201
|
Won HS, Kang SJ, Lee BJ. Action mechanism and structural requirements of the antimicrobial peptides, gaegurins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1788:1620-9. [PMID: 19059199 DOI: 10.1016/j.bbamem.2008.10.021] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Revised: 10/20/2008] [Accepted: 10/28/2008] [Indexed: 12/27/2022]
Abstract
Gaegurins (GGNs) are a family of cationic, alpha-helical, antimicrobial peptides that were isolated from a Korean frog, Glandirana emeljanovi (formerly classified as Rana rugosa) and represent one of the structurally well-characterized groups. Among six gaegurins, gaegurin 4 (renamed herein esculentin-2EM), gaegurin 5 (brevinin-1EMa), and gaegurin 6 (brevinin-1EMb) have been investigated comprehensively in terms of structure-activity relationships. In this paper, we first suggest renaming of gaegurins according to a recently raised rule of systematic nomenclature. Then, the current understanding of gaegurins is reviewed by summarizing their structure-activity relationships. In particular competing arguments on gaegurins are synthetically inspected. Finally their action mechanism and structural requirements will be discussed.
Collapse
Affiliation(s)
- Hyung-Sik Won
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, Chungbuk 380-701, South Korea.
| | | | | |
Collapse
|
202
|
Høiberg-Nielsen R, Tofteng Shelton AP, Sørensen KK, Roessle M, Svergun DI, Thulstrup PW, Jensen KJ, Arleth L. 3- Instead of 4-Helix Formation in a De Novo Designed Protein in Solution Revealed by Small-Angle X-ray Scattering. Chembiochem 2008; 9:2663-72. [DOI: 10.1002/cbic.200800263] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
203
|
Cheung GYC, Kelly SM, Jess TJ, Prior S, Price NC, Parton R, Coote JG. Functional and structural studies on different forms of the adenylate cyclase toxin of Bordetella pertussis. Microb Pathog 2008; 46:36-42. [PMID: 18992319 DOI: 10.1016/j.micpath.2008.10.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Revised: 10/02/2008] [Accepted: 10/07/2008] [Indexed: 12/23/2022]
Abstract
A comparison was made of the cytotoxic activity and secondary structural features of four recombinant forms of adenylate cyclase toxin (CyaA). These forms were fully functional CyaA, CyaA lacking adenylate cyclase enzymatic activity (CyaA*), and non-acylated forms of these toxins, proCyaA and proCyaA*. At a toxin concentration>1 microg/ml, CyaA* was as cytotoxic towards J774.2 cells as CyaA and mediated cell killing at a faster rate than CyaA. At concentrations<0.5 microg/ml, CyaA* was less cytotoxic than CyaA and, at <0.1 microg/ml of CyaA*, no activity was detected. CyaA, but not CyaA*, was able to induce caspase 3/7 activity, a measure of apoptosis. ProCyaA and proCyaA* had no detectable cytotoxic or apoptotic activity. CyaA caused 50% inhibition of the zymosan-stimulated oxidative burst at 0.003 microg/ml, whereas a approximately 500-fold greater toxin concentration of CyaA* or proCyaA was needed for 50% inhibition. ProCyaA* was inactive. CyaA is a calcium-binding protein and far UV circular dichroism (CD), near UV CD and fluorescence spectra analyses showed that all the forms of CyaA had similar overall structures at different calcium concentrations up to 5.0 mM. At 7.5 mM CaCl2, the far UV spectrum of CyaA altered significantly, indicating a change in secondary structure associated with high beta-sheet content or a beta-aggregated state, whereas the spectrum of CyaA* showed only a slight alteration at this calcium concentration. Near UV CD and fluorescence studies were consistent with a rearrangement of secondary structural elements in the presence of CaCl2 for all CyaA forms. There was a marked dependence on protein concentration of the far UV spectra of these CyaA forms, implying an interaction between individual molecules at higher protein concentrations.
Collapse
Affiliation(s)
- Gordon Y C Cheung
- Division of Infection and Immunity, University of Glasgow, Institute of Biomedical and Life Sciences, Glasgow Biomedical Research Centre, 120 University Place, Glasgow G12 8TA, UK
| | | | | | | | | | | | | |
Collapse
|
204
|
Bioelectrocatalytic hydrogels from electron-conducting metallopolypeptides coassembled with bifunctional enzymatic building blocks. Proc Natl Acad Sci U S A 2008; 105:15275-80. [PMID: 18824691 DOI: 10.1073/pnas.0805249105] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Here, we present two bifunctional protein building blocks that coassemble to form a bioelectrocatalytic hydrogel that catalyzes the reduction of dioxygen to water. One building block, a metallopolypeptide based on a previously designed triblock polypeptide, is electron-conducting. A second building block is a chimera of artificial alpha-helical leucine zipper and random coil domains fused to a polyphenol oxidase, small laccase (SLAC). The metallopolypeptide has a helix-random-helix secondary structure and forms a hydrogel via tetrameric coiled coils. The helical and random domains are identical to those fused to the polyphenol oxidase. Electron-conducting functionality is derived from the divalent attachment of an osmium bis-bipyrdine complex to histidine residues within the peptide. Attachment of the osmium moiety is demonstrated by mass spectroscopy (MS-MALDI-TOF) and cyclic voltammetry. The structure and function of the alpha-helical domains are confirmed by circular dichroism spectroscopy and by rheological measurements. The metallopolypeptide shows the ability to make electrical contact to a solid-state electrode and to the redox centers of modified SLAC. Neat samples of the modified SLAC form hydrogels, indicating that the fused alpha-helical domain functions as a physical cross-linker. The fusion does not disrupt dimer formation, a necessity for catalytic activity. Mixtures of the two building blocks coassemble to form a continuous supramolecular hydrogel that, when polarized, generates a catalytic current in the presence of oxygen. The specific application of the system is a biofuel cell cathode, but this protein-engineering approach to advanced functional hydrogel design is general and broadly applicable to biocatalytic, biosensing, and tissue-engineering applications.
Collapse
|
205
|
Galdiero S, Falanga A, Vitiello M, D’Isanto M, Cantisani M, Kampanaraki A, Benedetti E, Browne H, Galdiero M. Peptides containing membrane-interacting motifs inhibit herpes simplex virus type 1 infectivity. Peptides 2008; 29:1461-71. [PMID: 18572274 PMCID: PMC7172891 DOI: 10.1016/j.peptides.2008.04.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Revised: 04/24/2008] [Accepted: 04/30/2008] [Indexed: 11/17/2022]
Abstract
Herpes simplex virus (HSV) membrane fusion represents an attractive target for anti-HSV therapy. To investigate the structural basis of HSV membrane fusion and identify new targets for inhibition, we have investigated the different membranotropic domains of HSV-1 gH envelope glycoprotein. We observed that fusion peptides when added exogenously are able to inhibit viral fusion likely by intercalating with viral fusion peptides upon adopting functional structure in membranes. Interestingly, peptides analogous to the predicted HSV-1 gH loop region inhibited viral plaque formation more significantly. Their inhibitory effect appears to be a consequence of their ability to partition into membranes and aggregate within them. Circular dichroism spectra showed that peptides self-associate in aqueous and lipidic solutions, therefore the inhibition of viral entry may occur via peptides association with their counterpart on wild-type gH. The antiviral activity of HSV-1 peptides tested provides an attractive basis for the development of new fusion peptide inhibitors corresponding to regions outside the fusion protein heptad repeat regions.
Collapse
Affiliation(s)
- Stefania Galdiero
- Department of Biological Sciences, Division of Biostructures, University of Naples “Federico II”, Via Mezzocannone 16, 80134 Naples, Italy
- Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples “Federico II”, Via Mezzocannone 16, 80134 Naples, Italy
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134 Naples, Italy
| | - Annarita Falanga
- Department of Experimental Medicine, II University of Naples, Via De Crecchio 7, 80138 Naples, Italy
| | - Mariateresa Vitiello
- Department of Experimental Medicine, II University of Naples, Via De Crecchio 7, 80138 Naples, Italy
| | - Marina D’Isanto
- Department of Experimental Medicine, II University of Naples, Via De Crecchio 7, 80138 Naples, Italy
| | - Marco Cantisani
- Department of Biological Sciences, Division of Biostructures, University of Naples “Federico II”, Via Mezzocannone 16, 80134 Naples, Italy
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134 Naples, Italy
| | - Aikaterini Kampanaraki
- Department of Experimental Medicine, II University of Naples, Via De Crecchio 7, 80138 Naples, Italy
| | - Ettore Benedetti
- Department of Biological Sciences, Division of Biostructures, University of Naples “Federico II”, Via Mezzocannone 16, 80134 Naples, Italy
- Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples “Federico II”, Via Mezzocannone 16, 80134 Naples, Italy
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134 Naples, Italy
| | - Helena Browne
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Massimiliano Galdiero
- Department of Experimental Medicine, II University of Naples, Via De Crecchio 7, 80138 Naples, Italy
- Corresponding author. Tel.: +39 081 5667646; fax: +39 081 5667578.
| |
Collapse
|
206
|
Kolusheva S, Lecht S, Derazon Y, Jelinek R, Lazarovici P. Pardaxin, a fish toxin peptide interaction with a biomimetic phospholipid/polydiacetylene membrane assay. Peptides 2008; 29:1620-5. [PMID: 18584915 DOI: 10.1016/j.peptides.2008.05.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 05/12/2008] [Accepted: 05/13/2008] [Indexed: 11/18/2022]
Abstract
Pardaxin is a fish toxin belonging to the alpha-helical, pore-forming peptide family, used in toxicological and biophysical research to study toxin-cell and -lipid-artificial membranes interactions. We investigated the membrane interaction of two pardaxin analogues using a colorimetric phospholipid/polydiacetylene biomimetic assay. In this assay, polydiacetylene undergoes visible, concentration dependent, blue-red transformation induced through interactions of pardaxins with the vesicle membrane. Pardaxins P4 and P5, are composed of 33 amino acids, but differ in a single amino acid substitution at the carboxy-terminal (G31 to D31, respectively) known to decrease the pore forming activity. Addition of pardaxins in the colorimetric assay induced dose-dependent color transitions with different kinetics. The colorimetric analysis could distinguish between different pardaxins-membrane interaction profiles, suggesting bilayer surface association for P4 and vesicle membrane penetration for P5. The colorimetric assay could distinguish between pardaxins membrane interaction profiles although circular dichroism spectra of vesicle-interacting pardaxins did not indicate a significant difference in the secondary structure between these two toxin analogues. The colorimetric platform utilized in the present report represents a useful assay with general applications for studying membrane interactions of peptides in general and pore-forming toxins in particular, and may become an important tool for evaluating quantitative toxin structure-activity relationship.
