201
|
Horton JK, Watson M, Stefanick DF, Shaughnessy DT, Taylor JA, Wilson SH. XRCC1 and DNA polymerase beta in cellular protection against cytotoxic DNA single-strand breaks. Cell Res 2008; 18:48-63. [PMID: 18166976 PMCID: PMC2366203 DOI: 10.1038/cr.2008.7] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Single-strand breaks (SSBs) can occur in cells either directly, or indirectly following initiation of base excision repair (BER). SSBs generally have blocked termini lacking the conventional 5'-phosphate and 3'-hydroxyl groups and require further processing prior to DNA synthesis and ligation. XRCC1 is devoid of any known enzymatic activity, but it can physically interact with other proteins involved in all stages of the overlapping SSB repair and BER pathways, including those that conduct the rate-limiting end-tailoring, and in many cases can stimulate their enzymatic activities. XRCC1(-/-) mouse fibroblasts are most hypersensitive to agents that produce DNA lesions repaired by monofunctional glycosylase-initiated BER and that result in formation of indirect SSBs. A requirement for the deoxyribose phosphate lyase activity of DNA polymerase beta (pol beta) is specific to this pathway, whereas pol beta is implicated in gap-filling during repair of many types of SSBs. Elevated levels of strand breaks, and diminished repair, have been demonstrated in MMS-treated XRCC1(-/-), and to a lesser extent in pol beta(-/-) cell lines, compared with wild-type cells. Thus a strong correlation is observed between cellular sensitivity to MMS and the ability of cells to repair MMS-induced damage. Exposure of wild-type and pol beta(-/-) cells to an inhibitor of PARP activity dramatically potentiates MMS-induced cytotoxicity. XRCC1(-/-) cells are also sensitized by PARP inhibition demonstrating that PARP-mediated poly(ADP-ribosyl)ation plays a role in modulation of cytotoxicity beyond recruitment of XRCC1 to sites of DNA damage.
Collapse
Affiliation(s)
- Julie K Horton
- Laboratory of Structural Biology, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Mary Watson
- Laboratory of Molecular Carcinogenesis, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Donna F Stefanick
- Laboratory of Structural Biology, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Daniel T Shaughnessy
- Laboratory of Molecular Carcinogenesis, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Jack A Taylor
- Laboratory of Molecular Carcinogenesis, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Samuel H Wilson
- Laboratory of Structural Biology, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA
| |
Collapse
|
202
|
Too much of a good thing: The role of protein kinase CK2 in tumorigenesis and prospects for therapeutic inhibition of CK2. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1784:33-47. [DOI: 10.1016/j.bbapap.2007.08.017] [Citation(s) in RCA: 242] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Revised: 08/21/2007] [Accepted: 08/23/2007] [Indexed: 11/24/2022]
|
203
|
Murtaza I, Wang HX, Feng X, Alenina N, Bader M, Prabhakar BS, Li PF. Down-regulation of catalase and oxidative modification of protein kinase CK2 lead to the failure of apoptosis repressor with caspase recruitment domain to inhibit cardiomyocyte hypertrophy. J Biol Chem 2008; 283:5996-6004. [PMID: 18171680 DOI: 10.1074/jbc.m706466200] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cardiac hypertrophy is regulated by a complex interplay of pro- and anti-hypertrophic factors. Here, we report a novel anti-hypertrophic pathway composed of catalase, protein kinase CK2 (CK2), and apoptosis repressor with caspase recruitment domain (ARC). Our results showed that ARC phosphorylation levels, CK2 activity, and catalase expression levels were decreased in the hearts of the angiotensinogen transgenic mice and in cardiomyocytes treated with the hypertrophic stimuli, including phenylephrine, tumor necrosis factor-alpha, and angiotensin II. To understand the role of ARC in hypertrophy, we observed that enforced expression of ARC could inhibit hypertrophy. Knockdown of endogenous ARC or inhibition of its phosphorylation could sensitize cardiomyocytes to undergoing hypertrophy. The phosphorylatable, but not the nonphosphorylatable, ARC could inhibit hypertrophy. Thus, ARC is able to inhibit hypertrophy in a phosphorylation-dependent manner. In exploring the molecular mechanism by which CK2 activity is reduced, we found that CK2 was carbonylated in angiotensinogen transgenic mice and in cardiomyocytes treated with the hypertrophic stimuli. The decrease in catalase expression led to an elevated level of reactive oxygen species. The latter oxidatively modified CK2, resulting in its carbonylation. CK2 lost its catalytic activity upon carbonylation. ARC is phosphorylated by CK2, and ARC phosphorylation levels were reduced as a consequence of the decrease of CK2 activity. To understand the molecular mechanism by which ARC inhibits hypertrophy, we observed that ARC could inhibit the activation of mitochondrial permeability transition. These results suggest that catalase, CK2, and ARC constitute an anti-hypertrophic pathway in the heart.
Collapse
Affiliation(s)
- Iram Murtaza
- Division of Cardiovascular Research, National Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
204
|
Mani RS, Fanta M, Karimi-Busheri F, Silver E, Virgen CA, Caldecott KW, Cass CE, Weinfeld M. XRCC1 stimulates polynucleotide kinase by enhancing its damage discrimination and displacement from DNA repair intermediates. J Biol Chem 2007; 282:28004-13. [PMID: 17650498 DOI: 10.1074/jbc.m704867200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Human polynucleotide kinase (hPNK) is required for processing and rejoining DNA strand break termini. The 5'-DNA kinase and 3'-phosphatase activities of hPNK can be stimulated by the "scaffold" protein XRCC1, but the mechanism remains to be fully elucidated. Using a variety of fluorescence techniques, we examined the interaction of hPNK with XRCC1 and substrates that model DNA single-strand breaks. hPNK binding to substrates with 5'-OH termini was only approximately 5-fold tighter than that to identical DNA molecules with 5'-phosphate termini, suggesting that hPNK remains bound to the product of its enzymatic activity. The presence of XRCC1 did not influence the binding of hPNK to substrates with 5'-OH termini, but sharply reduced the interaction of hPNK with DNA bearing a 5'-phosphate terminus. These data, together with kinetic data obtained at limiting enzyme concentration, indicate a dual function for the interaction of XRCC1 with hPNK. First, XRCC1 enhances the capacity of hPNK to discriminate between strand breaks with 5'-OH termini and those with 5'-phosphate termini; and second, XRCC1 stimulates hPNK activity by displacing hPNK from the phosphorylated DNA product.
Collapse
Affiliation(s)
- Rajam S Mani
- Department of Experimental Oncology, Cross Cancer Institute, Edmonton, Alberta, Canada
| | | | | | | | | | | | | | | |
Collapse
|
205
|
Abstract
Defects in cellular DNA repair processes have been linked to genome instability, heritable cancers, and premature aging syndromes. Yet defects in some repair processes manifest themselves primarily in neuronal tissues. This review focuses on studies defining the molecular defects associated with several human neurological disorders, particularly ataxia with oculomotor apraxia 1 (AOA1) and spinocerebellar ataxia with axonal neuropathy 1 (SCAN1). A picture is emerging to suggest that brain cells, due to their nonproliferative nature, may be particularly prone to the progressive accumulation of unrepaired DNA lesions.
Collapse
Affiliation(s)
- Ulrich Rass
- London Research Institute, Cancer Research UK, Clare Hall Laboratories, South Mimms, Herts EN6 3LD, UK
| | | | | |
Collapse
|
206
|
Karimi-Busheri F, Rasouli-Nia A, Allalunis-Turner J, Weinfeld M. Human polynucleotide kinase participates in repair of DNA double-strand breaks by nonhomologous end joining but not homologous recombination. Cancer Res 2007; 67:6619-25. [PMID: 17638872 DOI: 10.1158/0008-5472.can-07-0480] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Human polynucleotide kinase (hPNK) is a bifunctional enzyme possessing a 5'-DNA kinase activity and a 3'-phosphatase activity. Studies based on cell extracts and purified proteins have indicated that hPNK can act on single-strand breaks and double-strand breaks (DSB) to restore the termini to the chemical form required for further action by DNA repair polymerases and ligases (i.e., 5'-phosphate and 3'-hydroxyl termini). These studies have revealed that hPNK can bind to XRCC4, and as a result, hPNK has been implicated as a participant in the nonhomologous end joining (NHEJ) pathway for DSB repair. We sought to confirm the role of hPNK in NHEJ in the cellular setting using a genetic approach. hPNK was stably down-regulated by RNA interference expression in M059K glioblastoma cells, which are NHEJ positive, and M059J cells, which are NHEJ deficient due to a lack of DNA-PK catalytic subunit (DNA-PKcs). Whereas depletion of hPNK significantly sensitized M059K cells to ionizing radiation, no additional sensitization was conferred to M059J cells, clearly implying that hPNK operates in the same DNA repair pathway as DNA-PKcs. On the other hand, depletion of hPNK did not increase the level of sister chromatid exchanges, indicating that hPNK is not involved in the homologous recombination DSB repair pathway. We also provide evidence that the action of hPNK in the repair of camptothecin-induced topoisomerase 1 "dead-end" complexes is independent of DNA-PKcs and that hPNK is not involved in the nucleotide excision repair pathway.
Collapse
Affiliation(s)
- Feridoun Karimi-Busheri
- Department of Experimental Oncology, Cross Cancer Institute, University of Alberta, 11560 University Avenue, Edmonton, Alberta, Canada
| | | | | | | |
Collapse
|
207
|
Bekker-Jensen S, Fugger K, Danielsen JR, Gromova I, Sehested M, Celis J, Bartek J, Lukas J, Mailand N. Human Xip1 (C2orf13) Is a Novel Regulator of Cellular Responses to DNA Strand Breaks. J Biol Chem 2007; 282:19638-43. [PMID: 17507382 DOI: 10.1074/jbc.c700060200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
DNA strand breaks arise continuously as the result of intracellular metabolism and in response to a multitude of genotoxic agents. To overcome such challenges to genomic stability, cells have evolved genome surveillance pathways that detect and repair damaged DNA in a coordinated fashion. Here we identify the previously uncharacterized human protein Xip1 (C2orf13) as a novel component of the checkpoint response to DNA strand breaks. Green fluorescent protein-tagged Xip1 was rapidly recruited to sites of DNA breaks, and this accumulation was dependent on a novel type of zinc finger motif located in the C terminus of Xip1. The initial recruitment kinetics of Xip1 closely paralleled that of XRCC1, a central organizer of single strand break (SSB) repair, and its accumulation was both delayed and sustained when the detection of SSBs was abrogated by inhibition of PARP-1. Xip1 and XRCC1 stably interacted through recognition of CK2 phosphorylation sites in XRCC1 by the Forkhead-associated (FHA) domain of Xip1, and XRCC1 was required to maintain steady-state levels of Xip1. Moreover, Xip1 was phosphorylated on Ser-116 by ataxia telangiectasia-mutated in response to ionizing radiation, further underscoring the potential importance of Xip1 in the DNA damage response. Finally, depletion of Xip1 significantly decreased the clonogenic survival of cells exposed to DNA SSB- or double strand break-inducing agents. Collectively, these findings implicate Xip1 as a new regulator of genome maintenance pathways, which may function to organize DNA strand break repair complexes at sites of DNA damage.
