201
|
Fujisawa S, Buzsáki G. A 4 Hz oscillation adaptively synchronizes prefrontal, VTA, and hippocampal activities. Neuron 2011; 72:153-65. [PMID: 21982376 DOI: 10.1016/j.neuron.2011.08.018] [Citation(s) in RCA: 352] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2011] [Indexed: 01/12/2023]
Abstract
Network oscillations support transient communication across brain structures. We show here, in rats, that task-related neuronal activity in the medial prefrontal cortex (PFC), the hippocampus, and the ventral tegmental area (VTA), regions critical for working memory, is coordinated by a 4 Hz oscillation. A prominent increase of power and coherence of the 4 Hz oscillation in the PFC and the VTA and its phase modulation of gamma power in both structures was present in the working memory part of the task. Subsets of both PFC and hippocampal neurons predicted the turn choices of the rat. The goal-predicting PFC pyramidal neurons were more strongly phase locked to both 4 Hz and hippocampal theta oscillations than nonpredicting cells. The 4 Hz and theta oscillations were phase coupled and jointly modulated both gamma waves and neuronal spikes in the PFC, the VTA, and the hippocampus. Thus, multiplexed timing mechanisms in the PFC-VTA-hippocampus axis may support processing of information, including working memory.
Collapse
Affiliation(s)
- Shigeyoshi Fujisawa
- Center for Molecular and Behavioral Neuroscience, Rutgers, The State University of New Jersey, 197 University Avenue, Newark, NJ 07102, USA
| | | |
Collapse
|
202
|
Brown HD, McCutcheon JE, Cone JJ, Ragozzino ME, Roitman MF. Primary food reward and reward-predictive stimuli evoke different patterns of phasic dopamine signaling throughout the striatum. Eur J Neurosci 2011; 34:1997-2006. [PMID: 22122410 PMCID: PMC3237906 DOI: 10.1111/j.1460-9568.2011.07914.x] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Phasic changes in dopamine activity play a critical role in learning and goal-directed behavior. Unpredicted reward and reward-predictive cues evoke phasic increases in the firing rate of the majority of midbrain dopamine neurons--results that predict uniformly broadcast increases in dopamine concentration throughout the striatum. However, measurement of dopamine concentration changes during reward has cast doubt on this prediction. We systematically measured phasic changes in dopamine in four striatal subregions [nucleus accumbens shell and core (Core), dorsomedial (DMS) and dorsolateral striatum] in response to stimuli known to activate a majority of dopamine neurons. We used fast-scan cyclic voltammetry in awake and behaving rats, which measures changes in dopamine on a similar timescale to the electrophysiological recordings that established a relationship between phasic dopamine activity and reward. Unlike the responses of midbrain dopamine neurons, unpredicted food reward and reward-predictive cues evoked a phasic increase in dopamine that was subregion specific. In rats with limited experience, unpredicted food reward evoked an increase exclusively in the Core. In rats trained on a discriminative stimulus paradigm, both unpredicted reward and reward-predictive cues evoked robust phasic dopamine in the Core and DMS. Thus, phasic dopamine release in select target structures is dynamic and dependent on context and experience. Because the four subregions assayed receive different inputs and have differential projection targets, the regional selectivity of phasic changes in dopamine has important implications for information flow through the striatum and plasticity that underlies learning and goal-directed behavior.
Collapse
Affiliation(s)
- Holden D. Brown
- Graduate Program in Neuroscience, University of Illinois at Chicago, Chicago, IL
| | | | - Jackson J. Cone
- Graduate Program in Neuroscience, University of Illinois at Chicago, Chicago, IL
| | | | | |
Collapse
|
203
|
Jenkinson N, Brown P. New insights into the relationship between dopamine, beta oscillations and motor function. Trends Neurosci 2011; 34:611-8. [DOI: 10.1016/j.tins.2011.09.003] [Citation(s) in RCA: 451] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 09/19/2011] [Accepted: 09/23/2011] [Indexed: 01/11/2023]
|
204
|
De La Garza R, Yoon J. Evaluation of the effects of rivastigmine on cigarette smoking by methamphetamine-dependent volunteers. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:1827-30. [PMID: 21803113 PMCID: PMC3877941 DOI: 10.1016/j.pnpbp.2011.07.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 07/08/2011] [Accepted: 07/15/2011] [Indexed: 10/18/2022]
Abstract
Compared to smokers alone, smokers with co-morbid substance use disorders are at greater risk of suffering from smoking-related death. Despite this, relatively few studies have examined smoking cessation treatments for those with stimulant dependence. In the current study, we sought to evaluate the effects produced by short-term exposure to the cholinesterase inhibitor rivastigmine (0, 3 or 6 mg) on cigarette smoking in non-treatment-seeking, methamphetamine-dependent volunteers. This was a double-blind, placebo-controlled, crossover study that took place over 9 days. The data indicate that rivastigmine treatment did not alter Fagerström Test for Nicotine Dependence scores, carbon monoxide readings, or cigarettes smoked per day, but a trend toward reduced urges to smoke (p<0.09) was detected during treatment with rivastigmine 3mg. These data, while preliminary, indicate that cholinesterase inhibitors warrant consideration as treatments for nicotine dependence, including use in stimulant-dependent individuals who exhibit significantly higher rates of smoking than the general population.
Collapse
|
205
|
Goldberg J, Reynolds J. Spontaneous firing and evoked pauses in the tonically active cholinergic interneurons of the striatum. Neuroscience 2011; 198:27-43. [DOI: 10.1016/j.neuroscience.2011.08.067] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 08/25/2011] [Accepted: 08/30/2011] [Indexed: 10/17/2022]
|
206
|
Baram Y. Noninvertibility, chaotic coding, and chaotic multiplexity of synaptically modulated neural firing. Neural Comput 2011; 24:676-99. [PMID: 22091671 DOI: 10.1162/neco_a_00239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Widely accepted neural firing and synaptic potentiation rules specify a cross-dependence of the two processes, which, evolving on different timescales, have been separated for analytic purposes, concealing essential dynamics. Here, the morphology of the firing rates process, modulated by synaptic potentiation, is shown to be described by a discrete iteration map in the form of a thresholded polynomial. Given initial synaptic weights, a firing activity is triggered by conductance. Elementary dynamic modes are defined by fixed points, cycles, and saddles of the map, building blocks of the underlying firing code. Showing parameter-dependent multiplicity of real polynomial roots, the map is proved to be noninvertible. The incidence of chaos is then implied by the parameter-dependent existence of snap-back repellers. The highly patterned geometric and statistical structures of the associated chaotic attractors suggest that these attractors are an integral part of the neural code. It further suggests the chaotic attractor as a natural mechanism for statistical encoding and temporal multiplexing of neural information. The analytic findings are supported by simulation.
Collapse
Affiliation(s)
- Yoram Baram
- Computer Science Department, Technion- Israel Institute of Technology, Haifa 32000, Israel.
| |
Collapse
|
207
|
Sterky FH, Hoffman AF, Milenkovic D, Bao B, Paganelli A, Edgar D, Wibom R, Lupica CR, Olson L, Larsson NG. Altered dopamine metabolism and increased vulnerability to MPTP in mice with partial deficiency of mitochondrial complex I in dopamine neurons. Hum Mol Genet 2011; 21:1078-89. [PMID: 22090423 DOI: 10.1093/hmg/ddr537] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A variety of observations support the hypothesis that deficiency of complex I [reduced nicotinamide-adenine dinucleotide (NADH):ubiquinone oxidoreductase] of the mitochondrial respiratory chain plays a role in the pathophysiology of Parkinson's disease (PD). However, recent data from a study using mice with knockout of the complex I subunit NADH:ubiquinone oxidoreductase iron-sulfur protein 4 (Ndufs4) has challenged this concept as these mice show degeneration of non-dopamine neurons. In addition, primary dopamine (DA) neurons derived from such mice, reported to lack complex I activity, remain sensitive to toxins believed to act through inhibition of complex I. We tissue-specifically disrupted the Ndufs4 gene in mouse heart and found an apparent severe deficiency of complex I activity in disrupted mitochondria, whereas oxidation of substrates that result in entry of electrons at the level of complex I was only mildly reduced in intact isolated heart mitochondria. Further analyses of detergent-solubilized mitochondria showed the mutant complex I to be unstable but capable of forming supercomplexes with complex I enzyme activity. The loss of Ndufs4 thus causes only a mild complex I deficiency in vivo. We proceeded to disrupt Ndufs4 in midbrain DA neurons and found no overt neurodegeneration, no loss of striatal innervation and no symptoms of Parkinsonism in tissue-specific knockout animals. However, DA homeostasis was abnormal with impaired DA release and increased levels of DA metabolites. Furthermore, Ndufs4 DA neuron knockouts were more vulnerable to the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Taken together, these findings lend in vivo support to the hypothesis that complex I deficiency can contribute to the pathophysiology of PD.