Collapse
Affiliation(s)
- Sofiya Kolusheva
- Ilse Katz Center for Meso- and Nano-Scale Science and Technology, Ben Gurion University, Beer-Sheva, 84105, Israel
| | | | | | | | | |
Collapse
|
207
|
Yamamoto M, Unzai S, Saijo S, Ito K, Mizutani K, Suno-Ikeda C, Yabuki-Miyata Y, Terada T, Toyama M, Shirouzu M, Kobayashi T, Kakinuma Y, Yamato I, Yokoyama S, Iwata S, Murata T. Interaction and Stoichiometry of the Peripheral Stalk Subunits NtpE and NtpF and the N-terminal Hydrophilic Domain of NtpI of Enterococcus hirae V-ATPase. J Biol Chem 2008; 283:19422-31. [DOI: 10.1074/jbc.m801772200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
208
|
Pantoja-Uceda D, Pastor MT, Salgado J, Pineda-Lucena A, Pérez-Payá E. Design of a bivalent peptide with two independent elements of secondary structure able to fold autonomously. J Pept Sci 2008; 14:845-54. [DOI: 10.1002/psc.1015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
209
|
Marsden HR, Korobko AV, van Leeuwen ENM, Pouget EM, Veen SJ, Sommerdijk NAJM, Kros A. Noncovalent Triblock Copolymers Based on a Coiled-Coil Peptide Motif. J Am Chem Soc 2008; 130:9386-93. [DOI: 10.1021/ja800254w] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hana Robson Marsden
- Department of Soft Matter Chemistry, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands, Soft Matter cryoTEM Research Unit, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands, and Van’t Hoff Laboratory, Debye Research Institute, Utrecht University, N-701 Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Alexander V. Korobko
- Department of Soft Matter Chemistry, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands, Soft Matter cryoTEM Research Unit, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands, and Van’t Hoff Laboratory, Debye Research Institute, Utrecht University, N-701 Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Ellen N. M. van Leeuwen
- Department of Soft Matter Chemistry, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands, Soft Matter cryoTEM Research Unit, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands, and Van’t Hoff Laboratory, Debye Research Institute, Utrecht University, N-701 Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Emilie M. Pouget
- Department of Soft Matter Chemistry, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands, Soft Matter cryoTEM Research Unit, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands, and Van’t Hoff Laboratory, Debye Research Institute, Utrecht University, N-701 Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Sandra J. Veen
- Department of Soft Matter Chemistry, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands, Soft Matter cryoTEM Research Unit, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands, and Van’t Hoff Laboratory, Debye Research Institute, Utrecht University, N-701 Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Nico A. J. M. Sommerdijk
- Department of Soft Matter Chemistry, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands, Soft Matter cryoTEM Research Unit, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands, and Van’t Hoff Laboratory, Debye Research Institute, Utrecht University, N-701 Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Alexander Kros
- Department of Soft Matter Chemistry, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands, Soft Matter cryoTEM Research Unit, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands, and Van’t Hoff Laboratory, Debye Research Institute, Utrecht University, N-701 Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
210
|
Selectional and mutational scope of peptides sequestering the Jun-Fos coiled-coil domain. J Mol Biol 2008; 381:73-88. [PMID: 18586270 DOI: 10.1016/j.jmb.2008.04.030] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2007] [Revised: 04/07/2008] [Accepted: 04/11/2008] [Indexed: 01/14/2023]
Abstract
The activator protein-1 (AP-1) complex plays a crucial role in numerous pathways, and its ability to induce tumorigenesis is well documented. Thus, AP-1 represents an interesting therapeutic target. We selected peptides from phage display and compared their ability to disrupt the cFos/cJun interaction to a previously described in vivo protein-fragment complementation assay (PCA). A cJun-based library was screened to enrich for peptides that disrupt the AP-1 complex by binding to the cFos coiled-coil domain. Interestingly, phage display identified one helix, JunW(Ph1) [phage-selected winning peptide (clone 1) targeting cFos], which differs in only 2 out of 10 randomized positions to JunW (PCA-selected winning peptide targeting cFos). Phage-selected peptides revealed higher affinity to cFos than wild-type cJun, harboring a T(m) of 53 degrees C compared to 16 degrees C for cFos/cJun or 44 degrees C for cFos/JunW. In PCA growth assays in the presence of cJun as competitor, phage-selected JunW(Ph1) conferred shorter generation times than JunW. Bacterial growth was barely detectable, using JunW(Ph1) as a competitor for the wild-type cJun/cFos interaction, indicating efficient cFos removal from the dimeric wild-type complex. Importantly, all inhibitory peptides were able to interfere with DNA binding as demonstrated in gel shift assays. The selected sequences have consequently improved our 'bZIP coiled-coil interaction prediction algorithm' in distinguishing interacting from noninteracting coiled-coil sequences. Predicting and manipulating protein interaction will accelerate the systems biology field, and generated peptides will be valuable tools for analytical and biomedical applications.
Collapse
|
211
|
Pomerantz WC, Grygiel TLR, Lai JR, Gellman SH. Distinctive circular dichroism signature for 14-helix-bundle formation by beta-peptides. Org Lett 2008; 10:1799-802. [PMID: 18396884 PMCID: PMC2886586 DOI: 10.1021/ol800622e] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We identify a distinctive circular dichroism (CD) signature for self-assembled 14-helical beta-peptides. Our data show that self-assembly leads to a mimimum at 205 nm, which is distinct from the well-known minimum at 214 nm for a monomeric 14-helix. The onset of assembly is indicated by [theta]205/[theta]214>0.7. Our results will facilitate rapid screening for self-assembling beta-peptides and raise the possibility that far-UV CD will be useful for detecting higher-order structure for other well-folded oligoamide backbones.
Collapse
Affiliation(s)
| | - Tami L. R. Grygiel
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin
53706
| | - Jonathan R. Lai
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin
53706
| | - Samuel H. Gellman
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin
53706
| |
Collapse
|
212
|
Yousef MS, Kamikubo H, Kataoka M, Kato R, Wakatsuki S. Miranda cargo-binding domain forms an elongated coiled-coil homodimer in solution: implications for asymmetric cell division in Drosophila. Protein Sci 2008; 17:908-17. [PMID: 18369190 PMCID: PMC2327284 DOI: 10.1110/ps.083431408] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2008] [Revised: 02/15/2008] [Accepted: 02/15/2008] [Indexed: 10/22/2022]
Abstract
Miranda is a multidomain adaptor protein involved in neuroblast asymmetric division in Drosophila melanogaster. The central domain of Miranda is necessary for cargo binding of the neural transcription factor Prospero, the Prospero-mRNA carrier Staufen, and the tumor suppressor Brat. Here, we report the first solution structure of Miranda central "cargo-binding" domain (residues 460-660) using small-angle X-ray scattering. Ab initio modeling of the scattering data yields an elongated "rod-like" molecule with a maximum linear dimension (D(max)) of approximately 22 nm. Moreover, circular dichroism and cross-linking experiments indicate that the cargo-binding domain is predominantly helical and forms a parallel coiled-coil homodimer in solution. Based on the results, we modeled the full-length Miranda protein as a double-headed, double-tailed homodimer with a long central coiled-coil region. We discuss the cargo-binding capacity of the central domain and propose a structure-based mechanism for cargo release and timely degradation of Miranda in developing neuroblasts.
Collapse
Affiliation(s)
- Mohammad S Yousef
- Structural Biology Research Center, Photon Factory, IMSS, High Energy Accelerator Research Organization, Tsukuba, Ibaraki 305-0801, Japan.
| | | | | | | | | |
Collapse
|
213
|
McNamara C, Zinkernagel AS, Macheboeuf P, Cunningham MW, Nizet V, Ghosh P. Coiled-coil irregularities and instabilities in group A Streptococcus M1 are required for virulence. Science 2008; 319:1405-8. [PMID: 18323455 PMCID: PMC2288698 DOI: 10.1126/science.1154470] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Antigenically variable M proteins are major virulence factors and immunogens of the human pathogen group A Streptococcus (GAS). Here, we report the approximately 3 angstrom resolution structure of a GAS M1 fragment containing the regions responsible for eliciting type-specific, protective immunity and for binding fibrinogen, which promotes M1 proinflammatory and antiphagocytic functions. The structure revealed substantial irregularities and instabilities throughout the coiled coil of the M1 fragment. Similar structural irregularities occur in myosin and tropomyosin, explaining the patterns of cross-reactivity seen in autoimmune sequelae of GAS infection. Sequence idealization of a large segment of the M1 coiled coil enhanced stability but diminished fibrinogen binding, proinflammatory effects, and antibody cross-reactivity, whereas it left protective immunogenicity undiminished. Idealized M proteins appear to have promise as vaccine immunogens.
