201
|
Revisiting the Role of Csp Family Proteins in Regulating Clostridium difficile Spore Germination. J Bacteriol 2017; 199:JB.00266-17. [PMID: 28874406 DOI: 10.1128/jb.00266-17] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 08/23/2017] [Indexed: 02/07/2023] Open
Abstract
Clostridium difficile causes considerable health care-associated gastrointestinal disease that is transmitted by its metabolically dormant spore form. Upon entering the gut, C. difficile spores germinate and outgrow to produce vegetative cells that release disease-causing toxins. C. difficile spore germination depends on the Csp family of (pseudo)proteases and the cortex hydrolase SleC. The CspC pseudoprotease functions as a bile salt germinant receptor that activates the protease CspB, which in turn proteolytically activates the SleC zymogen. Active SleC degrades the protective cortex layer, allowing spores to outgrow and resume metabolism. We previously showed that the CspA pseudoprotease domain, which is initially produced as a fusion to CspB, controls the incorporation of the CspC germinant receptor in mature spores. However, study of the individual Csp proteins has been complicated by the polar effects of TargeTron-based gene disruption on the cspBA-cspC operon. To overcome these limitations, we have used pyrE-based allelic exchange to create individual deletions of the regions encoding CspB, CspA, CspBA, and CspC in strain 630Δerm Our results indicate that stable CspA levels in sporulating cells depend on CspB and confirm that CspA maximizes CspC incorporation into spores. Interestingly, we observed that csp and sleC mutants spontaneously germinate more frequently in 630Δerm than equivalent mutants in the JIR8094 and UK1 strain backgrounds. Analyses of this phenomenon suggest that only a subpopulation of C. difficile 630Δerm spores can spontaneously germinate, in contrast with Bacillus subtilis spores. We also show that C. difficile clinical isolates that encode truncated CspBA variants have sequencing errors that actually produce full-length CspBA.IMPORTANCEClostridium difficile is a leading cause of health care-associated infections. Initiation of C. difficile infection depends on spore germination, a process controlled by Csp family (pseudo)proteases. The CspC pseudoprotease is a germinant receptor that senses bile salts and activates the CspB protease, which activates a hydrolase required for germination. Previous work implicated the CspA pseudoprotease in controlling CspC incorporation into spores but relied on plasmid-based overexpression. Here we have used allelic exchange to study the functions of CspB and CspA. We determined that CspA production and/or stability depends on CspB and confirmed that CspA maximizes CspC incorporation into spores. Our data also suggest that a subpopulation of C. difficile spores spontaneously germinates in the absence of bile salt germinants and/or Csp proteins.
Collapse
|
202
|
Structural Characterization of Clostridium sordellii Spores of Diverse Human, Animal, and Environmental Origin and Comparison to Clostridium difficile Spores. mSphere 2017; 2:mSphere00343-17. [PMID: 28989969 PMCID: PMC5628289 DOI: 10.1128/msphere.00343-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 09/13/2017] [Indexed: 01/26/2023] Open
Abstract
Clostridium sordellii is a significant pathogen with mortality rates approaching 100%. It is the bacterial spore that is critical in initiating infection and disease. An understanding of spore structures as well as spore morphology across a range of strains may lead to a better understanding of C. sordellii infection and disease. However, the structural characteristics of the C. sordellii spores are limited. In this work, we have addressed this lack of detail and characterized the C. sordellii spore morphology. The use of traditional and advanced microscopy techniques has provided detailed new observations of C. sordellii spore structural features, which serve as a reference point for structural studies of spores from other bacterial species. Clostridium sordellii is an often-lethal bacterium causing human and animal disease. Crucial to the infectious cycle of C. sordellii is its ability to produce spores, which can germinate into toxin-producing vegetative bacteria under favorable conditions. However, structural details of the C. sordellii spore are lacking. Here, we used a range of electron microscopy techniques together with superresolution optical microscopy to characterize the C. sordellii spore morphology with an emphasis on the exosporium. The C. sordellii spore is made up of multiple layers with the exosporium presenting as a smooth balloon-like structure that is open at the spore poles. Focusing on the outer spore layers, we compared the morphologies of C. sordellii spores derived from different strains and determined that there is some variation between the spores, most notably with spores of some strains having tubular appendages. Since Clostridium difficile is a close relative of C. sordellii, their spores were compared by electron microscopy and their exosporia were found to be distinctly different from each other. This study therefore provides new structural details of the C. sordellii spore and offers insights into the physical structure of the exosporium across clostridial species. IMPORTANCEClostridium sordellii is a significant pathogen with mortality rates approaching 100%. It is the bacterial spore that is critical in initiating infection and disease. An understanding of spore structures as well as spore morphology across a range of strains may lead to a better understanding of C. sordellii infection and disease. However, the structural characteristics of the C. sordellii spores are limited. In this work, we have addressed this lack of detail and characterized the C. sordellii spore morphology. The use of traditional and advanced microscopy techniques has provided detailed new observations of C. sordellii spore structural features, which serve as a reference point for structural studies of spores from other bacterial species.
Collapse
|
203
|
Abstract
Clostridium difficile is a leading cause of nosocomial infections, causing disease that ranges from mild diarrhea to potentially fatal colitis. A variety of surface proteins, including flagella, enable C. difficile colonization of the intestine. Once in the intestine, toxigenic C. difficile secretes two glucosylating toxins, TcdA and TcdB, which elicit inflammation and diarrheal disease symptoms. Regulation of colonization factors and TcdA and TcdB is an intense area of research in C. difficile biology. A recent publication from our group describes a novel regulatory mechanism that mediates the ON/OFF expression of co-regulated virulence factors of C. difficile, flagella and toxins. Herein, we review key findings from our work, present new data, and speculate the functional consequence of the ON/OFF expression of these virulence factors during host infection.
Collapse
Affiliation(s)
- Brandon R. Anjuwon-Foster
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Rita Tamayo
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA,CONTACT Rita Tamayo 125 Mason Farm Rd., CB #7290, Chapel Hill, NC, 27599
| |
Collapse
|
204
|
Blanco N, Foxman B, Malani AN, Zhang M, Walk S, Rickard AH, Eisenberg MC. An in silico evaluation of treatment regimens for recurrent Clostridium difficile infection. PLoS One 2017; 12:e0182815. [PMID: 28800598 PMCID: PMC5553947 DOI: 10.1371/journal.pone.0182815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 07/25/2017] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Clostridium difficile infection (CDI) is a significant nosocomial infection worldwide, that recurs in as many as 35% of infections. Risk of CDI recurrence varies by ribotype, which also vary in sporulation and germination rates. Whether sporulation/germination mediate risk of recurrence and effectiveness of treatment of recurring CDI remains unclear. We aim to assess the role of sporulation/germination patterns on risk of recurrence, and the relative effectiveness of the recommended tapered/pulsing regimens using an in silico model. METHODS We created a compartmental in-host mathematical model of CDI, composed of vegetative cells, toxins, and spores, to explore whether sporulation and germination have an impact on recurrence rates. We also simulated the effectiveness of three tapered/pulsed vancomycin regimens by ribotype. RESULTS Simulations underscored the importance of sporulation/germination patterns in determining pathogenicity and transmission. All recommended regimens for recurring CDI tested were effective in reducing risk of an additional recurrence. Most modified regimens were still effective even after reducing the duration or dosage of vancomycin. However, the effectiveness of treatment varied by ribotype. CONCLUSION Current CDI vancomycin regimen for treating recurrent cases should be studied further to better balance associated risks and benefits.
Collapse
Affiliation(s)
- Natalia Blanco
- Department of Epidemiology, School of Public Health, University of Michigan. Ann Arbor, Michigan, United States of America
| | - Betsy Foxman
- Department of Epidemiology, School of Public Health, University of Michigan. Ann Arbor, Michigan, United States of America
| | - Anurag N. Malani
- Department of Infection Prevention & Control, Department of Internal Medicine, Division of Infectious Diseases, St. Joseph Mercy Health System, Ann Arbor, Michigan, United States of America
| | - Min Zhang
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Seth Walk
- Department of Microbiology and Immunology, College of Letters & Science, Montana State, Bozeman, Montana, United States of America
| | - Alexander H. Rickard
- Department of Epidemiology, School of Public Health, University of Michigan. Ann Arbor, Michigan, United States of America
| | - Marisa C. Eisenberg
- Department of Epidemiology, School of Public Health, University of Michigan. Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
205
|
Mooyottu S, Flock G, Venkitanarayanan K. Carvacrol reduces Clostridium difficile sporulation and spore outgrowth in vitro. J Med Microbiol 2017; 66:1229-1234. [PMID: 28786786 DOI: 10.1099/jmm.0.000515] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
PURPOSE Clostridium difficile is an anaerobic spore-forming pathogen that causes a serious toxin-mediated enteric disease in humans. Therapeutic agents that are capable of reducing C. difficile spore production could significantly minimize the transmission and relapse of C. difficile infections. This study investigated the efficacy of a food-grade, plant-derived compound, carvacrol (CR), in reducing C. difficile spore production, germination and spore outgrowth. METHODOLOGY Two hyper-virulent C. difficile isolates (ATCC BAA 1870 and 1805) were grown with or without a sub-inhibitory concentration (SIC) of CR. Total viable counts and heat-resistant spore counts were determined at different time intervals. Moreover, spores and vegetative cells were visualized using phase-contrast microscopy. To determine the effect of CR on C. difficile germination and spore outgrowth, C. difficile spores were seeded in germination medium with or without the SIC and MIC of CR, and spore germination and spore outgrowth were measured by recording optical density at 600 nm. The effect of CR on C. difficile sporulation genes was also investigated using real-time qPCR. RESULTS Carvacrol significantly reduced sporulation in C. difficile and down-regulated critical genes involved in spore production (P<0.05). The SIC or MIC of CR did not inhibit C. difficile spore germination; however, the MIC of CR completely inhibited spore outgrowth. CONCLUSION The results suggest that CR could potentially be used to control C. difficile by reducing spore production and outgrowth.
Collapse
Affiliation(s)
- Shankumar Mooyottu
- Department of Animal Science, University of Connecticut, Storrs, CT 06269, USA
| | - Genevieve Flock
- Department of Animal Science, University of Connecticut, Storrs, CT 06269, USA
| | | |
Collapse
|
206
|
Kochan TJ, Somers MJ, Kaiser AM, Shoshiev MS, Hagan AK, Hastie JL, Giordano NP, Smith AD, Schubert AM, Carlson PE, Hanna PC. Intestinal calcium and bile salts facilitate germination of Clostridium difficile spores. PLoS Pathog 2017; 13:e1006443. [PMID: 28704538 PMCID: PMC5509370 DOI: 10.1371/journal.ppat.1006443] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 06/03/2017] [Indexed: 12/26/2022] Open
Abstract
Clostridium difficile (C. difficile) is an anaerobic gram-positive pathogen that is the leading cause of nosocomial bacterial infection globally. C. difficile infection (CDI) typically occurs after ingestion of infectious spores by a patient that has been treated with broad-spectrum antibiotics. While CDI is a toxin-mediated disease, transmission and pathogenesis are dependent on the ability to produce viable spores. These spores must become metabolically active (germinate) in order to cause disease. C. difficile spore germination occurs when spores encounter bile salts and other co-germinants within the small intestine, however, the germination signaling cascade is unclear. Here we describe a signaling role for Ca2+ during C. difficile spore germination and provide direct evidence that intestinal Ca2+ coordinates with bile salts to stimulate germination. Endogenous Ca2+ (released from within the spore) and a putative AAA+ ATPase, encoded by Cd630_32980, are both essential for taurocholate-glycine induced germination in the absence of exogenous Ca2+. However, environmental Ca2+ replaces glycine as a co-germinant and circumvents the need for endogenous Ca2+ fluxes. Cd630_32980 is dispensable for colonization in a murine model of C. difficile infection and ex vivo germination in mouse ileal contents. Calcium-depletion of the ileal contents prevented mutant spore germination and reduced WT spore germination by 90%, indicating that Ca2+ present within the gastrointestinal tract plays a critical role in C. difficile germination, colonization, and pathogenesis. These data provide a biological mechanism that may explain why individuals with inefficient intestinal calcium absorption (e.g., vitamin D deficiency, proton pump inhibitor use) are more prone to CDI and suggest that modulating free intestinal calcium is a potential strategy to curb the incidence of CDI. The anaerobic, spore-forming bacterium Clostridium difficile (C. difficile) is a prominent pathogen in hospitals worldwide and the leading cause of nosocomial diarrhea. Numerous risk factors are associated with C. difficile infections (CDIs) including: antibiotics, advanced age, vitamin D deficiency, and proton pump inhibitors. Antibiotic use disrupts the intestinal microbiota allowing for C. difficile to colonize, however, why these other risk factors increase CDI incidence is unclear. Notably, deficient intestinal calcium absorption (i.e., increased calcium levels) is associated with these risk factors. In this work, we investigate the role of calcium in C. difficile spore germination. C. difficile spores are the infectious particles and they must become metabolically active (germinate) to cause disease. Here, we show that calcium is required for C. difficile germination, specifically activating the key step of cortex hydrolysis, and that this calcium can be derived from either within the spore or the environment. We also demonstrate that intestinal calcium is required for efficient spore germination in vivo, suggesting that intestinal concentrations of other co-germinants are insufficient to induce C. difficile germination. Collectively, these data provide a mechanism that explains the strong clinical correlations between increased intestinal calcium levels and risk of CDI.
