201
|
Choi Y, Johnson GA, Spencer TE, Bazer FW. Pregnancy and interferon tau regulate major histocompatibility complex class I and beta2-microglobulin expression in the ovine uterus. Biol Reprod 2003; 68:1703-10. [PMID: 12606392 DOI: 10.1095/biolreprod.102.012708] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Major histocompatibility complex (MHC) class I molecules, consisting of an alpha chain and beta2-microglobulin (beta2MG), play an important role in immune rejection responses by discriminating self and nonself and are increased by type I interferons during antiviral responses. Interferon tau (IFNtau), the pregnancy-recognition signal in ruminants, is a type I interferon produced by the ovine conceptus between Days 11 and 21 of gestation. In study 1, expression of MHC class I alpha chain and beta2MG mRNA and protein was detected primarily in endometrial luminal epithelium (LE) and glandular epithelium (GE) on Days 10 and 12 of the estrous cycle and pregnancy. On Days 14-20 of pregnancy, MHC class I and beta2MG expression increased only in endometrial stroma and GE and, concurrently, was absent in LE and superficial ductal GE (sGE). Although neither MHC class I nor beta2MG proteins were detected in Day 20 trophectoderm, beta2MG mRNA was detected in conceptus trophectoderm. In study 2, cyclic ewes were ovariectomized on Day 5, treated daily with progesterone to Day 16, received intrauterine infusions between Days 11 and 16 of either control serum proteins or recombinant ovine IFNtau, and were hysterectomized on Day 17. The IFNtau increased MHC class I and beta2MG expression only in endometrial stroma and GE. During pregnancy, MHC class I and beta2MG gene expression is inhibited in endometrial LE and sGE but, paradoxically, is stimulated by IFNtau in the stroma and GE. The silencing of MHC class I alpha chain and beta2MG genes in the endometrial LE and sGE during pregnancy recognition and establishment may be a critical mechanism preventing immune rejection of the conceptus allograft.
Collapse
Affiliation(s)
- Youngsok Choi
- Center for Animal Biotechnology and Genomics, Department of Animal Science, Texas A&M University, College Station 77843, USA
| | | | | | | |
Collapse
|
202
|
Santiago-Raber ML, Baccala R, Haraldsson KM, Choubey D, Stewart TA, Kono DH, Theofilopoulos AN. Type-I interferon receptor deficiency reduces lupus-like disease in NZB mice. J Exp Med 2003; 197:777-88. [PMID: 12642605 PMCID: PMC2193854 DOI: 10.1084/jem.20021996] [Citation(s) in RCA: 396] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Indirect evidence suggests that type-I interferons (IFN-alpha/beta) play a significant role in the pathogenesis of lupus. To directly examine the contribution of these pleiotropic molecules, we created congenic NZB mice lacking the alpha-chain of IFN-alpha/betaR, the common receptor for the multiple IFN-alpha/beta species. Compared with littermate controls, homozygous IFN-alpha/betaR-deleted NZB mice had significantly reduced anti-erythrocyte autoantibodies, erythroblastosis, hemolytic anemia, anti-DNA autoantibodies, kidney disease, and mortality. These reductions were intermediate in the heterozygous-deleted mice. The disease-ameliorating effects were accompanied by reductions in splenomegaly and in several immune cell subsets, including B-1 cells, the major producers of anti-erythrocyte autoantibodies. Decreases of B and T cell proliferation in vitro and in vivo, and of dendritic cell maturation and T cell stimulatory activity in vitro were also detected. Absence of signaling through the IFN-alpha/betaR, however, did not affect increased basal levels of the IFN-responsive p202 phosphoprotein, encoded by a polymorphic variant of the Ifi202 gene associated with the Nba2 predisposing locus in NZB mice. The data indicate that type-I IFNs are important mediators in the pathogenesis of murine lupus, and that reducing their activity in the human counterpart may be beneficial.
Collapse
|
203
|
Kröger A, Dallügge A, Kirchhoff S, Hauser H. IRF-1 reverts the transformed phenotype of oncogenically transformed cells in vitro and in vivo. Oncogene 2003; 22:1045-56. [PMID: 12592391 DOI: 10.1038/sj.onc.1206260] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The expression of the transcriptional activator and tumor suppressor IRF-1 induces multiple effects that counteract the growth of tumor cells in vitro and in vivo. These include the inhibition of cell proliferation, the secretion of interferon-beta (IFN-beta), the induction of apoptosis specifically in certain cell types and the induction of a strong T-cell response. Here, we show that apart from its immune-activating properties, IRF-1 expression leads to a reversion of the tumorigenic phenotype of NIH3T3 cells transformed by different oncogenes. This was analysed in detail in a cell line in which the expression of c-Ha-ras and c-myc is under the control of a doxycycline-regulated promoter allowing to switch between the normal and oncogenic cell status. In the same cells, a beta-estradiol activatable IRF-1 fusion protein is expressed. After IRF-1 activation the oncogene-mediated acceleration of the cell cycle is reverted. Further, a complete IRF-1-mediated reversion of the oncogenic phenotype is observed in soft-agar growth assays. IRF-1 activation induces IFN-beta secretion; however, the observed effects are not mediated by IFN-beta. Inhibition of tumor growth is observed in nude mice as long as IRF-1 is active, indicating that neither B- nor T-cells must become activated for tumor growth suppression.
Collapse
MESH Headings
- 3T3 Cells/cytology
- 3T3 Cells/drug effects
- 3T3 Cells/metabolism
- 3T3 Cells/transplantation
- Animals
- Cell Cycle
- Cell Division
- Cell Transformation, Neoplastic/drug effects
- Cell Transformation, Neoplastic/genetics
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/physiology
- Doxycycline/pharmacology
- Estradiol/pharmacology
- Genes, erbB-1/drug effects
- Genes, erbB-2/drug effects
- Genes, myc/drug effects
- Genes, ras/drug effects
- Humans
- Interferon Regulatory Factor-1
- Interferon-beta/metabolism
- Male
- Mice
- Mice, Nude
- Neoplasms, Experimental/therapy
- Phenotype
- Phosphoproteins/genetics
- Phosphoproteins/physiology
- Promoter Regions, Genetic/drug effects
- Protein Structure, Tertiary
- Receptors, Estrogen/genetics
- Recombinant Fusion Proteins/biosynthesis
- Recombinant Fusion Proteins/physiology
- Transfection
- Tumor Stem Cell Assay
Collapse
Affiliation(s)
- Andrea Kröger
- Department of Gene Regulation and Differentiation, GBF - German Research Center for Biotechnology, Mascheroder Weg 1, D 38124 Braunschweig, Germany
| | | | | | | |
Collapse
|
204
|
Takaku S, Nakagawa Y, Shimizu M, Norose Y, Maruyama I, Wakita T, Takano T, Kohara M, Takahashi H. Induction of hepatic injury by hepatitis C virus-specific CD8+ murine cytotoxic T lymphocytes in transgenic mice expressing the viral structural genes. Biochem Biophys Res Commun 2003; 301:330-7. [PMID: 12565864 DOI: 10.1016/s0006-291x(02)03018-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In the present study, we generated killer cells specific for hepatitis C virus (HCV) structural protein by re-stimulation of immune spleen cells from H-2(d) haplotype transgenic (Tg) mice, expressing the core, E1, E2, and NS2 genes of HCV regulated by the Cre/loxP switching system. The generated killer cells were conventional CD8(+)L(d) class-I MHC molecule-restricted cytotoxic T lymphocytes (CTLs) and specific for the HCV E1 structural protein. Because the CTLs could also kill hepatocytes from the Tg mice expressing HCV structural proteins in vitro, we attempted to transfer those CTLs intravenously into interferon regulatory factor-1 (IRF-1) negative, CD8-deficient Tg mice representing the HCV structural genes on hepatocytes to examine whether the inoculated CD8(+) CTLs can eliminate hepatocytes expressing the HCV genes in vivo. We observed an elevation of serum ALT level as well as damage of the liver tissue histologically. To our knowledge, this is the first demonstration to show that HCV-specific CD8(+) CTLs specifically attack hepatocytes expressing the HCV structural proteins both in vitro and in vivo.
Collapse
Affiliation(s)
- Shun Takaku
- Department of Microbiology and Immunology, Nippon Medical, School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
205
|
Xi H, Blanck G. The IRF-2 DNA binding domain facilitates the activation of the class II transactivator (CIITA) type IV promoter by IRF-1. Mol Immunol 2003; 39:677-84. [PMID: 12493643 DOI: 10.1016/s0161-5890(02)00214-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
IFN-gamma induced transcription of class II transactivator (CIITA), a major regulator of MHC class II gene expression, is directed by the CIITA type IV promoter. The IFN-gamma activation of the CIITA type IV promoter is mediated by STAT1 and IRF-1, which bind to the GAS and IRF-E of the promoter, respectively. We and others have determined that IRF-2, another member of the IRF family, also activates the CIITA type IV promoter, by binding to the IRF-E. Also, IRF-2 cooperates with IRF-1 to activate the promoter. DNA binding analyses determined that IRF-1 and IRF-2 can co-occupy the IRF-E of the CIITA type IV promoter. To further understand the mechanism of IRF-1 and IRF-2 cooperativity in the activation of CIITA type IV promoter, we characterized the binding of IRF-1 and IRF-2 to the CIITA IRF-E and mapped the domains of IRF-2 required for the cooperative transactivation. Off-rate experiments revealed that the IRF-2/IRF-E complex was more stable than the IRF-1/IRF-E complex and that the affinity of IRF-1 for the IRF-E was increased when IRF-1 co-occupied the IRF-E with IRF-2. Deletion analysis of functional domains of IRF-2 revealed that a previously described latent activation domain of IRF-2 was essential for IRF-2 transactivation and participated in cooperative activation of the CIITA promoter by IRF-1 and IRF-2. However, the DNA binding domain of IRF-2 was sufficient for cooperativity with IRF-1 in the activation of the CIITA type IV promoter. DNA binding assay demonstrated that, like the full-length IRF-2, the IRF-2 DNA binding domain could co-occupy the CIITA IRF-E with IRF-1.
