201
|
Rachdaoui N, Sarkar DK. Transgenerational epigenetics and brain disorders. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2014; 115:51-73. [PMID: 25131542 DOI: 10.1016/b978-0-12-801311-3.00002-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Neurobehavioral and psychiatric disorders are complex diseases with a strong heritable component; however, to date, genome-wide association studies failed to identify the genetic loci involved in the etiology of these brain disorders. Recently, transgenerational epigenetic inheritance has emerged as an important factor playing a pivotal role in the inheritance of brain disorders. This field of research provides evidence that environmentally induced epigenetic changes in the germline during embryonic development can be transmitted for multiple generations and may contribute to the etiology of brain disease heritability. In this review, we discuss some of the most recent findings on transgenerational epigenetic inheritance. We particularly discuss the findings on the epigenetic mechanisms involved in the heritability of alcohol-induced neurobehavioral disorders such as fetal alcohol spectrum disorders.
Collapse
Affiliation(s)
- Nadia Rachdaoui
- Rutgers Endocrine Research Program, Department of Animal Sciences, Rutgers University, New Brunswick, New Jersey, USA
| | - Dipak K Sarkar
- Rutgers Endocrine Research Program, Department of Animal Sciences, Rutgers University, New Brunswick, New Jersey, USA.
| |
Collapse
|
202
|
Abstract
Although all neurons carry the same genetic information, they vary considerably in morphology and functions and respond differently to environmental conditions. Such variability results mostly from differences in gene expression. Among the processes that regulate gene activity, epigenetic mechanisms play a key role and provide an additional layer of complexity to the genome. They allow the dynamic modulation of gene expression in a locus- and cell-specific manner. These mechanisms primarily involve DNA methylation, posttranslational modifications (PTMs) of histones and noncoding RNAs that together remodel chromatin and facilitate or suppress gene expression. Through these mechanisms, the brain gains high plasticity in response to experience and can integrate and store new information to shape future neuronal and behavioral responses. Dynamic epigenetic footprints underlying the plasticity of brain cells and circuits contribute to the persistent impact of life experiences on an individual's behavior and physiology ranging from the formation of long-term memory to the sequelae of traumatic events or of drug addiction. They also contribute to the way lifestyle, life events, or exposure to environmental toxins can predispose an individual to disease. This chapter describes the most prominent examples of epigenetic marks associated with long-lasting changes in the brain induced by experience. It discusses the role of epigenetic processes in behavioral plasticity triggered by environmental experiences. A particular focus is placed on learning and memory where the importance of epigenetic modifications in brain circuits is best understood. The relevance of epigenetics in memory disorders such as dementia and Alzheimer's disease is also addressed, and promising perspectives for potential epigenetic drug treatment discussed.
Collapse
|
203
|
Agis-Balboa RC, Fischer A. Generating new neurons to circumvent your fears: the role of IGF signaling. Cell Mol Life Sci 2014; 71:21-42. [PMID: 23543251 PMCID: PMC11113432 DOI: 10.1007/s00018-013-1316-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 02/12/2013] [Accepted: 03/04/2013] [Indexed: 12/13/2022]
Abstract
Extinction of fear memory is a particular form of cognitive function that is of special interest because of its involvement in the treatment of anxiety and mood disorders. Based on recent literature and our previous findings (EMBO J 30(19):4071-4083, 2011), we propose a new hypothesis that implies a tight relationship among IGF signaling, adult hippocampal neurogenesis and fear extinction. Our proposed model suggests that fear extinction-induced IGF2/IGFBP7 signaling promotes the survival of neurons at 2-4 weeks old that would participate in the discrimination between the original fear memory trace and the new safety memory generated during fear extinction. This is also called "pattern separation", or the ability to distinguish similar but different cues (e.g., context). To understand the molecular mechanisms underlying fear extinction is therefore of great clinical importance.
Collapse
Affiliation(s)
- R C Agis-Balboa
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Grisebach Str. 5, 37077, Göttingen, Germany,
| | | |
Collapse
|
204
|
Stilling RM, Dinan TG, Cryan JF. Microbial genes, brain & behaviour - epigenetic regulation of the gut-brain axis. GENES BRAIN AND BEHAVIOR 2013; 13:69-86. [PMID: 24286462 DOI: 10.1111/gbb.12109] [Citation(s) in RCA: 417] [Impact Index Per Article: 37.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 11/13/2013] [Accepted: 11/25/2013] [Indexed: 12/12/2022]
Abstract
To date, there is rapidly increasing evidence for host-microbe interaction at virtually all levels of complexity, ranging from direct cell-to-cell communication to extensive systemic signalling, and involving various organs and organ systems, including the central nervous system. As such, the discovery that differential microbial composition is associated with alterations in behaviour and cognition has significantly contributed to establishing the microbiota-gut-brain axis as an extension of the well-accepted gut-brain axis concept. Many efforts have been focused on delineating a role for this axis in health and disease, ranging from stress-related disorders such as depression, anxiety and irritable bowel syndrome to neurodevelopmental disorders such as autism. There is also a growing appreciation of the role of epigenetic mechanisms in shaping brain and behaviour. However, the role of epigenetics in informing host-microbe interactions has received little attention to date. This is despite the fact that there are many plausible routes of interaction between epigenetic mechanisms and the host-microbiota dialogue. From this new perspective we put forward novel, yet testable, hypotheses. Firstly, we suggest that gut-microbial products can affect chromatin plasticity within their host's brain that in turn leads to changes in neuronal transcription and eventually alters host behaviour. Secondly, we argue that the microbiota is an important mediator of gene-environment interactions. Finally, we reason that the microbiota itself may be viewed as an epigenetic entity. In conclusion, the fields of (neuro)epigenetics and microbiology are converging at many levels and more interdisciplinary studies are necessary to unravel the full range of this interaction.
Collapse
|
205
|
Seo YJ, Muench L, Reid A, Chen J, Kang Y, Hooker JM, Volkow ND, Fowler JS, Kim SW. Radionuclide labeling and evaluation of candidate radioligands for PET imaging of histone deacetylase in the brain. Bioorg Med Chem Lett 2013; 23:6700-5. [PMID: 24210501 PMCID: PMC4007514 DOI: 10.1016/j.bmcl.2013.10.038] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 10/16/2013] [Accepted: 10/21/2013] [Indexed: 11/24/2022]
Abstract
Histone deacetylases (HDACs) regulate gene expression by inducing conformational changes in chromatin. Ever since the discovery of a naturally occurring HDAC inhibitor, trichostatin A (TSA) stimulated the recent development of suberoylanilide (SAHA, Zolinza®), HDAC has become an important molecular target for drug development. This has created the need to develop specific in vivo radioligands to study epigenetic regulation and HDAC engagement for drug development for diseases including cancer and psychiatric disorders. 6-([(18)F]Fluoroacetamido)-1-hexanoicanilide ([(18)F]FAHA) was recently developed as a HDAC substrate and shows moderate blood-brain barrier (BBB) permeability and specific signal (by metabolic trapping/or deacetylation) but rapid metabolism. Here, we report the radiosynthesis of two carbon-11 labeled candidate radiotracers (substrate- and inhibitor-based radioligand) for HDAC and their evaluation in non-human primate brain. PET studies showed very low brain uptake and rapid metabolism of both labeled compounds but revealed a surprising enhancement of brain penetration by F for H substitution when comparing one of these to [(18)F]FAHA. Further structural refinement is needed for the development of brain-penetrant, metabolically stable HDAC radiotracers and to understand the role of fluorine substitution on brain penetration.
Collapse
Affiliation(s)
- Young Jun Seo
- Biosciences Department, Brookhaven National Laboratory, Upton, NY 11973, USA
- Department of Chemistry, Chonbuk National University, Jeonju, 561-756, South Korea
| | - Lisa Muench
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Upton, NY 11973, USA
| | - Alicia Reid
- Department of Physical, Environmental and Computer Sciences, Medgar Evers College, The City University of New York 1650 Bedford Ave, Brooklyn, NY 11225, USA
| | - Jinzhu Chen
- Biosciences Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Yeona Kang
- Biosciences Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Jacob M. Hooker
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Nora D. Volkow
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Upton, NY 11973, USA
- National Institute on Drug Abuse, 6001 Executive Blvd, Rockville, Maryland 20852, USA
| | - Joanna S. Fowler
- Biosciences Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Sung Won Kim
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Upton, NY 11973, USA
| |
Collapse
|
206
|
Abdelkarim H, Brunsteiner M, Neelarapu R, Bai H, Madriaga A, van Breemen RB, Blond SY, Gaponenko V, Petukhov PA. Photoreactive "nanorulers" detect a novel conformation of full length HDAC3-SMRT complex in solution. ACS Chem Biol 2013; 8:2538-49. [PMID: 24010878 DOI: 10.1021/cb400601g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Histone deacetylase 3 (HDAC3) is a promising epigenetic drug target for multiple therapeutic applications. Direct interaction between the Deacetylase Activating Domain of the silencing mediator for retinoid or thyroid-hormone receptors (SMRT-DAD) is required for activation of enzymatic activity of HDAC3. The structure of this complex and the nature of interactions with HDAC inhibitors in solution are unknown. Using novel photoreactive HDAC probes, "nanorulers", we determined the distance between the catalytic site of the full-length HDAC3 and SMRT-DAD in solution at physiologically relevant conditions and found it to be substantially different from that predicted by the X-ray model with a Δ379-428 aa truncated HDAC3. Further experiments indicated that in solution this distance might change in response to chemical stimuli, while the enzymatic activity remained unaffected. These observations were further validated by Saturation Transfer Difference (STD) NMR experiments. We propose that the observed changes in the distance are an important part of the histone code that remains to be explored. Mapping direct interactions and distances between macromolecules with such "nanorulers" as a function of cellular events facilitates better understanding of basic biology and ways for its manipulation in a cell- and tissue-specific manner.