Collapse
Affiliation(s)
- Travis J. Kochan
- University of Michigan Medical School, Department of Microbiology and Immunology. Ann Arbor, Michigan, United States of America
| | - Madeline J. Somers
- University of Michigan Medical School, Department of Microbiology and Immunology. Ann Arbor, Michigan, United States of America
| | - Alyssa M. Kaiser
- University of Michigan Medical School, Department of Microbiology and Immunology. Ann Arbor, Michigan, United States of America
| | - Michelle S. Shoshiev
- University of Michigan Medical School, Department of Microbiology and Immunology. Ann Arbor, Michigan, United States of America
| | - Ada K. Hagan
- University of Michigan Medical School, Department of Microbiology and Immunology. Ann Arbor, Michigan, United States of America
| | - Jessica L. Hastie
- Center for Biologics Evaluation and Research, US Food and Drug Administration. Silver Spring, Maryland, United States of America
| | - Nicole P. Giordano
- Center for Biologics Evaluation and Research, US Food and Drug Administration. Silver Spring, Maryland, United States of America
| | - Ashley D. Smith
- Center for Biologics Evaluation and Research, US Food and Drug Administration. Silver Spring, Maryland, United States of America
| | - Alyxandria M. Schubert
- Center for Biologics Evaluation and Research, US Food and Drug Administration. Silver Spring, Maryland, United States of America
| | - Paul E. Carlson
- Center for Biologics Evaluation and Research, US Food and Drug Administration. Silver Spring, Maryland, United States of America
| | - Philip C. Hanna
- University of Michigan Medical School, Department of Microbiology and Immunology. Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
207
|
Abstract
Dormant Bacillales and Clostridiales spores begin to grow when small molecules (germinants) trigger germination, potentially leading to food spoilage or disease. Germination-specific proteins sense germinants, transport small molecules, and hydrolyze specific bonds in cortex peptidoglycan and specific proteins. Major events in germination include (a) germinant sensing; (b) commitment to germinate; (c) release of spores' depot of dipicolinic acid (DPA); (d) hydrolysis of spores' peptidoglycan cortex; and (e) spore core swelling and water uptake, cell wall peptidoglycan remodeling, and restoration of core protein and inner spore membrane lipid mobility. Germination is similar between Bacillales and Clostridiales, but some species differ in how germinants are sensed and how cortex hydrolysis and DPA release are triggered. Despite detailed knowledge of the proteins and signal transduction pathways involved in germination, precisely what some germination proteins do and how they do it remain unclear.
Collapse
Affiliation(s)
- Peter Setlow
- Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut 06030-3305;
| | - Shiwei Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China;
| | - Yong-Qing Li
- Department of Physics, East Carolina University, Greenville, North Carolina 27858-4353;
| |
Collapse
|
208
|
Abstract
Spores of Clostridiales and Bacillales are encased in a complex series of concentric shells that provide protection, facilitate germination, and mediate interactions with the environment. Analysis of diverse spore-forming species by thin-section transmission electron microscopy reveals that the number and morphology of these encasing shells vary greatly. In some species, they appear to be composed of a small number of discrete layers. In other species, they can comprise multiple, morphologically complex layers. In addition, spore surfaces can possess elaborate appendages. For all their variability, there is a consistent architecture to the layers encasing the spore. A hallmark of all Clostridiales and Bacillales spores is the cortex, a layer made of peptidoglycan. In close association with the cortex, all species examined possess, at a minimum, a series of proteinaceous layers, called the coat. In some species, including Bacillus subtilis, only the coat is present. In other species, including Bacillus anthracis, an additional layer, called the exosporium, surrounds the coat. Our goals here are to review the present understanding of the structure, composition, assembly, and functions of the coat, primarily in the model organism B. subtilis, but also in the small but growing number of other spore-forming species where new data are showing that there is much to be learned beyond the relatively well-developed basis of knowledge in B. subtilis. To help summarize this large field and define future directions for research, we will focus on key findings in recent years.
Collapse
|
209
|
Abstract
To survive adverse conditions, some bacterial species are capable of developing into a cell type, the "spore," which exhibits minimal metabolic activity and remains viable in the presence of multiple environmental challenges. For some pathogenic bacteria, this developmental state serves as a means of survival during transmission from one host to another. Spores are the highly infectious form of these bacteria. Upon entrance into a host, specific signals facilitate germination into metabolically active replicating organisms, resulting in disease pathogenesis. In this article, we will review spore structure and function in well-studied pathogens of two genera, Bacillus and Clostridium, focusing on Bacillus anthracis and Clostridium difficile, and explore current data regarding the lifestyles of these bacteria outside the host and transmission from one host to another.
Collapse
|
210
|
Corver J, Cordo' V, van Leeuwen HC, Klychnikov OI, Hensbergen PJ. Covalent attachment and Pro-Pro endopeptidase (PPEP-1)-mediated release of Clostridium difficile cell surface proteins involved in adhesion. Mol Microbiol 2017. [PMID: 28636257 DOI: 10.1111/mmi.13736] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In the past decade, Clostridium difficile has emerged as an important gut pathogen. This anaerobic, Gram-positive bacterium is the main cause of infectious nosocomial diarrhea. Whereas much is known about the mechanism through which the C. difficile toxins cause diarrhea, relatively little is known about the dynamics of adhesion and motility, which is mediated by cell surface proteins. This review will discuss the recent advances in our understanding of the sortase-mediated covalent attachment of cell surface (adhesion) proteins to the peptidoglycan layer of C. difficile and their release through the action of a highly specific secreted metalloprotease (Pro-Pro endopeptidase 1, PPEP-1). Specific emphasis will be on a model in which PPEP-1 and its substrates control the switch from a sessile to motile phenotype in C. difficile, and how this is regulated by the cyclic dinucleotide c-di-GMP (3'-5' cyclic dimeric guanosine monophosphate).
Collapse
Affiliation(s)
- Jeroen Corver
- Department of Medical Microbiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Valentina Cordo'
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Hans C van Leeuwen
- Department of Medical Microbiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Oleg I Klychnikov
- Laboratory for Biocrystallography, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Paul J Hensbergen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
211
|
Abstract
Unrelated spore-forming bacteria share unique characteristics stemming from the presence of highly resistant endospores, leading to similar challenges in health and disease. These characteristics are related to the presence of these highly transmissible spores, which are commonly spread within the environment and are implicated in host-to-host transmission. In humans, spore-forming bacteria contribute to a variety of pathological processes that share similar characteristics, including persistence, chronicity, relapses and the maintenance of the resistome. We first outline the necessity of characterizing the totality of the spore-forming bacteria as the sporobiota based on their unique common characteristics. We further propose that the collection of all genes of spore-forming bacteria be known as the sporobiome. Such differentiation is critical for exploring the cross-talk between the sporobiota and other members of the gut microbiota, and will allow for a better understanding of the implications of the sporobiota and sporobiome in a variety of pathologies and the spread of antibiotic resistance.
Collapse
Affiliation(s)
- George Tetz
- Human Microbiology Institute, 423 West 127 Street, New York, NY 10027 USA
| | - Victor Tetz
- Human Microbiology Institute, 423 West 127 Street, New York, NY 10027 USA
| |
Collapse
|
212
|
Gil F, Lagos-Moraga S, Calderón-Romero P, Pizarro-Guajardo M, Paredes-Sabja D. Updates on Clostridium difficile spore biology. Anaerobe 2017; 45:3-9. [DOI: 10.1016/j.anaerobe.2017.02.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 02/16/2017] [Accepted: 02/21/2017] [Indexed: 02/08/2023]
|
213
|
Kheradmand M, Jalilian S, Alvandi A, Abiri R. Prevalence of Clostridium difficile and its toxigenic genotype in beef samples in west of Iran. IRANIAN JOURNAL OF MICROBIOLOGY 2017; 9:169-173. [PMID: 29225756 PMCID: PMC5719511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
BACKGROUND AND OBJECTIVES Clostridium difficile is the leading cause of nosocomial diarrhea and pseudomembranous colitis. The prevalence of C. difficile infection differs in various geographical areas. The aim of this study was to determine the prevalence of C. difficile isolates and the prevalence of cdd3, tcdA and tcdB genes in beef samples in Kermanshah Province. MATERIALS AND METHODS One hundred ground beef samples were randomly collected from the butchers of Kermanshah province during March 2014 to March 2015. Following alcohol shock, minced meat samples were incubated in a specific culture medium for 5 to 7 days. The suspicious colonies were analyzed by biochemical tests and frequency of C. difficile and cdd3, tcdA and tcdB genes was assessed by PCR using specific primers. RESULTS In total, 30% samples were positive for C. difficile and all the isolates harbored Cdd3 gene. Combined dual-gene frequency of A+B+, A-B+ and A+B- strains in the positive were 0%, 3.3%, and 26.6% respectively, while 21 samples (70%) were non-toxigenic (A-B-). CONCLUSION In this study, the presence of C. difficile in beef as a source of contamination was confirmed. It was also shown that the incidence of C. difficile in ground meat was relatively higher than many other studies.
Collapse
Affiliation(s)
| | | | | | - Ramin Abiri
- Corresponding author: Ramin Abiri, PhD, Microbiology Department, Faculty of Medicine, Kermanshah University of Medical Sciences, Shirudi Blvd., Parastar Blvd, Postal code: 6714869914, Kermanshah, Iran. Tel: +98-912-277-3648, Fax: +98-833-427-4621,
| |
Collapse
|
214
|
Ferreira TG, Moura H, Barr JR, Pilotto Domingues RMC, Ferreira EDO. Ribotypes associated with Clostridium difficile outbreaks in Brazil display distinct surface protein profiles. Anaerobe 2017; 45:120-128. [PMID: 28435010 DOI: 10.1016/j.anaerobe.2017.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 03/28/2017] [Accepted: 04/01/2017] [Indexed: 11/18/2022]
Abstract
Clostridium difficile is a spore-forming anaerobic intestinal pathogen that causes Clostridium difficile infection (CDI). C. difficile is the leading cause of toxin-mediated nosocomial antibiotic-associated diarrhea. The pathogenesis of CDI is attributed to two major virulence factors, TcdA and TcdB toxins, that cause the symptomatic infection. C. difficile also expresses a number of key proteins, including cell wall proteins (CWPs). S-layer proteins (SLPs) are CWPs that form a paracrystalline surface array that coats the surface of the bacterium. SLPs have a role in C. difficile binding to the gastrointestinal tract, but their importance in virulence need to be better elucidated. Here, we describe bottom-up proteomics analysis of surface-enriched proteins fractions obtained through glycine extraction of five C. difficile clinical isolates from Brazil using gel-based and gel-free approaches. We were able to identify approximately 250 proteins for each strain, among them SlpA, Cwp2, Cwp6, CwpV and Cwp84. Identified CWPs presented different amino acid coverage, which might suggest differences in post-translational modifications. Proteomic analysis of SLPs from ribotype 133, agent of C. difficile outbreaks in Brazil, revealed unique proteins and provided additional information towards in depth characterization of the strains causing CDI in Brazil.