Collapse
Affiliation(s)
- Simon Bekker-Jensen
- Centre for Genotoxic Stress Research and Department of Proteomics in Cancer, Institute of Cancer Biology, Danish Cancer Society, Copenhagen DK-2100, Denmark
| | | | | | | | | | | | | | | | | |
Collapse
|
208
|
Ahmad KA, Harris NH, Johnson AD, Lindvall HCN, Wang G, Ahmed K. Protein kinase CK2 modulates apoptosis induced by resveratrol and epigallocatechin-3-gallate in prostate cancer cells. Mol Cancer Ther 2007; 6:1006-12. [PMID: 17363494 DOI: 10.1158/1535-7163.mct-06-0491] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Resveratrol and epigallocatechin-3-gallate (EGCG) are important candidates as chemopreventive agents by virtue of their ability to induce apoptosis in cancer cells. Casein kinase 2 (CK2) is a ubiquitous protein ser/thr kinase that plays diverse roles in cell proliferation and apoptosis. We have previously shown that overexpression of CK2 suppresses apoptosis induced by a variety of agents, whereas down-regulation of CK2 sensitizes cells to induction of apoptosis. We therefore investigated whether or not CK2 played a role in resveratrol and EGCG signaling in androgen-sensitive (ALVA-41) and androgen-insensitive (PC-3) prostate cancer cells. Resveratrol- and EGCG-induced apoptosis is associated with a significant down-regulation of CK2 activity and protein expression in both the ALVA-41 and PC-3 cells. Overexpression of CK2alpha protected prostatic cancer cells against resveratrol- and EGCG-induced apoptosis. Relatively low doses (10 mumol/L) of resveratrol and EGCG induced a modest proliferative response in cancer cells that could be switched to cell death by moderate inhibition of CK2. These findings characterize, for the first time, the effects of polyphenolic compounds on CK2 signaling in androgen-sensitive and androgen-insensitive prostatic carcinoma cells and suggest that resveratrol and EGCG may mediate their cellular activity, at least in part, via their targeting of CK2. Further, the data hint at the potential of using these polyphenols alongside CK2 inhibitors in combination chemotherapy.
Collapse
Affiliation(s)
- Kashif A Ahmad
- Cellular and Molecular Biochemistry Research Laboratory (151), Veterans Affairs Medical Center, One Veterans Drive, Minneapolis, MN 55417, USA.
| | | | | | | | | | | |
Collapse
|
209
|
Almeida KH, Sobol RW. A unified view of base excision repair: lesion-dependent protein complexes regulated by post-translational modification. DNA Repair (Amst) 2007; 6:695-711. [PMID: 17337257 PMCID: PMC1995033 DOI: 10.1016/j.dnarep.2007.01.009] [Citation(s) in RCA: 322] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2007] [Accepted: 01/22/2007] [Indexed: 12/29/2022]
Abstract
Base excision repair (BER) proteins act upon a significantly broad spectrum of DNA lesions that result from endogenous and exogenous sources. Multiple sub-pathways of BER (short-path or long-patch) and newly designated DNA repair pathways (e.g., SSBR and NIR) that utilize BER proteins complicate any comprehensive understanding of BER and its role in genome maintenance, chemotherapeutic response, neuro-degeneration, cancer or aging. Herein, we propose a unified model of BER, comprised of three functional processes: Lesion Recognition/Strand Scission, Gap Tailoring and DNA Synthesis/Ligation, each represented by one or more multi-protein complexes and coordinated via the XRCC1/DNA Ligase III and PARP1 scaffold proteins. BER therefore may be represented by a series of repair complexes that assemble at the site of the DNA lesion and mediates repair in a coordinated fashion involving protein-protein interactions that dictate subsequent steps or sub-pathway choice. Complex formation is influenced by post-translational protein modifications that arise from the cellular state or the DNA damage response, providing an increase in specificity and efficiency to the BER pathway. In this review, we have summarized the reported BER protein-protein interactions and protein post-translational modifications and discuss the impact on DNA repair capacity and complex formation.
Collapse
Affiliation(s)
- Karen H. Almeida
- Department of Physical Sciences, Rhode Island College, 600 Mt. Pleasant Ave., Providence RI 02908-1991
| | - Robert W. Sobol
- Department of Pharmacology, University of Pittsburgh School of Medicine & University of Pittsburgh Cancer Institute, Hillman Cancer Center, Research Pavilion, Suite 2.6, 5117 Centre Avenue, Pittsburgh, PA 15213-1863
| |
Collapse
|
210
|
Kim JS, Eom JI, Cheong JW, Choi AJ, Lee JK, Yang WI, Min YH. Protein kinase CK2alpha as an unfavorable prognostic marker and novel therapeutic target in acute myeloid leukemia. Clin Cancer Res 2007; 13:1019-28. [PMID: 17289898 DOI: 10.1158/1078-0432.ccr-06-1602] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Protein kinase CK2 is implicated in cellular proliferation and transformation. However, the clinical and biological significances of CK2 have not been elucidated in acute myeloid leukemia (AML). EXPERIMENTAL DESIGN We evaluated the biological significances of catalytic subunit of CK2 (CK2alpha) expression in leukemia cell lines and primary leukemic blasts obtained from AML patients. RESULTS In this study, the expression of CK2alpha was elevated in a substantial proportion of AML. In AML patients with normal karyotype, the disease-free survival and overall survival rates were significantly lower in the CK2alpha-high compared with the CK2alpha-low AML cases (P=0.0252 and P=0.0392, respectively). An induced overexpression of CK2alpha increased the levels of Ser473 phosphorylated (p)-Akt/protein kinase B (PKB), p-PDK1, pFKHR, p-BAD, Bcl-2, Bcl-xL, Mcl-1, and XIAP. Treatment of U937 cell line and primary AML blasts with selective CK2 inhibitor, tetrabromobenzotriazole or apigenin, reduced the levels of these molecules in a dose-dependent manner. CK2alpha small interfering RNA treatment also resulted in a down-regulation of p-Akt/PKB and Bcl-2 in U937 cells. Apigenin-induced cell death was preferentially observed in the CK2alpha-high leukemia cell lines, HL-60 and NB4, which was accompanied by cytoplasmic release of SMAC/DIABLO and proteolytic cleavage of procaspase-9, procaspase-3, procaspase-8, and poly(ADP)ribose polymerase. An induced overexpression of CK2alpha potentially enhanced the sensitivity of U937 cells to the apigenin-induced cell death. Apigenin-induced cell death was significantly higher in CK2alpha-high AML compared with CK2alpha-low AML (P<0.0001) or normal bone marrow samples (P<0.0001). CONCLUSION These findings strongly suggest protein kinase CK2alpha as an unfavorable prognostic marker and novel therapeutic target in AML.
Collapse
Affiliation(s)
- Jin Seok Kim
- Department of Internal Medicine, Brain Korea 21 Research Team of Nanobiomaterials for the Cell-Based Implants, Medical Research Center, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
211
|
Iles N, Rulten S, El-Khamisy SF, Caldecott KW. APLF (C2orf13) is a novel human protein involved in the cellular response to chromosomal DNA strand breaks. Mol Cell Biol 2007; 27:3793-803. [PMID: 17353262 PMCID: PMC1900005 DOI: 10.1128/mcb.02269-06] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Revised: 01/04/2007] [Accepted: 03/05/2007] [Indexed: 11/20/2022] Open
Abstract
Aprataxin and polynucleotide kinase (PNK) are DNA end processing factors that are recruited into the DNA single- and double-strand break repair machinery through phosphorylation-specific interactions with XRCC1 and XRCC4, respectively. These interactions are mediated through a divergent class of forkhead-associated (FHA) domain that binds to peptide sequences in XRCC1 and XRCC4 that are phosphorylated by casein kinase 2 (CK2). Here, we identify the product of the uncharacterized open reading frame C2orf13 as a novel member of this FHA domain family of proteins and we denote this protein APLF (aprataxin- and PNK-like factor). We show that APLF interacts with XRCC1 in vivo and in vitro in a manner that is stimulated by CK2. Yeast two-hybrid analyses suggest that APLF also interacts with the double-strand break repair proteins XRCC4 and XRCC5 (Ku86). We also show that endogenous and yellow fluorescent protein-tagged APLF accumulates at sites of H(2)O(2) or UVA laser-induced chromosomal DNA damage and that this is achieved through at least two mechanisms: one that requires the FHA domain-mediated interaction with XRCC1 and a second that is independent of XRCC1 but requires a novel type of zinc finger motif located at the C terminus of APLF. Finally, we demonstrate that APLF is phosphorylated in a DNA damage- and ATM-dependent manner and that the depletion of APLF from noncycling human SH-SY5Y neuroblastoma cells reduces rates of chromosomal DNA strand break repair following ionizing radiation. These data identify APLF as a novel component of the cellular response to DNA strand breaks in human cells.