Collapse
Affiliation(s)
- Case McNamara
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | | | - Pauline Macheboeuf
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Madeleine W. Cunningham
- University of Oklahoma Health Sciences Center, Biomedical Research Center, 975 North East 10th Street, Oklahoma City, OK 73104, USA
| | - Victor Nizet
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
- School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Partho Ghosh
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
- Section of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
214
|
Taira J, Jelokhani-Niaraki M, Osada S, Kato F, Kodama H. Ion-Channel Formation Assisted by Electrostatic Interhelical Interactions in Covalently Dimerized Amphiphilic Helical Peptides. Biochemistry 2008; 47:3705-14. [DOI: 10.1021/bi702371e] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Junichi Taira
- Department of Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan, Department of Chemistry, Faculty of Science, Wilfrid Laurier University, Waterloo, Ontario N2L 3C5, Canada, and Department of Applied Biological Science, Faculty of Agriculture, Saga University, Saga 840-8502, Japan
| | - Masoud Jelokhani-Niaraki
- Department of Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan, Department of Chemistry, Faculty of Science, Wilfrid Laurier University, Waterloo, Ontario N2L 3C5, Canada, and Department of Applied Biological Science, Faculty of Agriculture, Saga University, Saga 840-8502, Japan
| | - Satoshi Osada
- Department of Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan, Department of Chemistry, Faculty of Science, Wilfrid Laurier University, Waterloo, Ontario N2L 3C5, Canada, and Department of Applied Biological Science, Faculty of Agriculture, Saga University, Saga 840-8502, Japan
| | - Fumio Kato
- Department of Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan, Department of Chemistry, Faculty of Science, Wilfrid Laurier University, Waterloo, Ontario N2L 3C5, Canada, and Department of Applied Biological Science, Faculty of Agriculture, Saga University, Saga 840-8502, Japan
| | - Hiroaki Kodama
- Department of Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan, Department of Chemistry, Faculty of Science, Wilfrid Laurier University, Waterloo, Ontario N2L 3C5, Canada, and Department of Applied Biological Science, Faculty of Agriculture, Saga University, Saga 840-8502, Japan
| |
Collapse
|
215
|
Otzen DE, Nesgaard LW, Andersen KK, Hansen JH, Christiansen G, Doe H, Sehgal P. Aggregation of S6 in a quasi-native state by sub-micellar SDS. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1784:400-14. [DOI: 10.1016/j.bbapap.2007.11.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2007] [Revised: 11/09/2007] [Accepted: 11/13/2007] [Indexed: 11/29/2022]
|
216
|
Kish-Trier E, Briere LAK, Dunn SD, Wilkens S. The stator complex of the A1A0-ATP synthase--structural characterization of the E and H subunits. J Mol Biol 2008; 375:673-85. [PMID: 18036615 PMCID: PMC2275809 DOI: 10.1016/j.jmb.2007.10.063] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2007] [Revised: 10/10/2007] [Accepted: 10/25/2007] [Indexed: 10/22/2022]
Abstract
Archaeal ATP synthase (A-ATPase) is the functional homolog to the ATP synthase found in bacteria, mitochondria and chloroplasts, but the enzyme is structurally more related to the proton-pumping vacuolar ATPase found in the endomembrane system of eukaryotes. We have cloned, overexpressed and characterized the stator-forming subunits E and H of the A-ATPase from the thermoacidophilic Archaeon, Thermoplasma acidophilum. Size exclusion chromatography, CD, matrix-assisted laser desorption ionization time-of-flight mass spectrometry and NMR spectroscopic experiments indicate that both polypeptides have a tendency to form dimers and higher oligomers in solution. However, when expressed together or reconstituted, the two individual polypeptides interact with high affinity to form a stable heterodimer. Analyses by gel filtration chromatography and analytical ultracentrifugation show the heterodimer to have an elongated shape, and the preparation to be monodisperse. Thermal denaturation analyses by CD and differential scanning calorimetry revealed the more cooperative unfolding transitions of the heterodimer in comparison to those of the individual polypeptides. The data are consistent with the EH heterodimer forming the peripheral stalk(s) in the A-ATPase in a fashion analogous to that of the related vacuolar ATPase.
Collapse
MESH Headings
- Calorimetry, Differential Scanning
- Carrier Proteins/metabolism
- Catalytic Domain
- Chromatography, Gel
- Circular Dichroism
- Cloning, Molecular
- Dimerization
- Enzyme Stability
- Escherichia coli/genetics
- Euryarchaeota/enzymology
- Hot Temperature
- Hydrogen-Ion Concentration
- Hydrophobic and Hydrophilic Interactions
- Maltose-Binding Proteins
- Models, Molecular
- Molecular Weight
- Nuclear Magnetic Resonance, Biomolecular
- Open Reading Frames
- Protein Binding
- Protein Denaturation
- Protein Structure, Secondary
- Protein Structure, Tertiary
- Protein Subunits/chemistry
- Protein Subunits/genetics
- Protein Subunits/isolation & purification
- Protein Subunits/metabolism
- Proton-Translocating ATPases/chemistry
- Proton-Translocating ATPases/metabolism
- Quantum Theory
- Recombinant Fusion Proteins/chemistry
- Recombinant Fusion Proteins/isolation & purification
- Recombinant Fusion Proteins/metabolism
- Rotation
- Sequence Analysis, Protein
- Solubility
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Ultracentrifugation
- Water/chemistry
Collapse
Affiliation(s)
- Erik Kish-Trier
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | | | | | | |
Collapse
|
217
|
Mora P, Carbajo RJ, Pineda-Lucena A, Sánchez del Pino MM, Pérez-Payá E. Solvent-exposed residues located in the β-sheet modulate the stability of the tetramerization domain of p53-A structural and combinatorial approach. Proteins 2007; 71:1670-85. [DOI: 10.1002/prot.21854] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
218
|
Duncan KA, Huber SC. Sucrose synthase oligomerization and F-actin association are regulated by sucrose concentration and phosphorylation. PLANT & CELL PHYSIOLOGY 2007; 48:1612-1623. [PMID: 17932116 DOI: 10.1093/pcp/pcm133] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Sucrose synthase (SUS) is a key enzyme in plant metabolism, as it serves to cleave the photosynthetic end-product sucrose into UDP-glucose and fructose. SUS is generally assumed to be a tetrameric protein, but results in the present study suggest that SUS can form dimers as well as tetramers and that sucrose may be a regulatory factor for the oligomerization status of SUS. The oligomerization of SUS may also affect the cellular localization of the protein. We show that sucrose concentration modulates the ability of SUS1 to associate with F-actin in vitro and that calcium-dependent protein kinase-mediated phosphorylation of recombinant SUS1 at the Ser15 site is a negative regulator of its association with actin. Although high sucrose concentrations and hyperphosphorylation have been shown to promote SUS association with the plasma membrane, we show that the opposite is true for the SUS-actin association. We also show that SUS1 has a unique 28 residue coiled-coil domain that does not appear to play a role in oligomerization, but may prove to be significant in the future for interactions of SUS with other proteins. Collectively, these results highlight the multifaceted nature of SUS association with cellular structures.
Collapse
Affiliation(s)
- Kateri A Duncan
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | |
Collapse
|
219
|
Horgan CP, Oleksy A, Zhdanov AV, Lall PY, White IJ, Khan AR, Futter CE, McCaffrey JG, McCaffrey MW. Rab11-FIP3 is critical for the structural integrity of the endosomal recycling compartment. Traffic 2007; 8:414-30. [PMID: 17394487 DOI: 10.1111/j.1600-0854.2007.00543.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Rab11-FIP3 is an endosomal recycling compartment (ERC) protein that is implicated in the process of membrane delivery from the ERC to sites of membrane insertion during cell division. Here we report that Rab11-FIP3 is critical for the structural integrity of the ERC during interphase. We demonstrate that knockdown of Rab11-FIP3 and expression of a mutant of Rab11-FIP3 that is Rab11-binding deficient cause loss of all ERC-marker protein staining from the pericentrosomal region of A431 cells. Furthermore, we find that fluorophore-labelled transferrin cannot access the pericentrosomal region of cells in which Rab11-FIP3 function has been perturbed. We find that this Rab11-FIP3 function appears to be specific because expression of the equivalent Rab11-binding deficient mutant of Rab-coupling protein does not perturb ERC morphology. In addition, we find that other organelles such as sorting and late endosomes are unaffected by loss of Rab11-FIP3 function. Finally, we demonstrate the presence of an extensive coiled-coil region between residues 463 and 692 of Rab11-FIP3, which exists as a dimer in solution and is critical to support its function on the ERC. Together, these data indicate that Rab11-FIP3 is necessary for the structural integrity of the pericentrosomal ERC.
Collapse
Affiliation(s)
- Conor P Horgan
- Molecular Cell Biology Laboratory, Department of Biochemistry, Biosciences Institute, University College Cork, Cork, Ireland
| | | | | | | | | | | | | | | | | |
Collapse
|
220
|
Brown OJ, Lopez SA, Fuller AO, Goodson T. Formation and reversible dissociation of coiled coil of peptide to the C-terminus of the HSV B5 protein: a time-resolved spectroscopic analysis. Biophys J 2007; 93:1068-78. [PMID: 17496024 PMCID: PMC1913165 DOI: 10.1529/biophysj.106.100958] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Accepted: 04/09/2007] [Indexed: 11/18/2022] Open
Abstract
An understanding of the molecular mechanisms of the newly characterized herpes simplex virus (HSV) B5 protein is important to further elucidate the HSV cell entry and infection. The synthetic peptide of B5 (wtB5) was functionalized with the nonlinear optical chromophore cascade yellow and its molecular dynamics was probed at physiological and endosomal pH (pH 7.4 and 5.5, respectively). Steady-state CD spectroscopy was utilized to characterize the peptides at different pH. These spectra showed structural changes in the peptide with time measured over several days. Nonlinear optical measurements were carried out to probe the interactions and local environment of the labeled peptide, and the increase in the two-photon cross section of this system suggests an increase in chromophore-peptide interactions. Time-resolved fluorescence upconversion measurements reflected changes in the hydrophilic and hydrophobic local environments of the labeled peptide-chromophore system. Ultrafast depolarization measurements gave rotational correlation times indicative of a reversible change in the size of the peptide. The time-resolved results provide compelling evidence of a reversible dissociation of the coiled coils of the wtB5 peptide. This process was found to be pH-insensitive. The data from this unique combination of techniques provide an initial step to understanding the molecular dynamics of B5 and a framework for the development of novel imaging methods based on two-photon emission, as well as new therapeutics for HSV.
