201
|
Fan C, Zhao N, Cui K, Chen G, Chen Y, Wu W, Li Q, Cui Y, Li R, Xiao Z. Ultrasensitive Exosome Detection by Modularized SERS Labeling for Postoperative Recurrence Surveillance. ACS Sens 2021; 6:3234-3241. [PMID: 34472832 DOI: 10.1021/acssensors.1c00890] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Exosome-based liquid biopsy holds great potential in monitoring tumor progression. Current exosome detection biosensors rely on signal amplification strategies to improve sensitivity; however, these strategies pay little attention to manipulating the number of signal reporters, limiting the rational optimization of the biosensors. Here, we have developed a modularized surface-enhanced Raman spectroscopy (SERS) labeling strategy, where each Raman reporter is coupled with lysine as a signal-lysine module, and thus the number of Raman reporters can be precisely controlled by the modularized solid-phase peptide synthesis. Using this strategy, we screened out an optimum Raman biosensor for ultrasensitive exosome detection, with the limit of detection of 2.4 particles per microliter. This biosensor enables a successful detection of the tumor with an average diameter of approximately 3.55 mm, and thus enables successful surveillance of the postoperative tumor recurrence in mice models and distinguishing cancer patients from healthy subjects. Our work provides a de novo strategy to precisely amplify signals toward a myriad of biosensor-related medical applications.
Collapse
Affiliation(s)
- Chenchen Fan
- Department of Pharmacology and Chemical Biology, and Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | - Na Zhao
- Department of Pharmacology and Chemical Biology, and Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | - Kai Cui
- Department of Pharmacology and Chemical Biology, and Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | - Gaoxian Chen
- Department of Pharmacology and Chemical Biology, and Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | - Yingzhi Chen
- Department of Pharmacology and Chemical Biology, and Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | - Wenwei Wu
- Department of Pharmacology and Chemical Biology, and Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | - Qingyun Li
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | - Yanna Cui
- Department of Pharmacology and Chemical Biology, and Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | - Ruike Li
- Department of Pharmacology and Chemical Biology, and Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | - Zeyu Xiao
- Department of Pharmacology and Chemical Biology, and Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| |
Collapse
|
202
|
Yang X, Liao M, Zhang H, Gong J, Yang F, Xu M, Tremblay PL, Zhang T. An electrochemiluminescence resonance energy transfer biosensor for the detection of circulating tumor DNA from blood plasma. iScience 2021; 24:103019. [PMID: 34522862 PMCID: PMC8426273 DOI: 10.1016/j.isci.2021.103019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/02/2021] [Accepted: 08/18/2021] [Indexed: 01/14/2023] Open
Abstract
A liquid biopsy is a noninvasive approach for detecting double-stranded circulating tumor DNA (ctDNA) of 90-320 nucleotides in blood plasma from patients with cancer. Most techniques employed for ctDNA detection are time consuming and require expensive DNA purification kits. Electrochemiluminescence resonance energy transfer (ECL-RET) biosensors exhibit high sensitivity, a wide response range, and are promising for straightforward sensing applications. Until now, ECL-RET biosensors have been designed for sensing short single-stranded oligonucleotides of less than 45 nucleotides. In this work, an ECL-RET biosensor comprising graphitic carbon nitride quantum dots was assessed for the amplification-free detection in the blood plasma of DNA molecules coding for the EGFR L858R mutation, which is associated with non-small-cell lung cancer. Following a low-cost pre-treatment, the highly specific ECL-RET biosensor quantified double-stranded EGFR L858R DNA of 159 nucleotides diluted into the blood within a linear range of 0.01 fM to 1 pM, demonstrating its potential for noninvasive biopsies.
Collapse
Affiliation(s)
- Xidong Yang
- School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan 430070, PR China
- Shaoxing Institute for Advanced Research, Wuhan University of Technology, Shaoxing 312300, PR China
| | - Meiyan Liao
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Hanfei Zhang
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - JinBo Gong
- School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan 430070, PR China
| | - Fan Yang
- School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan 430070, PR China
| | - Mengying Xu
- School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan 430070, PR China
- Shaoxing Institute for Advanced Research, Wuhan University of Technology, Shaoxing 312300, PR China
| | - Pier-Luc Tremblay
- School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan 430070, PR China
- Shaoxing Institute for Advanced Research, Wuhan University of Technology, Shaoxing 312300, PR China
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, PR China
| | - Tian Zhang
- School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan 430070, PR China
- Shaoxing Institute for Advanced Research, Wuhan University of Technology, Shaoxing 312300, PR China
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, PR China
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, PR China
| |
Collapse
|
203
|
Ramos-Medina R, López-Tarruella S, del Monte-Millán M, Massarrah T, Martín M. Technical Challenges for CTC Implementation in Breast Cancer. Cancers (Basel) 2021; 13:4619. [PMID: 34572846 PMCID: PMC8466817 DOI: 10.3390/cancers13184619] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/01/2021] [Accepted: 09/13/2021] [Indexed: 01/08/2023] Open
Abstract
Breast cancer is the most common neoplasm in women worldwide. Tissue biopsy, currently the gold standard to obtain tumor molecular information, is invasive and might be affected by tumor heterogeneity rendering it incapable to portray the complete dynamic picture by the absence of specific genetic changes during the evolution of the disease. In contrast, liquid biopsy can provide unique opportunities for real-time monitoring of disease progression, treatment response and for studying tumor heterogeneity combining the information of DNA that tumors spread in the blood (circulating tumor DNA) with CTCs analysis. In this review, we analyze the technical and biological challenges for isolation and characterization of circulating tumor cells from breast cancer patients. Circulating tumor cell (CTC) enumeration value is included in numerous clinical studies due to the prognostic's role of these cells. Despite this, there are so many questions pending to answer. How to manage lymphocytes background, how to distinguish the CTCs subtypes or how to work with frozen samples, are some of the issues that will discuss in this review. Based on our experience, we try to address these issues and other technical limitations that should be solved to optimize the standardization of protocols, sample extraction procedures, circulating-tumor material isolation (CTCs vs. ctDNA) and the very diverse methodologies employed, aiming to consolidate the use of CTCs in the clinic. Furthermore, we think that new approaches focusing on isolation CTCs in other body fluids such as cerebrospinal or ascitic fluid are necessary to increase the opportunities of circulating tumor cells in the practice clinic as well as to study the promising role of CTC clusters and their prognostic value in metastatic breast cancer.
Collapse
Affiliation(s)
| | | | | | | | - Miguel Martín
- Servicio de Oncología Médica, Instituto de Investigación Sanitaria Gregorio Marañon (IiSGM), Hospital General Universitario Gregorio Marañón, CIBERONC, Universidad Complutense, 28007 Madrid, Spain; (R.R.-M.); (S.L.-T.); (M.d.M.-M.); (T.M.)
| |
Collapse
|
204
|
Jing Z, Chen K, Gong L. The Significance of Exosomes in Pathogenesis, Diagnosis, and Treatment of Esophageal Cancer. Int J Nanomedicine 2021; 16:6115-6127. [PMID: 34511909 PMCID: PMC8423492 DOI: 10.2147/ijn.s321555] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/16/2021] [Indexed: 12/21/2022] Open
Abstract
Esophageal cancer is one of the most common malignancy in China with high mortality. Understanding pathogenesis and identifying early diagnosis biomarkers can significantly improve the prognosis of patients with esophageal cancer. Exosomes are small vesicular structures containing a variety of components (including DNA, RNA, and proteins) mediating cell-to-cell material exchange and signal communication. Growing evidences have shown that exosomes and its components are involved in growth, metastasis and angiogenesis in cancer, and could also be used as diagnostic and prognostic markers. In this review, we summarized recent progress to elucidate the significance of exosomes in the esophageal cancer progression, microenvironment remodeling, therapeutic resistance, and immunosuppression. We also discuss the utility of exosomes as diagnostic and prognostic biomarkers and therapeutic tool in esophageal cancer.
Collapse
Affiliation(s)
- Zhao Jing
- Department of Oncology, Zhejiang Hospital, Hangzhou, Zhejiang, People's Republic of China
| | - Kai Chen
- Department of Cardiovascular and Thoracic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Ling Gong
- Department of Infectious Disease (Liver Diseases), The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
205
|
Kim CJ, Dong L, Amend SR, Cho YK, Pienta KJ. The role of liquid biopsies in prostate cancer management. LAB ON A CHIP 2021; 21:3263-3288. [PMID: 34346466 DOI: 10.1039/d1lc00485a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Liquid biopsy has emerged as a complement to invasive tissue biopsy to guide cancer diagnosis and treatment. The common liquid biopsy biomarkers are circulating tumor cells (CTCs), extracellular vesicles (EVs), and circulating tumor DNA (ctDNA). Each biomarker provides specific information based on its intrinsic characteristics. Prostate cancer is the second most common cancer in males worldwide. In men with low-grade localized prostate cancer, the disease can often be managed by active surveillance. For men who require treatment, the 5-year survival rate of localized prostate cancer is the highest among all cancer types, but the metastatic disease remains incurable. Metastatic prostate cancer invariably progresses to involve multiple bone sites and develops into a castration-resistant disease that leads to cancer death. The need to appropriately diagnose and guide the serial treatment of men with prostate cancer has led to the implementation of many studies to apply liquid biopsies to prostate cancer management. This review describes recent advancements in isolation and detection technology and the strength and weaknesses of the three circulating biomarkers. The clinical studies based on liquid biopsy results are summarized to depict the future perspective in the role of liquid biopsy on prostate cancer management.
Collapse
Affiliation(s)
- Chi-Ju Kim
- The Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| | | | | | | | | |
Collapse
|
206
|
Surucu O, Öztürk E, Kuralay F. Nucleic Acid Integrated Technologies for Electrochemical Point‐of‐Care Diagnostics: A Comprehensive Review. ELECTROANAL 2021. [DOI: 10.1002/elan.202100309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Ozge Surucu
- Department of Chemistry Faculty of Science Ege University 35040 Izmir Turkey
| | - Elif Öztürk
- Department of Chemistry Faculty of Science Hacettepe University 06800 Ankara Turkey
| | - Filiz Kuralay
- Department of Chemistry Faculty of Science Hacettepe University 06800 Ankara Turkey
| |
Collapse
|
207
|
Ma Y, Gao L, Tian Y, Chen P, Yang J, Zhang L. Advanced biomaterials in cell preservation: Hypothermic preservation and cryopreservation. Acta Biomater 2021; 131:97-116. [PMID: 34242810 DOI: 10.1016/j.actbio.2021.07.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 02/07/2023]
Abstract
Cell-based medicine has made great advances in clinical diagnosis and therapy for various refractory diseases, inducing a growing demand for cell preservation as support technology. However, the bottleneck problems in cell preservation include low efficiency and poor biocompatibility of traditional protectants. In this review, cell preservation technologies are categorized according to storage conditions: hypothermic preservation at 1 °C~35 °C to maintain short-term cell viability that is useful in cell diagnosis and transport, while cryopreservation at -196 °C~-80 °C to maintain long-term cell viability that provides opportunities for therapeutic cell product storage. Firstly, the background and developmental history of the protectants used in the two preservation technologies are briefly introduced. Secondly, the progress in different cellular protection mechanisms for advanced biomaterials are discussed in two preservation technologies. In hypothermic preservation, the hypothermia-induced and extracellular matrix-loss injuries to cells are comprehensively summarized, as well as the recent biomaterials dependent on regulation of cellular ATP level, stabilization of cellular membrane, balance of antioxidant defense system, and supply of mimetic ECM to prolong cell longevity are provided. In cryopreservation, cellular injuries and advanced biomaterials that can protect cells from osmotic or ice injury, and alleviate oxidative stress to allow cell survival are concluded. Last, an insight into the perspectives and challenges of this technology is provided. We envision advanced biocompatible materials for highly efficient cell preservation as critical in future developments and trends to support cell-based medicine. STATEMENT OF SIGNIFICANCE: Cell preservation technologies present a critical role in cell-based applications, and more efficient biocompatible protectants are highly required. This review categorizes cell preservation technologies into hypothermic preservation and cryopreservation according to their storage conditions, and comprehensively reviews the recently advanced biomaterials related. The background, development, and cellular protective mechanisms of these two preservation technologies are respectively introduced and summarized. Moreover, the differences, connections, individual demands of these two technologies are also provided and discussed.
Collapse
Affiliation(s)
- Yiming Ma
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, PR China; Frontier Technology Research Institute, Tianjin University, Tianjin 300350, PR China
| | - Lei Gao
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, PR China; Frontier Technology Research Institute, Tianjin University, Tianjin 300350, PR China
| | - Yunqing Tian
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, PR China; Frontier Technology Research Institute, Tianjin University, Tianjin 300350, PR China
| | - Pengguang Chen
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, PR China; Frontier Technology Research Institute, Tianjin University, Tianjin 300350, PR China
| | - Jing Yang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, PR China; Frontier Technology Research Institute, Tianjin University, Tianjin 300350, PR China.
| | - Lei Zhang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, PR China; Frontier Technology Research Institute, Tianjin University, Tianjin 300350, PR China.
| |
Collapse
|
208
|
Combes GF, Vučković AM, Perić Bakulić M, Antoine R, Bonačić-Koutecky V, Trajković K. Nanotechnology in Tumor Biomarker Detection: The Potential of Liganded Nanoclusters as Nonlinear Optical Contrast Agents for Molecular Diagnostics of Cancer. Cancers (Basel) 2021; 13:4206. [PMID: 34439360 PMCID: PMC8393257 DOI: 10.3390/cancers13164206] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 12/24/2022] Open
Abstract
Cancer is one of the leading causes of premature death, and, as such, it can be prevented by developing strategies for early and accurate diagnosis. Cancer diagnostics has evolved from the macroscopic detection of malignant tissues to the fine analysis of tumor biomarkers using personalized medicine approaches. Recently, various nanomaterials have been introduced into the molecular diagnostics of cancer. This has resulted in a number of tumor biomarkers that have been detected in vitro and in vivo using nanodevices and corresponding imaging techniques. Atomically precise ligand-protected noble metal quantum nanoclusters represent an interesting class of nanomaterials with a great potential for the detection of tumor biomarkers. They are characterized by high biocompatibility, low toxicity, and suitability for controlled functionalization with moieties specifically recognizing tumor biomarkers. Their non-linear optical properties are of particular importance as they enable the visualization of nanocluster-labeled tumor biomarkers using non-linear optical techniques such as two-photon-excited fluorescence and second harmonic generation. This article reviews liganded nanoclusters among the different nanomaterials used for molecular cancer diagnosis and the relevance of this new class of nanomaterials as non-linear optical probe and contrast agents.