Collapse
Affiliation(s)
- Hongkang Xi
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA
| | | |
Collapse
|
206
|
Ren R. The molecular mechanism of chronic myelogenous leukemia and its therapeutic implications: studies in a murine model. Oncogene 2002; 21:8629-42. [PMID: 12476309 DOI: 10.1038/sj.onc.1206090] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Chronic myelogenous leukemia (CML) is a malignant disease resulting from the neoplastic transformation of a hematopoietic stem cell. Generation of the BCR-ABL fusion gene plays an essential role in causing the vast majority of CML. Clinical and laboratory studies have indicated that development of CML involves both the effects of BCR-ABL within its correct target cells and interactions of BCR-ABL target cells with the rest of the in vivo environment, and that the progression of the disease to blast crisis involves multiple genetic alterations. An efficient mouse bone marrow transduction and transplantation model for CML has recently been developed. This review summarizes the analysis of the roles of functional domains and downstream signaling pathways of BCR-ABL, of altered cytokine production, of interferon signaling pathways and of oncogene cooperation in the pathogenesis of CML using this murine model. The in vivo studies of leukemogenesis will help to advance mechanism-based therapies for CML, as well as to understand fundamental rules of leukemogenesis and hematopoiesis.
Collapse
Affiliation(s)
- Ruibao Ren
- Rosenstiel Basic Medical Sciences Research Center, Department of Biology, Brandeis University, Waltham, Massachusetts 02454-9110, USA.
| |
Collapse
|
207
|
Elser B, Lohoff M, Kock S, Giaisi M, Kirchhoff S, Krammer PH, Li-Weber M. IFN-gamma represses IL-4 expression via IRF-1 and IRF-2. Immunity 2002; 17:703-12. [PMID: 12479817 DOI: 10.1016/s1074-7613(02)00471-5] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Polarization of CD4(+) T helper cells toward either a Th1 or Th2 response can significantly influence host immunity to pathogens. IL-4 and IFN-gamma are the signature cytokines of Th2 and Th1 cells, respectively. IFN-gamma was shown to assist Th1 development by promoting IL-12 and IL-12 receptor expression. So far, direct influence of Th2 cytokine expression by IFN-gamma has not been described. We show here that IFN-gamma directly suppresses IL-4 gene expression. IRF-1 and IRF-2 induced by IFN-gamma bind to three distinct IL-4 promoter sites and function as transcriptional repressors. Our data demonstrate a direct negative feedback of IFN-gamma on expression of the Th2 cytokine gene IL-4 and, thus, provide evidence for another important mechanism by which IFNgamma assists Th1 and attenuates Th2 responses.
Collapse
Affiliation(s)
- Bernd Elser
- Tumorimmunology Program, German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
208
|
Ko J, Gendron-Fitzpatrick A, Ficht TA, Splitter GA. Virulence criteria for Brucella abortus strains as determined by interferon regulatory factor 1-deficient mice. Infect Immun 2002; 70:7004-12. [PMID: 12438380 PMCID: PMC132959 DOI: 10.1128/iai.70.12.7004-7012.2002] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Interferon regulatory factor 1-deficient (IRF-1(-/-)) mice infected with virulent Brucella abortus 2308 at 5 x 10(5) CFU developed acute hepatitis similar to many natural hosts but, unlike natural hosts, IRF-1(-/-) mice were unable to resolve infection and died. In contrast, IRF-1(-/-) mice survived when infected at 5 x 10(5) CFU with several attenuated Brucella strains (S19, RB51, cbp, and cyd). The survival of infected IRF-1(-/-) mice is likely a function of the level of virulence of each Brucella strain and the extent of retained immunity. Further, these findings suggest that adaptive immunity may be important to the survival of IRF-1(-/-) mice since attenuated Brucella strains can protect IRF-1(-/-) mice against lethal challenge with virulent Brucella: Using the IRF-1(-/-) mouse model, the following set of criteria were identified to define Brucella virulence: (i) the day of death for 50% of mice infected with 5 x 10(5)CFU of Brucella, (ii) the extent of liver toxicity, and (iii) the minimum immunizing dose of Brucella to protect against challenge with virulent S2308. Thus, IRF-1(-/-) mice are important to determining the level of Brucella virulence, to evaluating Brucella mutants for attenuation, and to investigating adaptive immunity in brucellosis.
Collapse
Affiliation(s)
- Jinkyung Ko
- Laboratory of Cellular and Molecular Immunology, Department of Animal Health and Biomedical Sciences, University of Wisconsin, Madison 53706, USA
| | | | | | | |
Collapse
|
209
|
Angelin-Duclos C, Johnson K, Liao J, Lin KI, Calame K. An interfering form of Blimp-1 increases IgM secreting plasma cells and blocks maturation of peripheral B cells. Eur J Immunol 2002; 32:3765-75. [PMID: 12516571 DOI: 10.1002/1521-4141(200212)32:12<3765::aid-immu3765>3.0.co;2-i] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
B lymphocyte-induced maturation protein-1 (Blimp-1) can drive plasmacytic differentiation in cultured cell models. To determine the role of Blimp-1 in B cell development in vivo, we have generated transgenic mice expressing an interfering truncated form of Blimp-1 (TBlimp) under the control of an immunoglobulin heavy chain promoter and intronic (E) enhancer. TBlimp-transgenic mice have elevated serum IgM and a prolonged IgM response. This effect is due to an increased number of short-lived, IgM-secreting plasma cells resulting from increased proliferation and prolonged survival. In addition, TBlimp-transgenic mice have a developmental defect in the generation of mature B cells in the spleen. These results show that in vivo Blimp-1 plays a fundamental role in the control of the life span and exit from the cell cycle of IgM secreting plasma cells.
Collapse
Affiliation(s)
- Cristina Angelin-Duclos
- Departments of Microbiology and Biochemistry and Molecular Biophysics, Columbia University College of Physicians and Surgeons, New York, USA
| | | | | | | | | |
Collapse
|
210
|
Pamment J, Ramsay E, Kelleher M, Dornan D, Ball KL. Regulation of the IRF-1 tumour modifier during the response to genotoxic stress involves an ATM-dependent signalling pathway. Oncogene 2002; 21:7776-85. [PMID: 12420214 DOI: 10.1038/sj.onc.1205981] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2002] [Revised: 08/16/2002] [Accepted: 08/16/2002] [Indexed: 11/08/2022]
Abstract
The mechanism by which genotoxic stress induces IRF-1 and the signalling components upstream of this anti-oncogenic transcription factor during the response to DNA damage are not known. We demonstrate that IRF-1 and the tumour suppressor protein p53 are coordinately up-regulated during the response to DNA damage in an ATM-dependent manner. Induction of IRF-1 protein by either ionizing radiation (IR) or etoposide occurs through a concerted mechanism involving increased IRF-1 expression/synthesis and an increase in the half-life of the IRF-1 protein. A striking defect in the induction of both IRF-1 mRNA and IRF-1 protein was observed in ATM deficient cells. Although ATM deficient cells failed to increase IRF-1 in response to genotoxic stress, the induction of IRF-1 in response to viral mimetics remained intact. Re-expression of the ATM kinase in AT cells restored the DNA damage inducibility of IRF-1, whilst the PI-3 kinase inhibitor wortmannin inhibited IRF-1 induction by DNA damage in ATM-positive cells. The data highlight a role for the ATM kinase in orchestrating the coordinated induction and transcriptional cooperation of IRF-1 and p53 to regulate p21 expression. Thus, IRF-1 is controlled by two distinct signalling pathways; a JAK/STAT-signalling pathway in viral infected cells and an ATM-signalling pathway in DNA damaged cells.
Collapse
Affiliation(s)
- Jessica Pamment
- Cancer Research UK Laboratories, University of Dundee Medical School, Dundee DD1 9SY, UK
| | | | | | | | | |
Collapse
|
211
|
Abstract
Reovirus-induced murine myocarditis provides an excellent model for the human disease. Cardiac tissue damage varies between reovirus strains, and is caused by a direct viral cytopathogenic effect. One determinant of virus-induced cardiac tissue damage is the cardiac interferon-beta (IFN-beta) response to viral infection. Nonmyocarditic reoviruses induce more IFN-beta and/or are more sensitive to the antiviral effects of IFN-beta in cardiac cells than myocarditis reoviruses. The roles of interferon regulatory factors (IRFs) in the cardiac response to viral infection are reviewed, and results suggest possible cardiac-specific variations in IRF-3 and IRF-1 function. In addition, data are presented indicating that the role of IRF-2 in regulation of IFN-beta expression is cell type-specific and differs between skeletal and cardiac muscle cells. Together, results suggest that the heart may provide a unique environment for IRF function, critical for protection against virus-induced cardiac damage.