Collapse
Affiliation(s)
- Thais Gonçalves Ferreira
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Laboratório de Biologia de Anaeróbios, Rio de Janeiro, Brazil
| | - Hercules Moura
- Centers for Disease Control and Prevention - CDC, Division of Laboratory Sciences, Atlanta, GA, USA
| | - John R Barr
- Centers for Disease Control and Prevention - CDC, Division of Laboratory Sciences, Atlanta, GA, USA
| | - Regina M C Pilotto Domingues
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Laboratório de Biologia de Anaeróbios, Rio de Janeiro, Brazil.
| | - Eliane de Oliveira Ferreira
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Laboratório de Biologia de Anaeróbios, Rio de Janeiro, Brazil; Universidade Federal do Rio de Janeiro - Polo Xerém, Rio de Janeiro, Brazil
| |
Collapse
|
215
|
Sporulation: how to survive on planet Earth (and beyond). Curr Genet 2017; 63:831-838. [PMID: 28421279 DOI: 10.1007/s00294-017-0694-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 04/06/2017] [Accepted: 04/08/2017] [Indexed: 02/07/2023]
Abstract
Sporulation is a strategy widely utilized by a wide variety of organisms to adapt to changes in their individual environmental niches and survive in time and/or space until they encounter conditions acceptable for vegetative growth. The spores produced by bacteria have been the subjects of extensive studies, and several systems such as Bacillus subtilis have provided ample opportunities to understand the molecular basis of spore biogenesis and germination. In contrast, the spores of other microbes, such as fungi, are relatively poorly understood. Studies of sporulation in model systems such as Saccharomyces cerevisiae and Aspergillus nidulans have established a basis for investigating eukaryotic spores, but very little is known at the molecular level about how spores function. This is especially true among the spores of human fungal pathogens such as the most common cause of fatal fungal disease, Cryptococcus neoformans. Recent proteomic studies are helping to determine the molecular mechanisms by which pathogenic fungal spores are formed, persist and germinate into actively growing agents of human disease.
Collapse
|
216
|
Choo MK, Sano Y, Kim C, Yasuda K, Li XD, Lin X, Stenzel-Poore M, Alexopoulou L, Ghosh S, Latz E, Rifkin IR, Chen ZJ, Stewart GC, Chong H, Park JM. TLR sensing of bacterial spore-associated RNA triggers host immune responses with detrimental effects. J Exp Med 2017; 214:1297-1311. [PMID: 28400473 PMCID: PMC5413331 DOI: 10.1084/jem.20161141] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 12/05/2016] [Accepted: 02/14/2017] [Indexed: 12/18/2022] Open
Abstract
The spores of pathogenic bacteria are involved in host entry and the initial encounter with the host immune system. How bacterial spores interact with host immunity, however, remains poorly understood. Here, we show that the spores of Bacillus anthracis (BA), the etiologic agent of anthrax, possess an intrinsic ability to induce host immune responses. This immunostimulatory activity is attributable to high amounts of RNA present in the spore surface layer. RNA-sensing TLRs, TLR7, and TLR13 in mice and their human counterparts, are responsible for detecting and triggering the host cell response to BA spores, whereas TLR2 mediates the sensing of vegetative BA. BA spores, but not vegetative BA, induce type I IFN (IFN-I) production. Although TLR signaling in itself affords protection against BA, spore RNA-induced IFN-I signaling is disruptive to BA clearance. Our study suggests a role for bacterial spore-associated RNA in microbial pathogenesis and illustrates a little known aspect of interactions between the host and spore-forming bacteria.
Collapse
Affiliation(s)
- Min-Kyung Choo
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129
| | - Yasuyo Sano
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129
| | | | - Kei Yasuda
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston, MA 02118
| | - Xiao-Dong Li
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Xin Lin
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Mary Stenzel-Poore
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239
| | - Lena Alexopoulou
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Université, UM2, 13288 Marseille, France
| | - Sankar Ghosh
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Eicke Latz
- Institute of Innate Immunity, University Hospital, University of Bonn, 53127 Bonn, Germany
| | - Ian R Rifkin
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston, MA 02118
| | - Zhijian J Chen
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - George C Stewart
- Department of Veterinary Pathobiology and Bond Life Science Center, University of Missouri, Columbia, MO 65211
| | | | - Jin Mo Park
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129
| |
Collapse
|
217
|
Decker AR, Ramamurthi KS. Cell Death Pathway That Monitors Spore Morphogenesis. Trends Microbiol 2017; 25:637-647. [PMID: 28408070 DOI: 10.1016/j.tim.2017.03.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 03/02/2017] [Accepted: 03/06/2017] [Indexed: 12/16/2022]
Abstract
The use of quality control mechanisms to stall developmental pathways or completely remove defective cells from a population is a widespread strategy to ensure the integrity of morphogenetic programs. Endospore formation (sporulation) is a well conserved microbial developmental strategy in the Firmicutes phylum wherein a progenitor cell that faces starvation differentiates to form a dormant spore. Despite the conservation of this strategy, it has been unclear what selective pressure maintains the fitness of this developmental program, composed of hundreds of unique genes, during multiple rounds of vegetative growth when sporulation is not required. Recently, a quality control pathway was discovered in Bacillus subtilis which monitors the assembly of the spore envelope and specifically eliminates, through cell lysis, sporulating cells that assemble the envelope incorrectly. Here, we review the use of checkpoints that govern the entry into sporulation in B. subtilis and discuss how the use of regulated cell death pathways during bacterial development may help maintain the fidelity of the sporulation program in the species.
Collapse
Affiliation(s)
- Amanda R Decker
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kumaran S Ramamurthi
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
218
|
Survival of Clostridium difficile spores at low water activity. Food Microbiol 2017; 65:274-278. [PMID: 28400013 DOI: 10.1016/j.fm.2017.03.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 02/28/2017] [Accepted: 03/15/2017] [Indexed: 02/03/2023]
Abstract
Clostridium difficile is frequently found in meat and meat products. Germination efficiency, defined as colony formation, was previously investigated at temperatures found in meat handling and processing for spores of strain M120 (animal isolate), R20291 (human isolate), and DK1 (beef isolate). In this study, germination efficiency of these spore strains was assessed in phosphate buffered saline (PBS, aw ∼1.00), commercial beef jerky (aw ∼0.82/0.72), and aw-adjusted PBS (aw ∼0.82/0.72). Surface hydrophobicity was followed for spores stored in PBS. After three months and for all PBS aw levels tested, M120 and DK1 spores showed a ∼1 decimal reduction in colony formation but this was not the case when kept in beef jerky suggesting a protective food matrix effect. During storage, and with no significant aw effect, an increase in colony formation was observed for R20291 spores kept in PBS (∼2 decimal log increase) and beef jerky (∼1 decimal log increase) suggesting a loss of spore superdormancy. For all strains, no significant changes in spore surface hydrophobicity were observed after storage. Collectively, these results indicate that depending on the germination properties of C. difficile spores and the media properties, their germination efficiency may increase or decrease during long term food storage.
Collapse
|
219
|
Sporicidal activity of ceragenin CSA-13 against Bacillus subtilis. Sci Rep 2017; 7:44452. [PMID: 28294162 PMCID: PMC5353641 DOI: 10.1038/srep44452] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 02/07/2017] [Indexed: 02/07/2023] Open
Abstract
Spore-forming bacteria are a class of microorganisms that possess the ability to survive in extreme environmental conditions. Morphological features of spores assure their resistance to stress factors such as high temperature, radiation, disinfectants, and drying. Consequently, spore elimination in industrial and medical environments is very challenging. Ceragenins are a new class of cationic lipids characterized by a broad spectrum of bactericidal activity resulting from amphipathic nature and membrane-permeabilizing properties. To assess the impact of ceragenin CSA-13 on spores formed by Bacillus subtilis (ATCC 6051), we performed the series of experiments confirming that amphipathic and membrane-permeabilizing properties of CSA-13 are sufficient to disrupt the structure of B. subtilis spores resulting in decreased viability. Raman spectroscopy analysis provided evidence that upon CSA-13 treatment the number of CaDPA-positive spores was clearly diminished. As a consequence, a loss of impermeability of the inner membranes of spores, accompanied by a decrease in spore resistance and killing take place. In addition to their broad antimicrobial spectrum, ceragenins possess great potential for development as new sporicidal agents.
Collapse
|
220
|
Anjuwon-Foster BR, Tamayo R. A genetic switch controls the production of flagella and toxins in Clostridium difficile. PLoS Genet 2017; 13:e1006701. [PMID: 28346491 PMCID: PMC5386303 DOI: 10.1371/journal.pgen.1006701] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 04/10/2017] [Accepted: 03/16/2017] [Indexed: 12/15/2022] Open
Abstract
In the human intestinal pathogen Clostridium difficile, flagella promote adherence to intestinal epithelial cells. Flagellar gene expression also indirectly impacts production of the glucosylating toxins, which are essential to diarrheal disease development. Thus, factors that regulate the expression of the flgB operon will likely impact toxin production in addition to flagellar motility. Here, we report the identification a "flagellar switch" that controls the phase variable production of flagella and glucosylating toxins. The flagellar switch, located upstream of the flgB operon containing the early stage flagellar genes, is a 154 bp invertible sequence flanked by 21 bp inverted repeats. Bacteria with the sequence in one orientation expressed flagellum and toxin genes, produced flagella, and secreted the toxins ("flg phase ON"). Bacteria with the sequence in the inverse orientation were attenuated for flagellar and toxin gene expression, were aflagellate, and showed decreased toxin secretion ("flg phase OFF"). The orientation of the flagellar switch is reversible during growth in vitro. We provide evidence that gene regulation via the flagellar switch occurs post-transcription initiation and requires a C. difficile-specific regulatory factor to destabilize or degrade the early flagellar gene mRNA when the flagellar switch is in the OFF orientation. Lastly, through mutagenesis and characterization of flagellar phase locked isolates, we determined that the tyrosine recombinase RecV, which catalyzes inversion at the cwpV switch, is also responsible for inversion at the flagellar switch in both directions. Phase variable flagellar motility and toxin production suggests that these important virulence factors have both advantageous and detrimental effects during the course of infection.
Collapse
Affiliation(s)
- Brandon R. Anjuwon-Foster
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Rita Tamayo
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
221
|
Warda AK, Xiao Y, Boekhorst J, Wells-Bennik MHJ, Nierop Groot MN, Abee T. Analysis of Germination Capacity and Germinant Receptor (Sub)clusters of Genome-Sequenced Bacillus cereus Environmental Isolates and Model Strains. Appl Environ Microbiol 2017; 83:e02490-16. [PMID: 27881417 PMCID: PMC5288832 DOI: 10.1128/aem.02490-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 11/17/2016] [Indexed: 12/28/2022] Open
Abstract
Spore germination of 17 Bacillus cereus food isolates and reference strains was evaluated using flow cytometry analysis in combination with fluorescent staining at a single-spore level. This approach allowed for rapid collection of germination data under more than 20 conditions, including heat activation of spores, germination in complex media (brain heart infusion [BHI] and tryptone soy broth [TSB]), and exposure to saturating concentrations of single amino acids and the combination of alanine and inosine. Whole-genome sequence comparison revealed a total of 11 clusters of operons encoding germinant receptors (GRs): GerK, GerI, and GerL were present in all strains, whereas GerR, GerS, GerG, GerQ, GerX, GerF, GerW, and GerZ (sub)clusters showed a more diverse presence/absence in different strains. The spores of tested strains displayed high diversity with regard to their sensitivity and responsiveness to selected germinants and heat activation. The two laboratory strains, B. cereus ATCC 14579 and ATCC 10987, and 11 food isolates showed a good germination response under a range of conditions, whereas four other strains (B. cereus B4085, B4086, B4116, and B4153) belonging to phylogenetic group IIIA showed a very weak germination response even in BHI and TSB media. Germination responses could not be linked to specific (combinations of) GRs, but it was noted that the four group IIIA strains contained pseudogenes or variants of subunit C in their gerL cluster. Additionally, two of those strains (B4086 and B4153) carried pseudogenes in the gerK and gerRI (sub)clusters that possibly affected the functionality of these GRs. IMPORTANCE Germination of bacterial spores is a critical step before vegetative growth can resume. Food products may contain nutrient germinants that trigger germination and outgrowth of Bacillus species spores, possibly leading to food spoilage or foodborne illness. Prediction of spore germination behavior is, however, very challenging, especially for spores of natural isolates that tend to show more diverse germination responses than laboratory strains. The approach used has provided information on the genetic diversity in GRs and corresponding subclusters encoded by B. cereus strains, as well as their germination behavior and possible associations with GRs, and it provides a basis for further extension of knowledge on the role of GRs in B. cereus (group member) ecology and transmission to the host.