Collapse
Affiliation(s)
- Guillaume F. Combes
- Center of Excellence for Science and Technology-Integration of Mediterranean Region (STIM), Faculty of Science, University of Split, 21000 Split, Croatia; (G.F.C.); (A.-M.V.); (M.P.B.); (V.B.-K.)
- Mediterranean Institute for Life Sciences (MedILS), 21000 Split, Croatia
| | - Ana-Marija Vučković
- Center of Excellence for Science and Technology-Integration of Mediterranean Region (STIM), Faculty of Science, University of Split, 21000 Split, Croatia; (G.F.C.); (A.-M.V.); (M.P.B.); (V.B.-K.)
- Mediterranean Institute for Life Sciences (MedILS), 21000 Split, Croatia
| | - Martina Perić Bakulić
- Center of Excellence for Science and Technology-Integration of Mediterranean Region (STIM), Faculty of Science, University of Split, 21000 Split, Croatia; (G.F.C.); (A.-M.V.); (M.P.B.); (V.B.-K.)
| | - Rodolphe Antoine
- UMR 5306, Centre National de la Recherche Scientifique (CNRS), Institute Lumière Matière, Claude Bernard University Lyon 1, F-69622 Villeurbanne, France;
| | - Vlasta Bonačić-Koutecky
- Center of Excellence for Science and Technology-Integration of Mediterranean Region (STIM), Faculty of Science, University of Split, 21000 Split, Croatia; (G.F.C.); (A.-M.V.); (M.P.B.); (V.B.-K.)
- Interdisciplinary Center for Advanced Science and Technology (ICAST), University of Split, 21000 Split, Croatia
- Chemistry Department, Humboldt University of Berlin, 12489 Berlin, Germany
| | - Katarina Trajković
- Center of Excellence for Science and Technology-Integration of Mediterranean Region (STIM), Faculty of Science, University of Split, 21000 Split, Croatia; (G.F.C.); (A.-M.V.); (M.P.B.); (V.B.-K.)
- Mediterranean Institute for Life Sciences (MedILS), 21000 Split, Croatia
| |
Collapse
|
209
|
Uguen A. Digital Pathology Slides-based Measurement of Tumor Cells and Lymphocytes Within Cytology Samples Supports the Relevance of the Separation by Size of Nonhematological Tumor and Hematological Nontumor Cells in Liquid Biopsies. Appl Immunohistochem Mol Morphol 2021; 29:494-498. [PMID: 33710122 DOI: 10.1097/pai.0000000000000931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 02/12/2021] [Indexed: 11/25/2022]
Abstract
Filtration by size is one method used to study circulating tumor cells in blood samples. Filtration-migration ability is highly dependent of the size of cell nucleus. This implies to search for the appropriate nucleus size able to separate between hematological nucleated and nonhematological nucleated blood cells to maximize circulating tumor cell isolation. Digitalized cytology slides [May-Grünwald Giemsa (MGG) stained and immunocytochemistry (ICC) slides] from various cancer metastases served for manual measurements of nuclei about tumor cells and adjacent lymphocytes to determine the diameters the more able to separate between tumor cells and lymphocytes. Among 2022 cells analyzed (1067 tumor cells and 955 lymphocytes) on MGG stained slides, the mean diameter of tumor cells nuclei was 14.77 µm whereas the mean diameter of lymphocytic nuclei was 6.47 µm (P<0.001). In ICC slides, about 6583 cells (4753 tumor cells and 1830 lymphocytes), the mean diameter of tumor cells nuclei was 9.28 µm whereas the mean diameter of lymphocytic nuclei was 4.95 µm (P<0.001). Areas under the receiver operating characteristic curves analyses concluded that diameters of 9.37 µm and 6 µm separated the best between tumor cells and lymphocytes in MGG and ICC slides, respectively. Measuring manually the diameters of the smallest tumor cells in ICC slides, we established more than 99% of tumor cells had diameters superior to 8 µm. The sizes differences between tumor cells and lymphocytes support the relevance of the filtration by size to isolate blood circulating nonhematological tumor cells. The existence of small tumor cells with sizes overlapping with those of lymphocytes is worth to optimize the threshold to separate between tumor cells and hematological cells.
Collapse
Affiliation(s)
- Arnaud Uguen
- Department of Pathology, CHRU Brest
- Inserm U1227 LBAI, Brest, France
| |
Collapse
|
210
|
Cannarile MA, Gomes B, Canamero M, Reis B, Byrd A, Charo J, Yadav M, Karanikas V. Biomarker Technologies to Support Early Clinical Immuno-oncology Development: Advances and Interpretation. Clin Cancer Res 2021; 27:4147-4159. [PMID: 33766813 DOI: 10.1158/1078-0432.ccr-20-2345] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/02/2021] [Accepted: 03/08/2021] [Indexed: 11/16/2022]
Abstract
Today, there is a huge effort to develop cancer immunotherapeutics capable of combating cancer cells as well as the biological environment in which they can grow, adapt, and survive. For such treatments to benefit more patients, there is a great need to dissect the complex interplays between tumor cells and the host's immune system. Monitoring mechanisms of resistance to immunotherapeutics can delineate the evolution of key players capable of driving an efficacious antitumor immune response. In doing so, simultaneous and systematic interrogation of multiple biomarkers beyond single biomarker approaches needs to be undertaken. Zooming into cell-to-cell interactions using technological advancements with unprecedented cellular resolution such as single-cell spatial transcriptomics, advanced tissue histology approaches, and new molecular immune profiling tools promises to provide a unique level of molecular granularity of the tumor environment and may support better decision-making during drug development. This review will focus on how such technological tools are applied in clinical settings, to inform the underlying tumor-immune biology of patients and offer a deeper understanding of cancer immune responsiveness to immuno-oncology treatments.
Collapse
Affiliation(s)
- Michael A Cannarile
- F. Hoffmann-La Roche AG, Pharmaceutical Research and Early Development Oncology, Roche Innovation Center Munich, Munich, Germany
| | - Bruno Gomes
- F. Hoffmann-La Roche AG, Pharmaceutical Research and Early Development Oncology, Roche Innovation Center Basel, Basel, Switzerland
| | - Marta Canamero
- F. Hoffmann-La Roche AG, Pharmaceutical Research and Early Development Oncology, Roche Innovation Center Munich, Munich, Germany
| | - Bernhard Reis
- F. Hoffmann-La Roche AG, Pharmaceutical Research and Early Development Oncology, Roche Innovation Center Basel, Basel, Switzerland
| | | | - Jehad Charo
- F. Hoffmann-La Roche AG, Pharmaceutical Research and Early Development Oncology, Roche Innovation Center Zurich, Zurich, Switzerland
| | | | - Vaios Karanikas
- F. Hoffmann-La Roche AG, Pharmaceutical Research and Early Development Oncology, Roche Innovation Center Zurich, Zurich, Switzerland.
| |
Collapse
|
211
|
Romano C, Martorana F, Pennisi MS, Stella S, Massimino M, Tirrò E, Vitale SR, Di Gregorio S, Puma A, Tomarchio C, Manzella L. Opportunities and Challenges of Liquid Biopsy in Thyroid Cancer. Int J Mol Sci 2021; 22:7707. [PMID: 34299334 PMCID: PMC8303548 DOI: 10.3390/ijms22147707] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 12/17/2022] Open
Abstract
Thyroid cancer is the most common malignancy of the endocrine system, encompassing different entities with distinct histological features and clinical behavior. The diagnostic definition, therapeutic approach, and follow-up of thyroid cancers display some controversial aspects that represent unmet medical needs. Liquid biopsy is a non-invasive approach that detects and analyzes biological samples released from the tumor into the bloodstream. With the use of different technologies, tumor cells, free nucleic acids, and extracellular vesicles can be retrieved in the serum of cancer patients and valuable molecular information can be obtained. Recently, a growing body of evidence is accumulating concerning the use of liquid biopsy in thyroid cancer, as it can be exploited to define a patient's diagnosis, estimate their prognosis, and monitor tumor recurrence or treatment response. Indeed, liquid biopsy can be a valuable tool to overcome the limits of conventional management of thyroid malignancies. In this review, we summarize currently available data about liquid biopsy in differentiated, poorly differentiated/anaplastic, and medullary thyroid cancer, focusing on circulating tumor cells, circulating free nucleic acids, and extracellular vesicles.
Collapse
Affiliation(s)
- Chiara Romano
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico “G. Rodolico—San Marco”, 95123 Catania, Italy; (C.R.); (F.M.); (M.S.P.); (S.S.); (M.M.); (E.T.); (S.R.V.); (S.D.G.); (A.P.); (C.T.)
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| | - Federica Martorana
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico “G. Rodolico—San Marco”, 95123 Catania, Italy; (C.R.); (F.M.); (M.S.P.); (S.S.); (M.M.); (E.T.); (S.R.V.); (S.D.G.); (A.P.); (C.T.)
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| | - Maria Stella Pennisi
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico “G. Rodolico—San Marco”, 95123 Catania, Italy; (C.R.); (F.M.); (M.S.P.); (S.S.); (M.M.); (E.T.); (S.R.V.); (S.D.G.); (A.P.); (C.T.)
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| | - Stefania Stella
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico “G. Rodolico—San Marco”, 95123 Catania, Italy; (C.R.); (F.M.); (M.S.P.); (S.S.); (M.M.); (E.T.); (S.R.V.); (S.D.G.); (A.P.); (C.T.)
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| | - Michele Massimino
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico “G. Rodolico—San Marco”, 95123 Catania, Italy; (C.R.); (F.M.); (M.S.P.); (S.S.); (M.M.); (E.T.); (S.R.V.); (S.D.G.); (A.P.); (C.T.)
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| | - Elena Tirrò
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico “G. Rodolico—San Marco”, 95123 Catania, Italy; (C.R.); (F.M.); (M.S.P.); (S.S.); (M.M.); (E.T.); (S.R.V.); (S.D.G.); (A.P.); (C.T.)
- Department of Surgical, Oncological and Stomatological Sciences, University of Palermo, 90127 Palermo, Italy
| | - Silvia Rita Vitale
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico “G. Rodolico—San Marco”, 95123 Catania, Italy; (C.R.); (F.M.); (M.S.P.); (S.S.); (M.M.); (E.T.); (S.R.V.); (S.D.G.); (A.P.); (C.T.)
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| | - Sandra Di Gregorio
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico “G. Rodolico—San Marco”, 95123 Catania, Italy; (C.R.); (F.M.); (M.S.P.); (S.S.); (M.M.); (E.T.); (S.R.V.); (S.D.G.); (A.P.); (C.T.)
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| | - Adriana Puma
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico “G. Rodolico—San Marco”, 95123 Catania, Italy; (C.R.); (F.M.); (M.S.P.); (S.S.); (M.M.); (E.T.); (S.R.V.); (S.D.G.); (A.P.); (C.T.)
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| | - Cristina Tomarchio
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico “G. Rodolico—San Marco”, 95123 Catania, Italy; (C.R.); (F.M.); (M.S.P.); (S.S.); (M.M.); (E.T.); (S.R.V.); (S.D.G.); (A.P.); (C.T.)
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| | - Livia Manzella
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico “G. Rodolico—San Marco”, 95123 Catania, Italy; (C.R.); (F.M.); (M.S.P.); (S.S.); (M.M.); (E.T.); (S.R.V.); (S.D.G.); (A.P.); (C.T.)
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| |
Collapse
|
212
|
Attili I, Del Re M, Guerini-Rocco E, Crucitta S, Pisapia P, Pepe F, Barberis M, Troncone G, Danesi R, de Marinis F, Malapelle U, Passaro A. The role of molecular heterogeneity targeting resistance mechanisms to lung cancer therapies. Expert Rev Mol Diagn 2021; 21:757-766. [PMID: 34278933 DOI: 10.1080/14737159.2021.1943365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Introduction: The treatment scenario of lung cancer is rapidly evolving through time. In parallel, growing evidence is accumulating on different mechanisms of treatment resistance. Inter- and intra-tumor heterogeneity define the spatial and temporal tumor clonal evolution, that is at the basis of tumor progression and resistance to anticancer treatments.Areas covered: This review summarizes the available evidence on molecular heterogeneity in lung cancer, from diagnosis to the occurrence of treatment resistance. The application of novel molecular diagnostic methods to detect molecular heterogeneity, and the implications of understanding heterogeneity for drug development strategies are discussed, with focus on clinical relevance and impact on patients' survival.Expert opinion: The current knowledge of molecular heterogeneity allows to identify different molecular subgroups of patients within the same conventional tumor type. Deeper understanding of heterogeneity determinants and the possibility to comprehensively investigate tumor molecular patterns will lead to the development of personalized treatment approaches, with the final goal to overcome resistance and prolong survival in lung cancer patients.
Collapse
Affiliation(s)
- Ilaria Attili
- Division of Thoracic Oncology, European Institute of Oncology, IRCCS, Milan, Italy
| | - Marzia Del Re
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Elena Guerini-Rocco
- Division of Pathology and Laboratory Medicine,IEO, European Institute of Oncology, IRCCS, Milano, Italy.,Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy
| | - Stefania Crucitta
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Pasquale Pisapia
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Francesco Pepe
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Massimo Barberis
- Division of Pathology and Laboratory Medicine,IEO, European Institute of Oncology, IRCCS, Milano, Italy
| | - Giancarlo Troncone
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Romano Danesi
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Filippo de Marinis
- Division of Thoracic Oncology, European Institute of Oncology, IRCCS, Milan, Italy
| | - Umberto Malapelle
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Antonio Passaro
- Division of Thoracic Oncology, European Institute of Oncology, IRCCS, Milan, Italy
| |
Collapse
|
213
|
Liquid Biopsy Analysis in Clinical Practice: Focus on Lung Cancer. JOURNAL OF MOLECULAR PATHOLOGY 2021. [DOI: 10.3390/jmp2030021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Lung cancer is the leading cause of cancer death worldwide. Despite the emergence of highly effective targeted therapies, up to 30% of advanced stage non-small cell lung cancer (NSCLC) patients do not undergo tissue molecular testing because of scarce tissue availability. Liquid biopsy, on the other hand, offers these patients a valuable opportunity to receive the best treatment options in a timely manner. Indeed, besides being much faster and less invasive than conventional tissue-based analysis, it can also yield specific information about the genetic make-up and evolution of patients’ tumors. However, several issues, including lack of standardized protocols for sample collection, processing, and interpretation, still need to be addressed before liquid biopsy can be fully incorporated into routine oncology practice. Here, we reviewed the most important challenges hindering the implementation of liquid biopsy in oncology practice, as well as the great advantages of this approach for the treatment of NSCLC patients.