Collapse
Affiliation(s)
- Barbara Sherry
- Department of Microbiology, Pathology and Parasitology, College of Veterinary Medicine, North Carolina State University, Raleigh 27606, USA.
| |
Collapse
|
212
|
Abarca-Heidemann K, Friederichs S, Klamp T, Boehm U, Guethlein LA, Ortmann B. Regulation of the expression of mouse TAP-associated glycoprotein (tapasin) by cytokines. Immunol Lett 2002; 83:197-207. [PMID: 12095710 DOI: 10.1016/s0165-2478(02)00104-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The expression of antigen presenting MHC class I molecules can be enhanced through cytokines, e.g. upon infection with bacteria or viruses, either directly by enhancing class I gene transcription or by increasing the amounts of accessory proteins of the loading complex. Tapasin plays a significant role in the peptide loading of class I molecules. Here, we describe recognition motifs of cytokine inducible transcription factors in the promoter region of the mouse tapasin gene, most of them clustered within the 140 base pairs upstream of the start codon. Tapasin mRNA was strongly induced in vivo after infection with the facultatively intracellular bacterium Listeria monocytogenes in an IFN-gamma-dependent fashion. Accordingly, both tapasin mRNA and protein were strongly induced in a time and dose dependent manner in embryonic fibroblasts treated with the cytokines IFN-gamma and IFN-beta, and weakly induced after treatment with TNF-alpha. Co-stimulation of tapasin by TNF-alpha and IFN-gamma resulted in a weak synergistic effect. Using fibroblasts either lacking IRF-1 or inhibited in protein synthesis we show that secondary transcription factors are necessary for a maximal stimulation of tapasin expression upon IFN-gamma stimulation. The sequential induction of TAP1, LMP2, and tapasin before the stimulated expression of class I heavy chain is discussed.
Collapse
|
213
|
Croy BA, Chantakru S, Esadeg S, Ashkar AA, Wei Q. Decidual natural killer cells: key regulators of placental development (a review). J Reprod Immunol 2002; 57:151-68. [PMID: 12385840 DOI: 10.1016/s0165-0378(02)00005-0] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Establishment of pregnancy initiates a dynamic and predictable series of changes in the uterus. In rodents, the trophectoderm of the blastocyst develops through the stage of an ectoplacental cone to become the placenta. The inner cell mass becomes the fetus and its associated extra-embryonic ectoderm and mesoderm. Maternal changes support development of the conceptus. These begin in the uterine stroma, which undergoes a process known as decidualization, and progress to include dilation and elongation of the uteroplacental arteries and activation and proliferation of specialized large granulated lymphocytes in the decidua basalis. This review focuses on these pregnancy-associated lymphocytes, known as uterine Natural Killer (uNK) cells and on their interactions with the other tissues that form the mesometrial aspect of the mouse maternal-fetal interface. Analogous lymphocytes are present in the decidualized human uterus. Understanding of uNK cell biology has advanced significantly through histological studies of implantation sites in immune deficient mice. Here, we summarize the key studies in lymphocyte-, cytokine- and cytokine receptor-deficient mice and in four enhanced models of gestation in these mice that incorporate transplantation or therapy with biologically active molecules.
Collapse
Affiliation(s)
- B Anne Croy
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Ont., Canada.
| | | | | | | | | |
Collapse
|
214
|
Lidman O, Fraidakis M, Lycke N, Olson L, Olsson T, Piehl F. Facial nerve lesion response; strain differences but no involvement of IFN-gamma, STAT4 or STAT6. Neuroreport 2002; 13:1589-93. [PMID: 12352607 DOI: 10.1097/00001756-200209160-00003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Facial nerve lesions lead to a retrograde response characterized by activation of glia surrounding axotomized motoneurons and up-regulation of immunological cell surface molecules such as major histocompatibility complex (MHC) antigens. Cytokines, in particular interferon-gamma, are potent inducers of MHC expression and glial activation. We have here tested whether axotomy-induced activation is changed in transgenic mouse strains lacking components of the IFN-gamma signaling pathway, STAT4 or STAT6. No differences regarding astrocyte activation, ss2-microglobulin or MHC class I expression were discernible as compared to wild type controls. In contrast, there were conspicuous differences in the reaction between the examined wild type strains (C57BL/6J, BALB/c and 129/SvJ), suggesting considerable polymorphisms in the genetic regulation of these events, however, not involving IFN-gamma, STAT4 or STAT6.
Collapse
Affiliation(s)
- Olle Lidman
- Department of Medicine, Karolinska Institutet, Neuroimmunology Unit, CMM L08;04, Karolinska Hospital, S171 76 Stockholm
| | | | | | | | | | | |
Collapse
|
215
|
Taki S. Type I interferons and autoimmunity: lessons from the clinic and from IRF-2-deficient mice. Cytokine Growth Factor Rev 2002; 13:379-91. [PMID: 12220551 DOI: 10.1016/s1359-6101(02)00023-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Type I interferons (IFN-alpha/beta) are produced upon viral and bacterial infections and play essential roles in host defense. However, since IFN-alpha/beta have multiple regulatory functions on innate and adoptive immunity, dysregulation of the IFN-alpha/beta system both in uninfected hosts and during immune responses against infection can result in immunopathologies. In fact, IFN-alpha/beta therapy often accompanies autoimmune-like symptoms. In this regard, we have recently found that mice lacking IFN regulatory factor (IRF)-2, a negative regulator of IFN-alpha/beta signaling, develop spontaneous, CD8(+) T cell-dependent skin inflammation. This unique animal model, together with other animal models, highlights the importance of the mechanism maintaining the homeostasis in the IFN-alpha/beta system even in the absence of infection.
Collapse
Affiliation(s)
- Shinsuke Taki
- Department of Molecular Genetics, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chiba 260-8670, Japan.
| |
Collapse
|
216
|
Sasaki S, Amara RR, Yeow WS, Pitha PM, Robinson HL. Regulation of DNA-raised immune responses by cotransfected interferon regulatory factors. J Virol 2002; 76:6652-9. [PMID: 12050378 PMCID: PMC136278 DOI: 10.1128/jvi.76.13.6652-6659.2002] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Interferon regulatory factor 1 (IRF-1), IRF-3, and IRF-7 have been tested as genetic adjuvants for influenza virus hemagglutinin (HA) and nucleoprotein vaccine DNAs. Cotransfection of HA with IRF-3 and IRF-7 increased CD4 T-cell responses by 2- to 4-fold and CD8 T-cell responses by more than 10-fold. Following intramuscular deliveries of DNA, both CD4 and CD8 T cells were biased towards type 1 immune responses and the production of gamma interferon. Following gene gun bombardments of DNA, both were biased towards type 2 immune responses and the production of interleukin-4. The biases of the T-cell responses towards type 1 or type 2 were stronger for immunizations with IRF-3 as an adjuvant than for immunizations with IRF-7 as an adjuvant. Moderate adjuvant effects for antibody were observed. The isotypes of the antibody responses reflected the method of DNA delivery; intramuscular deliveries of DNA predominantly raised immunoglobulin G2a (IgG2a), whereas gene gun deliveries of DNA predominantly raised IgG1. These biases were enhanced by the codelivered IRFs. Overall, under the conditions of our experiments, IRF-3 had good activity for T cells, IRF-7 had good activity for both antibody and T cells, and IRF-1 had good activity for antibody.
Collapse
Affiliation(s)
- Shin Sasaki
- Division of Microbiology and Immunology, Yerkes National Primate Research Center and Vaccine Research Center, Emory University School of Medicine, 954 Gatewood Road, Atlanta, GA 30329, USA
| | | | | | | | | |
Collapse
|
217
|
Qiao Y, Prabhakar S, Coccia EM, Weiden M, Canova A, Giacomini E, Pine R. Host defense responses to infection by Mycobacterium tuberculosis. Induction of IRF-1 and a serine protease inhibitor. J Biol Chem 2002; 277:22377-85. [PMID: 11948194 DOI: 10.1074/jbc.m202965200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Alveolar macrophages and newly recruited monocytes are targets of infection by Mycobacterium tuberculosis. Therefore, we examined the expression of interferon regulatory factor 1 (IRF-1), which plays an important role in host defense against M. tuberculosis, in undifferentiated and differentiated cells. Infection induced IRF-1 in both. IRF-1 from undifferentiated, uninfected monocytic cell lines was modified during extraction to produce specific species that were apparently smaller than intact IRF-1. After infection by M. tuberculosis or differentiation, intact IRF-1 was recovered. Subcellular fractions were assayed for the ability to modify IRF-1 or inhibit its modification. A serine protease on the cytoplasmic surface of an organelle or vesicle in the "lysosomal/mitochondrial" fraction from undifferentiated cells was responsible for the modification of IRF-1. Thus, the simplest explanation of the modification is cleavage of IRF-1 by the serine protease. Recovery of intact IRF-1 correlated with induction of a serine protease inhibitor that was able to significantly reduce the modification of IRF-1. The inhibitor was present in the cytoplasm of M. tuberculosis-infected or -differentiated cells. It is likely that induction of both IRF-1 and the serine protease inhibitor in response to infection by M. tuberculosis represent host defense mechanisms.
Collapse
Affiliation(s)
- Yaming Qiao
- Public Health Research Institute, Newark, New Jersey 07103, USA
| | | | | | | | | | | | | |
Collapse
|
218
|
Azzam-Smoak K, Noah DL, Stewart MJ, Blum MA, Sherry B. Interferon regulatory factor-1, interferon-beta, and reovirus-induced myocarditis. Virology 2002; 298:20-9. [PMID: 12093169 DOI: 10.1006/viro.2002.1470] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Viral myocarditis is an important human disease, and reovirus-induced myocarditis in mice provides an excellent model to study direct viral damage to the heart. Previously, we showed that reovirus induction of and sensitivity to interferon-beta (IFN-beta) is an important determinant of viral pathogenicity in the heart and that the transcription factor interferon regulatory factor-3 (IRF-3) is required for reovirus induction of IFN-beta in primary cardiac myocyte cultures. Given several lines of evidence suggesting a possible distinctive environment for IRFs in the heart, we have now focused on IRF-1. Previous studies demonstrated that viruses, double-stranded-RNA (dsRNA), and IFN-alpha/beta can each induce IRF-1 and that IRF-1 plays a role in dsRNA, but perhaps not viral, induction of IFN-alpha/beta. Importantly, none of these studies used a virus with a dsRNA genome (such as reovirus), none of them used a highly differentiated nonlymphoid cell type, and none of them addressed whether viral induction of IRF-1 is direct or is mediated through viral induction of IFN-beta. Indeed, as recently as this year it has been assumed that viral induction of IRF-1 is direct. Here, we found that reovirus induced IRF-1 in primary cardiac myocyte cultures, but that IRF-1 was not required for reovirus induction of IFN-beta. Surprisingly, we found that reovirus failed to induce IRF-1 in the absence of the IFN-alpha/beta response. This provides the first evidence that viruses may not induce IRF-1 directly. Finally, nonmyocarditic reovirus strains induced more cardiac lesions in mice deficient for IRF-1 than they did in wildtype mice, directly demonstrating a protective role for IRF-1. Together, the results indicate that while IRF-1 is downstream of the IFN-beta response, it plays an important protective role against viral myocarditis.
