Preston AR. Hippocampal-medial prefrontal circuit supports memory updating during learning and post-encoding rest. Neurobiol Learn Mem 2015; 134 Pt A:91-106. [PMID: 26608407 DOI: 10.1016/j.nlm.2015.11.005] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 10/22/2015] [Accepted: 11/07/2015] [Indexed: 02/03/2023]
Abstract
Learning occurs in the context of existing memories. Encountering new information that relates to prior knowledge may trigger integration, whereby established memories are updated to incorporate new content. Here, we provide a critical test of recent theories suggesting hippocampal (HPC) and medial prefrontal (MPFC) involvement in integration, both during and immediately following encoding. Human participants with established memories for a set of initial (AB) associations underwent fMRI scanning during passive rest and encoding of new related (BC) and unrelated (XY) pairs. We show that HPC-MPFC functional coupling during learning was more predictive of trial-by-trial memory for associations related to prior knowledge relative to unrelated associations. Moreover, the degree to which HPC-MPFC functional coupling was enhanced following overlapping encoding was related to memory integration behavior across participants. We observed a dissociation between anterior and posterior MPFC, with integration signatures during post-encoding rest specifically in the posterior subregion. These results highlight the persistence of integration signatures into post-encoding periods, indicating continued processing of interrelated memories during rest. We also interrogated the coherence of white matter tracts to assess the hypothesis that integration behavior would be related to the integrity of the underlying anatomical pathways. Consistent with our predictions, more coherent HPC-MPFC white matter structure was associated with better performance across participants. This HPC-MPFC circuit also interacted with content-sensitive visual cortex during learning and rest, consistent with reinstatement of prior knowledge to enable updating. These results show that the HPC-MPFC circuit supports on- and offline integration of new content into memory.
Collapse
Affiliation(s)
- Margaret L Schlichting
- Center for Learning and Memory, The University of Texas at Austin, 1 University Station, C7000, Austin, Texas 78712, USA
| | - Alison R Preston
- Center for Learning and Memory, The University of Texas at Austin, 1 University Station, C7000, Austin, Texas 78712, USA; Department of Psychology, The University of Texas at Austin, 1 University Station, A8000, Austin, TX 78712, USA; Department of Neuroscience, The University of Texas at Austin, 1 University Station, C0920, Austin, TX 78712, USA.
| |
Collapse
|
235
|
Wagner IC, van Buuren M, Kroes MCW, Gutteling TP, van der Linden M, Morris RG, Fernández G. Schematic memory components converge within angular gyrus during retrieval. eLife 2015; 4:e09668. [PMID: 26575291 PMCID: PMC4709269 DOI: 10.7554/elife.09668] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 11/16/2015] [Indexed: 11/13/2022] Open
Abstract
Mental schemas form associative knowledge structures that can promote the encoding and consolidation of new and related information. Schemas are facilitated by a distributed system that stores components separately, presumably in the form of inter-connected neocortical representations. During retrieval, these components need to be recombined into one representation, but where exactly such recombination takes place is unclear. Thus, we asked where different schema components are neuronally represented and converge during retrieval. Subjects acquired and retrieved two well-controlled, rule-based schema structures during fMRI on consecutive days. Schema retrieval was associated with midline, medial-temporal, and parietal processing. We identified the multi-voxel representations of different schema components, which converged within the angular gyrus during retrieval. Critically, convergence only happened after 24-hour-consolidation and during a transfer test where schema material was applied to novel but related trials. Therefore, the angular gyrus appears to recombine consolidated schema components into one memory representation. DOI:http://dx.doi.org/10.7554/eLife.09668.001 To make sense of the world around us, we constantly try to work out the relationship of new information to other things that we already know, and sort our knowledge into pre-existing mental frameworks, or “schemas”. This makes learning new things that are related to a schema, as well as remembering this knowledge, easier. The process of making these mental connections is thought to involve an extensive brain network. Separate types of information are stored in different brain regions within this network, yet to link this information together, the brain must combine them into a single representation. Wagner et al. have now investigated which brain regions are involved in recombining separate information. Human volunteers were trained to interpret the positions or colors of pairs of circles with different rules. The combination of these separate types of information formed a mental schema that could be used as a “weather forecast”. The design of the experiment meant that measuring the brain activity of the volunteers during the task (using a technique called functional magnetic resonance imaging) allowed the brain regions involved in retrieving the different parts of such a schema to be distinguished. Twenty-four hours later volunteers