Collapse
Affiliation(s)
- Alicja K Warda
- TI Food and Nutrition, Wageningen, The Netherlands
- Laboratory of Food Microbiology, Wageningen University & Research, Wageningen, The Netherlands
- Wageningen Food and Biobased Research, Wageningen, The Netherlands
| | - Yinghua Xiao
- TI Food and Nutrition, Wageningen, The Netherlands
- Laboratory of Food Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Jos Boekhorst
- TI Food and Nutrition, Wageningen, The Netherlands
- NIZO Food Research B.V., Ede, The Netherlands
| | - Marjon H J Wells-Bennik
- TI Food and Nutrition, Wageningen, The Netherlands
- NIZO Food Research B.V., Ede, The Netherlands
| | - Masja N Nierop Groot
- TI Food and Nutrition, Wageningen, The Netherlands
- Wageningen Food and Biobased Research, Wageningen, The Netherlands
| | - Tjakko Abee
- TI Food and Nutrition, Wageningen, The Netherlands
- Laboratory of Food Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
222
|
Evolutionary clade affects resistance of Clostridium difficile spores to Cold Atmospheric Plasma. Sci Rep 2017; 7:41814. [PMID: 28155914 PMCID: PMC5290531 DOI: 10.1038/srep41814] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 12/30/2016] [Indexed: 12/18/2022] Open
Abstract
Clostridium difficile is a spore forming bacterium and the leading cause of colitis and antibiotic associated diarrhoea in the developed world. Spores produced by C. difficile are robust and can remain viable for months, leading to prolonged healthcare-associated outbreaks with high mortality. Exposure of C. difficile spores to a novel, non-thermal atmospheric pressure gas plasma was assessed. Factors affecting sporicidal efficacy, including percentage of oxygen in the helium carrier gas admixture, and the effect on spores from different strains representing the five evolutionary C. difficile clades was investigated. Strains from different clades displayed varying resistance to cold plasma. Strain R20291, representing the globally epidemic ribotype 027 type, was the most resistant. However all tested strains displayed a ~3 log reduction in viable spore counts after plasma treatment for 5 minutes. Inactivation of a ribotype 078 strain, the most prevalent clinical type seen in Northern Ireland, was further assessed with respect to surface decontamination, pH, and hydrogen peroxide concentration. Environmental factors affected plasma activity, with dry spores without the presence of organic matter being most susceptible. This study demonstrates that cold atmospheric plasma can effectively inactivate C. difficile spores, and highlights factors that can affect sporicidal activity.
Collapse
|
223
|
Vom Steeg LG, Klein SL. Sex Steroids Mediate Bidirectional Interactions Between Hosts and Microbes. Horm Behav 2017; 88:45-51. [PMID: 27816626 PMCID: PMC6530912 DOI: 10.1016/j.yhbeh.2016.10.016] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/27/2016] [Accepted: 10/28/2016] [Indexed: 02/07/2023]
Abstract
The outcome of microbial infections in mammals, including humans, is affected by the age, sex, and reproductive status of the host suggesting a role for sex steroid hormones. Testosterone, estradiol, and progesterone, signaling through their respective steroid receptors, affect the functioning of immune cells to cause differential susceptibility to parasitic, bacterial, and viral infections. Microbes, including fungi, bacteria, parasites, and viruses, can also use sex steroid hormones and manipulate sex steroid receptor signaling mechanisms to increase their own survival and replication rate. The multifaceted use of sex steroid hormones by both microbes and hosts during infection forms the basis of this review. In the arms race between microbes and hosts, both hosts and microbes have evolved to utilize sex steroid hormone signaling mechanisms for survival.
Collapse
Affiliation(s)
- Landon G Vom Steeg
- W. Harry Feinstone Department of Molecular Microbiology & Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Sabra L Klein
- W. Harry Feinstone Department of Molecular Microbiology & Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
224
|
Burnum-Johnson KE, Kyle JE, Eisfeld AJ, Casey CP, Stratton KG, Gonzalez JF, Habyarimana F, Negretti NM, Sims AC, Chauhan S, Thackray LB, Halfmann PJ, Walters KB, Kim YM, Zink EM, Nicora CD, Weitz KK, Webb-Robertson BJM, Nakayasu ES, Ahmer B, Konkel ME, Motin V, Baric RS, Diamond MS, Kawaoka Y, Waters KM, Smith RD, Metz TO. MPLEx: a method for simultaneous pathogen inactivation and extraction of samples for multi-omics profiling. Analyst 2017; 142:442-448. [PMID: 28091625 PMCID: PMC5283721 DOI: 10.1039/c6an02486f] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The continued emergence and spread of infectious agents is of great concern, and systems biology approaches to infectious disease research can advance our understanding of host-pathogen relationships and facilitate the development of new therapies and vaccines. Molecular characterization of infectious samples outside of appropriate biosafety containment can take place only subsequent to pathogen inactivation. Herein, we describe a modified Folch extraction using chloroform/methanol that facilitates the molecular characterization of infectious samples by enabling simultaneous pathogen inactivation and extraction of proteins, metabolites, and lipids for subsequent mass spectrometry-based multi-omics measurements. This single-sample metabolite, protein and lipid extraction (MPLEx) method resulted in complete inactivation of clinically important bacterial and viral pathogens with exposed lipid membranes, including Yersinia pestis, Salmonella Typhimurium, and Campylobacter jejuni in pure culture, and Yersinia pestis, Campylobacter jejuni, and West Nile, MERS-CoV, Ebola, and influenza H7N9 viruses in infection studies. In addition, >99% inactivation, which increased with solvent exposure time, was also observed for pathogens without exposed lipid membranes including community-associated methicillin-resistant Staphylococcus aureus, Clostridium difficile spores and vegetative cells, and adenovirus type 5. The overall pipeline of inactivation and subsequent proteomic, metabolomic, and lipidomic analyses was evaluated using a human epithelial lung cell line infected with wild-type and mutant influenza H7N9 viruses, thereby demonstrating that MPLEx yields biomaterial of sufficient quality for subsequent multi-omics analyses. Based on these experimental results, we believe that MPLEx will facilitate systems biology studies of infectious samples by enabling simultaneous pathogen inactivation and multi-omics measurements from a single specimen with high success for pathogens with exposed lipid membranes.
Collapse
Affiliation(s)
| | - Jennifer E Kyle
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA.
| | - Amie J Eisfeld
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Cameron P Casey
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA.
| | - Kelly G Stratton
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA.
| | - Juan F Gonzalez
- Department of Microbial Infection and Immunity, Ohio State University, Columbus, OH, USA
| | - Fabien Habyarimana
- Department of Microbial Infection and Immunity, Ohio State University, Columbus, OH, USA
| | - Nicholas M Negretti
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Amy C Sims
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sadhana Chauhan
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Larissa B Thackray
- Departments of Medicine, Molecular Microbiology, Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Peter J Halfmann
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Kevin B Walters
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Young-Mo Kim
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA.
| | - Erika M Zink
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA.
| | - Carrie D Nicora
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA.
| | - Karl K Weitz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA.
| | - Bobbie-Jo M Webb-Robertson
- Computational and Statistical Analytics Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Ernesto S Nakayasu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA.
| | - Brian Ahmer
- Department of Microbial Infection and Immunity, Ohio State University, Columbus, OH, USA
| | - Michael E Konkel
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Vladimir Motin
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Michael S Diamond
- Departments of Medicine, Molecular Microbiology, Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Yoshihiro Kawaoka
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Katrina M Waters
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA.
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA.
| | - Thomas O Metz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA.
| |
Collapse
|
225
|
Updegrove TB, Ramamurthi KS. Geometric protein localization cues in bacterial cells. Curr Opin Microbiol 2017; 36:7-13. [PMID: 28110195 DOI: 10.1016/j.mib.2016.12.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 12/15/2016] [Accepted: 12/17/2016] [Indexed: 10/20/2022]
Abstract
Bacterial cells are highly organized at a molecular level. Understanding how specific proteins localize to their proper subcellular address has been a major challenge in bacterial cell biology. One mechanism, which appears to be increasingly more common, is the use of 'geometric cues' for protein localization. In this model, certain shape-sensing proteins recognize, and preferentially embed into, either negatively or positively curved (concave or convex, respectively) membranes. Here, we review examples of bacterial proteins that reportedly localize by sensing geometric cues and highlight emerging mechanistic understandings of how proteins may recognize subtle differences in membrane curvature.
Collapse
Affiliation(s)
- Taylor B Updegrove
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Kumaran S Ramamurthi
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States.
| |
Collapse
|
226
|
Edwards AN, McBride SM. Determination of the in vitro Sporulation Frequency of Clostridium difficile. Bio Protoc 2017; 7:e2125. [PMID: 28516125 DOI: 10.21769/bioprotoc.2125] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The anaerobic, gastrointestinal pathogen, Clostridium difficile, persists within the environment and spreads from host-to-host via its infectious form, the spore. To effectively study spore formation, the physical differentiation of vegetative cells from spores is required to determine the proportion of spores within a population of C. difficile. This protocol describes a method to accurately enumerate both viable vegetative cells and spores separately and subsequently calculate a sporulation frequency of a mixed C. difficile population from various in vitro growth conditions (Edwards et al., 2016b).
Collapse
Affiliation(s)
- Adrianne N Edwards
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, GA, USA
| | - Shonna M McBride
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, GA, USA
| |
Collapse
|
227
|
Zycinska K, Chmielewska M, Lenartowicz B, Hadzik-Blaszczyk M, Cieplak M, Kur Z, Krupa R, Wardyn KA. Antibiotic Treatment of Hospitalized Patients with Pneumonia Complicated by Clostridium Difficile Infection. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016. [PMID: 27966110 DOI: 10.1007/5584_2016_166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Clostridium difficile infection (CDI) is one of the most common gastrointestinal complication after antimicrobial treatment. It is estimated that CDI after pneumonia treatment is connected with a higher mortality than other causes of hospitalization. The aim of the study was to assess the relationship between the kind of antibiotic used for pneumonia treatment and mortality from post-pneumonia CDI. We addressed the issue by examining retrospectively the records of 217 patients who met the diagnostic criteria of CDI. Ninety four of those patients (43.3 %) came down with CDI infection after pneumonia treatment. Fifty of the 94 patients went through severe or severe and complicated CDI. The distribution of antecedent antibiotic treatment of pneumonia in these 50 patients was as follows: ceftriaxone in 14 (28 %) cases, amoxicillin with clavulanate in 9 (18 %), ciprofloxacin in 8 (16.0 %), clarithromycin in 7 (14 %), and cefuroxime and imipenem in 6 (12 %) each. The findings revealed a borderline enhancement in the proportion of deaths due to CDI in the ceftriaxone group compared with the ciprofloxacin, cefuroxime, and imipenem groups. The corollary is that ceftriaxone should be shunned in pneumonia treatment. The study demonstrates an association between the use of a specific antibiotic for pneumonia treatment and post-pneumonia mortality in patients who developed CDI.
