201
|
Salava H, Thula S, Sánchez AS, Nodzyński T, Maghuly F. Genome Wide Identification and Annotation of NGATHA Transcription Factor Family in Crop Plants. Int J Mol Sci 2022; 23:7063. [PMID: 35806066 PMCID: PMC9266525 DOI: 10.3390/ijms23137063] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/18/2022] [Accepted: 06/23/2022] [Indexed: 11/16/2022] Open
Abstract
The NGATHA (NGA) transcription factor (TF) belongs to the ABI3/VP1 (RAV) transcriptional subfamily, a subgroup of the B3 superfamily, which is relatively well-studied in Arabidopsis. However, limited data are available on the contributions of NGA TF in other plant species. In this study, 207 NGA gene family members were identified from a genome-wide search against Arabidopsis thaliana in the genome data of 18 dicots and seven monocots. The phylogenetic and sequence alignment analyses divided NGA genes into different clusters and revealed that the numbers of genes varied depending on the species. The phylogeny was followed by the characterization of the Solanaceae (tomato, potato, capsicum, tobacco) and Poaceae (Brachypodium distachyon, Oryza sativa L. japonica, and Sorghum bicolor) family members in comparison with A. thaliana. The gene and protein structures revealed a similar pattern for NGA and NGA-like sequences, suggesting that both are conserved during evolution. Promoter cis-element analysis showed that phytohormones such as abscisic acid, auxin, and gibberellins play a crucial role in regulating the NGA gene family. Gene ontology analysis revealed that the NGA gene family participates in diverse biological processes such as flower development, leaf morphogenesis, and the regulation of transcription. The gene duplication analysis indicates that most of the genes are evolved due to segmental duplications and have undergone purifying selection pressure. Finally, the gene expression analysis implicated that the NGA genes are abundantly expressed in lateral organs and flowers. This analysis has presented a detailed and comprehensive study of the NGA gene family, providing basic knowledge of the gene, protein structure, function, and evolution. These results will lay the foundation for further understanding of the role of the NGA gene family in various plant developmental processes.
Collapse
Affiliation(s)
- Hymavathi Salava
- Plant Functional Genomics, Institute of Molecular Biotechnology, Department of Biotechnology, BOKU-VIBT, University of Natural Resources and Life Sciences, 1190 Vienna, Austria;
| | - Sravankumar Thula
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; (S.T.); (A.S.S.); (T.N.)
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Adrià Sans Sánchez
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; (S.T.); (A.S.S.); (T.N.)
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Tomasz Nodzyński
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; (S.T.); (A.S.S.); (T.N.)
| | - Fatemeh Maghuly
- Plant Functional Genomics, Institute of Molecular Biotechnology, Department of Biotechnology, BOKU-VIBT, University of Natural Resources and Life Sciences, 1190 Vienna, Austria;
| |
Collapse
|
202
|
Moustakas M, Sperdouli I, Adamakis IDS, Moustaka J, İşgören S, Şaş B. Harnessing the Role of Foliar Applied Salicylic Acid in Decreasing Chlorophyll Content to Reassess Photosystem II Photoprotection in Crop Plants. Int J Mol Sci 2022; 23:ijms23137038. [PMID: 35806045 PMCID: PMC9266436 DOI: 10.3390/ijms23137038] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 02/06/2023] Open
Abstract
Salicylic acid (SA), an essential plant hormone, has received much attention due to its role in modulating the adverse effects of biotic and abiotic stresses, acting as an antioxidant and plant growth regulator. However, its role in photosynthesis under non stress conditions is controversial. By chlorophyll fluorescence imaging analysis, we evaluated the consequences of foliar applied 1 mM SA on photosystem II (PSII) efficiency of tomato (Solanum lycopersicum L.) plants and estimated the reactive oxygen species (ROS) generation. Tomato leaves sprayed with 1 mM SA displayed lower chlorophyll content, but the absorbed light energy was preferentially converted into photochemical energy rather than dissipated as thermal energy by non-photochemical quenching (NPQ), indicating photoprotective effects provided by the foliar applied SA. This decreased NPQ, after 72 h treatment by 1 mM SA, resulted in an increased electron transport rate (ETR). The molecular mechanism by which the absorbed light energy was more efficiently directed to photochemistry in the SA treated leaves was the increased fraction of the open PSII reaction centers (qp), and the increased efficiency of open reaction centers (Fv’/Fm’). SA induced a decrease in chlorophyll content, resulting in a decrease in non-regulated energy dissipated in PSII (ΦNO) under high light (HL) treatment, suggesting a lower amount of triplet excited state chlorophyll (3Chl*) molecules available to produce singlet oxygen (1O2). Yet, the increased efficiency, compared to the control, of the oxygen evolving complex (OEC) on the donor side of PSII, associated with lower formation of hydrogen peroxide (H2O2), also contributed to less creation of ROS. We conclude that under non stress conditions, foliar applied SA decreased chlorophyll content and suppressed phototoxicity, offering PSII photoprotection; thus, it can be regarded as a mechanism that reduces photoinhibition and photodamage, improving PSII efficiency in crop plants.
Collapse
Affiliation(s)
- Michael Moustakas
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (J.M.); (S.İ.); (B.Ş.)
- Correspondence:
| | - Ilektra Sperdouli
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organisation-Demeter (ELGO-Demeter), 57001 Thessaloniki, Greece;
| | | | - Julietta Moustaka
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (J.M.); (S.İ.); (B.Ş.)
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - Sumrunaz İşgören
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (J.M.); (S.İ.); (B.Ş.)
| | - Begüm Şaş
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (J.M.); (S.İ.); (B.Ş.)
| |
Collapse
|
203
|
Yang Y, Li HG, Liu M, Wang HL, Yang Q, Yan DH, Zhang Y, Li Z, Feng CH, Niu M, Liu C, Yin W, Xia X. PeTGA1 enhances disease resistance against Colletotrichum gloeosporioides through directly regulating PeSARD1 in poplar. Int J Biol Macromol 2022; 214:672-684. [PMID: 35738343 DOI: 10.1016/j.ijbiomac.2022.06.099] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/19/2022] [Accepted: 06/12/2022] [Indexed: 11/28/2022]
Abstract
Basic leucine zipper (bZIP) proteins play important roles in responding to biotic and abiotic stresses in plants. However, the molecular mechanisms of plant resistance to pathogens remain largely unclear in poplar. The present study isolated a TGACG-binding (TGA) transcription factor, PeTGA1, from Populus euphratica. PeTGA1 belongs to subgroup D of the bZIP family and was localized to the nucleus. To study the role PeTGA1 plays in response to Colletotrichum gloeosporioides, transgenic triploid white poplars overexpressing PeTGA1 were generated. Results showed that poplars with overexpressed PeTGA1 showed a higher effective defense response to C. gloeosporioides than the wild-type plants. A yeast one-hybrid assay and an electrophoretic mobility shift assay revealed that PeTGA1 could directly bind to the PeSARD1 (P. euphratica SYSTEMIC ACQUIRED RESISTANCE DEFICIENT 1) promoter, an important regulator for salicylic acid biosynthesis. The transactivation assays indicated that PeTGA1 activated the expression of PeSARD1, and PR1 (PATHOGENESIS-RELATED 1), a SA marker gene involved in SA signaling. Subsequently, we observed that the PeTGA1 overexpression lines showed elevated SA levels, thereby resulting in the increased resistance to C. gloeosporioides. Taken together, our results indicated that PeTGA1 may exert a key role in plant immunity not only by targeting PeSARD1 thus participating in the SA biosynthesis pathway but also by involving in SA signaling via activating the expression of PR1.
Collapse
Affiliation(s)
- Yanli Yang
- National Engineering Research Center of Tree breeding and Ecological remediation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Hui-Guang Li
- National Engineering Research Center of Tree breeding and Ecological remediation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Meiying Liu
- National Engineering Research Center of Tree breeding and Ecological remediation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Hou-Ling Wang
- National Engineering Research Center of Tree breeding and Ecological remediation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Qi Yang
- National Engineering Research Center of Tree breeding and Ecological remediation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Dong-Hui Yan
- Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, The Key Laboratory of Forest Protection Affiliated to State Forestry and Grassland Administration of China, Beijing 100091, China.
| | - Ying Zhang
- National Engineering Research Center of Tree breeding and Ecological remediation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Zhonghai Li
- National Engineering Research Center of Tree breeding and Ecological remediation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Cong-Hua Feng
- National Engineering Research Center of Tree breeding and Ecological remediation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Mengxue Niu
- National Engineering Research Center of Tree breeding and Ecological remediation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Chao Liu
- National Engineering Research Center of Tree breeding and Ecological remediation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Weilun Yin
- National Engineering Research Center of Tree breeding and Ecological remediation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Xinli Xia
- National Engineering Research Center of Tree breeding and Ecological remediation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
204
|
Zhang S, Li C, Si J, Han Z, Chen D. Action Mechanisms of Effectors in Plant-Pathogen Interaction. Int J Mol Sci 2022; 23:6758. [PMID: 35743201 PMCID: PMC9224169 DOI: 10.3390/ijms23126758] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/09/2022] [Accepted: 06/15/2022] [Indexed: 02/08/2023] Open
Abstract
Plant pathogens are one of the main factors hindering the breeding of cash crops. Pathogens, including oomycetes, fungus, and bacteria, secrete effectors as invasion weapons to successfully invade and propagate in host plants. Here, we review recent advances made in the field of plant-pathogen interaction models and the action mechanisms of phytopathogenic effectors. The review illustrates how effectors from different species use similar and distinct strategies to infect host plants. We classify the main action mechanisms of effectors in plant-pathogen interactions according to the infestation process: targeting physical barriers for disruption, creating conditions conducive to infestation, protecting or masking themselves, interfering with host cell physiological activity, and manipulating plant downstream immune responses. The investigation of the functioning of plant pathogen effectors contributes to improved understanding of the molecular mechanisms of plant-pathogen interactions. This understanding has important theoretical value and is of practical significance in plant pathology and disease resistance genetics and breeding.
Collapse
Affiliation(s)
| | | | | | - Zhigang Han
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China; (S.Z.); (C.L.); (J.S.)
| | - Donghong Chen
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China; (S.Z.); (C.L.); (J.S.)
| |
Collapse
|
205
|
Unraveling NPR-like Family Genes in Fragaria spp. Facilitated to Identify Putative NPR1 and NPR3/4 Orthologues Participating in Strawberry-Colletotrichum fructicola Interaction. PLANTS 2022; 11:plants11121589. [PMID: 35736739 PMCID: PMC9229442 DOI: 10.3390/plants11121589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 11/16/2022]
Abstract
The salicylic acid receptor NPR1 (nonexpressor of pathogenesis-related genes) and its paralogues NPR3 and NPR4 are master regulators of plant immunity. Commercial strawberry (Fragaria × ananassa) is a highly valued crop vulnerable to various pathogens. Historic confusions regarding the identity of NPR-like genes have hindered research in strawberry resistance. In this study, the comprehensive identification and phylogenic analysis unraveled this family, harboring 6, 6, 5, and 23 members in F. vesca, F. viridis, F. iinumae, and F. × ananassa, respectively. These genes were clustered into three clades, with each diploid member matching three to five homoalleles in F. × ananassa. Despite the high conservation in terms of gene structure, protein module, and functional residues/motifs/domains, substantial divergence was observed, hinting strawberry NPR proteins probably function in ways somewhat different from Arabidopsis. RT-PCR and RNAseq analysis evidenced the transcriptional responses of FveNPR1 and FxaNPR1a to Colletotrichum fructicola. Extended expression analysis for strawberry NPR-likes helped to us understand how strawberry orchestrate the NPRs-centered defense system against C. fructicola. The cThe current work supports that FveNPR1 and FxaNPR1a, as well as FveNPR31 and FxaNPR31a-c, were putative functional orthologues of AtNPR1 and AtNPR3/4, respectively. These findings set a solid basis for the molecular dissection of biological functions of strawberry NPR-like genes for improving disease resistance.
Collapse
|
206
|
Liu J, Qiu G, Liu C, Li H, Chen X, Fu Q, Lin Y, Guo B. Salicylic Acid, a Multifaceted Hormone, Combats Abiotic Stresses in Plants. LIFE (BASEL, SWITZERLAND) 2022; 12:life12060886. [PMID: 35743917 PMCID: PMC9225363 DOI: 10.3390/life12060886] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 11/16/2022]
Abstract
In recent decades, many new and exciting findings have paved the way to the better understanding of plant responses in various environmental changes. Some major areas are focused on role of phytohormone during abiotic stresses. Salicylic acid (SA) is one such plant hormone that has been implicated in processes not limited to plant growth, development, and responses to environmental stress. This review summarizes the various roles and functions of SA in mitigating abiotic stresses to plants, including heating, chilling, salinity, metal toxicity, drought, ultraviolet radiation, etc. Consistent with its critical roles in plant abiotic tolerance, this review identifies the gaps in the literature with regard to the complex signalling network between SA and reactive oxygen species, ABA, Ca2+, and nitric oxide. Furthermore, the molecular mechanisms underlying signalling networks that control development and stress responses in plants and underscore prospects for future research on SA concerning abiotic-stressed plants are also discussed.