returned to use the mental schemas that they had learned to predict the weather. Retrieving which weather conditions the circle pairs represented activated a network of regions in the volunteers’ brains. Further analysis revealed that some of these regions showed specific activity patterns in response to remembering information about only one element of the task (for example, only the rules or only the visual information). However, the different aspects of the task all appeared to be integrated by a brain region called the angular gyrus. This suggests that the angular gyrus is responsible for combining separate memory parts and pieces of information into a single representation. It is able to do so by connecting to brain regions that code for such specific aspects, although this only occurs 24 hours after the mental schemas have been established. Future studies could investigate the result of damage to the angular gyrus: different pieces of information might not be combined, or could result in an incorrect memory during retrieval. Finally, since the angular gyrus has been related to a wealth of different mental processes, it remains a challenge for future research to "converge" these findings and to understand the underlying computations. DOI:http://dx.doi.org/10.7554/eLife.09668.002
Collapse
Affiliation(s)
- Isabella C Wagner
- Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Mariët van Buuren
- Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, The Netherlands
| | - Marijn C W Kroes
- Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, The Netherlands.,Center for Neural Science, New York University, New York, United States.,Department of Psychology, New York University, New York, United States
| | - Tjerk P Gutteling
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Marieke van der Linden
- Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, The Netherlands
| | - Richard G Morris
- Centre for Cognitive and Neural Systems, University of Edinburgh, Edinburgh, United Kingdom
| | - Guillén Fernández
- Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, The Netherlands
| |
Collapse
|
236
|
Memory cueing during sleep modifies the interpretation of ambiguous scenes in adolescents and adults. Dev Cogn Neurosci 2015; 17:10-8. [PMID: 26588358 PMCID: PMC6990077 DOI: 10.1016/j.dcn.2015.10.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 10/08/2015] [Accepted: 10/09/2015] [Indexed: 11/23/2022] Open
Abstract
The individual tendency to interpret ambiguous situations negatively is associated with mental disorders. Interpretation biases are already evident during adolescence and due to the greater plasticity of the developing brain it may be easier to change biases during this time. We investigated in healthy adolescents and adults whether stabilizing memories of positive or negative scenes modulates the later interpretation of similar scenes. In the evening, participants learnt associations between ambiguous pictures and words that disambiguate the valence of the pictures in a positive or negative direction. Half of the words were acoustically presented (i.e. cued) during post-learning sleep which is known to benefit memory consolidation by inducing reactivation of learned information. Cued compared to un-cued stimuli were remembered better the next morning. Importantly, cueing positively disambiguated pictures resulted in more positive interpretations whereas cueing negatively disambiguated pictures led to less positive interpretations of new ambiguous pictures with similar contents the next morning. These effects were not modulated by participants' age indicating that memory cueing was as efficient in adolescents as in adults. Our findings suggest that memory cueing during sleep can modify interpretation biases by benefitting memory stabilization and generalization. Implications for clinical settings are discussed.
Collapse
|
237
|
Auditory feedback blocks memory benefits of cueing during sleep. Nat Commun 2015; 6:8729. [PMID: 26507814 PMCID: PMC4640077 DOI: 10.1038/ncomms9729] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 09/25/2015] [Indexed: 02/05/2023] Open
Abstract
It is now widely accepted that re-exposure to memory cues during sleep reactivates memories and can improve later recall. However, the underlying mechanisms are still unknown. As reactivation during wakefulness renders memories sensitive to updating, it remains an intriguing question whether reactivated memories during sleep also become susceptible to incorporating further information after the cue. Here we show that the memory benefits of cueing Dutch vocabulary during sleep are in fact completely blocked when memory cues are directly followed by either correct or conflicting auditory feedback, or a pure tone. In addition, immediate (but not delayed) auditory stimulation abolishes the characteristic increases in oscillatory theta and spindle activity typically associated with successful reactivation during sleep as revealed by high-density electroencephalography. We conclude that plastic processes associated with theta and spindle oscillations occurring during a sensitive period immediately after the cue are necessary for stabilizing reactivated memory traces during sleep. Exposure to memory cues during sleep improves subsequent memory recall. Here the authors demonstrate that presenting an additional auditory stimulus during a critical time window following the memory cue abolishes the memory benefit of cueing and its oscillatory correlates during sleep in humans.