Collapse
Affiliation(s)
- Kathleen Azzam-Smoak
- Department of Microbiology, College of Veterinary Medicine, North Carloina State University, Raleigh 27606, USA
| | | | | | | | | |
Collapse
|
219
|
Kanoh M, Uetani T, Sakan H, Maruyama S, Liu F, Sumita K, Asano Y. A two-step model of T cell subset commitment: antigen-independent commitment of T cells before encountering nominal antigen during pathogenic infections. Int Immunol 2002; 14:567-75. [PMID: 12039908 DOI: 10.1093/intimm/dxf024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Pathogenic infections lead to activation of innate immunity followed by induction of a type 1 T cell subset and, therefore, provide a good model to evaluate when T cells commit to type 1 T cells. Here we show a two-step mechanism of T cell subset commitment during pathogenic infection. The first step is mediated by the basal function of macrophage/dendritic cells and is antigen independent. This step modulates the committed precursor frequency of T cell subsets and influences the expression of T-box expressed in T cells (T-bet) and GATA-3 genes. IL-12 and NK cells are not required for this step. The second step requires antigenic stimulation of T cells together with IL-12 or IL-4, and influences on the expression of T-bet and GATA-3. We propose a two-step T cell subset commitment pathway based on these observations. Therefore, pathogenic infections influence functional T cell commitment before T cells encounter nominal antigen.
Collapse
Affiliation(s)
- Makoto Kanoh
- Department of Immunology and Host Defenses, Ehime University School of Medicine, Shigenobu, Onsen-gun, Ehime 791-0295, Japan
| | | | | | | | | | | | | |
Collapse
|
220
|
Matsumoto M, Kikkawa S, Kohase M, Miyake K, Seya T. Establishment of a monoclonal antibody against human Toll-like receptor 3 that blocks double-stranded RNA-mediated signaling. Biochem Biophys Res Commun 2002; 293:1364-9. [PMID: 12054664 DOI: 10.1016/s0006-291x(02)00380-7] [Citation(s) in RCA: 342] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A monoclonal antibody (mAb) against human Toll-like receptor (TLR) 3 was established and its effect on TLR3-mediated responses was tested using human fibroblast cell lines expressing TLR3 on the cell surface. Fibroblasts are known to produce IFN-beta upon viral infection or treatment with double-stranded RNA (dsRNA) through distinct signaling pathways. Here, we show the mAb to TLR3 suppressed poly(I):poly(C)-mediated IFN-beta production by human fibroblasts naturally expressing TLR3 on their surface. By reporter gene assay using HEK293 cells transfected with a human TLR3 expression vector, TLR3 recognized dsRNA to activate NF-kappaB and the IFN-beta promoter. TLR3 signaling was not elicited by either single-stranded RNA (ssRNA) or dsDNA. Thus, specific recognition of dsRNA by extracellular TLR3 is essential for induction of type I IFN: the interassociation between dsRNA and TLR3, regardless of direct or indirect binding, should be disrupted by mAb being attached to TLR3. The mAb against TLR3 reported herein may serve as a regulator for virus-mediated immune response via an alternative pathway involving the dsRNA-TLR3 recognition which might occur on host cells.
Collapse
Affiliation(s)
- Misako Matsumoto
- Department of Immunology, Osaka Medical Center for Cancer and Cardiovascular Diseases, 1-3-2 Nakamichi, Higashinari-ku, Osaka 537-8511, Japan
| | | | | | | | | |
Collapse
|
221
|
Abstract
Myeloid Differentiation (MyD) primary response and Growth Arrest DNA-Damage (Gadd) genes comprise a set of overlapping genes, including known (IRF-1, EGR-1, Jun) and novel (MyD88, Gadd45alpha MyD118/Gadd45beta, GADD45gamma, MyD116/Gadd34) genes, that have been cloned by virtue of there being co-ordinately induced upon the onset of terminal myeloid differentiation. This review delineates the role MyD genes play in blood cell development, where they function as positive regulators of terminal differentiation, lineage specific blood cell development and control of blood cell homeostasis, including growth inhibition and apoptosis.
Collapse
Affiliation(s)
- Dan A Liebermann
- Fels Institute for Cancer Research and Molecular Biology and the Department of Biochemistry, Temple University School of Medicine, Philadelphia, Pennsylvania, PA 19140, USA.
| | | |
Collapse
|
222
|
Takayanagi H, Kim S, Matsuo K, Suzuki H, Suzuki T, Sato K, Yokochi T, Oda H, Nakamura K, Ida N, Wagner EF, Taniguchi T. RANKL maintains bone homeostasis through c-Fos-dependent induction of interferon-beta. Nature 2002; 416:744-9. [PMID: 11961557 DOI: 10.1038/416744a] [Citation(s) in RCA: 528] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Osteoclasts are cells of monocyte/macrophage origin that erode bone matrix: regulation of their differentiation is central to the understanding of the pathogenesis and treatment of bone diseases such as osteoporosis. Signalling by RANKL (receptor activator of NF-kappaB ligand), also known as Tnfsf11, is essential for the induction of osteoclast differentiation, and it must be strictly regulated to maintain bone homeostasis. But it is not known whether RANKL signalling to the cell interior is linked to any regulatory mechanisms. Here we show that RANKL induces the interferon-beta (IFN-beta) gene in osteoclast precursor cells, and that IFN-beta inhibits the differentiation by interfering with the RANKL-induced expression of c-Fos, an essential transcription factor for the formation of osteoclasts. This IFN-beta gene induction mechanism is distinct from that induced by virus, and is dependent on c-Fos itself. Thus an autoregulatory mechanism operates-the RANKL-induced c-Fos induces its own inhibitor. The importance of this regulatory mechanism for bone homeostasis is emphasized by the observation that mice deficient in IFN-beta signalling exhibit severe osteopenia (loss of bone mass) accompanied by enhanced osteoclastogenesis. Our study places the IFN-beta system in a new context, and may offer a molecular basis for the treatment of bone diseases.
Collapse
Affiliation(s)
- Hiroshi Takayanagi
- Department of Immunology, Faculty of Medicine and Graduate School of Medicine, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
223
|
Liebermann DA, Hoffman B. Myeloid differentiation (MyD)/growth arrest DNA damage (GADD) genes in tumor suppression, immunity and inflammation. Leukemia 2002; 16:527-41. [PMID: 11960329 DOI: 10.1038/sj.leu.2402477] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2001] [Accepted: 01/16/2002] [Indexed: 12/16/2022]
Abstract
Myeloid differentiation (MyD) primary response and growth arrest DNA damage (Gadd) genes comprise a set of overlapping genes, including known (IRF-1, EGR-1, Jun) and novel (MyD88, Gadd45alpha, MyD118/Gadd45beta, GADD45gamma, MyD116/ Gadd34) genes, that have been cloned by virtue of being co-ordinately induced upon the onset of terminal myeloid differentiation and following exposure of cells to stress stimuli. In recent years it has become evident that MyD/Gadd play a role in blood cell development, where they function as positive regulators of terminal differentiation, lineage-specific blood cell development and control of blood cell homeostasis, including growth inhibition and apoptosis. MyD/Gadd are also involved in inflammatory responses to invading micro-organisms, and response to environmental stress and physiological stress, such as hypoxia, which results in ischemic tissue damage. An intricate network of interactions among MyD/GADD genes and gene products appears to control their diverse functions. Deregulated growth, increased cell survival, compromised differentiation and deficiencies in DNA repair are hallmarks of malignancy and its progression. Thus, the role MyD/Gadd play in negative growth control, including cell cycle arrest and apoptosis, and in DNA repair, make them attractive molecular targets for tumor suppression. The role MyD/Gadd play in innate immunity and host response to hypoxia also make these genes and gene products attractive molecular targets to treat immunity and inflammation disorders, such as septic shock and ischemic tissue damage.
