201
|
Dubois CM, Blanchette F, Laprise MH, Leduc R, Grondin F, Seidah NG. Evidence that furin is an authentic transforming growth factor-beta1-converting enzyme. THE AMERICAN JOURNAL OF PATHOLOGY 2001; 158:305-16. [PMID: 11141505 PMCID: PMC1850265 DOI: 10.1016/s0002-9440(10)63970-3] [Citation(s) in RCA: 178] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Transforming growth factor (TGF)-beta1 plays an essential role in cell growth and differentiation. It is also considered as a gatekeeper of immune homeostasis with gene disruption leading to autoimmune and inflammatory diseases. TGF-beta1 is produced as an inactive precursor polypeptide that can be efficiently secreted but correct proteolytic cleavage is an essential step for its activation. Assessment of the cleavage site has revealed a unique R-H-R-R sequence reminiscent of proprotein convertase (PC) recognition motifs and has previously demonstrated that this PC-like cleavage site is correctly cleaved by furin, a member of the PC family. Here we report that among PC members, furin more closely satisfies the requirements needed to fulfill the role of a genuine TGF-beta1 convertase. Even though six members of the PC family have the ability to cleave TGF-beta1, ectopic expression of alpha(1)-antitrypsin Portland (alpha(1)-AT-PDX), a potent furin inhibitor, blocked 80% of TGF-beta1 processing mediated by endogenous enzymes as demonstrated in an in vitro digestion assay. Genetic complementation of a furin-deficient LoVo cell line with the wild-type gene restores the production of mature and bioactivable TGF-beta1. Moreover, both furin and TGF-beta are coordinately expressed and regulated in vitro and in vivo in the hematopoietic and immune system, an important tissue target. These results demonstrate for the first time that furin is an authentic and adaptive TGF-beta1-converting enzyme whereas other members of the PC family might substitute or supplement furin activity. Our study advances our comprehension of the complexity of the TGF-beta system and should facilitate the development of therapeutically useful TGF-beta inhibitors.
Collapse
Affiliation(s)
- C M Dubois
- Immunology Division and Department of Pharmacology, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, Canada.
| | | | | | | | | | | |
Collapse
|
202
|
Gäken J, Jiang J, Daniel K, van Berkel E, Hughes C, Kuiper M, Darling D, Tavassoli M, Galea-Lauri J, Ford K, Kemeny M, Russell S, Farzaneh F. Fusagene vectors: a novel strategy for the expression of multiple genes from a single cistron. Gene Ther 2000; 7:1979-85. [PMID: 11175308 DOI: 10.1038/sj.gt.3301341] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Transduction of cells with multiple genes, allowing their stable and co-ordinated expression, is difficult with the available methodologies. A method has been developed for expression of multiple gene products, as fusion proteins, from a single cistron. The encoded proteins are post-synthetically cleaved and processed into each of their constituent proteins as individual, biologically active factors. Specifically, linkers encoding cleavage sites for the Golgi expressed endoprotease, furin, have been incorporated between in-frame cDNA sequences encoding different secreted or membrane bound proteins. With this strategy we have developed expression vectors encoding multiple proteins (IL-2 and B7.1, IL-4 and B7.1, IL-4 and IL-2, IL-12 p40 and p35, and IL-12 p40, p35 and IL-2 ). Transduction and analysis of over 100 individual clones, derived from murine and human tumour cell lines, demonstrate the efficient expression and biological activity of each of the encoded proteins. Fusagene vectors enable the co-ordinated expression of multiple gene products from a single, monocistronic, expression cassette.
Collapse
Affiliation(s)
- J Gäken
- Immune Gene Therapy Programme, Department of Molecular Medicine, The Rayne Institute, London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
203
|
Bosse F, Petzold G, Greiner-Petter R, Pippirs U, Gillen C, Müller HW. Cellular localization of the disintegrin CRII-7/rMDC15 mRNA in rat PNS and CNS and regulated expression in postnatal development and after nerve injury. Glia 2000; 32:313-27. [PMID: 11102971 DOI: 10.1002/1098-1136(200012)32:3<313::aid-glia100>3.0.co;2-g] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Disintegrins perform putative functions in cell adhesion, signaling and fusion. We have isolated a 2815-bp rat cDNA (CRII-7) representing a transcript that is differentially expressed during sciatic nerve regeneration. Nucleotide sequence comparison indicates that CRII-7 is the rat homologue to the recently cloned cDNAs MDC15 (ADAM 15) and metargidin (hMDC15) of mouse and human, respectively. The CRII-7 cDNA (rMDC15) encodes a membrane-anchored glycoprotein of approximately 85 kDa containing a disintegrin and a metalloprotease domain. Cellular metalloprotease disintegrins are a family of proteins (ADAMs or MDC proteins) with important roles, e.g., in cell-cell interactions during fertilization, muscle and nerve development, or tumor necrosis factor-alpha (TNF-alpha) cleavage. Northern blot analysis demonstrated a predominant expression of CRII-7/rMDC15 in the nervous system (PNS and CNS) and lung. Analysis of the CRII-7/rMDC15 transcript levels following peripheral nerve lesions demonstrated regulated mRNA expression during Wallerian degeneration and nerve regeneration. The steady-state levels of CRII-7/rMDC15 transcripts markedly increased within the first day after lesion and then steadily decreased for at least 4 weeks. CRII-7/rMDC15 mRNA expression was further examined during postnatal development and maturation of rat sciatic nerve and brain, as well as in cultured Schwann cells, meningeal fibroblasts, and astrocytes. In situ hybridization on paraffin sections showed the cellular localization of CRII-7/rMDC15 mRNA in Schwann cells and endothelial cells of peripheral nerve and in various neuronal populations in brain and spinal cord.
Collapse
Affiliation(s)
- F Bosse
- Molecular Neurobiology Laboratory, Department of Neurology, Heinrich-Heine University of Düsseldorf, Düsseldorf, Germany.
| | | | | | | | | | | |
Collapse
|
204
|
Michalski WP, Crameri G, Wang L, Shiell BJ, Eaton B. The cleavage activation and sites of glycosylation in the fusion protein of Hendra virus. Virus Res 2000; 69:83-93. [PMID: 11018278 DOI: 10.1016/s0168-1702(00)00169-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Hendra virus (HeV) is an unclassified member of the Paramyxoviridae family that causes systemic infections in humans, horses, cats, guinea pigs and flying foxes. The fusion protein (F(0)) of members of the Paramyxoviridae family that cause systemic infections in vivo contains a basic amino acid-rich region at which the protein is activated by cleavage into two subunits (F(1) and F(2)). HeV F(0) lacks such a domain. We have determined the cleavage site in HeV F(0) by sequencing the amino terminus of the F(1) subunit and in view of the potential effect of glycosylation on the cleavage process have ascertained the sites at which F(0) is glycosylated. The results indicate that unlike other members of the family that replicate in cultured cells and cause systemic infections in vivo, cleavage of HeV F(0) occurs at a single lysine (reside 109) in the sequence Asp-Val-Lys- downward arrow-Leu. Although HeV genotypically resembles members of the Respirovirus and Rubulavirus genera in having potential N-linked glycosylation sites in both the F(1) and F(2) subunits, we show that phenotypically HeV may more closely resemble members of the Morbillivirus genus that contain N-linked glycans only in the F(2) subunit.
Collapse
Affiliation(s)
- W P Michalski
- CSIRO Animal Health, Australian Animal Health Laboratory, Private Bag 24, Vic. 3220, Geelong, Australia.
| | | | | | | | | |
Collapse
|
205
|
IJkel WF, Westenberg M, Goldbach RW, Blissard GW, Vlak JM, Zuidema D. A novel baculovirus envelope fusion protein with a proprotein convertase cleavage site. Virology 2000; 275:30-41. [PMID: 11017785 DOI: 10.1006/viro.2000.0483] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The entry mechanism of Spodoptera exigua multicapsid nucleopolyhedrovirus (SeMNPV), a group II NPV, in cultured cells was examined. SeMNPV budded virus (BV) enters by endocytosis as do the BVs of the group I NPVs, Autographa californica (Ac) MNPV and Orgyia pseudotsugata (Op) MNPV. In group I NPVs, upon infection acidification of the endosome triggers fusion of the viral and endosomal membrane, which is mediated by the BV envelope glycoprotein GP64. However, the SeMNPV genome lacks a homolog of GP64 envelope fusion protein (EFP). A functional homolog of the OpMNPV GP64 EFP was identified in SeMNPV ORF8 (Se8; 76 kDa) and appeared to be the major BV envelope protein. Surprisingly, a 60-kDa cleavage product of this protein is present in the BV envelope. A furin-like proprotein convertase cleavage site (R-X-K/R-R) was identified immediately upstream of the N-terminus of the mature Se8 protein and this site was also conserved in the Lymantria dispar (Ld) MNPV homolog (Ld130) of Se8. Syncytium formation assays showed that Se8 and Ld130 alone were sufficient to mediate membrane fusion upon acidification of the medium. Furthermore, C-terminal GFP-fusion proteins of Se8 and Ld130 were primarily localized in the plasma membrane of insect cells. This is consistent with their fusogenic activity and supports the conclusion that the Se8 gene product is a functional homolog of the GP64 EFP.
Collapse
Affiliation(s)
- W F IJkel
- Laboratory of Virology, Wageningen University and Research Center, Binnenhaven 11, 6709 PD Wageningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
206
|
Bausek N, Waclawek M, Schneider WJ, Wohlrab F. The major chicken egg envelope protein ZP1 is different from ZPB and is synthesized in the liver. J Biol Chem 2000; 275:28866-72. [PMID: 10979984 DOI: 10.1074/jbc.275.37.28866] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The extracellular matrix surrounding vertebrate oocytes is called the zona pellucida in mammals and perivitelline membrane (pvm) in birds. We have analyzed this structure in chicken follicles and laid eggs and have identified a 95-kDa component of the pvm, which, by protein sequencing, shows homology to mammalian zona pellucida proteins. Surprisingly, we could not detect this protein in ovarian granulosa cells or oocytes but instead found high levels in the liver of the laying hen. In contrast, it is absent in rooster liver but can be efficiently induced by estrogen treatment of the animal. An immunoscreen of a liver lambda-ZAP library yielded a cDNA coding for a protein of 934 amino acids. It displayed significant homology to members of the ZP1/ZPB family from other species, notably to mouse and rat ZP1, and was therefore designated chkZP1. It is clearly different from a protein designated chkZPB that had been deposited in the data base previously. Alignment of the known members of the ZP1/ZPB family demonstrated the existence of at least three subgroups, with representatives of both the ZP1 and the ZPB sequence homology group occurring in vertebrates. Northern blot analysis of liver extracts revealed the presence of a single 3. 2-kilobase mRNA coding for chkZP1, distinct from the chkZPB transcript detectable in follicles. Immunohistochemical analysis of follicle sections demonstrates that chkZP1 can be found in the blood vessels of the theca cell layer as well as in the pvm surrounding the oocyte. Thus, in the chicken, at least one of the major pvm components is synthesized in the liver and is transported via the bloodstream to the follicle.