Collapse
Affiliation(s)
- Ordel J Brown
- Department of Chemistry, University of Michigan, USA
| | | | | | | |
Collapse
|
221
|
Fischer SE, Liu X, Mao HQ, Harden JL. Controlling cell adhesion to surfaces via associating bioactive triblock proteins. Biomaterials 2007; 28:3325-37. [PMID: 17459470 DOI: 10.1016/j.biomaterials.2007.03.026] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2006] [Accepted: 03/27/2007] [Indexed: 11/30/2022]
Abstract
A surface functionalization strategy that produces substrates with well-controlled ligand density is critical to investigating the role of cell-substrate interactions in regulating cell adhesion, viability, migration, proliferation and differentiation. Towards this end, we have designed and synthesized a triblock protein, CRC, comprising a polyelectrolyte domain flanked by two amphiphilic leucine zipper domains. The amphiphilic end domains of CRC adsorb onto surfaces and preferentially associate into trimeric aggregates, forming a hydrogel coating layer. Under serum-free conditions, the CRC coating was found to render both 2D substrates and 3D scaffolds non-adhesive to cells. A RGDS sequence was inserted in the middle domain of CRC (generating the protein CRC-RGDS) and found to introduce cell-binding activity. Incorporation of the RGDS sequence did not significantly impact the surface activity of CRC, allowing us to titrate the RGDS surface density simply by adjusting the relative ratios of the two proteins. Ligand density dependent cell-substrate interactions were demonstrated in human foreskin fibroblasts, human umbilical vein endothelial cells, and rat neural stem cells. The versatility to functionalize a range of different substrate surfaces, combined with the ease of controlling surface ligand density, makes these triblock proteins an attractive tool for developing cell-specific surface coatings with tailored biofunctional attributes.
Collapse
Affiliation(s)
- Stephen E Fischer
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | | | | | | |
Collapse
|
222
|
Yoon MK, Kim HM, Choi G, Lee JO, Choi BS. Structural Basis for the Conformational Integrity of the Arabidopsis thaliana HY5 Leucine Zipper Homodimer. J Biol Chem 2007; 282:12989-3002. [PMID: 17261584 DOI: 10.1074/jbc.m611465200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The leucine zipper (LZ) domain of the HY5 transcription factor from Arabidopsis thaliana has unique primary structural properties, including major occupation by the Leu residues as well as two buried polar residues in the a positions and a localized distribution of charged and polar residues in the first three heptad repeats. In this study, we solved the crystal structure of the HY5 LZ domain and show that the peculiarities in the primary sequence yield unusual structural characteristics. For example, the HY5 LZ domain exhibits a bipartite charge distribution characterized by a highly negative electrostatic surface potential in its N-terminal half and a nearly neutral potential in its C-terminal half. The LZ N-terminal region also contains two consecutive putative trigger sites for dimerization of the coiled coils. In addition, two buried asparagines at a positions 19 and 33 in the HY5 LZ domain display distinct modes of polar interaction. Whereas Asn(19) shows a conformational flip-flop, Asn(33) is engaged in a permanent hydrogen bond network. CD spectropolarimetry and analytical ultracentrifugation experiments performed with versions of the HY5 LZ domain containing mutations in the a positions yielded further evidence that position a amino acid residues are crucial for achieving an oligomeric state and maintaining stability. However, a low correlation between position a amino acid preference, core packing geometry, and rotamer conformations suggests that the oligomeric state of the LZ domain is not governed entirely by known structural properties. Taken together, our results suggest structural factors conferring conformational integrity of the HY5 LZ homodimer that are more complicated than proposed previously.
Collapse
Affiliation(s)
- Mi-Kyung Yoon
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejon, Republic of Korea
| | | | | | | | | |
Collapse
|
223
|
Tripet B, Cepeniene D, Kovacs JM, Mant CT, Krokhin OV, Hodges RS. Requirements for prediction of peptide retention time in reversed-phase high-performance liquid chromatography: hydrophilicity/hydrophobicity of side-chains at the N- and C-termini of peptides are dramatically affected by the end-groups and location. J Chromatogr A 2007; 1141:212-25. [PMID: 17187811 PMCID: PMC2722105 DOI: 10.1016/j.chroma.2006.12.024] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Revised: 12/01/2006] [Accepted: 12/05/2006] [Indexed: 11/27/2022]
Abstract
The value of reversed-phase high-performance liquid chromatography (RP-HPLC) and the field of proteomics would be greatly enhanced by accurate prediction of retention times of peptides of known composition. The present study investigates the hydrophilicity/hydrophobicity of amino acid side-chains at the N- and C-termini of peptides while varying the functional end-groups at the termini. We substituted all 20 naturally occurring amino acids at the N- and C-termini of a model peptide sequence, where the functional end-groups were N(alpha)-acetyl-X- and N(alpha)-amino-X- at the N-terminus and -X-C(alpha)-carboxyl and -X-C(alpha)-amide at the C-terminus. Amino acid coefficients were subsequently derived from the RP-HPLC retention behaviour of these peptides and compared to each other as well as to coefficients determined in the centre of the peptide chain (internal coefficients). Coefficients generated from residues substituted at the C-terminus differed most (between the -X-C(alpha)-carboxyl and -X-C(alpha)-amide peptide series) for hydrophobic side-chains. A similar result was seen for the N(alpha)-acetyl-X- and N(alpha)-amino-X- peptide series, where the largest differences in coefficient values were observed for hydrophobic side-chains. Coefficients derived from substitutions at the C-terminus for hydrophobic amino acids were dramatically different compared to internal coefficients for hydrophobic side-chains, ranging from 17.1 min for Trp to 4.8 min for Cys. In contrast, coefficients derived from substitutions at the N-terminus showed relatively small differences from the internal coefficients. Subsequent prediction of peptide retention time, within an error of just 0.4 min, was achieved by a predictive algorithm using a combination of internal coefficients and coefficients for the C-terminal residues. For prediction of peptide retention time, the sum of the coefficients must include internal and terminal coefficients.
Collapse
Affiliation(s)
- Brian Tripet
- Department of Biochemistry and Molecular Genetics, University of Colorado at Denverand Health Sciences Center, Aurora, CO, 80045, USA
| | - Dziuleta Cepeniene
- Department of Biochemistry and Molecular Genetics, University of Colorado at Denverand Health Sciences Center, Aurora, CO, 80045, USA
| | - James M. Kovacs
- Department of Biochemistry and Molecular Genetics, University of Colorado at Denverand Health Sciences Center, Aurora, CO, 80045, USA
| | - Colin T. Mant
- Department of Biochemistry and Molecular Genetics, University of Colorado at Denverand Health Sciences Center, Aurora, CO, 80045, USA
| | - Oleg V. Krokhin
- Manitoba Centre for Proteomic and Systems Biology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Robert S. Hodges
- Department of Biochemistry and Molecular Genetics, University of Colorado at Denverand Health Sciences Center, Aurora, CO, 80045, USA
| |
Collapse
|
224
|
Chen Y, Mant CT, Hodges RS. Preparative reversed-phase high-performance liquid chromatography collection efficiency for an antimicrobial peptide on columns of varying diameters (1mm to 9.4mm I.D.). J Chromatogr A 2007; 1140:112-20. [PMID: 17156789 PMCID: PMC2759115 DOI: 10.1016/j.chroma.2006.11.052] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2006] [Revised: 11/16/2006] [Accepted: 11/20/2006] [Indexed: 11/29/2022]
Abstract
The present study examines the effect of reversed-phase high-performance liquid chromatography (RP-HPLC) column diameter (1mm to 9.4mm I.D.) on the one-step slow gradient preparative purification of a 26-residue synthetic antimicrobial peptide. When taken together, the semi-preparative column (9.4mm I.D.) provided the highest yields of purified product (an average of 90.7% recovery from hydrophilic and hydrophobic impurities) over a wide range of sample load (0.75-200mg). Columns with smaller diameters, such as narrowbore columns (150x2.1mm I.D.) and microbore columns (150x1.0mm I.D.), can be employed to purify peptides with reasonable recovery of purified product but the range of the crude peptide that can be applied to the column is limited. In addition, the smaller diameter columns require more extensive fraction analysis to locate the fractions of pure product than the larger diameter column with the same load. Our results show the excellent potential of the one-step slow gradient preparative protocol as a universal method for purification of synthetic peptides.
Collapse
Affiliation(s)
- Yuxin Chen
- Department of Biochemistry and Molecular Genetics, University of Colorado at Denver and Health Sciences Center, Aurora, CO 80045, USA
| | - Colin T. Mant
- Department of Biochemistry and Molecular Genetics, University of Colorado at Denver and Health Sciences Center, Aurora, CO 80045, USA
| | - Robert S. Hodges
- Department of Biochemistry and Molecular Genetics, University of Colorado at Denver and Health Sciences Center, Aurora, CO 80045, USA
| |
Collapse
|
225
|
Corrêa F, Farah CS. Different effects of trifluoroethanol and glycerol on the stability of tropomyosin helices and the head-to-tail complex. Biophys J 2007; 92:2463-75. [PMID: 17218461 PMCID: PMC1864823 DOI: 10.1529/biophysj.106.098541] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Tropomyosin (Tm) is a dimeric coiled-coil protein, composed of 284 amino acids (410 A), that forms linear homopolymers through head-to-tail interactions at low ionic strength. The head-to-tail complex involves the overlap of approximately nine N-terminal residues of one molecule with nine C-terminal residues of another Tm molecule. In this study, we investigate the influence of 2,2,2-trifluoroethanol (TFE) and glycerol on the stability of recombinant Tm fragments (ASTm1-142, Tm143-284(5OHW269)) and of the dimeric head-to-tail complex formed by the association of these two fragments. The C-terminal fragment (Tm143-284(5OHW269)) contains a 5-hydroxytryptophan (5OHW) probe at position 269 whose fluorescence is sensitive to the head-to-tail interaction and allows us to accompany titrations of Tm143-284(5OHW269) with ASTm1-142 to calculate the dissociation constant (Kd) and the interaction energy at TFE and glycerol concentrations between 0% and 15%. We observe that TFE, but not glycerol, reduces the stability of the head-to-tail complex. Thermal denaturation experiments also showed that the head-to-tail complex increases the overall conformational stability of the Tm fragments. Urea and thermal denaturation assays demonstrated that both TFE and glycerol increase the stability of the isolated N- and C-terminal fragments; however, only TFE caused a significant reduction in the cooperativity of unfolding these fragments. Our results show that these two cosolvents stabilize the structures of individual Tm fragments in different manners and that these differences may be related to their opposing effects on head-to-tail complex formation.