Collapse
Affiliation(s)
- D A Liebermann
- Fels Institute for Cancer Research and Molecular Biology and the Department of Biochemistry, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | |
Collapse
|
224
|
Toshchakov V, Jones BW, Perera PY, Thomas K, Cody MJ, Zhang S, Williams BRG, Major J, Hamilton TA, Fenton MJ, Vogel SN. TLR4, but not TLR2, mediates IFN-beta-induced STAT1alpha/beta-dependent gene expression in macrophages. Nat Immunol 2002; 3:392-8. [PMID: 11896392 DOI: 10.1038/ni774] [Citation(s) in RCA: 630] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Toll-like receptor 2 (TLR2) agonists induce a subset of TLR4-inducible proinflammatory genes, which suggests the use of differential signaling pathways. Murine macrophages stimulated with the TLR4 agonist Escherichia coli lipopolysaccharide (LPS), but not with TLR2 agonists, induced phosphorylation of signal transducer and activator of transcription 1alpha (STAT1alpha) and STAT1beta, which was blocked by antibodies to interferon beta (IFN-beta) but not IFN-alpha. All TLR2 agonists poorly induced IFN-beta, which is encoded by an immediate early LPS-inducible gene. Thus, the failure of TLR2 agonists to induce STAT1-dependent genes resulted, in part, from their inability to express IFN-beta. TLR4-induced IFN-beta mRNA was MyD88- and PKR (double-stranded RNA-dependent protein kinase)-independent, but TIRAP (Toll-interleukin 1 receptor domain-containing adapter protein)-dependent. Together, these findings provide the first mechanistic basis for differential patterns of gene expression activated by TLR4 and TLR2 agonists.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Animals
- Antigens, Differentiation/genetics
- Antigens, Differentiation/metabolism
- Cell Line
- Chemokine CXCL10
- Chemokines, CXC/genetics
- DNA-Binding Proteins/metabolism
- Drosophila Proteins
- Enzyme Activation
- Escherichia coli
- Female
- Gene Expression/drug effects
- Interferon-Stimulated Gene Factor 3
- Interferon-beta/genetics
- Interleukin-1/genetics
- Lipopolysaccharides/pharmacology
- Macrophages/cytology
- Macrophages/metabolism
- Male
- Membrane Glycoproteins/agonists
- Membrane Glycoproteins/metabolism
- Mice
- Mice, Inbred C3H
- Mice, Inbred C57BL
- Mice, Knockout
- Mitogen-Activated Protein Kinases/metabolism
- Monocyte Chemoattractant Proteins/genetics
- Myeloid Differentiation Factor 88
- Nitric Oxide Synthase/genetics
- Nitric Oxide Synthase Type II
- Phosphorylation
- RNA, Messenger
- Receptors, Cell Surface/agonists
- Receptors, Cell Surface/metabolism
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Receptors, Interleukin-1/metabolism
- STAT1 Transcription Factor
- Signal Transduction
- Toll-Like Receptor 2
- Toll-Like Receptor 4
- Toll-Like Receptors
- Trans-Activators/metabolism
- Transcription Factors/metabolism
- Tumor Necrosis Factor-alpha/genetics
Collapse
Affiliation(s)
- Vladimir Toshchakov
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
225
|
tenOever BR, Servant MJ, Grandvaux N, Lin R, Hiscott J. Recognition of the measles virus nucleocapsid as a mechanism of IRF-3 activation. J Virol 2002; 76:3659-69. [PMID: 11907205 PMCID: PMC136070 DOI: 10.1128/jvi.76.8.3659-3669.2002] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mechanisms of cellular recognition for virus infection remain poorly understood despite the wealth of information regarding the signaling events and transcriptional responses that ensue. Host cells respond to viral infection through the activation of multiple signaling cascades, including the activation of NF-kappaB, c-Jun/ATF-2 (AP-1), and the interferon regulatory factors (IRFs). Although viral products such as double-stranded RNA (dsRNA) and the processes of viral binding and fusion have been implicated in the activation of NF-kappaB and AP-1, the mechanism(s) of IRF-1, IRF-3, and IRF-7 activation has yet to be fully elucidated. Using recombinant measles virus (MeV) constructs, we now demonstrate that phosphorylation-dependent IRF-3 activation represents a novel cellular detection system that recognizes the MeV nucleocapsid structure. At low multiplicities of infection, IRF-3 activation is dependent on viral transcription, since UV cross-linking and a deficient MeV containing a truncated polymerase L gene failed to induce IRF-3 phosphorylation. Expression of the MeV nucleocapsid (N) protein, without the requirement for any additional viral proteins or the generation of dsRNA, was sufficient for IRF-3 activation. In addition, the nucleocapsid protein was found to associate with both IRF-3 and the IRF-3 virus-activated kinase, suggesting that it may aid in the colocalization of the kinase and the substrate. Altogether, this study suggests that IRF-3 recognizes nucleocapsid structures during the course of an MeV infection and triggers the induction of interferon production.
Collapse
Affiliation(s)
- Benjamin R tenOever
- Terry Fox Molecular Oncology Group, Lady Davis Institute for Medical Research, McGill University, Montreal, Quebec, Canada H3T 1E2
| | | | | | | | | |
Collapse
|
226
|
Morin P, Bragança J, Bandu MT, Lin R, Hiscott J, Doly J, Civas A. Preferential binding sites for interferon regulatory factors 3 and 7 involved in interferon-A gene transcription. J Mol Biol 2002; 316:1009-22. [PMID: 11884139 DOI: 10.1006/jmbi.2001.5401] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transcription of the murine interferon-A4 (IFN-A4) gene is mediated by a virus responsive element (VRE-A4) located in the promoter proximal [-120 to -43] region. VRE-A4 contains four DNA modules (A to D) which cooperate for maximal IFN-A4 activation following virus infection. The differential expression between the highly expressed IFN-A4 and the weakly inducible IFN-A11 gene promoters is essentially due to point mutations within the C and D modules of the virus-responsive element VRE-A11. We now demonstrate that in murine L929 and human 293 cells, transcription factors IRF-3 and IRF-7, which are potent activators of virus-induced type I IFN transcription, differentially affect IFN-A4 and IFN-A11 promoter activities. Using electrophoretic mobility shift assays and DNase I footprinting data, our studies demonstrate that the AB modules correspond to a preferential site for IRF-7, whereas the C module is preferentially recognized by IRF-3. Furthermore, transfection of reporter constructs driven by four copies of different GAAANN hexameric motifs found within VRE-A4 indicates that the NN residues of these hexameric sequences define the preferential binding sites for IRF-3 or IRF-7. Together, these experiments clarify the molecular basis for differential expression of IFN-A genes following virus infection by delineating the sequence requirements for IRF association with the virus responsive elements of the IFN-A genes.
Collapse
Affiliation(s)
- Pierre Morin
- UPR 2228-CNRS, Laboratoire de Régulation Transcriptionnelle et Maladies Génétiques, UFR Biomédicale des Saints-Pères, Université Paris V, 45 rue des Saints-Pères, 75270 Paris Cedex 06, France
| | | | | | | | | | | | | |
Collapse
|
227
|
Wieland CW, Siegmund B, Senaldi G, Vasil ML, Dinarello CA, Fantuzzi G. Pulmonary inflammation induced by Pseudomonas aeruginosa lipopolysaccharide, phospholipase C, and exotoxin A: role of interferon regulatory factor 1. Infect Immun 2002; 70:1352-8. [PMID: 11854220 PMCID: PMC127789 DOI: 10.1128/iai.70.3.1352-1358.2002] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2001] [Accepted: 12/20/2001] [Indexed: 11/20/2022] Open
Abstract
Chronic pulmonary infection with Pseudomonas aeruginosa is common in cystic fibrosis (CF) patients. P. aeruginosa lipopolysaccharide (LPS), phosholipase C (PLC), and exotoxin A (ETA) were evaluated for their ability to induce pulmonary inflammation in mice following intranasal inoculation. Both LPS and PLC induced high levels of tumor necrosis factor alpha (TNF-alpha), interleukin 1 beta (IL-1 beta-6, gamma interferon (IFN-gamma), MIP-1 alpha MIP-2 in the lungs but did not affect IL-18 levels. ETA did not induce TNF-alpha and was a weak inducer of IL-1 beta, IL-6, macrophage inflammatory protein 1 alpha (MIP-1 alpha), and MIP-2. Remarkably, ETA reduced constitutive lung IL-18 levels. LPS was the only factor inducing IFN-gamma. LPS, PLC, and ETA all induced cell infiltration in the lungs. The role of interferon regulatory factor-1 (IRF-1) in pulmonary inflammation induced by LPS, PLC, and ETA was evaluated. When inoculated with LPS, IRF-1 gene knockout (IRF-1 KO) mice produced lower levels of TNF-alpha, IL-1 beta, and IFN-gamma than did wild-type (WT) mice. Similarly, a milder effect of ETA on IL-1 beta and IL-18 was observed for IRF-1 KO than for WT mice. In contrast, the cytokine response to PLC did not differ between WT and IRF-1 KO mice. Accordingly, LPS and ETA, but not PLC, induced expression of IRF-1 mRNA. IRF-1 deficiency had no effect on MIP-1 alpha and MIP-2 levels and on cell infiltration induced by LPS, PLC, or ETA. Flow cytometric evaluation of lung mononuclear cells revealed strongly reduced percentages of CD8(+) and NK cells in IRF-1 KO mice compared to percentages observed for WT mice. These data indicate that different virulence factors from P. aeruginosa induce pulmonary inflammation in vivo and that IRF-1 is involved in some of the cytokine responses to LPS and ETA.
Collapse
Affiliation(s)
- Catharina W Wieland
- Department of Medicine, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | | | | | | | | | |
Collapse
|
228
|
DeKoter RP, Lee HJ, Singh H. PU.1 regulates expression of the interleukin-7 receptor in lymphoid progenitors. Immunity 2002; 16:297-309. [PMID: 11869689 DOI: 10.1016/s1074-7613(02)00269-8] [Citation(s) in RCA: 230] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Development of the lymphoid system is dependent on the Ets family transcription factor PU.1. We demonstrate that PU.1(-/-) hematopoietic progenitors fail to express IL-7Ralpha transcripts. Promoter and chromatin crosslinking analyses suggest that PU.1 directly regulates transcription of the IL-7Ralpha gene. Retroviral transduction of IL-7Ralpha into PU.1(-/-) progenitors restores IL-7-dependent proliferation and induces, at low frequency, the generation of pro-B cells undergoing an apparently normal program of differentiation. Although the related factor Spi-B can substitute for PU.1 in early B cell development, it is not required. These results demonstrate that PU.1 functions to regulate early B cell development in part by controlling the expression of the IL-7Ralpha gene.