Collapse
|
238
|
Westermann J, Lange T, Textor J, Born J. System Consolidation During Sleep – A Common Principle Underlying Psychological and Immunological Memory Formation. Trends Neurosci 2015; 38:585-597. [DOI: 10.1016/j.tins.2015.07.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 06/30/2015] [Accepted: 07/28/2015] [Indexed: 12/11/2022]
|
239
|
Buzsáki G. Hippocampal sharp wave-ripple: A cognitive biomarker for episodic memory and planning. Hippocampus 2015; 25:1073-188. [PMID: 26135716 PMCID: PMC4648295 DOI: 10.1002/hipo.22488] [Citation(s) in RCA: 988] [Impact Index Per Article: 98.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 06/30/2015] [Indexed: 12/23/2022]
Abstract
Sharp wave ripples (SPW-Rs) represent the most synchronous population pattern in the mammalian brain. Their excitatory output affects a wide area of the cortex and several subcortical nuclei. SPW-Rs occur during "off-line" states of the brain, associated with consummatory behaviors and non-REM sleep, and are influenced by numerous neurotransmitters and neuromodulators. They arise from the excitatory recurrent system of the CA3 region and the SPW-induced excitation brings about a fast network oscillation (ripple) in CA1. The spike content of SPW-Rs is temporally and spatially coordinated by a consortium of interneurons to replay fragments of waking neuronal sequences in a compressed format. SPW-Rs assist in transferring this compressed hippocampal representation to distributed circuits to support memory consolidation; selective disruption of SPW-Rs interferes with memory. Recently acquired and pre-existing information are combined during SPW-R replay to influence decisions, plan actions and, potentially, allow for creative thoughts. In addition to the widely studied contribution to memory, SPW-Rs may also affect endocrine function via activation of hypothalamic circuits. Alteration of the physiological mechanisms supporting SPW-Rs leads to their pathological conversion, "p-ripples," which are a marker of epileptogenic tissue and can be observed in rodent models of schizophrenia and Alzheimer's Disease. Mechanisms for SPW-R genesis and function are discussed in this review.
Collapse
Affiliation(s)
- György Buzsáki
- The Neuroscience Institute, School of Medicine and Center for Neural Science, New York University, New York, New York
| |
Collapse
|
240
|
Prehn-Kristensen A, Lotzkat K, Bauhofer E, Wiesner CD, Baving L. Sleep Supports Memory of Odors in Adults but Not in Children. PLoS One 2015; 10:e0139069. [PMID: 26406604 PMCID: PMC4583230 DOI: 10.1371/journal.pone.0139069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 09/07/2015] [Indexed: 11/18/2022] Open
Abstract
Sleep supports the consolidation of declarative memory in children and adults. However, it is unclear whether sleep improves odor memory in children as well as adults. Thirty healthy children (mean age of 10.6, ranging from 8-12 yrs.) and 30 healthy adults (mean age of 25.4, ranging from 20-30 yrs.) participated in an incidental odor recognition paradigm. While learning of 10 target odorants took place in the evening and retrieval (10 target and 10 distractor odorants) the next morning in the sleep groups (adults: n = 15, children: n = 15), the time schedule was vice versa in the wake groups (n = 15 each). During encoding, adults rated odors as being more familiar. After the retention interval, adult participants of the sleep group recognized odors better than adults in the wake group. While children in the wake group showed memory performance comparable to the adult wake group, the children sleep group performed worse than adult and children wake groups. Correlations between memory performance and familiarity ratings during encoding indicate that pre-experiences might be critical in determining whether sleep improves or worsens memory consolidation.
Collapse
Affiliation(s)
- Alexander Prehn-Kristensen
- Department of Child and Adolescent Psychiatry and Psychotherapy, Center for Integrative Psychiatry, School of Medicine, Christian-Albrechts-University, Kiel, Germany
| | - Kristin Lotzkat
- Department of Psychology, Christian-Albrechts-University, Kiel, Germany
| | - Eva Bauhofer
- Department of Child and Adolescent Psychiatry and Psychotherapy, Center for Integrative Psychiatry, School of Medicine, Christian-Albrechts-University, Kiel, Germany
| | - Christian D. Wiesner
- Department of Child and Adolescent Psychiatry and Psychotherapy, Center for Integrative Psychiatry, School of Medicine, Christian-Albrechts-University, Kiel, Germany
| | - Lioba Baving
- Department of Child and Adolescent Psychiatry and Psychotherapy, Center for Integrative Psychiatry, School of Medicine, Christian-Albrechts-University, Kiel, Germany
| |
Collapse
|
241
|
Javadi AH, Tolat A, Spiers HJ. Sleep enhances a spatially mediated generalization of learned values. ACTA ACUST UNITED AC 2015; 22:532-6. [PMID: 26373834 PMCID: PMC4579355 DOI: 10.1101/lm.038828.115] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 06/30/2015] [Indexed: 11/24/2022]
Abstract
Sleep is thought to play an important role in memory consolidation. Here we tested whether sleep alters the subjective value associated with objects located in spatial clusters that were navigated to in a large-scale virtual town. We found that sleep enhances a generalization of the value of high-value objects to the value of locally clustered objects, resulting in an impaired memory for the value of high-valued objects. Our results are consistent with (a) spatial context helping to bind items together in long-term memory and serve as a basis for generalizing across memories and (b) sleep mediating memory effects on salient/reward-related items.