Collapse
Affiliation(s)
- N Bausek
- Institute of Medical Biochemistry, Department of Molecular Genetics, University and Biocenter Vienna, Dr. Bohr-Gasse 9/2, A-1030 Wien, Austria
| | | | | | | |
Collapse
|
207
|
Seger D, Shaltiel S. Evidence showing that the two-chain form of vitronectin is produced in the liver by a selective furin cleavage. FEBS Lett 2000; 480:169-74. [PMID: 11034322 DOI: 10.1016/s0014-5793(00)01917-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The adhesive protein vitronectin (75 kDa) occurs in human blood fluid in a one-chain (Vn75) or a two-chain form (Vn65-10), and is produced by a specific cleavage (at Arg379-Ala380), by a proteinase not identified hitherto. These two forms were shown to be functionally different and therefore, this cleavage may have a regulatory significance in vivo. Here, we report the use of a tailored one-chain recombinant Vn, a specific protein kinase A phosphorylation at Ser378, and sequence analysis to show: (1) that none of the proteinases originating from blood, previously thought to be the endogenous proteinase (plasmin, thrombin, tPA, and uPA), is indeed the in vivo convertase; and (2) that furin, a serine endoproteinase residing in the secretory pathway of hepatocytes, where Vn is synthesized, specifically cleaves Vn at the endogenous cleavage site. Consequently, we propose that the Vn75 to Vn65-10 conversion takes place in the liver (not in blood) and is carried out by furin.
Collapse
Affiliation(s)
- D Seger
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
208
|
Harcourt BH, Tamin A, Ksiazek TG, Rollin PE, Anderson LJ, Bellini WJ, Rota PA. Molecular characterization of Nipah virus, a newly emergent paramyxovirus. Virology 2000; 271:334-49. [PMID: 10860887 DOI: 10.1006/viro.2000.0340] [Citation(s) in RCA: 220] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recently, a new paramyxovirus, now known as Nipah virus (NV), emerged in Malaysia and Singapore, causing fatal encephalitis in humans and a respiratory syndrome in pigs. Initial studies had indicated that NV is antigenically and genetically related to Hendra virus (HV). We generated the sequences of the N, P/C/V, M, F, and G genes of NV and compared these sequences with those of HV and other members of the family Paramyxoviridae. The intergenic regions of NV were identical to those of HV, and the gene start and stop sequences of NV were nearly identical to those of HV. The open reading frames (ORFs) for the V and C proteins within the P gene were found in NV, but the ORF encoding a potential short basic protein found in the P gene of HV was not conserved in NV. The N, P, C, V, M, F, and G ORFs in NV have nucleotide homologies ranging from 88% to 70% and predicted amino acid homologies ranging from 92% to 67% in comparison with HV. The predicted fusion cleavage sequence of the F protein of NV had a single amino acid substitution (K to R) in comparison with HV. Phylogenetic analysis demonstrated that although HV and NV are closely related, they are clearly distinct from any of the established genera within the Paramyxoviridae and should be considered a new genus.
Collapse
Affiliation(s)
- B H Harcourt
- Respiratory and Enteric Viruses Branch, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | | | | | | | | | | | | |
Collapse
|
209
|
Bolt G, Pedersen LO, Birkeslund HH. Cleavage of the respiratory syncytial virus fusion protein is required for its surface expression: role of furin. Virus Res 2000; 68:25-33. [PMID: 10930660 DOI: 10.1016/s0168-1702(00)00149-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The fusion (F) glycoprotein of respiratory syncytial virus (RSV) is synthesized as a nonfusogenic precursor protein (F(0)), which during its migration to the cell surface is activated by cleavage into the disulfide-linked F(1) and F(2) subunits. In the present study, soluble secreted human furin produced by a recombinant baculovirus cleaved RSV F(0) into proteins the size of F(1) and F(2). Furthermore, cleavage of F(0) was partially inhibited in the furin defective LoVo cell line, in calcium depleted HEp-2 cells, and in HEp-2 cells treated with the furin inhibitor decanoyl-R-V-K-R-chloromethylketon. These findings strongly suggest an important role for furin in activation of the RSV F protein. The F(0) protein could not be detected on the surface of cells, in which F protein activation was inhibited, and RSV particles did not appear to be released from these cells. It thus seems that in contrast to the F proteins of most other paramyxoviruses, the RSV F(0) protein is very inefficient in reaching the cell surface or is unable to reach the cell surface and therefore cannot be incorporated into virus particles.
Collapse
Affiliation(s)
- G Bolt
- Department of Medical Microbiology and Immunology, Panum Institute, University of Copenhagen, Blegdamsvej 3, 2200 N, Copenhagen, Denmark.
| | | | | |
Collapse
|
210
|
de Coignac AB, Elson G, Delneste Y, Magistrelli G, Jeannin P, Aubry JP, Berthier O, Schmitt D, Bonnefoy JY, Gauchat JF. Cloning of MMP-26. A novel matrilysin-like proteinase. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:3323-9. [PMID: 10824119 DOI: 10.1046/j.1432-1327.2000.01363.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A cDNA encoding a novel human matrix metalloproteinase (MMP), named MMP-26, was cloned from fetal cDNA. The deduced 261-amino-acid sequence is homologous to macrophage metalloelastase (51.8% identity). It includes only the minimal characteristic features of the MMP family: a signal peptide, a prodomain and a catalytic domain. As with MMP-7, this new MMP does not comprise the hemopexin domain, which is believed to be involved in substrate recognition. A study of MMP-26 mRNA steady states levels reveals, among the tissue examined, a specific expression in placenta. MMP-26 mRNA could also be detected in several human cell lines such as HEK 293 kidney cells and HFB1 lymphoma cells. Recombinant MMP-26 was produced in mammalian cells and used to demonstrate a proteolytic activity of the enzyme on gelatin and beta-casein.
Collapse
Affiliation(s)
- A B de Coignac
- Centre d'immunologie Pierre Fabre, St Julien-en-Genevois, France; INSERM U 346, Hôpital Edouard Herriot, Lyon, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
211
|
Abstract
Avian pneumovirus (APV) primarily causes an upper respiratory disease recognized as turkey rhinotracheitis (TRT) or swollen head syndrome (SHS) in chickens. The virus was first isolated in South Africa during the early 1970s and has subsequently been reported in Europe, Asia and South America. In February 1997, a serologically distinct APV isolate was officially reported in the USA following an outbreak of TRT during the previous year. This was the first report of these virus types in the USA; they were previously considered exotic to the USA and Canada. The predicted matrix (M) proteins of European APV type A and B isolates share 89% identity in their amino acid sequence. However, the predicted M protein of APV/CO is only 78% similar to the APV type A and 77% similar to the APV type B protein sequence. The predicted amino acid sequence of the US APV isolate's fusion (F) protein has 72% sequence identity to the F protein of APV type A and 71% sequence identity to the F protein of type B. This compares with the 83% sequence identity between the predicted amino acid sequences of the F proteins of APV types A and B. The lack of sequence heterogeneity among the US APV isolates over 2 years suggests that these viruses have maintained a relatively stable population since the first outbreak of TRT. Phylogenetic analysis of the M and F proteins, together with the serological uniqueness of the US APV isolates, supports their classification as a new APV, designated type C.
Collapse
Affiliation(s)
- B S Seal
- Southeast Poultry Research Laboratory, Agricultural Research Service, USDA, Athens, GA 30605, USA.
| |
Collapse
|
212
|
Xu G, Bell SL, McCool D, Forstner JF. The cationic C-terminus of rat Muc2 facilitates dimer formation post translationally and is subsequently removed by furin. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:2998-3004. [PMID: 10806399 DOI: 10.1046/j.1432-1033.2000.01319.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Earlier immunolocalization experiments showed that the extreme cationic C-terminus of the rat intestinal mucin Muc2 (RMC) was present at the base of intestinal goblet cells in the vicinity of ER and golgi compartments, but was not found with the rest of the mucin in apical storage granules. This prompted us to investigate the possibility that an early proteolytic cleavage reaction occurs post-translationally. A plasmid pRMC, encoding the C-terminal 534 amino acids of the mucin, was expressed in COS-7 cells and was shown to undergo cleavage at an R-T-R-R sequence located within the C-terminal 14 amino acids. Cleavage did not occur with the construct RMCfH, a furin site-mutated (A-T-A-A) counterpart of pRMCH (poly His6 tagged RMC). Addition of a furin inhibitor to COS-7 cell incubations also prevented cleavage of RMC and RMCH products. 35S pulse-chase kinetic experiments revealed that a truncated mutant lacking the C-terminal 14 amino acids (pRMCDeltaCT) forms faulty (doublet) dimers in the ER. These were not secreted as efficiently as the normal dimer of wild-type (pRMC) constructs. Thus the cationic C-terminus of rMuc2 apppears to facilitate the correct formation of normal Muc2 domain dimers.
Collapse
Affiliation(s)
- G Xu
- Research Institute, The Hospital for Sick Children and the University of Toronto, Canada
| | | | | | | |
Collapse
|
213
|
Cao Y, Murphy KJ, McIntyre TM, Zimmerman GA, Prescott SM. Expression of fatty acid-CoA ligase 4 during development and in brain. FEBS Lett 2000; 467:263-7. [PMID: 10675551 DOI: 10.1016/s0014-5793(00)01159-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Fatty acid utilization is initiated by fatty acid-CoA ligase, which converts free fatty acids into fatty acyl-CoA esters. We have cloned previously the human long-chain fatty acid-CoA ligase 4 (FACL4), which is a central enzyme in controlling the free arachidonic acid level in cells and thereby regulating eicosanoid production. We report here the expression of this gene in tissues, particularly in different parts of the brain. We found that FACL4 encoded a 75 kDa enzyme and that there was a modified translation product expressed in the brain. FACL4 was expressed in early stages of development with a significant amount of FACL4 mRNA detected in an E7 mouse embryo. In addition, FACL4 was highly expressed in both adult and newborn mouse brain especially in the granule cells of the dentate gyrus and the pyramidal cell layer of CA1 in hippocampus, and the granular cell layer and Purkinje cells of the cerebellum.