Collapse
|
207
|
Salicylic acid and jasmonic acid crosstalk in plant immunity. Essays Biochem 2022; 66:647-656. [PMID: 35698792 DOI: 10.1042/ebc20210090] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/12/2022] [Accepted: 05/30/2022] [Indexed: 12/25/2022]
Abstract
The phytohormones salicylic acid (SA) and jasmonic acid (JA) are major players in plant immunity. Numerous studies have provided evidence that SA- and JA-mediated signaling interact with each other (SA-JA crosstalk) to orchestrate plant immune responses against pathogens. At the same time, SA-JA crosstalk is often exploited by pathogens to promote their virulence. In this review, we summarize our current knowledge of molecular mechanisms for and modulations of SA-JA crosstalk during pathogen infection.
Collapse
|
208
|
Trujillo-Moya C, Ganthaler A, Stöggl W, Arc E, Kranner I, Schueler S, Ertl R, Espinosa-Ruiz A, Martínez-Godoy MÁ, George JP, Mayr S. Advances in understanding Norway spruce natural resistance to needle bladder rust infection: transcriptional and secondary metabolites profiling. BMC Genomics 2022; 23:435. [PMID: 35692040 PMCID: PMC9190139 DOI: 10.1186/s12864-022-08661-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 05/24/2022] [Indexed: 11/14/2022] Open
Abstract
Background Needle rust caused by the fungus Chrysomyxa rhododendri causes significant growth decline and increased mortality of young Norway spruce trees in subalpine forests. Extremely rare trees with enhanced resistance represent promising candidates for practice-oriented reproduction approaches. They also enable the investigation of tree molecular defence and resistance mechanisms against this fungal disease. Here, we combined RNA-Seq, RT-qPCR and secondary metabolite analyses during a period of 38 days following natural infection to investigate differences in constitutive and infection-induced defence between the resistant genotype PRA-R and three susceptible genotypes. Results Gene expression and secondary metabolites significantly differed among genotypes from day 7 on and revealed already known, but also novel candidate genes involved in spruce molecular defence against this pathogen. Several key genes related to (here and previously identified) spruce defence pathways to needle rust were differentially expressed in PRA-R compared to susceptible genotypes, both constitutively (in non-symptomatic needles) and infection-induced (in symptomatic needles). These genes encoded both new and well-known antifungal proteins such as endochitinases and chitinases. Specific genetic characteristics concurred with varying phenolic, terpene, and hormone needle contents in the resistant genotype, among them higher accumulation of several flavonoids (mainly kaempferol and taxifolin), stilbenes, geranyl acetone, α-ionone, abscisic acid and salicylic acid. Conclusions Combined transcriptional and metabolic profiling of the Norway spruce defence response to infection by C. rhododendri in adult trees under subalpine conditions confirmed the results previously gained on artificially infected young clones in the greenhouse, both regarding timing and development of infection, and providing new insights into genes and metabolic pathways involved. The comparison of genotypes with different degrees of susceptibility proved that several of the identified key genes are differently regulated in PRA-R, and that the resistant genotype combines a strong constitutive defence with an induced response in infected symptomatic needles following fungal invasion. Genetic and metabolic differences between the resistant and susceptible genotypes indicated a more effective hypersensitive response (HR) in needles of PRA-R that prevents penetration and spread of the rust fungus and leads to a lower proportion of symptomatic needles as well as reduced symptom development on the few affected needles. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08661-y.
Collapse
Affiliation(s)
- Carlos Trujillo-Moya
- Department of Forest Growth, Silviculture & Genetics, Austrian Research Centre for Forests BFW, Seckendorff-Gudent-Weg 8, 1131, Vienna, Austria.
| | - Andrea Ganthaler
- Department of Botany, University of Innsbruck, Sternwartestraße 15, 6020, Innsbruck, Austria
| | - Wolfgang Stöggl
- Department of Botany, University of Innsbruck, Sternwartestraße 15, 6020, Innsbruck, Austria
| | - Erwann Arc
- Department of Botany, University of Innsbruck, Sternwartestraße 15, 6020, Innsbruck, Austria
| | - Ilse Kranner
- Department of Botany, University of Innsbruck, Sternwartestraße 15, 6020, Innsbruck, Austria
| | - Silvio Schueler
- Department of Forest Growth, Silviculture & Genetics, Austrian Research Centre for Forests BFW, Seckendorff-Gudent-Weg 8, 1131, Vienna, Austria
| | - Reinhard Ertl
- University of Veterinary Medicine, VetCore Facility for Research, Veterinärplatz 1, 1210, Vienna, Austria
| | - Ana Espinosa-Ruiz
- Institute for Plant Molecular and Cell Biology (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad Politécnica de Valencia (UPV), Valencia, Spain
| | - Maria Ángeles Martínez-Godoy
- Institute for Plant Molecular and Cell Biology (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad Politécnica de Valencia (UPV), Valencia, Spain
| | - Jan-Peter George
- Department of Forest Growth, Silviculture & Genetics, Austrian Research Centre for Forests BFW, Seckendorff-Gudent-Weg 8, 1131, Vienna, Austria
| | - Stefan Mayr
- Department of Botany, University of Innsbruck, Sternwartestraße 15, 6020, Innsbruck, Austria
| |
Collapse
|
209
|
Li R, Sun J, Ning X, Liu D, Chen X. BpEIL1 negatively regulates resistance to Rhizoctonia solani and Alternaria alternata in birch. Gene 2022; 97:81-91. [PMID: 35675986 DOI: 10.1266/ggs.21-00098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Pathogen attacks affect tree health, causing considerable economic losses as well as serious damage to the surrounding environment. Understanding the disease resistance mechanisms of trees is important for tree breeding. In previous studies on birch (Betula platyphylla × B. pendula), we identified a lesion mimic mutant called lmd. We found that reduced expression of BpEIL1 was responsible for the phenotype in lmd. Following cloning, we acquired several BpEIL1 overexpression and suppression lines in birch. In this study, we cloned the BpEIL1 promoter and found that BpEIL1 was primarily expressed in leaves, particularly in veins. We further studied the traits of transgenic lines and the function of BpEIL1 in disease resistance in birch using the BpEIL1 overexpression line OE9, the suppression line SE13 and the non-transgenic line NT. We found that hydrogen peroxide accumulated in SE13 leaves. Ascorbate peroxidase and catalase activity significantly increased in SE13. SE13 was more resistant to the fungal pathogens Alternaria alternata and Rhizoctonia solani than were the OE9 and NT lines. RNA-seq indicated that pathways related to signal transduction, disease resistance and plant immunity were enriched in SE13. BpEIL1 is thus a negative regulatory transcription factor for disease resistance in birch. This study provides a reference for disease resistance of birch and other trees.
Collapse
Affiliation(s)
- Ranhong Li
- Department of Life Science and Technology, Mudanjiang Normal University
| | - Jingjing Sun
- Department of Life Science and Technology, Mudanjiang Normal University
| | - Xiaomeng Ning
- Department of Life Science and Technology, Mudanjiang Normal University
| | - Dan Liu
- Department of Life Science and Technology, Mudanjiang Normal University
| | - Xin Chen
- Department of Life Science and Technology, Mudanjiang Normal University
| |
Collapse
|
210
|
Ang MCY, Lew TTS. Non-destructive Technologies for Plant Health Diagnosis. FRONTIERS IN PLANT SCIENCE 2022; 13:884454. [PMID: 35712566 PMCID: PMC9197209 DOI: 10.3389/fpls.2022.884454] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/29/2022] [Indexed: 06/01/2023]
Abstract
As global population grows rapidly, global food supply is increasingly under strain. This is exacerbated by climate change and declining soil quality due to years of excessive fertilizer, pesticide and agrichemical usage. Sustainable agricultural practices need to be put in place to minimize destruction to the environment while at the same time, optimize crop growth and productivity. To do so, farmers will need to embrace precision agriculture, using novel sensors and analytical tools to guide their farm management decisions. In recent years, non-destructive or minimally invasive sensors for plant metabolites have emerged as important analytical tools for monitoring of plant signaling pathways and plant response to external conditions that are indicative of overall plant health in real-time. This will allow precise application of fertilizers and synthetic plant growth regulators to maximize growth, as well as timely intervention to minimize yield loss from plant stress. In this mini-review, we highlight in vivo electrochemical sensors and optical nanosensors capable of detecting important endogenous metabolites within the plant, together with sensors that detect surface metabolites by probing the plant surface electrophysiology changes and air-borne volatile metabolites. The advantages and limitations of each kind of sensing tool are discussed with respect to their potential for application in high-tech future farms.
Collapse
Affiliation(s)
- Mervin Chun-Yi Ang
- Disruptive and Sustainable Technologies for Agricultural Precision IRG, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| | - Tedrick Thomas Salim Lew
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
211
|
Jhu MY, Sinha NR. Parasitic Plants: An Overview of Mechanisms by Which Plants Perceive and Respond to Parasites. ANNUAL REVIEW OF PLANT BIOLOGY 2022; 73:433-455. [PMID: 35363532 DOI: 10.1146/annurev-arplant-102820-100635] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In contrast to most autotrophic plants, which produce carbohydrates from carbon dioxide using photosynthesis, parasitic plants obtain water and nutrients by parasitizing host plants. Many important crop plants are infested by these heterotrophic plants, leading to severe agricultural loss and reduced food security. Understanding how host plants perceive and resist parasitic plants provides insight into underlying defense mechanisms and the potential for agricultural applications. In this review, we offer a comprehensive overview of the current understanding of host perception of parasitic plants and the pre-attachment and post-attachment defense responses mounted by the host. Since most current research overlooks the role of organ specificity in resistance responses, we also summarize the current understanding and cases of cross-organ parasitism, which indicates nonconventional haustorial connections on other host organs, for example, when stem parasitic plants form haustoria on their host roots. Understanding how different tissue types respond to parasitic plants could provide the potential for developing a universal resistance mechanism in crops against both root and stem parasitic plants.
Collapse
Affiliation(s)
- Min-Yao Jhu
- Department of Plant Biology, University of California, Davis, California, USA;
- Crop Science Centre, Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Neelima R Sinha
- Department of Plant Biology, University of California, Davis, California, USA;
| |
Collapse
|
212
|
Qi S, Shen Y, Wang X, Zhang S, Li Y, Islam MM, Wang J, Zhao P, Zhan X, Zhang F, Liang Y. A new NLR gene for resistance to Tomato spotted wilt virus in tomato (Solanum lycopersicum). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:1493-1509. [PMID: 35179614 DOI: 10.1007/s00122-022-04049-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
A typical NLR gene, Sl5R-1, which regulates Tomato spotted wilt virus resistance, was fine mapped to a region less than 145 kb in the tomato genome. Tomato spotted wilt is a viral disease caused by Tomato spotted wilt virus (TSWV), which is a devastating disease that affects tomato (Solanum lycopersicum) production worldwide, and the resistance provided by the Sw-5 gene has broken down in some cases. In order to identify additional genes that confer resistance to TSWV, the F2 population was mapped using susceptible (M82) and resistant (H149) tomato lines. After 3 years of mapping, the main quantitative trait locus on chromosome 05 was narrowed to a genomic region of 145 kb and was subsequently identified by the F2 population, with 1971 plants in 2020. This region encompassed 14 candidate genes, and in it was found a gene cluster consisting of three genes (Sl5R-1, Sl5R-2, and Sl5R-3) that code for NBS-LRR proteins. The qRT-PCR and virus-induced gene silencing approach results confirmed that Sl5R-1 is a functional resistance gene for TSWV. Analysis of the Sl5R-1 promoter region revealed that there is a SlTGA9 transcription factor binding site caused by a base deletion in resistant plants, and its expression level was significantly up-regulated in infected resistant plants. Analysis of salicylic acid (SA) and jasmonic acid (JA) levels and the expression of SA- and JA-regulated genes suggest that SlTGA9 interacts or positively regulates Sl5R-1 to affect the SA- and JA-signaling pathways to resist TSWV. These results demonstrate that the identified Sl5R-1 gene regulates TSWV resistance by its own promoter interacting with the transcription factor SlTGA9.
Collapse
Affiliation(s)
- Shiming Qi
- College of Horticulture, Northwest A&F University, Xianyang, 712100, Shaanxi, China
- State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources and Genetic Improvement, Northwest A&F University, Xianyang, 712100, Shaanxi, China
| | - Yuanbo Shen
- College of Horticulture, Northwest A&F University, Xianyang, 712100, Shaanxi, China
- State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources and Genetic Improvement, Northwest A&F University, Xianyang, 712100, Shaanxi, China
| | - Xinyu Wang
- College of Horticulture, Northwest A&F University, Xianyang, 712100, Shaanxi, China
- State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources and Genetic Improvement, Northwest A&F University, Xianyang, 712100, Shaanxi, China
| | - Shijie Zhang
- College of Horticulture, Northwest A&F University, Xianyang, 712100, Shaanxi, China
- State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources and Genetic Improvement, Northwest A&F University, Xianyang, 712100, Shaanxi, China
| | - Yushun Li
- College of Horticulture, Northwest A&F University, Xianyang, 712100, Shaanxi, China
- State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources and Genetic Improvement, Northwest A&F University, Xianyang, 712100, Shaanxi, China
| | - Md Monirul Islam
- College of Horticulture, Northwest A&F University, Xianyang, 712100, Shaanxi, China
- State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources and Genetic Improvement, Northwest A&F University, Xianyang, 712100, Shaanxi, China
| | - Jin Wang
- College of Horticulture, Northwest A&F University, Xianyang, 712100, Shaanxi, China
- State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources and Genetic Improvement, Northwest A&F University, Xianyang, 712100, Shaanxi, China
| | - Pan Zhao
- College of Horticulture, Northwest A&F University, Xianyang, 712100, Shaanxi, China
- State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources and Genetic Improvement, Northwest A&F University, Xianyang, 712100, Shaanxi, China
| | - Xiangqiang Zhan
- College of Horticulture, Northwest A&F University, Xianyang, 712100, Shaanxi, China
| | - Fei Zhang
- College of Horticulture, Northwest A&F University, Xianyang, 712100, Shaanxi, China
| | - Yan Liang
- College of Horticulture, Northwest A&F University, Xianyang, 712100, Shaanxi, China.