Collapse
Affiliation(s)
- K Zycinska
- Department of Family Medicine with Internal and Metabolic Diseases Ward, Warsaw Medical University, 19/25 Stępinska Street, 00-739, Warsaw, Poland.
| | - M Chmielewska
- Department of Family Medicine with Internal and Metabolic Diseases Ward, Warsaw Medical University, 19/25 Stępinska Street, 00-739, Warsaw, Poland
| | - B Lenartowicz
- Department of Family Medicine with Internal and Metabolic Diseases Ward, Warsaw Medical University, 19/25 Stępinska Street, 00-739, Warsaw, Poland
| | - M Hadzik-Blaszczyk
- Department of Family Medicine with Internal and Metabolic Diseases Ward, Warsaw Medical University, 19/25 Stępinska Street, 00-739, Warsaw, Poland
| | - M Cieplak
- Department of Family Medicine with Internal and Metabolic Diseases Ward, Warsaw Medical University, 19/25 Stępinska Street, 00-739, Warsaw, Poland
| | - Z Kur
- Department of Family Medicine with Internal and Metabolic Diseases Ward, Warsaw Medical University, 19/25 Stępinska Street, 00-739, Warsaw, Poland
| | - R Krupa
- Department of Family Medicine with Internal and Metabolic Diseases Ward, Warsaw Medical University, 19/25 Stępinska Street, 00-739, Warsaw, Poland
| | - K A Wardyn
- Department of Family Medicine with Internal and Metabolic Diseases Ward, Warsaw Medical University, 19/25 Stępinska Street, 00-739, Warsaw, Poland
| |
Collapse
|
228
|
Warriner K, Xu C, Habash M, Sultan S, Weese S. Dissemination ofClostridium difficilein food and the environment: Significant sources ofC. difficilecommunity-acquired infection? J Appl Microbiol 2016; 122:542-553. [DOI: 10.1111/jam.13338] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 10/25/2016] [Accepted: 10/27/2016] [Indexed: 12/11/2022]
Affiliation(s)
- K. Warriner
- Department of Food Science; University of Guelph; Guelph ON Canada
| | - C. Xu
- Shanghai Ocean University; Shanghai China
| | - M. Habash
- School of Environmental Biology; University of Guelph; Guelph ON Canada
| | - S. Sultan
- School of Environmental Biology; University of Guelph; Guelph ON Canada
| | - S.J. Weese
- Pathobiology; University of Guelph; Guelph ON Canada
| |
Collapse
|
229
|
Dipicolinic Acid Release by Germinating Clostridium difficile Spores Occurs through a Mechanosensing Mechanism. mSphere 2016; 1:mSphere00306-16. [PMID: 27981237 PMCID: PMC5156672 DOI: 10.1128/msphere.00306-16] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 11/14/2016] [Indexed: 12/18/2022] Open
Abstract
Clostridium difficile is transmitted between hosts in the form of a dormant spore, and germination by C. difficile spores is required to initiate infection, because the toxins that are necessary for disease are not deposited on the spore form. Importantly, the C. difficile spore germination pathway represents a novel pathway for bacterial spore germination. Prior work has shown that the order of events during C. difficile spore germination (cortex degradation and DPA release) is flipped compared to the events during B. subtilis spore germination, a model organism. Here, we further characterize the C. difficile spore germination pathway and summarize our findings indicating that DPA release by germinating C. difficile spores occurs through a mechanosensing mechanism in response to the degradation of the spore cortex. Classically, dormant endospores are defined by their resistance properties, particularly their resistance to heat. Much of the heat resistance is due to the large amount of dipicolinic acid (DPA) stored within the spore core. During spore germination, DPA is released and allows for rehydration of the otherwise-dehydrated core. In Bacillus subtilis, 7 proteins are encoded by the spoVA operon and are important for DPA release. These proteins receive a signal from the activated germinant receptor and release DPA. This DPA activates the cortex lytic enzyme CwlJ, and cortex degradation begins. In Clostridium difficile, spore germination is initiated in response to certain bile acids and amino acids. These bile acids interact with the CspC germinant receptor, which then transfers the signal to the CspB protease. Activated CspB cleaves the cortex lytic enzyme, pro-SleC, to its active form. Subsequently, DPA is released from the core. C. difficile encodes orthologues of spoVAC, spoVAD, and spoVAE. Of these, the B. subtilis SpoVAC protein was shown to be capable of mechanosensing. Because cortex degradation precedes DPA release during C. difficile spore germination (opposite of what occurs in B. subtilis), we hypothesized that cortex degradation would relieve the osmotic constraints placed on the inner spore membrane and permit DPA release. Here, we assayed germination in the presence of osmolytes, and we found that they can delay DPA release from germinating C. difficile spores while still permitting cortex degradation. Together, our results suggest that DPA release during C. difficile spore germination occurs though a mechanosensing mechanism. IMPORTANCEClostridium difficile is transmitted between hosts in the form of a dormant spore, and germination by C. difficile spores is required to initiate infection, because the toxins that are necessary for disease are not deposited on the spore form. Importantly, the C. difficile spore germination pathway represents a novel pathway for bacterial spore germination. Prior work has shown that the order of events during C. difficile spore germination (cortex degradation and DPA release) is flipped compared to the events during B. subtilis spore germination, a model organism. Here, we further characterize the C. difficile spore germination pathway and summarize our findings indicating that DPA release by germinating C. difficile spores occurs through a mechanosensing mechanism in response to the degradation of the spore cortex.
Collapse
|
230
|
Usacheva EA, Jin JP, Peterson LR. Host response to Clostridium difficile infection: Diagnostics and detection. J Glob Antimicrob Resist 2016; 7:93-101. [PMID: 27693863 PMCID: PMC5124533 DOI: 10.1016/j.jgar.2016.08.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/29/2016] [Accepted: 08/08/2016] [Indexed: 02/08/2023] Open
Abstract
Clostridium difficile infection (CDI) is a significant healthcare concern worldwide, and C. difficile is recognised as the most frequent aetiological agent of infectious healthcare-associated diarrhoea in hospitalised adult patients. The clinical manifestation of CDI varies from self-limited diarrhoea to life-threatening colitis. Such a broad disease spectrum can be explained by the impact of host factors. Currently, a complex CDI aetiology is widely accepted, acknowledging the interaction between bacteria and the host. C. difficile strains producing clostridial toxins A and B are considered toxigenic and can cause disease; those not producing the toxins are non-pathogenic. A person colonised with a toxigenic strain will not necessarily develop CDI. It is imperative to recognise patients with active disease from those only colonised with this pathogen and to implement appropriate treatment. This can be achieved by diagnostics that rely on host factors specific to CDI. This review will focus on major aspects of CDI pathogenesis and molecular mechanisms, describing host factors in disease progression and assessment of the host response in order to facilitate the development of CDI-specific diagnostics.
Collapse
Affiliation(s)
- Elena A Usacheva
- Infectious Disease Research, NorthShore University HealthSystem, 2650 Ridge Ave., Evanston, IL 60201, USA; University of Chicago Pritzker School of Medicine, Chicago, IL, USA.
| | - Jian-P Jin
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Lance R Peterson
- Infectious Disease Research, NorthShore University HealthSystem, 2650 Ridge Ave., Evanston, IL 60201, USA; University of Chicago Pritzker School of Medicine, Chicago, IL, USA
| |
Collapse
|
231
|
Arriola V, Tischendorf J, Musuuza J, Barker A, Rozelle JW, Safdar N. Assessing the Risk of Hospital-Acquired Clostridium Difficile Infection With Proton Pump Inhibitor Use: A Meta-Analysis. Infect Control Hosp Epidemiol 2016; 37:1408-1417. [PMID: 27677811 PMCID: PMC5657489 DOI: 10.1017/ice.2016.194] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Clostridium difficile is the principal infectious cause of antibiotic-associated diarrhea and accounts for 12% of hospital-acquired infections. Recent literature has shown an increased risk of C. difficile infection (CDI) with proton pump inhibitor (PPI) use. OBJECTIVE To conduct a systematic assessment of the risk of hospital-acquired CDI following exposure to PPI. METHODS We searched multiple databases for studies examining the relationship between PPI and hospital-acquired CDI. Pooled odds ratios were generated and assessment for heterogeneity performed. RESULTS We found 23 observational studies involving 186,033 cases that met eligibility criteria. Across studies, 10,307 cases of hospital-acquired CDI were reported. Significant heterogeneity was present; therefore, a random effects model was used. The pooled odds ratio was 1.81 (95% CI, 1.52-2.14), favoring higher risk of CDI with PPI use. Significant heterogeneity was present, likely due to differences in assessment of exposure, study population, and definition of CDI. DISCUSSION This meta-analysis suggests PPIs significantly increase the risk of hospital-acquired CDI. Given the significant health and economic burden of CDI and the risks of PPI, optimization of PPI use should be included in a multifaceted approach to CDI prevention. Infect Control Hosp Epidemiol 2016;1408-1417.
Collapse
Affiliation(s)
- Vanessa Arriola
- Tulane University School of Public Health and Tropical Medicine, Department of Epidemiology, New Orleans, LA, USA
| | - Jessica Tischendorf
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Jackson Musuuza
- Institute of Clinical and Translational Research, University of Wisconsin, Madison, WI, USA
| | - Anna Barker
- University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Jeffrey W. Rozelle
- Tulane University School of Public Health and Tropical Medicine, Department of Epidemiology, New Orleans, LA, USA
| | - Nasia Safdar
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Infectious Disease, University of Wisconsin Hospital and Clinics, Madison, WI, USA; William S. Middleton Memorial Veterans Affairs Hospital, Madison, WI, USA
| |
Collapse
|
232
|
Jamroskovic J, Chromikova Z, List C, Bartova B, Barak I, Bernier-Latmani R. Variability in DPA and Calcium Content in the Spores of Clostridium Species. Front Microbiol 2016; 7:1791. [PMID: 27891119 PMCID: PMC5104732 DOI: 10.3389/fmicb.2016.01791] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 10/25/2016] [Indexed: 01/31/2023] Open
Abstract
Spores of a number of clostridial species, and their resistance to thermal treatment is a major concern for the food industry. Spore resistance to wet heat is related to the level of spore hydration, which is inversely correlated with the content of calcium and dipicolinic acid (DPA) in the spore core. It is widely believed that the accumulation of DPA and calcium in the spore core is a fundamental component of the sporulation process for all endospore forming species. We have noticed heterogeneity in the heat resistance capacity and overall DPA/calcium content among the spores of several species belonging to Clostridium sensu stricto group: two C. acetobutylicum strains (DSM 792 and 1731), two C. beijerinckii strains (DSM 791 and NCIMB 8052), and a C. collagenovorans strain (DSM 3089). A C. beijerinckii strain (DSM 791) and a C. acetobutylicum strain (DSM 792) display low Ca and DPA levels. In addition, these two species, with the lowest average Ca/DPA content amongst the strains considered, also exhibit minimal heat resistance. There appears to be no correlation between the Ca/DPA content and the phylogenetic distribution of the C. acetobutylicum and C. beijerinckii species based either on the 16S rRNA or the spoVA gene. This finding suggests that a subset of Clostridium sensu stricto species produce spores with low resistance to wet heat. Additionally, analysis of individual spores using STEM-EDS and STXM revealed that DPA and calcium levels can also vary amongst individual spores in a single spore population.