Collapse
Affiliation(s)
- Y Cao
- Huntsman Cancer Institute, 2000 Circle of Hope, Suite 5360, University of Utah, Salt Lake City, UT, USA
| | | | | | | | | |
Collapse
|
214
|
Seal BS, Sellers HS, Meinersmann RJ. Fusion protein predicted amino acid sequence of the first US avian pneumovirus isolate and lack of heterogeneity among other US isolates. Virus Res 2000; 66:139-47. [PMID: 10725547 DOI: 10.1016/s0168-1702(99)00133-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Avian pneumovirus (APV) was first isolated from turkeys in the west-central US following emergence of turkey rhinotracheitis (TRT) during 1996. Subsequently, several APV isolates were obtained from the north-central US. Matrix (M) and fusion (F) protein genes of these isolates were examined for sequence heterogeneity and compared with European APV subtypes A and B. Among US isolates the M gene shared greater than 98% nucleotide sequence identity with only one nonsynonymous change occurring in a single US isolate. Although the F gene among US APV isolates shared 98% nucleotide sequence identity, nine conserved substitutions were detected in the predicted amino acid sequence. The predicted amino acid sequence of the US APV isolate's F protein had 72% sequence identity to the F protein of APV subtype A and 71% sequence identity to the F protein of APV subtype B. This compares with 83% sequence identity between the APV subtype A and B predicted amino acid sequences of the F protein. The US isolates were phylogenetically distinguishable from their European counterparts based on F gene nucleotide or predicted amino acid sequences. Lack of sequence heterogeneity among US APV subtypes indicates these viruses have maintained a relatively stable population since the first outbreak of TRT. Phylogenetic analysis of the F protein among APV isolates supports classification of US isolates as a new APV subtype C.
Collapse
Affiliation(s)
- B S Seal
- Southeast Poultry Research Laboratory, Agricultural Research Service, USDA, 934 College Station Road, Athens, GA, USA.
| | | | | |
Collapse
|
215
|
Abstract
Bikunin is a plasma proteinase inhibitor that has received little attention in the past, probably because its activity towards various proteinases was found to be relatively weak in early work. It was recently discovered, however, that bikunin effectively inhibits a proteinase that seems to be involved in the metastasis of tumour cells--cell surface plasmin--and that a fragment of bikunin inhibits two proteinases of the coagulation pathway--factor Xa and kallikrein. Furthermore, it has been found that bikunin has other properties, such as the ability to modulate cell growth and to block cellular calcium uptake. Most of the bikunin in the blood occurs as a covalently linked subunit of the proteins pre- and inter-alpha-inhibitor. In this form bikunin lacks some of its known activities, and there is evidence that its release by partial proteolytic degradation may function as a regulatory mechanism. Although the physiological function of bikunin still remains to be established, current data suggest that this protein plays a role in inflammation. Further studies could therefore lead to results of therapeutical value.
Collapse
Affiliation(s)
- E Fries
- Department of Medical Biochemistry and Microbiology, Uppsala University, Sweden.
| | | |
Collapse
|
216
|
Kettle S, Card CM, Hutchinson S, Sykes B, Handford PA. Characterisation of fibrillin-1 cDNA clones in a human fibroblast cell line that assembles microfibrils. Int J Biochem Cell Biol 2000; 32:201-14. [PMID: 10687954 DOI: 10.1016/s1357-2725(99)00120-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Fibrillin-1 is a large extracellular glycoprotein which is a major structural component of 10-12 nm microfibrils. Defects in human fibrillin-1 give rise to the autosomal dominant connective tissue disease the Marfan syndrome and related disorders. Previous studies examining the biosynthesis and secretion of recombinant fibrillin-1 fragments have been performed in cell lines which do not assemble fibrillin into extracellular 10-12 nm microfibrils. Conflicting data have been obtained regarding N-terminal processing. In this study we have characterised a human fibroblast cell line MSU-1.1 which shows a similar endogenous fibrillin-1 pulse chase profile to primary human dermal fibroblasts and produces microfibrils. Expression of a approximately 50 kDa N-terminal recombinant peptide in MSU-1.1 resulted in efficient secretion of this peptide into conditioned media, N-terminal sequence analysis of the purified peptide identified 2 protease cleavage sites and a presumed signal peptidase site. Together these data identify the natural leader sequence of fibrillin-1 and the presence of two processing sites in the N-terminus of fibrillin-1. The identification of an N-terminal processing site in recombinant fibrillin-1 similar to that obtained in a previous study which used an HT1080 fibrosarcoma host cell line excludes defective N-terminal processing as the cause of the assembly defect in this cell line. A full length normal and mutant fibrillin cDNA (approximately 8.6 kb) was constructed and stable integration of each into MSU1.1 led to RNA transcription at approximately 5% of endogenous levels. This is the first report of transcription from the full length fibrillin-1 cDNA. The low levels of transcription achieved, suggest that additional upstream and downstream DNA sequence elements will be required for high levels of full length fibrillin-1 cDNA expression.
Collapse
Affiliation(s)
- S Kettle
- Department of Biochemistry, Oxford, UK
| | | | | | | | | |
Collapse
|
217
|
Bassi DE, Mahloogi H, Klein-Szanto AJP. The Proprotein Convertases Furin and PACE4 Play a Significant Role in Tumor Progression. Mol Carcinog 2000. [DOI: 10.1002/1098-2744(200006)28:2<63::aid-mc1>3.0.co;2-c] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
218
|
Rubin BP, Tucker RP, Martin D, Chiquet-Ehrismann R. Teneurins: a novel family of neuronal cell surface proteins in vertebrates, homologous to the Drosophila pair-rule gene product Ten-m. Dev Biol 1999; 216:195-209. [PMID: 10588872 DOI: 10.1006/dbio.1999.9503] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have characterized chicken teneurin-1 and teneurin-2, two homologues of the Drosophila pair-rule gene product Ten-m and Drosophila Ten-a. The high degree of conservation between the vertebrate and invertebrate proteins suggests that these belong to a novel family. We propose to name the vertebrate members of this family teneurins, because of their predominant expression in the nervous system. The expression of teneurin-1 and -2 was investigated by in situ hybridization. We show that teneurin-1 and -2 are expressed by distinct populations of neurons during the time of axonal growth. The most prominent site of expression of chicken teneurins is the developing visual system. Recombinant teneurin-2 was expressed to assay its molecular and functional properties. We show that it is a type II transmembrane protein, which can be released from the cell surface by proteolytic cleavage at a furin site. The expression of teneurin-2 in neuronal cells led to a significant increase in the number of filopodia and to the formation of enlarged growth cones. The expression pattern of teneurins in the developing nervous system and the ability of teneurin-2 to reorganize the cellular morphology indicate that these proteins may have an important function in the formation of neuronal connections.
Collapse
Affiliation(s)
- B P Rubin
- Friedrich Miescher Institute, Basel, CH-4002, Switzerland
| | | | | | | |
Collapse
|
219
|
Ishibashi J, Saido-Sakanaka H, Yang J, Sagisaka A, Yamakawa M. Purification, cDNA cloning and modification of a defensin from the coconut rhinoceros beetle, Oryctes rhinoceros. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 266:616-23. [PMID: 10561605 DOI: 10.1046/j.1432-1327.1999.00906.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A novel member of the insect defensins, a family of antibacterial peptides, was purified from larvae of the coconut rhinoceros beetle, Oryctes rhinoceros, immunized with Escherichia coli. A full-size cDNA was cloned by combining reverse-transcription PCR (RT-PCR), and 5'- and 3'-rapid amplification of cDNA ends (RACE). Analysis of the O. rhinoceros defensin gene expression showed it to be expressed in the fat body and hemocyte, midgut and Malpighian tubules. O. rhinoceros defensin showed strong antibacterial activity against Staphylococcus aureus. A 9-mer peptide amidated at its C-terminus, AHCLAICRK-NH2 (Ala22-Lys30-NH2), was synthesized based on the deduced amino-acid sequence, assumed to be an active site sequence by analogy with the sequence of a defensin isolated from larvae of the beetle Allomyrina dichotoma. This peptide showed antibacterial activity against S. aureus, methicillin-resistant S. aureus, E. coli and Pseudomonas aeruginosa. We further modified this oligopeptide and synthesized five 9-mer peptides, ALRLAIRKR-NH2, ALLLAIRKR-NH2, AWLLAIRKR-NH2, ALYLAIRKR-NH2 and ALWLAIRKR-NH2. These oligopeptides showed strong antibacterial activity against Gram-negative and Gram-positive bacteria. The antibacterial effect of Ala22-Lys30-NH2 analogues was due to its interaction with bacterial membranes, judging from the leakage of liposome-entrapped glucose. These Ala22-Lys30-NH2 analogues did not show haemolytic activity and did not inhibit the growth of murine fibroblast cells or macrophages, except for AWLLAIRKR-NH2.
Collapse
Affiliation(s)
- J Ishibashi
- Laboratory of Biological Defence, National Institute of Sericultural and Entomological Science, Tsukuba, Japan
| | | | | | | | | |
Collapse
|
220
|
Yamasaki K, Sasaki T, Nemoto M, Eto Y, Tajima N. Differentiation-induced insulin secretion from nonendocrine cells with engineered human proinsulin cDNA. Biochem Biophys Res Commun 1999; 265:361-5. [PMID: 10558872 DOI: 10.1006/bbrc.1999.1698] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To investigate the effects of differentiation on insulin secretion from engineered nonendocrine cells, modified human proinsulin cDNA (INS/fur) was transfected to THP-1 monocyte and C2C12 myoblast cell lines. When THP-1 was differentiated into macrophages with phorbol ester, the insulin secretion rate was increased by 3.1-fold. This increase in insulin secretion is accompanied by a 17.6-fold increase in the processing efficiency of the modified human proinsulin and by a 3.5-fold increase in the abundance of furin mRNA. In addition, differentiation of C2C12 into myotubes, which can be induced by changing the serum, showed a 9.9-fold increase in insulin secretion and was accompanied by a 1.6-fold increase in the abundance of furin mRNA. The involvement of posttranslational processing and the exocytotic process in differentiation-induced insulin secretion could lead to the possibility of regulation of insulin secretion from genetically engineered cells.