- State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources and Genetic Improvement, Northwest A&F University, Xianyang, 712100, Shaanxi, China.
| |
Collapse
|
213
|
Li D, Zhou J, Zheng C, Zheng E, Liang W, Tan X, Xu R, Yan C, Yang Y, Yi K, Liu X, Chen J, Wang X. OsTGAL1 suppresses the resistance of rice to bacterial blight disease by regulating the expression of salicylic acid glucosyltransferase OsSGT1. PLANT, CELL & ENVIRONMENT 2022; 45:1584-1602. [PMID: 35141931 DOI: 10.1111/pce.14288] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 01/16/2022] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Many TGA transcription factors participate in immune responses in the SA-mediated signaling pathway in Arabidopsis. This study identified a transcription factor OsTGAL1, which is induced upon infection by Xoo. Overexpression of OsTGAL1 increased the susceptibility of rice to Xoo. Plants overexpressing OsTGAL1 could affect the expression of many SA signaling-related genes. OsTGAL1 was able to interact with the promoter of OsSGT1, which encodes a key enzyme for SA metabolism. The transcript of OsSGT1 was induced by Xoo and this responsive expression was further increased in plants overexpressing OsTGAL1. OsSGT1 knockout lines had enhanced resistance to Xoo, and knocking out OsSGT1 in plants overexpressing OsTGAL1 blocked the susceptibility caused by OsTGAL1. Altered expression levels of several OsPRs in all the transgenic plants demonstrated that SA-mediated signaling had been affected. Furthermore, we identified an oxidoreductase of CC-type glutaredoxin, OsGRX17, which interacted with OsTGAL1. OsGRX17 reduced the regulation of OsTGAL1 on OsSGT1, and this may be due to its redox modulation. Thus, our results demonstrate that OsTGAL1 negatively regulates resistance to Xoo by its effects on SA metabolism via the activation of OsSGT1, which provides valuable targets for plant breeders in developing new cultivars that are resistant to Xoo.
Collapse
Affiliation(s)
- Dongyue Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ministry of Agriculture Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Jie Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ministry of Agriculture Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Chao Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ministry of Agriculture Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Ersong Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ministry of Agriculture Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Weifang Liang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ministry of Agriculture Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Xiaojing Tan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ministry of Agriculture Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Rumeng Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ministry of Agriculture Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Chengqi Yan
- Institute of Biotechnology, Ningbo Academy of Agricultural Sciences, Ningbo, China
| | - Yong Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ministry of Agriculture Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Keke Yi
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiuli Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ministry of Agriculture Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ministry of Agriculture Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
- Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Xuming Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ministry of Agriculture Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
214
|
Ji C, Yang W, Wang Y, Su C, Li X, Liu P, Yan H. Key residues for maintaining architecture, assembly of plant hormone SA receptor NPR1. Biochem Biophys Res Commun 2022; 613:94-99. [PMID: 35550200 DOI: 10.1016/j.bbrc.2022.04.119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 11/16/2022]
Abstract
Salicylic acid (SA) is a pivotal hormone required for the development of resistance to many pathogens in plants. As an SA receptor, NPR1(Nonexpressor of Pathogenesis-Related Genes 1) plays a key regulatory role in the plant immune response. The function of NPR1 is dependent on the alteration of its oligomer-to-monomer. Research in recent years has proven that NPRs perceive SA and regulate the expression of downstream defense genes, but the mechanism of NPR1 oligomer-to-monomer conversion remains unclear. In this paper, we mainly studied the oligomerization of NPR1. By mutation experiments on some residues in the BTB domain involved in protein interactions, we found that the residue His80 plays a key role in the oligomerization of NPR1. We also found that NPR1, interacting with zinc ions at a ratio close to 1:1, was independent of the residue His80. These findings may help us to understand the conformational conversion of NPR1.
Collapse
Affiliation(s)
- Chaoguang Ji
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Wenbo Yang
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Yongan Wang
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Chunlin Su
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Xiaorui Li
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Peiyuan Liu
- School of Life Sciences, Tianjin University, Tianjin, 300072, China.
| | - Hanchi Yan
- School of Life Sciences, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
215
|
Li A, Sun X, Liu L. Action of Salicylic Acid on Plant Growth. FRONTIERS IN PLANT SCIENCE 2022; 13:878076. [PMID: 35574112 PMCID: PMC9093677 DOI: 10.3389/fpls.2022.878076] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/06/2022] [Indexed: 06/02/2023]
Abstract
The phytohormone salicylic acid (SA) not only is a well-known signal molecule mediating plant immunity, but also is involved in plant growth regulation. However, while its role in plant immunity has been well elucidated, its action on plant growth has not been clearly described to date. Recently, increasing evidence has shown that SA plays crucial roles in regulating cell division and cell expansion, the key processes that determines the final stature of plant. This review summarizes the current knowledge on the action and molecular mechanisms through which SA regulates plant growth via multiple pathways. It is here highlighted that SA mediates growth regulation by affecting cell division and expansion. In addition, the interactions of SA with other hormones and their role in plant growth determination were also discussed. Further understanding of the mechanism underlying SA-mediated growth will be instrumental for future crop improvement.
Collapse
|
216
|
Pang Z, Mao X, Xia Y, Xiao J, Wang X, Xu P, Liu G. Multiomics Reveals the Effect of Root Rot on Polygonati Rhizome and Identifies Pathogens and Biocontrol Strain. Microbiol Spectr 2022; 10:e0238521. [PMID: 35225655 PMCID: PMC9045327 DOI: 10.1128/spectrum.02385-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/10/2022] [Indexed: 01/19/2023] Open
Abstract
Root (rhizome) rot of Polygonatum plants has received substantial attention because it threatens yield and sustainable utilization in the polygonati rhizome industry. However, the potential pathogens that cause rhizome rot as well as the direct and indirect (via root-associated microbes) strategies by which Polygonatum defends against pathogens remain largely unknown. Herein, we used integrated multiomics of plant-targeted metabolomics and transcriptomics, microbiome, and culture-based methods to systematically investigate the interactions between the Polygonatum cyrtonema Hua root-associated microbiota and pathogens. We found that root rot inhibited P. cyrtonema rhizome growth and that the fresh weight significantly decreased (P < 0.001). The transcriptomic and metabonomic results showed that the expression of differentially expressed genes (DEGs) related to specialized metabolic and systemic resistance pathways, such as glycolysis/gluconeogenesis and flavonoid biosynthesis, cycloartenol synthase activity (related to saponin synthesis), mitogen-activated protein kinase (MAPK) signaling, and plant hormone signal transduction, was particularly increased in diseased rhizomes. Consistently, the contents of lactose, d-fructose, sarsasapogenin, asperulosidic acid, botulin, myricadoil, and other saponins, which are functional medicinal compounds present in P. cyrtonema rhizomes, were also increased in diseased plants infected with rhizome rot. The microbiome sequencing and culture results showed that root rot disrupted the P. cyrtonema bacterial and fungal communities and reduced the microbial diversity in the rhizomes and rhizosphere soil. We further found that a clear enrichment of Streptomyces violascens XTBG45 (HJB-XTBG45) in the healthy rhizosphere could control the root rot caused by Fusarium oxysporum and Colletotrichum spaethianum. Taken together, our results indicate that P. cyrtonema can modulate the plant immune system and metabolic processes and enrich beneficial root microbiota to defend against pathogens. IMPORTANCE Root (rhizome or tuber) reproduction is the main method for the agricultural cultivation of many important cash crops, and infected crop plants rot, exhibit retarded growth, and experience yield losses. While many studies have investigated medicinal plants and their functional medicinal compounds, the occurrence of root (rhizome) rot of plant and soil microbiota has received little attention. Therefore, we used integrated multiomics and culture-based methods to systematically study rhizome rot on the famous Chinese medicine Polygonatum cyrtonema and identify pathogens and beneficial microbiota of rhizome rot. Rhizome rot disrupted the Polygonatum-associated microbiota and reduced microbial diversity, and rhizome transcription and metabolic processes significantly changed. Our work provides evidence that rhizome rot not only changes rhizome transcription and functional metabolite contents but also impacts the microbial community diversity, assembly, and function of the rhizome and rhizosphere. This study provides a new friendly strategy for medicinal plant breeding and agricultural utilization.
Collapse
Affiliation(s)
- Zhiqiang Pang
- Crops Conservation and Breeding Base, CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, China
| | - Xinyu Mao
- Crops Conservation and Breeding Base, CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yong Xia
- Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China
| | - Jinxian Xiao
- School of Biological and Chemical Science, Pu’er University, Puer, China
| | - Xiaoning Wang
- Key Laboratory for Crop Breeding of Hainan Province, Haikou, China
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya, China
| | - Peng Xu
- Crops Conservation and Breeding Base, CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, China
| | - Guizhou Liu
- Crops Conservation and Breeding Base, CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, China
| |
Collapse
|
217
|
Du J, Liu B, Zhao T, Xu X, Lin H, Ji Y, Li Y, Li Z, Lu C, Li P, Zhao H, Li Y, Yin Z, Ding X. Silica nanoparticles protect rice against biotic and abiotic stresses. J Nanobiotechnology 2022; 20:197. [PMID: 35459250 PMCID: PMC9034512 DOI: 10.1186/s12951-022-01420-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/10/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND By 2050, the world population will increase to 10 billion which urged global demand for food production to double. Plant disease and land drought will make the situation more dire, and safer and environment-friendly materials are thus considered as a new countermeasure. The rice blast fungus, Magnaporthe oryzae, causes one of the most destructive diseases of cultivated rice worldwide that seriously threatens rice production. Unfortunately, traditional breeding nor chemical approaches along control it well. Nowadays, nanotechnology stands as a new weapon against these mounting challenges and silica nanoparticles (SiO2 NPs) have been considered as potential new safer agrochemicals recently but the systematically studies remain limited, especially in rice. RESULTS Salicylic acid (SA) is a key plant hormone essential for establishing plant resistance to several pathogens and its further affected a special form of induced resistance, the systemic acquired resistance (SAR), which considered as an important aspect of plant innate immunity from the locally induced disease resistance to the whole plant. Here we showed that SiO2 NPs could stimulate plant immunity to protect rice against M. oryzae through foliar treatment that significantly decreased disease severity by nearly 70% within an appropriate concentration range. Excessive concentration of foliar treatment led to disordered intake and abnormal SA responsive genes expressions which weaken the plant resistance and even aggravated the disease. Importantly, this SA-dependent fungal resistance could achieve better results with root treatment through a SAR manner with no phytotoxicity since the orderly and moderate absorption. What's more, root treatment with SiO2 NPs could also promote root development which was better to deal with drought. CONCLUSIONS Taken together, our findings not only revealed SiO2 NPs as a potential effective and safe strategy to protect rice against biotic and abiotic stresses, but also identify root treatment for the appropriate application method since it seems not causing negative effects and even have promotion on root development.
Collapse
Affiliation(s)
- Jianfeng Du
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China
| | - Baoyou Liu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China.,Yantai Academy of Agricultural Sciences, Yantai, China.,College of Life Sciences, Yantai University, Yantai, China
| | - Tianfeng Zhao
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China
| | - Xinning Xu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China
| | - Han Lin
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China
| | - Yatai Ji
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China
| | - Yue Li
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China
| | - Zhiwei Li
- College of Life Sciences, Yantai University, Yantai, China
| | - Chongchong Lu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China
| | - Pengan Li
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China
| | - Haipeng Zhao
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China
| | - Yang Li
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China.
| | - Ziyi Yin
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China.
| | - Xinhua Ding
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China.
| |
Collapse
|
218
|
Arbuscular Mycorrhizal Fungi Induced Plant Resistance against Fusarium Wilt in Jasmonate Biosynthesis Defective Mutant and Wild Type of Tomato. J Fungi (Basel) 2022; 8:jof8050422. [PMID: 35628678 PMCID: PMC9146357 DOI: 10.3390/jof8050422] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/14/2022] [Accepted: 04/18/2022] [Indexed: 12/04/2022] Open
Abstract
Arbuscular mycorrhizal (AM) fungi can form mutual symbiotic associations with most terrestrial plants and improve the resistance of host plants against pathogens. However, the bioprotection provided by AM fungi can depend on the host–fungus combinations. In this study, we unraveled the effects of pre-inoculation with AM fungus Rhizophagus irregularis on plant resistance against the hemibiotrophic fungal pathogen Fusarium oxysporum in jasmonate (JA) biosynthesis mutant tomato, suppressor of prosystemin-mediated responses8 (spr8) and the wild type Castlemart (CM). Results showed that R. irregularis colonization in CM plants significantly decreased the disease index, which was not observed in spr8 plants, suggesting that the disease protection of AM fungi was a plant-genotype-specific trait. Inoculation with R. irregularis significantly increased the shoot dry weight of CM plants when infected with F. oxysporum, with increased plant P content and net photosynthetic rate. Induced expression of the JA synthesis genes, including allene oxide cyclase gene (AOC) and lipoxygenase D gene (LOXD), and increased activities of polyphenol oxidase (PPO) and phenylalanine ammonia lyase (PAL) were recorded in mycorrhizal CM plants infected with F. oxysporum, but not in spr8 plants. Thus, mycorrhiza-induced resistance (MIR) to fungal pathogen in tomato was highly relevant to the JA signaling pathway.