Collapse
Affiliation(s)
- Amir-Homayoun Javadi
- Institute of Behavioural Neuroscience, Department of Experimental Psychology, University College London, London WC1H 0AP, United Kingdom
| | - Anisha Tolat
- Institute of Behavioural Neuroscience, Department of Experimental Psychology, University College London, London WC1H 0AP, United Kingdom
| | - Hugo J Spiers
- Institute of Behavioural Neuroscience, Department of Experimental Psychology, University College London, London WC1H 0AP, United Kingdom
| |
Collapse
|
242
|
Kirov R, Kolev V, Verleger R, Yordanova J. Labile sleep promotes awareness of abstract knowledge in a serial reaction time task. Front Psychol 2015; 6:1354. [PMID: 26441730 PMCID: PMC4561346 DOI: 10.3389/fpsyg.2015.01354] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 08/24/2015] [Indexed: 11/13/2022] Open
Abstract
Sleep has been identified as a critical brain state enhancing the probability of gaining insight into covert task regularities. Both non-rapid eye movement (NREM) and rapid eye movement (REM) sleep have been implicated with offline re-activation and reorganization of memories supporting explicit knowledge generation. According to two-stage models of sleep function, offline processing of information during sleep is sequential requiring multiple cycles of NREM and REM sleep stages. However, the role of overnight dynamic sleep macrostructure for insightfulness has not been studied so far. In the present study, we test the hypothesis that the frequency of interactions between NREM and REM sleep stages might be critical for awareness after sleep. For that aim, the rate of sleep stage transitions was evaluated in 53 participants who learned implicitly a serial reaction time task (SRTT) in which a determined sequence was inserted. The amount of explicit knowledge about the sequence was established by verbal recall after a night of sleep following SRTT learning. Polysomnography was recorded in this night and in a control night before and was analyzed to compare the rate of sleep-stage transitions between participants who did or did not gain awareness of task regularity after sleep. Indeed, individual ability of explicit knowledge generation was strongly associated with increased rate of transitions between NREM and REM sleep stages and between light sleep stages and slow wave sleep. However, the rate of NREM-REM transitions specifically predicted the amount of explicit knowledge after sleep in a trait-dependent way. These results demonstrate that enhanced lability of sleep goes along with individual ability of knowledge awareness. Observations suggest that facilitated dynamic interactions between sleep stages, particularly between NREM and REM sleep stages play a role for offline processing which promotes rule extraction and awareness.
Collapse
Affiliation(s)
- Roumen Kirov
- Cognitive Psychophysiology, Institute of Neurobiology, Bulgarian Academy of SciencesSofia, Bulgaria
| | - Vasil Kolev
- Cognitive Psychophysiology, Institute of Neurobiology, Bulgarian Academy of SciencesSofia, Bulgaria
- Department of Neurology, University of LübeckLübeck, Germany
| | - Rolf Verleger
- Department of Neurology, University of LübeckLübeck, Germany
- Institute of Psychology II, University of LübeckLübeck, Germany
| | - Juliana Yordanova
- Cognitive Psychophysiology, Institute of Neurobiology, Bulgarian Academy of SciencesSofia, Bulgaria
- Department of Neurology, University of LübeckLübeck, Germany
| |
Collapse
|
243
|
Malinowski JE, Horton CL. Metaphor and hyperassociativity: the imagination mechanisms behind emotion assimilation in sleep and dreaming. Front Psychol 2015; 6:1132. [PMID: 26347669 PMCID: PMC4539471 DOI: 10.3389/fpsyg.2015.01132] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 07/20/2015] [Indexed: 11/13/2022] Open
Abstract
In this paper we propose an emotion assimilation function of sleep and dreaming. We offer explanations both for the mechanisms by which waking-life memories are initially selected for processing during sleep, and for the mechanisms by which those memories are subsequently transformed during sleep. We propose that emotions act as a marker for information to be selectively processed during sleep, including consolidation into long term memory structures and integration into pre-existing memory networks; that dreaming reflects these emotion assimilation processes; and that the associations between memory fragments activated during sleep give rise to measureable elements of dream metaphor and hyperassociativity. The latter are a direct reflection, and the phenomenological experience, of emotional memory assimilation processes occurring during sleep. While many theories previously have posited a role for emotion processing and/or emotional memory consolidation during sleep and dreaming, sleep theories often do not take enough account of important dream science data, yet dream research, when conducted systematically and under ideal conditions, can greatly enhance theorizing around the functions of sleep. Similarly, dream theories often fail to consider the implications of sleep-dependent memory research, which can augment our understanding of dream functioning. Here, we offer a synthesized view, taking detailed account of both sleep and dream data and theories. We draw on extensive literature from sleep and dream experiments and theories, including often-overlooked data from dream science which we believe reflects sleep phenomenology, to bring together important ideas and findings from both domains.