Collapse
Affiliation(s)
- Rodney P DeKoter
- Howard Hughes Medical Institute, Department of Molecular Genetics and Cell Biology, The University of Chicago, 5841 S. Maryland Ave., MC1028, Chicago, IL 60637, USA
| | | | | |
Collapse
|
229
|
Taniguchi T, Takaoka A. The interferon-alpha/beta system in antiviral responses: a multimodal machinery of gene regulation by the IRF family of transcription factors. Curr Opin Immunol 2002; 14:111-6. [PMID: 11790540 DOI: 10.1016/s0952-7915(01)00305-3] [Citation(s) in RCA: 387] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The efficient induction of interferons alpha and beta (IFN-alpha/beta) in virus-infected cells is central to the antiviral response of a host and is regulated mainly at the level of gene transcription. Once produced, IFN-alpha/beta transmit signals to the cell interior via a specific receptor complex to induce an antiviral response. Recently, the auto-amplification mechanism of the IFN-alpha/beta system that follows viral infection has been identified. This mechanism is mediated by transcription factors of the IFN regulatory factor family and, in fact, may have evolved to render the system more robust in antiviral responses.
Collapse
Affiliation(s)
- Tadatsugu Taniguchi
- Department of Immunology, Faculty of Medicine and Graduate School of Medicine, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, 113-0033, Tokyo, Japan.
| | | |
Collapse
|
230
|
Carvalhal AV, Coroadinha A, Alves PM, Moreira JL, Hauser H, Carrondo MJ. Metabolic changes during cell growth inhibition by the IRF-1 system. Enzyme Microb Technol 2002. [DOI: 10.1016/s0141-0229(01)00460-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
231
|
Romeo G, Fiorucci G, Chiantore MV, Percario ZA, Vannucchi S, Affabris E. IRF-1 as a negative regulator of cell proliferation. J Interferon Cytokine Res 2002; 22:39-47. [PMID: 11846974 DOI: 10.1089/107999002753452647] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Numerous evidence has demonstrated the involvement in growth control of interferon (IFN) regulatory factor-1 (IRF-1), which shows tumor suppressor activity. IRF-1 is a well-studied member of the IRF transcription factors that reveals functional diversity in the regulation of cellular response by activating expression of a diverse set of target genes, depending on the cell type and on the specific stimuli. IRF-1 gene rearrangements may be a crucial point in the pathogenesis of some cancer types. Furthermore, different aspects of the tumor suppressor function of IRF-1 may be explained, at least in part, by the observations that IRF-1 is a regulator of cell cycle and apoptosis and that its inactivation accelerates cell transformation. Studies on gene knockout mice contributed greatly to the clarification of these multiple IRF-1 functions. We summarize our current knowledge of the antigrowth effect of IRF-1, focusing also on a more general involvement of IRF-1 in mediating negative regulation of cell growth induced by numerous cytokines and other biologic response modifiers.
Collapse
Affiliation(s)
- Giovanna Romeo
- Laboratory of Virology, Istituto Superiore di Sanità, Rome, Italy.
| | | | | | | | | | | |
Collapse
|
232
|
Abstract
Tuberculosis is the most prevalent infectious disease and causes more deaths than any other, yet only 5%-10% of people infected by the causative agent, Mycobacterium tuberculosis, will develop the disease. Thus, natural resistance among humans is the norm. Fundamental immune responses to M. tuberculosis are being elucidated, including induction of interferon regulatory factor-1 (IRF-1). Moreover, IRF-1 has been found necessary for normal resistance to infection by mycobacteria in mice. Roles for IRF-1 in a plethora of immune system functions have been described. This review considers molecular responses to infection by M. tuberculosis that might account for induction of IRF-1 and highlights putative connections between immunomodulatory functions of IRF-1 and immune responses relevant to infection by M. tuberculosis. However, the complexity inherent in pleiotropy and redundancy limits the ability to draw firm conclusions. In many cases, it remains to be demonstrated that a particular function of IRF-1 is the basis for a known response to infection. For example, although IRF-1 is required for a Th1 cell-mediated, adaptive immune response in some circumstances, it is not known if the Th1 response to infection by M. tuberculosis requires IRF-1. Conversely, some known contributions by IRF-1 to fundamental aspects of the immune system are not yet proven relevant in the host response to infection. For example, it is not known if control of T cell subset development by IRF-1 is significant for host defense against M. tuberculosis. Functions of other IRF that overlap with or are distinct from the functions of IRF-1 also could be important for the immune response to M. tuberculosis.
Collapse
Affiliation(s)
- Richard Pine
- Public Health Research Institute, New York, NY 10016, USA.
| |
Collapse
|
233
|
Battistini A, Marsili G, Sgarbanti M, Ensoli B, Hiscott J. IRF regulation of HIV-1 long terminal repeat activity. J Interferon Cytokine Res 2002; 22:27-37. [PMID: 11846973 DOI: 10.1089/107999002753452638] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Interferon (IFN) regulatory factors (IRF) constitute a family of transcriptional activators and repressors implicated in multiple biologic processes, including regulation of immune responses and host defense, cytokine signalling, cell growth regulation, and hematopoietic development. All members are characterized by well-conserved DNA binding domains at the N-terminal region that recognize similar DNA sequences termed IRF-binding element/IFN-stimulated response element (IRF-E/ISRE) present on the promoter of the IFN-alpha/beta genes and of some IFN-stimulated genes (ISG). Recently, a sequence homologous to the ISRE has been identified downstream of the 5' human immunodeficiency virus type 1 (HIV-1) long terminal repeat (LTR). This sequence is a binding site for IRF-1 and IRF-2. Deletion of the LTR-ISRE results in impaired LTR promoter activity and decreased synthesis of viral RNA and proteins. Here, we briefly summarize characteristics of IRF-1 and IRF-2 binding to the HIV-1 LTR-ISRE and the data obtained to date on the functionality of this cis-element and on the role of IRF in the regulation of HIV-1 LTR transcriptional activity.
Collapse
Affiliation(s)
- A Battistini
- Laboratory of Virology, Istituto Superiore di Sanità, Rome, Rome, Italy.
| | | | | | | | | |
Collapse
|
234
|
Abstract
Interferon (IFN) regulatory factor-1 (IRF-1) was isolated by virtue of its affinity to specific DNA sequences in the IFN-beta promoter that mediate virus responsiveness. IRF-1 was the first factor identified of the IRF family and was most extensively characterized at the molecular level. Also, its physiologic role in host defense against pathogens, tumor prevention, and development of the immune system was investigated in detail. Even though some of the functions first associated with IRF-1 were later found to be mediated in part or predominantly by other activators of the IRF family of transcription factors, IRF-1 has remained a central paradigm in the transcriptional regulation of the IFN response.
Collapse
Affiliation(s)
- Andrea Kröger
- Department of Gene Regulation and Differentiation, GBF, Gesellschaft für Biotechnologische Forschung, D 38124 Braunschweig Mascheroder Weg 1, Germany
| | | | | | | | | |
Collapse
|
235
|
Jarosinski KW, Massa PT. Interferon regulatory factor-1 is required for interferon-gamma-induced MHC class I genes in astrocytes. J Neuroimmunol 2002; 122:74-84. [PMID: 11777545 DOI: 10.1016/s0165-5728(01)00467-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Recent studies have shown that the role of the transcription factor interferon regulatory factor-1 (IRF-1) in the expression of major histocompatibility complex (MHC) class I molecules is tissue-specific. Our previous studies indicated a role for IRF-1 in expression of MHC class I genes in cultured astrocytes in response to interferon-gamma (IFN-gamma). However, the requirement for IRF-1 in MHC class I expression has not been directly analyzed in neural tissue. To further ascertain the importance of IRF-1 in the induction of MHC class I genes in astrocytes in response to IFN-gamma, we analyzed astrocytes from mice with a targeted disruption of the IRF-1 gene (IRF-1(-/-) mice). As expected, astrocytes from wild type (IRF-1(+/+)) mice showed a coordinate increase in both IRF-1 and MHC class I gene expression in response to IFN-gamma. To the contrary, astrocytes from IRF-1(-/-) mice had greatly reduced MHC class I mRNA expression. MHC class I gene promoter activity in astrocytes was controlled entirely through a single enhancer, the MHC-IRF-E, to which IRF-1 bound in response to IFN-gamma in wild type but not in IRF-1(-/-) mouse astrocytes. In vivo, astrocytes in brains of wild type mice readily responded to IFN-gamma to express MHC class I molecules. This correlated with increased MHC class I mRNA in the brain. In contrast, brains of IRF-1(-/-) mice showed no MHC class I gene induction following exposure to IFN-gamma indicating that all cells in the central nervous system (CNS) including astrocytes with the potential to express MHC class I molecules were dependent on IRF-1. These studies conclusively demonstrate a major role for IRF-1/MHC-IRF-E interactions in controlling MHC class I gene expression in astrocytes in response to IFN-gamma.
Collapse
Affiliation(s)
- Keith W Jarosinski
- Department of Microbiology and Immunology, State University of New York Upstate Medical University, 750 East Adams St., Syracuse, NY 13210, USA.
| | | |
Collapse
|
236
|
Carvalhal AV, Moreira JL, Carrondo MJ. Strategies to modulate BHK cell proliferation by the regulation of IRF-1 expression. J Biotechnol 2001; 92:47-59. [PMID: 11604172 DOI: 10.1016/s0168-1656(01)00365-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Activation of the constitutively expressed interferon-regulatory-factor-1/estrogen receptor fusion protein (IRF-1-hER) in BHK cells was accomplished through the addition of estradiol to the culture medium, which enabled IRF-1 to gain its transcriptional activator function and inhibit cell growth. With the addition of 100 nM estradiol at the beginning of the exponential phase of a cell suspension culture, IRF-1 activation led to a rapid cell growth inhibition but also to a significant decrease in cell viability. To apply this concept in industry, a reduction of the time span of estradiol exposure is required. Cycles of estradiol addition and removal were performed in 2-l stirred tank bioreactors operated under perfusion, where an initial step addition of 100 nM estradiol was performed, followed, after 48-72 h, by a slow dilution with estradiol-free fresh medium (perfusion rate varying between 0.7 and 1.4 per day). Cell growth inhibition was successfully achieved for three consecutive cycles. Diluting the estradiol by perfusing medium without estradiol to concentrations lower than 10 nM led to cell growth and viability recovery independently of the perfusion rate used. These observations permitted the definition of operational strategies for regulated IRF-1 BHK cell growth by pulse estradiol addition, followed by a period of 48 h in the presence of estradiol and by fast perfusion to estradiol concentrations lower than 10 nM. Cell growth response to IRF-1 activation and following estradiol removal by perfusion was also evaluated with an IRF-1-hER regulated clone expressing constitutively Factor VII, where the time of estradiol exposure and perfusion rate were varied. This clone presented a stronger response to IRF-1 activation without an increase in Factor VII specific productivity after cell growth inhibition; this clearly indicates that the stationary phase obtained is clone dependent. This work proves that it is possible to modulate the IRF-1 effect for cell growth control by the manipulation of cycles of addition and removal of estradiol, potentially representing a new generation of culture procedures for controlled growth production purposes.