Collapse
|
219
|
Emerging Roles of Motile Epidermal Chloroplasts in Plant Immunity. Int J Mol Sci 2022; 23:ijms23074043. [PMID: 35409402 PMCID: PMC8999904 DOI: 10.3390/ijms23074043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/02/2022] [Accepted: 04/05/2022] [Indexed: 11/21/2022] Open
Abstract
Plant epidermis contains atypical small chloroplasts. However, the physiological role of this organelle is unclear compared to that of large mesophyll chloroplasts, the well-known function of which is photosynthesis. Although knowledge of the involvement of chloroplasts in the plant immunity has been expanded to date, the differences between the epidermal and mesophyll chloroplasts are beyond the scope of this study. Given the role of the plant epidermis as a barrier to environmental stresses, including pathogen attacks, and the immune-related function of chloroplasts, plant defense research on epidermal chloroplasts is an emerging field. Recent studies have revealed the dynamic movements of epidermal chloroplasts in response to fungal and oomycete pathogens. Furthermore, epidermal chloroplast-associated proteins and cellular events that are tightly linked to epidermal resistance against pathogens have been reported. In this review, I have focused on the recent progress in epidermal chloroplast-mediated plant immunity.
Collapse
|
220
|
Shimizu K, Suzuki H, Uemura T, Nozawa A, Desaki Y, Hoshino R, Yoshida A, Abe H, Nishiyama M, Nishiyama C, Sawasaki T, Arimura GI. Immune gene activation by NPR and TGA transcriptional regulators in the model monocot Brachypodium distachyon. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:470-481. [PMID: 35061931 DOI: 10.1111/tpj.15681] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
The nonexpressor of pathogenesis-related (NPR) gene family is well known to play a crucial role in transactivation of TGA transcription factors for salicylic acid (SA)-responsive genes, including pathogenesis-related protein 1 (PR1), during plants' immune response after pathogen attack in the model dicot Arabidopsis thaliana. However, little is known about NPR gene functions in monocots. We therefore explored the functions of NPRs in SA signaling in the model monocot Brachypodium distachyon. BdNPR1 and BdNPR2/3 share structural similarities with A. thaliana AtNPR1/2 and AtNPR3/4 subfamilies, respectively. The transcript level of BdNPR2 but not BdNPR1/3 appeared to be positively regulated in leaves in response to methyl salicylate. Reporter assays in protoplasts showed that BdNPR2 positively regulated BdTGA1-mediated activation of PR1. This transactivation occurred in an SA-dependent manner through SA binding at Arg468 of BdNPR2. In contrast, BdNPR1 functioned as a suppressor of BdNPR2/BdTGA1-mediated transcription of PR1. Collectively, our findings reveal that the TGA-promoted transcription of SA-inducible PR1 is orchestrated by the activator BdNPR2 and the repressor BdNPR1, which function competitively in B. distachyon.
Collapse
Affiliation(s)
- Kohei Shimizu
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Hitomi Suzuki
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Takuya Uemura
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Akira Nozawa
- Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Yoshitake Desaki
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Ryosuke Hoshino
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Ayako Yoshida
- Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Abe
- Experimental Plant Division, RIKEN BioResource Center, Tsukuba, Japan
| | - Makoto Nishiyama
- Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| | - Chiharu Nishiyama
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | | | - Gen-Ichiro Arimura
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| |
Collapse
|
221
|
Nascimento CA, Teixeira-Silva NS, Caserta R, Marques MOM, Takita MA, de Souza AA. Overexpression of CsSAMT in Citrus sinensis Induces Defense Response and Increases Resistance to Xanthomonas citri subsp. citri. FRONTIERS IN PLANT SCIENCE 2022; 13:836582. [PMID: 35401588 PMCID: PMC8988300 DOI: 10.3389/fpls.2022.836582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
Citrus canker is a destructive disease caused by Xanthomonas citri subsp. citri, which affects all commercial sweet orange (Citrus sinensis [L.] Osbeck) cultivars. Salicylic acid (SA) and systemic-acquired resistance (SAR) have been demonstrated to have a crucial role in mediating plant defense responses against this phytopathogen. To induce SAR, SA is converted to methyl salicylate (MeSA) by an SA-dependent methyltransferase (SAMT) and translocated systemically to prime noninfected distal tissues. Here, we generated sweet orange transgenic plants (based on cvs. Hamlin and Valencia) overexpressing the SAMT gene from Citrus (CsSAMT) and evaluated their resistance to citrus canker. We obtained four independent transgenic lines and confirmed their significantly higher MeSA volatilization compared to wild-type controls. Plants overexpressing CsSAMT showed reduced symptoms of citrus canker and bacterial populations in all transgenic lines without compromising plant development. One representative transgenic line (V44SAMT) was used to evaluate resistance response in primary and secondary sites. Without inoculation, V44SAMT modulated CsSAMT, CsNPR1, CsNPR3, and CsWRKY22 expression, indicating that this plant is in a primed defense status. The results demonstrate that MeSA signaling prompts the plant to respond more efficiently to pathogen attacks and induces immune responses in transgenic plants at both primary and secondary infection sites.
Collapse
Affiliation(s)
- Cesar Augusto Nascimento
- Citrus Research Center “Sylvio Moreira”, Agronomic Institute – IAC, Cordeirópolis, Brazil
- Department of Genetics, Evolution and Bioagents, Institute of Biology, University of Campinas – UNICAMP, Campinas, Brazil
| | | | - Raquel Caserta
- Citrus Research Center “Sylvio Moreira”, Agronomic Institute – IAC, Cordeirópolis, Brazil
| | | | - Marco Aurelio Takita
- Citrus Research Center “Sylvio Moreira”, Agronomic Institute – IAC, Cordeirópolis, Brazil
| | - Alessandra A. de Souza
- Citrus Research Center “Sylvio Moreira”, Agronomic Institute – IAC, Cordeirópolis, Brazil
| |
Collapse
|
222
|
Shields A, Shivnauth V, Castroverde CDM. Salicylic Acid and N-Hydroxypipecolic Acid at the Fulcrum of the Plant Immunity-Growth Equilibrium. FRONTIERS IN PLANT SCIENCE 2022; 13:841688. [PMID: 35360332 PMCID: PMC8960316 DOI: 10.3389/fpls.2022.841688] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/14/2022] [Indexed: 05/31/2023]
Abstract
Salicylic acid (SA) and N-hydroxypipecolic acid (NHP) are two central plant immune signals involved in both resistance at local sites of pathogen infection (basal resistance) and at distal uninfected sites after primary infection (systemic acquired resistance). Major discoveries and advances have led to deeper understanding of their biosynthesis and signaling during plant defense responses. In addition to their well-defined roles in immunity, recent research is emerging on their direct mechanistic impacts on plant growth and development. In this review, we will first provide an overview of how SA and NHP regulate local and systemic immune responses in plants. We will emphasize how these two signals are mutually potentiated and are convergent on multiple aspects-from biosynthesis to homeostasis, and from signaling to gene expression and phenotypic responses. We will then highlight how SA and NHP are emerging to be crucial regulators of the growth-defense balance, showcasing recent multi-faceted studies on their metabolism, receptor signaling and direct growth/development-related host targets. Overall, this article reflects current advances and provides future outlooks on SA/NHP biology and their functional significance as central signals for plant immunity and growth. Because global climate change will increasingly influence plant health and resilience, it is paramount to fundamentally understand how these two tightly linked plant signals are at the nexus of the growth-defense balance.
Collapse
|
223
|
Fang S, Duan Y, Nie L, Zhao W, Wang J, Zhao J, Zhao L, Wang L. Distinct metabolic profiling is correlated with bisexual flowers formation resulting from exogenous ethephon induction in melon ( Cucumis melo L.). PeerJ 2022; 10:e13088. [PMID: 35287348 PMCID: PMC8917798 DOI: 10.7717/peerj.13088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/17/2022] [Indexed: 01/12/2023] Open
Abstract
Melon (Cucumis melo L.) is an agronomically important vegetable. Most cultivars of melon are andromonoecious and bisexual flowers only emerged from the leaf axil of lateral branches. However, the regulatory mechanism contributing to the occurrence of bisexual flowers were still obscure. In this study, ethephon was applied in two common cultivars of melon. In control without ethephon treatment, no bisexual flower was made in the main stem. However, 6.56 ± 1.42 and 6.63 ± 0.55 bisexual flowers were respectively induced in main stem of 'Yangjiaocui-QX' and 'Lvbao' after ethephon treatment, and induced bisexual flowers distributed in 12-20 nodes of main stem. During the formation of bisexual flowers, 41 metabolites were significantly up-regulated and 98 metabolites were significantly down-regulated. According to the KEGG enrichment analysis of 139 different metabolites, a total of 30 pathways were mapped and KEGG terms of "Phenylalanine, tyrosine and tryptophan biosynthesis", "Phenylalanine metabolism" and "Flavone and flavonol biosynthesis" were significantly enriched. In three significantly enriched KEGG terms, shikimic acid, L-tryptophan, L-phenylalanine, and kaempferol were significantly up-regulated while L-tyrosine, 4-hydroxycinnami acid and luteolin were significantly down-regulated in ET compared to CK. Different metabolites were also classified depend on major class features and 14 classes were acquired. The results of metabonomics and endogenous hormone identification indicated that ethylene could enhance the concentration of salicylic acid, methyl jasmonate, ABA and IAA. This study provided an important theoretical foundation for inducing bisexual flowers in main stem and breeding new varieties of melon in future.
Collapse
Affiliation(s)
- Siyu Fang
- College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Yaqian Duan
- College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Lanchun Nie
- College of Horticulture, Hebei Agricultural University, Baoding, China,Hebei Key Laboratory of Vegetable Germplasm Innovation and Utilization, Baoding, China,Collaborative Innovation Center of Vegetative Industry of Hebei Province, Baoding, China
| | - Wensheng Zhao
- College of Horticulture, Hebei Agricultural University, Baoding, China,Hebei Key Laboratory of Vegetable Germplasm Innovation and Utilization, Baoding, China,Collaborative Innovation Center of Vegetative Industry of Hebei Province, Baoding, China
| | - Jiahao Wang
- College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Jiateng Zhao
- College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Liping Zhao
- Bureau of Agriculture and Rural of Dingzhou, Dingzhou, China
| | - Lei Wang
- Bureau of Agriculture and Rural of Dingzhou, Dingzhou, China
| |
Collapse
|
224
|
The Plant Defense Signal Salicylic Acid Activates the RpfB-Dependent Quorum Sensing Signal Turnover via Altering the Culture and Cytoplasmic pH in the Phytopathogen Xanthomonas campestris. mBio 2022; 13:e0364421. [PMID: 35254135 PMCID: PMC9040794 DOI: 10.1128/mbio.03644-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Plant colonization by phytopathogens is a very complex process in which numerous factors are involved. Upon infection by phytopathogens, plants produce salicylic acid (SA) that triggers gene expression within the plant to counter the invading pathogens. The present study demonstrated that SA signal also directly acts on the quorum-sensing (QS) system of the invading pathogen Xanthomonas campestris pv. campestris to affect its virulence by inducing turnover of the diffusible signaling factor (DSF) family QS signal. First, Xanthomonas campestris pv. campestris infection induces SA biosynthesis in the cabbage host plant. SA cannot be degraded by Xanthomonas campestris pv. campestris during culturing. Exogenous addition of SA or endogenous production of SA induces DSF signal turnover during late growth phase of Xanthomonas campestris pv. campestris in XYS medium that mimics plant vascular environments. Further, the DSF turnover gene rpfB is required for SA induction of DSF turnover. However, SA does not affect the expression of rpfB and DSF biosynthesis gene rpfF at the transcriptional level. SA induction of DSF turnover only occurs under acidic conditions in XYS medium. Furthermore, addition of SA to XYS medium significantly increased both culture and cytoplasmic pH. Increased cytoplasmic pH induced DSF turnover in a rpfB-dependent manner. In vitro RpfB-dependent DSF turnover activity increased when pH increased from 6 to 8. SA exposure did not affect the RpfB-dependent DSF turnover in vitro. Finally, SA-treated Xanthomonas campestris pv. campestris strain exhibited enhanced virulence when inoculated on cabbage. These results provide new insight into the roles of SA in host plants and the molecular interactions between Xanthomonas campestris pv. campestris and cruciferous plants.