Collapse
Affiliation(s)
- Fernando Corrêa
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | | |
Collapse
|
226
|
Wei X, Zeng XG, Zhou HM. Design and stability of a novel coiled-coil peptide. Int J Biol Macromol 2007; 40:83-6. [PMID: 16844213 DOI: 10.1016/j.ijbiomac.2006.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2006] [Revised: 06/02/2006] [Accepted: 06/02/2006] [Indexed: 11/21/2022]
Abstract
According to a template of natural protein, a novel peptide was designed with satisfied stability which came from the formation of coiled-coil dimer in vitro. The knowledge gained from this study is not only useful in antiparallel coiled-coil designing but also provide an ideal antiparallel coiled-coil model in future research.
Collapse
Affiliation(s)
- Xiang Wei
- Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing, China
| | | | | |
Collapse
|
227
|
Abstract
Integrin adhesion receptors mediate cell-cell and cell-substratum adhesion and provide a continuous link for the bidirectional transmission of mechanical force and biochemical signals across the plasma membrane. Integrin-dependent cellular activities such as adhesion, migration, proliferation, and survival rely upon the dynamic interaction of integrin cytoplasmic tails with intracellular integrin-binding proteins. In this review, we describe some of the methods that we have used to identify and characterize the interactions between integrin cytoplasmic tails and cytoskeletal proteins, as well as highlight methods to decipher the regulation of integrin tail interactions with intracellular ligands. Specifically, we describe recombinant models of integrin cytoplasmic tails and their use in protein-protein interaction studies.
Collapse
Affiliation(s)
- Yatish Lad
- Department of Pharmacology, Interdepartmental Program in Vascular Biology and Transplantation, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | |
Collapse
|
228
|
Chen Y, Guarnieri MT, Vasil AI, Vasil ML, Mant CT, Hodges RS. Role of peptide hydrophobicity in the mechanism of action of alpha-helical antimicrobial peptides. Antimicrob Agents Chemother 2006; 51:1398-406. [PMID: 17158938 PMCID: PMC1855469 DOI: 10.1128/aac.00925-06] [Citation(s) in RCA: 574] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the present study, the 26-residue amphipathic alpha-helical antimicrobial peptide V13KL (Y. Chen et al., J. Biol. Chem. 2005, 280:12316-12329, 2005) was used as the framework to study the effects of peptide hydrophobicity on the mechanism of action of antimicrobial peptides. Hydrophobicity was systematically decreased or increased by replacing leucine residues with less hydrophobic alanine residues or replacing alanine residues with more hydrophobic leucine residues on the nonpolar face of the helix, respectively. Hydrophobicity of the nonpolar face of the amphipathic helix was demonstrated to correlate with peptide helicity (measured by circular dichroism spectroscopy) and self-associating ability (measured by reversed-phase high-performance liquid chromatography temperature profiling) in aqueous environments. Higher hydrophobicity was correlated with stronger hemolytic activity. In contrast, there was an optimum hydrophobicity window in which high antimicrobial activity could be obtained. Decreased or increased hydrophobicity beyond this window dramatically decreased antimicrobial activity. The decreased antimicrobial activity at high peptide hydrophobicity can be explained by the strong peptide self-association which prevents the peptide from passing through the cell wall in prokaryotic cells, whereas increased peptide self-association had no effect on peptide access to eukaryotic membranes.
Collapse
Affiliation(s)
- Yuxin Chen
- Department of Biochemistry and Molecular Genetics, University of Colorado at Denver and Health Sciences Center, Biomolecular Structure MS 8101, P.O. Box 6511, Aurora, CO 80045, USA
| | | | | | | | | | | |
Collapse
|
229
|
Mills JB, Mant CT, Hodges RS. One-step purification of a recombinant protein from a whole cell extract by reversed-phase high-performance liquid chromatography. J Chromatogr A 2006; 1133:248-53. [PMID: 16945380 PMCID: PMC2722115 DOI: 10.1016/j.chroma.2006.08.042] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2006] [Revised: 08/11/2006] [Accepted: 08/15/2006] [Indexed: 11/30/2022]
Abstract
We have developed a one-step facile, flexible and readily scalable purification method for a recombinant protein, TM 1-99 (113 amino acid residues; 12,837 Da) based on reversed-phase high-performance liquid chromatography (RP-HPLC) from an E. coli cell lysate. Following cell lysis, the cell contents were extracted with 0.1% aqueous trifluoroacetic acid (TFA), applied directly under conditions of high sample load to a narrow bore RP-HPLC C(8) column (150 mm x 2.1 mm I.D.) and eluted by a shallow gradient of acetonitrile (0.1%/min). Loads of 23 and 48 mg of lyophilized crude cell extract produced 2.4 and 4.2mg of purified product (>94% pure), respectively, at >94% recovery. Our results show the excellent potential of one-step RP-HPLC for purification of recombinant proteins from cell lysates, where high yields of purified product and greater purity are achieved compared to affinity chromatography. Such an approach was also successful in purifying just trace levels (<0.1% of total contents of crude sample) of TM 1-99 from a cell lysate.
Collapse
Affiliation(s)
- Janine B. Mills
- Department of Biochemistry and Molecular Genetics, University of Colorado at Denver and Health Sciences Center, Aurora, CO 80045, USA
| | - Colin T. Mant
- Department of Biochemistry and Molecular Genetics, University of Colorado at Denver and Health Sciences Center, Aurora, CO 80045, USA
| | - Robert S. Hodges
- Department of Biochemistry and Molecular Genetics, University of Colorado at Denver and Health Sciences Center, Aurora, CO 80045, USA
| |
Collapse
|
230
|
Khemtémourian L, Buchoux S, Aussenac F, Dufourc EJ. Dimerization of Neu/Erb2 transmembrane domain is controlled by membrane curvature. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2006; 36:107-12. [PMID: 17115152 DOI: 10.1007/s00249-006-0111-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2006] [Revised: 09/19/2006] [Accepted: 10/10/2006] [Indexed: 10/23/2022]
Abstract
Secondary structures of the proto-oncogenic Neu/ErbB2 transmembrane segment and its mutant analogue have been determined in phospholipids. It is found that the mutated peptide possesses less helical character possibly due to the valine/glutamic acid point mutation. Embedding peptides in lipid systems whose topology can change from small (100-200 A) tumbling objects to bilayer discs of 450 A diameter leads to the finding that coiled-coil interactions are only observed in the presence of a bilayer membrane of low curvature, independent of mutation. This strongly suggests that any event that may change membrane topology can therefore perturb the dimerization/ologomerization and subsequent phosphorylation cascade leading to cell growth or cancer processes.
Collapse
Affiliation(s)
- Lucie Khemtémourian
- UMR 5144 MOBIOS, CNRS-Université Bordeaux 1, IECB, 2 rue Robert Escarpit, 33607 Pessac, France
| | | | | | | |
Collapse
|
231
|
Zhang L, Chandran K, Nibert ML, Harrison SC. Reovirus mu1 structural rearrangements that mediate membrane penetration. J Virol 2006; 80:12367-76. [PMID: 17005655 PMCID: PMC1676305 DOI: 10.1128/jvi.01343-06] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Membrane penetration by nonenveloped reoviruses is mediated by the outer-capsid protein, mu1 (76 kDa). Previous evidence has suggested that an autolytic cleavage in mu1 allows the release of its N-terminally myristoylated peptide, mu1N (4 kDa), which probably then interacts with the target-cell membrane. A substantial rearrangement of the remaining portion of mu1, mu1C (72 kDa), must also have occurred for mu1N to be released, and some regions in mu1C may make additional contacts with the membrane. We describe here a particle-free system to study conformational rearrangements of mu1. We show that removal of the protector protein sigma3 is not sufficient to trigger rearrangement of free mu1 trimer and that free mu1 trimer undergoes conformational changes similar to those of particle-associated mu1 when induced by similar conditions. The mu1 rearrangements require separation of the mu1 trimer head domains but not the mu1N/C autocleavage. We have also obtained a relatively homogeneous form of the structurally rearranged mu1 (mu1*) in solution. It is an elongated monomer and retains substantial alpha-helix content. We have identified a protease-resistant approximately 23-kDa fragment of mu1*, which contains the largely alpha-helical regions designated domains I and II in the conformation of mu1 prior to rearrangement. We propose that the mu1 conformational changes preceding membrane penetration or disruption during cell entry involve (i) separation of the beta-barrel head domains in the mu1 trimer, (ii) autolytic cleavage at the mu1N/C junction, associated with partial unfolding of mu1C and release of mu1N, and (iii) refolding of the N-terminal helical domains of mu1C, with which mu1N was previously complexed, accompanied by dissociation of the mu1 trimer.
Collapse
Affiliation(s)
- Lan Zhang
- Children's Hospital, Enders 673, 320 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
232
|
Li WW, Hellwig P, Ritter M, Haehnel W. De Novo Design, Synthesis, and Characterization of Quinoproteins. Chemistry 2006; 12:7236-45. [PMID: 16819733 DOI: 10.1002/chem.200501212] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Quinones and quinoproteins are essential redox components and enzymes in biological systems. Here, we report the de novo design, synthesis, and properties of model four-alpha-helix bundle quinoproteins. The proteins were designed and constructed from three different helices with 21 or 22 amino acid residues by chemoselective ligation to a cyclic decapeptide template. A free cysteine unit is placed at the hydrophobic core of the protein for binding of ubiquinone-0 and menaquinone-0 through a thioether bond. The quinoproteins with molecular weights of 11-12 kDa were characterized by electrospray ionization mass spectrometry, UV/Vis spectroscopy, size-exclusion chromatography, circular dichroism measurements, (1)H NMR spectroscopy, cyclic voltammetry, and redox-induced FTIR difference spectroscopy. The midpoint redox potentials at pH 8 in aqueous solution E(m,8) of thioether conjugates with N-acetyl cysteine methyl ester were 89 mV and -63 mV and with a synthetic protein 229 mV and 249 mV versus standard hydrogen electrode (SHE) for ubiquinone-0 and menaquinone-0, respectively. Detailed redox-induced FTIR difference spectroscopic studies of the model compounds and quinoproteins show the special resonance features for C=O bands at 1656-1660 and 1655-1665 cm(-1) due to the sulfur substitution to ubiquinone-0 and menaquinone-0, respectively. The construction of model quinoproteins represents a significant step toward more complex artificial redox systems.