Collapse
Affiliation(s)
- Natasha Iles
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton, Sussex, United Kingdom
| | | | | | | |
Collapse
|
212
|
Kirkland DJ, Aardema M, Banduhn N, Carmichael P, Fautz R, Meunier JR, Pfuhler S. In vitro approaches to develop weight of evidence (WoE) and mode of action (MoA) discussions with positive in vitro genotoxicity results. Mutagenesis 2007; 22:161-75. [PMID: 17369606 DOI: 10.1093/mutage/gem006] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A recent analysis by Kirkland et al. [Kirkland, D., Aardema, M., Henderson, L. and Müller, L. (2005) Evaluation of the ability of a battery of 3 in vitro genotoxicity tests to discriminate rodent carcinogens and non-carcinogens. I. Sensitivity, specificity and relative predictivity. Mutat. Res. 584, 1-256] demonstrated an extremely high false positive rate for in vitro genotoxicity tests when compared with carcinogenicity in rodents. In many industries, decisions have to be made on the safety of new substances, and health risk to humans, without rodent carcinogenicity data being available. In such cases, the usual way to determine whether a positive in vitro genotoxicity result is relevant (i.e. indicates a hazard) for humans is to develop weight of evidence (WoE) or mode of action (MoA) arguments. These are based partly on further in vitro investigations, but usually rely heavily on tests for genotoxicity in one or more in vivo assays. However, for certain product types in the European Union, the use of animals for genotoxicity testing (as well as for other endpoints) will be prohibited within the next few years. Many different examples have been described that indicate DNA damage and genotoxic responses in vitro can arise through non-relevant in vitro events that are a result of the test systems and conditions used. The majority of these non-relevant in vitro events can be grouped under a category of 'overload of normal physiology' that would not be expected to occur in exposed humans. However, obtaining evidence in support of such MoAs is not easy, particularly for those industries prohibited from carrying out in vivo testing. It will become necessary to focus on in vitro studies to provide evidence of non-DNA, threshold or in vitro-specific processes and to discuss the potential for such genotoxic effects to occur in exposed humans. Toward this end, we surveyed the published literature for in vitro approaches that may be followed to determine whether a genotoxic effect observed in vitro will occur in humans. Unfortunately, many of the approaches we found are based on only a few published examples and validated approaches with consensus recommendations often do not exist. This analysis highlights the urgent need for developing consensus approaches that do not rely on animal studies for dealing with in vitro genotoxins.
Collapse
Affiliation(s)
- D J Kirkland
- Covance Laboratories Limited, Otley Road, Harrogate HG3 1PY, UK.
| | | | | | | | | | | | | |
Collapse
|
213
|
Pagano MA, Cesaro L, Meggio F, Pinna LA. Protein kinase CK2: a newcomer in the 'druggable kinome'. Biochem Soc Trans 2007; 34:1303-6. [PMID: 17073807 DOI: 10.1042/bst0341303] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The acronym CK2 (derived from the misnomer 'casein kinase' 2) denotes one of the most pleiotropic members of the eukaryotic protein kinase superfamily, characterized by an acidic consensus sequence in which a carboxylic acid (or pre-phosphorylated) side chain at position n+3 relative to the target serine/threonine residue plays a crucial role. The latest repertoire of CK2 substrates includes approx. 300 proteins, but the analysis of available phosphopeptide databases from different sources suggests that CK2 alone may be responsible for the generation of a much larger proportion (10-20%) of the eukaryotic phosphoproteome. Although for the time being CK2 is not included among protein kinases whose inhibitors are in clinical practice or in advanced clinical trials, evidence is accumulating that elevated CK2 constitutive activity co-operates to induce a number of pathological conditions, including cancer, infectious diseases, neurodegeneration and cardiovascular pathologies. The development and usage of cell-permeant, selective inhibitors discloses a scenario whereby CK2 plays a global anti-apoptotic role, which under special circumstances may lead to untimely and pathogenic cell survival.
Collapse
Affiliation(s)
- M A Pagano
- Department of Biological Chemistry and CNR Institute of Neurosciences, University of Padova, viale G. Colombo 3, 35121 Padova, Italy
| | | | | | | |
Collapse
|
214
|
Parlanti E, Locatelli G, Maga G, Dogliotti E. Human base excision repair complex is physically associated to DNA replication and cell cycle regulatory proteins. Nucleic Acids Res 2007; 35:1569-77. [PMID: 17289756 PMCID: PMC1865045 DOI: 10.1093/nar/gkl1159] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
It has been hypothesized that a replication associated repair pathway operates on base damage and single strand breaks (SSB) at replication forks. In this study, we present the isolation from the nuclei of human cycling cells of a multiprotein complex containing most of the essential components of base excision repair (BER)/SSBR, including APE1, UNG2, XRCC1 and POLβ, DNA PK, replicative POLα, δ and ɛ, DNA ligase 1 and cell cycle regulatory protein cyclin A. Co-immunoprecipitation revealed that in this complex DNA repair proteins are physically associated to cyclin A and to DNA replication proteins including MCM7. This complex is endowed with DNA polymerase and protein kinase activity and is able to perform BER of uracil and AP sites. This finding suggests that a preassembled DNA repair machinery is constitutively active in cycling cells and is ready to be recruited at base damage and breaks occurring at replication forks.
Collapse
Affiliation(s)
- Eleonora Parlanti
- Department of Environment and Primary Prevention, Section of Molecular Epidemiology, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy and DNA Enzymology and Molecular Virology, Istituto di Genetica Molecolare, IGM-CNR, National Research Council, Via Abbiategrasso 207, 27100 Pavia, Italy
| | - Giada Locatelli
- Department of Environment and Primary Prevention, Section of Molecular Epidemiology, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy and DNA Enzymology and Molecular Virology, Istituto di Genetica Molecolare, IGM-CNR, National Research Council, Via Abbiategrasso 207, 27100 Pavia, Italy
| | - Giovanni Maga
- Department of Environment and Primary Prevention, Section of Molecular Epidemiology, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy and DNA Enzymology and Molecular Virology, Istituto di Genetica Molecolare, IGM-CNR, National Research Council, Via Abbiategrasso 207, 27100 Pavia, Italy
- *To whom correspondence should be addressed. (+39) 0382546354(+39) 0382422286
| | - Eugenia Dogliotti
- Department of Environment and Primary Prevention, Section of Molecular Epidemiology, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy and DNA Enzymology and Molecular Virology, Istituto di Genetica Molecolare, IGM-CNR, National Research Council, Via Abbiategrasso 207, 27100 Pavia, Italy
| |
Collapse
|
215
|
Shanware NP, Trinh AT, Williams LM, Tibbetts RS. Coregulated ataxia telangiectasia-mutated and casein kinase sites modulate cAMP-response element-binding protein-coactivator interactions in response to DNA damage. J Biol Chem 2007; 282:6283-91. [PMID: 17209043 DOI: 10.1074/jbc.m610674200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cyclic AMP-response element-binding protein (CREB) is a bZIP family transcription factor implicated as an oncoprotein and neuron survival factor. CREB is activated in response to cellular stimuli, including cAMP and Ca(2+), via phosphorylation of Ser-133, which promotes interaction between the kinase-inducible domain (KID) of CREB and the KID-interacting domain of CREB-binding protein (CBP). We previously demonstrated that the interaction between CREB and CBP is inhibited by DNA-damaging stimuli through a mechanism whereby CREB is phosphorylated by the ataxia telangiectasia-mutated (ATM) protein kinase. We now show that the ATM phosphorylation sites in CREB are functionally intertwined with a cluster of coregulated casein kinase (CK) sites. We demonstrate that DNA damage-induced phosphorylation of CREB occurs in three steps. The initial event in the CREB phosphorylation cascade is the phosphorylation of Ser-111, which is carried out by CK1 and CK2 under basal conditions and by ATM in response to ionizing radiation. The phosphorylation of Ser-111 triggers the CK2-dependent phosphorylation of Ser-108 and the CK1-dependent phosphorylation of Ser-114 and Ser-117. The phosphorylation of Ser-114 and Ser-117 by CK1 then renders CREB permissive for ATM-dependent phosphorylation on Ser-121. Mutation of Ser-121 alone abrogates ionizing radiation-dependent repression of CREB-CBP complexes, which can be recapitulated using a CK1 inhibitor. Our findings outline a complex mechanism of CREB phosphorylation in which coregulated ATM and CK sites control CREB transactivation potential by modulating its CBP-binding affinity. The coregulated ATM and CK sites identified in CREB may constitute a signaling motif that is common to other DNA damage-regulated substrates.
Collapse
Affiliation(s)
- Naval P Shanware
- Molecular and Cellular Pharmacology Program, Department of Pharmacology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706
| | | | | | | |
Collapse
|
216
|
Abstract
Sister-chromatid exchange (SCE) is the process whereby, during DNA replication, two sister chromatids break and rejoin with one another, physically exchanging regions of the parental strands in the duplicated chromosomes. This process is considered to be conservative and error-free, since no information is generally altered during reciprocal interchange by homologous recombination. Upon the advent of non-radiolabel detection methods for SCE, such events were used as genetic indicators for potential genotoxins/mutagens in laboratory toxicology tests, since, as we now know, most forms of DNA damage induce chromatid exchange upon replication fork collapse. Much of our present understanding of the mechanisms of SCE stems from studies involving nonhuman vertebrate cell lines that are defective in processes of DNA repair and/or recombination. In this article, we present a historical perspective of studies spearheaded by Dr. Anthony V. Carrano and colleagues focusing on SCE as a genetic outcome, and the role of the single-strand break DNA repair protein XRCC1 in suppressing SCE. A more general overview of the cellular processes and key protein "effectors" that regulate the manifestation of SCE is also presented.
Collapse
Affiliation(s)
- David M Wilson
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA.
| | | |
Collapse
|
217
|
Mor-Vaknin N, Punturieri A, Sitwala K, Faulkner N, Legendre M, Khodadoust MS, Kappes F, Ruth JH, Koch A, Glass D, Petruzzelli L, Adams BS, Markovitz DM. The DEK nuclear autoantigen is a secreted chemotactic factor. Mol Cell Biol 2006; 26:9484-96. [PMID: 17030615 PMCID: PMC1698538 DOI: 10.1128/mcb.01030-06] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Revised: 07/13/2006] [Accepted: 09/15/2006] [Indexed: 12/17/2022] Open
Abstract
The nuclear DNA-binding protein DEK is an autoantigen that has been implicated in the regulation of transcription, chromatin architecture, and mRNA processing. We demonstrate here that DEK is actively secreted by macrophages and is also found in synovial fluid samples from patients with juvenile arthritis. Secretion of DEK is modulated by casein kinase 2, stimulated by interleukin-8, and inhibited by dexamethasone and cyclosporine A, consistent with a role as a proinflammatory molecule. DEK is secreted in both a free form and in exosomes, vesicular structures in which transcription-modulating factors such as DEK have not previously been found. Furthermore, DEK functions as a chemotactic factor, attracting neutrophils, CD8+ T lymphocytes, and natural killer cells. Therefore, the DEK autoantigen, previously described as a strictly nuclear protein, is secreted and can act as an extracellular chemoattractant, suggesting a direct role for DEK in inflammation.