Collapse
|
225
|
Hu Y, Zhang M, Lu M, Wu Y, Jing T, Zhao M, Zhao Y, Feng Y, Wang J, Gao T, Zhou Z, Wu B, Jiang H, Wan X, Schwab W, Song C. Salicylic acid carboxyl glucosyltransferase UGT87E7 regulates disease resistance in Camellia sinensis. PLANT PHYSIOLOGY 2022; 188:1507-1520. [PMID: 34893910 PMCID: PMC8896648 DOI: 10.1093/plphys/kiab569] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/12/2021] [Indexed: 05/28/2023]
Abstract
Plant immune response following pathogenic infection is regulated by plant hormones, and salicylic acid (SA) and its sugar conjugates play important roles in establishing basal resistance. Here, the important pathogen Pseudopestalotiopsis camelliae-sinensis (Pcs) was isolated from tea gray blight, one of the most destructive diseases in tea plantations. Transcriptomic analysis led to the discovery of the putative Camellia sinensis UDP-glucosyltransferase CsUGT87E7 whose expression was significantly induced by SA application and Pcs infection. Recombinant CsUGT87E7 glucosylates SA with a Km value of 12 µM to form SA glucose ester (SGE). Downregulation reduced the accumulation of SGE, and CsUGT87E7-silenced tea plants exhibited greater susceptibility to pathogen infection than control plants. Similarly, CsUGT87E7-silenced tea leaves accumulated significantly less SA after infection and showed reduced expression of pathogenesis-related genes. These results suggest that CsUGT87E7 is an SA carboxyl glucosyltransferase that plays a positive role in plant disease resistance by modulating SA homeostasis through a mechanism distinct from that described in Arabidopsis (Arabidopsis thaliana). This study provides insight into the mechanisms of SA metabolism and highlights the role of SGE in the modulation of plant disease resistance.
Collapse
Affiliation(s)
- Yunqing Hu
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036 Hefei, Anhui, China
| | - Mengting Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036 Hefei, Anhui, China
| | - Mengqian Lu
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036 Hefei, Anhui, China
| | - Yi Wu
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036 Hefei, Anhui, China
| | - Tingting Jing
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036 Hefei, Anhui, China
| | - Mingyue Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036 Hefei, Anhui, China
| | - Yifan Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036 Hefei, Anhui, China
| | - Yingying Feng
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036 Hefei, Anhui, China
| | - Jingming Wang
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036 Hefei, Anhui, China
| | - Ting Gao
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036 Hefei, Anhui, China
| | - Zixiang Zhou
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036 Hefei, Anhui, China
| | - Bin Wu
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036 Hefei, Anhui, China
| | - Hao Jiang
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036 Hefei, Anhui, China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036 Hefei, Anhui, China
| | - Wilfried Schwab
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036 Hefei, Anhui, China
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, 85354 Freising, Germany
| | - Chuankui Song
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036 Hefei, Anhui, China
| |
Collapse
|
226
|
Ngou BPM, Jones JDG, Ding P. Plant immune networks. TRENDS IN PLANT SCIENCE 2022; 27:255-273. [PMID: 34548213 DOI: 10.1016/j.tplants.2021.08.012] [Citation(s) in RCA: 147] [Impact Index Per Article: 73.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 08/14/2021] [Accepted: 08/26/2021] [Indexed: 05/06/2023]
Abstract
Plants have both cell-surface and intracellular receptors to recognize diverse self- and non-self molecules. Cell-surface pattern recognition receptors (PRRs) recognize extracellular pathogen-/damage-derived molecules or apoplastic pathogen-derived effectors. Intracellular nucleotide-binding leucine-rich repeat proteins (NLRs) recognize pathogen effectors. Activation of both PRRs and NLRs elevates defense gene expression and accumulation of the phytohormone salicylic acid (SA), which results in SA-dependent transcriptional reprogramming. These receptors, together with their coreceptors, form networks to mediate downstream immune responses. In addition, cell-surface and intracellular immune systems are interdependent and function synergistically to provide robust resistance against pathogens. Here, we summarize the interactions between these immune systems and attempt to provide a holistic picture of plant immune networks. We highlight current challenges and discuss potential new research directions.
Collapse
Affiliation(s)
- Bruno Pok Man Ngou
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK.
| | - Jonathan D G Jones
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK.
| | - Pingtao Ding
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK; Institute of Biology Leiden, Leiden University, Sylviusweg 72, Leiden 2333, BE, The Netherlands.
| |
Collapse
|
227
|
Fernandes LB, Ghag SB. Molecular insights into the jasmonate signaling and associated defense responses against wilt caused by Fusarium oxysporum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 174:22-34. [PMID: 35121482 DOI: 10.1016/j.plaphy.2022.01.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Biotic and abiotic stress factors drastically limit plant growth and development as well as alter the physiological, biochemical and cellular processes. This negatively impacts plant productivity, ultimately leading to agricultural and economical loss. Plant defense mechanisms elicited in response to these stressors are crucially regulated by the intricate crosstalk between defense hormones such as jasmonic acid (JA), salicylic acid and ethylene. These hormones orchestrate adaptive responses by modulating the gene regulatory networks leading to sequential changes in the root architecture, cell wall composition, secondary metabolite production and expression of defense-related genes. Fusarium wilt is a widespread vascular disease in plants caused by the soil-borne ascomycete Fusarium oxysporum and is known to attack several economically important plant cultivars. JA along with its conjugated forms methyl jasmonate and jasmonic acid isoleucine critically tunes plant defense mechanisms by regulating the expression of JA-associated genes imparting resistance phenotype. However, it should be noted that some members of F. oxysporum utilize the JA signaling pathway for disease development leading to susceptibility in plants. Therefore, JA signaling pathway becomes one of the important targets amenable for modulation to develop resistance response against Fusarium wilt in plants. In this review, we have emphasized on the physiological and molecular aspects of JA and its significant role in mounting an early defense response against Fusarium wilt disease. Further, utilization of the inherent JA signaling pathway and/or exogenous application of JA in generating Fusarium wilt resistant plants is discussed.
Collapse
Affiliation(s)
- Lizelle B Fernandes
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai campus, Kalina, Santacruz East, Mumbai, India
| | - Siddhesh B Ghag
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai campus, Kalina, Santacruz East, Mumbai, India.
| |
Collapse
|
228
|
Du M, Wang S, Dong L, Qu R, Zheng L, He Y, Chen S, Zou X. Overexpression of a " Candidatus Liberibacter Asiaticus" Effector Gene CaLasSDE115 Contributes to Early Colonization in Citrus sinensis. Front Microbiol 2022; 12:797841. [PMID: 35265048 PMCID: PMC8899593 DOI: 10.3389/fmicb.2021.797841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/20/2021] [Indexed: 11/29/2022] Open
Abstract
Huanglongbing (HLB), caused by "Candidatus liberibacter asiaticus" (CaLas), is one of the most devastating diseases in citrus but its pathogenesis remains poorly understood. Here, we reported the role of the CaLasSDE115 (CLIBASIA_05115) effector, encoded by CaLas, during pathogen-host interactions. Bioinformatics analyses showed that CaLasSDE115 was 100% conserved in all reported CaLas strains but had sequence differences compared with orthologs from other "Candidatus liberibacter." Prediction of protein structures suggested that the crystal structure of CaLasSDE115 was very close to that of the invasion-related protein B (IalB), a virulence factor from Bartonella henselae. Alkaline phosphatase (PhoA) assay in E. coli further confirmed that CaLasSDE115 was a Sec-dependent secretory protein while subcellular localization analyses in tobacco showed that the mature protein of SDE115 (mSDE115), without its putative Sec-dependent signal peptide, was distributed in the cytoplasm and the nucleus. Expression levels of CaLasSDE115 in CaLas-infected Asian citrus psyllid (ACP) were much higher (∼45-fold) than those in CaLas-infected Wanjincheng oranges, with the expression in symptomatic leaves being significantly higher than that in asymptomatic ones. Additionally, the overexpression of mSDE115 favored CaLas proliferation during the early stages (2 months) of infection while promoting the development of symptoms. Hormone content and gene expression analysis of transgenic plants also suggested that overexpressing mSDE115 modulated the transcriptional regulation of genes involved in systemic acquired resistance (SAR) response. Overall, our data indicated that CaLasSDE115 effector contributed to the early colonization of citrus by the pathogen and worsened the occurrence of Huanglongbing symptoms, thereby providing a theoretical basis for further exploring the pathogenic mechanisms of Huanglongbing disease in citrus.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xiuping Zou
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, China
| |
Collapse
|
229
|
Bagautdinova ZZ, Omelyanchuk N, Tyapkin AV, Kovrizhnykh VV, Lavrekha VV, Zemlyanskaya EV. Salicylic Acid in Root Growth and Development. Int J Mol Sci 2022; 23:ijms23042228. [PMID: 35216343 PMCID: PMC8875895 DOI: 10.3390/ijms23042228] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 11/18/2022] Open
Abstract
In plants, salicylic acid (SA) is a hormone that mediates a plant’s defense against pathogens. SA also takes an active role in a plant’s response to various abiotic stresses, including chilling, drought, salinity, and heavy metals. In addition, in recent years, numerous studies have confirmed the important role of SA in plant morphogenesis. In this review, we summarize data on changes in root morphology following SA treatments under both normal and stress conditions. Finally, we provide evidence for the role of SA in maintaining the balance between stress responses and morphogenesis in plant development, and also for the presence of SA crosstalk with other plant hormones during this process.
Collapse
Affiliation(s)
- Zulfira Z. Bagautdinova
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia; (Z.Z.B.); (N.O.); (A.V.T.); (V.V.K.); (V.V.L.)
| | - Nadya Omelyanchuk
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia; (Z.Z.B.); (N.O.); (A.V.T.); (V.V.K.); (V.V.L.)
| | - Aleksandr V. Tyapkin
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia; (Z.Z.B.); (N.O.); (A.V.T.); (V.V.K.); (V.V.L.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Vasilina V. Kovrizhnykh
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia; (Z.Z.B.); (N.O.); (A.V.T.); (V.V.K.); (V.V.L.)
| | - Viktoriya V. Lavrekha
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia; (Z.Z.B.); (N.O.); (A.V.T.); (V.V.K.); (V.V.L.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Elena V. Zemlyanskaya
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia; (Z.Z.B.); (N.O.); (A.V.T.); (V.V.K.); (V.V.L.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
- Correspondence:
| |
Collapse
|
230
|
Fu M, Bai Q, Zhang H, Guo Y, Peng Y, Zhang P, Shen L, Hong N, Xu W, Wang G. Transcriptome Analysis of the Molecular Patterns of Pear Plants Infected by Two Colletotrichum fructicola Pathogenic Strains Causing Contrasting Sets of Leaf Symptoms. FRONTIERS IN PLANT SCIENCE 2022; 13:761133. [PMID: 35251071 PMCID: PMC8888856 DOI: 10.3389/fpls.2022.761133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Colletotrichum fructicola infects pear leaves, resulting in two major symptoms: tiny black spots (TS) followed by severe early defoliation and big necrotic lesions (BnL) without apparent damage depending on the pathotypes. How the same fungal species causes different symptoms remains unclear. To understand the molecular mechanism underlying the resulting diseases and the diverse symptoms, two C. fructicola pathogenetic strains (PAFQ31 and PAFQ32 responsible for TS and BnL symptoms, respectively) were inoculated on Pyrus pyrifolia leaves and subjected to transcriptome sequencing at the quiescent stage (QS) and necrotrophic stage (NS), respectively. In planta, the genes involved in the salicylic acid (SA) signaling pathway were upregulated at the NS caused by the infection of each strain. In contrast, the ethylene (ET), abscisic acid (ABA), and jasmonic acid (JA) signaling pathways were specifically related to the TS symptoms caused by the infection of strain PAFQ31, corresponding to the yellowish and early defoliation symptoms triggered by the strain infection. Correspondingly, SA was accumulated in similar levels in the leaves infected by each strain at NS, but JA was significantly higher in the PAFQ31-infected as measured using high-performance liquid chromatography. Weighted gene co-expression network analysis also reveals specific genes, pathways, phytohormones, and transcription factors (TFs) associated with the PAFQ31-associated early defoliation. Taken together, these data suggest that specific metabolic pathways were regulated in P. pyrifolia in response to the infection of two C. fructicola pathotypes resulting in the diverse symptoms: JA, ET, and ABA accumulated in the PAFQ31-infected leaves, which negatively affected the chlorophyll metabolism and photosynthesis pathways while positively affecting the expression of senescence-associated TFs and genes, resulted in leaf yellowing and defoliation; whereas SA inhibited JA-induced gene expression in the PAFQ32-infected leaves, which led to hypersensitive response-like reaction and BnL symptoms.
Collapse
Affiliation(s)
- Min Fu
- Hubei Hongshan Laboratory, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Wuhan, China
- Key Laboratory of Horticultural Crop (Fruit Trees) Biology and Germplasm Creation of the Ministry of Agriculture, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qing Bai
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hui Zhang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yashuang Guo
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yuhong Peng
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Pengfei Zhang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Liang Shen
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ni Hong
- State Key Laboratory of Agricultural Microbiology, Wuhan, China
- Key Laboratory of Horticultural Crop (Fruit Trees) Biology and Germplasm Creation of the Ministry of Agriculture, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wenxing Xu
- Hubei Hongshan Laboratory, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Wuhan, China
- Key Laboratory of Horticultural Crop (Fruit Trees) Biology and Germplasm Creation of the Ministry of Agriculture, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Guoping Wang
- State Key Laboratory of Agricultural Microbiology, Wuhan, China
- Key Laboratory of Horticultural Crop (Fruit Trees) Biology and Germplasm Creation of the Ministry of Agriculture, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
231
|
Accumulation of Salicylic Acid and Related Metabolites in Selaginella moellendorffii. PLANTS 2022; 11:plants11030461. [PMID: 35161442 PMCID: PMC8839085 DOI: 10.3390/plants11030461] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 11/17/2022]
Abstract
Salicylic acid (SA) is a phytohormone that plays manifold roles in plant growth, defense, and other aspects of plant physiology. The concentration of free SA in plants is fine-tuned by a variety of structural modifications. SA is produced by all land plants, yet it is not known whether its metabolism is conserved in all lineages. Selaginella moellendorffii is a lycophyte and thus a representative of an ancient clade of vascular plants. Here, we evaluated the accumulation of SA and related metabolites in aerial parts of S. moellendorffii. We found that SA is primarily stored as the 2-O-β-glucoside. Hydroxylated derivatives of SA are also produced by S. moellendorffii and stored as β-glycosides. A candidate signal for SA aspartate was also detected. Phenylpropanoic acids also occur in S. moellendorffii tissue. Only o-coumaric acid is stored as the β-glycoside, while caffeic, p-coumaric, and ferulic acids accumulate as alkali-labile conjugates. An in silico search for enzymes involved in conjugation and catabolism of SA in the S. moellendorffii genome indicated that experimental characterization is necessary to clarify the physiological functions of the putative orthologs. This study sheds light on SA metabolism in an ancestral plant species and suggests directions towards elucidating the underlying mechanisms.