Collapse
|
214
|
Mohanty A, Mohanty SK, Rout S, Pani C. Liquid Biopsy, the hype vs. hope in molecular and clinical oncology. Semin Oncol 2021; 48:259-267. [PMID: 34384614 DOI: 10.1053/j.seminoncol.2021.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 05/28/2021] [Accepted: 06/28/2021] [Indexed: 12/12/2022]
Abstract
The molecular landscape of tumors has been traditionally established using a biopsy or resection specimens. These modalities result in sampling bias that offer only a single snapshot of tumor heterogeneity. Over the last decade intensive research towards alleviating such a bias and obtaining an integral yet accurate portrait of the tumors, evolved to the use of established molecular and genetic analysis using blood and several other body fluids, such as urine, saliva, and pleural effusions as liquid biopsies. Genomic profiling of the circulating markers including circulating cell-free tumor DNA (ctDNA), circulating tumor cells (CTCs) or even RNA, proteins, and lipids constituting exosomes, have facilitated the diligent monitoring of response to treatment, allowed one to follow the emergence of drug resistance, and enumerate minimal residual disease. The prevalence of tumor educated platelets (TEPs) and our understanding of how tumor cells influence platelets are beginning to unearth TEPs as a potentially dynamic component of liquid biopsies. Here, we review the biology, methodology, approaches, and clinical applications of biomarkers used to assess liquid biopsies. The current review addresses recent technological advances and different forms of liquid biopsy along with upcoming challenges and how they can be integrated to get the best possible tumor-derived genetic information that can be leveraged to more precise therapies for patient as liquid biopsies become increasingly routine in clinical practice.
Collapse
Affiliation(s)
- Abhishek Mohanty
- Rajiv Gandhi Cancer Institute and Research Centre, New Delhi, India.
| | - Sambit K Mohanty
- Advanced Medical Research Institute, Bhubaneswar, Odisha, India; CORE Diagnostics, Gurgaon, Haryana, India
| | - Sipra Rout
- Christian Medical College, Vellore, Tamil Nadu, India
| | | |
Collapse
|
215
|
Jiang H, Gu X, Zuo Z, Tian G, Liu J. Prognostic value of circulating tumor cells in patients with bladder cancer: A meta-analysis. PLoS One 2021; 16:e0254433. [PMID: 34242363 PMCID: PMC8270423 DOI: 10.1371/journal.pone.0254433] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 06/27/2021] [Indexed: 12/14/2022] Open
Abstract
Background Circulating tumor cells (CTCs) have been considered diagnostic and prognostic biomarkers for urothelial cancer. However, the prognostic role of CTCs in bladder cancer (BC) remains controversial. Here, we conducted a meta-analysis to evaluate the prognostic significance of CTCs for patients with BC. Methods All studies relevant to this topic were searched in the PubMed, Embase, and Web of Science databases. The hazard ratio (HR) and 95% confidence interval (95% CI) were set as effect measures. The outcomes were overall survival (OS), cancer-free survival (CSS), progression-free survival (PFS)/time to progression (TTP), and disease-free survival (DFS)/recurrence-free survival (RFS)/time to first recurrence (TFR). All analyses were conducted in STATA 15.1. Results Eleven eligible studies comprising 1,062 patients with BC were included in this meta-analysis. Overall analyses showed that CTC-positive patients had poorer survival (OS: HR 3.88, 95% CI 2.52–5.96, p < 0.001; CSS: HR 3.89, 95% CI 2.15–7.04, p < 0.001) and more aggressive progression (PFS/TTP: HR 5.92, 95% CI 3.75–9.35, p < 0.001; DFS/RFS/TFR: HR 4.57, 95% CI 3.34–6.25, p < 0.001) than CTC-negative patients. Subgroup analyses according to the number of patients, detection method, positivity rate, and follow-up time revealed that the presence of CTCs predicted a high risk of mortality and disease progression in most subgroups. Conclusion The meta-analysis confirmed that CTCs are a promising prognostic biomarker of poor survival and aggressive tumor progression for patients with BC. Prospero registration number CRD42021224865.
Collapse
Affiliation(s)
- Hui Jiang
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiujuan Gu
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Zhihua Zuo
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Gang Tian
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- * E-mail: (JL); (GT)
| | - Jinbo Liu
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- * E-mail: (JL); (GT)
| |
Collapse
|
216
|
De Luca G, Dono M. The Opportunities and Challenges of Molecular Tagging Next-Generation Sequencing in Liquid Biopsy. Mol Diagn Ther 2021; 25:537-547. [PMID: 34224097 DOI: 10.1007/s40291-021-00542-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2021] [Indexed: 10/20/2022]
Abstract
Liquid biopsy (LB) is a promising tool that is rapidly evolving as a standard of care in early and advanced stages of cancer settings. Next-generation sequencing (NGS) methods have become essential in molecular diagnostics and clinical laboratories dealing with LB analytes, i.e., cell-free DNA and RNA. The sensitivity and high-throughput capacity of NGS enable us to overcome technical issues that are mainly attributable to low-abundance (below 1% mutated allelic frequency) tumour genetic material circulating within biological fluids. In this context, the introduction of unique molecular identifiers (UMIs), also known as molecular barcodes, applied to various NGS platforms greatly improved the characterization of rare genetic alterations, as they resulted in a drastic reduction in background noise while maintaining high levels of positive predictive value and sensitivity. Different UMI strategies have been developed, such as single (e.g., safe-sequencing system, Safe-SeqS) or double (duplex-sequencing system, Duplex-Seq) strand-based labelling, and, currently, considerable results corroborate their potential implementation in a routine laboratory. Recently, the US Food and Drug Administration approved the clinical use of two comprehensive UMI-based NGS assays (FoundationOne Liquid CDx and Guardant360 CDx) in cfDNA mutational assessment. However, to definitively translate LB into clinical practice, UMI-based NGS protocols should meet certain feasibility requirements in terms of cost-effectiveness, wet laboratory performance and easy access to web-source and bioinformatic tools for downstream molecular data.
Collapse
Affiliation(s)
- Giuseppa De Luca
- Molecular Diagnostic Unit, IRCCS Ospedale Policlinico San Martino, 16132, Genova, Italy
| | - Mariella Dono
- Molecular Diagnostic Unit, IRCCS Ospedale Policlinico San Martino, 16132, Genova, Italy.
| |
Collapse
|
217
|
Bellassai N, D’Agata R, Marti A, Rozzi A, Volpi S, Allegretti M, Corradini R, Giacomini P, Huskens J, Spoto G. Detection of Tumor DNA in Human Plasma with a Functional PLL-Based Surface Layer and Plasmonic Biosensing. ACS Sens 2021; 6:2307-2319. [PMID: 34032412 PMCID: PMC8294610 DOI: 10.1021/acssensors.1c00360] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/13/2021] [Indexed: 12/20/2022]
Abstract
Standard protocols for the analysis of circulating tumor DNA (ctDNA) include the isolation of DNA from the patient's plasma and its amplification and analysis in buffered solutions. The application of such protocols is hampered by several factors, including the complexity and time-constrained preanalytical procedures, risks for sample contamination, extended analysis time, and assay costs. A recently introduced nanoparticle-enhanced surface plasmon resonance imaging-based assay has been shown to simplify procedures for the direct detection of tumor DNA in the patient's plasma, greatly simplifying the cumbersome preanalytical phase. To further simplify the protocol, a new dual-functional low-fouling poly-l-lysine (PLL)-based surface layer has been introduced that is described herein. The new PLL-based layer includes a densely immobilized CEEEEE oligopeptide to create a charge-balanced system preventing the nonspecific adsorption of plasma components on the sensor surface. The layer also comprises sparsely attached peptide nucleic acid probes complementary to the sequence of circulating DNA, e.g., the analyte that has to be captured in the plasma from cancer patients. We thoroughly investigated the contribution of each component of the dual-functional polymer to the antifouling properties of the surface layer. The low-fouling property of the new surface layer allowed us to detect wild-type and KRAS p.G12D-mutated DNA in human plasma at the attomolar level (∼2.5 aM) and KRAS p.G13D-mutated tumor DNA in liquid biopsy from a cancer patient with almost no preanalytical treatment of the patient's plasma, no need to isolate DNA from plasma, and without PCR amplification of the target sequence.
Collapse
Affiliation(s)
- Noemi Bellassai
- Department
of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95122 Catania, Italy
| | - Roberta D’Agata
- Department
of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95122 Catania, Italy
- INBB,
Istituto Nazionale di Biostrutture e Biosistemi, Viale delle Medaglie d’Oro, 305, 00136 Roma, Italy
| | - Almudena Marti
- Department
of Molecules & Materials, MESA+ Institute for Nanotechnology,
Faculty of Science & Technology, University
of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Andrea Rozzi
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area Delle Scienze, 17/A, 43124 Parma, Italy
| | - Stefano Volpi
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area Delle Scienze, 17/A, 43124 Parma, Italy
| | - Matteo Allegretti
- Oncogenomics
and Epigenetics, IRCCS Regina Elena National
Cancer Institute, Via
Elio Chianesi, 53, 00144 Rome, Italy
| | - Roberto Corradini
- INBB,
Istituto Nazionale di Biostrutture e Biosistemi, Viale delle Medaglie d’Oro, 305, 00136 Roma, Italy
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area Delle Scienze, 17/A, 43124 Parma, Italy
| | - Patrizio Giacomini
- Oncogenomics
and Epigenetics, IRCCS Regina Elena National
Cancer Institute, Via
Elio Chianesi, 53, 00144 Rome, Italy
| | - Jurriaan Huskens
- Department
of Molecules & Materials, MESA+ Institute for Nanotechnology,
Faculty of Science & Technology, University
of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Giuseppe Spoto
- Department
of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95122 Catania, Italy
- INBB,
Istituto Nazionale di Biostrutture e Biosistemi, Viale delle Medaglie d’Oro, 305, 00136 Roma, Italy
| |
Collapse
|
218
|
Signore M, Alfonsi R, Federici G, Nanni S, Addario A, Bertuccini L, Aiello A, Di Pace AL, Sperduti I, Muto G, Giacobbe A, Collura D, Brunetto L, Simone G, Costantini M, Crinò L, Rossi S, Tabolacci C, Diociaiuti M, Merlino T, Gallucci M, Sentinelli S, Papalia R, De Maria R, Bonci D. Diagnostic and prognostic potential of the proteomic profiling of serum-derived extracellular vesicles in prostate cancer. Cell Death Dis 2021; 12:636. [PMID: 34155195 PMCID: PMC8215487 DOI: 10.1038/s41419-021-03909-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 05/31/2021] [Accepted: 06/07/2021] [Indexed: 12/16/2022]
Abstract
Extracellular vesicles (EVs) and their cargo represent an intriguing source of cancer biomarkers for developing robust and sensitive molecular tests by liquid biopsy. Prostate cancer (PCa) is still one of the most frequent and deadly tumor in men and analysis of EVs from biological fluids of PCa patients has proven the feasibility and the unprecedented potential of such an approach. Here, we exploited an antibody-based proteomic technology, i.e. the Reverse-Phase Protein microArrays (RPPA), to measure key antigens and activated signaling in EVs isolated from sera of PCa patients. Notably, we found tumor-specific protein profiles associated with clinical settings as well as candidate markers for EV-based tumor diagnosis. Among others, PD-L1, ERG, Integrin-β5, Survivin, TGF-β, phosphorylated-TSC2 as well as partners of the MAP-kinase and mTOR pathways emerged as differentially expressed endpoints in tumor-derived EVs. In addition, the retrospective analysis of EVs from a 15-year follow-up cohort generated a protein signature with prognostic significance. Our results confirm that serum-derived EV cargo may be exploited to improve the current diagnostic procedures while providing potential prognostic and predictive information. The approach proposed here has been already applied to tumor entities other than PCa, thus proving its value in translational medicine and paving the way to innovative, clinically meaningful tools.
Collapse
Affiliation(s)
- Michele Signore
- RPPA Unit, Proteomics Area, Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | - Romina Alfonsi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | | | - Simona Nanni
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore Largo F. Vito 1, 00168, Rome, Italy.,Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Antonio Addario
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Lucia Bertuccini
- RPPA Unit, Proteomics Area, Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | - Aurora Aiello
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore Largo F. Vito 1, 00168, Rome, Italy
| | - Anna Laura Di Pace
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | | | - Giovanni Muto
- Department of Urology, Humanitas University, Turin, Italy.,Department of Urology, S. Giovanni Bosco Hospital, Turin, Italy
| | - Alessandro Giacobbe
- Department of Urology, Humanitas University, Turin, Italy.,Department of Urology, S. Giovanni Bosco Hospital, Turin, Italy
| | - Devis Collura
- Department of Urology, Humanitas University, Turin, Italy.,Department of Urology, S. Giovanni Bosco Hospital, Turin, Italy
| | - Lidia Brunetto
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Giuseppe Simone
- Department of Urology-IRCCS Regina Elena National Cancer Institute of Rome, Rome, Italy
| | - Manuela Costantini
- Department of Urology-IRCCS Regina Elena National Cancer Institute of Rome, Rome, Italy
| | - Lucio Crinò
- Department of Oncology, IRST-Meldola, Meldola, Italy
| | - Stefania Rossi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Claudio Tabolacci
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Marco Diociaiuti
- Department of Rare Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Tania Merlino
- IRCCS, Regina Elena National Cancer Institute, Rome, Italy
| | - Michele Gallucci
- Department of Urology-IRCCS Regina Elena National Cancer Institute of Rome, Rome, Italy.,Department of Urology, Sapienza University of Rome, Rome, Italy
| | | | | | - Ruggero De Maria
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore Largo F. Vito 1, 00168, Rome, Italy.,Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Désirée Bonci
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy. .,IRCCS, Regina Elena National Cancer Institute, Rome, Italy.
| |
Collapse
|
219
|
Chu Q, Mu W, Lan C, Liu Y, Gao T, Guan L, Fang Y, Zhang Z, Liu Y, Liu Y, Zhang N. High-Specific Isolation and Instant Observation of Circulating Tumour Cell from HCC Patients via Glypican-3 Immunomagnetic Fluorescent Nanodevice. Int J Nanomedicine 2021; 16:4161-4173. [PMID: 34168446 PMCID: PMC8219227 DOI: 10.2147/ijn.s307691] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/17/2021] [Indexed: 12/20/2022] Open
Abstract
PURPOSE Specific targeting receptors for efficiently capturing and applicable nanodevice for separating and instant observing of circulating tumour cells (CTC) are critical for early diagnosis of cancer. However, the existing CTC detection system based on epithelial cell adhesion molecule (EpCAM) was seriously limited by low expression and poor specificity of targeting receptors, and not instant observation in clinical application. METHODS Herein, an alternative glypican-3 (GPC3)-based immunomagnetic fluorescent system (C6/MMSN-GPC3) for high-specific isolation and instant observation of CTC from hepatocellular carcinoma (HCC) patients' peripheral blood was developed. The high-specific HCC targeting receptor, GPC3, was employed for improving the sensitivity and accuracy in CTC detection. GPC3 monoclonal antibody (mAb) was linked to immunomagnetic mesoporous silica for specific targeting capture and separate CTC, and fluorescent molecule coumarin-6 (C6) was loaded for instant detection of CTC. RESULTS The cell recovery (%) of C6/MMSN-GPC3 increased in 106 HL-60 cells (from 49.7% to 83.0%) and in whole blood (from 42% to 80.3%) compared with MACS® Beads. In clinical samples, the C6/MMSN-GPC3 could capture more CTC in the 13 cases of HCC patients and the capture efficiency was improved by 83.3%-350%. Meanwhile, the capture process of C6/MMSN-GPC3 was harmless, facilitating for the subsequent culture. Significantly, the C6/MMSN-GPC3 achieved the high-specific isolation and instant observation of CTC from HCC patients' blood samples, and successfully separated CTC from one patient with early stage of HCC (Stage I) and one post-surgery patient, further indicating the potential ability of C6/MMSN-GPC3 for HCC early diagnosis and prognosis evaluation. CONCLUSION Our study provides a feasible glypican-3 (GPC3)-based immunomagnetic fluorescent system (C6/MMSN-GPC3) for high-specific isolation and instant observation of HCC CTC.