Collapse
Affiliation(s)
- Hazem Abdelkarim
- Department
of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, United States
| | - Michael Brunsteiner
- Department
of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, United States
| | - Raghupathi Neelarapu
- Department
of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, United States
| | - He Bai
- Department
of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, United States
| | - Antonett Madriaga
- Department
of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, United States
| | - Richard B. van Breemen
- Department
of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, United States
| | | | | | - Pavel A. Petukhov
- Department
of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, United States
| |
Collapse
|
207
|
Frick KM. Epigenetics, oestradiol and hippocampal memory consolidation. J Neuroendocrinol 2013; 25:1151-62. [PMID: 24028406 PMCID: PMC3943552 DOI: 10.1111/jne.12106] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 08/13/2013] [Accepted: 09/05/2013] [Indexed: 02/02/2023]
Abstract
Epigenetic alterations of histone proteins and DNA are essential for hippocampal synaptic plasticity and cognitive function, and contribute to the aetiology of psychiatric disorders and neurodegenerative diseases. Hippocampal memory formation depends on histone alterations and DNA methylation, and increasing evidence suggests that the regulation of these epigenetic processes by modulatory factors, such as environmental enrichment, stress and hormones, substantially influences memory function. Recent work from our laboratory suggests that the ability of the sex-steroid hormone 17β-oestradiol (E2 ) to enhance novel object recognition memory consolidation in young adult female mice is dependent on histone H3 acetylation and DNA methylation in the dorsal hippocampus. Our data also suggest that enzymes mediating DNA methylation and histone acetylation work in concert to regulate the effects of E2 on memory consolidation. These findings shed light on the epigenetic mechanisms that influence hormonal modulation of cognitive function, and may have important implications for understanding how hormones influence cognition in adulthood and ageing. The present review provides a brief overview of the literature on epigenetics and memory, describes in detail our findings demonstrating that epigenetic alterations regulate E2 -induced memory enhancement in female mice, and discusses future directions for research on the epigenetic regulation of E2 -induced memory enhancement.
Collapse
Affiliation(s)
- Karyn M. Frick
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53211
| |
Collapse
|
208
|
Abstract
This review highlights recent discoveries that have shaped the emerging viewpoints in the field of epigenetic influences in the central nervous system (CNS), focusing on the following questions: (i) How is the CNS shaped during development when precursor cells transition into morphologically and molecularly distinct cell types, and is this event driven by epigenetic alterations?; ii) How do epigenetic pathways control CNS function?; (iii) What happens to "epigenetic memory" during aging processes, and do these alterations cause CNS dysfunction?; (iv) Can one restore normal CNS function by manipulating the epigenome using pharmacologic agents, and will this ameliorate aging-related neurodegeneration? These and other still unanswered questions remain critical to understanding the impact of multifaceted epigenetic machinery on the age-related dysfunction of CNS.
Collapse
Affiliation(s)
- Yue-Qiang Zhao
- />Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945-1400 USA
- />Department of Plastic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - I. King Jordan
- />School of Biology, Georgia Institute of Technology, Atlanta, GA USA
- />PanAmerican Bioinformatics Institute, Santa Marta, Magdalena Colombia
| | - Victoria V. Lunyak
- />Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945-1400 USA
| |
Collapse
|
209
|
Maceyka M, Milstien S, Spiegel S. The potential of histone deacetylase inhibitors in Niemann - Pick type C disease. FEBS J 2013; 280:6367-72. [PMID: 23992240 DOI: 10.1111/febs.12505] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Revised: 08/20/2013] [Accepted: 08/23/2013] [Indexed: 11/26/2022]
Abstract
Niemann-Pick type C (NPC) disease is a fatal complex neurodegenerative lysosomal storage disorder caused by genetic mutations in the proteins NPC1 (95% of patients) or NPC2 that decrease intracellular cholesterol trafficking, resulting in accumulation of unesterified cholesterol and sphingolipids in lysosomal storage organelles. Unfortunately, treatment options for NPC disease are still very limited, although miglustat, which inhibits glucosylceramide synthase, thus limiting ganglioside accumulation, has been approved for treatment of NPC disease. Here we discuss advances in the understanding of NPC1 and its functions, and several new strategies for interfering with cholesterol and sphingolipid accumulation in NPC1-null mice. We also describe several recent studies demonstrating that histone deacetylase inhibitors may correct cholesterol-storage defects in human NPC1 mutant fibroblasts by increasing expression of the low-transport-activity NPC1 mutant protein. These studies may lead to development of new therapeutic approaches for treatment of NPC disease.
Collapse
Affiliation(s)
- Michael Maceyka
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | | | | |
Collapse
|
210
|
Caraci F, Leggio GM, Drago F, Salomone S. Epigenetic drugs for Alzheimer's disease: hopes and challenges. Br J Clin Pharmacol 2013; 75:1154-5. [PMID: 22905960 DOI: 10.1111/j.1365-2125.2012.04443.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 08/15/2012] [Indexed: 11/29/2022] Open
|
211
|
Calamini B, Morimoto RI. Protein homeostasis as a therapeutic target for diseases of protein conformation. Curr Top Med Chem 2013; 12:2623-40. [PMID: 23339312 DOI: 10.2174/1568026611212220014] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 09/26/2012] [Accepted: 09/26/2012] [Indexed: 12/12/2022]
Abstract
Protein misfolding and aggregation are widely implicated in an increasing number of human diseases providing for new therapeutic opportunities targeting protein homeostasis (proteostasis). The cellular response to proteotoxicity is highly regulated by stress signaling pathways, molecular chaperones, transport and clearance machineries that function as a proteostasis network (PN) to protect the stability and functional properties of the proteome. Consequently, the PN is essential at the cellular and organismal level for development and lifespan. However, when challenged during aging, stress, and disease, the folding and clearance machineries can become compromised leading to both gain-of-function and loss-of-function proteinopathies. Here, we assess the role of small molecules that activate the heat shock response, the unfolded protein response, and clearance mechanisms to increase PN capacity and protect cellular proteostasis against proteotoxicity. We propose that this strategy to enhance cell stress pathways and chaperone activity establishes a cytoprotective state against misfolding and/or aggregation and represents a promising therapeutic avenue to prevent the cellular damage associated with the variety of protein conformational diseases.
Collapse
Affiliation(s)
- Barbara Calamini
- Department of Neurobiology and Center for Drug Discovery, Duke University, Durham, NC, USA
| | | |
Collapse
|
212
|
A novel activator of CBP/p300 acetyltransferases promotes neurogenesis and extends memory duration in adult mice. J Neurosci 2013; 33:10698-712. [PMID: 23804093 DOI: 10.1523/jneurosci.5772-12.2013] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Although the brain functions of specific acetyltransferases such as the CREB-binding protein (CBP) and p300 have been well documented using mutant transgenic mice models, studies based on their direct pharmacological activation are still missing due to the lack of cell-permeable activators. Here we present a small-molecule (TTK21) activator of the histone acetyltransferases CBP/p300, which, when conjugated to glucose-based carbon nanosphere (CSP), passed the blood-brain barrier, induced no toxicity, and reached different parts of the brain. After intraperitoneal administration in mice, CSP-TTK21 significantly acetylated histones in the hippocampus and frontal cortex. Remarkably, CSP-TTK21 treatment promoted the formation of long and highly branched doublecortin-positive neurons in the subgranular zone of the dentate gyrus and reduced BrdU incorporation, suggesting that CBP/p300 activation favors maturation and differentiation of adult neuronal progenitors. In addition, mRNA levels of the neuroD1 differentiation marker and BDNF, a neurotrophin required for the terminal differentiation of newly generated neurons, were both increased in the hippocampus concomitantly with an enrichment of acetylated-histone on their proximal promoter. Finally, we found that CBP/p300 activation during a spatial training, while not improving retention of a recent memory, resulted in a significant extension of memory duration. This report is the first evidence for CBP/p300-mediated histone acetylation in the brain by an activator molecule, which has beneficial implications for the brain functions of adult neurogenesis and long-term memory. We propose that direct stimulation of acetyltransferase function could be useful in terms of therapeutic options for brain diseases.
Collapse
|
213
|
Akbarian S, Beeri MS, Haroutunian V. Epigenetic determinants of healthy and diseased brain aging and cognition. JAMA Neurol 2013; 70:711-8. [PMID: 23571692 DOI: 10.1001/jamaneurol.2013.1459] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A better understanding of normal and diseased brain aging and cognition will have a significant public health impact, given that the oldest-old persons older than 85 years of age represent the fastest-growing segment in the population in developed countries, with more than 30 million new cases of dementia predicted to occur worldwide each year by 2040. Dysregulation of gene expression and, more generally, genome organization and function are thought to contribute to age-related declines in cognition. Remarkably, nearly all neuronal nuclei that reside in an aged brain had permanently exited from the cell cycle during prenatal development, and DNA methylation and histone modifications and other molecular constituents of the epigenome are likely to play a critical role in the maintenance of neuronal health and function throughout the entire lifespan. Here, we provide an overview of age-related changes in the brain's chromatin structures, highlight potential epigenetic drug targets for cognitive decline and age-related neurodegenerative disease, and discuss opportunities and challenges when studying epigenetic biomarkers in aging research.
Collapse
Affiliation(s)
- Schahram Akbarian
- Department of Psychiatry, Mount Sinai School of Medicine, New York, New York 10029, USA.
| | | | | |
Collapse
|
214
|
Targeting the sphingosine-1-phosphate axis in cancer, inflammation and beyond. Nat Rev Drug Discov 2013; 12:688-702. [PMID: 23954895 DOI: 10.1038/nrd4099] [Citation(s) in RCA: 358] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The bioactive lipid sphingosine-1-phosphate (S1P) is involved in multiple cellular signalling systems and has a pivotal role in the control of immune cell trafficking. As such, S1P has been implicated in disorders such as cancer and inflammatory diseases. This Review discusses the ways in which S1P might be therapeutically targeted - for example, via the development of chemical inhibitors that target the generation, transport and degradation of S1P and via the development of specific S1P receptor agonists. We also highlight recent conflicting results observed in preclinical studies targeting S1P and discuss ongoing clinical trials in this field.
Collapse
|
215
|
Abstract
Synaptic activity initiates biochemical processes that have various outcomes, including the formation of memories, increases in neuronal survival and the development of chronic pain and addiction. Virtually all activity-induced, long-lasting adaptations of brain functions require a dialogue between synapses and the nucleus that results in changes in gene expression. Calcium signals that are induced by synaptic activity and propagate into the nucleus are a major route for synapse-to-nucleus communication. Recent findings indicate that diverse forms of neuroadaptation require calcium transients in the nucleus to switch on the necessary genomic programme. Deficits in nuclear calcium signalling as a result of a reduction in synaptic activity or increased extrasynaptic NMDA receptor signalling may underlie the aetiologies of various diseases, including neurodegeneration and cognitive dysfunction.