Collapse
|
232
|
Wang Z, Zhao X, Ren Z, Abou-Elwafa SF, Pu X, Zhu Y, Dou D, Su H, Cheng H, Liu Z, Chen Y, Wang E, Shao R, Ku L. ZmERF21 directly regulates hormone signaling and stress-responsive gene expression to influence drought tolerance in maize seedlings. PLANT, CELL & ENVIRONMENT 2022; 45:312-328. [PMID: 34873716 DOI: 10.1111/pce.14243] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/27/2021] [Accepted: 11/30/2021] [Indexed: 06/13/2023]
Abstract
Drought stress adversely impacts crop development and yield. Maize frequently encounters drought stress during its life cycle. Improvement of drought tolerance is a priority of maize breeding programs. Here, we identified a novel transcription factor encoding gene, APETALA2 (AP2)/Ethylene response factor (ERF), which is tightly associated with drought tolerance in maize seedlings. ZmERF21 is mainly expressed in the root and leaf and it can be highly induced by polyethylene glycol treatment. Genetic analysis showed that the zmerf21 mutant plants displayed a reduced drought tolerance phenotype, accompanied by phenotypical and physiological changes that are commonly observed in drought conditions. Overexpression of ZmERF21 in maize significantly increased the chlorophyll content and activities of antioxidant enzymes under drought conditions. RNA-Seq and DNA affinity purification sequencing analysis further revealed that ZmERF21 may directly regulate the expression of genes related to hormone (ethylene, abscisic acid) and Ca signaling as well as other stress-response genes through binding to the promoters of potential target genes. Our results thereby provided molecular evidence of ZmERF21 is involved in the drought stress response of maize.
Collapse
Affiliation(s)
- Zhiyong Wang
- National Key Laboratory of Wheat and Maize Crop Science, Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou, Henan, China
| | - Xiang Zhao
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Zhenzhen Ren
- National Key Laboratory of Wheat and Maize Crop Science, Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou, Henan, China
| | | | - Xiaoyu Pu
- National Key Laboratory of Wheat and Maize Crop Science, Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yingfang Zhu
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Dandan Dou
- National Key Laboratory of Wheat and Maize Crop Science, Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou, Henan, China
| | - Huihui Su
- National Key Laboratory of Wheat and Maize Crop Science, Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou, Henan, China
| | - Haiyang Cheng
- National Key Laboratory of Wheat and Maize Crop Science, Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou, Henan, China
| | - Zhixue Liu
- National Key Laboratory of Wheat and Maize Crop Science, Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yanhui Chen
- National Key Laboratory of Wheat and Maize Crop Science, Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou, Henan, China
| | - Ertao Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ruixin Shao
- National Key Laboratory of Wheat and Maize Crop Science, Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou, Henan, China
| | - Lixia Ku
- National Key Laboratory of Wheat and Maize Crop Science, Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou, Henan, China
| |
Collapse
|
233
|
Niu Y, Fu S, Chen G, Wang H, Wang Y, Hu J, Jin X, Zhang M, Lu M, He Y, Wang D, Chen Y, Zhang Y, Coll NS, Valls M, Zhao C, Chen Q, Lu H. Different epitopes of Ralstonia solanacearum effector RipAW are recognized by two Nicotiana species and trigger immune responses. MOLECULAR PLANT PATHOLOGY 2022; 23:188-203. [PMID: 34719088 PMCID: PMC8743020 DOI: 10.1111/mpp.13153] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 05/17/2023]
Abstract
Diverse pathogen effectors convergently target conserved components in plant immunity guarded by intracellular nucleotide-binding domain leucine-rich repeat receptors (NLRs) and activate effector-triggered immunity (ETI), often causing cell death. Little is known of the differences underlying ETI in different plants triggered by the same effector. In this study, we demonstrated that effector RipAW triggers ETI on Nicotiana benthamiana and Nicotiana tabacum. Both the first 107 amino acids (N1-107 ) and RipAW E3-ligase activity are required but not sufficient for triggering ETI on N. benthamiana. However, on N. tabacum, the N1-107 fragment is essential and sufficient for inducing cell death. The first 60 amino acids of the protein are not essential for RipAW-triggered cell death on either N. benthamiana or N. tabacum. Furthermore, simultaneous mutation of both R75 and R78 disrupts RipAW-triggered ETI on N. tabacum, but not on N. benthamiana. In addition, N. tabacum recognizes more RipAW orthologs than N. benthamiana. These data showcase the commonalities and specificities of RipAW-activated ETI in two evolutionally related species, suggesting Nicotiana species have acquired different abilities to perceive RipAW and activate plant defences during plant-pathogen co-evolution.
Collapse
Affiliation(s)
- Yang Niu
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of AgronomyNorthwest A&F UniversityYanglingChina
| | - Shouyang Fu
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of AgronomyNorthwest A&F UniversityYanglingChina
| | - Gong Chen
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of AgronomyNorthwest A&F UniversityYanglingChina
| | - Huijuan Wang
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of AgronomyNorthwest A&F UniversityYanglingChina
| | - Yisa Wang
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of AgronomyNorthwest A&F UniversityYanglingChina
| | - JinXue Hu
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of AgronomyNorthwest A&F UniversityYanglingChina
| | - Xin Jin
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of AgronomyNorthwest A&F UniversityYanglingChina
| | - Mancang Zhang
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of AgronomyNorthwest A&F UniversityYanglingChina
| | - Mingxia Lu
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of AgronomyNorthwest A&F UniversityYanglingChina
| | - Yizhe He
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of AgronomyNorthwest A&F UniversityYanglingChina
| | - Dongdong Wang
- Shaanxi Key State Laboratory of Crop HeterosisNorthwest A&F UniversityYanglingChina
| | - Yue Chen
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of AgronomyNorthwest A&F UniversityYanglingChina
| | - Yong Zhang
- College of Food Science and EngineeringNorthwest A&F UniversityYanglingChina
- College of Resources and EnvironmentSouthwest UniversityChongqingChina
| | - Núria S. Coll
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River BasinSoutheast UniversityChongqingChina
| | - Marc Valls
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River BasinSoutheast UniversityChongqingChina
- Centre for Research in Agricultural GenomicsCSIC‐IRTA‐UAB‐UBBellaterraCataloniaSpain
| | - Cuizhu Zhao
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of AgronomyNorthwest A&F UniversityYanglingChina
| | - Qin Chen
- Shaanxi Key State Laboratory of Crop HeterosisNorthwest A&F UniversityYanglingChina
| | - Haibin Lu
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of AgronomyNorthwest A&F UniversityYanglingChina
- Department of GeneticsUniversity of BarcelonaBarcelonaSpain
| |
Collapse
|
234
|
Fuchs B, Laihonen M, Muola A, Saikkonen K, Dobrev PI, Vankova R, Helander M. A Glyphosate-Based Herbicide in Soil Differentially Affects Hormonal Homeostasis and Performance of Non-target Crop Plants. FRONTIERS IN PLANT SCIENCE 2022; 12:787958. [PMID: 35154181 PMCID: PMC8829137 DOI: 10.3389/fpls.2021.787958] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/29/2021] [Indexed: 05/28/2023]
Abstract
Glyphosate is the most widely used herbicide with a yearly increase in global application. Recent studies report glyphosate residues from diverse habitats globally where the effect on non-target plants are still to be explored. Glyphosate disrupts the shikimate pathway which is the basis for several plant metabolites. The central role of phytohormones in regulating plant growth and responses to abiotic and biotic environment has been ignored in studies examining the effects of glyphosate residues on plant performance and trophic interactions. We studied interactive effects of glyphosate-based herbicide (GBH) residues and phosphate fertilizer in soil on the content of main phytohormones, their precursors and metabolites, as well as on plant performance and herbivore damage, in three plant species, oat (Avena sativa), potato (Solanum tuberosum), and strawberry (Fragaria x ananassa). Plant hormonal responses to GBH residues were highly species-specific. Potato responded to GBH soil treatment with an increase in stress-related phytohormones abscisic acid (ABA), indole-3-acetic acid (IAA), and jasmonic acid (JA) but a decrease in cytokinin (CK) ribosides and cytokinin-O-glycosides. GBH residues in combination with phosphate in soil increased aboveground biomass of potato plants and the concentration of the auxin phenylacetic acid (PAA) but decreased phaseic acid and cytokinin ribosides (CKR) and O-glycosides. Chorismate-derived compounds [IAA, PAA and benzoic acid (BzA)] as well as herbivore damage decreased in oat, when growing in GBH-treated soil but concentrations of the cytokinin dihydrozeatin (DZ) and CKR increased. In strawberry plants, phosphate treatment was associated with an elevation of auxin (IAA) and the CK trans-zeatin (tZ), while decreasing concentrations of the auxin PAA and CK DZ was observed in the case of GBH treatment. Our results demonstrate that ubiquitous herbicide residues have multifaceted consequences by modulating the hormonal equilibrium of plants, which can have cascading effects on trophic interactions.
Collapse
Affiliation(s)
| | | | - Anne Muola
- Biodiversity Unit, University of Turku, Turku, Finland
| | | | - Petre I. Dobrev
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Radomira Vankova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Marjo Helander
- Department of Biology, University of Turku, Turku, Finland
| |
Collapse
|
235
|
Gupta K, Rishishwar R, Dasgupta I. The interplay of plant hormonal pathways and geminiviral proteins: partners in disease development. Virus Genes 2022; 58:1-14. [PMID: 35034268 DOI: 10.1007/s11262-021-01881-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 11/28/2021] [Indexed: 10/19/2022]
Abstract
Viruses belonging to the family Geminiviridae infect plants and are responsible for a number of diseases of crops in the tropical and sub-tropical regions of the World. The innate immune response of the plant assists in its defense against such viral pathogens by the recognition of pathogen/microbe-associated molecular patterns through pattern-recognition receptors. Phytohormone signalling pathways play a vital role in plant defense responses against these devastating viruses. Geminiviruses, however, have developed counter-defense strategies that prevail over the above defense pathways. The proteins encoded by geminiviruses act as suppressors of plant immunity by interacting with the signalling components of several hormones. In this review we focus on the molecular interplay of phytohormone pathways and geminiviral infection and try to find interesting parallels with similar mechanisms known in other plant-infecting viruses and strengthen the argument that this interplay is necessary for disease development.
Collapse
Affiliation(s)
- Kanika Gupta
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, -110021, India
| | - Rashmi Rishishwar
- Department of Botany, Bhagat Singh Government P.G. College, Jaora, Ratlam, Madhya Pradesh, 457226, India
| | - Indranil Dasgupta
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, -110021, India.
| |
Collapse
|
236
|
Singh N, Nandi AK. AtOZF1 positively regulates JA signaling and SA-JA cross-talk in Arabidopsis thaliana. J Biosci 2022. [DOI: 10.1007/s12038-021-00243-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
237
|
Quaglia M, Troni E, D’Amato R, Ederli L. Effect of zinc imbalance and salicylic acid co-supply on Arabidopsis response to fungal pathogens with different lifestyles. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:30-40. [PMID: 34608720 PMCID: PMC9291626 DOI: 10.1111/plb.13344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
In higher plants, Zn nutritional imbalance can affect growth, physiology and response to stress, with effect variable depending on host-pathogen interaction. Mechanisms through which Zn operates are not yet well known. The hormone salicylic acid (SA) can affect plant ion uptake, transport and defence responses. Thus, in this study the impact of Zn imbalance and SA co-supply on severity of infection with the necrotrophic fungal pathogen B. cinerea or the biotroph G. cichoracearum was assessed in A. thaliana Col-0. Spectrophotometric assays for pigments and malondialdehyde (MDA) content as a marker of lipid peroxidation, plant defensin 1.2 gene expression by semi-quantitative PCR, callose visualization by fluorescence microscopy and diseases evaluation by macro- and microscopic observations were carried out. Zinc plant concentration varied with the supplied dose. In comparison with the control, Zn-deficit or Zn-excess led to reduced chlorophyll content and PDF 1.2 transcripts induction. In Zn-deficient plants, where MDA increased, also the susceptibility to B. cinerea increased, whereas MDA decreased in G. cichoracearum. Zinc excess increased susceptibility to both pathogens. Co-administration of SA positively affected MDA level, callose deposition, PDF 1.2 transcripts and plant response to the two pathogens. The increased susceptibility to B. cinerea in both Zn-deficient and Zn-excess plants could be related to lack of induction of PDF 1.2 transcripts; oxidative stress could explain higher susceptibility to the necrotroph and lower susceptibility to the biotroph in Zn-deficient plants. This research shows that an appropriate evaluation of Zn supply according to the prevalent stress factor is desirable for plants.