Collapse
Affiliation(s)
- Wen-Wu Li
- Institut für Biologie II/Biochemie, Albert-Ludwigs-Universität Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany.
| | | | | | | |
Collapse
|
233
|
Yang ST, Lee JY, Kim HJ, Eu YJ, Shin SY, Hahm KS, Kim JI. Contribution of a central proline in model amphipathic alpha-helical peptides to self-association, interaction with phospholipids, and antimicrobial mode of action. FEBS J 2006; 273:4040-54. [PMID: 16889633 DOI: 10.1111/j.1742-4658.2006.05407.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Model amphipathic peptides have been widely used as a tool to determine the structural and biological properties that control the interaction of peptides with membranes. Here, we have focused on the role of a central Pro in membrane-active peptides. To determine the role of Pro in structure, antibiotic activity, and interaction with phospholipids, we generated a series of model amphipathic alpha-helical peptides with different chain lengths and containing or lacking a single central Pro. CD studies showed that Pro-free peptides (PFPs) formed stable alpha-helical structures even in aqueous buffer through self-association, whereas Pro-containing peptides (PCPs) had random coil structures. In contrast, in trifluoroethanol or SDS micelles, both PFPs and PCPs adopted highly ordered alpha-helical structures, although relatively lower helical contents were observed for the PCPs than the PFPs. This structural consequence indicates that a central Pro residue limits the formation of highly helical aggregates in aqueous buffer and causes a partial distortion of the stable alpha-helix in membrane-mimetic environments. With regard to antibiotic activity, PCPs had a 2-8-fold higher antibacterial activity and significantly reduced hemolytic activity compared with PFPs. In membrane depolarization assays, PCPs passed rapidly across the peptidoglycan layer and immediately dissipated the membrane potential in Staphylococcus aureus, whereas PFPs had a greatly reduced ability. Fluorescence studies indicated that, although PFPs had strong binding affinity for both zwitterionic and anionic liposomes, PCPs interacted weakly with zwitterionic liposomes and strongly with anionic liposomes. The selective membrane interaction of PCPs with negatively charged phospholipids may explain their antibacterial selectivity. The difference in mode of action between PCPs and PFPs was further supported by kinetic analysis of surface plasmon resonance data. The possible role of the increased local backbone distortion or flexibility introduced by the proline residue in the antimicrobial mode of action is discussed.
Collapse
Affiliation(s)
- Sung-Tae Yang
- Department of Life Science, Gwangju Institute of Science and Technology, Korea
| | | | | | | | | | | | | |
Collapse
|
234
|
Vagt T, Zschörnig O, Huster D, Koksch B. Membrane Binding and Structure of De Novo Designed α-Helical Cationic Coiled-Coil-Forming Peptides. Chemphyschem 2006; 7:1361-71. [PMID: 16680794 DOI: 10.1002/cphc.200600010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We introduce a de novo designed peptide model system that enables the systematic study of 1) the role of a membrane environment in coiled-coil peptide folding, 2) the impact of different domains of an alpha-helical coiled-coil heptad repeat on the interaction with membranes, and 3) the dynamics of coiled-coil peptide-membrane interactions depending on environmental conditions. Starting from an ideal alpha-helical coiled-coil peptide sequence, several positively charged analogues were designed that exhibit a high propensity toward negatively charged lipid membranes. Furthermore, these peptides differ in their ability to form a stable alpha-helical coiled-coil structure. The influence of a membrane environment on peptide folding is studied. All positively charged peptides show strong interactions with negatively charged membranes. This interaction induces an alpha-helical structure of the former random-coil peptides, as revealed by circular dichroism measurements. Furthermore, vesicle aggregation is induced by a coiled-coil interaction of vesicle-bound peptides. Dynamic light scattering experiments show that the strength of vesicle aggregation increases with the peptide's intrinsic ability to form a stable alpha-helical coiled coil. Thus, the peptide variant equipped with the strongest inter- and intra-helical coiled-coil interactions shows the strongest effect on vesicle aggregation. The secondary structure of this peptide in the membrane-bound state was studied as well as its effect on the phospholipids. Peptide conformation within the peptide-lipid aggregates was analyzed by (13)C cross-polarization magic-angle spinning NMR experiments. A uniformly (13)C- and (15)N-labeled Leu residue was introduced at position 12 of the peptide chain. The (13)C chemical shift and torsion angle measurements support the finding of an alpha-helical structure of the peptide in its membrane-bound state. Neither membrane leakage nor fusion was observed upon peptide binding, which is unusual for amphiphatic peptide structures. Our results lay the foundation for a systematic study of the influence of the alpha-helical coiled-coil folding motif in membrane-active events on a molecular level.
Collapse
Affiliation(s)
- Toni Vagt
- Institute of Chemistry and Biochemistry-Organic Chemistry, Free University of Berlin, Takustrasse 3, 14195 Berlin, Germany
| | | | | | | |
Collapse
|
235
|
Kiewitz SD, Cabrele C. Synthesis and conformational properties of protein fragments based on the Id family of DNA-binding and cell-differentiation inhibitors. Biopolymers 2006; 80:762-74. [PMID: 15880794 DOI: 10.1002/bip.20287] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Id proteins are dominant negative regulators of the helix-loop-helix (HLH) transcription factors and are important during development, especially by preventing cell differentiation while inducing cell proliferation. In contrast, they are poorly expressed in healthy adults but are found in several tumor types. The Id HLH motif is responsible for the inhibitory activity, whereas not much is known about the role of the N- and C-termini. In the presented work, synthetic peptides reproducing the HLH, the N-terminal region, and the C-terminal region of the Id proteins were characterized by CD. The four HLH sequences built highly stable helical conformations, whereas the N- and C-termini were unstructured, with the exception of an alanine-rich fragment preceding the Id4 HLH motif. Deletion of the loop connecting the two helices led to helix destabilization for all four Id HLH peptides. In addition, modifications of the amino acid composition within the hydrophobic face of the helices of the Id1 HLH peptide induced conformational changes, mostly associated with loss of helix content. Moreover, a fragment containing the helix-2 and the C-terminus of the Id1 protein did not show any helical character. Therefore, both the helix propensity and stability of the HLH domain were shown to be strongly dependent on favorable interhelical contacts. In contrast, it is suggested that the regions beyond this domain could rather play a destabilizing role, for example, by increasing the flexibility of the folded protein.
Collapse
Affiliation(s)
- Sebastian D Kiewitz
- Fakultät für Chemie und Pharmazie, Universität Regensburg, Universitätsstr. 31, 93053 Regensburg, Germany
| | | |
Collapse
|
236
|
Mateja A, Cierpicki T, Paduch M, Derewenda ZS, Otlewski J. The dimerization mechanism of LIS1 and its implication for proteins containing the LisH motif. J Mol Biol 2006; 357:621-31. [PMID: 16445939 DOI: 10.1016/j.jmb.2006.01.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2005] [Revised: 12/02/2005] [Accepted: 01/03/2006] [Indexed: 10/25/2022]
Abstract
Miller-Dieker lissencephaly, or "smooth-brain" is a debilitating genetic developmental syndrome of the cerebral cortex, and is linked to mutations in the Lis1 gene. The LIS1 protein contains a so-called LisH motif at the N terminus, followed by a coiled-coil region and a seven WD-40 repeat forming beta-propeller structure. In vivo and in vitro, LIS1 is a dimer, and the dimerization is mediated by the N-terminal fragment and is essential for the protein's biological function. The recently determined crystal structure of the murine LIS1 N-terminal fragment encompassing residues 1-86 (N-LIS1) revealed that the LisH motif forms a tightly associated homodimer with a four-helix antiparallel bundle core, while the parallel coiled-coil situated downstream is stabilized by three canonical heptad repeats. This homodimer is uniquely asymmetric because of a distinct kink in one of the helices. Because the LisH motif is widespread among many proteins, some of which are implicated in human diseases, we investigated in detail the mechanism of N-LIS1 dimerization. We found that dimerization is dependent on both the LisH motif and the residues downstream of it, including the first few turns of the helix. We also have found that the coiled-coil does not contribute to dimerization, but instead is very labile and can adopt both supercoiled and helical conformations. These observations suggest that the presence of the LisH motif alone is not sufficient for high-affinity homodimerization and that other structural elements are likely to play an important role in this large family of proteins. The observed lability of the coiled-coil fragment in LIS1 is most likely of functional importance.
Collapse
Affiliation(s)
- Agnieszka Mateja
- Laboratory of Protein Engineering, Institute of Biochemistry and Molecular Biology, University of Wroclaw, Tamka 2, 50-137 Wroclaw, Poland
| | | | | | | | | |
Collapse
|
237
|
Khemtémourian L, Lavielle S, Bathany K, Schmitter JM, Dufourc EJ. Revisited and large-scale synthesis and purification of the mutated and wild type neu/erbB-2 membrane-spanning segment. J Pept Sci 2006; 12:361-8. [PMID: 16285025 DOI: 10.1002/psc.735] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Solid-phase syntheses of the hydrophobic peptides Neu(TM35) ((1)EQRASPVTFIIATVVGVLLFLILVVVVGILIKRRR(35)) and Neu*(TM35) ((1)EQRASPVTFIIATVEGVLLFLILVVVVGILIKRRR(35)), corresponding to the native and mutated (V15E) transmembrane domain of the neu/erbB-2 tyrosine kinase receptor, respectively, were accomplished using Fmoc chemistry. The use of a new resin and cleavage and purification conditions led to large increases in yields and peptide purity. Two (15)N-labelled versions of both wild type and mutated peptides were also synthesized. Approximately 20-40 mg of peptide was obtained using a small-scale synthesis, whereas ca 100 mg of pure peptide was collected on a medium scale. Peptide purity, as monitored by HPLC and mass spectrometry, ranged from 95 to 98% for the six peptides synthesized. Secondary structure as determined by UV circular dichroism (CD) in trifluoroethanol (TFE) showed ca 74% alpha-helical content for the native peptide and ca 63% for that bearing the mutation. Secondary structure of Neu(TM35) was retained in DMPC (dimyristoylphosphatidylcholine)/DCPC (dicaproylphosphatidylcholine) membrane bicelles, and evidences for dimers/oligomers in the lipid bilayer were found.