Collapse
Affiliation(s)
- K Yamasaki
- Department of Internal Medicine (III), Jikei University School of Medicine
| | | | | | | | | |
Collapse
|
221
|
Dombrowski JE, Pearce G, Ryan CA. Proteinase inhibitor-inducing activity of the prohormone prosystemin resides exclusively in the C-terminal systemin domain. Proc Natl Acad Sci U S A 1999; 96:12947-52. [PMID: 10536028 PMCID: PMC23176 DOI: 10.1073/pnas.96.22.12947] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Prosystemin is the 200-amino acid precursor of the 18-amino acid polypeptide defense hormone, systemin. Herein, we report that prosystemin was found to be as biologically active as systemin when assayed for proteinase inhibitor induction in young tomato plants and nearly as active in the alkalinization response in Lycopersicon esculentum suspension-cultured cells. Similar to many animal prohormones that harbor multiple signals, the systemin precursor contains five imperfect repetitive domains N-terminal to a single systemin domain. Whether the five repetitive domains contain defense signals has not been established. N-terminal deletions of prosystemin had little effect on its activity in tomato plants or suspension-cultured cells. Deletion of the C-terminal region of prosystemin containing the 18-amino acid systemin domain completely abolished its proteinase inhibitor induction and alkalinization activities. The apoplastic fluid from tomato leaves and the medium of cultured cells were analyzed for proteolytic activity that could process prosystemin to systemin. These experiments showed that proteolytic enzymes present in the apoplasm and medium could cleave prosystemin into large fragments, but the enzymes did not produce detectable levels of systemin. Additionally, inhibitors of these proteolytic enzymes did not affect the biological activity of prosystemin. The cumulative data indicated that prosystemin and/or large fragments of prosystemin can be active inducers of defense responses in both tomato leaves and suspension-cultured cells and that the only region of prosystemin that is responsible for activating the defense response resides in the systemin domain.
Collapse
Affiliation(s)
- J E Dombrowski
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340, USA
| | | | | |
Collapse
|
222
|
Okuno A, Hasegawa Y, Ohira T, Katakura Y, Nagasawa H. Characterization and cDNA cloning of androgenic gland hormone of the terrestrial isopod Armadillidium vulgare. Biochem Biophys Res Commun 1999; 264:419-23. [PMID: 10529379 DOI: 10.1006/bbrc.1999.1522] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The sex differentiation in crustaceans is known to be controlled by a peptide hormone called androgenic gland hormone (AGH). AGH was extracted and purified from the androgenic glands (AGs) of the male isopod Armadillidium vulgare by high-performance liquid chromatography. AGH consisted of two peptide chains and their N-terminal amino acid sequences were determined. A cDNA encoding AGH was cloned by PCR and sequenced. The cDNA had an open reading frame of 432 bp, which encoded a preproAGH consisting of a signal peptide (21 residues), B chain (44 residues), C peptide (46 residues), and A chain (29 residues). Through processing, the A and B chains might form a heterodimer interlinked by disulfide bonds. The A chain possessed a putative N-linked glycosylation site. A Northern blot analysis using the cDNA as a probe detected a hybridization signal with 0.8 kb in the RNA preparation only from the AGs.
Collapse
Affiliation(s)
- A Okuno
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| | | | | | | | | |
Collapse
|
223
|
Novikova EG, Eng FJ, Yan L, Qian Y, Fricker LD. Characterization of the enzymatic properties of the first and second domains of metallocarboxypeptidase D. J Biol Chem 1999; 274:28887-92. [PMID: 10506132 DOI: 10.1074/jbc.274.41.28887] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Carboxypeptidase D (CPD) contains three domains with homology to other metallocarboxypeptidases. To further characterize the various domains, we constructed a series of point mutants with a critical active site Glu of duck CPD converted to Gln. The proteins were expressed in the baculovirus system, purified to homogeneity, and characterized. Point mutations within both the first and second domains eliminated enzyme activity, indicating that the third domain is inactive toward dansyl-Phe-Ala-Arg. CPD removed only the C-terminal Lys or Arg from peptides, with the first domain more efficient toward Arg and the second domain more efficient toward Lys. Peptides containing Pro in the penultimate position were poorly cleaved by either domain. Cleavage of a peptide with Ala in the penultimate position was most efficient, with the relative order Ala >/= Met > Ser, Phe > Tyr > Trp > Thr >/= Gln, Asp, Leu, Gly >> Pro for CPD with both domains active. There were only minor differences between the first and the second domains regarding the influence of the penultimate amino acid. The first domain was optimally active at pH 6.3-7.5, whereas the second domain was optimally active at pH 5. 0-6.5. Thus, the first and second carboxypeptidase domains have complementary enzyme activities. Furthermore, the finding that CPD with both domains active shows a broad activity to a wide range of substrates is consistent with a role for this enzyme in the processing of many proteins that transit the secretory pathway.
Collapse
Affiliation(s)
- E G Novikova
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | |
Collapse
|
224
|
Délano JP, Dombrowski JE, Ryan CA. The expression of tomato prosystemin in Escherichia coli: A structural challenge. Protein Expr Purif 1999; 17:74-82. [PMID: 10497071 DOI: 10.1006/prep.1999.1113] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Prosystemin is the 200-amino-acid prohormone of the 18-amino-acid polypeptide called systemin, a systemic mobile signal that activates the synthesis of defense genes in solanaceous plants in response to herbivore attacks. The unusual primary structural features of the tomato prosystemin cDNA and protein provided an extraordinary challenge in devising an expression system to obtain the full-length protein. Prosystemin expression inhibited the growth of a eukaryotic and several prokaryotic hosts used. Prosystemin was initially synthesized as a truncated protein of 185 amino acids in length using a T7 RNA polymerase expression system in E. coli strain BL21[DE3]. The truncation was found to be due to two factors: (1) the intramolecular associations of the 5' coding region of the prosystemin sequence with the expression vector's ribosome binding site and (2) the presence of a translation start site just prior to the amino acid methionine at position 15. Mutations that permitted the synthesis of the full-length prosystemin protein were introduced into the amino-terminal 5' coding region of the prosystemin cDNA. A 199-amino-acid recombinant prosystemin lacking the N-terminal methionine was purified from lysates and confirmed by N-terminal amino acid sequence and immunoblot analysis.
Collapse
Affiliation(s)
- J P Délano
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340, USA
| | | | | |
Collapse
|
225
|
Lindsay LL, Yang JC, Hedrick JL. Ovochymase, a Xenopus laevis egg extracellular protease, is translated as part of an unusual polyprotease. Proc Natl Acad Sci U S A 1999; 96:11253-8. [PMID: 10500163 PMCID: PMC18020 DOI: 10.1073/pnas.96.20.11253] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ovochymase, an extracellular Xenopus laevis egg serine active-site protease with chymotrypsin-like (Phe-X) substrate specificity, is released during egg activation. Molecular cloning results revealed that ovochymase is translated as part of an unusual polyprotein proenzyme. In addition to the ovochymase protease domain at the C terminus of the deduced amino acid sequence, two unrelated serine protease domains were present, each with apparent trypsin-like (Arg/Lys-X) substrate specificity, and thus, they were designated ovotryptase1 (at the N terminus) and ovotryptase2 (a mid domain). Also, a total of five CUB domains were interspersed between the protease domains. The presence of a hydrophobic signal sequence indicated that the polyprotein was secreted. Immunolocalization and Western blot studies of all three proteases showed that they are all present in the perivitelline space of unactivated eggs, apparently as proenzymes processed away from the original polyprotein. Western blot analysis also showed that the vast majority of the proteases in ovary, eggs, and embryos were present as the proenzyme forms, suggesting that the functions of these proteases depend on very limited levels of activation.
Collapse
Affiliation(s)
- L L Lindsay
- Section of Molecular Biology, University of California, Davis, CA 95616, USA.
| | | | | |
Collapse
|
226
|
Litscher ES, Qi H, Wassarman PM. Mouse zona pellucida glycoproteins mZP2 and mZP3 undergo carboxy-terminal proteolytic processing in growing oocytes. Biochemistry 1999; 38:12280-7. [PMID: 10493795 DOI: 10.1021/bi991154y] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The extracellular coat, or zona pellucida, of the mouse egg consists of three glycoproteins, called mZP1-3. The glycoproteins are synthesized and secreted concomitantly by growing oocytes during their 2-3-week growth phase. Each of the glycoproteins has a consensus furin cleavage site (-Arg-X-Lys/Arg-Arg-) near the C-terminus of their polypeptide. Here, several approaches were employed to determine whether nascent mZP2 and mZP3 are cleaved at the consensus sites, -Arg-Ser-Lys-Arg- and -Arg-Asn-Arg-Arg-, respectively, prior to secretion. Molecular mass determinations of deglycosylated mZP2 and mZP3 suggest that their polypeptides are approximately 9 and approximately 7 kDa smaller, respectively, than predicted from exon sequences. Two-dimensional thin-layer chromatographic analyses were also carried out to identify amino acids released from the C-terminus of mZP2 and mZP3 by carboxypeptidase B. On the basis of exon sequences, there are no Arg residues at the predicted C-terminus of the mature glycoproteins. However, for both mZP2 and mZP3, Arg residues were released by carboxypeptidase B, consistent with processing at the consensus furin cleavage site. Furthermore, an antiserum raised against an mZP3 peptide, located downstream of the consensus furin cleavage site, failed to label purified mZP3 on Western immunoblots. The antiserum also failed to label the zona pellucida of oocytes examined by laser scanning confocal microscopy. Collectively, these results strongly suggest that mZP2 and mZP3 are processed at their consensus furin cleavage site prior to secretion and incorporation into the zona pellucida.