Collapse
Affiliation(s)
- Fredrik H Sterky
- Department of Laboratory Medicine, Karolinska Institutet, Retzius väg 8, SE-17177 Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
208
|
Li W, Doyon WM, Dani JA. Acute in vivo nicotine administration enhances synchrony among dopamine neurons. Biochem Pharmacol 2011; 82:977-83. [PMID: 21684263 PMCID: PMC3162092 DOI: 10.1016/j.bcp.2011.06.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 06/01/2011] [Accepted: 06/02/2011] [Indexed: 11/20/2022]
Abstract
Altered functional interactions among midbrain dopamine (DA) neurons contribute to the reinforcing properties of environmental stimuli and addictive drugs. To examine correlations among DA neurons, acute nicotine was administrated to rats via an intraperitoneal catheter and unit activity was measured using multi-tetrode in vivo recordings. Nicotine administration enhanced the correlated activity of simultaneously recorded DA neurons from the ventral tegmental area (VTA). The strength of the correlations between DA neuron pairs, as measured by cross covariance among two spike trains, showed dynamic changes over time. Nicotine produced a gradual rise in firing rate and burst activity that reached a stable plateau approximately 20 min after the intraperitoneal nicotine infusion. Shortly after that time the cross correlations measured using 5-ms bins increased significantly above baseline. In addition, nicotine increased the firing rates of DA neurons in the posterior VTA more than in the anterior VTA. Unlike nicotine, eticlopride administration also boosted DA neuron firing activity but did not enhance synchronization, indicating that the cross correlations induced by nicotine were not due to a non-specific increase in firing rate. The overall results show that nicotine induces nearly synchronous firing by a subset of DA neurons, and those changes in correlative firing will enhance the DA signal that contributes to nicotine-induced behavioral reinforcement.
Collapse
Affiliation(s)
- Wei Li
- Diana Helis Henry Medical Research Foundation, New Orleans, LA 70130, United States
| | | | | |
Collapse
|
209
|
Liu J, Perez SM, Zhang W, Lodge DJ, Lu XY. Selective deletion of the leptin receptor in dopamine neurons produces anxiogenic-like behavior and increases dopaminergic activity in amygdala. Mol Psychiatry 2011; 16:1024-38. [PMID: 21483433 PMCID: PMC3432580 DOI: 10.1038/mp.2011.36] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 02/15/2011] [Accepted: 02/24/2011] [Indexed: 01/03/2023]
Abstract
The leptin receptor (Lepr) is expressed on midbrain dopamine neurons. However, the specific role of Lepr signaling in dopamine neurons remains to be clarified. In the present study, we generated a line of conditional knockout mice lacking functional Lepr selectively on dopamine neurons (Lepr(DAT-Cre)). These mice exhibit normal body weight and feeding. Behaviorally, Lepr(DAT-Cre) mice display an anxiogenic-like phenotype in the elevated plus-maze, light-dark box, social interaction and novelty-suppressed feeding tests. Depression-related behaviors, as assessed by chronic stress-induced anhedonia, forced swim and tail-suspension tests, were not affected by deletion of Lepr in dopamine neurons. In vivo electrophysiological recordings of dopamine neurons in the ventral tegmental area revealed an increase in burst firing in Lepr(DAT-Cre) mice. Moreover, blockade of D1-dependent dopamine transmission in the central amygdala by local microinjection of the D1 antagonist SCH23390 attenuated the anxiogenic phenotype of Lepr(DAT-Cre) mice. These findings suggest that Lepr signaling in midbrain dopamine neurons has a crucial role for the expression of anxiety and for the dopamine modulation of amygdala function.
Collapse
Affiliation(s)
- Jing Liu
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Stephanie M. Perez
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Wei Zhang
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Daniel J. Lodge
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Xin-Yun Lu
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
- Department of Psychiatry, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| |
Collapse
|
210
|
Wang SR, Yao W, Huang HP, Zhang B, Zuo PL, Sun L, Dou HQ, Li Q, Kang XJ, Xu HD, Hu MQ, Jin M, Zhang L, Mu Y, Peng JY, Zhang CX, Ding JP, Li BM, Zhou Z. Role of vesicle pools in action potential pattern-dependent dopamine overflow in rat striatum in vivo. J Neurochem 2011; 119:342-53. [PMID: 21854394 DOI: 10.1111/j.1471-4159.2011.07440.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Action potential (AP) patterns and dopamine (DA) release are known to correlate with rewarding behaviors, but how codes of AP bursts translate into DA release in vivo remains elusive. Here, a given AP pattern was defined by four codes, termed total AP number, frequency, number of AP bursts, and interburst time [N, f, b, i].. The 'burst effect' was calculated by the ratio (γ) of DA overflow by multiple bursts to that of a single burst when total AP number was fixed. By stimulating the medial forebrain bundle using AP codes at either physiological (20 Hz) or supraphysiological (80 Hz) frequencies, we found that DA was released from two kinetically distinct vesicle pools, the fast-releasable pool (FRP) and prolonged-releasable pool (PRP), in striatal dopaminergic terminals in vivo. We examined the effects of vesicle pools on AP-pattern dependent DA overflow and found, with given 'burst codes' [b=8, i=0.5 s], a large total AP number [N = 768, f = 80 Hz] produced a facilitating burst-effect (γ[b8/b1] = 126 ± 3%), while a small total AP number [N=96, 80 Hz] triggered a depressing-burst-effect (γ[b8/b1] = 29 ± 4%). Furthermore, we found that the PRP (but not the FRP) predominantly contributed to the facilitating-burst-effect and the FRP played an important role in the depressing-burst effect. Thus, our results suggest that striatal DA release captures pre-synaptic AP pattern information through different releasable pools.
Collapse
Affiliation(s)
- Shi-Rong Wang
- State Key Laboratory of Membrane Bioengineering, Institute of Molecular Medicine, Peking University, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
211
|
Ding S, Wei W, Zhou FM. Molecular and functional differences in voltage-activated sodium currents between GABA projection neurons and dopamine neurons in the substantia nigra. J Neurophysiol 2011; 106:3019-34. [PMID: 21880943 DOI: 10.1152/jn.00305.2011] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
GABA projection neurons (GABA neurons) in the substantia nigra pars reticulata (SNr) and dopamine projection neurons (DA neurons) in substantia nigra pars compacta (SNc) have strikingly different firing properties. SNc DA neurons fire low-frequency, long-duration spikes, whereas SNr GABA neurons fire high-frequency, short-duration spikes. Since voltage-activated sodium (Na(V)) channels are critical to spike generation, the different firing properties raise the possibility that, compared with DA neurons, Na(V) channels in SNr GABA neurons have higher density, faster kinetics, and less cumulative inactivation. Our quantitative RT-PCR analysis on immunohistochemically identified nigral neurons indicated that mRNAs for pore-forming Na(V)1.1 and Na(V)1.6 subunits and regulatory Na(V)β1 and Na(v)β4 subunits are more abundant in SNr GABA neurons than SNc DA neurons. These α-subunits and β-subunits are key subunits for forming Na(V) channels conducting the transient Na(V) current (I(NaT)), persistent Na current (I(NaP)), and resurgent Na current (I(NaR)). Nucleated patch-clamp recordings showed that I(NaT) had a higher density, a steeper voltage-dependent activation, and a faster deactivation in SNr GABA neurons than in SNc DA neurons. I(NaT) also recovered more quickly from inactivation and had less cumulative inactivation in SNr GABA neurons than in SNc DA neurons. Furthermore, compared with nigral DA neurons, SNr GABA neurons had a larger I(NaR) and I(NaP). Blockade of I(NaP) induced a larger hyperpolarization in SNr GABA neurons than in SNc DA neurons. Taken together, these results indicate that Na(V) channels expressed in fast-spiking SNr GABA neurons and slow-spiking SNc DA neurons are tailored to support their different spiking capabilities.