Collapse
Affiliation(s)
- Lucie Khemtémourian
- UMR 5144 MOBIOS, CNRS-University Bordeaux 1, IECB, 2 rue Robert Escarpit, 33607 Bordeaux-Pessac, France
| | | | | | | | | |
Collapse
|
238
|
Loudet C, Khemtémourian L, Aussenac F, Gineste S, Achard MF, Dufourc EJ. Bicelle membranes and their use for hydrophobic peptide studies by circular dichroism and solid state NMR. Biochim Biophys Acta Gen Subj 2005; 1724:315-23. [PMID: 15961233 DOI: 10.1016/j.bbagen.2005.04.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2005] [Revised: 04/23/2005] [Accepted: 04/26/2005] [Indexed: 10/25/2022]
Abstract
Mixtures of dicaproyl- (DC), dimyristoyl- (DM) and 1-tetradecanoyl-2-biphenylbutanoyl-(TBB) phosphatidylcholine (PC) in water produce bicelle membranes that are oriented by magnetic fields. DMPC/DCPC systems orient such that their membrane plane is parallel to the magnetic field, whereas for TBBPC/DCPC, the plane is perpendicular to the field. Partial temperature-composition-hydration diagrams are established using solid-state 31P-NMR. DMPC/DCPC bicelles exist on a large range of composition but on a narrow temperature domain (25-45 degrees C). At converse, TBBPC/DCPC form bicelles on a narrow compositional range but over a large temperature span (10-70 degrees C). The TBBPC/DCPC bicelles are shown to be a very powerful potential tool to study the orientation of hydrophobic helices in membranes using wide line 15N-NMR. The DMPC/DCPC system that undergoes a micelle-to-bicelle transition on going from 10 degrees C to 40 degrees C may be used with circular dichroism to study the state of association of hydrophobic helices within the membrane. Results suggest that the transmembrane fragment of the neu/erbB-2 receptor is monomeric in micellar medium and dimeric/multimeric in bicelle membranes.
Collapse
Affiliation(s)
- Cécile Loudet
- UMR5144 MOBIOS, CNRS-UBx1, Institut Européen de Chimie et Biologie, 33607 Pessac, France
| | | | | | | | | | | |
Collapse
|
239
|
Chana M, Tripet B, Mant C, Hodges R. Stability and specificity of heterodimer formation for the coiled-coil neck regions of the motor proteins Kif3A and Kif3B: the role of unstructured oppositely charged regions. ACTA ACUST UNITED AC 2005; 65:209-20. [PMID: 15705165 PMCID: PMC1403826 DOI: 10.1111/j.1399-3011.2005.00210.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We investigated the folding, stability, and specificity of dimerization of the neck regions of the kinesin-like proteins Kif3A (residues 356-416) and Kif3B (residues 351-411). We showed that the complementary charged regions found in the hinge regions (which directly follow the neck regions) of these proteins do not adopt any secondary structure in solution. We then explored the ability of the complementary charged regions to specify heterodimer formation for the neck region coiled-coils found in Kif3A and Kif3B. Redox experiments demonstrated that oppositely charged regions specified the formation of a heterodimeric coiled-coil. Denaturation studies with urea demonstrated that the negatively charged region of Kif3A dramatically destabilized its neck coiled-coil (urea1/2 value of 3.9 m compared with 6.7 m for the coiled-coil alone). By comparison, the placement of a positively charged region C-terminal to the neck coiled-coil of Kif3B had little effect on stability (urea1/2 value of 8.2 m compared with 8.8 m for the coiled-coil alone). The pairing of complementary charged regions leads to specific heterodimer formation where the stability of the heterodimeric neck coiled-coil with charged regions had similar stability (urea1/2 value of 7.8 m) to the most stable homodimer (Kif3B) with charged regions (urea1/2 value of 8.0 m) and dramatically more stable than the Kif3A homodimer with charged regions (urea1/2, value of 3.9 m). The heterodimeric coiled-coil with charged extensions has essentially the same stability as the heterodimeric coiled-coil on its own (urea1/2 values of 7.8 and 8.1 m, respectively) suggesting that specificity of heterodimerization is driven by non-specific attraction of the oppositely unstructured charged regions without affecting stability of the heterodimeric coiled-coil.
Collapse
Affiliation(s)
| | | | | | - R. Hodges
- Correspondence to: Robert Hodges, Department of Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center at, Fitzsimons, Aurora, CO 80045, USA, Tel.: (303) 724-3253, Fax: (303) 724-3249 E-mail:
| |
Collapse
|
240
|
Whitson SR, LeStourgeon WM, Krezel AM. Solution structure of the symmetric coiled coil tetramer formed by the oligomerization domain of hnRNP C: implications for biological function. J Mol Biol 2005; 350:319-37. [PMID: 15936032 DOI: 10.1016/j.jmb.2005.05.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2005] [Revised: 04/28/2005] [Accepted: 05/03/2005] [Indexed: 11/16/2022]
Abstract
During active cell division, heterogeneous nuclear ribonucleoprotein (hnRNP) C is one of the most abundant proteins in the nucleus. hnRNP C exists as a stable tetramer that binds about 230 nucleotides of pre-mRNA and functions in vivo to package nascent transcripts and nucleate assembly of the 40 S hnRNP complex. Previous studies have shown that monomers lacking or possessing mutant oligomerization domains bind RNA with low affinity, strongly suggesting a cooperative protomer-RNA binding mode. In order to understand the role of the oligomerization domain in defining the biological functions and structure of hnRNP C tetramers, we have determined the high-resolution NMR structure of the oligomerization interface that is formed at the core of the complex, examining specific molecular interactions that drive assembly and contribute to the structural integrity of the tetramer. The determined structure reveals an antiparallel four-helix coiled coil, where classically described knobs-into-holes packing interactions at interhelical contact surfaces are optimized so that side-chains interdigitate to create an even distribution of hydrophobic surfaces along the core. While the stoichiometry of the complex appears to be primarily specified by occlusion of hydrophobic surfaces, particularly the interfacial residue L198, from solvent, helix orientation is primarily determined by electrostatic attractions across helix interfaces. The creation of potential interaction surfaces for other hnRNP C domains along the coiled coil exterior and the assembly of oligomerization interfaces in an antiparallel orientation shape the tertiary fold of full-length monomers and juxtapose RNA-binding elements at distal surfaces of the tetrameric complex in the quaternary assembly. In addition, we discuss the specific challenges encountered in structure determination of this symmetric oligomer by NMR methods, specifically in sorting ambiguous interatomic distance constraints into classes that define different elements of the coiled coil structure.
Collapse
Affiliation(s)
- Stefanie R Whitson
- Department of Biological Sciences, 465 21st Ave. South, Vanderbilt University, Nashville, TN 37232, USA
| | | | | |
Collapse
|
241
|
Kashiwada A, Nakamura Y, Matsuda K. Metal Ion-Induced Hetero-Block α-Helical Coiled Coil. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2005. [DOI: 10.1246/bcsj.78.1291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
242
|
Thévenin D, Lazarova T, Roberts MF, Robinson CR. Oligomerization of the fifth transmembrane domain from the adenosine A2A receptor. Protein Sci 2005; 14:2177-86. [PMID: 15987888 PMCID: PMC2279329 DOI: 10.1110/ps.051409205] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The human adenosine A2A receptor (A(2A)R) belongs to one of the largest family of membrane proteins, the G-protein coupled receptors (GPCRs), characterized by seven transmembrane (TM) helices. Little is known about the determinants of their structures, folding, assembly, activation mechanisms, and oligomeric states. Previous studies in our group showed that peptides corresponding to all seven TM domains form stable helical structures in detergent micelles and lipid vesicles. However, the peptides behave differently; TM5 is the only peptide to have a ratio [theta]222/[theta]208 obtained by circular dichroism (CD) spectroscopy>1. This finding suggested to us that TM5 might self-associate. In the present study, we investigate the unique properties of the TM5 domain. We performed detailed analyses of TM5 peptide behavior in membrane-mimetic environments using CD spectroscopy, fluorescence spectroscopy and Förster resonance energy transfer, and gel electrophoresis. We find that TM5 peptide has the ability to self-associate to form oligomeric structures in various hydrophobic milieus and that these oligomers are highly resistant to temperature and chemical denaturation. We also find that mutation of the full-length A(2A)R at position M193, which is located in the fifth TM domain, noticeably alters A(2A)R monomer: dimer ratio as observed on SDS-PAGE. Our results suggest that parallel association of TM5 dimers may play a role in the known adenosine A2A receptor dimerization. This study represents the first evidence of an individual GPCR transmembrane domain self-association.
Collapse
Affiliation(s)
- Damien Thévenin
- Department of Chemistry and Biochemistry, Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711, USA
| | | | | | | |
Collapse
|
243
|
Affiliation(s)
- Dan L Crimmins
- Department of Pathology and Immunology, Division of Laboratory Medicine, Washington University School of Medicine, 660 South Euclid Ave., Box 8118, St. Louis, MO 63110, USA.
| |
Collapse
|
244
|
Marshall CB, Chakrabartty A, Davies PL. Hyperactive Antifreeze Protein from Winter Flounder Is a Very Long Rod-like Dimer of α-Helices. J Biol Chem 2005; 280:17920-9. [PMID: 15716269 DOI: 10.1074/jbc.m500622200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The winter flounder (Pseudopleuronectes americanus) produces short, monomeric alpha-helical antifreeze proteins (type I AFP), which adsorb to and inhibit the growth of ice crystals. These proteins alone are not sufficiently active to protect this fish against freezing at -1.9 degrees C, the freezing point of seawater. We have recently isolated a hyperactive antifreeze protein from the plasma of the flounder with activity 10-100-fold higher than type I AFP. It is comparable in activity to the AFPs produced by insects, and is capable of conferring freeze resistance to the flounder. This novel AFP has a molecular mass of 16,683 Da and a remarkable amino acid composition that is >60% alanine. CD spectra indicate that the protein is almost entirely alpha-helical at 4 degrees C but partially denatures at 20 degrees C, resulting in a species with a moderately reduced helix content that is stable at up to 50 degrees C. This transformation correlates with irreversible loss of activity. Analytical ultracentrifugation (sedimentation velocity and equilibrium) indicates that the predominant species in solution is dimeric (molecular weight, 32,275). Size-exclusion chromatography reveals a 2-fold higher apparent molecular weight suggesting that this molecule has an unusually large Stokes radius. The axial ratio of the dimer calculated from the sedimentation velocity data is 18:1, confirming that this protein has an extraordinarily long, rod-like structure, consistent with a novel dimeric alpha-helical arrangement. The structural model that best fits these data is one in which the approximately 195 amino acids of each monomer form one approximately 290-A long alpha-helix and associate via a unique dimerization motif that is distinct from that of the leucine zipper and any other coiled-coil.