Collapse
Affiliation(s)
- E S Litscher
- Department of Biochemistry and Molecular Biology, Mount Sinai School of Medicine, New York 10029-6574, USA
| | | | | |
Collapse
|
227
|
Evidence for Extracellular Processing of Pro-von Willebrand Factor After Infusion in Animals With and Without Severe von Willebrand Disease. Blood 1999. [DOI: 10.1182/blood.v94.5.1637.417k15_1637_1647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although proteolytic processing of pro-von Willebrand factor (pro-vWF) resulting in free propeptide and mature vWF is known to be initiated intracellularly, vWF released from endothelial cells may contain a high proportion of incompletely processed pro-vWF. Because pro-vWF is only rarely detectable in normal human plasma, we investigated whether extracellular processing of pro-vWF is possible. A recombinant preparation (rpvWF) containing both pro-vWF and mature vWF subunits was infused into 2 pigs and 1 dog with severe von Willebrand disease, 2 mice with a targeted disruption of the vWF gene, and 2 healthy baboons. Total vWF antigen (vWF:Ag), free propeptide, and pro-vWF were measured using enzyme-linked immunosorbent assay techniques in blood samples drawn before and after infusion. vWF:Ag increased promptly. No pro-vWF could be detected when the first postinfusion sample was drawn after 30 minutes (pigs) or 60 minutes (mice), but pro-vWF was detectable for short periods when postinfusion samples were drawn after 15 minutes (dog) or 5 minutes (baboons). In contrast, free propeptide was increased at the first timepoint measured, suggesting that it was generated from the pro-vWF in the rpvWF preparation. vWF multimers were analyzed in the rpvWF preparation and in plasma samples drawn before and after infusion of rpvWF using ultra-high resolution 3% agarose gels to allow separation of homo- and hetero-forms of the vWF polymers. Within 30 minutes after infusion in the pigs, 1 hour in the dog and the mice, and within 2 hours in the baboons, the multimer pattern had changed to that typically seen in mature vWF. These data indicate that propeptide cleavage from unprocessed vWF can occur extracellularly in the circulation. The enzyme or enzymes responsible for this cleavage in plasma remain to be identified.
Collapse
|
228
|
Evidence for Extracellular Processing of Pro-von Willebrand Factor After Infusion in Animals With and Without Severe von Willebrand Disease. Blood 1999. [DOI: 10.1182/blood.v94.5.1637] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractAlthough proteolytic processing of pro-von Willebrand factor (pro-vWF) resulting in free propeptide and mature vWF is known to be initiated intracellularly, vWF released from endothelial cells may contain a high proportion of incompletely processed pro-vWF. Because pro-vWF is only rarely detectable in normal human plasma, we investigated whether extracellular processing of pro-vWF is possible. A recombinant preparation (rpvWF) containing both pro-vWF and mature vWF subunits was infused into 2 pigs and 1 dog with severe von Willebrand disease, 2 mice with a targeted disruption of the vWF gene, and 2 healthy baboons. Total vWF antigen (vWF:Ag), free propeptide, and pro-vWF were measured using enzyme-linked immunosorbent assay techniques in blood samples drawn before and after infusion. vWF:Ag increased promptly. No pro-vWF could be detected when the first postinfusion sample was drawn after 30 minutes (pigs) or 60 minutes (mice), but pro-vWF was detectable for short periods when postinfusion samples were drawn after 15 minutes (dog) or 5 minutes (baboons). In contrast, free propeptide was increased at the first timepoint measured, suggesting that it was generated from the pro-vWF in the rpvWF preparation. vWF multimers were analyzed in the rpvWF preparation and in plasma samples drawn before and after infusion of rpvWF using ultra-high resolution 3% agarose gels to allow separation of homo- and hetero-forms of the vWF polymers. Within 30 minutes after infusion in the pigs, 1 hour in the dog and the mice, and within 2 hours in the baboons, the multimer pattern had changed to that typically seen in mature vWF. These data indicate that propeptide cleavage from unprocessed vWF can occur extracellularly in the circulation. The enzyme or enzymes responsible for this cleavage in plasma remain to be identified.
Collapse
|
229
|
Cao MJ, Osatomi K, Pangkey H, Hara K, Ishihara T. Cleavage specificity of a myofibril-bound serine proteinase from carp (Cyprinus carpio) muscle. Comp Biochem Physiol B Biochem Mol Biol 1999; 123:399-405. [PMID: 10582314 DOI: 10.1016/s0305-0491(99)00086-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Previously, we reported the purification and characterization of a myofibril-bound serine proteinase (MBP) from carp muscle (Osatomi K, Sasai H, Cao M-J, Hara K, Ishihara T. Comp Biochem Physiol 1997;116B:159-66). In the present study, the N-terminal amino acid sequence of the enzyme was determined, which showed high identity with those of other trypsin-like serine proteases. The cleavage specificity of MBP for dibasic and monobasic residues was investigated using various fluorogenic substrates and peptides. Analyses of the cleaved peptide products showed that the enzyme hydrolyzed peptides both at monobasic and dibasic amino acid residues. Monobasic amino acid residues were hydrolyzed at the carboxyl side; dibasic residues were cleaved either at the carboxyl side of the pair or between the two basic residues and the enzyme showed a cleavage preference for the Arg-Arg pair. Unexpectedly, MBP hydrolyzed lysyl-bradykinin and methionyl-lysyl-bradykinin at the carboxyl side of Gly fairly specifically and efficiently displaying a unique cleavage. Because MBP also degraded protein substrates such as casein and myofibrillar proteins, the substrate specificity of MBP appeared not to be strictly specific.
Collapse
Affiliation(s)
- M J Cao
- Graduate School of Marine Science and Engineering, Nagasaki University, Japan
| | | | | | | | | |
Collapse
|
230
|
Kamimura H, Konda Y, Yokota H, Takenoshita S, Nagamachi Y, Kuwano H, Takeuchi T. Kex2 family endoprotease furin is expressed specifically in pit-region parietal cells of the rat gastric mucosa. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:G183-90. [PMID: 10409166 DOI: 10.1152/ajpgi.1999.277.1.g183] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
The proprotein-processing endoprotease furin is localized in the gastric epithelial cells of the pit region in the rat gastric gland. The gastric pit is composed of several cell types, including gastric surface mucosal (GSM) cells and parietal cells. Furin converts many growth- or differentiation-related proproteins to their active forms. We examined identification of furin-positive cells by immunostaining of rat gastric mucosa and regulators of the furin expression by measuring the furin promoter activity by luciferase assay. Furin-positive cells were stained for H(+)-K(+)-ATPase, indicating that they are parietal cells. Furin-positive parietal cells were not stained for transforming growth factor-alpha (TGF-alpha) but were surrounded by TGF-alpha-positive GSM cells. In contrast, parietal cells below the proliferative zone were positive for TGF-alpha but not for furin. Furin-positive parietal cells expressed a high level of epidermal growth factor receptor (EGFR). TGF-alpha stimulated the furin promoter activity highly in a mouse GSM cell line GSM06. Thus we suggest that the parietal cells of the pit region have furin-mediated functions that can be stimulated by EGFR signaling.
Collapse
Affiliation(s)
- H Kamimura
- Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371, Japan
| | | | | | | | | | | | | |
Collapse
|
231
|
Abstract
Although human epidemics of influenza occur on nearly an annual basis and result in a significant number of "excess deaths," the viruses responsible are not generally considered highly pathogenic. On occasion, however, an outbreak occurs that demonstrates the potential lethality of influenza viruses. The human pandemic of 1918 spread worldwide and killed millions, and the limited human outbreak of highly pathogenic avian viruses in Hong Kong at the end of 1997 is a warning that this could happen again. In avian species such as chickens and turkeys, several outbreaks of highly pathogenic influenza viruses have been documented. Although the reason for the lethality of the human 1918 viruses remains unclear, the pathogenicity of the avian viruses, including those that caused the human 1997 outbreak, relates primarily to properties of the hemagglutinin glycoprotein (HA). Cleavage of the HA precursor molecule HA0 is required to activate virus infectivity, and the distribution of activating proteases in the host is one of the determinants of tropism and, as such, pathogenicity. The HAs of mammalian and nonpathogenic avian viruses are cleaved extracellularly, which limits their spread in hosts to tissues where the appropriate proteases are encountered. On the other hand, the HAs of pathogenic viruses are cleaved intracellularly by ubiquitously occurring proteases and therefore have the capacity to infect various cell types and cause systemic infections. The x-ray crystal structure of HA0 has been solved recently and shows that the cleavage site forms a loop that extends from the surface of the molecule, and it is the composition and structure of the cleavage loop region that dictate the range of proteases that can potentially activate infectivity. Here influenza virus pathogenicity is discussed, with an emphasis on the role of HA0 cleavage as a determining factor.
Collapse
Affiliation(s)
- D A Steinhauer
- National Institute for Medical Research, The Ridgeway, London, Mill Hill, NW7 1AA, United Kingdom.
| |
Collapse
|
232
|
Varlamov O, Wu F, Shields D, Fricker LD. Biosynthesis and packaging of carboxypeptidase D into nascent secretory vesicles in pituitary cell lines. J Biol Chem 1999; 274:14040-5. [PMID: 10318817 DOI: 10.1074/jbc.274.20.14040] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Metallocarboxypeptidase D (CPD) is a membrane-bound trans-Golgi network (TGN) protein. In AtT-20 cells, CPD is initially produced as a 170-kDa endoglycosidase H-sensitive glycoprotein. Within 30 min of chase, the CPD increases to 180 kDa and is resistant to endoglycosidase H as a result of carbohydrate maturation. CPD also undergoes an activation step required for binding to a substrate affinity resin. Blocking the protein exit from the endoplasmic reticulum inhibits the increase in molecular mass but not the step required for affinity column binding, suggesting that enzyme activation precedes carbohydrate maturation and that these reactions occur in distinct intracellular compartments. Only the higher molecular weight mature CPD enters nascent secretory vesicles, which bud from the TGN of permeabilized AtT-20 and GH3 cells. The budding efficiency of CPD into vesicles is 2-3-fold lower than that of endogenous proopiomelanocortin in AtT-20 cells or prolactin in GH3 cells. In contrast, the packaging of a truncated form of CPD, which lacks the cytoplasmic tail and transmembrane domain, was similar to that of proopiomelanocortin. Taken together, the results support the proposal that CPD functions in the TGN in the processing of proteins that transit the secretory pathway and that the C-terminal region plays a major role in TGN retention.
Collapse
Affiliation(s)
- O Varlamov
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | |
Collapse
|
233
|
Fujii Y, Sakaguchi T, Kiyotani K, Yoshida T. Comparison of substrate specificities against the fusion glycoprotein of virulent Newcastle disease virus between a chick embryo fibroblast processing protease and mammalian subtilisin-like proteases. Microbiol Immunol 1999; 43:133-40. [PMID: 10229267 DOI: 10.1111/j.1348-0421.1999.tb02384.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The fusion (F) protein precursor of virulent Newcastle disease virus (NDV) strains has two pairs of basic amino acids at the cleavage site, and its intracellular cleavage activation occurs in a variety of cells; therefore, the viruses cause systemic infections in poultry. To explore the protease responsible for the cleavage in the natural host, we examined detailed substrate specificity of the enzyme in chick embryo fibroblasts (CEF) using a panel of the F protein mutants at the cleavage site expressed by vaccinia virus vectors, and compared the specificity with those of mammalian subtilisin-like proteases such as furin, PC6 and PACE4 which are candidates for F protein processing enzymes. It was demonstrated in CEF cells that Arg residues at the -4, -2 and -1 positions upstream of the cleavage site were essential, and that at the -5 position was required for maximal cleavage. Phe at the +1 position was also important for efficient cleavage. On the other hand, furin and PC6 expressed by vaccinia virus vectors showed cleavage specificities against the F protein mutants consistent with that shown by the processing enzyme of CEF cells, but PACE4 hardly cleaved the F proteins including the wild type. These results indicate that the proteolytic processing enzymes of poultry for virulent NDV F proteins could be furin and/or PC6 but not PACE4. The significance of individual contribution of the three amino acids at the -5, -2 and +1 positions to cleavability was discussed in relation to the evolution of virulent and avirulent NDV strains.