Collapse
Affiliation(s)
- Hilmar Bading
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), University of Heidelberg, INF 364, 69120 Heidelberg, Germany. Hilmar.Bading@ uni-hd.de
| |
Collapse
|
216
|
Epigenetic modulation of neuronal apoptosis and cognitive functions in sepsis-associated encephalopathy. Neurol Sci 2013; 35:283-8. [PMID: 23925573 DOI: 10.1007/s10072-013-1508-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Accepted: 07/15/2013] [Indexed: 10/26/2022]
Abstract
Sepsis-associated encephalopathy (SAE), which associates with neuronal apoptosis and cognitive disorders, is a common complication of systemic sepsis. However, the mechanism involving its modulation remains to be elucidated. Recent studies showed that histone deacetylases (HDACs) were implicated in neurodegeneration and cognitive functions. The current study was designed to investigate whether septic brain is epigenetically modulated by HDACs, using cecal ligation and peroration (CLP) rats and primary hippocampal neuronal cultures. We found that hippocampal acetylated histone 3 (AcH3), acetylated histone 4 (AcH4), cytoplasmic HDAC4 and Bcl-XL were inhibited in septic brain. Hippocampal Bax and nuclear HDAC4 expressions were enhanced in CLP rats. Administration of HDACs inhibitor, trichostatin A (TSA) or suberoylanilide hydroxamic acid (SAHA) rescued the changes of Bcl-XL and Bax in vivo, and decreased apoptotic cells in vitro. In addition, HDAC4 shRNA transfection significantly enhanced AcH3, AcH4 and Bcl-XL, but suppressed Bax. Neuronal apoptosis was also reduced by transfection of HDAC4 shRNA. Furthermore, CLP rats exhibited significant spatial learning and memory deficits, which could be ameliorated by application of TSA or SAHA without influence on locomotive activity. These results reveal that epigenetic modulation is involved in septic brain, and the inhibition of HDACs may serve as a potential therapeutic approach for SAE treatment.
Collapse
|
217
|
Koppel I, Timmusk T. Differential regulation of Bdnf expression in cortical neurons by class-selective histone deacetylase inhibitors. Neuropharmacology 2013; 75:106-15. [PMID: 23916482 DOI: 10.1016/j.neuropharm.2013.07.015] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 06/28/2013] [Accepted: 07/14/2013] [Indexed: 12/18/2022]
Abstract
Histone deactylase (HDAC) inhibitors show promise as therapeutics for neurodegenerative and psychiatric diseases. Increased expression of brain-derived neurotrophic factor (BDNF) has been associated with memory-enhancing and neuroprotective properties of these drugs, but the mechanism of BDNF induction is not well understood. Here, we compared the effects of a class I/IIb selective HDAC inhibitor SAHA, a class I selective inhibitor MS-275, a class II selective inhibitor MC1568 and a HDAC6 selective inhibitor tubacin on Bdnf mRNA expression in rat primary neurons. We show that inhibition of class II HDACs resulted in rapid upregulation of Bdnf mRNA levels, whereas class I HDAC inhibition produced a markedly delayed Bdnf induction. In contrast to relatively slow upregulation of Bdnf transcripts, histone acetylation at BDNF promoters I and IV was rapidly induced by SAHA. Bdnf induction by SAHA and MS-275 at 24 h was sensitive to protein synthesis inhibition, suggesting that delayed Bdnf induction by HDAC inhibitors is secondary to changed expression of its regulators. HDAC4 and HDAC5 repressed Bdnf promoter IV activity, supporting the role of class II HDACs in regulation of Bdnf expression. In addition, we show a critical role for the cAMP/Ca2+ response element (CRE) in induction of Bdnf promoter IV by MS-275, MC1568, SAHA and sodium valproate. In contrast, MEF2-binding CaRE1 element was not necessary for promoter IV induction by HDAC inhibition. Finally, we show that similarly to Bdnf, the studied HDAC inhibitors differentially induced expression of neuronal activity-regulated genes c-fos and Arc. Together, our findings implicate class II HDACs in transcriptional regulation of Bdnf and indicate that class II selective HDAC inhibitors may have potential as therapeutics for nervous system disorders.
Collapse
Affiliation(s)
- Indrek Koppel
- Department of Gene Technology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia.
| | - Tõnis Timmusk
- Department of Gene Technology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia.
| |
Collapse
|
218
|
Exposure to Penicillium mycotoxins alters gene expression of enzymes involved in the epigenetic regulation of bovine macrophages (BoMacs). Mycotoxin Res 2013; 29:235-43. [DOI: 10.1007/s12550-013-0174-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 07/02/2013] [Accepted: 07/05/2013] [Indexed: 11/26/2022]
|
219
|
Abstract
Histone acetylation is a prominent epigenetic modification of the central nervous system that is unequivocally associated with an increase in the rate of gene transcription. Because gene transcription, in turn, plays an important role in long-lasting forms of memory, histone acetylation generally favors long-term memory, whereas histone deacetylation impinges on it. Histone acetylation is also amenable to pharmacological interventions-predominantly by the use of histone deacetylase (HDAC) inhibitors-and has therefore spurred considerable interest as a putative target of cognitive enhancement. Because of the ubiquitous presence of histone acetylation, HDAC inhibitors have great potential not only to treat cognitive impairment resulting from neurodevelopmental and neurodegenerative disorders but also to serve as cognitive enhancers for the cognitively healthy. In this review, we summarize the state of the art of HDAC inhibitors as cognitive treatments or cognitive enhancers; describe a new model of their mode of action, epigenetic priming; and caution against their unsupervised usage, despite their overall great promise.
Collapse
Affiliation(s)
- Johannes Gräff
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| | | |
Collapse
|
220
|
Lopez-Atalaya JP, Ito S, Valor LM, Benito E, Barco A. Genomic targets, and histone acetylation and gene expression profiling of neural HDAC inhibition. Nucleic Acids Res 2013; 41:8072-84. [PMID: 23821663 PMCID: PMC3783173 DOI: 10.1093/nar/gkt590] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Histone deacetylase inhibitors (HDACis) have been shown to potentiate hippocampal-dependent memory and synaptic plasticity and to ameliorate cognitive deficits and degeneration in animal models for different neuropsychiatric conditions. However, the impact of these drugs on hippocampal histone acetylation and gene expression profiles at the genomic level, and the molecular mechanisms that underlie their specificity and beneficial effects in neural tissue, remains obscure. Here, we mapped four relevant histone marks (H3K4me3, AcH3K9,14, AcH4K12 and pan-AcH2B) in hippocampal chromatin and investigated at the whole-genome level the impact of HDAC inhibition on acetylation profiles and basal and activity-driven gene expression. HDAC inhibition caused a dramatic histone hyperacetylation that was largely restricted to active loci pre-marked with H3K4me3 and AcH3K9,14. In addition, the comparison of Chromatin immunoprecipitation sequencing and gene expression profiles indicated that Trichostatin A-induced histone hyperacetylation, like histone hypoacetylation induced by histone acetyltransferase deficiency, had a modest impact on hippocampal gene expression and did not affect the transient transcriptional response to novelty exposure. However, HDAC inhibition caused the rapid induction of a homeostatic gene program related to chromatin deacetylation. These results illuminate both the relationship between hippocampal gene expression and histone acetylation and the mechanism of action of these important neuropsychiatric drugs.
Collapse
Affiliation(s)
- Jose P Lopez-Atalaya
- Instituto de Neurociencias de Alicante (Universidad Miguel Hernández - Consejo Superior de Investigaciones Científicas), Campus de Sant Joan. Apt. 18. Sant Joan d'Alacant, 03550 Alicante, Spain
| | | | | | | | | |
Collapse
|
221
|
Histone deacetylase inhibitors are neuroprotective and preserve NGF-mediated cell survival following traumatic brain injury. Proc Natl Acad Sci U S A 2013; 110:10747-52. [PMID: 23754423 DOI: 10.1073/pnas.1308950110] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Acute traumatic brain injury (TBI) is associated with long-term cognitive and behavioral dysfunction. In vivo studies have shown histone deacetylase inhibitors (HDACis) to be neuroprotective following TBI in rodent models. HDACis are intriguing candidates because they are capable of provoking widespread genetic changes and modulation of protein function. By using known HDACis and a unique small-molecule pan-HDACi (LB-205), we investigated the effects and mechanisms associated with HDACi-induced neuroprotection following CNS injury in an astrocyte scratch assay in vitro and a rat TBI model in vivo. We demonstrate the preservation of sufficient expression of nerve growth factor (NGF) and activation of the neurotrophic tyrosine kinase receptor type 1 (TrkA) pathway following HDACi treatment to be crucial in stimulating the survival of CNS cells after TBI. HDACi treatment up-regulated the expression of NGF, phospho-TrkA, phospho-protein kinase B (p-AKT), NF-κB, and B-cell lymphoma 2 (Bcl-2) cell survival factors while down-regulating the expression of p75 neurotrophin receptor (NTR), phospho-JNK, and Bcl-2-associated X protein apoptosis factors. HDACi treatment also increased the expression of the stem cell biomarker nestin, and decreased the expression of reactive astrocyte biomarker GFAP within damaged tissue following TBI. These findings provide further insight into the mechanisms by which HDACi treatment after TBI is neuroprotective and support the continued study of HDACis following acute TBI.
Collapse
|
222
|
Walker MP, LaFerla FM, Oddo SS, Brewer GJ. Reversible epigenetic histone modifications and Bdnf expression in neurons with aging and from a mouse model of Alzheimer's disease. AGE (DORDRECHT, NETHERLANDS) 2013; 35:519-31. [PMID: 22237558 PMCID: PMC3636384 DOI: 10.1007/s11357-011-9375-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 12/18/2011] [Indexed: 05/02/2023]
Abstract
With aging and Alzheimer's disease (AD), there is an increased sensitivity to stress along with declines in the memory-associated neurotrophin brain-derived neurotrophic factor in AD. We have replicated this aging phenotype in cultured neurons from aged mice despite being grown in the same environmental conditions as young neurons. This led us to hypothesize that age-related differences in epigenetic acetylation and methylation of histones are associated with age-related gene regulation. We cultured hippocampal/cortical neurons from the 3xTg-AD mouse model and from non-transgenic mice to quantify single cell acetylation and methylation levels across the life span. In non-transgenic neurons, H3 acetylation was unchanged with age, while H4 acetylation decreased with age of the donor. Compared to non-transgenic neurons, 3xTg-AD neurons had higher levels of H3 and H4 acetylation beginning at 4 months of age. In contrast to non-transgenic neurons, 3xTg-AD neurons increased acetylation with age; 3xTg-AD neurons also responded differently to inhibition of histone deacetylases at an early age. Importantly, treatment of non-transgenic neurons with the AD peptide Aβ also elevated levels of acetylation. We also examined the repressive function of histone H3 lysine 9 (H3K9) methylation. H3K9 methylation increased with age in non-transgenic neurons, which was amplified further in 3xTg-AD neurons. The dominant effect of higher H3K9 methylation was supported by lower Bdnf gene expression in non-transgenic and 3xTg-AD mice. These data show that the epigenetic states of non-transgenic and 3xTg-AD brain neurons are profoundly different and reversible, beginning at 4 months of age when the first memory deficits are reported.