Collapse
Affiliation(s)
- Shengyuan Ding
- Department of Pharmacology, University of Tennessee College of Medicine, Memphis, TN 38163, USA
| | | | | |
Collapse
|
212
|
Morikawa H, Paladini CA. Dynamic regulation of midbrain dopamine neuron activity: intrinsic, synaptic, and plasticity mechanisms. Neuroscience 2011; 198:95-111. [PMID: 21872647 DOI: 10.1016/j.neuroscience.2011.08.023] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 08/05/2011] [Accepted: 08/11/2011] [Indexed: 12/23/2022]
Abstract
Although the roles of dopaminergic signaling in learning and behavior are well established, it is not fully understood how the activity of dopaminergic neurons is dynamically regulated under different conditions in a constantly changing environment. Dopamine neurons must integrate sensory, motor, and cognitive information online to inform the organism to pursue outcomes with the highest reward probability. In this article, we provide an overview of recent advances on the intrinsic, extrinsic (i.e., synaptic), and plasticity mechanisms controlling dopamine neuron activity, mostly focusing on mechanistic studies conducted using ex vivo brain slice preparations. We also hope to highlight some unresolved questions regarding information processing that takes place at dopamine neurons, thereby stimulating further investigations at different levels of analysis.
Collapse
Affiliation(s)
- H Morikawa
- Waggoner Center for Alcohol and Addiction Research, Section of Neurobiology, 2400 Speedway, University of Texas at Austin, Austin, TX 78712, USA.
| | | |
Collapse
|
213
|
Howard CD, Keefe KA, Garris PA, Daberkow DP. Methamphetamine neurotoxicity decreases phasic, but not tonic, dopaminergic signaling in the rat striatum. J Neurochem 2011; 118:668-76. [PMID: 21668447 PMCID: PMC3149871 DOI: 10.1111/j.1471-4159.2011.07342.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Neurotoxic doses of methamphetamine (METH) are known to cause depletions in striatal dopamine (DA) tissue content. However, the effects of METH-induced insults on dopaminergic neurotransmission are not fully understood. Here, we employed fast-scan cyclic voltammetry at a carbon-fiber microelectrode in the anesthetized rat striatum to assess the effects of a neurotoxic regimen of METH on phasic and tonic modes of dopaminergic signaling and underlying mechanisms of DA release and uptake. Extracellular DA was electrically evoked by stimulation of the medial forebrain bundle mimicking tonic and phasic firing patterns for dopaminergic cells and was monitored simultaneously in both the dorsomedial and dorsolateral striatum. Kinetic analysis of evoked recordings determined parameters describing DA release and uptake. Striatal DA tissue content was quantified by high performance liquid chromatography with electrochemical detection. METH-pretreatment (four doses of 7.5 or 10.0 mg/kg s.c.) induced DA depletions of ∼ 40% on average, which are reported in both striatal subregions. METH pre-treatment significantly decreased the amplitude of signals evoked by phasic, but not tonic, stimulation. Parameters for DA release and uptake were also similarly reduced by ∼ 40%, consistent with effects on evoked phasic-like responses and DA tissue content. Taken together, these results suggest that METH-pretreatment selectively diminishes phasic, but not tonic, dopaminergic signaling in the dorsal striatum.
Collapse
Affiliation(s)
- Christopher D. Howard
- Cell Biology, Physiology & Development Section, School of Biological Sciences, Illinois State University, Normal, IL 61790-4120, USA
| | - Kristen A. Keefe
- Department of Pharmacology & Toxicology, University of Utah, Salt Lake City, UT 84112, USA
| | - Paul A. Garris
- Cell Biology, Physiology & Development Section, School of Biological Sciences, Illinois State University, Normal, IL 61790-4120, USA
| | - David P. Daberkow
- Department of Biology, Eastern Washington University, Cheney, WA 99004, USA
| |
Collapse
|
214
|
Hartung H, Threlfell S, Cragg SJ. Nitric oxide donors enhance the frequency dependence of dopamine release in nucleus accumbens. Neuropsychopharmacology 2011; 36:1811-22. [PMID: 21508928 PMCID: PMC3154099 DOI: 10.1038/npp.2011.62] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2010] [Revised: 03/15/2011] [Accepted: 03/22/2011] [Indexed: 12/11/2022]
Abstract
Dopamine (DA) neurotransmission in the nucleus accumbens (NAc) is critically involved in normal as well as maladaptive motivated behaviors including drug addiction. Whether the striatal neuromodulator nitric oxide (NO) influences DA release in NAc is unknown. We investigated whether exogenous NO modulates DA transmission in NAc core and how this interaction varies depending on the frequency of presynaptic activation. We detected DA with cyclic voltammetry at carbon-fiber microelectrodes in mouse NAc in slices following stimuli spanning a full range of DA neuron firing frequencies (1-100 Hz). NO donors 3-morpholinosydnonimine hydrochloride (SIN-1) or z-1-[N-(3-ammoniopropyl)-N-(n-propyl)amino]diazen-1-ium-1,2-diolate (PAPA/NONOate) enhanced DA release with increasing stimulus frequency. This NO-mediated enhancement of frequency sensitivity of DA release was not prevented by inhibition of soluble guanylyl cyclase (sGC), DA transporters, or large conductance Ca(2+)-activated K(+) channels, and did not require glutamatergic or GABAergic input. However, experiments to identify whether frequency-dependent NO effects were mediated via changes in powerful acetylcholine-DA interactions revealed multiple components to NO modulation of DA release. In the presence of a nicotinic receptor antagonist (dihydro-β-erythroidine), NO donors increased DA release in a frequency-independent manner. These data suggest that NO in the NAc can modulate DA release through multiple GC-independent neuronal mechanisms whose net outcome varies depending on the activity in DA neurons and accumbal cholinergic interneurons. In the presence of accumbal acetylcholine, NO promotes the sensitivity of DA release to presynaptic activation, but with reduced acetylcholine input, NO will promote DA release in an activity-independent manner through a direct action on dopaminergic terminals.
Collapse
Affiliation(s)
- Henrike Hartung
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK [2] Oxford Parkinson's Disease Centre, University of Oxford, Oxford, UK [3] Department of Pharmacology, University of Oxford, Oxford, UK.
| | | | | |
Collapse
|
215
|
Vandecasteele M, Deniau JM, Venance L. Spike frequency adaptation is developmentally regulated in substantia nigra pars compacta dopaminergic neurons. Neuroscience 2011; 192:1-10. [PMID: 21767612 DOI: 10.1016/j.neuroscience.2011.07.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Revised: 06/29/2011] [Accepted: 07/06/2011] [Indexed: 10/18/2022]
Abstract
Dopaminergic neurons of the substantia nigra pars compacta play a key role in the modulation of basal ganglia and provide a reward-related teaching signal essential for adaptative motor control. They are generally considered as a homogenous population despite several chemical and electrophysiological heterogeneities, which could underlie different preferential patterns of activity and/or different roles. Using whole-cell patch-clamp recordings in juvenile rat brain slices, we observed that the evoked activity of dopaminergic neurons displays variable spike frequency adaptation patterns. The intensity of spike frequency adaptation decreased during post-natal development. The adaptation was associated with an increase in the initial firing frequency due to faster kinetics of the afterhyperpolarization component of the spike. Adaptation was enhanced when small conductance calcium-activated potassium (SK) channels were blocked with bath application of apamine. Lastly, spike frequency adaptation of the evoked discharge was associated with more irregularity in the spontaneous firing pattern. Altogether these results show a developmental heterogeneity and electrophysiological maturation of substantia nigra dopaminergic neurons.
Collapse
Affiliation(s)
- M Vandecasteele
- Laboratory of Dynamics and Pathophysiology of Neuronal Networks, CIRB, INSERM-U1050, CNRS-UMR7241, Collège de France, Paris, France
| | | | | |
Collapse
|
216
|
Klaus A, Planert H, Hjorth JJJ, Berke JD, Silberberg G, Kotaleski JH. Striatal fast-spiking interneurons: from firing patterns to postsynaptic impact. Front Syst Neurosci 2011; 5:57. [PMID: 21808608 PMCID: PMC3139213 DOI: 10.3389/fnsys.2011.00057] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 06/17/2011] [Indexed: 01/14/2023] Open
Abstract
In the striatal microcircuit, fast-spiking (FS) interneurons have an important role in mediating inhibition onto neighboring medium spiny (MS) projection neurons. In this study, we combined computational modeling with in vitro and in vivo electrophysiological measurements to investigate FS cells in terms of their discharge properties and their synaptic efficacies onto MS neurons. In vivo firing of striatal FS interneurons is characterized by a high firing variability. It is not known, however, if this variability results from the input that FS cells receive, or if it is promoted by the stuttering spike behavior of these neurons. Both our model and measurements in vitro show that FS neurons that exhibit random stuttering discharge in response to steady depolarization do not show the typical stuttering behavior when they receive fluctuating input. Importantly, our model predicts that electrically coupled FS cells show substantial spike synchronization only when they are in the stuttering regime. Therefore, together with the lack of synchronized firing of striatal FS interneurons that has been reported in vivo, these results suggest that neighboring FS neurons are not in the stuttering regime simultaneously and that in vivo FS firing variability is more likely determined by the input fluctuations. Furthermore, the variability in FS firing is translated to variability in the postsynaptic amplitudes in MS neurons due to the strong synaptic depression of the FS-to-MS synapse. Our results support the idea that these synapses operate over a wide range from strongly depressed to almost fully recovered. The strong inhibitory effects that FS cells can impose on their postsynaptic targets, and the fact that the FS-to-MS synapse model showed substantial depression over extended periods of time might indicate the importance of cooperative effects of multiple presynaptic FS interneurons and the precise orchestration of their activity.