Collapse
Affiliation(s)
- Nirit Mor-Vaknin
- Department of Internal Medicine, Division of Infectious Diseases, University of Michigan Medical Center, Ann Arbor, MI 48109-0640, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
218
|
Wang G, Ahmad KA, Unger G, Slaton JW, Ahmed K. CK2 signaling in androgen-dependent and -independent prostate cancer. J Cell Biochem 2006; 99:382-91. [PMID: 16598768 DOI: 10.1002/jcb.20847] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Protein serine/threonine kinase casein kinase 2 (CK2) is a key player in cell growth and proliferation but is also a potent suppressor of apoptosis. CK2 has been found to be dysregulated in all the cancers that have been examined, including prostate cancer. Investigations of CK2 signaling in the prostate were originally initiated in this laboratory, and these studies have identified significant functional activities of CK2 in relation to normal prostate growth and to the pathobiology of androgen-dependent and -independent prostate cancer. We present a brief overview of these developments in the context of prostate biology. An important outcome of these studies is the emerging concept that CK2 can be effectively targeted for cancer therapy.
Collapse
Affiliation(s)
- Guixia Wang
- Cellular and Molecular Biochemistry Research Laboratory (151), Minneapolis Veterans Affairs Medical Center, Minneapolis, Minnesota 55417, USA
| | | | | | | | | |
Collapse
|
219
|
Ahel I, Rass U, El-Khamisy SF, Katyal S, Clements PM, McKinnon PJ, Caldecott KW, West SC. The neurodegenerative disease protein aprataxin resolves abortive DNA ligation intermediates. Nature 2006; 443:713-6. [PMID: 16964241 DOI: 10.1038/nature05164] [Citation(s) in RCA: 296] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2006] [Accepted: 08/17/2006] [Indexed: 01/28/2023]
Abstract
Ataxia oculomotor apraxia-1 (AOA1) is a neurological disorder caused by mutations in the gene (APTX) encoding aprataxin. Aprataxin is a member of the histidine triad (HIT) family of nucleotide hydrolases and transferases, and inactivating mutations are largely confined to this HIT domain. Aprataxin associates with the DNA repair proteins XRCC1 and XRCC4, which are partners of DNA ligase III and ligase IV, respectively, suggestive of a role in DNA repair. Consistent with this, APTX-defective cell lines are sensitive to agents that cause single-strand breaks and exhibit an increased incidence of induced chromosomal aberrations. It is not, however, known whether aprataxin has a direct or indirect role in DNA repair, or what the physiological substrate of aprataxin might be. Here we show, using purified aprataxin protein and extracts derived from either APTX-defective chicken DT40 cells or Aptx-/- mouse primary neural cells, that aprataxin resolves abortive DNA ligation intermediates. Specifically, aprataxin catalyses the nucleophilic release of adenylate groups covalently linked to 5'-phosphate termini at single-strand nicks and gaps, resulting in the production of 5'-phosphate termini that can be efficiently rejoined. These data indicate that neurological disorders associated with APTX mutations may be caused by the gradual accumulation of unrepaired DNA strand breaks resulting from abortive DNA ligation events.
Collapse
Affiliation(s)
- Ivan Ahel
- Cancer Research UK, London Research Institute, Clare Hall Laboratories, South Mimms, Herts EN6 3LD, UK
| | | | | | | | | | | | | | | |
Collapse
|
220
|
Dong Z, Tomkinson AE. ATM mediates oxidative stress-induced dephosphorylation of DNA ligase IIIalpha. Nucleic Acids Res 2006; 34:5721-279. [PMID: 17040896 PMCID: PMC1694025 DOI: 10.1093/nar/gkl705] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Among the three mammalian genes encoding DNA ligases, only the LIG3 gene does not have a homolog in lower eukaryotes. In somatic mammalian cells, the nuclear form of DNA ligase IIIalpha forms a stable complex with the DNA repair protein XRCC1 that is also found only in higher eukaryotes. Recent studies have shown that XRCC1 participates in S phase-specific DNA repair pathways independently of DNA ligase IIIalpha and is constitutively phosphorylated by casein kinase II. In this study we demonstrate that DNA ligase IIIalpha, unlike XRCC1, is phosphorylated in a cell cycle-dependent manner. Specifically, DNA ligase IIIalpha is phosphorylated on Ser123 by the cell division cycle kinase Cdk2 beginning early in S phase and continuing into M phase. Interestingly, treatment of S phase cells with agents that cause oxygen free radicals induces the dephosphorylation of DNA ligase IIIalpha. This oxidative stress-induced dephosphorylation of DNA ligase IIIalpha is dependent upon the ATM (ataxia-telangiectasia mutated) kinase and appears to involve inhibition of Cdk2 and probably activation of a phosphatase.
Collapse
Affiliation(s)
| | - Alan E. Tomkinson
- Radiation Oncology Research Laboratory, Department of Radiation Oncology and Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of MedicineBaltimore, MD 21201-1509, USA
- To whom correspondence should be addressed. Radiation Oncology Research Laboratory, Department of Radiation Oncology, and Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201-1509, USA. Tel: +1 410 706 2365; Fax: +1 410 706 3000;
| |
Collapse
|
221
|
Panasyuk G, Nemazanyy I, Zhyvoloup A, Bretner M, Litchfield DW, Filonenko V, Gout IT. Nuclear Export of S6K1 II Is Regulated by Protein Kinase CK2 Phosphorylation at Ser-17. J Biol Chem 2006. [DOI: 10.1016/s0021-9258(19)84032-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
222
|
Keil C, Gröbe T, Oei SL. MNNG-induced cell death is controlled by interactions between PARP-1, poly(ADP-ribose) glycohydrolase, and XRCC1. J Biol Chem 2006; 281:34394-405. [PMID: 16963444 DOI: 10.1074/jbc.m606470200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
PARP-1 (poly(ADP-ribose) polymerases) modifies proteins with poly(ADP-ribose), which is an important signal for genomic stability. ADP-ribose polymers also mediate cell death and are degraded by poly(ADP-ribose) glycohydrolase (PARG). Here we show that the catalytic domain of PARG interacts with the automodification domain of PARP-1. Furthermore, PARG can directly down-regulate PARP-1 activity. PARG also interacts with XRCC1, a DNA repair factor that is recruited by DNA damage-activated PARP-1. We investigated the role of XRCC1 in cell death after treatment with supralethal doses of the alkylating agent MNNG. Only in XRCC1-proficient cells MNNG induced a considerable accumulation of poly(ADP-ribose). Similarly, extracts of XRCC1-deficient cells produced large ADP-ribose polymers if supplemented with XRCC1. Consequently, MNNG triggered in XRCC1-proficient cells the translocation of the apoptosis inducing factor from mitochondria to the nucleus followed by caspase-independent cell death. In XRCC1-deficient cells, the same MNNG treatment caused non-apoptotic cell death without accumulation of poly(ADP-ribose). Thus, XRCC1 seems to be involved in regulating a poly(ADP-ribose)-mediated apoptotic cell death.
Collapse
Affiliation(s)
- Claudia Keil
- Institut für Biochemie, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Federal Republic of Germany
| | | | | |
Collapse
|
223
|
Piazza FA, Ruzzene M, Gurrieri C, Montini B, Bonanni L, Chioetto G, Di Maira G, Barbon F, Cabrelle A, Zambello R, Adami F, Trentin L, Pinna LA, Semenzato G. Multiple myeloma cell survival relies on high activity of protein kinase CK2. Blood 2006; 108:1698-1707. [PMID: 16684960 DOI: 10.1182/blood-2005-11-013672] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Casein kinase 2 (CK2) is a ubiquitous cellular serine-threonine kinase that regulates relevant biologic processes, many of which are dysregulated in malignant plasma cells. Here we investigated its role in multiple myeloma (MM). Analysis of MM cell lines and highly purified malignant plasma cells in patients with MM revealed higher protein and CK2 activity levels than in controls (normal in vitro-generated polyclonal plasma cells and B lymphocytes). The inhibition of CK2 with specific synthetic compounds or by means of RNA interference caused a cytotoxic effect on MM plasma cells that could not be overcome by IL-6 or IGF-I and that was associated with the activation of extrinsic and intrinsic caspase cascades. CK2 blockage lowered the sensitivity threshold of MM plasma cells to the cytotoxic effect of melphalan. CK2 inhibition also resulted in impaired IL-6-dependent STAT3 activation and in decreased basal and TNF-alpha-dependent I kappaB alpha degradation and NF-kappaB-driven transcription. Our data show that CK2 was involved in the pathophysiology of MM, suggesting that it might play a crucial role in controlling survival and sensitivity to chemotherapeutics of malignant plasma cells.
Collapse
Affiliation(s)
- Francesco A Piazza
- Department of Clinical and Experimental Medicine, Hematology-Immunology Division, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
224
|
Panasyuk G, Nemazanyy I, Zhyvoloup A, Bretner M, Litchfield DW, Filonenko V, Gout IT. Nuclear Export of S6K1 II Is Regulated by Protein Kinase CK2 Phosphorylation at Ser-17. J Biol Chem 2006; 281:31188-201. [PMID: 16895915 DOI: 10.1074/jbc.m602618200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ribosomal S6 kinases (S6Ks) are principal players in the regulation of cell growth and energy metabolism. Signaling via phosphatidylinositol 3-kinase and mammalian target of rapamycin pathways mediates the activation of S6K in response to various mitogenic stimuli. The family of S6Ks consists of two forms, S6K1 and -2, that have cytoplasmic and nuclear splicing variants, S6K1 II and S6K1 I, respectively. Nuclear-cytoplasmic shuttling of both isoforms induced by mitogenic stimuli has been reported recently. Here we present the identification of protein kinase CK2 (CK2) as a novel binding and regulatory partner for S6K1 II. The interaction between S6K1 II and CK2beta regulatory subunit was initially identified in a yeast two-hybrid screen and further confirmed by co-immunoprecipitation of transiently expressed and endogenous proteins. The interaction between S6K1 II and CK2 was found to occur in serum-starved and serum-stimulated cells. In addition, we found that S6K1 II is a substrate for CK2. The localization of the CK2 phosphorylation site was narrowed down to Ser-17 in S6K1 II. Mutational analysis and the use of phosphospecific antibody indicate that Ser-17 is a major in vitro and in vivo phosphorylation site for CK2. Functional studies reveal that, in contrast to the wild type kinase, the phosphorylation-mimicking mutant of S6K1 II (S17E) retains its cytoplasmic localization in serum-stimulated cells. Treatment of cells with the nuclear export inhibitor leptomycin B revealed that the S17E mutant accumulates in the nucleus to the same extent as S6K1 II wild type. These results indicate that nuclear import of the S17E mutant is not affected, although the export is significantly enhanced. We also provide evidence that nuclear export of S6K1 is mediated by a CRM1-dependent mechanism. Taken together, this study establishes a functional link between S6K1 II and CK2 signaling, which involves the regulation of S6K1 II nuclear export by CK2-mediated phosphorylation of Ser-17.