Collapse
Affiliation(s)
- A V Carvalhal
- Instituto de Biologia Experimental e Tecnológica/Instituto de Tecnologia Química e Biológica IBET/ITQB, Apartado 12, P-2781-901 Oeiras, Portugal
| | | | | |
Collapse
|
237
|
Oritani K, Kincade PW, Zhang C, Tomiyama Y, Matsuzawa Y. Type I interferons and limitin: a comparison of structures, receptors, and functions. Cytokine Growth Factor Rev 2001; 12:337-48. [PMID: 11544103 DOI: 10.1016/s1359-6101(01)00009-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The type I interferon (IFN) family includes IFN-alpha, IFN-beta, IFN-pi, and IFN-tau. These molecules are clustered according to sequence homologies, use of the same cell surface receptor, and similar functions. IFN-alpha and IFN-beta have a globular structure composed of five a-helices. Their receptors, IFNAR1 and IFNAR2, belong to the class II cytokine receptor family for a-helical cytokines. Information about structure-function relationships between these and other IFNs is being provided by comparative sequence analysis, reference to a prototypic three-dimensional structure, analysis with monoclonal antibodies, construction of hybrid molecules and site directed mutagenesis. While much remains to be done, it should someday be possible to understand differences among IFNs in terms of how they interact with their corresponding receptors. Our recently identified IFN-like molecule, limitin, has weak sequence homology to IFN-alpha, IFN-beta, and IFN-omega and displays its biological functions through the same IFN-alpha/beta receptors. While limitin has antiproliferative, immunomodulatory, and antiviral effects like IFN-alpha and IFN-beta, it is unique in lacking influence on myeloid and erythroid progenitors. Further analysis of this functionally unique cytokine should be informative about complex IFN-receptor interactions. Furthermore, a human homologue or synthetic variant might be superior for clinical applications as an IFN without myelosuppressive properties.
Collapse
Affiliation(s)
- K Oritani
- Department of Internal Medicine and Molecular Science, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita City, Osaka 565-0871, Japan.
| | | | | | | | | |
Collapse
|
238
|
Au WC, Pitha PM. Recruitment of multiple interferon regulatory factors and histone acetyltransferase to the transcriptionally active interferon a promoters. J Biol Chem 2001; 276:41629-37. [PMID: 11473119 DOI: 10.1074/jbc.m105121200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Type I interferon (IFN) plays a critical role in the innate immunity against viral infection. Expression of IFNA genes in infected cells is cell type-dependent and is regulated at the transcriptional level. The present study is focused on the molecular mechanism underlying the differential expression of human IFNA1 and A2 genes. Two nucleotides, at positions -98 and -81 of IFNA1 and A2 promoter, were pivotal to the differential expression. The DNA pull-down and chromatin precipitation assays have shown that nuclear interferon regulatory factor (IRF)-3 and IRF-7 as well as IRF-1 bind to IFNA1 virus-responsive element (VRE). Interestingly, overexpression of IRF-7 increased the otherwise weak binding of both IRF-3 and IRF-7 to IFNA2 VRE. These data together with the results of two-step chromatin immunoprecipitation strongly suggest that the IRF-3 and IRF-7 bind to IFNA1 promoter as a dimer. Furthermore, binding of IRF-3 and IRF-7 to IFNA VRE is associated with the presence of acetylated histone H3, suggesting that histone acetyltransferase(s) is tethered together with virus-activated IRF-3 and IRF-7 to the IFNA1 promoter. In addition, the constitutively active IRF-3 (5D) and IRF-7 (2D) mutants activate the endogenous IFNA genes in uninfected cells; however, the expression profile of IFNA is not identical to that induced by viral infection.
Collapse
Affiliation(s)
- W C Au
- Oncology Center and Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA
| | | |
Collapse
|
239
|
|
240
|
Abstract
Tremendous progress has been made in understanding the molecular basis of the antiviral actions of interferons (IFNs), as well as strategies evolved by viruses to antagonize the actions of IFNs. Furthermore, advances made while elucidating the IFN system have contributed significantly to our understanding in multiple areas of virology and molecular cell biology, ranging from pathways of signal transduction to the biochemical mechanisms of transcriptional and translational control to the molecular basis of viral pathogenesis. IFNs are approved therapeutics and have moved from the basic research laboratory to the clinic. Among the IFN-induced proteins important in the antiviral actions of IFNs are the RNA-dependent protein kinase (PKR), the 2',5'-oligoadenylate synthetase (OAS) and RNase L, and the Mx protein GTPases. Double-stranded RNA plays a central role in modulating protein phosphorylation and RNA degradation catalyzed by the IFN-inducible PKR kinase and the 2'-5'-oligoadenylate-dependent RNase L, respectively, and also in RNA editing by the IFN-inducible RNA-specific adenosine deaminase (ADAR1). IFN also induces a form of inducible nitric oxide synthase (iNOS2) and the major histocompatibility complex class I and II proteins, all of which play important roles in immune response to infections. Several additional genes whose expression profiles are altered in response to IFN treatment and virus infection have been identified by microarray analyses. The availability of cDNA and genomic clones for many of the components of the IFN system, including IFN-alpha, IFN-beta, and IFN-gamma, their receptors, Jak and Stat and IRF signal transduction components, and proteins such as PKR, 2',5'-OAS, Mx, and ADAR, whose expression is regulated by IFNs, has permitted the generation of mutant proteins, cells that overexpress different forms of the proteins, and animals in which their expression has been disrupted by targeted gene disruption. The use of these IFN system reagents, both in cell culture and in whole animals, continues to provide important contributions to our understanding of the virus-host interaction and cellular antiviral response.
Collapse
Affiliation(s)
- C E Samuel
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California 93106-9610, USA.
| |
Collapse
|
241
|
Abstract
In the past decade, advances in genetic engineering and mouse knockout technology have transformed our understanding of the immune system. In particular, new perspectives on T-cell development, co-stimulation and activation have emerged from the study of single and multiple gene-knockout animals, as well as from conditional knockout and 'knock-in' mutants. Analysis of these animals has clarified important intracellular signalling pathways and has shed light on the regulatory mechanisms that govern normal immune responses and autoimmunity.
Collapse
Affiliation(s)
- T W Mak
- Amgen Research Institute, Toronto, Ontario, Canada.
| | | | | |
Collapse
|
242
|
Nakazawa T, Satoh J, Takahashi K, Sakata Y, Ikehata F, Takizawa Y, Bando SI, Housai T, Li Y, Chen C, Masuda T, Kure S, Kato I, Takasawa S, Taniguchi T, Okamoto H, Toyota T. Complete suppression of insulitis and diabetes in NOD mice lacking interferon regulatory factor-1. J Autoimmun 2001; 17:119-25. [PMID: 11591120 DOI: 10.1006/jaut.2001.0531] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Interferon regulatory factor-1 (IRF-1), a transcriptional factor, regulates type I interferon and interferon-induced genes. It was reported that IRF-1 regulates important molecules required for inflammation and immune reactions. To investigate the role of IRF-1 in the development of autoimmune diabetes, we established IRF-1 deficient (IRF-1(-/-)) non-obese diabetic (NOD) mice. IRF-1-deficient C57BL/6J mice were out-crossed to NOD mice, and F1 were backcrossed to NOD mice. At the N8 generation, the heterozygote for IRF-1 mutation was intercrossed and N8F1 was obtained. Out of three NOD genotypes, IRF-1(+/+) and IRF-1(+/-) developed spontaneous diabetes with an incidence of 47% (9/19) and 50% (10/20) by 30 weeks of age, respectively; whereas IRF-1(-/-) did not develop diabetes (0/18, P< 0.01 vs. (+/+) and (+/-)). Histologically, IRF-1(+/+) and IRF-1(+/-) had various degrees of insulitis, but IRF-1(-/-) had no insulitis. In comparison with IRF-1(+/+), the percentage of CD4(+) and Mac-1(+) splenic cells significantly increased, whereas CD3(+), CD8(+) and B220(+) cells decreased in IRF-1(-/-). Furthermore, spleen cell proliferation in response to Con A or murine GAD65 peptide, a major autoantigen of the pancreatic beta-cell, significantly increased, and the IFN-gamma/IL-10 ratio in the culture supernatant significantly decreased in IRF-1(-/-), suggesting Th2 deviation in cytokine balance. These results indicate that IRF-1 plays a key role in developing insulitis and diabetes in NOD mice.