Collapse
Affiliation(s)
- Y Fujii
- Department of Bacteriology, Hiroshima University School of Medicine, Hiroshima, Japan
| | | | | | | |
Collapse
|
234
|
Fahnestock M, Zhu W. Expression of human prohormone convertase PC2 in a baculovirus-insect cell system. DNA Cell Biol 1999; 18:409-17. [PMID: 10360841 DOI: 10.1089/104454999315295] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
PC2 is a member of the eukaryotic family of subtilisin-related proprotein convertases which are thought to be involved in the intracellular proteolytic processing of prohormones and proneuropeptides. The presence of only small amounts of PC2 in the secretory granules of certain mammalian neuroendocrine cell types has made the characterization and further study of this enzyme difficult. We report here the expression of proteolytically active human PC2 protein in the insect cell-baculovirus system. Human PC2 expressed in insect cells is a calcium-dependent intracellular protein active at neutral pH. In insect cells, human PC2 was found intracellularly as 75-kDa and 71-kDa proteins. Both 73-kDa and 68-kDa forms were found in the conditioned medium, but no PC2 proteolytic activity was detected. We demonstrated the presence of a soluble inhibitor in infected-cell medium which may block PC2 activity.
Collapse
Affiliation(s)
- M Fahnestock
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | | |
Collapse
|
235
|
Pischitzis A, Hahn D, Leuenberger B, Sterchi EE. N-Benzoyl-L-tyrosyl-p-aminobenzoic acid hydrolase beta (human meprinbeta). A 13-amino-acid sequence is required for proteolyticprocessing and subsequent secretion. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 261:421-9. [PMID: 10215852 DOI: 10.1046/j.1432-1327.1999.00268.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
N-Benzoyl-L-tyrosyl-p-aminobenzoic acid hydrolase or human meprin (PPH) is a brush-border membrane enzyme of small intestinal epithelial cells. It is a type I integral membrane protein composed of two disulphide-bridged subunits (alpha and beta). PPH and its homologous counterparts in rodents belong to the astacin family of zinc-metalloendopeptidases. Although the amino-acid sequence of the beta subunits is 80-90% identical in these three species, processing is different. Expression of PPHbeta in simian virus 40-transformed African green monkey kidney cells (COS-1) and Madin Darby canine kidney (MDCK) cells results in its cell surface localization and secretion, whereas mouse meprinbeta is only found at the plasma membrane. To investigate proteolytic processing of PPHbeta and to identify the cleavage site, different C-terminal domains of wild-type PPHbeta were exchanged with the homologous domains of mouse meprinbeta. We identified a 13-amino-acid sequence (QIQLTPAPSVQDL) necessary for cleavage and subsequent secretion of PPHbeta. Using brefeldin A, the site of processing was identified as being after passage through the Golgi compartment. Proteolytic processing of PPHbeta thus provides a means for secretion of alphabeta heterodimers.
Collapse
Affiliation(s)
- A Pischitzis
- Institute of Biochemistry and Molecular Biology, University of Berne, Switzerland
| | | | | | | |
Collapse
|
236
|
Jiang L, Rogers JC. Functional analysis of a Golgi-localized Kex2p-like protease in tobacco suspension culture cells. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1999; 18:23-32. [PMID: 10341441 DOI: 10.1046/j.1365-313x.1999.00424.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Kex2p is the prototype of a Golgi-resident protease responsible for the processing of prohormones in yeast and mammalian cells. A Kex2p-like pathway was shown to be responsible for processing the fungal KP6 protoxin in transgenic tobacco plants. We previously described a chimeric integral membrane reporter protein that traffics through Golgi to the lytic prevacuole where it was proteolytically processed. As a first step to isolate and clone the Kex2p-like protease in plant cells, we designed and used a similar chimeric reporter protein containing Kex2 cleavage sites to assay the Kex2p-like activity and to determine its substrate specificity in tobacco cells. Here we demonstrate that the Kex2 cleavage sites of the reporter were specifically processed by a protease activity with a substrate specificity characteristic of yeast Kex2p. This Kex2p-like protease in tobacco cells is also a Golgi-resident enzyme. Thus, the reporter protein provides a biochemical marker for studying protein traffic through the Golgi in plant cells. These results additionally should allow the design of synthetic substrates for use in biochemical purification of the plant enzyme.
Collapse
Affiliation(s)
- L Jiang
- Institute of Biological Chemistry, Washington State University, Pullman 99163, USA
| | | |
Collapse
|
237
|
Spijker S, Smit AB, Eipper BA, Malik A, Mains RE, Geraerts WP. A molluscan peptide alpha-amidating enzyme precursor that generates five distinct enzymes. FASEB J 1999; 13:735-48. [PMID: 10094934 DOI: 10.1096/fasebj.13.6.735] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Mechanisms underlying the specificity and efficiency of enzymes, which modify peptide messengers, especially with the variable requirements of synthesis in the neuronal secretory pathway, are poorly understood. Here, we examine the process of peptide alpha-amidation in individually identifiable Lymnaea neurons that synthesize multiple proproteins, yielding complex mixtures of structurally diverse peptide substrates. The alpha-amidation of these peptide substrates is efficiently controlled by a multifunctional Lymnaea peptidyl glycine alpha-amidating monooxygenase (LPAM), which contains four different copies of the rate-limiting Lymnaea peptidyl glycine alpha-hydroxylating monooxygenase (LPHM) and a single Lymnaea peptidyl alpha-hydroxyglycine alpha-amidating lyase. Endogenously, this zymogen is converted to yield a mixture of monofunctional isoenzymes. In vitro, each LPHM displays a unique combination of substrate affinity and reaction velocity, depending on the penultimate residue of the substrate. This suggests that the different isoenzymes are generated in order to efficiently amidate the many peptide substrates that are present in molluscan neurons. The cellular expression of the LPAM gene is restricted to neurons that synthesize amidated peptides, which underscores the critical importance of regulation of peptide alpha-amidation.
Collapse
Affiliation(s)
- S Spijker
- Department of Molecular and Cellular Neurobiology, Graduate School Neurosciences Amsterdam, Research Institute Neurosciences Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
238
|
Satake H, Minakata H, Wang X, Fujimoto M. Characterization of a cDNA encoding a precursor of Carassius RFamide, structurally related to a mammalian prolactin-releasing peptide. FEBS Lett 1999; 446:247-50. [PMID: 10100851 DOI: 10.1016/s0014-5793(99)00215-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have characterized the cDNA encoding Carassius RFamide (C-RFa), which is structurally related to mammalian prolactin-releasing peptides (PrRPs), from the brain of the crucian carp. The deduced C-RFa precursor has been shown to comprise 117 amino acids, encoding a single C-RFa sequence. A comparative study of amino acid sequences has revealed that several sequences conserved in preproPrRPs are also found in the C-RFa precursor. Furthermore, the abundant presence of the C-RFa mRNA in the telencephalon, optic tectum, medulla oblongata, and proximal half eye ball was demonstrated by Southern blot analysis of RT-PCR products.
Collapse
Affiliation(s)
- H Satake
- Suntory Institute for Bioorganic Research, Mishimagun, Osaka, Japan
| | | | | | | |
Collapse
|
239
|
Takeuchi Y, Nishimura K, Aoki N, Adachi T, Sato C, Kitajima K, Matsuda T. A 42-kDa glycoprotein from chicken egg-envelope, an avian homolog of the ZPC family glycoproteins in mammalian Zona pellucida. Its first identification, cDNA cloning and granulosa cell-specific expression. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 260:736-42. [PMID: 10103002 DOI: 10.1046/j.1432-1327.1999.00203.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A glycoprotein with molecular mass of 42 kDa was identified as the major component of the chicken egg-envelope, the filamentous, extracellular matrix known as the perivitelline layer. By using a DNA probe amplified with degenerative primers derived from the protein's partial amino acid sequences, a cDNA clone encoding the egg-envelope 42-kDa glycoprotein (gp42) was isolated from a hen's ovary cDNA library. The gp42 open reading frame encoded 435 amino acid residues, including a putative signal peptide of 20 amino acids. The deduced amino acid sequence of gp42 showed significant similarity to egg-envelope glycoproteins of the ZPC family of several other vertebrate species, including human ZP3, mouse ZP3, Xenopus laevis gp43 and medaka (Oryzias latipes) ZI3 (LS-F), which play important roles for sperm-egg interaction. A single N-glycosylation site present in chicken gp42 is conserved among all five of these proteins: carbohydrate analysis of gp42 revealed the presence of a complex type glycan chain at this site. N-terminal sequence analysis of the mature polypeptide suggests that C-terminal processing of the pro-protein occurs during synthesis and secretion. The 1.4-kb gp42 transcript was detected only in follicles, and was found to be accumulated in granulosa cells in a manner dependent on ovarian follicular development. Furthermore, a metabolically radio-labeled gp42 was immunopreciptated from both cell lysate and culture supernatant of the granulosa cells with specific anti-gp42 antibody, suggesting granulosa cell-specific synthesis and secretion of the glycoprotein.