Collapse
Affiliation(s)
- Jan Jamroskovic
- Swiss Federal Institute of Technology in Lausanne (EPFL)Lausanne, Switzerland; Institute of Molecular Biology, Slovak Academy of SciencesBratislava, Slovakia
| | - Zuzana Chromikova
- Institute of Molecular Biology, Slovak Academy of Sciences Bratislava, Slovakia
| | - Cornelia List
- Swiss Federal Institute of Technology in Lausanne (EPFL) Lausanne, Switzerland
| | - Barbora Bartova
- Swiss Federal Institute of Technology in Lausanne (EPFL) Lausanne, Switzerland
| | - Imrich Barak
- Institute of Molecular Biology, Slovak Academy of Sciences Bratislava, Slovakia
| | | |
Collapse
|
233
|
Edwards AN, Karim ST, Pascual RA, Jowhar LM, Anderson SE, McBride SM. Chemical and Stress Resistances of Clostridium difficile Spores and Vegetative Cells. Front Microbiol 2016; 7:1698. [PMID: 27833595 PMCID: PMC5080291 DOI: 10.3389/fmicb.2016.01698] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 10/12/2016] [Indexed: 12/11/2022] Open
Abstract
Clostridium difficile is a Gram-positive, sporogenic and anaerobic bacterium that causes a potentially fatal colitis. C. difficile enters the body as dormant spores that germinate in the colon to form vegetative cells that secrete toxins and cause the symptoms of infection. During transit through the intestine, some vegetative cells transform into spores, which are more resistant to killing by environmental insults than the vegetative cells. Understanding the inherent resistance properties of the vegetative and spore forms of C. difficile is imperative for the development of methods to target and destroy the bacterium. The objective of this study was to define the chemical and environmental resistance properties of C. difficile vegetative cells and spores. We examined vegetative cell and spore tolerances of three C. difficile strains, including 630Δerm, a 012 ribotype and a derivative of a past epidemic strain; R20291, a 027 ribotype and current epidemic strain; and 5325, a clinical isolate that is a 078 ribotype. All isolates were tested for tolerance to ethanol, oxygen, hydrogen peroxide, butanol, chloroform, heat and sodium hypochlorite (household bleach). Our results indicate that 630Δerm vegetative cells (630 spo0A) are more resistant to oxidative stress than those of R20291 (R20291 spo0A) and 5325 (5325 spo0A). In addition, 5325 spo0A vegetative cells exhibited greater resistance to organic solvents. In contrast, 630Δerm spores were more sensitive than R20291 or 5325 spores to butanol. Spores from all three strains exhibited high levels of resistance to ethanol, hydrogen peroxide, chloroform and heat, although R20291 spores were more resistant to temperatures in the range of 60-75°C. Finally, household bleach served as the only chemical reagent tested that consistently reduced C. difficile vegetative cells and spores of all tested strains. These findings establish conditions that result in vegetative cell and spore elimination and illustrate the resistance of C. difficile to common decontamination methods. These results further demonstrate that the vegetative cells and spores of various C. difficile strains have different resistance properties that may impact decontamination of surfaces and hands.
Collapse
Affiliation(s)
- Adrianne N Edwards
- Emory Antibiotic Resistance Center, Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta GA, USA
| | - Samiha T Karim
- Emory Antibiotic Resistance Center, Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta GA, USA
| | - Ricardo A Pascual
- Emory Antibiotic Resistance Center, Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta GA, USA
| | - Lina M Jowhar
- Emory Antibiotic Resistance Center, Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta GA, USA
| | - Sarah E Anderson
- Emory Antibiotic Resistance Center, Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta GA, USA
| | - Shonna M McBride
- Emory Antibiotic Resistance Center, Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta GA, USA
| |
Collapse
|
234
|
Stone NE, Sidak-Loftis LC, Sahl JW, Vazquez AJ, Wiggins KB, Gillece JD, Hicks ND, Schupp JM, Busch JD, Keim P, Wagner DM. More than 50% of Clostridium difficile Isolates from Pet Dogs in Flagstaff, USA, Carry Toxigenic Genotypes. PLoS One 2016; 11:e0164504. [PMID: 27723795 PMCID: PMC5056695 DOI: 10.1371/journal.pone.0164504] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 09/26/2016] [Indexed: 12/18/2022] Open
Abstract
Nosocomial acquisition of Clostridium difficile is well documented, yet recent studies have highlighted the importance of community acquired infections and identified community associated reservoirs for this pathogen. Multiple studies have implicated companion pets and farm animals as possible sources of community acquired C. difficile infections in humans. To explore the potential role of pet dogs in human C. difficile infections we systematically collected canine fecal samples (n = 197) in Flagstaff, AZ. Additionally, nineteen fecal samples were collected at a local veterinary clinic from diarrheic dogs. We used these combined samples to investigate important questions regarding C. difficile colonization in pet canines: 1) What is the prevalence and diversity of C. difficile in this companion pet population, and 2) Do C. difficile isolates collected from canines genetically overlap with isolates that cause disease in humans? We used a two-step sequence typing approach, including multilocus sequence typing to determine the overall genetic diversity of C. difficile present in Flagstaff canines, and whole-genome sequencing to assess the fine-scale diversity patterns within identical multilocus sequence types from isolates obtained within and among multiple canine hosts. We detected C. difficile in 17% of the canine fecal samples with 10% containing toxigenic strains that are known to cause human disease. Sequencing analyses revealed similar genotypes in dogs and humans. These findings suggest that companion pets are a potential source of community acquired C. difficile infections in humans.
Collapse
Affiliation(s)
- Nathan E. Stone
- Center for Microbial Genetics and Genomics, Northern Arizona University, Flagstaff, AZ, 86011, United States of America
| | - Lindsay C. Sidak-Loftis
- Center for Microbial Genetics and Genomics, Northern Arizona University, Flagstaff, AZ, 86011, United States of America
| | - Jason W. Sahl
- Center for Microbial Genetics and Genomics, Northern Arizona University, Flagstaff, AZ, 86011, United States of America
| | - Adam J. Vazquez
- Center for Microbial Genetics and Genomics, Northern Arizona University, Flagstaff, AZ, 86011, United States of America
| | - Kristin B. Wiggins
- Translational Genomics Research Institute, Flagstaff, AZ, 86001, United States of America
| | - John D. Gillece
- Translational Genomics Research Institute, Flagstaff, AZ, 86001, United States of America
| | - Nathan D. Hicks
- Translational Genomics Research Institute, Flagstaff, AZ, 86001, United States of America
| | - James M. Schupp
- Translational Genomics Research Institute, Flagstaff, AZ, 86001, United States of America
| | - Joseph D. Busch
- Center for Microbial Genetics and Genomics, Northern Arizona University, Flagstaff, AZ, 86011, United States of America
| | - Paul Keim
- Center for Microbial Genetics and Genomics, Northern Arizona University, Flagstaff, AZ, 86011, United States of America
- Translational Genomics Research Institute, Flagstaff, AZ, 86001, United States of America
| | - David M. Wagner
- Center for Microbial Genetics and Genomics, Northern Arizona University, Flagstaff, AZ, 86011, United States of America
- * E-mail:
| |
Collapse
|
235
|
Nerandzic MM, Donskey CJ. A Quaternary Ammonium Disinfectant Containing Germinants Reduces Clostridium difficile Spores on Surfaces by Inducing Susceptibility to Environmental Stressors. Open Forum Infect Dis 2016; 3:ofw196. [PMID: 28066792 PMCID: PMC5198585 DOI: 10.1093/ofid/ofw196] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 09/14/2016] [Indexed: 01/05/2023] Open
Abstract
Exposing Clostridium difficile spores to germinants in a quaternary ammonium matrix was an effective method to reduce environmental contamination by sensitizing the spores, leaving them susceptible to ambient conditions and enhancing killing by acid, high-intensity visible light, and radiation.
Collapse
Affiliation(s)
| | - Curtis J Donskey
- Case Western Reserve University School of Medicine, Cleveland, Ohio;; Geriatric Research, Education and Clinical Center, Cleveland Veterans Affairs Medical Center, Ohio
| |
Collapse
|
236
|
Abstract
Many anaerobic spore-forming clostridial species are pathogenic, and some are industrially useful. Although many are strict anaerobes, the bacteria persist under aerobic and growth-limiting conditions as multilayered metabolically dormant spores. For many pathogens, the spore form is what most commonly transmits the organism between hosts. After the spores are introduced into the host, certain proteins (germinant receptors) recognize specific signals (germinants), inducing spores to germinate and subsequently grow into metabolically active cells. Upon germination of the spore into the metabolically active vegetative form, the resulting bacteria can colonize the host and cause disease due to the secretion of toxins from the cell. Spores are resistant to many environmental stressors, which make them challenging to remove from clinical environments. Identifying the conditions and the mechanisms of germination in toxin-producing species could help develop affordable remedies for some infections by inhibiting germination of the spore form. Unrelated to infectious disease, spore formation in species used in the industrial production of chemicals hinders the optimum production of the chemicals due to the depletion of the vegetative cells from the population. Understanding spore germination in acetone-butanol-ethanol-producing species can help boost the production of chemicals, leading to cheaper ethanol-based fuels. Until recently, clostridial spore germination is assumed to be similar to that of Bacillus subtilis However, recent studies in Clostridium difficile shed light on a mechanism of spore germination that has not been observed in any endospore-forming organisms to date. In this review, we focus on the germinants and the receptors recognizing these germinants in various clostridial species.
Collapse
|
237
|
Mora-Uribe P, Miranda-Cárdenas C, Castro-Córdova P, Gil F, Calderón I, Fuentes JA, Rodas PI, Banawas S, Sarker MR, Paredes-Sabja D. Characterization of the Adherence of Clostridium difficile Spores: The Integrity of the Outermost Layer Affects Adherence Properties of Spores of the Epidemic Strain R20291 to Components of the Intestinal Mucosa. Front Cell Infect Microbiol 2016; 6:99. [PMID: 27713865 PMCID: PMC5031699 DOI: 10.3389/fcimb.2016.00099] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 08/29/2016] [Indexed: 12/18/2022] Open
Abstract
Clostridium difficile is the causative agent of the most frequently reported nosocomial diarrhea worldwide. The high incidence of recurrent infection is the main clinical challenge of C. difficile infections (CDI). Formation of C. difficile spores of the epidemic strain R20291 has been shown to be essential for recurrent infection and transmission of the disease in a mouse model. However, the underlying mechanisms of how these spores persist in the colonic environment remains unclear. In this work, we characterized the adherence properties of epidemic R20291 spores to components of the intestinal mucosa, and we assessed the role of the exosporium integrity in the adherence properties by using cdeC mutant spores with a defective exosporium layer. Our results showed that spores and vegetative cells of the epidemic R20291 strain adhered at high levels to monolayers of Caco-2 cells and mucin. Transmission electron micrographs of Caco-2 cells demonstrated that the hair-like projections on the surface of R20291 spores are in close proximity with the plasma membrane and microvilli of undifferentiated and differentiated monolayers of Caco-2 cells. Competitive-binding assay in differentiated Caco-2 cells suggests that spore-adherence is mediated by specific binding sites. By using spores of a cdeC mutant we demonstrated that the integrity of the exosporium layer determines the affinity of adherence of C. difficile spores to Caco-2 cells and mucin. Binding of fibronectin and vitronectin to the spore surface was concentration-dependent, and depending on the concentration, spore-adherence to Caco-2 cells was enhanced. In the presence of an aberrantly-assembled exosporium (cdeC spores), binding of fibronectin, but not vitronectin, was increased. Notably, independent of the exosporium integrity, only a fraction of the spores had fibronectin and vitronectin molecules binding to their surface. Collectively, these results demonstrate that the integrity of the exosporium layer of strain R20291 contributes to selective spore adherence to components of the intestinal mucosa.