Collapse
Affiliation(s)
- Qihui Chu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, People’s Republic of China
| | - Weiwei Mu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, People’s Republic of China
| | - Chuanjin Lan
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated with Shandong First Medical University, Jinan, 250021, People’s Republic of China
| | - Yang Liu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, People’s Republic of China
| | - Tong Gao
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, People’s Republic of China
| | - Li Guan
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, People’s Republic of China
| | - Yuxiao Fang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, People’s Republic of China
| | - Zipeng Zhang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, People’s Republic of China
| | - Yingchao Liu
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated with Shandong First Medical University, Jinan, 250021, People’s Republic of China
| | - Yongjun Liu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, People’s Republic of China
| | - Na Zhang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, People’s Republic of China
| |
Collapse
|
220
|
Liu L, Yuan M, Jin Y, Zhou G, Li T, Li L, Peng H, Chen W. Tunable Dual-Effector Allostery System for Nucleic Acid Analysis with Enhanced Sensitivity and an Extended Dynamic Range. Anal Chem 2021; 93:8170-8177. [PMID: 34096261 DOI: 10.1021/acs.analchem.1c00055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the last few years, studies have demonstrated the existence of dual-effector allosteric cooperativity in nature and the mechanism underlying enhanced activation/inhibition performance. In this work, we design an artificial dual-effector allostery system for the construction of a dynamic biosensor that can achieve nucleic acid detection with superior sensitivity and across an extraordinary broad detection range. Our dual-effector allostery-regulated biosensor is based on the multibranched hybridization chain reaction (mHCR) involving three hairpins (H1, H2, and H3). In the presence of the target nucleic acid, the mHCR is initiated via cascading strand displacement events. The products of mHCR are then captured on the electrode surface based on the mechanism of the multivalent proximity ligation assay (mPLA) and the multivalent binding assay (mBA). The subsequent conjugation of streptavidin-modified horseradish peroxidase (SA-HRP) can lead to an increase in the electrochemical signal. Importantly, two distinct allosteric activation sites and two distinct allosteric inhibition sites in H1 are designed to fine-tune the nucleic acid detection sensitivity and the dynamic range. Using this new dual-effector allostery tool, we report the detection of nucleic acid at a dynamic range spanning 10-1012 aM, 11 orders of magnitude showing the broadest dynamic range reported to date with an allosteric regulation biosensor construct.
Collapse
Affiliation(s)
- Liangliang Liu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, P. R. China
| | - Mengmeng Yuan
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, P. R. China
| | - Yuxia Jin
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, P. R. China
| | - Guobao Zhou
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, P. R. China
| | - Tuqiang Li
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, P. R. China
| | - Lei Li
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, P. R. China
| | - Huaping Peng
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, Fuzhou 350108, P. R. China
| | - Wei Chen
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, Fuzhou 350108, P. R. China
| |
Collapse
|
221
|
Serum Exosomal microRNA-21, 222 and 124-3p as Noninvasive Predictive Biomarkers in Newly Diagnosed High-Grade Gliomas: A Prospective Study. Cancers (Basel) 2021; 13:cancers13123006. [PMID: 34203979 PMCID: PMC8232769 DOI: 10.3390/cancers13123006] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/31/2021] [Accepted: 06/11/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Diagnosis of relapse during post-surgery monitoring of patients with High-grade glioma is often challenging. This study was aimed to identify circulating biomarkers providing information about response to therapy and early diagnosis of progression during follow-up of these patients. Our findings, showing upregulation of exosomal miRNAs associated with relapse represent a proof of principle that these biomarkers may be clinically useful tools for diagnosing and monitoring of gliomas. Abstract Background: High-grade gliomas (HGG) are malignant brain tumors associated with frequent recurrent disease. Clinical management of HGG patients is currently devoid of blood biomarkers for early diagnosis, monitoring therapeutic effects and predicting recurrence. Different circulating miRNAs, both free and associated with exosomes, are described in patients with HGG. We previously identified miR-21, miR-222 and miR-124-3p purified from serum exosomes as molecular signature to help pre-operative clinical diagnosis and grading of gliomas. The aim of the present study was to verify this signature as a tool to assess the effect of treatment and for the early identification of progression in newly diagnosed HGG patients. Material and Methods: Major inclusion criteria were newly diagnosed, histologically confirmed HGG patients, no prior chemotherapy, ECOG PS 0-2 and patients scheduled for radiochemotherapy with temozolomide as first-line treatment after surgery. RANO criteria were used for response assessment. Serum was collected at baseline and subsequently at each neuroradiological assessment. mir-21, -222 and -124-3p expression in serum exosomes was measured in all samples. Results: A total number of 57 patients were enrolled; 41 were male, 52 with glioblastoma and 5 with anaplastic astrocytoma; 18 received radical surgery. HGG patients with higher exosomal miRNA expression displayed a statistically significant lower progression-free survival and overall survival. Increased expression of miR-21, -222 and -124-3p during post-operative follow-up was associated with HGG progression. Conclusions: These data indicate that miR-21, -222 and -124-3p in serum exosomes may be useful molecular biomarkers for complementing clinical evaluation of early tumor progression during post-surgical therapy in patients with HGG.
Collapse
|
222
|
Hu F, Liu J, Liu H, Li F, Wan M, Zhang M, Jiang Y, Rao M. Role of Exosomal Non-coding RNAs in Gastric Cancer: Biological Functions and Potential Clinical Applications. Front Oncol 2021; 11:700168. [PMID: 34195097 PMCID: PMC8238120 DOI: 10.3389/fonc.2021.700168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 05/25/2021] [Indexed: 12/19/2022] Open
Abstract
Gastric cancer (GC) is one of the most common fatal cancers worldwide. The communication between GC and other cells in the GC microenvironment directly affects GC progression. Recently, exosomes have been revealed as new players in intercellular communication. They play an important role in human health and diseases, including cancer, owing to their ability to carry various bioactive molecules, including non-coding RNAs (ncRNAs). NcRNAs, including micro RNAs, long non-coding RNAs, and circular RNAs, play a significant role in various pathophysiological processes, especially cancer. Increasing evidence has shown that exosomal ncRNAs are involved in the regulation of tumor proliferation, invasion, metastasis, angiogenesis, immune regulation, and treatment resistance in GC. In addition, exosomal ncRNAs have promising potential as diagnostic and prognostic markers for GC. Considering the biocompatibility of exosomes, they can also be used as biological carriers for targeted therapy. This review summarizes the current research progress on exosomal ncRNAs in gastric cancer, focusing on their biological role in GC and their potential as new biomarkers for GC and therapeutics. Our review provides insight into the mechanisms involved in GC progression, which may provide a new point cut for the discovery of new diagnostic markers and therapeutic strategies.
Collapse
Affiliation(s)
- Feng Hu
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Jixuan Liu
- Department of Pathology, The First Hospital of Jilin University, Changchun, China
| | - Huibo Liu
- Department of Dermatology, The First Hospital of Jilin University, Changchun, China
| | - Fan Li
- Department of Anesthesia, The First Hospital of Jilin University, Changchun, China
| | - Minjie Wan
- Department of Central Laboratory, The First Hospital of Jilin University, Changchun, China
| | - Manli Zhang
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Yanfang Jiang
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, Genetic Diagnosis Center, The First Hospital of Jilin University, Changchun, China
| | - Min Rao
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
223
|
Costanzi E, Simioni C, Varano G, Brenna C, Conti I, Neri LM. The Role of Extracellular Vesicles as Shuttles of RNA and Their Clinical Significance as Biomarkers in Hepatocellular Carcinoma. Genes (Basel) 2021; 12:genes12060902. [PMID: 34207985 PMCID: PMC8230662 DOI: 10.3390/genes12060902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/04/2021] [Accepted: 06/09/2021] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) have attracted interest as mediators of intercellular communication following the discovery that EVs contain RNA molecules, including non-coding RNA (ncRNA). Growing evidence for the enrichment of peculiar RNA species in specific EV subtypes has been demonstrated. ncRNAs, transferred from donor cells to recipient cells, confer to EVs the feature to regulate the expression of genes involved in differentiation, proliferation, apoptosis, and other biological processes. These multiple actions require accuracy in the isolation of RNA content from EVs and the methodologies used play a relevant role. In liver, EVs play a crucial role in regulating cell-cell communications and several pathophysiological events in the heterogeneous liver class of cells via horizontal transfer of their cargo. This review aims to discuss the rising role of EVs and their ncRNAs content in regulating specific aspects of hepatocellular carcinoma development, including tumorigenesis, angiogenesis, and tumor metastasis. We analyze the progress in EV-ncRNAs' potential clinical applications as important diagnostic and prognostic biomarkers for liver conditions.
Collapse
Affiliation(s)
- Eva Costanzi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (E.C.); (G.V.); (C.B.); (I.C.)
| | - Carolina Simioni
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy;
- Laboratory for Technologies of Advanced Therapies (LTTA)—Electron Microscopy Center, University of Ferrara, 44121 Ferrara, Italy
| | - Gabriele Varano
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (E.C.); (G.V.); (C.B.); (I.C.)
- Laboratory for Technologies of Advanced Therapies (LTTA)—Electron Microscopy Center, University of Ferrara, 44121 Ferrara, Italy
| | - Cinzia Brenna
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (E.C.); (G.V.); (C.B.); (I.C.)
- Laboratory for Technologies of Advanced Therapies (LTTA)—Electron Microscopy Center, University of Ferrara, 44121 Ferrara, Italy
| | - Ilaria Conti
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (E.C.); (G.V.); (C.B.); (I.C.)
| | - Luca Maria Neri
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (E.C.); (G.V.); (C.B.); (I.C.)
- Laboratory for Technologies of Advanced Therapies (LTTA)—Electron Microscopy Center, University of Ferrara, 44121 Ferrara, Italy
- Correspondence: ; Tel.: +39-0532-455940
| |
Collapse
|
224
|
Lei Y, Tang R, Xu J, Wang W, Zhang B, Liu J, Yu X, Shi S. Applications of single-cell sequencing in cancer research: progress and perspectives. J Hematol Oncol 2021; 14:91. [PMID: 34108022 PMCID: PMC8190846 DOI: 10.1186/s13045-021-01105-2] [Citation(s) in RCA: 212] [Impact Index Per Article: 70.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/03/2021] [Indexed: 02/06/2023] Open
Abstract
Single-cell sequencing, including genomics, transcriptomics, epigenomics, proteomics and metabolomics sequencing, is a powerful tool to decipher the cellular and molecular landscape at a single-cell resolution, unlike bulk sequencing, which provides averaged data. The use of single-cell sequencing in cancer research has revolutionized our understanding of the biological characteristics and dynamics within cancer lesions. In this review, we summarize emerging single-cell sequencing technologies and recent cancer research progress obtained by single-cell sequencing, including information related to the landscapes of malignant cells and immune cells, tumor heterogeneity, circulating tumor cells and the underlying mechanisms of tumor biological behaviors. Overall, the prospects of single-cell sequencing in facilitating diagnosis, targeted therapy and prognostic prediction among a spectrum of tumors are bright. In the near future, advances in single-cell sequencing will undoubtedly improve our understanding of the biological characteristics of tumors and highlight potential precise therapeutic targets for patients.
Collapse
Affiliation(s)
- Yalan Lei
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, No. 270 Dong'An Road, Shanghai, 200032, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Rong Tang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, No. 270 Dong'An Road, Shanghai, 200032, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, No. 270 Dong'An Road, Shanghai, 200032, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Wei Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, No. 270 Dong'An Road, Shanghai, 200032, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Bo Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, No. 270 Dong'An Road, Shanghai, 200032, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Jiang Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, No. 270 Dong'An Road, Shanghai, 200032, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China. .,Shanghai Pancreatic Cancer Institute, No. 270 Dong'An Road, Shanghai, 200032, China. .,Pancreatic Cancer Institute, Fudan University, Shanghai, China.
| | - Si Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China. .,Shanghai Pancreatic Cancer Institute, No. 270 Dong'An Road, Shanghai, 200032, China. .,Pancreatic Cancer Institute, Fudan University, Shanghai, China.
| |
Collapse
|
225
|
Zhang W, Duan X, Zhang Z, Yang Z, Zhao C, Liang C, Liu Z, Cheng S, Zhang K. Combination of CT and telomerase+ circulating tumor cells improves diagnosis of small pulmonary nodules. JCI Insight 2021; 6:148182. [PMID: 33905377 PMCID: PMC8262359 DOI: 10.1172/jci.insight.148182] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/23/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Early diagnosis and treatment are key to the long-term survival of lung cancer patients. Although CT has significantly contributed to the early diagnosis of lung cancer, there are still consequences of excessive or delayed treatment. By improving the sensitivity and specificity of circulating tumor cell (CTC) detection, a solution was proposed for differentiating benign from malignant pulmonary nodules. METHODS In this study, we used telomerase reverse transcriptase–based (TERT-based) CTC detection (TBCD) to distinguish benign from malignant pulmonary nodules < 2 cm and compared this method with the pathological diagnosis as the gold standard. FlowSight and FISH were used to confirm the CTCs detected by TBCD. RESULTS Our results suggest that CTCs based on TBCD can be used as independent biomarkers to distinguish benign from malignant nodules and are significantly superior to serum tumor markers. When the detection threshold was 1, the detection sensitivity and specificity of CTC diagnosis were 0.854 and 0.839, respectively. For pulmonary nodules ≤ 1 cm and 1–2 cm, the sensitivity and specificity of CTCs were both higher than 77%. Additionally, the diagnostic ability of CTC-assisted CT was compared by CT detection. The results show that CT combined with CTCs could significantly improve the differentiation ability of benign and malignant nodules in lung nodules < 2 cm and that the sensitivity and specificity could reach 0.899 and 0.839, respectively. CONCLUSION TBCD can effectively diagnose pulmonary nodules and be used as an effective auxiliary diagnostic scheme for CT diagnosis. FUNDING National Key Research and Development Project grant nos. 2019YFC1315700 and 2017YFC1308702, CAMS Initiative for Innovative Medicine grant no. 2017-I2M-1-005, and National Natural Science Foundation of China grant no. 81472013.