Collapse
Affiliation(s)
- Y Takeuchi
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Japan
| | | | | | | | | | | | | |
Collapse
|
240
|
Hiraki Y, Mitsui K, Endo N, Takahashi K, Hayami T, Inoue H, Shukunami C, Tokunaga K, Kono T, Yamada M, Takahashi HE, Kondo J. Molecular cloning of human chondromodulin-I, a cartilage-derived growth modulating factor, and its expression in Chinese hamster ovary cells. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 260:869-78. [PMID: 10103018 DOI: 10.1046/j.1432-1327.1999.00227.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Bovine chondromodulin-I (ChM-I) purified from fetal cartilage stimulated the matrix synthesis of chondrocytes, and inhibited the growth of vascular endothelial cells in vitro. The human counterpart of this bovine growth regulating factor has not been identified. We report here the cloning of human ChM-I precursor cDNA and its functional expression in Chinese hamster ovary (CHO) cells. We first identified a genomic DNA fragment which encoded the N-terminus of the ChM-I precursor, and then isolated human ChM-I cDNA from chondrosarcoma tissue by PCR. The deduced amino acid sequence revealed that mature human ChM-I consists of 120 amino acids. In total, 16 amino acid residues were substituted in the human sequence, compared to the bovine counterpart. Almost of all the substitutions were found in the N-terminal hydrophilic domain. In the C-terminal hydrophobic domain (from Phe42 to Val120), the amino acid sequence was identical except for Tyr90, indicating a functional significance of the domain. Northern blotting and in situ hybridization indicated a specific expression of ChM-I mRNA in cartilage. We also successfully determined the cartilage-specific localization of ChM-I protein, using a specific antibody against recombinant human ChM-I. Multiple transfection of the precursor cDNA into CHO cells enabled us to isolate the mature form of human ChM-I from the culture supernatant. Purified recombinant human ChM-I stimulated proteoglycan synthesis in cultured chondrocytes. In contrast, it inhibited the tube morphogenesis of cultured vascular endothelial cells in vitro and angiogenesis in chick chorioallantoic membrane in vivo.
Collapse
Affiliation(s)
- Y Hiraki
- Department of Molecular Interaction and Tissue Engineering, Institute for Frontier Medical Sciences, Kyoto University, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
241
|
Tian J, Gong H, Lennarz WJ. Xenopus laevis sperm receptor gp69/64 glycoprotein is a homolog of the mammalian sperm receptor ZP2. Proc Natl Acad Sci U S A 1999; 96:829-34. [PMID: 9927653 PMCID: PMC15310 DOI: 10.1073/pnas.96.3.829] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Little is known about sperm-binding proteins in the egg envelope of nonmammalian vertebrate species. We report here the molecular cloning and characterization of a recently identified sperm receptor (gp69/64) in the Xenopus laevis egg vitelline envelope. Our data indicate that the gp69 and gp64 glycoproteins are two glycoforms of the receptor and have the same number of N-linked oligosaccharide chains but differ in the extent of O-glycosylation. The amino acid sequence of the receptor is closely related to that of the mouse zona pellucida protein ZP2. Most of the sequence conservation, including a ZP domain, a potential furin cleavage site, and a putative transmembrane domain are located in the C-terminal half of the receptor. Proteolytic cleavage of the gp69/64 protein by a cortical granule protease during fertilization removes 27 amino acid residues from the N terminus of gp69/64 and results in loss of sperm binding to the activated eggs. Similarly, we find that treatment of eggs with type I collagenase removes 31 residues from the N terminus of gp69/64 and has the same effect on sperm binding. The isolated and purified N terminus-truncated receptor protein is inactive as an inhibitor of sperm-egg binding. Earlier studies on the effect of Pronase digestion on receptor activity suggest that this N-terminal peptide may contain an O-linked glycan that is involved in the binding process. Based on these results and the findings on the primary structure of the receptor, a pathway for the maturation and secretion of gp69/64, as well as its inactivation following fertilization, is proposed.
Collapse
Affiliation(s)
- J Tian
- Department of Biochemistry and Cell Biology and Institute for Cell and Developmental Biology, State University of New York, Stony Brook, NY 11794-5215, USA
| | | | | |
Collapse
|
242
|
Wool-Lewis RJ, Bates P. Endoproteolytic processing of the ebola virus envelope glycoprotein: cleavage is not required for function. J Virol 1999; 73:1419-26. [PMID: 9882347 PMCID: PMC103966 DOI: 10.1128/jvi.73.2.1419-1426.1999] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Proteolytic processing is required for the activation of numerous viral glycoproteins. Here we show that the envelope glycoprotein from the Zaire strain of Ebola virus (Ebo-GP) is proteolytically processed into two subunits, GP1 and GP2, that are likely covalently associated through a disulfide linkage. Murine leukemia virions pseudotyped with Ebo-GP contain almost exclusively processed glycoprotein, indicating that this is the mature form of Ebo-GP. Mutational analysis identified a dibasic motif, reminiscent of furin-like protease processing sites, as the Ebo-GP cleavage site. However, analysis of Ebo-GP processing in LoVo cells that lack the proprotein convertase furin demonstrated that furin is not required for processing of Ebo-GP. In sharp contrast to other viral systems, we found that an uncleaved mutant of Ebo-GP was able to mediate infection of various cell lines as efficiently as the wild-type, proteolytically cleaved glycoprotein, indicating that cleavage is not required for the activation of Ebo-GP despite the conservation of a dibasic cleavage site in all filoviral envelope glycoproteins.
Collapse
Affiliation(s)
- R J Wool-Lewis
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6076, USA
| | | |
Collapse
|
243
|
Lipkind G, Steiner DF. Predicted structural alterations in proinsulin during its interactions with prohormone convertases. Biochemistry 1999; 38:890-6. [PMID: 9893983 DOI: 10.1021/bi981556q] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The intracellular conversion of proinsulin to insulin occurs via cleavage at the two dibasic sites: Arg31-Arg32, B chain-C-peptide (BC) junction; and Lys64-Arg65, A chain-C-peptide (CA) junction, catalyzed by the subtilisin-like prohormone convertases SPC3 (PC1/PC3) and SPC2 (PC2), respectively. In this report we propose a possible conformational variant of proinsulin that would facilitate the formation of enzyme-substrate complexes at the BC and AC junctions of proinsulin with the substrate binding groove of the two closely related convertases. Productive convertase interaction requires extended peptide conformations in both the CA junction (residues 62-67, LQKRGI) and the BC junction (residues 29-34, KTRREA) and leads to significant perturbations in the normally alpha-helical N-terminal region of the A chain and the extended C-terminal region of the B chain of the insulin moiety of proinsulin. In this model of the reactive conformation of human proinsulin, both processing sites assume positions that are relatively far apart. The C-peptide was then modeled in an unobtrusive conformation relative to the convertases and the remainder of the substrate, forming an extended loop of length approximately 40 A with a short alpha-helical segment rather than a random coil. A model of the stereochemical transformations that occur during the processing of proinsulin by SPC2 is presented.
Collapse
Affiliation(s)
- G Lipkind
- Department of Biochemistry and Molecular Biology, The Howard Hughes Medical Institute, The University of Chicago, Illinois 60637, USA
| | | |
Collapse
|
244
|
Kunz S, Spirig M, Ginsburg C, Buchstaller A, Berger P, Lanz R, Rader C, Vogt L, Kunz B, Sonderegger P. Neurite fasciculation mediated by complexes of axonin-1 and Ng cell adhesion molecule. J Cell Biol 1998; 143:1673-90. [PMID: 9852159 PMCID: PMC2132982 DOI: 10.1083/jcb.143.6.1673] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neural cell adhesion molecules composed of immunoglobulin and fibronectin type III-like domains have been implicated in cell adhesion, neurite outgrowth, and fasciculation. Axonin-1 and Ng cell adhesion molecule (NgCAM), two molecules with predominantly axonal expression exhibit homophilic interactions across the extracellular space (axonin- 1/axonin-1 and NgCAM/NgCAM) and a heterophilic interaction (axonin-1-NgCAM) that occurs exclusively in the plane of the same membrane (cis-interaction). Using domain deletion mutants we localized the NgCAM homophilic binding in the Ig domains 1-4 whereas heterophilic binding to axonin-1 was localized in the Ig domains 2-4 and the third FnIII domain. The NgCAM-NgCAM interaction could be established simultaneously with the axonin-1-NgCAM interaction. In contrast, the axonin-1-NgCAM interaction excluded axonin-1/axonin-1 binding. These results and the examination of the coclustering of axonin-1 and NgCAM at cell contacts, suggest that intercellular contact is mediated by a symmetric axonin-12/NgCAM2 tetramer, in which homophilic NgCAM binding across the extracellular space occurs simultaneously with a cis-heterophilic interaction of axonin-1 and NgCAM. The enhanced neurite fasciculation after overexpression of NgCAM by adenoviral vectors indicates that NgCAM is the limiting component for the formation of the axonin-12/NgCAM2 complexes and, thus, neurite fasciculation in DRG neurons.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Binding Sites
- Cell Adhesion Molecules, Neuron-Glia/chemistry
- Cell Adhesion Molecules, Neuron-Glia/genetics
- Cell Adhesion Molecules, Neuron-Glia/physiology
- Cell Adhesion Molecules, Neuronal/chemistry
- Cell Adhesion Molecules, Neuronal/genetics
- Cell Adhesion Molecules, Neuronal/physiology
- Chickens
- Contactin 2
- Extracellular Space/physiology
- Ganglia, Spinal/physiology
- Mice
- Mice, Inbred ICR
- Models, Molecular
- Mutagenesis
- Neurites/physiology
- Neurons/cytology
- Neurons/physiology
- Organ Culture Techniques
- Point Mutation
- Polymerase Chain Reaction
- Protein Conformation
- Recombinant Proteins/chemistry
- Recombinant Proteins/metabolism
- Sequence Deletion
- Transfection
Collapse
Affiliation(s)
- S Kunz
- Institute of Biochemistry, University of Zurich, CH-8057 Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
245
|
Akatsuka K, Yoshida-Komiya H, Tulsiani DR, Orgebin-Crist MC, Hiroi M, Araki Y. Rat zona pellucida glycoproteins: molecular cloning and characterization of the three major components. Mol Reprod Dev 1998; 51:454-67. [PMID: 9820205 DOI: 10.1002/(sici)1098-2795(199812)51:4<454::aid-mrd13>3.0.co;2-g] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The zona pellucida (ZP), the extracellular glycocalyx that surrounds the oocyte, is well known to mediate homologous gamete interaction. In a previous study from our laboratories, we reported the qualitative characterization of the rat ZP. The ZP in this species, like the mouse, hamster, and human, was found to contain three glycoproteins, namely rZP1, rZP2, and rZP3 (Araki et al. [1992] Biol Reprod 46:912-919). In this study, cDNAs encoding whole rat ZP major components have been isolated and characterized. A rat ovary cDNA library was screened with the mouse ZP3 and ZP2 cDNA probes, respectively. For rZP1 cDNA cloning, cDNAs generated using reverse transcriptase-polymerase chain reaction and rapid amplification of 5' and 3' cDNA ends, were isolated and sequenced. The rZP3 cDNA showed 1338 bp with a coding region containing 1272 bp, that translates into 424 amino acids. The total translation of rZP3 peptide has a molecular weight of 45,820, containing six potential N-glycosylation sites and 75 Ser/Thr residues, possible O-glycosylation sites. The amino acid sequence derived from the cDNA sequence shares high sequence homologies to mouse (90%), hamster (78%), and human (65%) ZP3 (ZPC) glycoproteins, indicating that the rat and mouse ZP3 have quite a conserved amino acid sequence, including the potential glycosylation sites. The total transcript of the rZP2 was 2154 nucleotides and the largest open reading frame was 695 amino acids. This would translate into a protein of 78.4 kDa. In the case of rZP1, the cDNA clone consisted of 1960 bp, and the coding region contained 1851 bp translating into 617 amino acids. Significant homologies were observed between rZP2 and ZPA family from various mammalian species. The rZP1 also showed a sequence homology to mouse ZP1, known as a mouse orthologue of ZPB family, suggesting that the rZP2 and rZP1 are members of ZPA and ZPB families, respectively. The message distributions for each zona components were limited within the ovary and the signal was detectable in the growing oocytes. The present results will further our understanding of the structure of rat zona components and lead to a better understanding of species-specificity observed during sperm-egg interaction.