Collapse
Affiliation(s)
- Ganna Panasyuk
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv 03143, Ukraine
| | | | | | | | | | | | | |
Collapse
|
225
|
Martel V, Filhol O, Colas P, Cochet C. p53-dependent inhibition of mammalian cell survival by a genetically selected peptide aptamer that targets the regulatory subunit of protein kinase CK2. Oncogene 2006; 25:7343-53. [PMID: 16751801 DOI: 10.1038/sj.onc.1209722] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Based on the perturbation of its expression in human cancers and on its involvement in transformation and tumorigenesis, protein kinase CK2 has recently attracted attention as a potential therapeutic target. To assess the value of CK2 as a target for antiproliferative strategies, we have initiated a program aiming to develop inhibitors targeting specifically the regulatory CK2beta subunit. Here, we use a two-hybrid approach to isolate from combinatorial libraries, peptide aptamers that specifically interact with CK2beta. One of these (P1), which has significant sequence homology to the cytomegalovirus IE2 protein, binds with high affinity to the N-terminal domain of CK2beta without disrupting the formation of the CK2 holoenzyme. Expression of green fluorescent protein (GFP)-P1 in different mammalian cell lines activates p53 phosphorylation on serine 15, induces an upregulation of p21 and the release of the Cyt-C and apoptosis-inducing factor proapoptotic proteins triggering caspase-dependent and caspase-independent apoptosis. GFP-P1-induced apoptosis is associated with a p53-dependent pathway as cell death was abrogated in p53 knocked out cells. In summary, our data show that genetically selected peptide aptamers that specifically target CK2beta can induce apoptosis in mammalian cells through the recruitment of a p53-dependent apoptosis pathway. They also emphasize the critical role of CK2beta for cell survival and might allow the design of novel proapoptotic agents targeting this protein.
Collapse
Affiliation(s)
- V Martel
- Département Réponse et Dynamique Cellulaire, INSERM EMI0104, CEA, Grenoble Cedex, France
| | | | | | | |
Collapse
|
226
|
Messer J, Reynolds M, Stoddard L, Zhitkovich A. Causes of DNA single-strand breaks during reduction of chromate by glutathione in vitro and in cells. Free Radic Biol Med 2006; 40:1981-92. [PMID: 16716899 DOI: 10.1016/j.freeradbiomed.2006.01.028] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2005] [Revised: 01/02/2006] [Accepted: 01/24/2006] [Indexed: 11/22/2022]
Abstract
Carcinogenic chromates induce DNA single-strand breaks (SSB) that are detectable by conventional alkali-based assays. However, the extent of direct breakage has been uncertain because excision repair and hydrolysis of Cr-DNA adducts at alkaline pH also generate SSB. We examined mechanisms of SSB production during chromate reduction by glutathione (GSH) and assessed the significance of these lesions in cells using genetic approaches. Cr(VI) reduction was biphasic and the formation of SSB occurred exclusively during the slow reaction phase. Catalase or iron chelators completely blocked DNA breakage, as did the use of GSH purified by a modified Chelex procedure. Thus, the direct intermediates of GSH-chromate reactions were unable to cause SSB unless activated by H2O2. SSB repair-deficient XRCC1(-/-) and proficient XRCC1+ EM9 cells had identical survival at doses causing up to 60% clonogenic death and accumulation of 1 mM Cr(VI). However, XRCC1(-/-) cells displayed higher lethality in the more toxic range and the depletion of GSH made them hypersensitive even to moderate doses. Elevation of cellular catalase or GSH levels eliminated survival differences between XRCC1(-/-) and XRCC1+ cells. In summary, formation of toxic SSB in cells occurs at relatively high chromate doses, requires H2O2, and is suppressed by high GSH concentrations.
Collapse
Affiliation(s)
- Joseph Messer
- Center for Genomics and Proteomics, Department of Pathology and Laboratory Medicine, Brown University, 70 Ship Street, Room 507, Providence, RI 02912, USA
| | | | | | | |
Collapse
|
227
|
Wang W, Lindsey-Boltz LA, Sancar A, Bambara RA. Mechanism of stimulation of human DNA ligase I by the Rad9-rad1-Hus1 checkpoint complex. J Biol Chem 2006; 281:20865-20872. [PMID: 16731526 DOI: 10.1074/jbc.m602289200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Accumulating evidence suggests that the Rad9-Rad1-Hus1 (9-1-1) checkpoint complex, known to be a sensor of DNA damage, is also a component of DNA repair systems. Recent results show that 9-1-1 interacts with several base excision repair proteins. It binds the DNA glycosylase MutY homolog, and stimulates DNA polymerase beta, flap endonuclease 1, and DNA ligase I. 9-1-1 resembles proliferating cell nuclear antigen (PCNA), which stimulates some of these same repair enzymes, and is loaded onto DNA in a similar manner. The complex of 9-1-1 with DNA ligase I can be immunoprecipitated from human cells. Moreover, UV irradiation stimulates 9-1-1.ligase I complex formation, suggesting a role for 9-1-1 in DNA repair. Examining the nature of 9-1-1 interaction with DNA ligase I, we show that there is a similar degree of stimulation on ligation substrates with different structures, and that there is specificity for DNA ligase I. 9-1-1 improves the binding of DNA ligase I to nicked double strand DNA. Furthermore, although high concentrations of casein kinase II strongly inhibits DNA ligase I activity, it does not affect the ability of 9-1-1 to stimulate. This suggests that 9-1-1 is also an activator of DNA ligase I during DNA damage. Unlike PCNA, 9-1-1 stimulates DNA ligase I activity to the same extent on both linear and circular substrates, indicating that encirclement is not a requirement for stimulation. These data are consistent with a direct role for 9-1-1 in DNA repair, but possibly employing a different mechanism than PCNA.
Collapse
Affiliation(s)
- Wensheng Wang
- Department of Biochemistry & Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Laura A Lindsey-Boltz
- Department of Biochemistry and Biophysics, CB 7260, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599
| | - Aziz Sancar
- Department of Biochemistry and Biophysics, CB 7260, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599
| | - Robert A Bambara
- Department of Biochemistry & Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642.
| |
Collapse
|
228
|
Allada R, Meissner RA. Casein kinase 2, circadian clocks, and the flight from mutagenic light. Mol Cell Biochem 2006; 274:141-9. [PMID: 16335534 DOI: 10.1007/s11010-005-2943-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Circadian clocks play a fundamental role in biology and disease. Much has been learned about the molecular underpinnings of these biological clocks from genetic studies in model organisms, such as the fruit fly, Drosophila melanogaster. Here we review the literature from our lab and others that establish a role for the protein kinase CK2 in Drosophila clock timing. Among the clock genes described thus far, CK2 is unique in its involvement in plant, fungal, as well as animal circadian clocks. We propose that this reflects an ancient, conserved function for CK2 in circadian clocks. CK2 and other clock genes have been implicated in cellular responses to DNA damage, particularly those induced by ultraviolet (UV) light. The finding of a dual function of CK2 in clocks and in UV responses supports the notion that clocks evolved to assist organisms in avoiding the mutagenic effects of daily sunlight.
Collapse
Affiliation(s)
- Ravi Allada
- Department of Neurobiology and Physiology, Northwestern University, Evanston, IL 60208, USA.
| | | |
Collapse
|
229
|
Sarno S, Ruzzene M, Frascella P, Pagano MA, Meggio F, Zambon A, Mazzorana M, Di Maira G, Lucchini V, Pinna LA. Development and exploitation of CK2 inhibitors. Mol Cell Biochem 2006; 274:69-76. [PMID: 16335530 DOI: 10.1007/s11010-005-3079-z] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A number of quite specific and fairly potent inhibitors of protein kinase CK2, belonging to the classes of condensed polyphenolic compounds, tetrabromobenzimidazole/triazole derivatives and indoloquinazolines are available to date. The structural basis for their selectivity is provided by a hydrophobic pocket adjacent to the ATP/GTP binding site, which in CK2 is smaller than in the majority of other protein kinases due to the presence of a number of residues whose bulky side chains are generally replaced by smaller ones. Consequently a doubly substituted CK2 mutant V66A,I174A is much less sensitive than CK2 wild type to these classes of inhibitors. The most efficient inhibitors both in terms of potency and selectivity are 4,5,6,7-tetrabromo-1H-benzotriazole, TBB (Ki = 0.4 microM), the TBB derivative 2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole, DMAT (Ki = 0.040 microM), the emodin related coumarinic compound 8-hydroxy-4-methyl-9-nitrobenzo[g]chromen-2-one, NBC (Ki = 0.22 microM) and the indoloquinazoline derivative ([5-oxo-5,6-dihydroindolo-(1,2a)quinazolin-7-yl]acetic acid), IQA (Ki = 0.17 microM). These inhibitors are cell permeable as judged from ability to block CK2 in living cells and they have been successfully employed, either alone or in combination with CK2 mutants refractory to inhibition, to dissect signaling pathways affected by CK2 and to identify the endogenous substrates of this pleitropic kinase. By blocking CK2 these inhibitors display a remarkable pro-apoptotic efficacy on a number of tumor derived cell lines, a property which can be exploited in perspective to develop antineoplastic drugs.
Collapse
Affiliation(s)
- Stefania Sarno
- Dipartimento di Chimica Biologica, Universita' di Padova, Padova, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
230
|
Williams RS, Bernstein N, Lee MS, Rakovszky ML, Cui D, Green R, Weinfeld M, Glover JNM. Structural basis for phosphorylation-dependent signaling in the DNA-damage response. Biochem Cell Biol 2006; 83:721-7. [PMID: 16333323 DOI: 10.1139/o05-153] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The response of eukaryotic cells to DNA damage requires a multitude of protein-protein interactions that mediate the ordered repair of the damage and the arrest of the cell cycle until repair is complete. Two conserved protein modules, BRCT and forkhead-associated (FHA) domains, play key roles in the DNA-damage response as recognition elements for nuclear Ser/Thr phosphorylation induced by DNA-damage-responsive kinases. BRCT domains, first identified at the C-terminus of BRCA1, often occur as multiple tandem repeats of individual BRCT modules. Our recent structural and functional work has revealed how BRCT repeats recognize phosphoserine protein targets. It has also revealed a secondary binding pocket at the interface between tandem repeats, which recognizes the amino-acid 3 residues C-terminal to the phosphoserine. We have also studied the molecular function of the FHA domain of the DNA repair enzyme, polynucleotide kinase (PNK). This domain interacts with threonine-phosphorylated XRCC1 and XRCC4, proteins responsible for the recruitment of PNK to sites of DNA-strand-break repair. Our studies have revealed a flexible mode of recognition that allows PNK to interact with numerous negatively charged substrates.