Collapse
|
244
|
Abstract
Conscious memory for a new experience is initially dependent on information stored in both the hippocampus and neocortex. Systems consolidation is the process by which the hippocampus guides the reorganization of the information stored in the neocortex such that it eventually becomes independent of the hippocampus. Early evidence for systems consolidation was provided by studies of retrograde amnesia, which found that damage to the hippocampus-impaired memories formed in the recent past, but typically spared memories formed in the more remote past. Systems consolidation has been found to occur for both episodic and semantic memories and for both spatial and nonspatial memories, although empirical inconsistencies and theoretical disagreements remain about these issues. Recent work has begun to characterize the neural mechanisms that underlie the dialogue between the hippocampus and neocortex (e.g., "neural replay," which occurs during sharp wave ripple activity). New work has also identified variables, such as the amount of preexisting knowledge, that affect the rate of consolidation. The increasing use of molecular genetic tools (e.g., optogenetics) can be expected to further improve understanding of the neural mechanisms underlying consolidation.
Collapse
Affiliation(s)
- Larry R Squire
- VA San Diego Healthcare System, San Diego, California 92161 Departments of Psychiatry and Neurosciences, University of California, San Diego, La Jolla, California 92093 Department of Psychology, University of California, San Diego, La Jolla, California 92093
| | - Lisa Genzel
- Centre for Cognitive and Neural Systems, The University of Edinburgh, Edinburgh EH8 9JZ, United Kingdom
| | - John T Wixted
- Department of Psychology, University of California, San Diego, La Jolla, California 92093
| | - Richard G Morris
- Centre for Cognitive and Neural Systems, The University of Edinburgh, Edinburgh EH8 9JZ, United Kingdom
| |
Collapse
|
245
|
Horton CL, Malinowski JE. Autobiographical memory and hyperassociativity in the dreaming brain: implications for memory consolidation in sleep. Front Psychol 2015; 6:874. [PMID: 26191010 PMCID: PMC4488598 DOI: 10.3389/fpsyg.2015.00874] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 06/13/2015] [Indexed: 12/17/2022] Open
Abstract
In this paper we argue that autobiographical memory (AM) activity across sleep and wake can provide insight into the nature of dreaming, and vice versa. Activated memories within the sleeping brain reflect one’s personal life history (autobiography). They can appear in largely fragmentary forms and differ from conventional manifestations of episodic memory. Autobiographical memories in dreams can be sampled from non-REM as well as REM periods, which contain fewer episodic references and become more bizarre across the night. Salient fragmented memory features are activated in sleep and re-bound with fragments not necessarily emerging from the same memory, thus de-contextualizing those memories and manifesting as experiences that differ from waking conceptions. The constructive nature of autobiographical recall further encourages synthesis of these hyper-associated images into an episode via recalling and reporting dreams. We use a model of AM to account for the activation of memories in dreams as a reflection of sleep-dependent memory consolidation processes. We focus in particular on the hyperassociative nature of AM during sleep.