Collapse
Affiliation(s)
- Michael P. Walker
- />Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL 62794-9626 USA
| | - Frank M. LaFerla
- />Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA 92697 USA
| | - Salvador S. Oddo
- />Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA 92697 USA
| | - Gregory J. Brewer
- />Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL 62794-9626 USA
- />Department of Neurology, Southern Illinois University School of Medicine, Springfield, IL 62794-9626 USA
| |
Collapse
|
223
|
Hasan A, Mitchell A, Schneider A, Halene T, Akbarian S. Epigenetic dysregulation in schizophrenia: molecular and clinical aspects of histone deacetylase inhibitors. Eur Arch Psychiatry Clin Neurosci 2013; 263:273-84. [PMID: 23381549 DOI: 10.1007/s00406-013-0395-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Accepted: 01/18/2013] [Indexed: 12/22/2022]
Abstract
Notwithstanding the considerable advances in the treatment options for schizophrenia, the cognitive symptoms in particular are not receptive to antipsychotic treatment and considered one of the main predictors for poor social and functional outcome of the disease. Recent findings in preclinical model systems indicate that epigenetic modulation might emerge as a promising target for the treatment of cognitive disorders. The aim of this review is to introduce some of the principles of chromatin biology to the reader and to discuss a possible role in the neurobiology and pathophysiology of schizophrenia. We will discuss potential epigenetic targets for drug therapy, including histone deacetylase inhibitors (HDACi). In a second part, conceptual and practical challenges associated with clinical trials of chromatin-modifying drugs in psychiatric patient populations are discussed, including safety profiles, the potential for adverse effects and general issues revolving around pharmacokinetics and pharmacodynamics. Additional investigations are required in order to fully evaluate the potential of HDACi and similar "epigenetic therapies" as novel treatment options for schizophrenia and other psychotic disease.
Collapse
Affiliation(s)
- Alkomiet Hasan
- Deparment of Psychiatry and Psychotherapy, Ludwig-Maximilians-University, Nussbaumstr. 7, 80336 Munich, Germany.
| | | | | | | | | |
Collapse
|
224
|
Histone deacetylase 2 cell autonomously suppresses excitatory and enhances inhibitory synaptic function in CA1 pyramidal neurons. J Neurosci 2013; 33:5924-9. [PMID: 23554474 DOI: 10.1523/jneurosci.3162-12.2013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Histone deacetylase 2 (HDAC2) negatively regulates excitatory synapse number and memory performance. However, whether HDAC2 regulation of excitatory synapses occurs in a cell-autonomous manner and whether HDAC2 regulates inhibitory synaptic functions are not well understood. To examine these aspects of HDAC2 function, we used sparse transfection of rat hippocampal slice cultures and whole-cell recordings in pyramidal neurons. HDAC2 knockdown (KD) in single postsynaptic pyramidal neurons enhanced, whereas HDAC2 overexpression (OE) reduced, excitatory synaptic transmission. Postsynaptic KD of HDAC2 also facilitated expression of long-term potentiation induced by subthreshold induction stimuli, without altering long-term depression. In contrast, HDAC2 KD reduced, whereas HDAC2 OE enhanced, inhibitory synaptic transmission. Alterations of postsynaptic GABA(A) receptors (GABA(A)Rs) likely underlie the impact of HDAC2 on inhibitory transmission. Consistent with this, we observed reduced transcript and protein levels of the GABA(A)R γ2 subunit and reduced surface expression of the α2 subunit after HDAC2 KD. Furthermore, we observed a reduction in synaptic but not tonic GABA(A)R currents by HDAC2 KD, suggesting that HDAC2 selectively affects synaptic abundance of functional GABA(A)Rs. Immunostaining for postsynaptic GABA(A)Rs confirmed that HDAC2 KD and OE can regulate the synaptic abundance of these receptors. Together, these results highlight a role for HDAC2 in suppressing synaptic excitation and enhancing synaptic inhibition of hippocampal neurons. Therefore, a shift in the balance of synaptic excitation versus inhibition favoring excitation could contribute to the beneficial effects of reducing HDAC2 function in wild-type mice or of inhibiting HDACs in models of cognitive impairment.
Collapse
|
225
|
Harrison IF, Dexter DT. Epigenetic targeting of histone deacetylase: therapeutic potential in Parkinson's disease? Pharmacol Ther 2013; 140:34-52. [PMID: 23711791 DOI: 10.1016/j.pharmthera.2013.05.010] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 05/09/2013] [Indexed: 12/12/2022]
Abstract
Parkinson's disease (PD) is the most common movement disorder affecting more than 4million people worldwide. The primary motor symptoms of the disease are due to degeneration of dopaminergic nigrostriatal neurons. Dopamine replacement therapies have therefore revolutionised disease management by partially controlling these symptoms. However these drugs can produce debilitating side effects when used long term and do not protect degenerating neurons against death. Recent evidence has highlighted a pathological imbalance in PD between the acetylation and deacetylation of the histone proteins around which deoxyribonucleic acid (DNA) is coiled, in favour of excessive histone deacetylation. This mechanism of adding/removing acetyl groups to histone lysine residues is one of many epigenetic regulatory processes which control the expression of genes, many of which will be essential for neuronal survival. Hence, such epigenetic modifications may have a pathogenic role in PD. It has therefore been hypothesised that if this pathological imbalance can be corrected with the use of histone deacetylase inhibiting agents then neurodegeneration observed in PD can be ameliorated. This article will review the current literature with regard to epigenetic changes in PD and the use of histone deacetylase inhibitors (HDACIs) in PD: examining the evidence of the neuroprotective effects of numerous HDACIs in cellular and animal models of Parkinsonian cell death. Ultimately answering the question: does epigenetic targeting of histone deacetylases hold therapeutic potential in PD?
Collapse
Affiliation(s)
- Ian F Harrison
- Parkinson's Disease Research Group, Centre for Neuroinflammation and Neurodegeneration, Division of Brain Sciences, Department of Medicine, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK.
| | | |
Collapse
|
226
|
Banzhaf-Strathmann J, Claus R, Mücke O, Rentzsch K, van der Zee J, Engelborghs S, De Deyn PP, Cruts M, van Broeckhoven C, Plass C, Edbauer D. Promoter DNA methylation regulates progranulin expression and is altered in FTLD. Acta Neuropathol Commun 2013; 1:16. [PMID: 24252647 PMCID: PMC3893557 DOI: 10.1186/2051-5960-1-16] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 04/26/2013] [Indexed: 12/13/2022] Open
Abstract
Background Frontotemporal lobar degeneration (FTLD) is a heterogeneous group of neurodegenerative diseases associated with personality changes and progressive dementia. Loss-of-function mutations in the growth factor progranulin (GRN) cause autosomal dominant FTLD, but so far the pathomechanism of sporadic FTLD is unclear. Results We analyzed whether DNA methylation in the GRN core promoter restricts GRN expression and, thus, might promote FTLD in the absence of GRN mutations. GRN expression in human lymphoblast cell lines is negatively correlated with methylation at several CpG units within the GRN promoter. Chronic treatment with the DNA methyltransferase inhibitor 5-aza-2′-deoxycytidine (DAC) strongly induces GRN mRNA and protein levels. In a reporter assay, CpG methylation blocks transcriptional activity of the GRN core promoter. In brains of FTLD patients several CpG units in the GRN promoter are significantly hypermethylated compared to age-matched healthy controls, Alzheimer and Parkinson patients. These CpG motifs are critical for GRN promoter activity in reporter assays. Furthermore, DNA methyltransferase 3a (DNMT3a) is upregulated in FTLD patients and overexpression of DNMT3a reduces GRN promoter activity and expression. Conclusion These data suggest that altered DNA methylation is a novel pathomechanism for FTLD that is potentially amenable to targeted pharmacotherapy.
Collapse
|
227
|
Oral administration of histone deacetylase inhibitor MS-275 ameliorates neuroinflammation and cerebral amyloidosis and improves behavior in a mouse model. J Neuropathol Exp Neurol 2013; 72:178-85. [PMID: 23399896 DOI: 10.1097/nen.0b013e318283114a] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Alzheimer disease is the most common neurodegenerative disease and the major cause of dementia. In addition to β-amyloid aggregation and hyperphosphorylated tau, neuroinflammation also plays important roles in the pathophysiology of this multifactorial disorder. Histone deacetylase catalyzes deacetylation of histones and has important roles in the regulation of gene expression. Histone deacetylase inhibitors have been reported to exhibit neuroprotective and anti-neuroinflammatory activities and have therapeutic effects in several animal models of neurodegenerative diseases. Here, an efficient benzamide histone deacetylase inhibitor, MS-275, was orally administered by gavage to transgenic APP/PS1 mice, an animal model of cerebral amyloidosis for Alzheimer disease. After 10 days of treatment, MS-275 significantly ameliorated microglial activation and β-amyloid deposition in cerebral cortex and/or hippocampus. This was associated with improved nesting behavior, an important affiliative/social behavior. MS-275 also attenuated inflammatory activation of a mouse macrophage cell line in vitro. These results suggest that MS-275 may be a therapeutic option for Alzheimer disease and other neuroinflammatory diseases.
Collapse
|
228
|
HDAC inhibition facilitates the switch between memory systems in young but not aged mice. J Neurosci 2013; 33:1954-63. [PMID: 23365234 DOI: 10.1523/jneurosci.3453-12.2013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Chromatin modifications, especially histone acetylation, are critically involved in gene regulation required for long-term memory processes. Increasing histone acetylation via administration of histone deacetylase inhibitors before or after a learning experience enhances memory consolidation for hippocampus-dependent tasks and rescues age-related memory impairments. Whether acutely and locally enhancing histone acetylation during early consolidation processes can operate as a switch between multiple memory systems is less clear. This study examined the short- and long-term behavioral consequences of acute intra-CA1 administration of the histone deacetylase inhibitor Trichostatin A (TSA) on cue versus place learning strategy selection after a cue-guided water maze task and competition testing performed 1 or 24 h later in mice. Here, we show that intra-CA1 TSA infusion administrated immediately post-training biased young mice away from striatum-dependent cue strategy toward hippocampus-dependent place strategy under training condition that normally promotes cue strategy in vehicle controls. However, concomitant infusions of TSA with either PKA inhibitor, Rp-cAMPS, into CA1 or cAMP analog, 8Br-cAMP, into dorsal striatum failed to bias young mice to place strategy use. Behavioral and immunohistochemical analyses further indicated that post-training TSA infusion in aged mice rescued aging-associated deregulation of H4 acetylation in the CA1 but failed to reverse phosphorylated CREB deficits and to produce strategy bias on the 24 h probe test. These findings suggest that post-training intra-CA1 TSA infusion promotes dynamic shift from striatum toward the hippocampal system in young but not aged animals, and support the possibility of a role for CREB in the TSA-mediated switch between these two memory systems.