Collapse
Affiliation(s)
- Andreas Klaus
- Nobel Institute for Neurophysiology, Department of Neuroscience, Karolinska Institute Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
217
|
Koos T, Tecuapetla F, Tepper JM. Glutamatergic signaling by midbrain dopaminergic neurons: recent insights from optogenetic, molecular and behavioral studies. Curr Opin Neurobiol 2011; 21:393-401. [PMID: 21632236 PMCID: PMC4479494 DOI: 10.1016/j.conb.2011.05.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 05/02/2011] [Accepted: 05/10/2011] [Indexed: 12/11/2022]
Abstract
Although the notion that dopaminergic neurons utilize glutamate as a co-transmitter has long been supported by tantalizing molecular, immunocytochemical and electrophysiological evidence it has only been with the recent addition of optogenetic and other approaches that the existence and functional relevance of this mechanism could be unambiguously demonstrated. Here we discuss the possible mechanisms of action of glutamate released from mesoaccumbens dopaminergic neurons based on recently accumulated evidence. Surprisingly, rather then to confirm a role in conventional fast excitatory transmission, the latest evidence suggests that glutamate released from dopaminergic neurons may primarily act through different unconventional presynaptic and postsynaptic mechanisms.
Collapse
Affiliation(s)
- Tibor Koos
- Center for Molecular and Behavioral Neuroscience, Rutgers University, 197 University Avenue, Newark, NJ 07102, USA.
| | | | | |
Collapse
|
218
|
Chorley P, Seth AK. Dopamine-signaled reward predictions generated by competitive excitation and inhibition in a spiking neural network model. Front Comput Neurosci 2011; 5:21. [PMID: 21629770 PMCID: PMC3099399 DOI: 10.3389/fncom.2011.00021] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 04/26/2011] [Indexed: 11/13/2022] Open
Abstract
Dopaminergic neurons in the mammalian substantia nigra display characteristic phasic responses to stimuli which reliably predict the receipt of primary rewards. These responses have been suggested to encode reward prediction-errors similar to those used in reinforcement learning. Here, we propose a model of dopaminergic activity in which prediction-error signals are generated by the joint action of short-latency excitation and long-latency inhibition, in a network undergoing dopaminergic neuromodulation of both spike-timing dependent synaptic plasticity and neuronal excitability. In contrast to previous models, sensitivity to recent events is maintained by the selective modification of specific striatal synapses, efferent to cortical neurons exhibiting stimulus-specific, temporally extended activity patterns. Our model shows, in the presence of significant background activity, (i) a shift in dopaminergic response from reward to reward-predicting stimuli, (ii) preservation of a response to unexpected rewards, and (iii) a precisely timed below-baseline dip in activity observed when expected rewards are omitted.
Collapse
Affiliation(s)
- Paul Chorley
- Neurodynamics and Consciousness Laboratory, School of Informatics, University of Sussex Brighton, UK
| | | |
Collapse
|
219
|
An imperfect dopaminergic error signal can drive temporal-difference learning. PLoS Comput Biol 2011; 7:e1001133. [PMID: 21589888 PMCID: PMC3093351 DOI: 10.1371/journal.pcbi.1001133] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Accepted: 04/06/2011] [Indexed: 12/03/2022] Open
Abstract
An open problem in the field of computational neuroscience is how to link synaptic plasticity to system-level learning. A promising framework in this context is temporal-difference (TD) learning. Experimental evidence that supports the hypothesis that the mammalian brain performs temporal-difference learning includes the resemblance of the phasic activity of the midbrain dopaminergic neurons to the TD error and the discovery that cortico-striatal synaptic plasticity is modulated by dopamine. However, as the phasic dopaminergic signal does not reproduce all the properties of the theoretical TD error, it is unclear whether it is capable of driving behavior adaptation in complex tasks. Here, we present a spiking temporal-difference learning model based on the actor-critic architecture. The model dynamically generates a dopaminergic signal with realistic firing rates and exploits this signal to modulate the plasticity of synapses as a third factor. The predictions of our proposed plasticity dynamics are in good agreement with experimental results with respect to dopamine, pre- and post-synaptic activity. An analytical mapping from the parameters of our proposed plasticity dynamics to those of the classical discrete-time TD algorithm reveals that the biological constraints of the dopaminergic signal entail a modified TD algorithm with self-adapting learning parameters and an adapting offset. We show that the neuronal network is able to learn a task with sparse positive rewards as fast as the corresponding classical discrete-time TD algorithm. However, the performance of the neuronal network is impaired with respect to the traditional algorithm on a task with both positive and negative rewards and breaks down entirely on a task with purely negative rewards. Our model demonstrates that the asymmetry of a realistic dopaminergic signal enables TD learning when learning is driven by positive rewards but not when driven by negative rewards. What are the physiological changes that take place in the brain when we solve a problem or learn a new skill? It is commonly assumed that behavior adaptations are realized on the microscopic level by changes in synaptic efficacies. However, this is hard to verify experimentally due to the difficulties of identifying the relevant synapses and monitoring them over long periods during a behavioral task. To address this question computationally, we develop a spiking neuronal network model of actor-critic temporal-difference learning, a variant of reinforcement learning for which neural correlates have already been partially established. The network learns a complex task by means of an internally generated reward signal constrained by recent findings on the dopaminergic system. Our model combines top-down and bottom-up modelling approaches to bridge the gap between synaptic plasticity and system-level learning. It paves the way for further investigations of the dopaminergic system in reward learning in the healthy brain and in pathological conditions such as Parkinson's disease, and can be used as a module in functional models based on brain-scale circuitry.
Collapse
|
220
|
Robinson DL, Zitzman DL, Williams SK. Mesolimbic dopamine transients in motivated behaviors: focus on maternal behavior. Front Psychiatry 2011; 2:23. [PMID: 21629844 PMCID: PMC3098725 DOI: 10.3389/fpsyt.2011.00023] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 04/23/2011] [Indexed: 11/13/2022] Open
Abstract
Phasic activity of the mesolimbic dopamine pathway - burst-firing of dopamine neurons and the resulting dopamine release events at striatal targets - have been associated with a variety of motivational events, such as novelty, salient stimuli, social interaction, and reward prediction. Over the past decade, advances in electrochemical techniques have allowed measurement of naturally occurring dopamine release events, or dopamine transients, in awake animals during ongoing behavior. Thus, a growing body of studies has revealed dynamic dopamine input to ventral striatum during motivated behavior in a variety of experimental paradigms. We propose that dopamine transients may be important neural signals in pup-directed aspects of maternal behavior, as preliminary data suggest that dopamine transients in dams are associated with pup cues. Measurements of dopamine transients may be useful to investigate not only typical maternal behavior but also maternal inattention induced by drug exposure or stress.
Collapse
Affiliation(s)
- Donita L. Robinson
- Bowles Center for Alcohol Studies, University of North CarolinaChapel Hill, NC, USA
- Department of Psychiatry, University of North CarolinaChapel Hill, NC, USA
- Curriculum in Neurobiology, University of North CarolinaChapel Hill, NC, USA
| | - Dawnya L. Zitzman
- Bowles Center for Alcohol Studies, University of North CarolinaChapel Hill, NC, USA
| | - Sarah K. Williams
- Department of Psychiatry, University of North CarolinaChapel Hill, NC, USA
- Curriculum in Neurobiology, University of North CarolinaChapel Hill, NC, USA
| |
Collapse
|
221
|
Lodge DJ. The medial prefrontal and orbitofrontal cortices differentially regulate dopamine system function. Neuropsychopharmacology 2011; 36:1227-36. [PMID: 21307842 PMCID: PMC3079406 DOI: 10.1038/npp.2011.7] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 01/06/2011] [Accepted: 01/11/2011] [Indexed: 01/16/2023]
Abstract
The prefrontal cortex (PFC) is essential for top-down control over higher-order executive function. In this study we demonstrate that the medial prefrontal cortex (mPFC) and orbitofrontal cortex (OFC) differentially regulate VTA dopamine neuron activity, and furthermore, the pattern of activity in the PFC drastically alters the dopamine neuron response. Thus, although single-pulse activation of the mPFC either excites or inhibits equivalent numbers of dopamine neurons, activation of the OFC induces a primarily inhibitory response. Moreover, activation of the PFC with a pattern that mimics spontaneous burst firing of pyramidal neurons produces a strikingly different response. Specifically, burst-like activation of the mPFC induces a massive increase in dopamine neuron firing, whereas a similar pattern of OFC activation largely inhibits dopamine activity. Taken together, these data demonstrate that the mPFC and OFC differentially regulate dopamine neuron activity, and that the pattern of cortical activation is critical for determining dopamine system output.