Collapse
Affiliation(s)
- Paola Mora-Uribe
- Microbiota-Host Interactions and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres BelloSantiago, Chile; Center for Bioinformatics and Integrative Biology, Facultad de Ciencias Biológicas, Universidad Andres BelloSantiago, Chile
| | - Camila Miranda-Cárdenas
- Microbiota-Host Interactions and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello Santiago, Chile
| | - Pablo Castro-Córdova
- Microbiota-Host Interactions and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres BelloSantiago, Chile; Center for Bioinformatics and Integrative Biology, Facultad de Ciencias Biológicas, Universidad Andres BelloSantiago, Chile
| | - Fernando Gil
- Microbiota-Host Interactions and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello Santiago, Chile
| | - Iván Calderón
- Laboratorio de Genética y Patogénesis Bacteriana, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello Santiago, Chile
| | - Juan A Fuentes
- Laboratorio de Genética y Patogénesis Bacteriana, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello Santiago, Chile
| | - Paula I Rodas
- Facultad de Medicina, Center for Integrative Medicine and Innovative Sciences, Universidad Andres Bello Santiago, Chile
| | - Saeed Banawas
- Department of Biomedical Sciences, Oregon State UniversityCorvallis, OR, USA; Medical Laboratories Department, College of Science Al-Zulfi, Majmaah UniversityAl Majma'ah, Saudi Arabia
| | - Mahfuzur R Sarker
- Department of Biomedical Sciences, Oregon State University Corvallis, OR, USA
| | - Daniel Paredes-Sabja
- Microbiota-Host Interactions and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres BelloSantiago, Chile; Center for Bioinformatics and Integrative Biology, Facultad de Ciencias Biológicas, Universidad Andres BelloSantiago, Chile
| |
Collapse
|
238
|
Ultrastructure Variability of the Exosporium Layer of Clostridium difficile Spores from Sporulating Cultures and Biofilms. Appl Environ Microbiol 2016; 82:5892-8. [PMID: 27474709 DOI: 10.1128/aem.01463-16] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 07/07/2016] [Indexed: 12/18/2022] Open
Abstract
UNLABELLED The anaerobic sporeformer Clostridium difficile is the leading cause of nosocomial antibiotic-associated diarrhea in developed and developing countries. The metabolically dormant spore form is considered the morphotype responsible for transmission, infection, and persistence, and the outermost exosporium layer is likely to play a major role in spore-host interactions during recurrent infections, contributing to the persistence of the spore in the host. A recent study (M. Pizarro-Guajardo, P. Calderón-Romero, P. Castro-Córdova, P. Mora-Uribe, and D. Paredes-Sabja, Appl Environ Microbiol 82:2202-2209, 2016, http://dx.doi.org/10.1128/AEM.03410-15) demonstrated by transmission electron microscopy the presence of two ultrastructural morphotypes of the exosporium layer in spores formed from the same sporulating culture. However, whether these distinct morphotypes appeared due to purification techniques and whether they appeared during biofilm development remain unclear. In this communication, we demonstrate through transmission electron microscopy that these two exosporium morphotypes are formed under sporulation conditions and are also present in spores formed during biofilm development. In summary, this work provides definitive evidence that in a population of sporulating cells, spores with a thick outermost exosporium layer and spores with a thin outermost exosporium layer are formed. IMPORTANCE Clostridium difficile spores are recognized as the morphotype of persistence and transmission of C. difficile infections. Spores of C. difficile are intrinsically resistant to all known antibiotic therapies. Development of spore-based removal strategies requires a detailed knowledge of the spore surface for proper antigen selection. In this context, in this work we provide definitive evidence that two types of spores, those with a thick outermost exosporium layer and those with a thin outermost exosporium layer, are formed in the same C. difficile sporulating culture or during biofilm development.
Collapse
|
239
|
Serrano M, Kint N, Pereira FC, Saujet L, Boudry P, Dupuy B, Henriques AO, Martin-Verstraete I. A Recombination Directionality Factor Controls the Cell Type-Specific Activation of σK and the Fidelity of Spore Development in Clostridium difficile. PLoS Genet 2016; 12:e1006312. [PMID: 27631621 PMCID: PMC5025042 DOI: 10.1371/journal.pgen.1006312] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 08/21/2016] [Indexed: 01/05/2023] Open
Abstract
The strict anaerobe Clostridium difficile is the most common cause of nosocomial diarrhea, and the oxygen-resistant spores that it forms have a central role in the infectious cycle. The late stages of sporulation require the mother cell regulatory protein σK. In Bacillus subtilis, the onset of σK activity requires both excision of a prophage-like element (skinBs) inserted in the sigK gene and proteolytical removal of an inhibitory pro-sequence. Importantly, the rearrangement is restricted to the mother cell because the skinBs recombinase is produced specifically in this cell. In C. difficile, σK lacks a pro-sequence but a skinCd element is present. The product of the skinCd gene CD1231 shares similarity with large serine recombinases. We show that CD1231 is necessary for sporulation and skinCd excision. However, contrary to B. subtilis, expression of CD1231 is observed in vegetative cells and in both sporangial compartments. Nevertheless, we show that skinCd excision is under the control of mother cell regulatory proteins σE and SpoIIID. We then demonstrate that σE and SpoIIID control the expression of the skinCd gene CD1234, and that this gene is required for sporulation and skinCd excision. CD1231 and CD1234 appear to interact and both proteins are required for skinCd excision while only CD1231 is necessary for skinCd integration. Thus, CD1234 is a recombination directionality factor that delays and restricts skinCd excision to the terminal mother cell. Finally, while the skinCd element is not essential for sporulation, deletion of skinCd results in premature activity of σK and in spores with altered surface layers. Thus, skinCd excision is a key element controlling the onset of σK activity and the fidelity of spore development.
Collapse
Affiliation(s)
- Mónica Serrano
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Nicolas Kint
- Laboratoire Pathogénese des Bactéries Anaérobies, Institut Pasteur, Paris, France
- University Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Fátima C. Pereira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Laure Saujet
- Laboratoire Pathogénese des Bactéries Anaérobies, Institut Pasteur, Paris, France
- University Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Pierre Boudry
- Laboratoire Pathogénese des Bactéries Anaérobies, Institut Pasteur, Paris, France
- University Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Bruno Dupuy
- Laboratoire Pathogénese des Bactéries Anaérobies, Institut Pasteur, Paris, France
- University Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Adriano O. Henriques
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- * E-mail: (AOH); (IMV)
| | - Isabelle Martin-Verstraete
- Laboratoire Pathogénese des Bactéries Anaérobies, Institut Pasteur, Paris, France
- University Paris Diderot, Sorbonne Paris Cité, Paris, France
- * E-mail: (AOH); (IMV)
| |
Collapse
|
240
|
Abt MC, McKenney PT, Pamer EG. Clostridium difficile colitis: pathogenesis and host defence. Nat Rev Microbiol 2016; 14:609-20. [PMID: 27573580 DOI: 10.1038/nrmicro.2016.108] [Citation(s) in RCA: 336] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Clostridium difficile is a major cause of intestinal infection and diarrhoea in individuals following antibiotic treatment. Recent studies have begun to elucidate the mechanisms that induce spore formation and germination and have determined the roles of C. difficile toxins in disease pathogenesis. Exciting progress has also been made in defining the role of the microbiome, specific commensal bacterial species and host immunity in defence against infection with C. difficile. This Review will summarize the recent discoveries and developments in our understanding of C. difficile infection and pathogenesis.
Collapse
Affiliation(s)
- Michael C Abt
- Immunology Program, Lucille Castori Center for Microbes, Inflammation and Cancer, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA
| | - Peter T McKenney
- Immunology Program, Lucille Castori Center for Microbes, Inflammation and Cancer, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA
| | - Eric G Pamer
- Immunology Program, Lucille Castori Center for Microbes, Inflammation and Cancer, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA
| |
Collapse
|
241
|
Effects of High-Pressure Treatment on Spores of Clostridium Species. Appl Environ Microbiol 2016; 82:5287-97. [PMID: 27316969 PMCID: PMC4988188 DOI: 10.1128/aem.01363-16] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 06/15/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED This work analyzes the high-pressure (HP) germination of spores of the food-borne pathogen Clostridium perfringens (with inner membrane [IM] germinant receptors [GRs]) and the opportunistic pathogen Clostridium difficile (with no IM GRs), which has growing implications as an emerging food safety threat. In contrast to those of spores of Bacillus species, mechanisms of HP germination of clostridial spores have not been well studied. HP treatments trigger Bacillus spore germination through spores' IM GRs at ∼150 MPa or through SpoVA channels for release of spores' dipicolinic acid (DPA) at ≥400 MPa, and DPA-less spores have lower wet heat resistance than dormant spores. We found that C. difficile spores exhibited no germination events upon 150-MPa treatment and were not heat sensitized. In contrast, 150-MPa-treated unactivated C. perfringens spores released DPA and became heat sensitive, although most spores did not complete germination by fully rehydrating the spore core, but this treatment of heat-activated spores led to almost complete germination and greater heat sensitization. Spores of both clostridial organisms released DPA during 550-MPa treatment, but C. difficile spores did not complete germination and remained heat resistant. Heat-activated 550-MPa-HP-treated C. perfringens spores germinated almost completely and became heat sensitive. However, unactivated 550-MPa-treated C. perfringens spores did not germinate completely and were less heat sensitive than spores that completed germination. Since C. difficile and C. perfringens spores use different mechanisms for sensing germinants, our results may allow refinement of HP methods for their inactivation in foods and other applications and may guide the development of commercially sterile low-acid foods. IMPORTANCE Spores of various clostridial organisms cause human disease, sometimes due to food contamination by spores. Because of these spores' resistance to normal decontamination regimens, there is continued interest in ways to kill spores without compromising food quality. High hydrostatic pressure (HP) under appropriate conditions can inactivate bacterial spores. With growing use of HP for food pasteurization, advancement of HP for commercial production of sterile low-acid foods requires understanding of mechanisms of spores' interactions with HP. While much is known about HP germination and inactivation of spores of Bacillus species, how HP germinates and inactivates clostridial spores is less well understood. In this work we have tried to remedy this information deficit by examining germination of spores of Clostridium difficile and Clostridium perfringens by several HP and temperature levels. The results may give insight that could facilitate more efficient methods for spore eradication in food sterilization or pasteurization, biodecontamination, and health care.
Collapse
|
242
|
Vickers RJ, Tillotson G, Goldstein EJC, Citron DM, Garey KW, Wilcox MH. Ridinilazole: a novel therapy for Clostridium difficile infection. Int J Antimicrob Agents 2016; 48:137-43. [PMID: 27283730 DOI: 10.1016/j.ijantimicag.2016.04.026] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 04/22/2016] [Accepted: 04/23/2016] [Indexed: 12/15/2022]
Abstract
Clostridium difficile infection (CDI) is the leading cause of infectious healthcare-associated diarrhoea. Recurrent CDI increases disease morbidity and mortality, posing a high burden to patients and a growing economic burden to the healthcare system. Thus, there exists a significant unmet and increasing medical need for new therapies for CDI. This review aims to provide a concise summary of CDI in general and a specific update on ridinilazole (formerly SMT19969), a novel antibacterial currently under development for the treatment of CDI. Owing to its highly targeted spectrum of activity and ability to spare the normal gut microbiota, ridinilazole provides significant advantages over metronidazole and vancomycin, the mainstay antibiotics for CDI. Ridinilazole is bactericidal against C. difficile and exhibits a prolonged post-antibiotic effect. Furthermore, treatment with ridinilazole results in decreased toxin production. A phase 1 trial demonstrated that oral ridinilazole is well tolerated and specifically targets clostridia whilst sparing other faecal bacteria. Phase 2 and 3 trials will hopefully further our understanding of the clinical utility of ridinilazole for the treatment of CDI.
Collapse
Affiliation(s)
- Richard J Vickers
- Summit Therapeutics plc, 85b Park Drive, Milton Park, Abingdon, Oxford OX14 4RY, UK.
| | | | - Ellie J C Goldstein
- R.M. Alden Research Laboratory, Culver City, CA, USA; David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | | | - Kevin W Garey
- University of Houston College of Pharmacy, Houston, TX, USA
| | - Mark H Wilcox
- Microbiology, Leeds Teaching Hospitals and University of Leeds, Old Medical School, Leeds General Infirmary, Leeds, UK
| |
Collapse
|
243
|
Kansau I, Barketi-Klai A, Monot M, Hoys S, Dupuy B, Janoir C, Collignon A. Deciphering Adaptation Strategies of the Epidemic Clostridium difficile 027 Strain during Infection through In Vivo Transcriptional Analysis. PLoS One 2016; 11:e0158204. [PMID: 27351947 PMCID: PMC4924792 DOI: 10.1371/journal.pone.0158204] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 06/13/2016] [Indexed: 01/05/2023] Open
Abstract
Clostridium difficile is responsible for a wide spectrum of infection from asymptomatic carriage to severe, relapsing colitis. Since 2003, C. difficile infections have increased with a higher morbidity and mortality due to the emergence of epidemic and hypervirulent C. difficile strains such as those of the epidemic lineage 027/BI/NAP1. To decipher the hypervirulence and epidemicity of 027 strains, we analyzed gene expression profiles of the R20291 027 strain using a monoxenic mouse model during the first 38h of infection. A total of 741 genes were differentially expressed during the course of infection. They are mainly distributed in functional categories involved in host adaptation. Several genes of PTS and ABC transporters were significantly regulated during the infection, underlying the ability of strain R20291 to adapt its metabolism according to nutrient availability in the digestive tract. In this animal model, despite the early sporulation process, sporulation efficiency seems to indicate that growth of R20291 vegetative cells versus spores were favored during infection. The bacterial mechanisms associated to adaptability and flexibility within the gut environment, in addition to the virulence factor expression and antibiotic resistance, should contribute to the epidemicity and hypervirulence of the C. difficile 027 strains.