Collapse
Affiliation(s)
- T Nakazawa
- Division of Molecular Metabolism and Diabetes, Department of Internal Medicine, Tohoku University School of Medicine, Sendai, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
243
|
Lee J, Hur J, Lee P, Kim JY, Cho N, Kim SY, Kim H, Lee MS, Suk K. Dual role of inflammatory stimuli in activation-induced cell death of mouse microglial cells. Initiation of two separate apoptotic pathways via induction of interferon regulatory factor-1 and caspase-11. J Biol Chem 2001; 276:32956-65. [PMID: 11402054 DOI: 10.1074/jbc.m104700200] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
We have previously shown that mouse microglial cells undergo apoptosis upon inflammatory activation and that nitric oxide (NO) is the major autocrine mediator in this process (Lee, P., Lee, J., Kim, S., Yagita, H., Lee, M. S., Kim, S. Y., Kim, H., and Suk, K. (2001) Brain Res. 892, 380-385). Here, we present evidence that interferon regulatory factor-1 (IRF-1) and caspase-11 are the essential molecules in activation-induced cell death of microglial cells. The apoptogenic action of inflammatory stimuli such as lipopolysaccharide (LPS) and interferon-gamma (IFNgamma) was mediated through the induction of IRF-1 and caspase-11 expression in two separate events. Although IRF-1 was required for NO synthesis, caspase-11 induction was necessary for NO-independent apoptotic pathway. Microglial cells from IRF-1-deficient mice showed markedly decreased NO production, and they were partially resistant to apoptosis in response to LPS/IFNgamma but were sensitive to NO donor exposure. LPS/IFNgamma treatment resulted in the induction of caspase-11 followed by activation of caspase-11, -1, and -3. Inactivation of caspase-11 by the transfection of dominant-negative mutant or treatment with the caspase inhibitors rendered microglial cells partially resistant to LPS/IFNgamma-induced apoptosis. Inhibition of both NO synthesis and caspase-11 completely blocked LPS/IFNgamma-induced cytotoxicity. These results indicated that LPS/IFNgamma not only induced the production of cytotoxic NO through IRF-1 but also initiated the NO-independent apoptotic pathway through the induction of caspase-11 expression.
Collapse
Affiliation(s)
- J Lee
- Graduate School of East-West Medical Science, Kyunghee University, Seoul 130-701, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
244
|
Honey K, Rudensky A. The pIV-otal class II transactivator promoter regulates major histocompatibility complex class II expression in the thymus. J Exp Med 2001; 194:F15-8. [PMID: 11514611 PMCID: PMC2193492 DOI: 10.1084/jem.194.4.f15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Affiliation(s)
- K Honey
- Department of Immunology and Howard Hughes Medical Institute, University of Washington School of Medicine, Seattle, WA 98115, USA.
| | | |
Collapse
|
245
|
Taniguchi T, Ogasawara K, Takaoka A, Tanaka N. IRF family of transcription factors as regulators of host defense. Annu Rev Immunol 2001; 19:623-55. [PMID: 11244049 DOI: 10.1146/annurev.immunol.19.1.623] [Citation(s) in RCA: 1254] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Interferon regulatory factors (IRFs) constitute a family of transcription factors that commonly possess a novel helix-turn-helix DNA-binding motif. Following the initial identification of two structurally related members, IRF-1 and IRF-2, seven additional members have now been reported. In addition, virally encoded IRFs, which may interfere with cellular IRFs, have also been identified. Thus far, intensive functional analyses have been done on IRF-1, revealing a remarkable functional diversity of this transcription factor in the regulation of cellular response in host defense. Indeed, IRF-1 selectively modulates different sets of genes, depending on the cell type and/or the nature of cellular stimuli, in order to evoke appropriate responses in each. More recently, much attention has also been focused on other IRF family members. Their functional roles, through interactions with their own or other members of the family of transcription factors, are becoming clearer in the regulation of host defense, such as innate and adaptive immune responses and oncogenesis.
Collapse
Affiliation(s)
- T Taniguchi
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan.
| | | | | | | |
Collapse
|
246
|
Xi H, Goodwin B, Shepherd AT, Blanck G. Impaired class II transactivator expression in mice lacking interferon regulatory factor-2. Oncogene 2001; 20:4219-27. [PMID: 11464288 DOI: 10.1038/sj.onc.1204556] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2000] [Revised: 04/12/2001] [Accepted: 04/18/2001] [Indexed: 11/09/2022]
Abstract
Class II transactivator (CIITA) is required for both constitutive and inducible expression of MHC class II genes. IFN-gamma induced expression of CIITA in various cell types is directed by CIITA type IV promoter. The two transactivators, STAT1 and IRF-1, mediate the IFN-gamma activation of the type IV promoter by binding to the GAS and IRF-E of the promoter, respectively. In addition to IRF-1, IRF-2, another member of the IRF family, also activates the human CIITA type IV promoter, and IRF-2 cooperates with IRF-1 to activate the promoter in transient transfection assays. IRF-1 and IRF-2 can co-occupy the IRF-E of the human CIITA type IV promoter. To understand the effect of loss of IRF-2 on the endogenous CIITA expression, we assayed for CIITA expression in IRF-2 knock-out mice. Both basal and IFN-gamma induced CIITA expression were reduced in IRF-2 knock-out mice. At least half of the amount of inducible CIITA mRNA depends on IRF-2. The reduction of IFN-gamma induced CIITA mRNA in IRF-2 knock-out mice was due to the reduction of the type IV CIITA mRNA induction. The reduction of basal CIITA mRNA was apparently due to the reduction of CIITA mRNA originating from other promoters. These data indicate that IRF-2, like IRF-1, plays a critical role in the regulation of the endogenous CIITA gene. The implications in understanding the previously described phenotypes of IRF-2 defective mice are discussed.
Collapse
Affiliation(s)
- H Xi
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Florida, Tampa, Florida, FL33612, USA
| | | | | | | |
Collapse
|
247
|
Deng M, Daley GQ. Expression of interferon consensus sequence binding protein induces potent immunity against BCR/ABL-induced leukemia. Blood 2001; 97:3491-7. [PMID: 11369642 DOI: 10.1182/blood.v97.11.3491] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mice deficient in the interferon consensus sequence binding protein (ICSBP) develop a disease resembling chronic myeloid leukemia (CML), which in humans is caused by the BCR/ABL oncoprotein. Interferon-α (IFN-α) induces ICSBP expression and is an effective therapy for CML. This study examined whether enforced expression of ICSBP might antagonize BCR/ABL-induced leukemia; results demonstrated that ICSBP-modified cells generated a protective CD8+ cytotoxic T-cell response against BCR/ABL-transformed BaF3 cells in a murine leukemia model. ICSBP expression represents a novel means of stimulating a host immune response to BCR/ABL+ leukemia cells and a potential strategy for immunotherapy of CML.
Collapse
Affiliation(s)
- M Deng
- Whitehead Institute, 9 Cambridge Center, Cambridge, MA 02142, USA
| | | |
Collapse
|
248
|
Fagerlie SR, Diaz J, Christianson TA, McCartan K, Keeble W, Faulkner GR, Bagby GC. Functional correction of FA-C cells with FANCC suppresses the expression of interferon gamma-inducible genes. Blood 2001; 97:3017-24. [PMID: 11342426 DOI: 10.1182/blood.v97.10.3017] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Because hematopoietic cells derived from Fanconi anemia (FA) patients of the C-complementation group (FA-C) are hypersensitive to the inhibitory effects of interferon gamma (IFNgamma), the products of certain IFNgamma-inducible genes known to influence hematopoietic cell survival were quantified. High constitutive expression of the IFNgamma-inducible genes, IFN-stimulated gene factor 3 gamma subunit (ISGF3gamma), IFN regulatory factor-1 (IRF-1), and the cyclin-dependent kinase inhibitor p21(WAF1) was found in FANCC mutant B lymphoblasts, low-density bone marrow cells, and murine embryonic fibroblasts. Paradoxically, these cells do not activate signal transducer and activator of transcription (STAT) 1 properly. In an attempt to clarify mechanisms by which FA-C cells overexpress IFNgamma-inducible genes in the face of defective STAT1 phosphorylation, it was reasoned that decreased levels of activated STAT1 might result in reduced expression of a hematopoietic IFNgamma-responsive protein that normally modulates expression of other IFNgamma-responsive genes. Levels of the IFNgamma-inducible factor IFN consensus sequence binding protein (ICSBP), a negative trans-acting regulator of some IFNgamma-inducible genes, were quantified. ICSBP levels were reduced in FA-C B lymphoblasts and MEFs. However, enforced expression of ICSBP failed to down-regulate IRF-1, ISGF3gamma, and p21(WAF1). Thus, the FANCC protein functions to modulate expression of a family of genes that in normal cells are inducible only by specific environmental cues for apoptosis or mitogenic inhibition, but it does so independently of the classic IFN-STAT1 pathway and is not the direct result of reduced ICSBP expression.
Collapse
Affiliation(s)
- S R Fagerlie
- Division of Hematology and Medical Oncology, the Department of Molecular and Medical Genetics, and the Oregon Cancer Center, Oregon Health Sciences University, Portland, OR, USA
| | | | | | | | | | | | | |
Collapse
|
249
|
Taniguchi T, Takaoka A. A weak signal for strong responses: interferon-alpha/beta revisited. Nat Rev Mol Cell Biol 2001; 2:378-86. [PMID: 11331912 DOI: 10.1038/35073080] [Citation(s) in RCA: 402] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Biological systems have acquired adaptability and robustness against rapid environmental changes. A typical example is the immune system, which eradicates invading pathogens such as viruses. Interferons alpha and beta, which are produced in response to viral infection, are essential components of this system but are also produced at low levels in the absence of infection. What is the purpose of the constitutive weak interferon-alpha/beta signal?
Collapse
Affiliation(s)
- T Taniguchi
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan.
| | | |
Collapse
|
250
|
Munshi N, Yie Y, Merika M, Senger K, Lomvardas S, Agalioti T, Thanos D. The IFN-beta enhancer: a paradigm for understanding activation and repression of inducible gene expression. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2001; 64:149-59. [PMID: 11232280 DOI: 10.1101/sqb.1999.64.149] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- N Munshi
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA
| | | | | | | | | | | | | |
Collapse
|