Collapse
Affiliation(s)
- M. Quaglia
- Department of Agricultural, Food and Environmental SciencesUniversity of PerugiaPerugiaItaly
| | - E. Troni
- Department of Agricultural, Food and Environmental SciencesUniversity of PerugiaPerugiaItaly
| | - R. D’Amato
- Department of Agricultural, Food and Environmental SciencesUniversity of PerugiaPerugiaItaly
| | - L. Ederli
- Department of Agricultural, Food and Environmental SciencesUniversity of PerugiaPerugiaItaly
| |
Collapse
|
238
|
Nouri K, Janmohammadi M, Asghar Aliloo A, Nouraein M, Abbasi A. Effects of Farmyard Manure and Exogenous Spray of Bio-Stimulants on Seed Quality of Kabuli Chickpea. ACTA UNIVERSITATIS AGRICULTURAE ET SILVICULTURAE MENDELIANAE BRUNENSIS 2022. [DOI: 10.11118/actaun.2021.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
239
|
Wu T, Zhang H, Bi Y, Yu Y, Liu H, Yang H, Yuan B, Ding X, Chu Z. Tal2c Activates the Expression of OsF3H04g to Promote Infection as a Redundant TALE of Tal2b in Xanthomonas oryzae pv. oryzicola. Int J Mol Sci 2021; 22:ijms222413628. [PMID: 34948428 PMCID: PMC8707247 DOI: 10.3390/ijms222413628] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/11/2022] Open
Abstract
Xanthomonas oryzae delivers transcription activator-like effectors (TALEs) into plant cells to facilitate infection. Following economic principles, the redundant TALEs are rarely identified in Xanthomonas. Previously, we identified the Tal2b, which activates the expression of the rice 2-oxoglutarate-dependent dioxygenase gene OsF3H03g to promote infection in the highly virulent strain of X. oryzae pv. oryzicola HGA4. Here, we reveal that another clustered TALE, Tal2c, also functioned as a virulence factor to target rice OsF3H04g, a homologue of OsF3H03g. Transferring Tal2c into RS105 induced expression of OsF3H04g to coincide with increased susceptibility in rice. Overexpressing OsF3H04g caused higher susceptibility and less salicylic acid (SA) production compared to wild-type plants. Moreover, CRISPR–Cas9 system-mediated editing of the effector-binding element in the promoters of OsF3H03g or OsF3H04g was found to specifically enhance resistance to Tal2b- or Tal2c-transferring strains, but had no effect on resistance to either RS105 or HGA4. Furthermore, transcriptome analysis revealed that several reported SA-related and defense-related genes commonly altered expression in OsF3H04g overexpression line compared with those identified in OsF3H03g overexpression line. Overall, our results reveal a functional redundancy mechanism of pathogenic virulence in Xoc in which tandem Tal2b and Tal2c specifically target homologues of host genes to interfere with rice immunity by reducing SA.
Collapse
Affiliation(s)
- Tao Wu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China; (T.W.); (H.Z.); (Y.Y.); (H.L.)
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life Sciences, Wuhan University, Wuhan 430072, China;
| | - Haimiao Zhang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China; (T.W.); (H.Z.); (Y.Y.); (H.L.)
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China
| | - Yunya Bi
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life Sciences, Wuhan University, Wuhan 430072, China;
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China;
| | - Yue Yu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China; (T.W.); (H.Z.); (Y.Y.); (H.L.)
| | - Haifeng Liu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China; (T.W.); (H.Z.); (Y.Y.); (H.L.)
| | - Hong Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China;
| | - Bin Yuan
- Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan 430064, China;
| | - Xinhua Ding
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China; (T.W.); (H.Z.); (Y.Y.); (H.L.)
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China
- Correspondence: (X.D.); (Z.C.); Tel.: +86-538-8245569 (X.D.); +86-27-68752095 (Z.C.)
| | - Zhaohui Chu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China; (T.W.); (H.Z.); (Y.Y.); (H.L.)
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life Sciences, Wuhan University, Wuhan 430072, China;
- Correspondence: (X.D.); (Z.C.); Tel.: +86-538-8245569 (X.D.); +86-27-68752095 (Z.C.)
| |
Collapse
|
240
|
Rice functional genomics: decades' efforts and roads ahead. SCIENCE CHINA. LIFE SCIENCES 2021; 65:33-92. [PMID: 34881420 DOI: 10.1007/s11427-021-2024-0] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/01/2021] [Indexed: 12/16/2022]
Abstract
Rice (Oryza sativa L.) is one of the most important crops in the world. Since the completion of rice reference genome sequences, tremendous progress has been achieved in understanding the molecular mechanisms on various rice traits and dissecting the underlying regulatory networks. In this review, we summarize the research progress of rice biology over past decades, including omics, genome-wide association study, phytohormone action, nutrient use, biotic and abiotic responses, photoperiodic flowering, and reproductive development (fertility and sterility). For the roads ahead, cutting-edge technologies such as new genomics methods, high-throughput phenotyping platforms, precise genome-editing tools, environmental microbiome optimization, and synthetic methods will further extend our understanding of unsolved molecular biology questions in rice, and facilitate integrations of the knowledge for agricultural applications.
Collapse
|
241
|
Ding P, Sakai T, Krishna Shrestha R, Manosalva Perez N, Guo W, Ngou BPM, He S, Liu C, Feng X, Zhang R, Vandepoele K, MacLean D, Jones JDG. Chromatin accessibility landscapes activated by cell-surface and intracellular immune receptors. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:7927-7941. [PMID: 34387350 DOI: 10.1093/jxb/erab373] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
Activation of cell-surface and intracellular receptor-mediated immunity results in rapid transcriptional reprogramming that underpins disease resistance. However, the mechanisms by which co-activation of both immune systems lead to transcriptional changes are not clear. Here, we combine RNA-seq and ATAC-seq to define changes in gene expression and chromatin accessibility. Activation of cell-surface or intracellular receptor-mediated immunity, or both, increases chromatin accessibility at induced defence genes. Analysis of ATAC-seq and RNA-seq data combined with publicly available information on transcription factor DNA-binding motifs enabled comparison of individual gene regulatory networks activated by cell-surface or intracellular receptor-mediated immunity, or by both. These results and analyses reveal overlapping and conserved transcriptional regulatory mechanisms between the two immune systems.
Collapse
Affiliation(s)
- Pingtao Ding
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
- Institute of Biology Leiden, Leiden University, Sylviusweg 72, Leiden 2333 BE, The Netherlands
| | - Toshiyuki Sakai
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Ram Krishna Shrestha
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Nicolas Manosalva Perez
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Wenbin Guo
- Information and Computational Sciences, The James Hutton Institute, Dundee DD2 5DA, UK
| | - Bruno Pok Man Ngou
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Shengbo He
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Chang Liu
- Institute of Biology, University of Hohenheim, Garbenstrasse 30, 70599 Stuttgart, Germany
| | - Xiaoqi Feng
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Runxuan Zhang
- Information and Computational Sciences, The James Hutton Institute, Dundee DD2 5DA, UK
| | - Klaas Vandepoele
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Dan MacLean
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Jonathan D G Jones
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| |
Collapse
|
242
|
Wu Z, He L, Jin Y, Chen J, Shi H, Wang Y, Yang W. HISTONE DEACETYLASE 6 suppresses salicylic acid biosynthesis to repress autoimmunity. PLANT PHYSIOLOGY 2021; 187:2592-2607. [PMID: 34618093 PMCID: PMC8644357 DOI: 10.1093/plphys/kiab408] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
Salicylic acid (SA) plays an important role for plant immunity, especially resistance against biotrophic pathogens. SA quickly accumulates after pathogen attack to activate downstream immunity events and is normally associated with a tradeoff in plant growth. Therefore, the SA level in plants has to be strictly controlled when pathogens are absent, but how this occurs is not well understood. Previously we found that in Arabidopsis (Arabidopsis thaliana), HISTONE DEACETYLASE 6 (HDA6), a negative regulator of gene expression, plays an essential role in plant immunity since its mutation allele shining 5 (shi5) exhibits autoimmune phenotypes. Here we report that this role is mainly through suppression of SA biosynthesis: first, the autoimmune phenotypes and higher resistance to Pst DC3000 of shi5 mutants depended on SA; second, SA significantly accumulated in shi5 mutants; third, HDA6 repressed SA biosynthesis by directly controlling the expression of CALMODULIN BINDING PROTEIN 60g (CBP60g) and SYSTEMIC ACQUIRED RESISTANCE DEFICIENT 1 (SARD1). HDA6 bound to the chromatin of CBP60g and SARD1 promoter regions, and histone H3 acetylation was highly enriched within these regions. Furthermore, the transcriptome of shi5 mutants mimicked that of plants treated with exogenous SA or attacked by pathogens. All these data suggest that HDA6 is vital for plants in finely controlling the SA level to regulate plant immunity.
Collapse
Affiliation(s)
- Zhenjiang Wu
- School of Life Sciences, Central China Normal University, Wuhan, 43009 Hubei, PR China
| | - Lei He
- School of Life Sciences, Central China Normal University, Wuhan, 43009 Hubei, PR China
| | - Ye Jin
- School of Life Sciences, Central China Normal University, Wuhan, 43009 Hubei, PR China
| | - Jing Chen
- School of Life Sciences, Central China Normal University, Wuhan, 43009 Hubei, PR China
| | - Huazhong Shi
- School of Life Sciences, Central China Normal University, Wuhan, 43009 Hubei, PR China
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, USA
| | - Yizhong Wang
- School of Life Sciences, Central China Normal University, Wuhan, 43009 Hubei, PR China
| | - Wannian Yang
- School of Life Sciences, Central China Normal University, Wuhan, 43009 Hubei, PR China
| |
Collapse
|
243
|
Taherbahrani S, Zoufan P, Zargar B. Modulation of the toxic effects of zinc oxide nanoparticles by exogenous salicylic acid pretreatment in Chenopodium murale L. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:65644-65654. [PMID: 34322811 DOI: 10.1007/s11356-021-15566-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/18/2021] [Indexed: 06/13/2023]
Abstract
Due to many uses of zinc oxide nanoparticles (ZnO NPs) in various industries, the release of these particles in the environment and their effects on living organisms is inevitable. In this study, the role of salicylic acid (SA) pretreatments in modulating the toxicity of ZnO NPs was investigated using a hydroponic system. After pretreatment with different concentrations of SA (0, 25, 75, and 150 μM), Chenopodium murale plants were exposed to ZnO NPs (50 mg L-1). The results showed that exogenous SA increased the length, weight, chlorophyll, proline, starch, and soluble sugars in the plants. Besides, SA pretreatments improved water status in the plants treated with ZnO NPs. In SA-pretreated plants, increased activity of catalase (CAT), guaiacol peroxidase (GPX), and superoxide dismutase (SOD) was associated with a decline in electrolyte leakage (EL %) and membrane peroxidation. Under NPs stress, SA pretreatments increased the content of phenolic compounds by increasing the activity of phenylalanine ammonia-lyase (PAL). Exogenous SA reduced the translocation of larger amounts of Zn to the shoots, with more accumulation in the roots. This result can be used to produce healthy food from plants grown in environments contaminated with nanoparticles. It seems that all concentrations of SA reduced the symptoms of ZnO NPs toxicity in the plant by strengthening the function of the antioxidant system and increasing the content of some metabolites. Findings also suggest that SA pretreatment can compensate for the growth reduction caused by ZnO NPs.
Collapse
Affiliation(s)
- Saadiyeh Taherbahrani
- Department of Biology, Faculty of Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Parzhak Zoufan
- Department of Biology, Faculty of Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Behrooz Zargar
- Department of Chemistry, Faculty of Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
244
|
Xu Y, Lei Y, Su Z, Zhao M, Zhang J, Shen G, Wang L, Li J, Qi J, Wu J. A chromosome-scale Gastrodia elata genome and large-scale comparative genomic analysis indicate convergent evolution by gene loss in mycoheterotrophic and parasitic plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:1609-1623. [PMID: 34647389 DOI: 10.1111/tpj.15528] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 05/27/2023]
Abstract
Mycoheterotrophic and parasitic plants are heterotrophic and parasitize on fungi and plants, respectively, to obtain nutrients. Large-scale comparative genomics analysis has not been conducted in mycoheterotrophic or parasitic plants or between these two groups of parasites. We assembled a chromosome-level genome of the fully mycoheterotrophic plant Gastrodia elata (Orchidaceae) and performed comparative genomic analyses on the genomes of G. elata and four orchids (initial mycoheterotrophs), three parasitic plants (Cuscuta australis, Striga asiatica, and Sapria himalayana), and 36 autotrophs from various angiosperm lineages. It was found that while in the hemiparasite S. asiatica and initial mycoheterotrophic orchids, approximately 4-5% of the conserved orthogroups were lost, the fully heterotrophic G. elata and C. australis both lost approximately 10% of the conserved orthogroups, indicating that increased heterotrophy is positively associated with gene loss. Importantly, many genes that are essential for autotrophs, including those involved in photosynthesis, the circadian clock, flowering time regulation, immunity, nutrient uptake, and root and leaf development, were convergently lost in both G. elata and C. australis. The high-quality genome of G. elata will facilitate future studies on the physiology, ecology, and evolution of mycoheterotrophic plants, and our findings highlight the critical role of gene loss in the evolution of plants with heterotrophic lifestyles.