Collapse
Affiliation(s)
- Daniel J Lodge
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center, San Antonio, TX, USA.
| |
Collapse
|
222
|
Balcita-Pedicino JJ, Omelchenko N, Bell R, Sesack SR. The inhibitory influence of the lateral habenula on midbrain dopamine cells: ultrastructural evidence for indirect mediation via the rostromedial mesopontine tegmental nucleus. J Comp Neurol 2011; 519:1143-64. [PMID: 21344406 PMCID: PMC4054696 DOI: 10.1002/cne.22561] [Citation(s) in RCA: 171] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The lateral habenula (LHb) provides an important source of negative reinforcement signals to midbrain dopamine (DA) cells in the substantia nigra and ventral tegmental area (VTA). This profound and consistent inhibitory influence involves a disynaptic connection from glutamate neurons in the LHb to some population of γ-aminobutyric acid (GABA) cells that, in turn, innervates DA neurons. Previous studies demonstrated that the GABA cells intrinsic to the VTA receive insufficient synaptic input from the LHb to serve as the primary source of this intermediate connection. In this investigation, we sought ultrastructural evidence supporting the hypothesis that a newly identified region of the brainstem, the rostromedial mesopontine tegmental nucleus (RMTg), is a more likely candidate for inhibiting midbrain DA cells in response to LHb activation. Electron microscopic examination of rat brain sections containing dual immunoreactivity for an anterograde tracing agent and a phenotypic marker revealed that: 1) more than 55% of the synapses formed by LHb axons in the RMTg were onto GABA-labeled dendrites; 2) more than 80% of the synapses formed by RMTg axons in the VTA contacted dendrites immunoreactive for the DA synthetic enzyme tyrosine hydroxylase; and 3) nearly all RMTg axons formed symmetric synapses and contained postembedding immunoreactivity for GABA. These findings indicate that the newly identified RMTg region is an intermediate structure in a disynaptic pathway that connects the LHb to VTA DA neurons. The results have important implications for understanding mental disorders characterized by a dysregulation of reward circuitry involving LHb and DA cell populations.
Collapse
Affiliation(s)
| | - Natalia Omelchenko
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Roland Bell
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Susan R. Sesack
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| |
Collapse
|
223
|
Mrejeru A, Wei A, Ramirez JM. Calcium-activated non-selective cation currents are involved in generation of tonic and bursting activity in dopamine neurons of the substantia nigra pars compacta. J Physiol 2011; 589:2497-514. [PMID: 21486760 DOI: 10.1113/jphysiol.2011.206631] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Nigral dopamine neurons are transiently activated by high frequency glutamatergic inputs relaying reward-predicting sensory information. The tonic firing pattern of dopamine cells responds to these inputs with a transient burst of spikes that requires NMDA receptors. Here, we show that NMDA receptor activation further excites the cell by recruiting a calcium-activated non-selective cation current (ICAN) capable of generating a plateau potential. Burst firing in vitro is eliminated after blockade of ICAN with flufenamic acid, 9-phenanthrol, or intracellular BAPTA. ICAN is likely to be mediated by a transient receptor potential (TRP) channel, and RT-PCR was used to confirm expression of TRPM2 and TRPM4mRNA in substantia nigra pars compacta.We propose that ICAN is selectively activated during burst firing to boost NMDA currents and allow plateau potentials. This boost mechanism may render DA cells vulnerable to excitotoxicity.
Collapse
Affiliation(s)
- Ana Mrejeru
- Committee on Neurobiology, University of Chicago, Chicago, IL 60637, USA
| | | | | |
Collapse
|
224
|
Robinson DL, Zitzman DL, Smith KJ, Spear LP. Fast dopamine release events in the nucleus accumbens of early adolescent rats. Neuroscience 2011; 176:296-307. [PMID: 21182904 PMCID: PMC3061289 DOI: 10.1016/j.neuroscience.2010.12.016] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 12/10/2010] [Accepted: 12/13/2010] [Indexed: 12/22/2022]
Abstract
Subsecond fluctuations in dopamine (dopamine transients) in the nucleus accumbens are often time-locked to rewards and cues and provide an important learning signal during reward processing. As the mesolimbic dopamine system undergoes dynamic changes during adolescence in the rat, it is possible that dopamine transients encode reward and stimulus presentations differently in adolescents. However, to date no measurements of dopamine transients in awake adolescents have been made. Thus, we used fast scan cyclic voltammetry to measure dopamine transients in the nucleus accumbens core of male rats (29-30 days of age) at baseline and with the presentation of various stimuli that have been shown to trigger dopamine release in adult rats. We found that dopamine transients were detectable in adolescent rats and occurred at a baseline rate similar to adult rats (71-72 days of age). However, unlike adults, adolescent rats did not reliably exhibit dopamine transients at the unexpected presentation of visual, audible and odorous stimuli. In contrast, brief interaction with another rat increased dopamine transients in both adolescent and adult rats. While this effect habituated in adults at a second interaction, it persisted in the adolescents. These data are the first demonstration of dopamine transients in adolescent rats and reveal an important divergence from adults in the occurrence of these transients that may result in differential learning about rewards.
Collapse
Affiliation(s)
- Donita L. Robinson
- Bowles Center for Alcohol Studies & Department of Psychiatry, University of North Carolina, Chapel Hill, NC 27713, USA
| | - Dawnya L. Zitzman
- Bowles Center for Alcohol Studies & Department of Psychiatry, University of North Carolina, Chapel Hill, NC 27713, USA
| | - Katherine J. Smith
- Bowles Center for Alcohol Studies & Department of Psychiatry, University of North Carolina, Chapel Hill, NC 27713, USA
| | - Linda P. Spear
- Center for Development and Behavioral Neuroscience, Department of Psychology, Binghamton University, Binghamton, NY 13902, USA
| |
Collapse
|
225
|
Threlfell S, Cragg SJ. Dopamine signaling in dorsal versus ventral striatum: the dynamic role of cholinergic interneurons. Front Syst Neurosci 2011; 5:11. [PMID: 21427783 PMCID: PMC3049415 DOI: 10.3389/fnsys.2011.00011] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Accepted: 02/17/2011] [Indexed: 11/13/2022] Open
Abstract
Mesostriatal dopaminergic neurons and striatal cholinergic interneurons participate in signaling the motivational significance of environmental stimuli and regulate striatal plasticity. Dopamine (DA) and acetylcholine (ACh) have potent interactions within the striatum at multiple levels that include presynaptic regulation of neurotransmitter release and postsynaptic effects in target cells (including ACh neurons). These interactions may be highly variable given the dynamic changes in the firing activities of parent DA and ACh neurons. Here, we consider how striatal ACh released from cholinergic interneurons acting at both nicotinic and muscarinic ACh receptors powerfully modulates DA transmission. This ACh-DA interaction varies in a manner that depends on the frequency of presynaptic activation, and will thus strongly influence how DA synapses convey discrete changes in DA neuron activity that are known to signal events of motivational salience. Furthermore, this ACh modulation of DA transmission within striatum occurs via different profiles of nicotinic and muscarinic receptors in caudate-putamen compared to nucleus accumbens, which may ultimately enable region-specific targeting of striatal function.