Collapse
|
245
|
Westerlund K, Berry BW, Privett HK, Tommos C. Exploring amino-acid radical chemistry: protein engineering and de novo design. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2005; 1707:103-16. [PMID: 15721609 DOI: 10.1016/j.bbabio.2004.02.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2003] [Accepted: 02/26/2004] [Indexed: 11/21/2022]
Abstract
Amino-acid radical enzymes are often highly complex structures containing multiple protein subunits and cofactors. These properties have in many cases hampered the detailed characterization of their amino-acid redox cofactors. To address this problem, a range of approaches has recently been developed in which a common strategy is to reduce the complexity of the radical-containing system. This work will be reviewed and it includes the light-induced generation of aromatic radicals in small-molecule and peptide systems. Natural redox proteins, including the blue copper protein azurin and a bacterial photosynthetic reaction center, have been engineered to introduce amino-acid radical chemistry. The redesign strategies to achieve this remarkable change in the properties of these proteins will be described. An additional approach to gain insights into the properties of amino-acid radicals is to synthesize de novo designed model proteins in which the redox chemistry of these species can be studied. Here we describe the design, synthesis and characteristics of monomeric three-helix bundle and four-helix bundle proteins designed to study the redox chemistry of tryptophan and tyrosine. This work demonstrates that de novo protein design combined with structural, electrochemical and quantum chemical analyses can provide detailed information on how the protein matrix tunes the thermodynamic properties of tryptophan.
Collapse
Affiliation(s)
- Kristina Westerlund
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | | | | | | |
Collapse
|
246
|
Pidikiti R, Shamim M, Mallela KMG, Reddy KS, Johansson JS. Expression and Characterization of a Four-α-Helix Bundle Protein That Binds the Volatile General Anesthetic Halothane. Biomacromolecules 2005; 6:1516-23. [PMID: 15877373 DOI: 10.1021/bm049226a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The structural features of volatile anesthetic binding sites on proteins are being investigated with the use of a defined model system consisting of a four-alpha-helix bundle scaffold with a hydrophobic core. The current study describes the bacterial expression, purification, and initial characterization of the four-alpha-helix bundle (Aalpha(2)-L1M/L38M)(2). The alpha-helical content and stability of the expressed protein are comparable to that of the chemically synthesized four-alpha-helix bundle (Aalpha(2)-L38M)(2) reported earlier. The affinity for binding halothane is somewhat improved with a K(d) = 120 +/- 20 microM as determined by W15 fluorescence quenching, attributed to the L1M substitution. Near-UV circular dichroism spectroscopy demonstrated that halothane binding changes the orientation of the aromatic residues in the four-alpha-helix bundle. Nuclear magnetic resonance experiments reveal that halothane binding results in narrowing of the peaks in the amide region of the one-dimensional proton spectrum, indicating that bound anesthetic limits protein dynamics. This expressed protein should prove to be amenable to nuclear magnetic resonance structural studies on the anesthetic complexes, because of its relatively small size (124 residues) and the high affinities for binding volatile anesthetics. Such studies will provide much needed insight into how volatile anesthetics interact with biological macromolecules and will provide guidelines regarding the general architecture of binding sites on central nervous system proteins.
Collapse
Affiliation(s)
- Ravindernath Pidikiti
- Departments of Anesthesia, and the Johnson Research Foundation, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
247
|
Persson J, Lindahl G. Single-step purification of human C4b-binding protein (C4BP) by affinity chromatography on a peptide derived from a streptococcal surface protein. J Immunol Methods 2005; 297:83-95. [PMID: 15777933 DOI: 10.1016/j.jim.2004.11.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2004] [Revised: 11/10/2004] [Accepted: 11/30/2004] [Indexed: 01/06/2023]
Abstract
Many Gram-positive bacteria express surface proteins that bind human plasma proteins. These bacterial proteins, and derivatives of them, are of interest for analysis of bacterial pathogenesis and as immunochemical tools. Well-characterized examples include the IgG-binding reagents staphylococcal protein A and streptococcal protein G, and the recently described streptococcal IgA-binding peptide Sap. Here, we show that a peptide derived from the streptococcal M22 protein can be used for single-step affinity purification of the human complement regulator C4b-binding protein (C4BP). Binding of C4BP was strongly enhanced by dimerization of the peptide via a C-terminal cysteine residue not present in the intact M22 protein. The purified C4BP had the expected binding characteristics, and acted as a cofactor for factor I in the degradation of C4b. Passage of serum through a peptide column under non-saturating conditions resulted in binding of >99.5% of serum C4BP, implying that such a column can be used to deplete serum of C4BP. These data indicate that the C4BP-binding peptide is a versatile tool that can be used for simple and rapid purification of biologically active human C4BP or for removal of C4BP from serum.
Collapse
Affiliation(s)
- Jenny Persson
- Department of Medical Microbiology, Dermatology and Infection, Sölvegatan 23, 223 62 Lund, Sweden
| | | |
Collapse
|
248
|
Pastor MT, Mora P, Ferrer-Montiel A, Pérez-Payá E. Design of bioactive and structurally well-defined peptides from conformationally restricted libraries. Biopolymers 2004; 76:357-65. [PMID: 15386263 DOI: 10.1002/bip.20142] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Libraries of peptides and proteins can be categorized according to the function of their origin in gene- and synthetic-based libraries. Both kinds of libraries have the potential to generate the same grade of molecular diversity, although the limits imposed by the synthetic methods have been lately a matter of discussion. However, the use of synthetic strategies allows incorporation of non-natural amino acids. The development of conformationally restricted synthetic peptide libraries can be considered as a point of convergence of the two methodologies. In these libraries the diversity is grafted into scaffolds that are defined by stable secondary structural motifs, and the deconvolution protocols can be directed towards the identification of biologically active molecules and the analysis of determinants of folding of protein domains.
Collapse
Affiliation(s)
- M Teresa Pastor
- Department de Bioquímica i Biologia Molecular, Universitat de València, E-46100 Burjassot, València, Spain
| | | | | | | |
Collapse
|
249
|
Manderson GA, Johansson JS. Towards a three-alpha-helix bundle protein that binds volatile general anesthetics. Biopolymers 2004; 75:338-54. [PMID: 15372486 DOI: 10.1002/bip.20138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The general anesthetics halothane and chloroform are capable of binding to synthetic water-soluble four-alpha-helix bundles, which model the putative in vivo receptors. In this study, we investigate the binding of these anesthetics to synthetic water-soluble three-alpha-helix bundles. A series of variants containing up to four X-to-Ala and up to four X-to-Met substitutions was made; and the effect of these substitutions on structure, stability and anesthetic binding affinity was examined. Generally, the amount of alpha-helix and the stability of the three-alpha-helix bundles decreased as the number of X-to-Ala substitutions increased. A concomitant red-shift in tryptophan fluorescence lambdamax was seen, suggesting an increased flexibility of the native structure. Up to four X-to-Met substitutions had little effect on the amount of alpha-helix, but an increase in tryptophan lambdamax was seen for the variants with three and four methionine substitutions. The exceptions were a) a variant with a clustering of alanine and methionine residues at one end of the three-alpha-helix bundle, suggesting a gate structure that can admit ligand molecules; and b) a variant with a single Leu35Ala substitution, suggesting that at select positions, the size of the side chain is important for defining anesthetic binding affinity.
Collapse
Affiliation(s)
- Gavin A Manderson
- University of Pennsylvania, Department of Anesthesia and the Johnson Research Foundation, Philadelphia, PA 19104, USA
| | | |
Collapse
|
250
|
Mukhopadhyay S, Langsetmo K, Stafford WF, Henry GD, Baleja JD, Sarkar S. Identification of a region of fast skeletal troponin T required for stabilization of the coiled-coil formation with troponin I. J Biol Chem 2004; 280:538-47. [PMID: 15507453 DOI: 10.1074/jbc.m409537200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have previously identified evolutionarily conserved heptad hydrophobic repeat (HR) domains in all isoprotein members of troponin T (TnT) and troponin I (TnI), two subunits of the Ca(2+)-regulatory troponin complex. Our suggestion that the HR domains are involved in the formation of a coiled-coil heterodimer of TnT and TnI has been recently confirmed by the crystal structure of the core domain of the human cardiac troponin complex. Here we studied a series of recombinant deletion mutants of the fast skeletal TnT to determine the minimal sequence required for stable coiled-coil formation with the HR domain of the fast skeletal TnI. Using circular dichroism spectroscopy, we measured the alpha helical content of the coiled-coil formed by the various TnT peptides with TnI HR domain. Sedimentation equilibrium experiments confirmed that the individual peptides of TnT were monomeric but formed heterodimers when mixed with HR domain of TnI. Isothermal titration calorimetry was then used to directly measure the affinity of the TnT peptides for the TnI HR domain. Surprisingly we found that the HR regions alone of the fast skeletal TnT and TnI, as defined earlier, were insufficient to form a coiled-coil. Furthermore we showed that an additional 14 amino acid residues N-terminal to the conserved HR region (TnT residues 165-178) are essential for the stable coiled-coil formation. We discuss the implication of our finding in the fast skeletal troponin isoform in the light of the crystal structure of the cardiac isoform.
Collapse
Affiliation(s)
- Subhradip Mukhopadhyay
- Program in Cell, Molecular and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA
| | | | | | | | | | | |
Collapse
|