Collapse
Affiliation(s)
- Wen Zhang
- Department of Immunology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinchun Duan
- Department of Thoracic Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhenrong Zhang
- Department of General Thoracic Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Zhenrong Yang
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Changyun Zhao
- Chongqing Deepexam Biotechnology Co. Ltd., Chongqing, China
| | | | - Zhidong Liu
- Department of Thoracic Surgery, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Shujun Cheng
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kaitai Zhang
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
226
|
Xu C, He XY, Ren XH, Cheng SX. Direct detection of intracellular miRNA in living circulating tumor cells by tumor targeting nanoprobe in peripheral blood. Biosens Bioelectron 2021; 190:113401. [PMID: 34119837 DOI: 10.1016/j.bios.2021.113401] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/24/2021] [Accepted: 06/01/2021] [Indexed: 02/07/2023]
Abstract
Molecular analysis of circulating tumor cells (CTCs) is of critical significance for the non-invasive early detection of tumors. However, in situ detection of intracellular nucleic acids of CTCs in whole blood still remains challenge. By using a highly efficient tumor targeting nanoprobe, we realize in situ detection of microRNA-21 (miR-21) of living CTCs in unprocessed whole blood. In the nanoprobe, a catalytic hairpin assembly (CHA) system is complexed with protamine sulfate (PS), and then decorated by SYL3C conjugated hyaluronic acid (SHA) and hyaluronic acid (HA). The CHA system can be specifically delivered into living CTCs in whole blood, followed by hybridization between the CHA system and intracellular miR-21 in CTCs to induce strong fluorescence emission. After isolation of CTCs by membrane filtration, CTCs of cancer patients can be directly visualized by a fluorescence microscope for miR-21 detection at a single-cell level. Our study provides an efficient strategy to realize in situ genomic analysis of living CTCs in whole blood.
Collapse
Affiliation(s)
- Chang Xu
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, PR China
| | - Xiao-Yan He
- School of Life Sciences, Anhui Medical University, Hefei, 230032, PR China
| | - Xiao-He Ren
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, PR China
| | - Si-Xue Cheng
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, PR China.
| |
Collapse
|
227
|
Di Santo R, Romanò S, Mazzini A, Jovanović S, Nocca G, Campi G, Papi M, De Spirito M, Di Giacinto F, Ciasca G. Recent Advances in the Label-Free Characterization of Exosomes for Cancer Liquid Biopsy: From Scattering and Spectroscopy to Nanoindentation and Nanodevices. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1476. [PMID: 34199576 PMCID: PMC8230295 DOI: 10.3390/nano11061476] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/24/2021] [Accepted: 05/27/2021] [Indexed: 12/26/2022]
Abstract
Exosomes (EXOs) are nano-sized vesicles secreted by most cell types. They are abundant in bio-fluids and harbor specific molecular constituents from their parental cells. Due to these characteristics, EXOs have a great potential in cancer diagnostics for liquid biopsy and personalized medicine. Despite this unique potential, EXOs are not yet widely applied in clinical settings, with two main factors hindering their translational process in diagnostics. Firstly, conventional extraction methods are time-consuming, require large sample volumes and expensive equipment, and often do not provide high-purity samples. Secondly, characterization methods have some limitations, because they are often qualitative, need extensive labeling or complex sampling procedures that can induce artifacts. In this context, novel label-free approaches are rapidly emerging, and are holding potential to revolutionize EXO diagnostics. These methods include the use of nanodevices for EXO purification, and vibrational spectroscopies, scattering, and nanoindentation for characterization. In this progress report, we summarize recent key advances in label-free techniques for EXO purification and characterization. We point out that these methods contribute to reducing costs and processing times, provide complementary information compared to the conventional characterization techniques, and enhance flexibility, thus favoring the discovery of novel and unexplored EXO-based biomarkers. In this process, the impact of nanotechnology is systematically highlighted, showing how the effectiveness of these techniques can be enhanced using nanomaterials, such as plasmonic nanoparticles and nanostructured surfaces, which enable the exploitation of advanced physical phenomena occurring at the nanoscale level.
Collapse
Affiliation(s)
- Riccardo Di Santo
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (R.D.S.); (S.R.); (A.M.); (G.N.); (M.P.); (F.D.G.)
| | - Sabrina Romanò
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (R.D.S.); (S.R.); (A.M.); (G.N.); (M.P.); (F.D.G.)
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica Del Sacro Cuore, 00168 Roma, Italy
| | - Alberto Mazzini
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (R.D.S.); (S.R.); (A.M.); (G.N.); (M.P.); (F.D.G.)
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica Del Sacro Cuore, 00168 Roma, Italy
| | - Svetlana Jovanović
- “Vinča” Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia;
| | - Giuseppina Nocca
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (R.D.S.); (S.R.); (A.M.); (G.N.); (M.P.); (F.D.G.)
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Gaetano Campi
- Rome International Centre Materials Science Superstripes RICMASS, via dei Sabelli 119A, 00185 Rome, Italy;
- Institute of Crystallography, CNR, via Salaria Km 29. 300, Monterotondo Stazione, 00016 Roma, Italy
| | - Massimiliano Papi
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (R.D.S.); (S.R.); (A.M.); (G.N.); (M.P.); (F.D.G.)
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica Del Sacro Cuore, 00168 Roma, Italy
| | - Marco De Spirito
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (R.D.S.); (S.R.); (A.M.); (G.N.); (M.P.); (F.D.G.)
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica Del Sacro Cuore, 00168 Roma, Italy
| | - Flavio Di Giacinto
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (R.D.S.); (S.R.); (A.M.); (G.N.); (M.P.); (F.D.G.)
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica Del Sacro Cuore, 00168 Roma, Italy
| | - Gabriele Ciasca
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (R.D.S.); (S.R.); (A.M.); (G.N.); (M.P.); (F.D.G.)
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica Del Sacro Cuore, 00168 Roma, Italy
| |
Collapse
|
228
|
Nagasaka M, Uddin MH, Al-Hallak MN, Rahman S, Balasubramanian S, Sukari A, Azmi AS. Liquid biopsy for therapy monitoring in early-stage non-small cell lung cancer. Mol Cancer 2021; 20:82. [PMID: 34074295 PMCID: PMC8170728 DOI: 10.1186/s12943-021-01371-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 05/13/2021] [Indexed: 12/19/2022] Open
Abstract
Liquid biopsy is now considered a valuable diagnostic tool for advanced metastatic non-small cell lung cancer (NSCLC). In NSCLC, circulating tumor DNA (ctDNA) analysis has been shown to increase the chances of identifying the presence of targetable mutations and has been adopted by many clinicians owing to its low risk. Serial monitoring of ctDNA may also help assess the treatment response or for monitoring relapse. As the presence of detectable plasma ctDNA post-surgery likely indicates residual tumor burden, studies have been performed to quantify plasma ctDNA to assess minimal residual disease (MRD) in early-stage resected NSCLC. Most data on utilizing liquid biopsy for monitoring MRD in early-stage NSCLC are from small-scale studies using ctDNA. Here, we review the recent research on liquid biopsy in NSCLC, not limited to ctDNA, and focus on novel methods such as micro RNAs (miRNA) and long non-coding (lncRNA).
Collapse
Affiliation(s)
- Misako Nagasaka
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, 4100 John R, Detroit, MI, 48201, USA.
- Division of Neurology, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan.
| | - Mohammed Hafiz Uddin
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, 4100 John R, Detroit, MI, 48201, USA
| | - Mohammed Najeeb Al-Hallak
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, 4100 John R, Detroit, MI, 48201, USA
| | - Sarah Rahman
- Department of Cell and Molecular Biology, Grand Valley State University, Allendale, MI, 49401, USA
| | - Suresh Balasubramanian
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, 4100 John R, Detroit, MI, 48201, USA
| | - Ammar Sukari
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, 4100 John R, Detroit, MI, 48201, USA
| | - Asfar S Azmi
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, 4100 John R, Detroit, MI, 48201, USA
| |
Collapse
|
229
|
Park DJ, Seo YJ. Engineering of Extracellular Vesicles Based on Payload Changes for Tissue Regeneration. Tissue Eng Regen Med 2021; 18:485-497. [PMID: 34050888 DOI: 10.1007/s13770-021-00349-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 12/20/2022] Open
Abstract
In the field of tissue regeneration and tissue engineering, many years ago, various nano to macroscopic-sized materials have been used to reduce inflammation and restore damaged tissue. Whether it is safe to study the regeneration of all tissues based on the biological mechanisms of an organism composed of cells is still debated, and studies using extracellular vesicles derived from cells have become popular in the past decade. It has been reported that exosomes with a size of 100 nm or less, which plays an important role in cell-cell communication, contain various factors, such as proliferation, anti-inflammatory, and growth factors. In addition, the payload of exosomes varies depending on the parent cell and the recipient cell, and a technology to differentiate the selective payload must treat specific diseases. In this review, we examined the current trends in research using exosomes derived from cells or tissues and analyzed various research reports on factors that can affect tissue regeneration.
Collapse
Affiliation(s)
- Dong Jun Park
- Department of Surgery, University of California San Diego, 212 Dickinson Street, MC 8236, San Diego, CA, 92103, USA.,Department of Otorhinolaryngology, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju, Gangwon-do, 26426, South Korea.,Research Institute of Hearing Enhancement, Yonsei University Wonju College of Medicine, Wonju, Gangwon-do, 26426, South Korea
| | - Young Joon Seo
- Department of Otorhinolaryngology, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju, Gangwon-do, 26426, South Korea. .,Research Institute of Hearing Enhancement, Yonsei University Wonju College of Medicine, Wonju, Gangwon-do, 26426, South Korea. .,School of Pharmacy and Biomedical Sciences, Curtin University, Bentley, WA, Australia.
| |
Collapse
|
230
|
Roy D, Pascher A, Juratli MA, Sporn JC. The Potential of Aptamer-Mediated Liquid Biopsy for Early Detection of Cancer. Int J Mol Sci 2021; 22:ijms22115601. [PMID: 34070509 PMCID: PMC8199038 DOI: 10.3390/ijms22115601] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/08/2021] [Accepted: 05/18/2021] [Indexed: 01/08/2023] Open
Abstract
The early detection of cancer favors a greater chance of curative treatment and long-term survival. Exciting new technologies have been developed that can help to catch the disease early. Liquid biopsy is a promising non-invasive tool to detect cancer, even at an early stage, as well as to continuously monitor disease progression and treatment efficacy. Various methods have been implemented to isolate and purify bio-analytes in liquid biopsy specimens. Aptamers are short oligonucleotides consisting of either DNA or RNA that are capable of binding to target molecules with high specificity. Due to their unique properties, they are considered promising recognition ligands for the early detection of cancer by liquid biopsy. A variety of circulating targets have been isolated with high affinity and specificity by facile modification and affinity regulation of the aptamers. In this review, we discuss recent progress in aptamer-mediated liquid biopsy for cancer detection, its associated challenges, and its future potential for clinical applications.
Collapse
Affiliation(s)
- Dhruvajyoti Roy
- Helio Health, Irvine, CA 92618, USA
- Correspondence: ; Tel.: +1-949-8722383
| | - Andreas Pascher
- Department of General, Visceral and Transplant Surgery, University Hospital Münster, 48149 Münster, Germany; (A.P.); (M.A.J.); (J.C.S.)
| | - Mazen A. Juratli
- Department of General, Visceral and Transplant Surgery, University Hospital Münster, 48149 Münster, Germany; (A.P.); (M.A.J.); (J.C.S.)
| | - Judith C. Sporn
- Department of General, Visceral and Transplant Surgery, University Hospital Münster, 48149 Münster, Germany; (A.P.); (M.A.J.); (J.C.S.)
| |
Collapse
|
231
|
Wu Y, Chattaraj R, Ren Y, Jiang H, Lee D. Label-Free Multitarget Separation of Particles and Cells under Flow Using Acoustic, Electrophoretic, and Hydrodynamic Forces. Anal Chem 2021; 93:7635-7646. [PMID: 34014074 DOI: 10.1021/acs.analchem.1c00312] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Multiplex separation of mixed biological samples is essential in a considerable portion of biomedical research and clinical applications. An automated and operator-independent process for the separation of samples is highly sought after. There is a significant unmet need for methods that can perform fractionation of small volumes of multicomponent mixtures. Herein, we design an integrated chip that combines acoustic and electric fields to enable efficient and label-free separation of multiple different cells and particles under flow. To facilitate the connection of multiple sorting mechanisms in tandem, we investigate the electroosmosis (EO)-induced deterministic lateral displacement (DLD) separation in a combined pressure- and DC field-driven flow and exploit the combination of the bipolar electrode (BPE) focusing and surface acoustic wave (SAW) sorting modules. We successfully integrate four sequential microfluidic modules for multitarget separation within a single platform: (i) sorting particles and cells relying on the size and surface charge by adjusting the flow rate and electric field using a DLD array; (ii) alignment of cells or particles within a microfluidic channel by a bipolar electrode; (iii) separation of particles based on compressibility and density by the acoustic force; and (iv) separation of viable and nonviable cells using dielectric properties via the dielectrophoresis (DEP) force. As a proof of principle, we demonstrate the sorting of multiple cell and particle types (polystyrene (PS) particles, oil droplets, and viable and nonviable yeast cells) with high efficiency. This integrated microfluidic platform combines multiple functional components and, with its ability to noninvasively sort multiple targeted cells in a label-free manner relying on different properties, is compatible with high-definition imaging, showing great potential in diverse diagnostic and analysis applications.