Collapse
Affiliation(s)
- Sarah Threlfell
- Department of Physiology, Anatomy and Genetics, University of OxfordOxford, UK
- Oxford Parkinson's Disease Centre, University of OxfordOxford, UK
| | - Stephanie Jane Cragg
- Department of Physiology, Anatomy and Genetics, University of OxfordOxford, UK
- Oxford Parkinson's Disease Centre, University of OxfordOxford, UK
| |
Collapse
|
226
|
Lanovaz MJ. Towards a comprehensive model of stereotypy: integrating operant and neurobiological interpretations. RESEARCH IN DEVELOPMENTAL DISABILITIES 2011; 32:447-455. [PMID: 21236636 DOI: 10.1016/j.ridd.2010.12.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Accepted: 12/16/2010] [Indexed: 05/30/2023]
Abstract
The predominant models on the emergence and maintenance of stereotypy in individuals with developmental disabilities are based on operant and neurobiological interpretations of the behavior. Although the proponents of the two models maintain largely independent lines of research, operant and neurobiological interpretations of stereotypy are not mutually exclusive. The paper reviews the two models of stereotypy and proposes an integrated model using recent findings on the neurobiology of reinforcement. The dopaminergic system and the basal ganglia are both involved in stereotypy and in reinforcement, which provides a potential link between the models. Implications of the integrated model for future research are discussed in terms of improving the assessment and treatment of stereotypy in individuals with developmental disabilities.
Collapse
Affiliation(s)
- Marc J Lanovaz
- Department of Educational and Counselling Psychology, McGill University, 3700 McTavish St., Montreal, QC, Canada H3A 1Y2.
| |
Collapse
|
227
|
Convergent processing of both positive and negative motivational signals by the VTA dopamine neuronal populations. PLoS One 2011; 6:e17047. [PMID: 21347237 PMCID: PMC3039659 DOI: 10.1371/journal.pone.0017047] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 01/19/2011] [Indexed: 01/02/2023] Open
Abstract
Dopamine neurons in the ventral tegmental area (VTA) have been traditionally studied for their roles in reward-related motivation or drug addiction. Here we study how the VTA dopamine neuron population may process fearful and negative experiences as well as reward information in freely behaving mice. Using multi-tetrode recording, we find that up to 89% of the putative dopamine neurons in the VTA exhibit significant activation in response to the conditioned tone that predict food reward, while the same dopamine neuron population also respond to the fearful experiences such as free fall and shake events. The majority of these VTA putative dopamine neurons exhibit suppression and offset-rebound excitation, whereas ∼25% of the recorded putative dopamine neurons show excitation by the fearful events. Importantly, VTA putative dopamine neurons exhibit parametric encoding properties: their firing change durations are proportional to the fearful event durations. In addition, we demonstrate that the contextual information is crucial for these neurons to respectively elicit positive or negative motivational responses by the same conditioned tone. Taken together, our findings suggest that VTA dopamine neurons may employ the convergent encoding strategy for processing both positive and negative experiences, intimately integrating with cues and environmental context.
Collapse
|
228
|
Jang JY, Jang M, Kim SH, Um KB, Kang YK, Kim HJ, Chung S, Park MK. Regulation of dopaminergic neuron firing by heterogeneous dopamine autoreceptors in the substantia nigra pars compacta. J Neurochem 2011; 116:966-74. [PMID: 21073466 DOI: 10.1111/j.1471-4159.2010.07107.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Dopamine (DA) receptors generate many cellular signals and play various roles in locomotion, motivation, hormone production, and drug abuse. According to the location and expression types of the receptors in the brain, DA signals act in either stimulatory or inhibitory manners. Although DA autoreceptors in the substantia nigra pars compacta are known to regulate firing activity, the exact expression patterns and roles of DA autoreceptor types on the firing activity are highly debated. Therefore, we performed individual correlation studies between firing activity and receptor expression patterns using acutely isolated rat substantia nigra pars compacta DA neurons. When we performed single-cell RT-PCR experiments, D(1), D(2)S, D(2)L, D(3), and D(5) receptor mRNA were heterogeneously expressed in the order of D(2)L > D(2)S > D(3) > D(5) > D(1). Stimulation of D(2) receptors with quinpirole suppressed spontaneous firing similarly among all neurons expressing mRNA solely for D(2)S, D(2)L, or D(3) receptors. However, quinpirole most strongly suppressed spontaneous firing in the neurons expressing mRNA for both D(2) and D(3) receptors. These data suggest that D(2) S, D(2)L, and D(3) receptors are able to equally suppress firing activity, but that D(2) and D(3) receptors synergistically suppress firing. This diversity in DA autoreceptors could explain the various actions of DA in the brain.
Collapse
Affiliation(s)
- Jin Young Jang
- Department of Physiology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute, Jangan-ku, Suwon, Korea
| | | | | | | | | | | | | | | |
Collapse
|
229
|
Wang DV, Tsien JZ. Conjunctive processing of locomotor signals by the ventral tegmental area neuronal population. PLoS One 2011; 6:e16528. [PMID: 21304590 PMCID: PMC3029369 DOI: 10.1371/journal.pone.0016528] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2010] [Accepted: 12/29/2010] [Indexed: 11/18/2022] Open
Abstract
The ventral tegmental area (VTA) plays an essential role in reward and motivation. How the dopamine (DA) and non-DA neurons in the VTA engage in motivation-based locomotor behaviors is not well understood. We recorded activity of putative DA and non-DA neurons simultaneously in the VTA of awake mice engaged in motivated voluntary movements such as wheel running. Our results revealed that VTA non-DA neurons exhibited significant rhythmic activity that was correlated with the animal's running rhythms. Activity of putative DA neurons also correlated with the movement behavior, but to a lesser degree. More importantly, putative DA neurons exhibited significant burst activation at both onset and offset of voluntary movements. These findings suggest that VTA DA and non-DA neurons conjunctively process locomotor-related motivational signals that are associated with movement initiation, maintenance and termination.
Collapse
Affiliation(s)
- Dong V. Wang
- Key Laboratory of MOE and STCSM, Shanghai Institute of Brain Functional Genomics, East China Normal University, Shanghai, China
- Brain and Behavior Discovery Institute, Medical College of Georgia, Georgia Health Sciences University, Augusta, Georgia, United States of America
| | - Joe Z. Tsien
- Brain and Behavior Discovery Institute, Medical College of Georgia, Georgia Health Sciences University, Augusta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
230
|
Good CH, Hoffman AF, Hoffer BJ, Chefer VI, Shippenberg TS, Bäckman CM, Larsson NG, Olson L, Gellhaar S, Galter D, Lupica CR. Impaired nigrostriatal function precedes behavioral deficits in a genetic mitochondrial model of Parkinson's disease. FASEB J 2011; 25:1333-44. [PMID: 21233488 DOI: 10.1096/fj.10-173625] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Parkinson's disease (PD) involves progressive loss of nigrostriatal dopamine (DA) neurons over an extended period of time. Mitochondrial damage may lead to PD, and neurotoxins affecting mitochondria are widely used to produce degeneration of the nigrostriatal circuitry. Deletion of the mitochondrial transcription factor A gene (Tfam) in C57BL6 mouse DA neurons leads to a slowly progressing parkinsonian phenotype in which motor impairment is first observed at ~12 wk of age. L-DOPA treatment improves motor dysfunction in these "MitoPark" mice, but this declines when DA neuron loss is more complete. To investigate early neurobiological events potentially contributing to PD, we compared the neurochemical and electrophysiological properties of the nigrostriatal circuit in behaviorally asymptomatic 6- to 8-wk-old MitoPark mice and age-matched control littermates. Release, but not uptake of DA, was impaired in MitoPark mouse striatal brain slices, and nigral DA neurons lacked characteristic pacemaker activity compared with control mice. Also, hyperpolarization-activated cyclic nucleotide-gated (HCN) ion channel function was reduced in MitoPark DA neurons, although HCN messenger RNA was unchanged. This study demonstrates altered nigrostriatal function that precedes behavioral parkinsonian symptoms in this genetic PD model. A full understanding of these presymptomatic cellular properties may lead to more effective early treatments of PD.
Collapse
Affiliation(s)
- Cameron H Good
- Cellular Neurobiology Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, U.S. Department of Health and Human Services, Baltimore, MD 21224, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
231
|
Abstract
Nicotine is the principal addictive component that drives continued tobacco use despite users' knowledge of the harmful consequences. The initiation of addiction involves the mesocorticolimbic dopamine system, which contributes to the processing of rewarding sensory stimuli during the overall shaping of successful behaviors. Acting mainly through nicotinic receptors containing the α4 and β2 subunits, often in combination with the α6 subunit, nicotine increases the firing rate and the phasic bursts by midbrain dopamine neurons. Neuroadaptations arise during chronic exposure to nicotine, producing an altered brain condition that requires the continued presence of nicotine to be maintained. When nicotine is removed, a withdrawal syndrome develops. The expression of somatic withdrawal symptoms depends mainly on the α5, α2, and β4 (and likely α3) nicotinic subunits involving the epithalamic habenular complex and its targets. Thus, nicotine taps into diverse neural systems and an array of nicotinic acetylcholine receptor (nAChR) subtypes to influence reward, addiction, and withdrawal.