Collapse
|
229
|
Abstract
Studies in cultured cells have demonstrated the existence of higher-order epigenetic mechanisms, determining the relationship between expression of the gene and its position within the cell nucleus. It is unknown, whether such mechanisms operate in postmitotic, highly differentiated cell types, such as neurons in vivo. Accordingly, we examined whether the intranuclear positions of Bdnf and Trkb genes, encoding the major neurotrophin and its receptor respectively, change as a result of neuronal activity, and what functional consequences such movements may have. In a rat model of massive neuronal activation upon kainate-induced seizures we found that elevated neuronal expression of Bdnf is associated with its detachment from the nuclear lamina, and translocation toward the nucleus center. In contrast, the position of stably expressed Trkb remains unchanged after seizures. Our study demonstrates that activation-dependent architectural remodeling of the neuronal cell nucleus in vivo contributes to activity-dependent changes in gene expression in the brain.
Collapse
|
230
|
Pirooznia SK, Elefant F. Targeting specific HATs for neurodegenerative disease treatment: translating basic biology to therapeutic possibilities. Front Cell Neurosci 2013; 7:30. [PMID: 23543406 PMCID: PMC3610086 DOI: 10.3389/fncel.2013.00030] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 03/10/2013] [Indexed: 12/28/2022] Open
Abstract
Dynamic epigenetic regulation of neurons is emerging as a fundamental mechanism by which neurons adapt their transcriptional responses to specific developmental and environmental cues. While defects within the neural epigenome have traditionally been studied in the context of early developmental and heritable cognitive disorders, recent studies point to aberrant histone acetylation status as a key mechanism underlying acquired inappropriate alterations of genome structure and function in post-mitotic neurons during the aging process. Indeed, it is becoming increasingly evident that chromatin acetylation status can be impaired during the lifetime of neurons through mechanisms related to loss of function of histone acetyltransferase (HAT) activity. Several HATs have been shown to participate in vital neuronal functions such as regulation of neuronal plasticity and memory formation. As such, dysregulation of such HATs has been implicated in the pathogenesis associated with age-associated neurodegenerative diseases and cognitive decline. In order to counteract the loss of HAT function in neurodegenerative diseases, the current therapeutic strategies involve the use of small molecules called histone deacetylase (HDAC) inhibitors that antagonize HDAC activity and thus enhance acetylation levels. Although this strategy has displayed promising therapeutic effects, currently used HDAC inhibitors lack target specificity, raising concerns about their applicability. With rapidly evolving literature on HATs and their respective functions in mediating neuronal survival and higher order brain function such as learning and memory, modulating the function of specific HATs holds new promises as a therapeutic tool in neurodegenerative diseases. In this review, we focus on the recent progress in research regarding epigenetic histone acetylation mechanisms underlying neuronal activity and cognitive function. We discuss the current understanding of specific HDACs and HATs in neurodegenerative diseases and the future promising prospects of using specific HAT based therapeutic approaches.
Collapse
|
231
|
Snyder MA, Gao WJ. NMDA hypofunction as a convergence point for progression and symptoms of schizophrenia. Front Cell Neurosci 2013; 7:31. [PMID: 23543703 PMCID: PMC3608949 DOI: 10.3389/fncel.2013.00031] [Citation(s) in RCA: 163] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 03/11/2013] [Indexed: 01/05/2023] Open
Abstract
Schizophrenia is a disabling mental illness that is now recognized as a neurodevelopmental disorder. It is likely that genetic risk factors interact with environmental perturbations to affect normal brain development and that this altered trajectory results in a combination of positive, negative, and cognitive symptoms. Although the exact pathophysiology of schizophrenia is unknown, the N-methyl-D-aspartate receptor (NMDAR), a major glutamate receptor subtype, has received great attention. Proper expression and regulation of NMDARs in the brain is critical for learning and memory processes as well as cortical plasticity and maturation. Evidence from both animal models and human studies implicates a dysfunction of NMDARs both in disease progression and symptoms of schizophrenia. Furthermore, mutations in many of the known genetic risk factors for schizophrenia suggest that NMDAR hypofunction is a convergence point for schizophrenia. In this review, we discuss how disrupted NMDAR function leads to altered neurodevelopment that may contribute to the progression and development of symptoms for schizophrenia, particularly cognitive deficits. We review the shared signaling pathways among the schizophrenia susceptibility genes DISC1, neuregulin1, and dysbindin, focusing on the AKT/GSK3β pathway, and how their mutations and interactions can lead to NMDAR dysfunction during development. Additionally, we explore what open questions remain and suggest where schizophrenia research needs to move in order to provide mechanistic insight into the cause of NMDAR dysfunction, as well as generate possible new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Melissa A Snyder
- Department of Neurobiology and Anatomy, Drexel University College of Medicine Philadelphia, PA, USA
| | | |
Collapse
|
232
|
He M, Zhang B, Wei X, Wang Z, Fan B, Du P, Zhang Y, Jian W, Chen L, Wang L, Fang H, Li X, Wang PA, Yi F. HDAC4/5-HMGB1 signalling mediated by NADPH oxidase activity contributes to cerebral ischaemia/reperfusion injury. J Cell Mol Med 2013; 17:531-42. [PMID: 23480850 PMCID: PMC3822653 DOI: 10.1111/jcmm.12040] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 01/15/2013] [Indexed: 12/27/2022] Open
Abstract
Histone deacetylases (HDACs)-mediated epigenetic mechanisms play critical roles in the homeostasis of histone acetylation and gene transcription. HDAC inhibitors have displayed neuroprotective properties in animal models for various neurological diseases including Alzheimer's disease and ischaemic stroke. However, some studies have also reported that HDAC enzymes exert protective effects in several pathological conditions including ischaemic stress. The mixed results indicate the specific roles of each HDAC protein in different diseased states. However, the subtypes of HDACs associated with ischaemic stroke keep unclear. Therefore, in this study, we used an in vivo middle cerebral artery occlusion (MCAO) model and in vitro cell cultures by the model of oxygen glucose deprivation to investigate the expression patterns of HDACs and explore the roles of individual HDACs in ischaemic stroke. Our results showed that inhibition of NADPH oxidase activity ameliorated cerebral ischaemia/reperfusion (I/R) injury and among Zn2+-dependent HDACs, HDAC4 and HDAC5 were significantly decreased both in vivo and in vitro, which can be reversed by NADPH oxidase inhibitor apocynin. We further found that both HDAC4 and HDAC5 increased cell viability through inhibition of HMGB1, a central mediator of tissue damage following acute injury, expression and release in PC12 cells. Our results for the first time provide evidence that NADPH oxidase-mediated HDAC4 and HDAC5 expression contributes to cerebral ischaemia injury via HMGB1 signalling pathway, suggesting that it is important to elucidate the role of individual HDACs within the brain, and the development of HDAC inhibitors with improved specificity is required to develop effective therapeutic strategies to treat stroke.
Collapse
Affiliation(s)
- Min He
- Department of Pharmacology, Shandong University School of Medicine, Jinan, Shandong 250012, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
233
|
Class I HDAC inhibition blocks cocaine-induced plasticity by targeted changes in histone methylation. Nat Neurosci 2013; 16:434-40. [PMID: 23475113 PMCID: PMC3609040 DOI: 10.1038/nn.3354] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Accepted: 02/13/2013] [Indexed: 12/16/2022]
Abstract
Induction of histone acetylation in the nucleus accumbens (NAc), a key brain reward region, promotes cocaine-induced alterations in gene expression. Histone deacetylases (HDACs) tightly regulate the acetylation of histone tails, but little is known about the functional specificity of different HDAC isoforms in the development and maintenance of cocaine-induced plasticity, and prior studies of HDAC inhibitors report conflicting effects on cocaine-elicited behavioral adaptations. Here, we demonstrate that specific and prolonged blockade of HDAC1 in NAc of mice increased global levels of histone acetylation, but also induced repressive histone methylation and antagonized cocaine-induced changes in behavior, an effect mediated in part via a chromatin-mediated suppression of GABAA receptor subunit expression and inhibitory tone on NAc neurons. Our findings suggest a novel mechanism by which prolonged and selective HDAC inhibition can alter behavioral and molecular adaptations to cocaine and inform the development of novel therapeutics for cocaine addiction.
Collapse
|
234
|
Sintoni S, Kurtys E, Scandaglia M, Contestabile A, Monti B. Chronic valproic acid administration impairs contextual memory and dysregulates hippocampal GSK-3β in rats. Pharmacol Biochem Behav 2013; 106:8-15. [PMID: 23474375 DOI: 10.1016/j.pbb.2013.02.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 02/21/2013] [Accepted: 02/23/2013] [Indexed: 12/13/2022]
Abstract
Valproic acid (VPA), a long-standing anti-epileptic and anti-manic drug, exerts multiple actions in the nervous system through various molecular mechanisms. Neuroprotective properties have been attributed to VPA in different models of neurodegeneration, but contrasting results on its improvement of learning and memory have been reported in non-pathologic conditions. In the present study, we have tested on a hippocampal-dependent learning test, the contextual fear conditioning, the effect of chronic VPA administration through alimentary supplementation that allows relatively steady concentrations to be reached by a drug otherwise very rapidly eliminated in rodents. Contextual fear memory was significantly impaired in rats chronically treated with VPA for 4 weeks. To understand the cellular and molecular correlates of this amnesic effect with particular regard to hippocampus, we addressed three putatively memory-related targets of VPA action in this brain area, obtaining the following main results: i) chronic VPA promoted an increase of post-translational modifications of histone H3 (acetylation and phosphorylation) known to favor gene transcription; ii) adult neurogenesis in the dentate gyrus, which has been controversially reported to be affected by VPA, was unchanged; and iii) GSK-3β, a kinase playing a key role in hippocampal plasticity, as well as in learning and memory, was dysregulated by VPA treatment. These results point at GSK-3β dysregulation in the hippocampus as an important parameter in the amnesic effect of VPA. The VPA amnesic effect in the animal model here reported is also supported by some observations in patients and, therefore, it should be taken into account and monitored in VPA-based therapies.