Collapse
Affiliation(s)
- R Scott Williams
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | | | | | | | | | | | | | | |
Collapse
|
231
|
Abstract
DNA damage plays a major role in mutagenesis, carcinogenesis and aging. A gene that is emerging as an essential element in the repair of both damaged bases and single-strand breaks (SSB) is XRCC1. XRCC1 has been shown to have a large number of single-nucleotide polymorphisms (SNPs), several of which are being increasingly studied in cancer epidemiology investigations, in part because of their relative high frequency in the population. Although association trends with specific cancer types have occasionally been shown in a variety of ethnic backgrounds, there are often conflicting reports that weaken any substantial conclusions. The functional significance of these SNPs is still largely unknown. XRCC1 is an excellent prototype to provide a forum for determining how epidemiological cancer association studies with DNA repair gene polymorphisms can be validated or refuted. The focus is on the utilization of in silico data and biochemical studies in cell lines and existing mouse models to help provide a framework for the development of new mutant mouse lines that mimic human polymorphisms. These mouse lines will provide the next generation of mammalian tools for carcinogen exposure studies relevant to human cancer and variations in XRCC1, and provide the basis for investigating groups of genes and polymorphisms in an animal model.
Collapse
Affiliation(s)
- W C Ladiges
- Department of Comparative Medicine, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
232
|
Battistutta R, Mazzorana M, Sarno S, Kazimierczuk Z, Zanotti G, Pinna LA. Inspecting the structure-activity relationship of protein kinase CK2 inhibitors derived from tetrabromo-benzimidazole. ACTA ACUST UNITED AC 2006; 12:1211-9. [PMID: 16298300 DOI: 10.1016/j.chembiol.2005.08.015] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2005] [Revised: 08/02/2005] [Accepted: 08/12/2005] [Indexed: 11/21/2022]
Abstract
CK2 is a very pleiotropic protein kinase whose high constitutive activity is suspected to cooperate to neoplasia. Here, the crystal structure of the complexes between CK2 and three selective tetrabromo-benzimidazole derivatives inhibiting CK2 with Ki values between 40 and 400 nM are presented. The ligands bind to the CK2 active site in a different way with respect to the parent compound TBB. They enter more deeply into the cavity, establishing halogen bonds with the backbone of Glu114 and Val116 in the hinge region. A detailed analysis of the interactions highlights a major role of the hydrophobic effect in establishing the rank of potency within this class of inhibitors and shows that polar interactions are responsible for the different orientation of the molecules in the active site.
Collapse
Affiliation(s)
- Roberto Battistutta
- Department of Chemistry, University of Padua, via Marzolo 1, 35131 Padua, Italy.
| | | | | | | | | | | |
Collapse
|
233
|
Abstract
Protein kinase CK2 is a highly ubiquitous and conserved protein serine/threonine kinase that has been found to be involved not only in cell growth and proliferation, but also in suppression of apoptosis. CK2 is capable of dynamic intracellular shuttling in response to a variety of signals. It is localized in both the nucleus and cytoplasm in normal cells, but is particularly predominant in the nuclear compartment in cancer cells. CK2 has been found to be uniformly dysregulated in all the cancers that have been examined. Downregulation of CK2 by chemical or molecular methods promotes apoptosis in cells. We have shown that antisense CK2alpha is particularly potent in inducing apoptosis in cancer cells in culture as well as in xenograft models of cancer such as prostate cancer and squamous cell carcinoma of head and neck. The antisense CK2alpha oligodeoxynucleotide (ODN) mediates tumor cell death in a dose- and time-dependent manner such that at an appropriate concentration of the antisense, a complete resolution of the xenograft tumor is observed. Interestingly, normal and benign cells (in culture as well as in vivo) demonstrate a relative resistance to the antisense CK2alpha ODN treatment, which raises the possibility of a significant therapeutic window for this therapy. Further, novel approaches such as the delivery of antisense CK2alpha ODN encapsulated in sub-50-nm tenascin nanocapsules have become available for its targeting specifically in cancer cells. Our studies minimize generally held concerns regarding suitability of CK2 as a target for cancer therapy and provide the first encouraging results for potential future application of this approach for cancer therapy.
Collapse
Affiliation(s)
- Kashif A Ahmad
- Cellular and Molecular Biochemistry Research Laboratory, Minneapolis Veterans Affairs Medical Center, Chaska, Minnesota 55417, USA.
| | | | | | | | | |
Collapse
|
234
|
Inter- and Supramolecular Interactions of Protein Kinase CK2 and their Relevance for Genome Integrity. Genome Integr 2006. [DOI: 10.1007/7050_002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
235
|
Lévy N, Martz A, Bresson A, Spenlehauer C, de Murcia G, Ménissier-de Murcia J. XRCC1 is phosphorylated by DNA-dependent protein kinase in response to DNA damage. Nucleic Acids Res 2006; 34:32-41. [PMID: 16397295 PMCID: PMC1325201 DOI: 10.1093/nar/gkj409] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The two BRCT domains (BRCT1 and BRCT2) of XRCC1 mediate a network of protein–protein interactions with several key factors of the DNA single-strand breaks (SSBs) and base damage repair pathways. BRCT1 is required for the immediate poly(ADP–ribose)-dependent recruitment of XRCC1 to DNA breaks and is essential for survival after DNA damage. To better understand the biological role of XRCC1 in the processing of DNA ends, a search for the BRCT1 domain-associated proteins was performed by mass spectrometry of GST-BRCT1 pulled-down proteins from HeLa cell extracts. Here, we report that the double-strand break (DSB) repair heterotrimeric complex DNA-PK interacts with the BRCT1 domain of XRCC1 and phosphorylates this domain at serine 371 after ionizing irradiation. This caused XRCC1 dimer dissociation. The XRCC1 R399Q variant allele did not affect this phosphorylation. We also show that XRCC1 strongly stimulates the phosphorylation of p53-Ser15 by DNA-PK. The pseudo phosphorylated S371D mutant was a much weaker stimulator of DNA-PK activity whereas the non-phosphorylable mutant S371L endowed with a DNA-PK stimulating capacity failed to fully rescue the DSB repair defect of XRCC1-deficient EM9 rodent cells. The functional association between XRCC1 and DNA-PK in response to IR provides the first evidence for their involvement in a common DSB repair pathway.
Collapse
|
236
|
Parsons JL, Dianova II, Boswell E, Weinfeld M, Dianov GL. End-damage-specific proteins facilitate recruitment or stability of X-ray cross-complementing protein 1 at the sites of DNA single-strand break repair. FEBS J 2005; 272:5753-63. [PMID: 16279940 DOI: 10.1111/j.1742-4658.2005.04962.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ionizing radiation, oxidative stress and endogenous DNA-damage processing can result in a variety of single-strand breaks with modified 5' and/or 3' ends. These are thought to be one of the most persistent forms of DNA damage and may threaten cell survival. This study addresses the mechanism involved in recognition and processing of DNA strand breaks containing modified 3' ends. Using a DNA-protein cross-linking assay, we followed the proteins involved in the repair of oligonucleotide duplexes containing strand breaks with a phosphate or phosphoglycolate group at the 3' end. We found that, in human whole cell extracts, end-damage-specific proteins (apurinic/apyrimidinic endonuclease 1 and polynucleotide kinase in the case of 3' ends containing phosphoglycolate and phosphate, respectively) which recognize and process 3'-end-modified DNA strand breaks are required for efficient recruitment of X-ray cross-complementing protein 1-DNA ligase IIIalpha heterodimer to the sites of DNA repair.
Collapse
|
237
|
Takao M, Yasui A. DNA repair initiated by glycosylases in the nucleus and mitochondria of mammalian cells; how our cells respond to a flood of oxidative DNA damage. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/j.descs.2005.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
238
|
Audebert M, Salles B, Weinfeld M, Calsou P. Involvement of polynucleotide kinase in a poly(ADP-ribose) polymerase-1-dependent DNA double-strand breaks rejoining pathway. J Mol Biol 2005; 356:257-65. [PMID: 16364363 DOI: 10.1016/j.jmb.2005.11.028] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2005] [Revised: 11/09/2005] [Accepted: 11/10/2005] [Indexed: 01/12/2023]
Abstract
Efficient DNA double-strand break (DSB) repair is critical for the maintenance of genomic integrity. In mammalian cells, DSBs are preferentially repaired by the non-homologous end-joining pathway relying on DNA-PK activity, but other mechanisms may promote end-joining. We previously described a DSB repair pathway that requires synapsis of DNA ends by poly(ADP-ribose) polymerase-1 (PARP-1) and ligation by the XRCC1/DNA ligase III complex (XL). Here, the repair of non-ligatable DNA ends by this pathway was examined in human cell extracts. The phosphorylation of the 5'-terminal end was shown to represent a limiting step for the repair process. Polynucleotide kinase (hPNK) was identified as the 5'-DNA kinase associated with the PARP-1-dependent end-joining pathway because (i) hPNK was co-recruited to DNA ends together with PARP-1 and XL, (ii) ligation of 5'-OH terminal breaks was compromised in hPNK-depleted extracts and restored upon addition of recombinant hPNK, and (iii) recombinant hPNK was necessary for end-joining of 5'-OH terminal breaks reconstituted with the PARP-1/XL complex. Also, using an assay enabling us to follow the ligation kinetics of each strand of a DSB, we established that the two strands at the junction can be processed and joined independently, so that one strand can be ligated without a ligatable nick on the other strand at the DSB site. Taken together these results reveal functional parallels between the PARP-1 and DNA-PK-dependent end-joining processes.
Collapse
Affiliation(s)
- Marc Audebert
- Institut de Pharmacologie et de Biologie Structurale, CNRS UMR 5089, Toulouse, France
| | | | | | | |
Collapse
|
239
|
Utley RT, Lacoste N, Jobin-Robitaille O, Allard S, Côté J. Regulation of NuA4 histone acetyltransferase activity in transcription and DNA repair by phosphorylation of histone H4. Mol Cell Biol 2005; 25:8179-90. [PMID: 16135807 PMCID: PMC1234332 DOI: 10.1128/mcb.25.18.8179-8190.2005] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The NuA4 complex is a histone H4/H2A acetyltransferase involved in transcription and DNA repair. While histone acetylation is important in many processes, it has become increasingly clear that additional histone modifications also play a crucial interrelated role. To understand how NuA4 action is regulated, we tested various H4 tail peptides harboring known modifications in HAT assays. While dimethylation at arginine 3 (R3M) had little effect on NuA4 activity, phosphorylation of serine 1 (S1P) strongly decreased the ability of the complex to acetylate H4 peptides. However, R3M in combination with S1P alleviates the repression of NuA4 activity. Chromatin from cells treated with DNA damage-inducing agents shows an increase in phosphorylation of serine 1 and a concomitant decrease in H4 acetylation. We found that casein kinase 2 phosphorylates histone H4 and associates with the Rpd3 deacetylase complex, demonstrating a physical connection between phosphorylation of serine 1 and unacetylated H4 tails. Chromatin immunoprecipitation experiments also link local phosphorylation of H4 with its deacetylation, during both transcription and DNA repair. Time course chromatin immunoprecipitation data support a model in which histone H4 phosphorylation occurs after NuA4 action during double-strand break repair at the step of chromatin restoration and deacetylation. These findings demonstrate that H4 phospho-serine 1 regulates chromatin acetylation by the NuA4 complex and that this process is important for normal gene expression and DNA repair.