Collapse
Affiliation(s)
- Yupan Wu
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.,School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, P. R. China.,School of Microelectronics, Northwestern Polytechnical University, Xi'an 710072, P. R. China.,Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518000, P. R. China.,Yangtze River Delta Research Institute of NPU, Taicang 215400, P. R. China
| | - Rajarshi Chattaraj
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Yukun Ren
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, P. R. China
| | - Hongyuan Jiang
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, P. R. China
| | - Daeyeon Lee
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
232
|
Rompianesi G, Di Martino M, Gordon-Weeks A, Montalti R, Troisi R. Liquid biopsy in cholangiocarcinoma: Current status and future perspectives. World J Gastrointest Oncol 2021; 13:332-350. [PMID: 34040697 PMCID: PMC8131901 DOI: 10.4251/wjgo.v13.i5.332] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/02/2021] [Accepted: 03/31/2021] [Indexed: 02/06/2023] Open
Abstract
Cholangiocarcinoma (CCA) are a heterogeneous group of tumors in terms of aetiology, natural history, morphological subtypes, molecular alterations and management, but all sharing complex diagnosis, management, and poor prognosis. Several mutated genes and epigenetic changes have been detected in CCA, with the potential to identify diagnostic and prognostic biomarkers and therapeutic targets. Accessing tumoral components and genetic material is therefore crucial for the diagnosis, management and selection of targeted therapies; but sampling tumor tissue, when possible, is often risky and difficult to be repeated at different time points. Liquid biopsy (LB) represents a way to overcome these issues and comprises a diverse group of methodologies centering around detection of tumor biomarkers from fluid samples. Compared to the traditional tissue sampling methods LB is less invasive and can be serially repeated, allowing a real-time monitoring of the tumor genetic profile or the response to therapy. In this review, we analysis the current evidence on the possible roles of LB (circulating DNA, circulating RNA, exosomes, cytokines) in the diagnosis and management of patients affected by CCA.
Collapse
Affiliation(s)
- Gianluca Rompianesi
- Hepato-Bilio-Pancreatic, Minimally Invasive and Robotic Surgery Unit, Department of Clinical Medicine and Surgery, Federico II University Hospital, Napoli 80131, Italy
| | - Marcello Di Martino
- Hepato-Bilio-Pancreatic Surgery Unit, Department of General and Digestive Surgery, Hospital Universitario La Princesa, Madrid 28006, Spain
| | - Alex Gordon-Weeks
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Roberto Montalti
- Hepato-Bilio-Pancreatic, Minimally Invasive and Robotic Surgery Unit, Department of Clinical Medicine and Surgery, Federico II University Hospital, Napoli 80131, Italy
| | - Roberto Troisi
- Hepato-Bilio-Pancreatic, Minimally Invasive and Robotic Surgery Unit, Department of Clinical Medicine and Surgery, Federico II University Hospital, Napoli 80131, Italy
| |
Collapse
|
233
|
Dervan E, Bhattacharyya DD, McAuliffe JD, Khan FH, Glynn SA. Ancient Adversary - HERV-K (HML-2) in Cancer. Front Oncol 2021; 11:658489. [PMID: 34055625 PMCID: PMC8155577 DOI: 10.3389/fonc.2021.658489] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/23/2021] [Indexed: 12/11/2022] Open
Abstract
Human endogenous retroviruses (HERV), ancient integrations of exogenous viruses, make up 8% of our genome. Long thought of as mere vestigial genetic elements, evidence is now accumulating to suggest a potential functional role in numerous pathologies including neurodegenerative diseases, autoimmune disorders, and multiple cancers. The youngest member of this group of transposable elements is HERV-K (HML-2). Like the majority of HERV sequences, significant post-insertional mutations have disarmed HERV-K (HML-2), preventing it from producing infectious viral particles. However, some insertions have retained limited coding capacity, and complete open reading frames for all its constituent proteins can be found throughout the genome. For this reason HERV-K (HML-2) has garnered more attention than its peers. The tight epigenetic control thought to suppress expression in healthy tissue is lost during carcinogenesis. Upregulation of HERV-K (HML-2) derived mRNA and protein has been reported in a variety of solid and liquid tumour types, and while causality has yet to be established, progressively more data are emerging to suggest this phenomenon may contribute to tumour growth and metastatic capacity. Herein we discuss its potential utility as a diagnostic tool and therapeutic target in light of the current in vitro, in vivo and clinical evidence linking HERV-K (HML-2) to tumour progression.
Collapse
Affiliation(s)
- Eoin Dervan
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway (NUIG), Galway, Ireland
| | - Dibyangana D Bhattacharyya
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway (NUIG), Galway, Ireland.,Laboratory of Cancer ImmunoMetabolism, National Cancer Institute, National Institutes of Health, Frederick, MD, United States
| | - Jake D McAuliffe
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway (NUIG), Galway, Ireland
| | - Faizan H Khan
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway (NUIG), Galway, Ireland
| | - Sharon A Glynn
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway (NUIG), Galway, Ireland
| |
Collapse
|
234
|
Weng J, Xiang X, Ding L, Wong ALA, Zeng Q, Sethi G, Wang L, Lee SC, Goh BC. Extracellular vesicles, the cornerstone of next-generation cancer diagnosis? Semin Cancer Biol 2021; 74:105-120. [PMID: 33989735 DOI: 10.1016/j.semcancer.2021.05.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 12/14/2022]
Abstract
Cancer has risen up to be a major cause of mortality worldwide over the past decades. Despite advancements in cancer screening and diagnostics, a significant number of cancers are still diagnosed at a late stage with poor prognosis. Hence, the discovery of reliable and accurate methods to diagnose cancer early would be of great help in reducing cancer mortality. Extracellular vesicles (EVs) are phospholipid vesicles found in many biofluids and are released by almost all types of cells. In recent years, using EVs as cancer biomarkers has garnered attention as a novel technique of cancer diagnosis. Compared with traditional tissue biopsy, there are many advantages that this novel diagnostic tool presents - it is less invasive, detects early-stage asymptomatic cancers, and allows for monitoring of tumour progression. As such, EV biomarkers have great potential in improving the diagnostic accuracy of cancers and guiding subsequent therapeutic decisions. Efficient isolation and accurate characterization of EVs are essential for reliable outcomes of clinical application. However, these are complicated by the size and biomolecular diversity of EVs. In this review, we present an analysis and evaluation of the current techniques of EV isolation and characterization, as well as discuss the potential EV biomarkers for specific types of cancer. Taken together, EV biomarkers have a lot of potential as a novel method in cancer diagnostics and diagnosis. However, more work is still needed to streamline the purification, characterization and biomarker identification process to ensure optimal outcomes for patients.
Collapse
Affiliation(s)
- Jiayi Weng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Xiaoqiang Xiang
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai 20203, China
| | - Lingwen Ding
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Andrea Li-Ann Wong
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Department of Haematology-Oncology, National University Cancer Institute, Singapore 119228, Singapore
| | - Qi Zeng
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Lingzhi Wang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - Soo Chin Lee
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; Department of Haematology-Oncology, National University Cancer Institute, Singapore 119228, Singapore.
| | - Boon Cher Goh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Department of Haematology-Oncology, National University Cancer Institute, Singapore 119228, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
235
|
Lei CS, Kung HJ, Shih JW. Long Non-Coding RNAs as Functional Codes for Oral Cancer: Translational Potential, Progress and Promises. Int J Mol Sci 2021; 22:4903. [PMID: 34063159 PMCID: PMC8124393 DOI: 10.3390/ijms22094903] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 12/24/2022] Open
Abstract
Oral cancer is one of the leading malignant tumors worldwide. Despite the advent of multidisciplinary approaches, the overall prognosis of patients with oral cancer is poor, mainly due to late diagnosis. There is an urgent need to develop valid biomarkers for early detection and effective therapies. Long non-coding RNAs (lncRNAs) are recognized as key elements of gene regulation, with pivotal roles in various physiological and pathological processes, including cancer. Over the past few years, an exponentially growing number of lncRNAs have been identified and linked to tumorigenesis and prognosis outcomes in oral cancer, illustrating their emerging roles in oral cancer progression and the associated signaling pathways. Herein, we aim to summarize the most recent advances made concerning oral cancer-associated lncRNA, and their expression, involvement, and potential clinical impact, reported to date, with a specific focus on the lncRNA-mediated molecular regulation in oncogenic signaling cascades and oral malignant progression, while exploring their potential, and challenges, for clinical applications as biomarkers or therapeutic targets for oral cancer.
Collapse
Affiliation(s)
- Cing-Syuan Lei
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan; (C.-S.L.); (H.-J.K.)
| | - Hsing-Jien Kung
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan; (C.-S.L.); (H.-J.K.)
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County 35053, Taiwan
- Comprehensive Cancer Center, Department of Biochemistry and Molecular Medicine, University of California at Davis, Sacramento, CA 95817, USA
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Jing-Wen Shih
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan; (C.-S.L.); (H.-J.K.)
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
236
|
Abstract
Platelets have long been known to play important roles beyond hemostasis and thrombosis. Now recognized as a bona fide mediator of malignant disease, platelets influence various aspects of cancer progression, most notably tumor cell metastasis. Interestingly, platelets isolated from cancer patients often display distinct RNA and protein profiles, with no clear alterations in hemostatic activity. This phenotypically distinct population, termed tumor-educated platelets, now receive significant attention for their potential use as a readily available liquid biopsy for early cancer detection. Although the mechanisms underpinning platelet education are still being defined, direct uptake and storage of tumor-derived factors, signal-dependent changes in platelet RNA processing, and differential platelet production by tumor-educated megakaryocytes are the most prominent scenarios. This article aims to cover the various modalities of platelet education by tumors, in addition to assessing their diagnostic potential.
Collapse
|
237
|
Cucchiara F, Petrini I, Romei C, Crucitta S, Lucchesi M, Valleggi S, Scavone C, Capuano A, De Liperi A, Chella A, Danesi R, Del Re M. Combining liquid biopsy and radiomics for personalized treatment of lung cancer patients. State of the art and new perspectives. Pharmacol Res 2021; 169:105643. [PMID: 33940185 DOI: 10.1016/j.phrs.2021.105643] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/22/2021] [Accepted: 04/22/2021] [Indexed: 12/11/2022]
Abstract
Lung cancer has become a paradigm for precision medicine in oncology, and liquid biopsy (LB) together with radiomics may have a great potential in this scenario. They are both minimally invasive, easy to perform, and can be repeated during patient's follow-up. Also, increasing evidence suggest that LB and radiomics may provide an efficient way to screen and diagnose tumors at an early stage, including the monitoring of any change in the tumor molecular profile. This could allow treatment optimization, improvement of patients' quality of life, and healthcare-related costs reduction. Latest reports on lung cancer patients suggest a combination of these two strategies, along with cutting-edge data analysis, to decode valuable information regarding tumor type, aggressiveness, progression, and response to treatment. The approach seems more compatible with clinical practice than the current standard, and provides new diagnostic companions being able to suggest the best treatment strategy compared to conventional methods. To implement radiomics and liquid biopsy directly into clinical practice, an artificial intelligence (AI)-based system could help to link patients' clinical data together with tumor molecular profiles and imaging characteristics. AI could also solve problems and limitations related to LB and radiomics methodologies. Further work is needed, including new health policies and the access to large amounts of high-quality and well-organized data, allowing a complementary and synergistic combination of LB and imaging, to provide an attractive choice e in the personalized treatment of lung cancer.
Collapse
Affiliation(s)
- Federico Cucchiara
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa, Italy
| | - Iacopo Petrini
- Unit of Pneumology, Department of Translational Research and New Technologies in Medicine, University Hospital of Pisa, Pisa, Italy
| | - Chiara Romei
- Unit II of Radio-diagnostics, Department of Diagnostic and Imaging, University Hospital of Pisa, Pisa, Italy
| | - Stefania Crucitta
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa, Italy
| | - Maurizio Lucchesi
- Unit of Pneumology, Department of Translational Research and New Technologies in Medicine, University Hospital of Pisa, Pisa, Italy
| | - Simona Valleggi
- Unit of Pneumology, Department of Translational Research and New Technologies in Medicine, University Hospital of Pisa, Pisa, Italy
| | - Cristina Scavone
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Annalisa Capuano
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Annalisa De Liperi
- Unit II of Radio-diagnostics, Department of Diagnostic and Imaging, University Hospital of Pisa, Pisa, Italy
| | - Antonio Chella
- Unit of Pneumology, Department of Translational Research and New Technologies in Medicine, University Hospital of Pisa, Pisa, Italy
| | - Romano Danesi
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa, Italy.
| | - Marzia Del Re
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa, Italy
| |
Collapse
|
238
|
Osteosarcoma, chondrosarcoma and Ewing sarcoma: Clinical aspects, biomarker discovery and liquid biopsy. Crit Rev Oncol Hematol 2021; 162:103340. [PMID: 33894338 DOI: 10.1016/j.critrevonc.2021.103340] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/18/2021] [Accepted: 03/31/2021] [Indexed: 01/01/2023] Open
Abstract
Bone sarcomas, although rare, are associated with significant morbidity and mortality. The most frequent primary bone cancers include osteosarcoma, chondrosarcoma and Ewing sarcoma. The treatment approaches are heterogeneous and mainly chosen based on precise tumour staging. Unfortunately, clinical outcome has not changed significantly in over 30 years and tumour grade is still the best prognosticator of metastatic disease and survival. An option to improve this scenario is to identify molecular biomarkers in the early stage of the disease, or even before the disease onset. Blood-based liquid biopsies are a promising, non-invasive way to achieve this goal and there are an increasing number of studies which investigate their potential application in bone cancer diagnosis, prognosis and personalised therapy. This review summarises the interplay between clinical and molecular aspects of the three main bone sarcomas, alongside biomarker discovery and promising applications of liquid biopsy in each tumour context.
Collapse
|
239
|
Su J, Huang LS, Barnard R, Parks G, Cappellari J, Bellinger C, Dotson T, Craddock L, Prakash B, Hovda J, Clark H, Petty WJ, Pasche B, Chan MD, Miller LD, Ruiz J. Comprehensive and Computable Molecular Diagnostic Panel (C2Dx) From Small Volume Specimens for Precision Oncology: Molecular Subtyping of Non-Small Cell Lung Cancer From Fine Needle Aspirates. Front Oncol 2021; 11:584896. [PMID: 33937015 PMCID: PMC8085404 DOI: 10.3389/fonc.2021.584896] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 03/08/2021] [Indexed: 11/13/2022] Open
Abstract
The Comprehensive, Computable NanoString Diagnostic gene panel (C2Dx) is a promising solution to address the need for a molecular pathological research and diagnostic tool for precision oncology utilizing small volume tumor specimens. We translate subtyping-related gene expression patterns of Non-Small Cell Lung Cancer (NSCLC) derived from public transcriptomic data which establish a highly robust and accurate subtyping system. The C2Dx demonstrates supreme performance on the NanoString platform using microgram-level FNA samples and has excellent portability to frozen tissues and RNA-Seq transcriptomic data. This workflow shows great potential for research and the clinical practice of cancer molecular diagnosis.