Collapse
Affiliation(s)
- Mariella De Biasi
- Department of Neuroscience, Center on Addiction, Learning, Memory, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | |
Collapse
|
232
|
Brown MTC, Bellone C, Mameli M, Labouèbe G, Bocklisch C, Balland B, Dahan L, Luján R, Deisseroth K, Lüscher C. Drug-driven AMPA receptor redistribution mimicked by selective dopamine neuron stimulation. PLoS One 2010; 5:e15870. [PMID: 21209835 PMCID: PMC3013137 DOI: 10.1371/journal.pone.0015870] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2010] [Accepted: 12/03/2010] [Indexed: 01/30/2023] Open
Abstract
Background Addictive drugs have in common that they cause surges in dopamine (DA) concentration in the mesolimbic reward system and elicit synaptic plasticity in DA neurons of the ventral tegmental area (VTA). Cocaine for example drives insertion of GluA2-lacking AMPA receptors (AMPARs) at glutamatergic synapes in DA neurons. However it remains elusive which molecular target of cocaine drives such AMPAR redistribution and whether other addictive drugs (morphine and nicotine) cause similar changes through their effects on the mesolimbic DA system. Methodology / Principal Findings We used in vitro electrophysiological techniques in wild-type and transgenic mice to observe the modulation of excitatory inputs onto DA neurons by addictive drugs. To observe AMPAR redistribution, post-embedding immunohistochemistry for GluA2 AMPAR subunit was combined with electron microscopy. We also used a double-floxed AAV virus expressing channelrhodopsin together with a DAT Cre mouse line to selectively express ChR2 in VTA DA neurons. We find that in mice where the effect of cocaine on the dopamine transporter (DAT) is specifically blocked, AMPAR redistribution was absent following administration of the drug. Furthermore, addictive drugs known to increase dopamine levels cause a similar AMPAR redistribution. Finally, activating DA VTA neurons optogenetically is sufficient to drive insertion of GluA2-lacking AMPARs, mimicking the changes observed after a single injection of morphine, nicotine or cocaine. Conclusions / Significance We propose the mesolimbic dopamine system as a point of convergence at which addictive drugs can alter neural circuits. We also show that direct activation of DA neurons is sufficient to drive AMPAR redistribution, which may be a mechanism associated with early steps of non-substance related addictions.
Collapse
Affiliation(s)
- Matthew T. C. Brown
- Department of Basic Neurosciences, Medical Faculty, University of Geneva, Geneva, Switzerland
| | - Camilla Bellone
- Department of Basic Neurosciences, Medical Faculty, University of Geneva, Geneva, Switzerland
| | - Manuel Mameli
- Department of Basic Neurosciences, Medical Faculty, University of Geneva, Geneva, Switzerland
| | - Gwenael Labouèbe
- Department of Basic Neurosciences, Medical Faculty, University of Geneva, Geneva, Switzerland
| | - Christina Bocklisch
- Department of Basic Neurosciences, Medical Faculty, University of Geneva, Geneva, Switzerland
| | - Bénédicte Balland
- Department of Basic Neurosciences, Medical Faculty, University of Geneva, Geneva, Switzerland
| | - Lionel Dahan
- Department of Basic Neurosciences, Medical Faculty, University of Geneva, Geneva, Switzerland
| | - Rafael Luján
- Departamento de Ciencias Medicas, Facultad de Medicina, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Karl Deisseroth
- Departments of Bioengineering and Psychiatry and Behavioral Sciences, Stanford University, Stanford, California, United States of America
| | - Christian Lüscher
- Department of Basic Neurosciences, Medical Faculty, University of Geneva, Geneva, Switzerland
- Clinic of Neurology, Department of Clinical Neurosciences, Geneva University Hospital, Geneva, Switzerland
- * E-mail:
| |
Collapse
|
233
|
Osorio-Espinoza A, Alatorre A, Ramos-Jiménez J, Garduño-Torres B, García-Ramírez M, Querejeta E, Arias-Montaño JA. Pre-synaptic histamine H₃ receptors modulate glutamatergic transmission in rat globus pallidus. Neuroscience 2010; 176:20-31. [PMID: 21195747 DOI: 10.1016/j.neuroscience.2010.12.051] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Revised: 12/22/2010] [Accepted: 12/24/2010] [Indexed: 02/04/2023]
Abstract
The globus pallidus, a neuronal nucleus involved in the control of motor behavior, expresses high levels of histamine H(3) receptors (H(3)Rs) most likely located on the synaptic afferents to the nucleus. In this work we studied the effect of the activation of rat pallidal H(3)Rs on depolarization-evoked neurotransmitter release from slices, neuronal firing rate in vivo and turning behavior. Perfusion of globus pallidus slices with the selective H(3)R agonist immepip had no effect on the release of [(3)H]-GABA ([(3)H]-γ-aminobutyric acid) or [(3)H]-dopamine evoked by depolarization with high (20 mM) K(+), but significantly reduced [(3)H]-d-aspartate release (-44.8 ± 2.6% and -63.7 ± 6.2% at 30 and 100 nM, respectively). The effect of 30 nM immepip was blocked by 10 μM of the selective H(3)R antagonist A-331440 (4'-[3-[(3(R)-dimethylamino-1-pyrrolidinyl]propoxy]-[1,1-biphenyl]-4'-carbonitrile). Intra-pallidal injection of immepip (0.1 μl, 100 μM) decreased spontaneous neuronal firing rate in anaesthetized rats (peak inhibition 68.8±10.3%), and this effect was reversed in a partial and transitory manner by A-331440 (0.1 μl, 1 mM). In free-moving rats the infusion of immepip (0.5 μl; 10, 50 and 100 μM) into the globus pallidus induced dose-related ipsilateral turning following systemic apomorphine (0.5 mg/kg, s.c.). Turning behavior induced by immepip (0.5 μl, 50 μM) and apomorphine was partially prevented by the local injection of A-331440 (0.5 μl, 1 mM) and was not additive to the turning evoked by the intra-pallidal injection of antagonists at ionotropic glutamate receptors (0.5 μl, 1 mM each of AP-5, dl-2-amino-5-phosphonovaleric acid, and CNQX, 6-nitro-7-sulphamoylbenzo[f]quinoxaline-2,3-dione). These results indicate that pre-synaptic H(3)Rs modulate glutamatergic transmission in rat globus pallidus and thus participate in the control of movement by basal ganglia.
Collapse
Affiliation(s)
- A Osorio-Espinoza
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Av. Instituto Politécnico Nacional 2508, Zacatenco, 07360 México, D.F., México
| | | | | | | | | | | | | |
Collapse
|
234
|
Benoit-Marand M, Ballion B, Borrelli E, Boraud T, Gonon F. Inhibition of dopamine uptake by D2 antagonists: an in vivo study. J Neurochem 2010; 116:449-58. [DOI: 10.1111/j.1471-4159.2010.07125.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
235
|
Ding S, Matta SG, Zhou FM. Kv3-like potassium channels are required for sustained high-frequency firing in basal ganglia output neurons. J Neurophysiol 2010; 105:554-70. [PMID: 21160004 DOI: 10.1152/jn.00707.2010] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The GABA projection neurons in the substantial nigra pars reticulata (SNr) are key output neurons of the basal ganglia motor control circuit. These neurons fire sustained high-frequency, short-duration spikes that provide a tonic inhibition to their targets and are critical to movement control. We hypothesized that a robust voltage-activated K(+) conductance that activates quickly and resists inactivation is essential to the remarkable fast-spiking capability in these neurons. Semi-quantitative RT-PCR (qRT-PCR) analysis on laser capture-microdissected nigral neurons indicated that mRNAs for Kv3.1 and Kv3.4, two key subunits for forming high activation threshold, fast-activating, slow-inactivating, 1 mM tetraethylammonium (TEA)-sensitive, fast delayed rectifier (I(DR-fast)) type Kv channels, are more abundant in fast-spiking SNr GABA neurons than in slow-spiking nigral dopamine neurons. Nucleated patch clamp recordings showed that SNr GABA neurons have a strong Kv3-like I(DR-fast) current sensitive to 1 mM TEA that activates quickly at depolarized membrane potentials and is resistant to inactivation. I(DR-fast) is smaller in nigral dopamine neurons. Pharmacological blockade of I(DR-fast) by 1 mM TEA impaired the high-frequency firing capability in SNr GABA neurons. Taken together, these results indicate that Kv3-like channels mediating fast-activating, inactivation-resistant I(DR-fast) current are critical to the sustained high-frequency firing in SNr GABA projection neurons and hence movement control.