Collapse
Affiliation(s)
- Rhea T Utley
- Laval University Cancer Research Center, Hôtel-Dieu de Québec (CHUQ), 9 McMahon Street, Quebec City, QC, Canada G1R 2J6
| | | | | | | | | |
Collapse
|
240
|
Campalans A, Marsin S, Nakabeppu Y, O'connor TR, Boiteux S, Radicella JP. XRCC1 interactions with multiple DNA glycosylases: a model for its recruitment to base excision repair. DNA Repair (Amst) 2005; 4:826-35. [PMID: 15927541 DOI: 10.1016/j.dnarep.2005.04.014] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2005] [Revised: 04/26/2005] [Accepted: 04/27/2005] [Indexed: 10/25/2022]
Abstract
Repair of chemically modified bases in DNA is accomplished through base excision repair (BER). This pathway is initiated by a specific DNA glycosylase that recognizes and excises the altered base to yield an abasic (AP) site. After cleavage of the AP site by APE1, repair proceeds through re-synthesis and ligation steps. In mammalian cells, the XRCC1 protein, essential for the maintenance of genomic stability, is involved in both base excision and single-strand break repair. XRCC1 participates in the first step of BER by interacting with the human DNA glycosylases hOGG1 and NEIL1. To analyze the possibility of a general mechanism involving the interaction of XRCC1 with DNA glycosylases we used XRCC1 to pull-down DNA glycosylases activities from human cell extracts. XRCC1 co-purifies with DNA glycosylase activities capable of excising hypoxanthine and dihydrothymine, in addition to 8-oxoguanine, but not uracil. Biochemical analyses with the purified proteins confirmed the interactions between XRCC1 and MPG, hNTH1 or hNEIL2. Furthermore, XRCC1 stimulates the activities of these enzymes. In vivo localization studies show that after genotoxic treatments these DNA glycosylases can be found associated with XRCC1 foci. Our results support a BER model in which XRCC1 is recruited to the repair of alkylated or oxidized bases by the enzyme recognizing the lesion. XRCC1 would then coordinate the subsequent enzymatic steps and modulate the activities of all the proteins involved.
Collapse
Affiliation(s)
- Anna Campalans
- Département de Radiobiologie et Radiopathologie, CEA, UMR217 CNRS/CEA, 18 Route du Panorama, F-92265 Fontenay aux Roses, France
| | | | | | | | | | | |
Collapse
|
241
|
Sarno S, Salvi M, Battistutta R, Zanotti G, Pinna LA. Features and potentials of ATP-site directed CK2 inhibitors. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2005; 1754:263-70. [PMID: 16198160 DOI: 10.1016/j.bbapap.2005.07.043] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2005] [Revised: 07/18/2005] [Accepted: 07/20/2005] [Indexed: 11/22/2022]
Abstract
A panel of quite specific, fairly potent and cell-permeable inhibitors of protein kinase CK2 belonging to the classes of condensed polyphenolic compounds, tetrabromobenzimidazole/triazole derivatives and indoloquinazolines have been developed, with K(i) values in the submicromolar range. Nine structures have been solved to date of complexes between the catalytic alpha subunit of CK2 and a number of these compounds, many of which display a remarkable specificity toward CK2 as compared to a panel of >30 kinases tested. The structural basis for such selectivity appears to reside in the shape and size of a hydrophobic pocket adjacent to the ATP binding site where these ATP competitive ligands are entrapped mainly by van der Waals interactions and by an energy contribution derived from the hydrophobic effect. In CK2, this cavity is smaller than in the majority of other protein kinases due to a number of unique bulky apolar residues. Consequently, the replacement of two of these residues (V66 and I174) in human CK2 alpha with alanines gives rise to mutants, which are markedly less susceptible than wild type to these classes of inhibitors. Cell-permeable CK2 inhibitors have been successfully employed, either alone or in combination with CK2 mutants refractory to inhibition, to dissect signalling pathways affected by CK2 and/or to validate the identification of in vivo targets of this pleiotropic kinase. Moreover, the remarkable pro-apoptotic efficacy of these compounds toward cell lines derived from a wide spectrum of tumors, disclose the possibility that in perspective CK2 inhibitors might become leads for the development of anti-cancer drugs.
Collapse
Affiliation(s)
- Stefania Sarno
- Department of Biological Chemistry, University of Padova, Viale G. Colombo 3, 35129 Padova, Italy
| | | | | | | | | |
Collapse
|
242
|
Zinkel SS, Hurov KE, Ong C, Abtahi FM, Gross A, Korsmeyer SJ. A Role for Proapoptotic BID in the DNA-Damage Response. Cell 2005; 122:579-91. [PMID: 16122425 DOI: 10.1016/j.cell.2005.06.022] [Citation(s) in RCA: 184] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2004] [Revised: 05/12/2005] [Accepted: 06/13/2005] [Indexed: 01/26/2023]
Abstract
The BCL-2 family of apoptotic proteins encompasses key regulators proximal to irreversible cell damage. The BH3-only members of this family act as sentinels, interconnecting specific death signals to the core apoptotic pathway. Our previous data demonstrated a role for BH3-only BID in maintaining myeloid homeostasis and suppressing leukemogenesis. In the absence of Bid, mice accumulate chromosomal aberrations and develop a fatal myeloproliferative disorder resembling chronic myelomonocytic leukemia. Here, we describe a role for BID in preserving genomic integrity that places BID at an early point in the path to determine the fate of a cell. We show that BID plays an unexpected role in the intra-S phase checkpoint downstream of DNA damage distinct from its proapoptotic function. We further demonstrate that this role is mediated through BID phosphorylation by the DNA-damage kinase ATM. These results establish a link between proapoptotic Bid and the DNA-damage response.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Apoptosis/genetics
- Ataxia Telangiectasia Mutated Proteins
- BH3 Interacting Domain Death Agonist Protein
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Cell Line, Transformed
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- DNA Damage/drug effects
- DNA Damage/genetics
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Female
- Genes, cdc/drug effects
- Genes, cdc/physiology
- Genomic Instability/genetics
- Leukemia, Myelomonocytic, Chronic/genetics
- Leukemia, Myelomonocytic, Chronic/metabolism
- Male
- Mice
- Mice, Knockout
- Mutagens/pharmacology
- Myeloid Progenitor Cells/metabolism
- NIH 3T3 Cells
- Phosphorylation
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Protein Structure, Tertiary/genetics
- S Phase/genetics
- Tumor Suppressor Proteins/genetics
- Tumor Suppressor Proteins/metabolism
Collapse
Affiliation(s)
- Sandra S Zinkel
- Howard Hughes Medical Institute, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | | | | | | | |
Collapse
|
243
|
Zhang LY, Cheng J, Deng H, Liu Y, Wang L. Cloning and identification of gene NS2TP transregulated by non-structural protein 2 of hepatitis C virus. Shijie Huaren Xiaohua Zazhi 2005; 13:1700-1704. [DOI: 10.11569/wcjd.v13.i14.1700] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To clone and identify the new gene NS2TP transregulated by the non-structural protein 2 of hepatitis C virus.
METHODS: Based on the subtractive cDNA library of genes transregulated by NS2 protein of hepatitis C virus, the coding sequence of the new gene was obtained by bioinformatics methods. Polymerase chain reaction (PCR) was conducted to amplify NS2TP gene.
RESULTS: The coding sequence of new gene was cloned and identified successfully. The coding region of NS2TP gene had a length of 456 nucleotides and the coding product pocessed 151 amino acid residues. After searching in GenBank and SwissProt, the new gene had no significant homology with the genes we have known, and its functions remained unknown.
CONCLUSION: A new target gene, transregulated by HCV NS2 protein, is recognized.
Collapse
|
244
|
Beernink PT, Hwang M, Ramirez M, Murphy MB, Doyle SA, Thelen MP. Specificity of protein interactions mediated by BRCT domains of the XRCC1 DNA repair protein. J Biol Chem 2005; 280:30206-13. [PMID: 15987676 DOI: 10.1074/jbc.m502155200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein interactions critical to DNA repair and cell cycle control systems are often coordinated by modules that belong to a superfamily of structurally conserved BRCT domains. Because the mechanisms of BRCT interactions and their significance are not well understood, we sought to define the affinity and specificity of those BRCT modules that orchestrate base excision repair and single-strand break repair. Common to these pathways is the essential XRCC1 DNA repair protein, which interacts with at least nine other proteins and DNA. Here, we characterized the interactions of four purified BRCT domains, two from XRCC1 and their two partners from DNA ligase IIIalpha and poly(ADP-ribosyl) polymerase 1. A monoclonal antibody was selected that recognizes the ligase IIIalpha BRCT domain, but not the other BRCT domains, and was used to capture the relevant ligase IIIalpha BRCT complex. To examine the assembly states of isolated BRCT domains and pairwise domain complexes, we used size-exclusion chromatography coupled with on-line light scattering. This analysis indicated that isolated BRCT domains form homo-oligomers and that the BRCT complex between the C-terminal XRCC1 domain and the ligase IIIalpha domain is a heterotetramer with 2:2 stoichiometry. Using affinity capture and surface plasmon resonance methods, we determined that specific heteromeric interactions with high nanomolar dissociation constants occur between pairs of cognate BRCT domains. A structural model for a XRCC1 x DNA ligase IIIalpha heterotetramer is proposed as a core base excision repair complex, which constitutes a scaffold for higher order complexes to which other repair proteins and DNA are brought into proximity.