Collapse
Affiliation(s)
- Silvia Sintoni
- Department of Pharmacy and BioTechnology, University of Bologna, Italy
| | | | | | | | | |
Collapse
|
235
|
Bousiges O, Neidl R, Majchrzak M, Muller MA, Barbelivien A, Pereira de Vasconcelos A, Schneider A, Loeffler JP, Cassel JC, Boutillier AL. Detection of histone acetylation levels in the dorsal hippocampus reveals early tagging on specific residues of H2B and H4 histones in response to learning. PLoS One 2013; 8:e57816. [PMID: 23469244 PMCID: PMC3587615 DOI: 10.1371/journal.pone.0057816] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 01/26/2013] [Indexed: 12/21/2022] Open
Abstract
The recent literature provides evidence that epigenetic mechanisms such as DNA methylation and histone modification are crucial to gene transcription linked to synaptic plasticity in the mammalian brain--notably in the hippocampus--and memory formation. We measured global histone acetylation levels in the rat hippocampus at an early stage of spatial or fear memory formation. We found that H3, H4 and H2B underwent differential acetylation at specific sites depending on whether rats had been exposed to the context of a task without having to learn or had to learn about a place or fear therein: H3K9K14 acetylation was mostly responsive to any experimental conditions compared to naive animals, whereas H2B N-terminus and H4K12 acetylations were mostly associated with memory for either spatial or fear learning. Altogether, these data suggest that behavior/experience-dependent changes differently regulate specific acetylation modifications of histones in the hippocampus, depending on whether a memory trace is established or not: tagging of H3K9K14 could be associated with perception/processing of testing-related manipulations and context, thereby enhancing chromatin accessibility, while tagging of H2B N-terminus tail and H4K12 could be more closely associated with the formation of memories requiring an engagement of the hippocampus.
Collapse
Affiliation(s)
- Olivier Bousiges
- Laboratoire de Neurosciences Cognitives et Adaptatives, UMR7364, Université de Strasbourg-CNRS, GDR CNRS 2905, Faculté de Psychologie, Strasbourg, France
| | - Romain Neidl
- Laboratoire de Neurosciences Cognitives et Adaptatives, UMR7364, Université de Strasbourg-CNRS, GDR CNRS 2905, Faculté de Psychologie, Strasbourg, France
| | - Monique Majchrzak
- Laboratoire de Neurosciences Cognitives et Adaptatives, UMR7364, Université de Strasbourg-CNRS, GDR CNRS 2905, Faculté de Psychologie, Strasbourg, France
| | - Marc-Antoine Muller
- Laboratoire de Neurosciences Cognitives et Adaptatives, UMR7364, Université de Strasbourg-CNRS, GDR CNRS 2905, Faculté de Psychologie, Strasbourg, France
| | - Alexandra Barbelivien
- Laboratoire de Neurosciences Cognitives et Adaptatives, UMR7364, Université de Strasbourg-CNRS, GDR CNRS 2905, Faculté de Psychologie, Strasbourg, France
| | - Anne Pereira de Vasconcelos
- Laboratoire de Neurosciences Cognitives et Adaptatives, UMR7364, Université de Strasbourg-CNRS, GDR CNRS 2905, Faculté de Psychologie, Strasbourg, France
| | - Anne Schneider
- Laboratoire de Neurosciences Cognitives et Adaptatives, UMR7364, Université de Strasbourg-CNRS, GDR CNRS 2905, Faculté de Psychologie, Strasbourg, France
| | - Jean-Philippe Loeffler
- Inserm, U692, Laboratoire de Signalisations Moléculaires et Neurodégénérescence, Université de Strasbourg, Faculté de Médecine, UMRS692, Strasbourg, France
| | - Jean-Christophe Cassel
- Laboratoire de Neurosciences Cognitives et Adaptatives, UMR7364, Université de Strasbourg-CNRS, GDR CNRS 2905, Faculté de Psychologie, Strasbourg, France
| | - Anne-Laurence Boutillier
- Laboratoire de Neurosciences Cognitives et Adaptatives, UMR7364, Université de Strasbourg-CNRS, GDR CNRS 2905, Faculté de Psychologie, Strasbourg, France
| |
Collapse
|
236
|
Fuso A. The 'golden age' of DNA methylation in neurodegenerative diseases. Clin Chem Lab Med 2013; 51:523-34. [PMID: 23183753 DOI: 10.1515/cclm-2012-0618] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 10/19/2012] [Indexed: 12/16/2023]
Abstract
DNA methylation reactions are regulated, in the first instance, by enzymes and the intermediates that constitute the 'so called' one-carbon metabolism. This is a complex biochemical pathway, also known as the homocysteine cycle, regulated by the presence of B vitamins (folate, B6, B12) and choline, among other metabolites. One of the intermediates of this metabolism is S-adenosylmethionine, which represent the methyl donor in all the DNA methyltransferase reactions in eukaryotes. The one-carbon metabolism therefore produces the substrate necessary for the transferring of a methyl group on the cytosine residues of DNA; S-adenosylmethionine also regulates the activity of the enzymes that catalyze this reaction, namely the DNA methyltransferases (DNMTs). Alterations of this metabolic cycle can therefore be responsible for aberrant DNA methylation processes possibly leading to several human diseases. As a matter of fact, increasing evidences indicate that a number of human diseases with multifactorial origin may have an epigenetic basis. This is also due to the great technical advances in the field of epigenetic research. Among the human diseases associated with epigenetic factors, aging-related and neurodegenerative diseases are probably the object of most intense research. This review will present the main evidences linking several human diseases to DNA methylation, with particular focus on neurodegenerative diseases, together with a short description of the state-of-the-art of methylation assays.
Collapse
Affiliation(s)
- Andrea Fuso
- Department of Psychology, Section of Neuroscience, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
237
|
Bohacek J, Gapp K, Saab BJ, Mansuy IM. Transgenerational epigenetic effects on brain functions. Biol Psychiatry 2013; 73:313-20. [PMID: 23062885 DOI: 10.1016/j.biopsych.2012.08.019] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 08/07/2012] [Accepted: 08/19/2012] [Indexed: 12/21/2022]
Abstract
Psychiatric diseases are multifaceted disorders with complex etiology, recognized to have strong heritable components. Despite intense research efforts, genetic loci that substantially account for disease heritability have not yet been identified. Over the last several years, epigenetic processes have emerged as important factors for many brain diseases, and the discovery of epigenetic processes in germ cells has raised the possibility that they may contribute to disease heritability and disease risk. This review examines epigenetic mechanisms in complex diseases and summarizes the most illustrative examples of transgenerational epigenetic inheritance in mammals and their relevance for brain function. Environmental factors that can affect molecular processes and behavior in exposed individuals and their offspring, and their potential epigenetic underpinnings, are described. Possible routes and mechanisms of transgenerational transmission are proposed, and the major questions and challenges raised by this emerging field of research are considered.
Collapse
Affiliation(s)
- Johannes Bohacek
- Brain Research Institute, University of Zurich/Swiss Federal Institute of Technology, Zurich, Switzerland
| | | | | | | |
Collapse
|
238
|
Gräff J, Tsai LH. Histone acetylation: molecular mnemonics on the chromatin. Nat Rev Neurosci 2013; 14:97-111. [PMID: 23324667 DOI: 10.1038/nrn3427] [Citation(s) in RCA: 451] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Long-lasting memories require specific gene expression programmes that are, in part, orchestrated by epigenetic mechanisms. Of the epigenetic modifications identified in cognitive processes, histone acetylation has spurred considerable interest. Whereas increments in histone acetylation have consistently been shown to favour learning and memory, a lack thereof has been causally implicated in cognitive impairments in neurodevelopmental disorders, neurodegeneration and ageing. As histone acetylation and cognitive functions can be pharmacologically restored by histone deacetylase inhibitors, this epigenetic modification might constitute a molecular memory aid on the chromatin and, by extension, a new template for therapeutic interventions against cognitive frailty.
Collapse
Affiliation(s)
- Johannes Gräff
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | |
Collapse
|
239
|
Androutsellis-Theotokis A, Chrousos GP, McKay RD, DeCherney AH, Kino T. Expression profiles of the nuclear receptors and their transcriptional coregulators during differentiation of neural stem cells. Horm Metab Res 2013; 45:159-68. [PMID: 22990992 PMCID: PMC3781591 DOI: 10.1055/s-0032-1321789] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Neural stem cells (NSCs) are pluripotent precursors with the ability to proliferate and differentiate into 3 neural cell lineages, neurons, astrocytes and oligodendrocytes. Elucidation of the mechanisms underlying these biologic processes is essential for understanding both physiologic and pathologic neural development and regeneration after injury. Nuclear hormone receptors (NRs) and their transcriptional coregulators also play crucial roles in neural development, functions and fate. To identify key NRs and their transcriptional regulators in NSC differentiation, we examined mRNA expression of 49 NRs and many of their coregulators during differentiation (0-5 days) of mouse embryonic NSCs induced by withdrawal of fibroblast growth factor-2 (FGF2). 37 out of 49 NRs were expressed in NSCs before induction of differentiation, while receptors known to play major roles in neural development, such as THRα, RXRs, RORs, TRs, and COUP-TFs, were highly expressed. CAR, which plays important roles in xenobiotic metabolism, was also highly expressed. FGF2 withdrawal induced mRNA expression of RORγ, RXRγ, and MR by over 20-fold. Most of the transcriptional coregulators examined were expressed basally and throughout differentiation without major changes, while FGF2 withdrawal strongly induced mRNA expression of several histone deacetylases (HDACs), including HDAC11. Dexamethasone and aldosterone, respectively a synthetic glucocorticoid and natural mineralocorticoid, increased NSC numbers and induced differentiation into neurons and astrocytes. These results indicate that the NRs and their coregulators are present and/or change their expression during NSC differentiation, suggesting that they may influence development of the central nervous system in the absence or presence of their ligands.