Collapse
Affiliation(s)
- Yuxing Xu
- Yunnan Key Laboratory for Wild Plant Resources, Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Yunting Lei
- Yunnan Key Laboratory for Wild Plant Resources, Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Zhongxiang Su
- Yunnan Key Laboratory for Wild Plant Resources, Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Man Zhao
- Yunnan Key Laboratory for Wild Plant Resources, Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Jingxiong Zhang
- Yunnan Key Laboratory for Wild Plant Resources, Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Guojing Shen
- Yunnan Key Laboratory for Wild Plant Resources, Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Lei Wang
- Yunnan Key Laboratory for Wild Plant Resources, Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Jing Li
- Yunnan Key Laboratory for Wild Plant Resources, Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Jinfeng Qi
- Yunnan Key Laboratory for Wild Plant Resources, Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Jianqiang Wu
- Yunnan Key Laboratory for Wild Plant Resources, Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
245
|
Gallé Á, Bela K, Hajnal Á, Faragó N, Horváth E, Horváth M, Puskás L, Csiszár J. Crosstalk between the redox signalling and the detoxification: GSTs under redox control? PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 169:149-159. [PMID: 34798389 DOI: 10.1016/j.plaphy.2021.11.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/24/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
Reactive oxygen species (ROS), antioxidants and their reduction-oxidation (redox) states all contribute to the redox homeostasis, but glutathione is considered to be the master regulator of it. We aimed to understand the relationship between the redox potential and the diverse glutathione transferase (GST) enzyme family by comparing the stress responses of two tomato cultivars (Solanum lycopersicum 'Moneymaker' and 'Ailsa Craig'). Four-week-old plants were treated by two concentrations of mannitol, NaCl and salicylic acid. The lower H2O2 and malondialdehyde contents indicated higher stress tolerance of 'Moneymaker'. The redox status of roots was characterized by measuring the reduced and oxidized form of ascorbate and glutathione spectrophotometrically after 24 h. The redox potential of 'Ailsa Craig' was more oxidized compared to 'Moneymaker' even under control conditions and became more positive due to treatments. High-throughput quantitative real-time PCR revealed that besides overall higher expression levels, SlGSTs were activated more efficiently in 'Moneymaker' due to stresses, resulting in generally higher GST and glutathione peroxidase activities compared to 'Ailsa Craig'. The expression level of SlGSTs correlated differently, however Pearson's correlation analysis showed usually strong positive correlation between SlGST transcription and glutathione redox potential. The possible redox regulation of SlGST expressions was discussed.
Collapse
Affiliation(s)
- Ágnes Gallé
- Department of Plant Biology, Faculty of Sciences, University of Szeged, Közép fasor 52, 6726, Szeged, Hungary
| | - Krisztina Bela
- Department of Plant Biology, Faculty of Sciences, University of Szeged, Közép fasor 52, 6726, Szeged, Hungary
| | - Ádám Hajnal
- Department of Plant Biology, Faculty of Sciences, University of Szeged, Közép fasor 52, 6726, Szeged, Hungary
| | - Nóra Faragó
- Avidin Ltd., Alsó Kikötő sor 11/D, Szeged, 6726, Hungary; Laboratory of Functional Genomics, Biological Research Centre, Temesvári körút 62, Szeged, 6726, Hungary; Research Group for Cortical Microcircuits of the Hungarian Academy of Sciences, Department of Physiology, Anatomy and Neuroscience, University of Szeged, Közép fasor 52, Szeged, 6726, Hungary
| | - Edit Horváth
- Department of Plant Biology, Faculty of Sciences, University of Szeged, Közép fasor 52, 6726, Szeged, Hungary
| | - Mátyás Horváth
- Department of Plant Biology, Faculty of Sciences, University of Szeged, Közép fasor 52, 6726, Szeged, Hungary
| | - László Puskás
- Avidin Ltd., Alsó Kikötő sor 11/D, Szeged, 6726, Hungary; Laboratory of Functional Genomics, Biological Research Centre, Temesvári körút 62, Szeged, 6726, Hungary
| | - Jolán Csiszár
- Department of Plant Biology, Faculty of Sciences, University of Szeged, Közép fasor 52, 6726, Szeged, Hungary.
| |
Collapse
|
246
|
Gupta GD, Bansal R, Mistry H, Pandey B, Mukherjee PK. Structure-function analysis reveals Trichoderma virens Tsp1 to be a novel fungal effector protein modulating plant defence. Int J Biol Macromol 2021; 191:267-276. [PMID: 34547313 DOI: 10.1016/j.ijbiomac.2021.09.085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/03/2021] [Accepted: 09/13/2021] [Indexed: 11/17/2022]
Abstract
Trichoderma virens colonizes roots and develops a symbiotic relationship with plants where the fungal partner derives nutrients from plants and offers defence, in return. Tsp1, a small secreted cysteine-rich protein, was earlier found to be upregulated in co-cultivation of T. virens with maize roots. Tsp1 is well conserved in Ascomycota division of fungi, but none of its homologs have been studied yet. We have expressed and purified recombinant Tsp1, and resolved its structure to 1.25 Å resolutions, from two crystal forms, using Se-SAD methods. The Tsp1 adopts a β barrel fold and forms dimer in structure as well as in solution form. DALI based structure analysis revealed the structure similarity with two known fungal effector proteins: Alt a1 and PevD1. Structure and evolutionary analysis suggested that Tsp1 belongs to a novel effector protein family. Tsp1 acted as an inducer of salicylic acid mediated susceptibility in plants, rendering maize plants more susceptible to a necrotrophic pathogen Cochliobolus heterostrophus, as observed using plant defence assay and RT-qPCR analysis.
Collapse
Affiliation(s)
- Gagan D Gupta
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, India.
| | - Ravindra Bansal
- Nuclear Agriculture & Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Hiral Mistry
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, India
| | - Bharati Pandey
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Prasun K Mukherjee
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, India; Nuclear Agriculture & Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India.
| |
Collapse
|
247
|
Yang F, Wang H, Zhi C, Chen B, Zheng Y, Qiao L, Gao J, Pan Y, Cheng Z. Garlic Volatile Diallyl Disulfide Induced Cucumber Resistance to Downy Mildew. Int J Mol Sci 2021; 22:ijms222212328. [PMID: 34830208 PMCID: PMC8625977 DOI: 10.3390/ijms222212328] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 01/01/2023] Open
Abstract
Allicin compositions in garlic are used widely as fungicides in modern agriculture, in which diallyl disulfide (DADS) is a major compound. Downy mildew, caused by Pseudoperonospora cubensis (P. cubensis), is one of the most destructive diseases and causes severe yield losses in cucumbers. To explore the potential mechanism of DADS-induced cucumber resistance to downy mildew, cucumber seedlings were treated with DADS and then inoculated with P. cubensis at a 10-day interval. Symptom observation showed that DADS significantly induced cucumber resistance to downy mildew. Furthermore, both lignin and H2O2 were significantly increased by DADS treatment to responding P. cubensis infection. Simultaneously, the enzyme activities of peroxidase (POD) in DADS-treated seedlings were significantly promoted. Meanwhile, both the auxin (IAA) and salicylic acid (SA) contents were increased, and their related differentially expressed genes (DEGs) were up-regulated when treated with DADS. Transcriptome profiling showed that many DEGs were involved in the biological processes of defense responses, in which DEGs on the pathways of 'phenylpropanoid biosynthesis', 'phenylalanine metabolism', 'MAPK signaling', and 'plant hormone signal transduction' were significantly up-regulated in DADS-treated cucumbers uninoculated with the pathogen. Based on the results of several physiological indices and transcriptomes, a potential molecular mechanism of DADS-induced cucumber resistance to downy mildew was proposed and discussed. The results of this study might give new insight into the exploration of the induced resistance mechanism of cucumber to downy mildew and provide useful information for the subsequent mining of resistance genes in cucumber.
Collapse
|
248
|
Xiao L, Du Q, Fang Y, Quan M, Lu W, Wang D, Si J, El-Kassaby YA, Zhang D. Genetic architecture of the metabolic pathway of salicylic acid biosynthesis in Populus. TREE PHYSIOLOGY 2021; 41:2198-2215. [PMID: 33987676 DOI: 10.1093/treephys/tpab068] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 05/05/2021] [Indexed: 06/12/2023]
Abstract
Salicylic acid (SA) is a vital hormone for adaptive responses to biotic and abiotic stresses, which facilitates growth-immunity trade-offs in plants. However, the genetic regulatory networks underlying the metabolic pathway of SA biosynthesis in perennial species remain unclear. Here, we integrated genome-wide association study (GWAS) with metabolite and expression profiling methodologies to dissect the genetic architecture of SA biosynthesis in Populus. First, we quantified nine intermediate metabolites of SA biosynthesis in 300 unrelated Populus tomentosa Carr. individuals. Then, we used a systematic genetic strategy to identify candidate genes for constructing the genetic regulatory network of SA biosynthesis. We focused on WRKY70, an efficient transcription factor, as the key causal gene in the regulatory network, and combined the novel genes coordinating the accumulation of SA. Finally, we identified eight GWAS signals and eight expression quantitative trait loci situated in a selective sweep, and showed the presence of large allele frequency differences among the three geographic populations, revealing that candidate genes subject to selection were involved in SA biosynthesis. This study provides an integrated strategy for dissecting the genetic architecture of the metabolic pathway of SA biosynthesis in Populus, thereby enhancing our understanding of genetic regulation of SA biosynthesis in trees, and accelerating marker-assisted breeding efforts toward high-resistance elite varieties of Populus.
Collapse
Affiliation(s)
- Liang Xiao
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
| | - Qingzhang Du
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
| | - Yuanyuan Fang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
| | - Mingyang Quan
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
| | - Wenjie Lu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
| | - Dan Wang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
| | - Jingna Si
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
| | - Yousry A El-Kassaby
- Department of Forest and Conservation Sciences, Faculty of Forestry, The University of British Columbia, Forest Sciences Centre, 2424 Main Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Deqiang Zhang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
| |
Collapse
|
249
|
Bauters L, Stojilković B, Gheysen G. Pathogens pulling the strings: Effectors manipulating salicylic acid and phenylpropanoid biosynthesis in plants. MOLECULAR PLANT PATHOLOGY 2021; 22:1436-1448. [PMID: 34414650 PMCID: PMC8518561 DOI: 10.1111/mpp.13123] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/15/2021] [Accepted: 08/01/2021] [Indexed: 06/01/2023]
Abstract
During evolution, plants have developed sophisticated ways to cope with different biotic and abiotic stresses. Phytohormones and secondary metabolites are known to play pivotal roles in defence responses against invading pathogens. One of the key hormones involved in plant immunity is salicylic acid (SA), of which the role in plant defence is well established and documented. Plants produce an array of secondary metabolites categorized in different classes, with the phenylpropanoids as major players in plant immunity. Both SA and phenylpropanoids are needed for an effective immune response by the plant. To successfully infect the host, pathogens secrete proteins, called effectors, into the plant tissue to lower defence. Secreted effectors can interfere with several metabolic or signalling pathways in the host to facilitate infection. In this review, we will focus on the different strategies pathogens have developed to affect the levels of SA and phenylpropanoids to increase plant susceptibility.
Collapse
Affiliation(s)
- Lander Bauters
- Department of BiotechnologyFaculty of Bioscience EngineeringGhent UniversityGhentBelgium
| | - Boris Stojilković
- Department of BiotechnologyFaculty of Bioscience EngineeringGhent UniversityGhentBelgium
| | - Godelieve Gheysen
- Department of BiotechnologyFaculty of Bioscience EngineeringGhent UniversityGhentBelgium
| |
Collapse
|
250
|
Saleem M, Fariduddin Q, Castroverde CDM. Salicylic acid: A key regulator of redox signalling and plant immunity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 168:381-397. [PMID: 34715564 DOI: 10.1016/j.plaphy.2021.10.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/30/2021] [Accepted: 10/03/2021] [Indexed: 05/04/2023]
Abstract
In plants, the reactive oxygen species (ROS) formed during normal conditions are essential in regulating several processes, like stomatal physiology, pathogen immunity and developmental signaling. However, biotic and abiotic stresses can cause ROS over-accumulation leading to oxidative stress. Therefore, a suitable equilibrium is vital for redox homeostasis in plants, and there have been major advances in this research arena. Salicylic acid (SA) is known as a chief regulator of ROS; however, the underlying mechanisms remain largely unexplored. SA plays an important role in establishing the hypersensitive response (HR) and systemic acquired resistance (SAR). This is underpinned by a robust and complex network of SA with Non-Expressor of Pathogenesis Related protein-1 (NPR1), ROS, calcium ions (Ca2+), nitric oxide (NO) and mitogen-activated protein kinase (MAPK) cascades. In this review, we summarize the recent advances in the regulation of ROS and antioxidant defense system signalling by SA at the physiological and molecular levels. Understanding the molecular mechanisms of how SA controls redox homeostasis would provide a fundamental framework to develop approaches that will improve plant growth and fitness, in order to meet the increasing global demand for food and bioenergy.
Collapse
Affiliation(s)
- Mohd Saleem
- Plant Physiology and Biochemistry Section, Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Qazi Fariduddin
- Plant Physiology and Biochemistry Section, Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India.
| | | |
Collapse
|