Collapse
Affiliation(s)
- Jing Su
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, United States.,Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN, United States.,Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Lynn S Huang
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Ryan Barnard
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Graham Parks
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - James Cappellari
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Christina Bellinger
- Department of Medicine (Pulmonology and Critical Care), Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Travis Dotson
- Department of Medicine (Pulmonology and Critical Care), Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Lou Craddock
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Bharat Prakash
- Department of Medicine (Pulmonology and Critical Care), Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Jonathan Hovda
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Hollins Clark
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - William Jeffrey Petty
- Department of Medicine (Hematology & Oncology), Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Boris Pasche
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Michael D Chan
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Lance D Miller
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Jimmy Ruiz
- Department of Medicine (Hematology & Oncology), Wake Forest School of Medicine, Winston-Salem, NC, United States.,W.G. (Bill) Hefner Veteran Administration Medical Center, Cancer Center, Salisbury, NC, United States
| |
Collapse
|
240
|
Wenzel C, Herold S, Wermke M, E. Aust D, B. Baretton G. Routine Molecular Pathology Diagnostics in Precision Oncology. DEUTSCHES ARZTEBLATT INTERNATIONAL 2021; 118:arztebl.m2021.0025. [PMID: 33536117 PMCID: PMC8287073 DOI: 10.3238/arztebl.m2021.0025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 12/01/2020] [Indexed: 11/27/2022]
Abstract
BACKGROUND Technical advances in the field of molecular genetics permit precise genomic characterization of malignant tumors. This has not only improved our understanding of tumor biology but also paved the way for molecularly stratified treatment strategies in routine clinical practice. METHODS A selective search of PubMed to identify literature on molecular pathology methods, their indications, the challenges associated with molecular findings, and future developments. RESULTS Tumors can be characterized with the aid of immunohistochemistry, in-situ hybridization, and sequencing of DNA or RNA. The benefits of molecularly stratified tumor treatment have been demonstrated by randomized clinical trials on numerous tumor entities, e.g., non-small-cell lung cancer, colorectal cancer, and breast cancer. Therefore, initiation of specific treatment for these entities should be preceded by molecular pathology biomarker analyses, generally carried out on tumor tissue. Randomized controlled trials and non-controlled studies show that enhanced progression-free survival ensues if the pharmacological treatment is oriented on the findings of molecular pathology diagnostics. In next-generation sequencing, numerous relevant gene sequences or even whole genes can be sequenced in parallel, dispensing with complex staged diagnostics and reducing the use of biomaterials. These new methods also complement the currently relevant predictive biomarkers by permitting the investigation of genetic alterations presently of interest in the context of clinical studies. Prior to widespread routine clinical application, however, sequencing of large gene panels or whole genomes or exomes need to be even more stringently validated. CONCLUSION Quality-assured molecular pathology assays are universally available for the determination of currently relevant predictive biomarkers. However, the integration of extensive genomic analyses into routine molecular pathology diagnostics represents a future challenge in precision oncology.
Collapse
Affiliation(s)
- Carina Wenzel
- Institute of Pathology, University Hospital Carl Gustav Carus Dresden, TU Dresden, Dresden
| | - Sylvia Herold
- Institute of Pathology, University Hospital Carl Gustav Carus Dresden, TU Dresden, Dresden
| | - Martin Wermke
- Medical Department I, University Hospital Carl Gustav Carus Dresden, TU Dresden, Dresden: Dr. med. Martin Wermke
| | - Daniela E. Aust
- Institute of Pathology, University Hospital Carl Gustav Carus Dresden, TU Dresden, Dresden
| | - Gustavo B. Baretton
- Institute of Pathology, University Hospital Carl Gustav Carus Dresden, TU Dresden, Dresden
| |
Collapse
|
241
|
Ferrari A, Neefs I, Hoeck S, Peeters M, Van Hal G. Towards Novel Non-Invasive Colorectal Cancer Screening Methods: A Comprehensive Review. Cancers (Basel) 2021; 13:1820. [PMID: 33920293 PMCID: PMC8070308 DOI: 10.3390/cancers13081820] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/07/2021] [Accepted: 04/07/2021] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is one of the leading cancer-related causes of death in the world. Since the 70s, many countries have adopted different CRC screening programs, which has resulted in a decrease in mortality. However, current screening test options still present downsides. The commercialized stool-based tests present high false-positive rates and low sensitivity, which negatively affects the detection of early stage carcinogenesis. The gold standard colonoscopy has low uptake due to its invasiveness and the perception of discomfort and embarrassment that the procedure may bring. In this review, we collected and described the latest data about alternative CRC screening techniques that can overcome these disadvantages. Web of Science and PubMed were employed as search engines for studies reporting on CRC screening tests and future perspectives. The searches generated 555 articles, of which 93 titles were selected. Finally, a total of 50 studies, describing 14 different CRC alternative tests, were included. Among the investigated techniques, the main feature that could have an impact on CRC screening perception and uptake was the ease of sample collection. Urine, exhaled breath, and blood-based tests promise to achieve good diagnostic performance (sensitivity of 63-100%, 90-95%, and 47-97%, respectively) while minimizing stress and discomfort for the patient.
Collapse
Affiliation(s)
- Allegra Ferrari
- Social Epidemiology and Health Policy, University of Antwerp, 2610 Antwerpen, Belgium; (S.H.); (G.V.H.)
| | - Isabelle Neefs
- Center for Oncological Research (CORE), University of Antwerp and Antwerp University Hospital, 2610 Antwerpen, Belgium; (I.N.); (M.P.)
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, 2610 Antwerpen, Belgium
| | - Sarah Hoeck
- Social Epidemiology and Health Policy, University of Antwerp, 2610 Antwerpen, Belgium; (S.H.); (G.V.H.)
- Center for Cancer Detection, 8000 Bruges, Belgium
| | - Marc Peeters
- Center for Oncological Research (CORE), University of Antwerp and Antwerp University Hospital, 2610 Antwerpen, Belgium; (I.N.); (M.P.)
- Department of Oncology, Antwerp University Hospital (UZA), 2650 Edegem, Belgium
| | - Guido Van Hal
- Social Epidemiology and Health Policy, University of Antwerp, 2610 Antwerpen, Belgium; (S.H.); (G.V.H.)
- Center for Cancer Detection, 8000 Bruges, Belgium
| |
Collapse
|
242
|
Tao X, Xiang H, Pan Y, Shang D, Guo J, Gao G, Xiao GG. Pancreatitis initiated pancreatic ductal adenocarcinoma: Pathophysiology explaining clinical evidence. Pharmacol Res 2021; 168:105595. [PMID: 33823219 DOI: 10.1016/j.phrs.2021.105595] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/04/2021] [Accepted: 03/31/2021] [Indexed: 12/15/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly malignant lethal disease due to its asymptomatic at its early lesion of the disease and drug resistance. Target therapy associated with molecular pathways so far seems not to produce reasonable outcomes. Understanding of the molecular mechanisms underlying inflammation-initiated tumorigenesis may be helpful for development of an effective therapy of the disease. A line of studies showed that pancreatic tumorigenesis was resulted from pancreatitis, which was caused synergistically by various pancreatic cells. This review focuses on those players and their possible clinic implications, such as exocrine acinar cells, ductal cells, and various stromal cells, including pancreatic stellate cells (PSCs), macrophages, lymphocytes, neutrophils, mast cells, adipocytes and endothelial cells, working together with each other in an inflammation-mediated microenvironment governed by a myriad of cellular signaling networks towards PDAC.
Collapse
Affiliation(s)
- Xufeng Tao
- Department of Pharmacology at School of Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Hong Xiang
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yue Pan
- Department of Pharmacology at School of Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Dong Shang
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Junchao Guo
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Ge Gao
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Gary Guishan Xiao
- Department of Pharmacology at School of Chemical Engineering, Dalian University of Technology, Dalian, China; The UCLA Agi Hirshberg Center for Pancreatic Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States; Functional Genomics and Proteomics Laboratory, Osteoporosis Research Center, Creighton University Medical Center, Omaha, NE, United States.
| |
Collapse
|
243
|
Augustus E, Zwaenepoel K, Siozopoulou V, Raskin J, Jordaens S, Baggerman G, Sorber L, Roeyen G, Peeters M, Pauwels P. Prognostic and Predictive Biomarkers in Non-Small Cell Lung Cancer Patients on Immunotherapy-The Role of Liquid Biopsy in Unraveling the Puzzle. Cancers (Basel) 2021; 13:1675. [PMID: 33918147 PMCID: PMC8036384 DOI: 10.3390/cancers13071675] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 12/14/2022] Open
Abstract
In the last decade, immunotherapy has been one of the most important advances in the non-small cell lung cancer (NSCLC) treatment landscape. Nevertheless, only a subset of NSCLC patients benefits from it. Currently, the only Food and Drug Administration (FDA) approved diagnostic test for first-line immunotherapy in metastatic NSCLC patients uses tissue biopsies to determine the programmed death ligand 1 (PD-L1) status. However, obtaining tumor tissue is not always feasible and puts the patient at risk. Liquid biopsy, which refers to the tumor-derived material present in body fluids, offers an alternative approach. This less invasive technique gives real-time information on the tumor characteristics. This review addresses different promising liquid biopsy based biomarkers in NSCLC patients that enable the selection of patients who benefit from immunotherapy and the monitoring of patients during this therapy. The challenges and the opportunities of blood-based biomarkers such as cell-free DNA (cfDNA), circulating tumor cells (CTCs), exosomes, epigenetic signatures, microRNAs (miRNAs) and the T cell repertoire will be addressed. This review also focuses on the less-studied feces-based and breath-based biomarkers.
Collapse
Affiliation(s)
- Elien Augustus
- Center for Oncological Research Antwerp (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp (UAntwerp), 2610 Wilrijk, Belgium; (K.Z.); (V.S.); (S.J.); (L.S.); (M.P.); (P.P.)
- Laboratory of Pathological Anatomy, Antwerp University Hospital (UZA), 2650 Edegem, Belgium
| | - Karen Zwaenepoel
- Center for Oncological Research Antwerp (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp (UAntwerp), 2610 Wilrijk, Belgium; (K.Z.); (V.S.); (S.J.); (L.S.); (M.P.); (P.P.)
- Laboratory of Pathological Anatomy, Antwerp University Hospital (UZA), 2650 Edegem, Belgium
| | - Vasiliki Siozopoulou
- Center for Oncological Research Antwerp (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp (UAntwerp), 2610 Wilrijk, Belgium; (K.Z.); (V.S.); (S.J.); (L.S.); (M.P.); (P.P.)
- Laboratory of Pathological Anatomy, Antwerp University Hospital (UZA), 2650 Edegem, Belgium
| | - Jo Raskin
- Department of Pulmonology and Thoracic Oncology, Antwerp University Hospital (UZA), 2650 Edegem, Belgium;
| | - Stephanie Jordaens
- Center for Oncological Research Antwerp (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp (UAntwerp), 2610 Wilrijk, Belgium; (K.Z.); (V.S.); (S.J.); (L.S.); (M.P.); (P.P.)
- Laboratory of Pathological Anatomy, Antwerp University Hospital (UZA), 2650 Edegem, Belgium
| | - Geert Baggerman
- Centre for Proteomics, University of Antwerp (UAntwerp), 2020 Antwerpen, Belgium;
- Health Unit, Vlaamse Instelling voor Technologisch Onderzoek (VITO), 2400 Mol, Belgium
| | - Laure Sorber
- Center for Oncological Research Antwerp (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp (UAntwerp), 2610 Wilrijk, Belgium; (K.Z.); (V.S.); (S.J.); (L.S.); (M.P.); (P.P.)
- Laboratory of Pathological Anatomy, Antwerp University Hospital (UZA), 2650 Edegem, Belgium
| | - Geert Roeyen
- Department of Hepato-Pancreato-Biliary, Endocrine and Transplantation Surgery, Antwerp University Hospital (UZA), 2650 Edegem, Belgium;
| | - Marc Peeters
- Center for Oncological Research Antwerp (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp (UAntwerp), 2610 Wilrijk, Belgium; (K.Z.); (V.S.); (S.J.); (L.S.); (M.P.); (P.P.)
- Department of Oncology, Multidisciplinary Oncological Center Antwerp, Antwerp University Hospital (UZA), 2650 Edegem, Belgium
| | - Patrick Pauwels
- Center for Oncological Research Antwerp (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp (UAntwerp), 2610 Wilrijk, Belgium; (K.Z.); (V.S.); (S.J.); (L.S.); (M.P.); (P.P.)
- Laboratory of Pathological Anatomy, Antwerp University Hospital (UZA), 2650 Edegem, Belgium
| |
Collapse
|
244
|
Chalasani N, Toden S, Sninsky JJ, Rava RP, Braun JV, Gawrieh S, Zhuang J, Nerenberg M, Quake SR, Maddala T. Noninvasive stratification of nonalcoholic fatty liver disease by whole transcriptome cell-free mRNA characterization. Am J Physiol Gastrointest Liver Physiol 2021; 320:G439-G449. [PMID: 33501884 PMCID: PMC8238173 DOI: 10.1152/ajpgi.00397.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Hepatic fibrosis stage is the most important determinant of outcomes in patients with nonalcoholic fatty liver disease (NAFLD). There is an urgent need for noninvasive tests that can accurately stage fibrosis and determine efficacy of interventions. Here, we describe a novel cell-free (cf)-mRNA sequencing approach that can accurately and reproducibly profile low levels of circulating mRNAs and evaluate the feasibility of developing a cf-mRNA-based NAFLD fibrosis classifier. Using separate discovery and validation cohorts with biopsy-confirmed NAFLD (n = 176 and 59, respectively) and healthy subjects (n = 23), we performed serum cf-mRNA RNA-Seq profiling. Differential expression analysis identified 2,498 dysregulated genes between patients with NAFLD and healthy subjects and 134 fibrosis-associated genes in patients with NAFLD. Comparison between cf-mRNA and liver tissue transcripts revealed significant overlap of fibrosis-associated genes and pathways indicating that the circulating cf-mRNA transcriptome reflects molecular changes in the livers of patients with NAFLD. In particular, metabolic and immune pathways reflective of known underlying steatosis and inflammation were highly dysregulated in the cf-mRNA profile of patients with advanced fibrosis. Finally, we used an elastic net ordinal logistic model to develop a classifier that predicts clinically significant fibrosis (F2-F4). In an independent cohort, the cf-mRNA classifier was able to identify 50% of patients with at least 90% probability of clinically significant fibrosis. We demonstrate a novel and robust cf-mRNA-based RNA-Seq platform for noninvasive identification of diverse hepatic molecular disruptions and for fibrosis staging with promising potential for clinical trials and clinical practice.NEW & NOTEWORTHY This work is the first study, to our knowledge, to utilize circulating cell-free mRNA sequencing to develop an NAFLD diagnostic classifier.