Collapse
Affiliation(s)
- Imad Kansau
- EA4043 Unité Bactéries Pathogènes et Santé (UBaPS), Univ. Paris-Sud, Université Paris-Saclay, 92296, Châtenay-Malabry Cedex, France
| | - Amira Barketi-Klai
- EA4043 Unité Bactéries Pathogènes et Santé (UBaPS), Univ. Paris-Sud, Université Paris-Saclay, 92296, Châtenay-Malabry Cedex, France
| | - Marc Monot
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, 25–28, rue du Docteur Roux, 75015, Paris, France
| | - Sandra Hoys
- EA4043 Unité Bactéries Pathogènes et Santé (UBaPS), Univ. Paris-Sud, Université Paris-Saclay, 92296, Châtenay-Malabry Cedex, France
| | - Bruno Dupuy
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, 25–28, rue du Docteur Roux, 75015, Paris, France
| | - Claire Janoir
- EA4043 Unité Bactéries Pathogènes et Santé (UBaPS), Univ. Paris-Sud, Université Paris-Saclay, 92296, Châtenay-Malabry Cedex, France
| | - Anne Collignon
- EA4043 Unité Bactéries Pathogènes et Santé (UBaPS), Univ. Paris-Sud, Université Paris-Saclay, 92296, Châtenay-Malabry Cedex, France
- * E-mail:
| |
Collapse
|
244
|
Francis MB, Sorg JA. Detecting Cortex Fragments During Bacterial Spore Germination. J Vis Exp 2016. [PMID: 27403726 DOI: 10.3791/54146] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The process of endospore germination in Clostridium difficile, and other Clostridia, increasingly is being found to differ from the model spore-forming bacterium, Bacillus subtilis. Germination is triggered by small molecule germinants and occurs without the need for macromolecular synthesis. Though differences exist between the mechanisms of spore germination in species of Bacillus and Clostridium, a common requirement is the hydrolysis of the peptidoglycan-like cortex which allows the spore core to swell and rehydrate. After rehydration, metabolism can begin and this, eventually, leads to outgrowth of a vegetative cell. The detection of hydrolyzed cortex fragments during spore germination can be difficult and the modifications to the previously described assays can be confusing or difficult to reproduce. Thus, based on our recent report using this assay, we detail a step-by-step protocol for the colorimetric detection of cortex fragments during bacterial spore germination.
Collapse
|
245
|
Characterization of the spore surface and exosporium proteins of Clostridium sporogenes; implications for Clostridium botulinum group I strains. Food Microbiol 2016; 59:205-12. [PMID: 27375261 PMCID: PMC4942563 DOI: 10.1016/j.fm.2016.06.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 05/26/2016] [Accepted: 06/03/2016] [Indexed: 01/01/2023]
Abstract
Clostridium sporogenes is a non-pathogenic close relative and surrogate for Group I (proteolytic) neurotoxin-producing Clostridium botulinum strains. The exosporium, the sac-like outermost layer of spores of these species, is likely to contribute to adhesion, dissemination, and virulence. A paracrystalline array, hairy nap, and several appendages were detected in the exosporium of C. sporogenes strain NCIMB 701792 by EM and AFM. The protein composition of purified exosporium was explored by LC-MS/MS of tryptic peptides from major individual SDS-PAGE-separated protein bands, and from bulk exosporium. Two high molecular weight protein bands both contained the same protein with a collagen-like repeat domain, the probable constituent of the hairy nap, as well as cysteine-rich proteins CsxA and CsxB. A third cysteine-rich protein (CsxC) was also identified. These three proteins are also encoded in C. botulinum Prevot 594, and homologues (75-100% amino acid identity) are encoded in many other Group I strains. This work provides the first insight into the likely composition and organization of the exosporium of Group I C. botulinum spores.
Collapse
|
246
|
Characterization of Clostridium difficile Spores Lacking Either SpoVAC or Dipicolinic Acid Synthetase. J Bacteriol 2016; 198:1694-1707. [PMID: 27044622 PMCID: PMC4959285 DOI: 10.1128/jb.00986-15] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 03/17/2016] [Indexed: 01/05/2023] Open
Abstract
UNLABELLED The spore-forming obligate anaerobe Clostridium difficile is a leading cause of antibiotic-associated diarrhea around the world. In order for C. difficile to cause infection, its metabolically dormant spores must germinate in the gastrointestinal tract. During germination, spores degrade their protective cortex peptidoglycan layers, release dipicolinic acid (DPA), and hydrate their cores. In C. difficile, cortex hydrolysis is necessary for DPA release, whereas in Bacillus subtilis, DPA release is necessary for cortex hydrolysis. Given this difference, we tested whether DPA synthesis and/or release was required for C. difficile spore germination by constructing mutations in either spoVAC or dpaAB, which encode an ion channel predicted to transport DPA into the forespore and the enzyme complex predicted to synthesize DPA, respectively. C. difficile spoVAC and dpaAB mutant spores lacked DPA but could be stably purified and were more hydrated than wild-type spores; in contrast, B. subtilis spoVAC and dpaAB mutant spores were unstable. Although C. difficile spoVAC and dpaAB mutant spores exhibited wild-type germination responses, they were more readily killed by wet heat. Cortex hydrolysis was not affected by this treatment, indicating that wet heat inhibits a stage downstream of this event. Interestingly, C. difficile spoVAC mutant spores were significantly more sensitive to heat treatment than dpaAB mutant spores, indicating that SpoVAC plays additional roles in conferring heat resistance. Taken together, our results demonstrate that SpoVAC and DPA synthetase control C. difficile spore resistance and reveal differential requirements for these proteins among the Firmicutes IMPORTANCE Clostridium difficile is a spore-forming obligate anaerobe that causes ∼500,000 infections per year in the United States. Although spore germination is essential for C. difficile to cause disease, the factors required for this process have been only partially characterized. This study describes the roles of two factors, DpaAB and SpoVAC, which control the synthesis and release of dipicolinic acid (DPA), respectively, from bacterial spores. Previous studies of these proteins in other spore-forming organisms indicated that they are differentially required for spore formation, germination, and resistance. We now show that the proteins are dispensable for C. difficile spore formation and germination but are necessary for heat resistance. Thus, our study further highlights the diverse functions of DpaAB and SpoVAC in spore-forming organisms.
Collapse
|
247
|
Culturing of 'unculturable' human microbiota reveals novel taxa and extensive sporulation. Nature 2016; 533:543-546. [PMID: 27144353 PMCID: PMC4890681 DOI: 10.1038/nature17645] [Citation(s) in RCA: 772] [Impact Index Per Article: 85.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 03/08/2016] [Indexed: 12/16/2022]
Abstract
Our intestinal microbiota harbours a diverse bacterial community required for our health, sustenance and wellbeing. Intestinal colonization begins at birth and climaxes with the acquisition of two dominant groups of strict anaerobic bacteria belonging to the Firmicutes and Bacteroidetes phyla. Culture-independent, genomic approaches have transformed our understanding of the role of the human microbiome in health and many diseases. However, owing to the prevailing perception that our indigenous bacteria are largely recalcitrant to culture, many of their functions and phenotypes remain unknown. Here we describe a novel workflow based on targeted phenotypic culturing linked to large-scale whole-genome sequencing, phylogenetic analysis and computational modelling that demonstrates that a substantial proportion of the intestinal bacteria are culturable. Applying this approach to healthy individuals, we isolated 137 bacterial species from characterized and candidate novel families, genera and species that were archived as pure cultures. Whole-genome and metagenomic sequencing, combined with computational and phenotypic analysis, suggests that at least 50-60% of the bacterial genera from the intestinal microbiota of a healthy individual produce resilient spores, specialized for host-to-host transmission. Our approach unlocks the human intestinal microbiota for phenotypic analysis and reveals how a marked proportion of oxygen-sensitive intestinal bacteria can be transmitted between individuals, affecting microbiota heritability.
Collapse
|
248
|
Abstract
Infection of the colon with the Gram-positive bacterium Clostridium difficile is potentially life threatening, especially in elderly people and in patients who have dysbiosis of the gut microbiota following antimicrobial drug exposure. C. difficile is the leading cause of health-care-associated infective diarrhoea. The life cycle of C. difficile is influenced by antimicrobial agents, the host immune system, and the host microbiota and its associated metabolites. The primary mediators of inflammation in C. difficile infection (CDI) are large clostridial toxins, toxin A (TcdA) and toxin B (TcdB), and, in some bacterial strains, the binary toxin CDT. The toxins trigger a complex cascade of host cellular responses to cause diarrhoea, inflammation and tissue necrosis - the major symptoms of CDI. The factors responsible for the epidemic of some C. difficile strains are poorly understood. Recurrent infections are common and can be debilitating. Toxin detection for diagnosis is important for accurate epidemiological study, and for optimal management and prevention strategies. Infections are commonly treated with specific antimicrobial agents, but faecal microbiota transplants have shown promise for recurrent infections. Future biotherapies for C. difficile infections are likely to involve defined combinations of key gut microbiota.
Collapse
Affiliation(s)
- Wiep Klaas Smits
- Section Experimental Bacteriology, Department of Medical Microbiology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Dena Lyras
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, and Department of Microbiology, Monash University, Victoria, Australia
| | - D. Borden Lacy
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, and The Veterans Affairs Tennessee Valley Healthcare System, Nashville Tennessee, USA
| | - Mark H. Wilcox
- Institute of Biomedical and Clinical Sciences, University of Leeds, Leeds, UK
| | - Ed J. Kuijper
- Section Experimental Bacteriology, Department of Medical Microbiology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| |
Collapse
|
249
|
The Exosporium Layer of Bacterial Spores: a Connection to the Environment and the Infected Host. Microbiol Mol Biol Rev 2016; 79:437-57. [PMID: 26512126 DOI: 10.1128/mmbr.00050-15] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Much of what we know regarding bacterial spore structure and function has been learned from studies of the genetically well-characterized bacterium Bacillus subtilis. Molecular aspects of spore structure, assembly, and function are well defined. However, certain bacteria produce spores with an outer spore layer, the exosporium, which is not present on B. subtilis spores. Our understanding of the composition and biological functions of the exosporium layer is much more limited than that of other aspects of the spore. Because the bacterial spore surface is important for the spore's interactions with the environment, as well as being the site of interaction of the spore with the host's innate immune system in the case of spore-forming bacterial pathogens, the exosporium is worthy of continued investigation. Recent exosporium studies have focused largely on members of the Bacillus cereus family, principally Bacillus anthracis and Bacillus cereus. Our understanding of the composition of the exosporium, the pathway of its assembly, and its role in spore biology is now coming into sharper focus. This review expands on a 2007 review of spore surface layers which provided an excellent conceptual framework of exosporium structure and function (A. O. Henriques and C. P. Moran, Jr., Annu Rev Microbiol 61:555-588, 2007, http://dx.doi.org/10.1146/annurev.micro.61.080706.093224). That review began a process of considering outer spore layers as an integrated, multilayered structure rather than simply regarding the outer spore components as independent parts.
Collapse
|
250
|
Edwards AN, Tamayo R, McBride SM. A novel regulator controls Clostridium difficile sporulation, motility and toxin production. Mol Microbiol 2016; 100:954-71. [PMID: 26915493 DOI: 10.1111/mmi.13361] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2016] [Indexed: 01/09/2023]
Abstract
Clostridium difficile is an anaerobic pathogen that forms spores which promote survival in the environment and transmission to new hosts. The regulatory pathways by which C. difficile initiates spore formation are poorly understood. We identified two factors with limited similarity to the Rap sporulation proteins of other spore-forming bacteria. In this study, we show that disruption of the gene CD3668 reduces sporulation and increases toxin production and motility. This mutant was more virulent and exhibited increased toxin gene expression in the hamster model of infection. Based on these phenotypes, we have renamed this locus rstA, for regulator of sporulation and toxins. Our data demonstrate that RstA is a bifunctional protein that upregulates sporulation through an unidentified pathway and represses motility and toxin production by influencing sigD transcription. Conserved RstA orthologs are present in other pathogenic and industrial Clostridium species and may represent a key regulatory protein controlling clostridial sporulation.
Collapse
Affiliation(s)
- Adrianne N Edwards
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Rita Tamayo
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Shonna M McBride
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|