Collapse
Affiliation(s)
- K Akatsuka
- Department of Obstetrics and Gynecology, Yamagata University School of Medicine, Yamagata-City, Japan
| | | | | | | | | | | |
Collapse
|
246
|
Short DK, Okada S, Yamauchi K, Pessin JE. Adenovirus-mediated transfer of a modified human proinsulin gene reverses hyperglycemia in diabetic mice. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:E748-56. [PMID: 9814992 DOI: 10.1152/ajpendo.1998.275.5.e748] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The human proinsulin cDNA was introduced into a replication-defective adenovirus and was found to confer proinsulin expression to a hepatocyte (H4-II-E) cell line upon infection. A second virus was constructed in which the dibasic prohormone convertase recognition sequence was mutated to a tetrabasic furin cleavage site. Cells infected with this virus synthesized both proinsulin and mature insulin. Gel filtration chromatography, competition of insulin binding, and activation of the insulin receptor kinase activity demonstrated that this mature insulin was functionally identical to that of authentic processed insulin. Injection of these viral constructs into the external jugular vein of mice resulted in insulin gene expression in the liver. Expression from the mutated proinsulin virus dramatically improved the glycemic state of diabetic mice. However, the effects of the viral infection were transient, being maximal at approximately 5-7 days and returning to steady-state levels by 14-21 days. These data demonstrate that somatic cell insulin gene delivery by the use of recombinant adenovirus can be used to transiently reverse the diabetic state in mice.
Collapse
Affiliation(s)
- D K Short
- Department of Physiology and Biophysics, The University of Iowa, Iowa City, Iowa 52242-1109, USA
| | | | | | | |
Collapse
|
247
|
Worster BM, Yeoman MS, Benjamin PR. Matrix-assisted laser desorption/ionization time of flight mass spectrometric analysis of the pattern of peptide expression in single neurons resulting from alternative mRNA splicing of the FMRFamide gene. Eur J Neurosci 1998; 10:3498-507. [PMID: 9824463 DOI: 10.1046/j.1460-9568.1998.00361.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
MALDI-ToF MS (matrix-assisted laser desorption/ionization time of flight mass spectrometry) has become a fast, reliable and sensitive technique for the identification of neuropeptides in biological tissues. Here, we applied this technique to identified neurons of the cardioregulatory network in the snail Lymnaea that express the FMRFamide gene. This enabled us to study the complex processing of the FMRFamide gene at the level of single identified neurons. In the CNS of Lymnaea, FMRFamide-like and additional peptides are encoded by a common, multiexon gene. Alternate mRNA splicing of the FMRFamide gene leads to the production of two different mRNAs. Type 1 mRNA (exon II) encodes for the tetrapeptides (FLRF/FMRFamide), whereas Type 2 (exons III-V) encodes for the heptapeptides (SDPFLRFamide/GDPFLRFamide). Previous in situ hybridization and immunocytochemical studies indicated that these two transcripts are expressed in the CNS neurons of Lymnaea in a differential and mutually exclusive manner. Two single identified neurons of the cardiorespiratory network, the Ehe neuron and the visceral white interneuron (VWI), were known to express the FMRFamide gene (Ehe, type 1 mRNA; VWI, type 2 mRNA). MALDI-ToF MS analysis of these neurons and other neurons expressing the FMRFamide gene confirmed the mutually exclusive expression of the distinct sets of peptides encoded on the two transcripts and revealed the pattern of post-translational processing of both protein precursors. From the gene sequence it was predicted that 16 final peptide products from the two precursor proteins could possibly exist. We showed that most of these peptides were indeed present in the identified neurons (13) while others were not (three), suggesting that not all of the potential cleavage sites within the two precursors are utilized. In this way, the neuronal expression of the full range of the peptide products resulting from alternative mRNA splicing was revealed for the first time.
Collapse
Affiliation(s)
- B M Worster
- Sussex Centre for Neuroscience, School of Biological Sciences, University of Sussex, Brighton, East Sussex, UK
| | | | | |
Collapse
|
248
|
Mate KE, McCartney CA. Sequence and analysis of zona pellucida 2 cDNA (ZP2) from a marsupial, the brushtail possum, Trichosurus vulpecula. Mol Reprod Dev 1998; 51:322-9. [PMID: 9771653 DOI: 10.1002/(sici)1098-2795(199811)51:3<322::aid-mrd12>3.0.co;2-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
All mammalian eggs are surrounded by the zona pellucida, an extracellular coat involved in vital functions during fertilization and early development. The zona pellucida glycoproteins are promising antigenic targets for development of contraceptive vaccines to control pest populations of marsupials in Australia and New Zealand. Our current understanding of the function of the zona pellucida glycoproteins is based almost entirely on the mouse and may not be representative of gamete interactions in all eutherian or marsupial mammals. This study reports the isolation and characterization of the ZP2 gene from the brushtail possum (Trichosurus vulpecula). The brushtail possum ZP2 mRNA is 2,182 nucleotides long with an open reading frame coding for a polypeptide chain of 712 amino acids with a molecular mass of 79,542 d. The deduced amino acid sequence of possum ZP2 is 48 to 55% identical to that of eutherian mammals. It shares several structural characteristics including N-linked glycosylation sites, location and number of cysteine residues, and hydropathy profile. The brushtail possum ZP2 gene is expressed exclusively in the ovary. Further studies are planned to elucidate the specific site of ZP2 expression within the ovary and its function during fertilization in marsupials.
Collapse
Affiliation(s)
- K E Mate
- Cooperative Research Centre for Conservation and Management of Marsupials, School of Biological Sciences, Macquarie University, Sydney, NSW, Australia.
| | | |
Collapse
|
249
|
Lum L, Reid MS, Blobel CP. Intracellular maturation of the mouse metalloprotease disintegrin MDC15. J Biol Chem 1998; 273:26236-47. [PMID: 9748307 DOI: 10.1074/jbc.273.40.26236] [Citation(s) in RCA: 128] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Metalloprotease disintegrins are a family of membrane-anchored glycoproteins that play a role in fertilization, myoblast fusion, neuronal development, and cleavage of the membrane-anchored cytokine tumor necrosis factor-alpha. Here, we report the cloning and cDNA sequencing of the mouse metalloprotease disintegrin MDC15 and an analysis of its processing in the secretory pathway. A notable difference between mMDC15 and its putative human orthologue (hMDC15, metargidin) is the presence of the peptide sequence TDDC instead of the RGDC found in the disintegrin domain of hMDC15. In a Western blot analysis the majority of mMDC15 was found to lack the pro-domain in all mouse tissues examined. Pulse-chase experiments in transiently transfected COS-7 cells suggest that mMDC15 is processed by a pro-protein convertase in a late Golgi compartment, since (i) addition of brefeldin A or monensin blocks pro-domain removal, (ii) all detectable processed mMDC15 is endoglycosidase H -resistant, and (iii) a recombinant soluble form of the trans-Golgi network pro-protein convertase furin can mimic mMDC15 processing in vitro. Cell-surface trypsinization revealed that more than half of mature mMDC15 is intracellular. Immunolocalization provided evidence for a strong perinuclear accumulation in a region resembling the trans-Golgi network and/or endosomal compartments. This study provides the first characterization of the intracellular processing of a metalloprotease disintegrin, and highlights the potential role of pro-protein convertases in removal of the inhibitory pro-domain. These results further suggest possible intracellular functions for mMDC15, such as in protein maturation, in addition to a potential role in cell-surface proteolysis or cell adhesion.
Collapse
Affiliation(s)
- L Lum
- Cellular Biochemistry and Biophysics Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | | | | |
Collapse
|
250
|
Lorenzo P, Neame P, Sommarin Y, Heinegård D. Cloning and deduced amino acid sequence of a novel cartilage protein (CILP) identifies a proform including a nucleotide pyrophosphohydrolase. J Biol Chem 1998; 273:23469-75. [PMID: 9722584 DOI: 10.1074/jbc.273.36.23469] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cDNA cloning and expression in vitro and in eukaryotic cells of a novel protein isolated from human articular cartilage, cartilage intermediate layer protein (CILP) is described. A single 4. 2-kilobase mRNA detected in human articular cartilage encodes a polypeptide of 1184 amino acids with a calculated molecular mass of 132.5 kDa. The protein has a putative signal peptide of 21 amino acids, and is a proform of two polypeptides. The amino-terminal half corresponds to CILP (molecular mass of 78.5 kDa, not including post-translational modifications) and the carboxyl-terminal half corresponds to a protein homologous to a porcine nucleotide pyrophosphohydrolase, NTPPHase (molecular mass of 51.8 kDa, not including post-translational modifications). CILP has 30 cysteines and six putative N-glycosylation sites. The human homolog of porcine NTPPHase described here contains 10 cysteine residues and two putative N-glycosylation sites. In the precursor protein the NTPPHase region is immediately preceded by a tetrapeptide conforming to a furin proteinase cleavage consensus sequence. Expression of the full-length cDNA in a cell-free translation system and in COS-7 or EBNA cells indicates that the precursor protein is synthesized as a single polypeptide chain that is processed, possibly by a furin-like protease, into two polypeptides upon or preceding secretion.
Collapse
Affiliation(s)
- P Lorenzo
- Department of Cell and Molecular Biology, Section for Connective Tissue Biology, University of Lund, P.O.Box 94, S-221 00 Lund, Sweden
| | | | | | | |
Collapse
|