Collapse
Affiliation(s)
- Naga Chalasani
- 1Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | | | | | | | | | - Samer Gawrieh
- 1Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | | | | | - Stephen R. Quake
- 3Departments of Bioengineering and Applied Physics, Stanford University and Chan Zuckerberg Biohub, Stanford, California
| | | |
Collapse
|
245
|
Chan KM, Gleadle J, Li J, Michl TD, Vasilev K, MacGregor M. Improving hexaminolevulinate enabled cancer cell detection in liquid biopsy immunosensors. Sci Rep 2021; 11:7283. [PMID: 33790357 PMCID: PMC8012578 DOI: 10.1038/s41598-021-86649-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/16/2021] [Indexed: 12/17/2022] Open
Abstract
Hexaminolevulinate (HAL) induced Protoporphyrin IX (PpIX) fluorescence is commonly used to differentiate cancer cells from normal cells in vivo, as for instance in blue light cystoscopy for bladder cancer diagnosis. A detailed approach is here provided to use this diagnostic principle ex vivo in an immunosensor device, towards enabling non-invasive cancer diagnostic from body fluids, such as urine. Several factors susceptible to affect the applicability of HAL-assisted diagnosis in body fluids were tested. These included the cell viability and its impact on PpIX fluorescence, the storage condition and shelf life of HAL premix reagent, light exposure (360–450 nm wavelengths) and its corresponding effect on both intensity and bleaching of the PpIX fluorescence as a function of the microscopy imaging conditions. There was no significant decrease in the viability of bladder cancer cells after 6 h at 4 °C (student’s t-test: p > 0.05). The cellular PpIX fluorescence decreased in a time-dependent manner when cancer cells were kept at 4 °C for extended period of time, though this didn’t significantly reduce the fluorescence intensity contrast between cancer and non-cancer cells kept in the same condition for 6 h. HAL premix reagent kept in long term storage at 4 °C induced stronger PpIX fluorescence than reagent kept in the − 20 °C freezer. The PpIX fluorescence was negatively affected by repeated light exposure but increased with illumination intensity and exposure time. Though this applied to both healthy and cancer cell lines, and therefore did not statistically improved the differentiation between cell types. This study revealed important experimental settings that need to be carefully considered to benefit from the analytical potential of HAL induced fluorescence when used in technologies for the diagnosis of cancer from body fluids.
Collapse
Affiliation(s)
- Kit Man Chan
- Department of Engineering, UniSA STEM, University of South Australia, Mawson Lakes, SA, 5095, Australia
| | - Jonathan Gleadle
- Department of Renal Medicine, Flinders Medical Centre, Bedford Park, SA, 5042, Australia.,College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Australia
| | - Jordan Li
- Department of Renal Medicine, Flinders Medical Centre, Bedford Park, SA, 5042, Australia.,College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Australia
| | - Thomas Danny Michl
- Department of Engineering, UniSA STEM, University of South Australia, Mawson Lakes, SA, 5095, Australia
| | - Krasimir Vasilev
- Future Industries Institute, UniSA STEM, University of South Australia, Mawson Lakes, SA, 5095, Australia
| | - Melanie MacGregor
- Future Industries Institute, UniSA STEM, University of South Australia, Mawson Lakes, SA, 5095, Australia.
| |
Collapse
|
246
|
Zhou L, Wang W, Wang F, Yang S, Hu J, Lu B, Pan Z, Ma Y, Zheng M, Zhou L, Lei S, Song P, Liu P, Lu W, Lu Y. Plasma-derived exosomal miR-15a-5p as a promising diagnostic biomarker for early detection of endometrial carcinoma. Mol Cancer 2021; 20:57. [PMID: 33781255 PMCID: PMC8006369 DOI: 10.1186/s12943-021-01352-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/20/2021] [Indexed: 11/13/2022] Open
Abstract
Endometrial cancer (EC) is a major cause of death among gynecologic malignancies. To improve early detection of EC in patients, we carried out a large plasma-derived exosomal microRNA (miRNA) studies for diagnostic biomarker discovery in EC. Small RNA sequencing was performed to identify candidate exosomal miRNAs as diagnostic biomarkers in 56 plasma samples from healthy subjects and EC patients. These miRNA candidates were further validated in 202 independent plasma samples by droplet digital PCR (ddPCR), 32 pairs of endometrial tumors and adjacent normal tissues by quantitative real-time PCR (qRT-PCR), and matched plasma samples of 12 patients before and after surgery by ddPCR. miR-15a-5p, miR-106b-5p, and miR107 were significantly upregulated in exomes isolated from plasma samples of EC patients compared with healthy subjects. Particularly, miR-15a-5p alone yielded an AUC value of 0.813 to distinguish EC patients with stage I from healthy subjects. The integration of miR-15a-5p and serum tumor markers (CEA and CA125) achieved a higher AUC value of 0.899. There was also a close connection between miR-15a-5p and clinical manifestations in EC patients. Its exosomal expression was not only associated with the depth of muscular infiltration and aggressiveness of EC, but also correlated with levels of reproductive hormones such as TTE and DHEAS. Collectively, plasma-derived exosomal miR-15a-5p is a promising and effective diagnostic biomarker for the early detection of endometrial cancer.
Collapse
Affiliation(s)
- Lanyun Zhou
- Department of Gynecologic Oncology, Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Women's Reproductive Health Key Laboratory of Zhejiang Province, Women's Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Wei Wang
- Department of Clinical Laboratory, Tongde Hospital of Zhejiang Province, Hangzhou, 310006, Zhejiang, China
| | - Fenfen Wang
- Department of Gynecologic Oncology, Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Women's Reproductive Health Key Laboratory of Zhejiang Province, Women's Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Siqi Yang
- Department of Gynecologic Oncology, Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Women's Reproductive Health Key Laboratory of Zhejiang Province, Women's Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Jiaqi Hu
- Department of Gynecologic Oncology, Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Women's Reproductive Health Key Laboratory of Zhejiang Province, Women's Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Bingjian Lu
- Department of Gynecologic Oncology, Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Women's Reproductive Health Key Laboratory of Zhejiang Province, Women's Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Zimin Pan
- Department of Gynecologic Oncology, Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Women's Reproductive Health Key Laboratory of Zhejiang Province, Women's Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Yu Ma
- Department of Gynecologic Oncology, Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Women's Reproductive Health Key Laboratory of Zhejiang Province, Women's Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Mengyue Zheng
- Department of Gynecologic Oncology, Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Women's Reproductive Health Key Laboratory of Zhejiang Province, Women's Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Liyuan Zhou
- Department of Respiratory Medicine, Sir Run Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang, China
| | - Shufeng Lei
- Center for Genetic Epidemiology and Genomics, School of Public Health, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Penghong Song
- Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310013, Zhejiang, China
| | - Pengyuan Liu
- Department of Respiratory Medicine, Sir Run Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang, China. .,Cancer center, Zhejiang University, Hangzhou, 310013, Zhejiang, China.
| | - Weiguo Lu
- Department of Gynecologic Oncology, Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Women's Reproductive Health Key Laboratory of Zhejiang Province, Women's Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China. .,Cancer center, Zhejiang University, Hangzhou, 310013, Zhejiang, China.
| | - Yan Lu
- Department of Gynecologic Oncology, Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Women's Reproductive Health Key Laboratory of Zhejiang Province, Women's Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China. .,Cancer center, Zhejiang University, Hangzhou, 310013, Zhejiang, China.
| |
Collapse
|
247
|
Pisapia P, Costa JL, Pepe F, Russo G, Gragnano G, Russo A, Iaccarino A, de Miguel-Perez D, Serrano MJ, Denninghoff V, Quagliata L, Rolfo C, Malapelle U. Next generation sequencing for liquid biopsy based testing in non-small cell lung cancer in 2021. Crit Rev Oncol Hematol 2021; 161:103311. [PMID: 33781866 DOI: 10.1016/j.critrevonc.2021.103311] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/15/2022] Open
Abstract
Lung cancer is the leading cause of cancer death worldwide, with non-small cell lung cancer (NSCLC) representing its most commonly diagnosed sub-type. Despite the significant improvements in lung cancer biomarkers knowledge, accompanied by substantial technological advances in molecular tumor profiling, a considerable fraction (up to 30 %) of advanced NSCLC patient presents with major testing challenges or tissue unavailability for molecular analysis. In this context, liquid biopsy is on the rise, currently gaining considerable interest within the molecular pathology and oncology community. Molecular profiling of liquid biopsy specimens using next generation molecular biology methodologies is a rapidly evolving field with promising applications not exclusively limited to advanced stages but also more recently expanding to early stages cancer patients. Here, we offer an overview of some of the most consolidated and emerging applications of next generation sequencing technologies for liquid biopsy testing in NSCLC.
Collapse
Affiliation(s)
- Pasquale Pisapia
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - José Luis Costa
- Medical Affairs Clinical NGS and Oncology Division Life Sciences Solutions, Thermo Fisher Scientific, Zug, Switzerland
| | - Francesco Pepe
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Gianluca Russo
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Gianluca Gragnano
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | | | - Antonino Iaccarino
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Diego de Miguel-Perez
- Liquid Biopsy and Metastasis Research Group, GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government PTS, Granada, Spain; Thoracic Medical Oncology, Marlene and Stewart Greenebaum Cancer Center, University of Maryland, Baltimore, MD, USA
| | - Maria Josè Serrano
- Liquid Biopsy and Metastasis Research Group, GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government PTS, Granada, Spain
| | - Valeria Denninghoff
- University of Buenos Aires - National Council for Scientific and Technical Research (CONICET), Buenos Aires, Argentina
| | - Luca Quagliata
- Medical Affairs Clinical NGS and Oncology Division Life Sciences Solutions, Thermo Fisher Scientific, Zug, Switzerland
| | - Christian Rolfo
- Thoracic Medical Oncology, Marlene and Stewart Greenebaum Cancer Center, University of Maryland, Baltimore, MD, USA
| | - Umberto Malapelle
- Department of Public Health, University of Naples Federico II, Naples, Italy.
| |
Collapse
|
248
|
Xia H, Huang Z, Liu S, Zhao X, He R, Wang Z, Shi W, Chen W, Li Z, Yu L, Huang P, Kang P, Su Z, Xu Y, Yam JWP, Cui Y. Exosomal Non-Coding RNAs: Regulatory and Therapeutic Target of Hepatocellular Carcinoma. Front Oncol 2021; 11:653846. [PMID: 33869059 PMCID: PMC8044750 DOI: 10.3389/fonc.2021.653846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/01/2021] [Indexed: 12/12/2022] Open
Abstract
Exosomes are small extracellular vesicles secreted by most somatic cells, which can carry a variety of biologically active substances to participate in intercellular communication and regulate the pathophysiological process of recipient cells. Recent studies have confirmed that non-coding RNAs (ncRNAs) carried by tumor cell/non-tumor cell-derived exosomes have the function of regulating the cancerous derivation of target cells and remodeling the tumor microenvironment (TME). In addition, due to the unique low immunogenicity and high stability, exosomes can be used as natural vehicles for the delivery of therapeutic ncRNAs in vivo. This article aims to review the potential regulatory mechanism and the therapeutic value of exosomal ncRNAs in hepatocellular carcinoma (HCC), in order to provide promising targets for early diagnosis and precise therapy of HCC.
Collapse
Affiliation(s)
- Haoming Xia
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ziyue Huang
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shuqiang Liu
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xudong Zhao
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Risheng He
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhongrui Wang
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenguang Shi
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wangming Chen
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhizhou Li
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Liang Yu
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
| | - Peng Huang
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
| | - Pengcheng Kang
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhilei Su
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yi Xu
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China.,Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Judy Wai Ping Yam
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Yunfu Cui
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
249
|
Lim JM, Tevatia R, Saraf RF. Quantitative PCR of Small Nucleic Acids: Size Matters. ChemistrySelect 2021; 6:2975-2979. [PMID: 36819227 PMCID: PMC9937448 DOI: 10.1002/slct.202100807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 03/19/2021] [Indexed: 11/06/2022]
Abstract
Quantitative dysregulation in small nucleic acids (NA), such as microRNA (miRNA), extracted from minimally invasive biopsies, such as, blood, stool, urine, nose, throat, are promising biomarker for diseases diagnosis and management. We quantify the effect of the extra step of poly(A) ligation for cDNA synthesis and small size of the NA on the limit of quantification (LOQ) of quantitative PCR (qPCR), the gold standard to measure copy number. It was discovered that for small NA, the cycle threshold, Ct that is proportional to -log[c], where [c] is the concentration of the target NA exhibits a sharp transition. The results indicate that although the limit of detection (LOD) of qPCR can be in femtomolar range, the LOQ is significantly reduced by well over three orders of magnitude, in picomolar range. Specifically, the study reveals that the PCR product length is the primary reason the limitation on LOQ and is explicitly shown to be an important consideration for primer design for qPCR in general.
Collapse
Affiliation(s)
- Jay Min Lim
- Vajra Instruments Inc., 8300 Cody Drive, Ste C, Lincoln, NE 68512, USA
| | - Rahul Tevatia
- Vajra Instruments Inc., 8300 Cody Drive, Ste C, Lincoln, NE 68512, USA
| | - Ravi F Saraf
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln NE 68588, USA
| |
Collapse
|
250
|
Applications of liquid biopsy in the Pharmacological Audit Trail for anticancer drug development. Nat Rev Clin Oncol 2021; 18:454-467. [PMID: 33762744 DOI: 10.1038/s41571-021-00489-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2021] [Indexed: 02/06/2023]
Abstract
Anticancer drug development is a costly and protracted activity, and failure at late phases of clinical testing is common. We have previously proposed the Pharmacological Audit Trail (PhAT) intended to improve the efficiency of drug development, with a focus on the use of tumour tissue-based biomarkers. Blood-based 'liquid biopsy' approaches, such as targeted or whole-genome sequencing studies of plasma circulating cell-free tumour DNA (ctDNA) and circulating tumour cells (CTCs), are of increasing relevance to this drug development paradigm. Liquid biopsy assays can provide quantitative and qualitative data on prognostic, predictive, pharmacodynamic and clinical response biomarkers, and can also enable the characterization of disease evolution and resistance mechanisms. In this Perspective, we examine the promise of integrating liquid biopsy analyses into the PhAT, focusing on the current evidence, advances, limitations and challenges. We emphasize the continued importance of analytical validation and clinical qualification of circulating tumour biomarkers through prospective clinical trials.
Collapse
|