Collapse
|
246
|
The dream-lag effect: Selective processing of personally significant events during Rapid Eye Movement sleep, but not during Slow Wave Sleep. Neurobiol Learn Mem 2015; 122:98-109. [DOI: 10.1016/j.nlm.2015.01.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 12/23/2014] [Accepted: 01/28/2015] [Indexed: 01/31/2023]
|
247
|
Durrant SJ, Cairney SA, McDermott C, Lewis PA. Schema-conformant memories are preferentially consolidated during REM sleep. Neurobiol Learn Mem 2015; 122:41-50. [DOI: 10.1016/j.nlm.2015.02.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 02/17/2015] [Accepted: 02/20/2015] [Indexed: 10/23/2022]
|
248
|
Sleep promotes analogical transfer in problem solving. Cognition 2015; 143:25-30. [PMID: 26113445 DOI: 10.1016/j.cognition.2015.06.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 06/14/2015] [Accepted: 06/15/2015] [Indexed: 11/20/2022]
Abstract
Analogical problem solving requires using a known solution from one problem to apply to a related problem. Sleep is known to have profound effects on memory and information restructuring, and so we tested whether sleep promoted such analogical transfer, determining whether improvement was due to subjective memory for problems, subjective recognition of similarity across related problems, or by abstract generalisation of structure. In Experiment 1, participants were exposed to a set of source problems. Then, after a 12-h period involving sleep or wake, they attempted target problems structurally related to the source problems but with different surface features. Experiment 2 controlled for time of day effects by testing participants either in the morning or the evening. Sleep improved analogical transfer, but effects were not due to improvements in subjective memory or similarity recognition, but rather effects of structural generalisation across problems.
Collapse
|
249
|
Edwards CL, Malinowski JE, McGee SL, Bennett PD, Ruby PM, Blagrove MT. Comparing personal insight gains due to consideration of a recent dream and consideration of a recent event using the Ullman and Schredl dream group methods. Front Psychol 2015; 6:831. [PMID: 26150797 PMCID: PMC4471350 DOI: 10.3389/fpsyg.2015.00831] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 06/01/2015] [Indexed: 11/13/2022] Open
Abstract
There have been reports and claims in the psychotherapeutic literature that the consideration of recent dreams can result in personal realizations and insight. There is theoretical support for these claims from work on rapid eye movement (REM) sleep having a function of the consolidation of emotional memories and the creative formation of connections between new and older memories. To investigate these claims, 11 participants (10 females, one male) reported and considered a recent home dream in a dream discussion group that following the “Appreciating dreams” method of Montague Ullman. The group ran 11 times, each participant attending and participating once. A further nine participants (seven females, two males) reported and considered a recent home dream in a group that followed the “Listening to the dreamer” method of Michael Schredl. The two studies each had a control condition where the participant also reported a recent event, the consideration of which followed the same technique as was followed for the dream report. Outcomes of the discussions were assessed by the participants on the Gains from Dream Interpretation (GDI) scale, and on its counterpart, the Gains from Event Interpretation scale. High ratings on the GDI experiential-insight subscale were reported for both methods, when applied to dreams, and for the Ullman method Exploration-Insight ratings for the dream condition were significantly higher than for the control event condition. In the Ullman method, self-assessment of personal insight due to consideration of dream content was also significantly higher than for the event consideration condition. The findings support the view that benefits can be obtained from the consideration of dream content, in terms of identifying the waking life sources of dream content, and because personal insight may also occur. To investigate the mechanisms for the findings, the studies should be repeated with REM and non-REM dream reports, hypothesizing greater insight from the former.
Collapse
Affiliation(s)
- Christopher L Edwards
- Sleep Laboratory, Department of Psychology, Swansea University , Swansea, UK ; Department of Psychology, Swansea University , Swansea, UK
| | | | - Shauna L McGee
- Sleep Laboratory, Department of Psychology, Swansea University , Swansea, UK
| | - Paul D Bennett
- Department of Psychology, Swansea University , Swansea, UK
| | - Perrine M Ruby
- Sleep Laboratory, Department of Psychology, Swansea University , Swansea, UK ; Brain Dynamics and Cognition Team, Lyon Neuroscience Research Centre , INSERM U1028, Lyon, France
| | - Mark T Blagrove
- Sleep Laboratory, Department of Psychology, Swansea University , Swansea, UK ; Department of Psychology, Swansea University , Swansea, UK
| |
Collapse
|
250
|
Changing maladaptive memories through reconsolidation: A role for sleep in psychotherapy? Behav Brain Sci 2015; 38:e6. [DOI: 10.1017/s0140525x14000156] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractLike Lane et al., we believe that change in psychotherapy comes about by updating dysfunctional memories with new adaptive experiences. We suggest that sleep is essential to (re-)consolidate such corrective experiences. Sleep is well-known to strengthen and integrate new memories into pre-existing networks. Targeted sleep interventions might be promising tools to boost this process and thereby increase therapy effectiveness.
Collapse
|