Collapse
Affiliation(s)
- A. Androutsellis-Theotokis
- Department of Medicine, University of Dresden and Center for Regenerative Therapies-Dresden, Dresden, Germany
| | - G. P. Chrousos
- First Department of Pediatrics, Athens University Medical School, Athens, Greece
| | - R. D. McKay
- Laboratory of Molecular Biology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - A. H. DeCherney
- Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - T. Kino
- Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
240
|
Simões-Pires C, Zwick V, Nurisso A, Schenker E, Carrupt PA, Cuendet M. HDAC6 as a target for neurodegenerative diseases: what makes it different from the other HDACs? Mol Neurodegener 2013; 8:7. [PMID: 23356410 PMCID: PMC3615964 DOI: 10.1186/1750-1326-8-7] [Citation(s) in RCA: 229] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 01/21/2013] [Indexed: 01/04/2023] Open
Abstract
Histone deacetylase (HDAC) inhibitors have been demonstrated to be beneficial in animal models of neurodegenerative diseases. Such results were mainly associated with the epigenetic modulation caused by HDACs, especially those from class I, via chromatin deacetylation. However, other mechanisms may contribute to the neuroprotective effect of HDAC inhibitors, since each HDAC may present distinct specific functions within the neurodegenerative cascades. Such an example is HDAC6 for which the role in neurodegeneration has been partially elucidated so far. The strategy to be adopted in promising therapeutics targeting HDAC6 is still controversial. Specific inhibitors exert neuroprotection by increasing the acetylation levels of α-tubulin with subsequent improvement of the axonal transport, which is usually impaired in neurodegenerative disorders. On the other hand, an induction of HDAC6 would theoretically contribute to the degradation of protein aggregates which characterize various neurodegenerative disorders, including Alzheimer’s, Parkinson’s and Hutington’s diseases. This review describes the specific role of HDAC6 compared to the other HDACs in the context of neurodegeneration, by collecting in silico, in vitro and in vivo results regarding the inhibition and/or knockdown of HDAC6 and other HDACs. Moreover, structure, function, subcellular localization, as well as the level of HDAC6 expression within brain regions are reviewed and compared to the other HDAC isoforms. In various neurodegenerative diseases, the mechanisms underlying HDAC6 interaction with other proteins seem to be a promising approach in understanding the modulation of HDAC6 activity.
Collapse
Affiliation(s)
- Claudia Simões-Pires
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Quai Ernest-Ansermet 30, CH-1211 Geneva 4, Switzerland
| | | | | | | | | | | |
Collapse
|
241
|
Wang X, Li J, Qian L, Zang XF, Zhang SY, Wang XY, Jin JL, Zhu XL, Zhang XB, Wang ZY, Xu Y. Icariin promotes histone acetylation and attenuates post-stroke cognitive impairment in the central cholinergic circuits of mice. Neuroscience 2013; 236:281-8. [PMID: 23370322 DOI: 10.1016/j.neuroscience.2012.12.074] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 12/08/2012] [Accepted: 12/18/2012] [Indexed: 11/29/2022]
Abstract
Post-stroke dementia (PSD) is a common clinical disease and the central cholinergic circuits are important to cognitive function. Icariin (ICA), a flavonoid isolated from Herba Epimedii, was reported to improve cognitive function through modulating the cholinergic system. But there were no studies exploring the role of ICA in PSD animal models. In this study, we used transient middle cerebral artery occlusion mice with cognitive dysfunction in the PSD model. PSD mice were then randomly divided into six groups: Sham-operated+placebo group, Sham-operated+ICA group (60mg/kg), PSD model+placebo group, PSD model+ICA group (30, 60, or 120mg/kg). We observed spatial learning ability and memory by Morris water maze test. The levels of acetylcholine (ACH) and choline acetyltransferase (ChAT), the degree of histone acetylation and the cAMP response element-binding protein (CREB) phosphorylation in the central cholinergic circuits were investigated by Western blot and immunofluorescence. After the administration of various doses of ICA, the escape latency and searching distance of the PSD mice were reduced significantly compared with those without ICA treatment. While the levels of ACH and ChAT declined, the degree of histone acetylation and the CREB phosphorylation was improved in a dose-dependent manner in central cholinergic circuits. In conclusion, ICA can improve post-stroke dementia, and the mechanism is likely to enhance CREB phosphorylation in the central cholinergic circuits, thus improving the damage in cholinergic circuits histone acetylation homeostasis.
Collapse
Affiliation(s)
- X Wang
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, PR China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
242
|
A naturally-occurring histone acetyltransferase inhibitor derived from Garcinia indica impairs newly acquired and reactivated fear memories. PLoS One 2013; 8:e54463. [PMID: 23349897 PMCID: PMC3549978 DOI: 10.1371/journal.pone.0054463] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 12/11/2012] [Indexed: 01/31/2023] Open
Abstract
The study of the cellular and molecular mechanisms underlying the consolidation and reconsolidation of traumatic fear memories has progressed rapidly in recent years, yet few compounds have emerged that are readily useful in a clinical setting for the treatment of anxiety disorders such as post-traumatic stress disorder (PTSD). Here, we use a combination of biochemical, behavioral, and neurophysiological methods to systematically investigate the ability of garcinol, a naturally-occurring histone acetyltransferase (HAT) inhibitor derived from the rind of the fruit of the Kokum tree (Garcina indica), to disrupt the consolidation and reconsolidation of Pavlovian fear conditioning, a widely studied rodent model of PTSD. We show that local infusion of garcinol into the rat lateral amygdala (LA) impairs the training and retrieval-related acetylation of histone H3 in the LA. Further, we show that either intra-LA or systemic administration of garcinol within a narrow window after either fear conditioning or fear memory retrieval significantly impairs the consolidation and reconsolidation of a Pavlovian fear memory and associated neural plasticity in the LA. Our findings suggest that a naturally-occurring compound derived from the diet that regulates chromatin function may be useful in the treatment of newly acquired or recently reactivated traumatic memories.
Collapse
|
243
|
Dosage-dependent tumor suppression by histone deacetylases 1 and 2 through regulation of c-Myc collaborating genes and p53 function. Blood 2013; 121:2038-50. [PMID: 23327920 DOI: 10.1182/blood-2012-08-450916] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Histone deacetylases (HDACs) are epigenetic erasers of lysine-acetyl marks. Inhibition of HDACs using small molecule inhibitors (HDACi) is a potential strategy in the treatment of various diseases and is approved for treating hematological malignancies. Harnessing the therapeutic potential of HDACi requires knowledge of HDAC-function in vivo. Here, we generated a thymocyte-specific gradient of HDAC-activity using compound conditional knockout mice for Hdac1 and Hdac2. Unexpectedly, gradual loss of HDAC-activity engendered a dosage-dependent accumulation of immature thymocytes and correlated with the incidence and latency of monoclonal lymphoblastic thymic lymphomas. Strikingly, complete ablation of Hdac1 and Hdac2 abrogated lymphomagenesis due to a block in early thymic development. Genomic, biochemical and functional analyses of pre-leukemic thymocytes and tumors revealed a critical role for Hdac1/Hdac2-governed HDAC-activity in regulating a p53-dependent barrier to constrain Myc-overexpressing thymocytes from progressing into lymphomas by regulating Myc-collaborating genes. One Myc-collaborating and p53-suppressing gene, Jdp2, was derepressed in an Hdac1/2-dependent manner and critical for the survival of Jdp2-overexpressing lymphoma cells. Although reduced HDAC-activity facilitates oncogenic transformation in normal cells, resulting tumor cells remain highly dependent on HDAC-activity, indicating that a critical level of Hdac1 and Hdac2 governed HDAC-activity is required for tumor maintenance.
Collapse
|
244
|
McCarthy AR, Sachweh MCC, Higgins M, Campbell J, Drummond CJ, van Leeuwen IMM, Pirrie L, Ladds MJGW, Westwood NJ, Laín S. Tenovin-D3, a novel small-molecule inhibitor of sirtuin SirT2, increases p21 (CDKN1A) expression in a p53-independent manner. Mol Cancer Ther 2013; 12:352-60. [PMID: 23322738 DOI: 10.1158/1535-7163.mct-12-0900] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
While small-molecule inhibitors of class I/II histone deacetylases (HDAC) have been approved for cancer treatment, inhibitors of the sirtuins (a family of class III HDACs) still require further validation and optimization to enter clinical trials. Recent studies show that tenovin-6, a small-molecule inhibitor of sirtuins SirT1 and SirT2, reduces tumor growth in vivo and eliminates leukemic stem cells in a murine model for chronic myelogenous leukemia. Here, we describe a tenovin analogue, tenovin-D3, that preferentially inhibits sirtuin SirT2 and induces predicted phenotypes for SirT2 inhibition. Unlike tenovin-6 and in agreement with its weak effect on SirT1 (a p53 deacetylase), tenovin-D3 fails to increase p53 levels or transcription factor activity. However, tenovin-D3 promotes expression of the cell-cycle regulator and p53 target p21(WAF1/CIP1) (CDKN1A) in a p53-independent manner. Structure-activity relationship studies strongly support that the ability of tenovin-D3 to inhibit SirT2 contributes to this p53-independent induction of p21. The ability of tenovin-D3 to increase p21 mRNA and protein levels is shared with class I/II HDAC inhibitors currently used in the clinic and therefore suggests that SirT2 inhibition and class I/II HDAC inhibitors have similar effects on cell-cycle progression.
Collapse
Affiliation(s)
- Anna R McCarthy
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
245
|
Abstract
Long-term memory formation requires transcription and protein synthesis. Over the past few decades, a great amount of knowledge has been gained regarding the molecular players that regulate the transcriptional program linked to memory consolidation. Epigenetic mechanisms have been shown to be essential for the regulation of neuronal gene expression, and histone acetylation has been one of the most studied and best characterized. In this review, we summarize the lines of evidence that have shown the relevance of histone acetylation in memory in both physiological and pathological conditions. Great advances have been made in identifying the writers and erasers of histone acetylation marks during learning. However, the identities of the upstream regulators and downstream targets that mediate the effect of changes in histone acetylation during memory consolidation remain restricted to a handful of molecules. We outline a general model by which corepressors and coactivators regulate histone acetylation during memory storage and discuss how the recent advances in high-throughput sequencing have the potential to radically change our understanding of how epigenetic control operates in the brain.
Collapse
Affiliation(s)
- Lucia Peixoto
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | | |
Collapse
|
246
|
Wang G, Jiang X, Pu H, Zhang W, An C, Hu X, Liou AKF, Leak RK, Gao Y, Chen J. Scriptaid, a novel histone deacetylase inhibitor, protects against traumatic brain injury via modulation of PTEN and AKT pathway : scriptaid protects against TBI via AKT. Neurotherapeutics 2013; 10:124-42. [PMID: 23132328 PMCID: PMC3557358 DOI: 10.1007/s13311-012-0157-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of motor and cognitive deficits in young adults for which there is no effective therapy. The present study characterizes the protective effect of a new histone deacetylase inhibitor, Scriptaid (Sigma-Aldrich Corporation, St. Louis, MO), against injury from controlled cortical impact (CCI). Scriptaid elicited a dose-dependent decrease in lesion size at 1.5 to 5.5 mg/kg and a concomitant attenuation in motor and cognitive deficits when delivered 30 minutes postinjury in a model of moderate TBI. Comparable protection was achieved even when treatment was delayed to 12 h postinjury. Furthermore, the protection of motor and cognitive functions was long lasting, as similar improvements were detected 35 days postinjury. The efficacy of Scriptaid (Sigma-Aldrich Corporation) was manifested as an increase in surviving neurons, as well as the number/length of their processes within the CA3 region of the hippocampus and the pericontusional cortex. Consistent with other histone deacetylase inhibitors, Scriptaid treatment prevented the decrease in phospho-AKT (p-AKT) and phosphorylated phosphatase and tensin homolog deleted on chromosome 10 (p-PTEN) induced by TBI in cortical and CA3 hippocampal neurons. Notably, the p-AKT inhibitor LY294002 attenuated the impact of Scriptaid, providing mechanistic evidence that Scriptaid functions partly by modulating the prosurvival AKT signaling pathway. As Scriptaid offers long-lasting neuronal and behavioral protection, even when delivered 12 h after controlled cortical impact, it is an excellent new candidate for the effective clinical treatment of TBI.