Collapse
Affiliation(s)
- Peter T Beernink
- Biosciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94551, USA.
| | | | | | | | | | | |
Collapse
|
245
|
Abstract
Protein kinase CK2 has diverse links to gene control and cell cycle. Comparative genome-wide expression profiling of CK2 mutants of the budding yeast Saccharomyces cerevisiae at cell cycle entry has revealed that a significant proportion of cell-cycle genes are affected by CK2. Here, we examine how CK2 realizes this effect. We show that the CK2 action may be directed to gene promoters causing genes with promoter homologies to respond comparably to CK2 perturbation. Examples are metabolic pathway and nutrition supply genes such as the PHO and MET regulon genes, responsible for phosphate maintenance and methionine biosynthesis, respectively. CK2 perturbation affects both regulons permanently and both via repression of a central transcription factor, but with different mechanisms: In the PHO regulon, the gene encoding the central transcription factor Pho4 is repressed and, in addition, Pho4 and/or the cyclin-dependent kinase of the regulon's control complex may be affected by CK2 phosphorylation. In the MET regulon, the repression of the central transcription factor Met4 occurs not by expression inhibition, but rather by availability tuning via a CK2-mediated phosphorylation of a degradation complex. On the other hand, the CK2 action may be directed to the chromatin regulon, thus affecting globally the expression of genes, i.e., the CK2 perturbation results either in comparable responses of genes which have no promoter homologies or in deviating responses despite promoter homologies. The effect is rather transient and concerns aside various cell cycle control genes a notable number of genes encoding chromatin remodeling and modification proteins with functions in chromatin assembly and (anti-)silencing as well as in histone (de-)acetylation, and frequently are also substrates of CK2, suggesting additional tuning at protein level. In line with these findings, we observe in human cells sequence-independent but cell-cycle-dependent CK2 associations with promoters of cell-cycle-regulated genes at periods of extensive gene expression alterations, including cell cycle entry. Our observations are compatible with the idea that the gene control by CK2 is achieved via different mechanisms and at different levels of organization and includes a global role in transcription-related chromatin remodelling and modification.
Collapse
Affiliation(s)
- Walter Pyerin
- Biochemische Zellphysiologie (A135), Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | | | | |
Collapse
|
246
|
Bernstein NK, Williams RS, Rakovszky ML, Cui D, Green R, Karimi-Busheri F, Mani RS, Galicia S, Koch CA, Cass CE, Durocher D, Weinfeld M, Glover JNM. The molecular architecture of the mammalian DNA repair enzyme, polynucleotide kinase. Mol Cell 2005; 17:657-70. [PMID: 15749016 DOI: 10.1016/j.molcel.2005.02.012] [Citation(s) in RCA: 174] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2004] [Revised: 01/07/2005] [Accepted: 02/02/2005] [Indexed: 10/25/2022]
Abstract
Mammalian polynucleotide kinase (PNK) is a key component of both the base excision repair (BER) and nonhomologous end-joining (NHEJ) DNA repair pathways. PNK acts as a 5'-kinase/3'-phosphatase to create 5'-phosphate/3'-hydroxyl termini, which are a necessary prerequisite for ligation during repair. PNK is recruited to repair complexes through interactions between its N-terminal FHA domain and phosphorylated components of either pathway. Here, we describe the crystal structure of intact mammalian PNK and a structure of the PNK FHA bound to a cognate phosphopeptide. The kinase domain has a broad substrate binding pocket, which preferentially recognizes double-stranded substrates with recessed 5' termini. In contrast, the phosphatase domain efficiently dephosphorylates single-stranded 3'-phospho termini as well as double-stranded substrates. The FHA domain is linked to the kinase/phosphatase catalytic domain by a flexible tether, and it exhibits a mode of target selection based on electrostatic complementarity between the binding surface and the phosphothreonine peptide.
Collapse
Affiliation(s)
- Nina K Bernstein
- Department of Biochemistry, 4-74 Medical Sciences Building, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
247
|
Cheung WL, Turner FB, Krishnamoorthy T, Wolner B, Ahn SH, Foley M, Dorsey JA, Peterson CL, Berger SL, Allis CD. Phosphorylation of Histone H4 Serine 1 during DNA Damage Requires Casein Kinase II in S. cerevisiae. Curr Biol 2005; 15:656-60. [PMID: 15823538 DOI: 10.1016/j.cub.2005.02.049] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2004] [Revised: 01/17/2005] [Accepted: 02/10/2005] [Indexed: 01/18/2023]
Abstract
Distinct patterns of posttranslational histone modifications can regulate DNA-templated events such as mitosis, transcription, replication, apoptosis, and DNA damage, suggesting the presence of a "histone code" in these nuclear processes. Phosphorylation of histone H2A S129 at sites of DNA double-strand breaks (DSBs) has been implicated in damage repair in yeast. Here, we describe another phosphorylation event on serine 1 (S1) of histone H4; this event is also associated with MMS- or phleomycin-induced DSBs but not with UV-induced DNA damage. Chromatin-immunoprecipitation (ChIP) studies of an HO-endonuclease-inducible strain show that S1 phosphorylation is specifically enhanced 20- to 25-fold in nucleosomes proximal to the DSB. In addition, we show that casein kinase II (CK2) can phosphorylate H4 S1 in vitro and that null or temperature-sensitive CK2 yeast mutants are defective for induction of H4 S1 phosphorylation upon DNA damage in vivo. Furthermore, H4 S1 phosphorylation and CK2 play a role in DSB re-joining as indicated by a nonhomologous end-joining (NHEJ) plasmid assay. CK2 has been implicated in regulating a DNA-damage response; our data suggest that histone H4 S1 is one of its physiological substrates. These data suggest that this modification is a part of the DNA-repair histone code.
Collapse
Affiliation(s)
- Wang L Cheung
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland 21210, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
248
|
El-Kady A, Klenova E. Regulation of the transcription factor, CTCF, by phosphorylation with protein kinase CK2. FEBS Lett 2005; 579:1424-34. [PMID: 15733852 DOI: 10.1016/j.febslet.2005.01.044] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2004] [Revised: 12/10/2004] [Accepted: 01/13/2005] [Indexed: 01/30/2023]
Abstract
CTCF is a transcription factor involved in various aspects of gene regulation. We previously reported that CTCF function is modulated by protein kinase CK2. In this report we investigate further the role of CK2 in regulating the transcriptional properties of CTCF. We demonstrate that coexpression of CTCF with CK2 switches function of CTCF from repressor to activator. The non-phosphorylatable mutant increases repression by CTCF and potentiates the growth-suppressive ability of the protein, whereas the phospho-mimetic mutant behaves in the opposite fashion. Mutation of the individual serines reveals that Serine 612 is a critical residue in regulation of CTCF by CK2.
Collapse
Affiliation(s)
- Ayman El-Kady
- Genetics Unit, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | | |
Collapse
|
249
|
Uitto VJ, Baillie D, Wu Q, Gendron R, Grenier D, Putnins EE, Kanervo A, Firth JD. Fusobacterium nucleatum increases collagenase 3 production and migration of epithelial cells. Infect Immun 2005; 73:1171-9. [PMID: 15664960 PMCID: PMC547012 DOI: 10.1128/iai.73.2.1171-1179.2005] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Fusobacterium nucleatum is closely associated with human periodontal diseases and may also be a causative agent in other infections, such as pericarditis, septic arthritis, and abscesses of tonsils and liver. Initiation and outcome of infective diseases depend critically on the host cell signaling system altered by the microbe. Production of proteinases by infected cells is an important factor in pericellular tissue destruction and cell migration. We studied binding of F. nucleatum to human epithelial cells (HaCaT keratinocyte line) and subsequent cell signaling related to collagenase 3 expression, cell motility, and cell survival, using a scratch wound cell culture model. F. nucleatum increased levels of 12 protein kinases involved in cell migration, proliferation, and cell survival signaling, as assessed by the Kinetworks immunoblotting system. Epithelial cells of the artificial wound margins were clearly preferential targets of F. nucleatum. The bacterium colocalized with lysosomal structures and stimulated migration of these cells. Of the 13 anaerobic oral bacterial species, F. nucleatum and Fusobacterium necrophorum were among the best inducers of collagenase 3 mRNA levels, a powerful matrix metalloproteinase. Production of collagenase 3 was detected in fusobacterium-infected cells and cell culture medium by immunocytochemistry, immunoblotting, and zymography. The proteinase production involved activation of p38 mitogen-activated protein kinase in the infected cells. The study suggests that F. nucleatum may be involved in the pathogenesis of periodontal diseases (and other infections) by activating multiple cell signaling systems that lead to stimulation of collagenase 3 expression and increased migration and survival of the infected epithelial cells.
Collapse
Affiliation(s)
- Veli-Jukka Uitto
- University of Helsinki, Institute of Dentistry, PL 41, FIN-00014 University of Helsinki, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
250
|
El-Khamisy SF, Saifi GM, Weinfeld M, Johansson F, Helleday T, Lupski JR, Caldecott KW. Defective DNA single-strand break repair in spinocerebellar ataxia with axonal neuropathy-1. Nature 2005; 434:108-13. [PMID: 15744309 DOI: 10.1038/nature03314] [Citation(s) in RCA: 350] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2004] [Accepted: 12/22/2004] [Indexed: 11/09/2022]
Abstract
Spinocerebellar ataxia with axonal neuropathy-1 (SCAN1) is a neurodegenerative disease that results from mutation of tyrosyl phosphodiesterase 1 (TDP1). In lower eukaryotes, Tdp1 removes topoisomerase 1 (top1) peptide from DNA termini during the repair of double-strand breaks created by collision of replication forks with top1 cleavage complexes in proliferating cells. Although TDP1 most probably fulfils a similar function in human cells, this role is unlikely to account for the clinical phenotype of SCAN1, which is associated with progressive degeneration of post-mitotic neurons. In addition, this role is redundant in lower eukaryotes, and Tdp1 mutations alone confer little phenotype. Moreover, defects in processing or preventing double-strand breaks during DNA replication are most probably associated with increased genetic instability and cancer, phenotypes not observed in SCAN1 (ref. 8). Here we show that in human cells TDP1 is required for repair of chromosomal single-strand breaks arising independently of DNA replication from abortive top1 activity or oxidative stress. We report that TDP1 is sequestered into multi-protein single-strand break repair (SSBR) complexes by direct interaction with DNA ligase IIIalpha and that these complexes are catalytically inactive in SCAN1 cells. These data identify a defect in SSBR in a neurodegenerative disease, and implicate this process in the maintenance of genetic integrity in post-mitotic neurons.
Collapse
Affiliation(s)
- Sherif F El-Khamisy
- Genome Damage and Stability Centre, University of Sussex, Science Park Road, Falmer, Brighton BN1 9RQ, UK
| | | | | | | | | | | | | |
Collapse
|