Collapse
Affiliation(s)
- Guohua Wang
- />State Key Laboratory of Medical Neurobiology and Institute of Brain Science, Fudan University, Shanghai, 200032 China
- />Center of Cerebrovascular Disease Research, University of Pittsburgh, Pittsburgh, PA 15213 USA
- />Department of Neuropharmacology, Institute of Nautical Medicine, Nantong University, Nantong, Jiangsu 226001 China
| | - Xiaoyan Jiang
- />State Key Laboratory of Medical Neurobiology and Institute of Brain Science, Fudan University, Shanghai, 200032 China
| | - Hongjian Pu
- />State Key Laboratory of Medical Neurobiology and Institute of Brain Science, Fudan University, Shanghai, 200032 China
| | - Wenting Zhang
- />State Key Laboratory of Medical Neurobiology and Institute of Brain Science, Fudan University, Shanghai, 200032 China
| | - Chengrui An
- />State Key Laboratory of Medical Neurobiology and Institute of Brain Science, Fudan University, Shanghai, 200032 China
| | - Xiaoming Hu
- />Center of Cerebrovascular Disease Research, University of Pittsburgh, Pittsburgh, PA 15213 USA
- />Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15240 USA
| | - Anthony Kian-Fong Liou
- />Center of Cerebrovascular Disease Research, University of Pittsburgh, Pittsburgh, PA 15213 USA
- />Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15240 USA
| | - Rehana K. Leak
- />Division of Pharmaceutical Sciences, Mylan School of Pharmacy, Duquesne University, Pittsburgh, PA 15282 USA
| | - Yanqin Gao
- />State Key Laboratory of Medical Neurobiology and Institute of Brain Science, Fudan University, Shanghai, 200032 China
- />Center of Cerebrovascular Disease Research, University of Pittsburgh, Pittsburgh, PA 15213 USA
- />Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 USA
| | - Jun Chen
- />State Key Laboratory of Medical Neurobiology and Institute of Brain Science, Fudan University, Shanghai, 200032 China
- />Center of Cerebrovascular Disease Research, University of Pittsburgh, Pittsburgh, PA 15213 USA
- />Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15240 USA
- />Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 USA
| |
Collapse
|
247
|
Grayson DR, Guidotti A. The dynamics of DNA methylation in schizophrenia and related psychiatric disorders. Neuropsychopharmacology 2013; 38:138-66. [PMID: 22948975 PMCID: PMC3521968 DOI: 10.1038/npp.2012.125] [Citation(s) in RCA: 196] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 05/08/2012] [Accepted: 05/09/2012] [Indexed: 02/06/2023]
Abstract
Major psychiatric disorders such as schizophrenia (SZ) and bipolar disorder (BP) with psychosis (BP+) express a complex symptomatology characterized by positive symptoms, negative symptoms, and cognitive impairment. Postmortem studies of human SZ and BP+ brains show considerable alterations in the transcriptome of a variety of cortical structures, including multiple mRNAs that are downregulated in both inhibitory GABAergic and excitatory pyramidal neurons compared with non-psychiatric subjects (NPS). Several reports show increased expression of DNA methyltransferases in telencephalic GABAergic neurons. Accumulating evidence suggests a critical role for altered DNA methylation processes in the pathogenesis of SZ and related psychiatric disorders. The establishment and maintenance of CpG site methylation is essential during central nervous system differentiation and this methylation has been implicated in synaptic plasticity, learning, and memory. Atypical hypermethylation of candidate gene promoters expressed in GABAergic neurons is associated with transcriptional downregulation of the corresponding mRNAs, including glutamic acid decarboxylase 67 (GAD67) and reelin (RELN). Recent reports indicate that the methylation status of promoter proximal CpG dinucleotides is in a dynamic balance between DNA methylation and DNA hydroxymethylation. Hydroxymethylation and subsequent DNA demethylation is more complex and involves additional proteins downstream of 5-hydroxymethylcytosine, including members of the base excision repair (BER) pathway. Recent advances in our understanding of altered CpG methylation, hydroxymethylation, and active DNA demethylation provide a framework for the identification of new targets, which may be exploited for the pharmacological intervention of the psychosis associated with SZ and possibly BP+.
Collapse
Affiliation(s)
- Dennis R Grayson
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | | |
Collapse
|
248
|
Schmitt A, Reich-Erkelenz D, Gebicke-Härter P, Falkai P. Estudos transcriptômicos no contexto da conectividade perturbada em esquizofrenia. ACTA ACUST UNITED AC 2012. [DOI: 10.1590/s0101-60832012005000001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Esquizofrenia é uma severa doença neurobiológica com fatores genéticos e ambientais desempenhando um papel na fisiopatologia. Diversas regiões cerebrais têm sido implicadas no processo da doença e estão conectadas em complexos circuitos neuronais. Nos níveis molecular e celular, a conectividade afetada entre essas regiões, envolvendo mielinização disfuncional dos axônios neuronais, bem como as alterações no nível sináptico e metabolismo energético levando a distúrbios na plasticidade sináptica, são os maiores achados em estudos post-mortem. Estudos de microarranjos investigando a expressão gênica contribuíram para os achados de alterações em vias complexas em regiões cerebrais relevantes na esquizofrenia. Além disso, estudos utilizando microdissecção e captura a laser permitiram a investigação da expressão gênica em grupos específicos de neurônios. Entretanto, deve ser mantido em mente que em estudos post-mortem, confusos efeitos de medicação, qualidade de RNAm, bem como capacidade de mecanismos regenerativos neuroplásticos do cérebro em indivíduos com história de vida de esquizofrenia, podem influenciar o complexo padrão de alterações no nível molecular. Apesar dessas limitações, estudos transcriptômicos livres de hipóteses em tecido cerebral de pacientes esquizofrênicos oferecem uma possibilidade única para aprender mais sobre os mecanismos subjacentes, levando a novas ópticas da fisiopatologia da doença.
Collapse
Affiliation(s)
- Andrea Schmitt
- Universidade de Göttingen, Alemanha; Universidade Ludwig Maximilians, Alemanha; Universidade de São Paulo, Brasil
| | | | | | - Peter Falkai
- Universidade de Göttingen, Alemanha; Universidade Ludwig Maximilians, Alemanha
| |
Collapse
|
249
|
Millan MJ. An epigenetic framework for neurodevelopmental disorders: from pathogenesis to potential therapy. Neuropharmacology 2012; 68:2-82. [PMID: 23246909 DOI: 10.1016/j.neuropharm.2012.11.015] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2012] [Revised: 11/11/2012] [Accepted: 11/22/2012] [Indexed: 12/12/2022]
Abstract
Neurodevelopmental disorders (NDDs) are characterized by aberrant and delayed early-life development of the brain, leading to deficits in language, cognition, motor behaviour and other functional domains, often accompanied by somatic symptoms. Environmental factors like perinatal infection, malnutrition and trauma can increase the risk of the heterogeneous, multifactorial and polygenic disorders, autism and schizophrenia. Conversely, discrete genetic anomalies are involved in Down, Rett and Fragile X syndromes, tuberous sclerosis and neurofibromatosis, the less familiar Phelan-McDermid, Sotos, Kleefstra, Coffin-Lowry and "ATRX" syndromes, and the disorders of imprinting, Angelman and Prader-Willi syndromes. NDDs have been termed "synaptopathies" in reference to structural and functional disturbance of synaptic plasticity, several involve abnormal Ras-Kinase signalling ("rasopathies"), and many are characterized by disrupted cerebral connectivity and an imbalance between excitatory and inhibitory transmission. However, at a different level of integration, NDDs are accompanied by aberrant "epigenetic" regulation of processes critical for normal and orderly development of the brain. Epigenetics refers to potentially-heritable (by mitosis and/or meiosis) mechanisms controlling gene expression without changes in DNA sequence. In certain NDDs, prototypical epigenetic processes of DNA methylation and covalent histone marking are impacted. Conversely, others involve anomalies in chromatin-modelling, mRNA splicing/editing, mRNA translation, ribosome biogenesis and/or the regulatory actions of small nucleolar RNAs and micro-RNAs. Since epigenetic mechanisms are modifiable, this raises the hope of novel therapy, though questions remain concerning efficacy and safety. The above issues are critically surveyed in this review, which advocates a broad-based epigenetic framework for understanding and ultimately treating a diverse assemblage of NDDs ("epigenopathies") lying at the interface of genetic, developmental and environmental processes. This article is part of the Special Issue entitled 'Neurodevelopmental Disorders'.
Collapse
Affiliation(s)
- Mark J Millan
- Unit for Research and Discovery in Neuroscience, IDR Servier, 125 chemin de ronde, 78290 Croissy sur Seine, Paris, France.
| |
Collapse
|
250
|
Govindarajan N, Rao P, Burkhardt S, Sananbenesi F, Schlüter OM, Bradke F, Lu J, Fischer A. Reducing HDAC6 ameliorates cognitive deficits in a mouse model for Alzheimer's disease. EMBO Mol Med 2012. [PMID: 23184605 PMCID: PMC3569653 DOI: 10.1002/emmm.201201923] [Citation(s) in RCA: 245] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Histone deacetylases (HDACs) are currently being discussed as promising therapeutic targets to treat neurodegenerative diseases. However, the role of specific HDACs in cognition and neurodegeneration remains poorly understood. Here, we investigate the function of HDAC6, a class II member of the HDAC superfamily, in the adult mouse brain. We report that mice lacking HDAC6 are cognitively normal but reducing endogenous HDAC6 levels restores learning and memory and α-tubulin acetylation in a mouse model for Alzheimer's disease (AD). Our data suggest that this therapeutic effect is, at least in part, linked to the observation that loss of HDAC6 renders neurons resistant to amyloid-β-mediated impairment of mitochondrial trafficking. Thus, our study suggests that targeting HDAC6 could be a suitable strategy to ameliorate cognitive decline observed in AD.
Collapse
Affiliation(s)
- Nambirajan Govindarajan
- Department of Psychiatry and Psychotherapy, University Medical Center, Georg-August-University Goettingen, Goettingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|