Collapse
Affiliation(s)
- Shengyuan Ding
- Department of Pharmacology, University of Tennessee College of Medicine, Memphis, TN 38163, USA
| | | | | |
Collapse
|
236
|
Abstract
Tonic and phasic dopamine release is implicated in learning, motivation, and motor functions. However, the relationship between spike patterns in dopaminergic neurons, the extracellular concentration of dopamine, and activation of dopamine receptors remains unresolved. In the present study, we develop a computational model of dopamine signaling that give insight into the relationship between the dynamics of release and occupancy of D(1) and D(2) receptors. The model is derived from first principles using experimental data. It has no free parameters and offers unbiased estimation of the boundaries of dopaminergic volume transmission. Bursts primarily increase occupancy of D(1) receptors, whereas pauses translate into low occupancy of D(1) and D(2) receptors. Phasic firing patterns, composed of bursts and pauses, reduce the average D(2) receptor occupancy and increase average D(1) receptor occupancy compared with equivalent tonic firing. Receptor occupancy is crucially dependent on synchrony and the balance between tonic and phasic firing modes. Our results provide quantitative insight in the dynamics of volume transmission and complement experimental data obtained with electrophysiology, positron emission tomography, microdialysis, amperometry, and voltammetry.
Collapse
|
237
|
Radulescu AR. Mechanisms explaining transitions between tonic and phasic firing in neuronal populations as predicted by a low dimensional firing rate model. PLoS One 2010; 5:e12695. [PMID: 20877649 PMCID: PMC2943909 DOI: 10.1371/journal.pone.0012695] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Accepted: 08/13/2010] [Indexed: 11/18/2022] Open
Abstract
Several firing patterns experimentally observed in neural populations have been successfully correlated to animal behavior. Population bursting, hereby regarded as a period of high firing rate followed by a period of quiescence, is typically observed in groups of neurons during behavior. Biophysical membrane-potential models of single cell bursting involve at least three equations. Extending such models to study the collective behavior of neural populations involves thousands of equations and can be very expensive computationally. For this reason, low dimensional population models that capture biophysical aspects of networks are needed. The present paper uses a firing-rate model to study mechanisms that trigger and stop transitions between tonic and phasic population firing. These mechanisms are captured through a two-dimensional system, which can potentially be extended to include interactions between different areas of the nervous system with a small number of equations. The typical behavior of midbrain dopaminergic neurons in the rodent is used as an example to illustrate and interpret our results. The model presented here can be used as a building block to study interactions between networks of neurons. This theoretical approach may help contextualize and understand the factors involved in regulating burst firing in populations and how it may modulate distinct aspects of behavior.
Collapse
Affiliation(s)
- Anca R Radulescu
- Department of Psychology, University of Colorado, Boulder, Colorado, USA.
| |
Collapse
|
238
|
Beyene M, Carelli RM, Wightman RM. Cue-evoked dopamine release in the nucleus accumbens shell tracks reinforcer magnitude during intracranial self-stimulation. Neuroscience 2010; 169:1682-8. [PMID: 20600644 PMCID: PMC2918713 DOI: 10.1016/j.neuroscience.2010.06.047] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 06/16/2010] [Accepted: 06/18/2010] [Indexed: 10/19/2022]
Abstract
The mesolimbic dopamine system is critically involved in modulating reward-seeking behavior and is transiently activated upon presentation of reward-predictive cues. It has previously been shown, using fast-scan cyclic voltammetry in behaving rats, that cues predicting a variety of reinforcers including food/water, cocaine or intracranial self-stimulation (ICSS) elicit time-locked transient fluctuations in dopamine concentration in the nucleus accumbens (NAc) shell. These dopamine transients have been found to correlate with reward-related learning and are believed to promote reward-seeking behavior. Here, we investigated the effects of varying reinforcer magnitude (intracranial stimulation parameters) on cue-evoked dopamine release in the NAc shell in rats performing ICSS. We found that the amplitude of cue-evoked dopamine is adaptable, tracks reinforcer magnitude and is significantly correlated with ICSS seeking behavior. Specifically, the concentration of cue-associated dopamine transients increased significantly with increasing reinforcer magnitude, while, at the same time, the latency to lever press decreased with reinforcer magnitude. These data support the proposed role of NAc dopamine in the facilitation of reward-seeking and provide unique insight into factors influencing the plasticity of dopaminergic signaling during behavior.
Collapse
Affiliation(s)
- Manna Beyene
- Curriculum in Neurobiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290
| | - Regina M. Carelli
- Curriculum in Neurobiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290
- Department of Psychology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290
| | - R. Mark Wightman
- Curriculum in Neurobiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290
| |
Collapse
|
239
|
Bao L, Patel JC, Walker RH, Shashidharan P, Rice ME. Dysregulation of striatal dopamine release in a mouse model of dystonia. J Neurochem 2010; 114:1781-91. [PMID: 20626557 PMCID: PMC2951331 DOI: 10.1111/j.1471-4159.2010.06890.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Dystonia is a neurological disorder characterized by involuntary movements. We examined striatal dopamine (DA) function in hyperactive transgenic (Tg) mice generated as a model of dystonia. Evoked extracellular DA concentration was monitored with carbon-fiber microelectrodes and fast-scan cyclic voltammetry in striatal slices from non-Tg mice, Tg mice with a positive motor phenotype, and phenotype-negative Tg littermates. Peak single-pulse evoked extracellular DA concentration was significantly lower in phenotype-positive mice than in non-Tg or phenotype-negative mice, but indistinguishable between non-Tg and phenotype-negative mice. Phenotype-positive mice also had higher functional D2 DA autoreceptor sensitivity than non-Tg mice, which would be consistent with lower extracellular DA concentration in vivo. Multiple-pulse (phasic) stimulation (five pulses, 10-100 Hz) revealed an enhanced frequency dependence of evoked DA release in phenotype-positive versus non-Tg or phenotype-negative mice, which was exacerbated when extracellular Ca(2+) concentration was lowered. Enhanced sensitivity to phasic stimulation in phenotype-positive mice was reminiscent of the pattern seen with antagonism of nicotinic acetylcholine receptors. Consistent with a role for altered cholinergic regulation, the difference in phasic responsiveness among groups was lost when nicotinic receptors were blocked by mecamylamine. Together, these data implicate compromised DA release regulation, possibly from cholinergic dysfunction, in the motor symptoms of this dystonia model.
Collapse
Affiliation(s)
- Li Bao
- Department of Physiology and Neuroscience NYU School of Medicine, New York, NY USA
- Department of Neurosurgery NYU School of Medicine, New York, NY USA
| | - Jyoti C. Patel
- Department of Neurosurgery NYU School of Medicine, New York, NY USA
| | - Ruth H. Walker
- Department of Neurology, James J. Peters Veterans Affairs Medical Center, Bronx, NY USA
- Department of Neurology, Mount Sinai School of Medicine, New York, NY USA
| | | | - Margaret E. Rice
- Department of Physiology and Neuroscience NYU School of Medicine, New York, NY USA
- Department of Neurosurgery NYU School of Medicine, New York, NY USA
| |
Collapse
|
240
|
Abstract
The substantia nigra pars reticulata (SNr) is a key basal ganglia output nucleus critical for movement control. A hallmark of the SNr gamma-aminobutyric acid (GABA)-containing projection neurons is their depolarized membrane potential, accompanied by rapid spontaneous spikes. Parkinsonian movement disorders are often associated with abnormalities in SNr GABA neuron firing intensity and/or pattern. A fundamental question is the molecular identity of the ion channels that drive these neurons to a depolarized membrane potential. Recent data show that SNr GABA projection neurons selectively express type 3 canonical transient receptor potential (TRPC3) channels. Such channels are tonically active and mediate an inward, Na(+)-dependent current, leading to a substantial depolarization and ensuring appropriate firing intensity and pattern in SNr GABA projection neurons. Equally important, TRPC3 channels in SNr GABA neurons are up-regulated by dopamine (DA) released from neighboring nigral DA neuron dendrites. Co-activation of D1 and D5 DA receptors leads to a TRPC3 channel-mediated inward current and increased firing in SNr GABA neurons, whereas D1-like receptor blockade reduces SNr GABA neuron firing frequency and increases their firing irregularity. TRPC3 channels serve as the effector channels mediating an ultra-short SNc-->SNr DA pathway that regulates the firing intensity and pattern of the basal ganglia output neurons.
Collapse
Affiliation(s)
- Fu-Ming Zhou
- Department of Pharmacology, University of Tennessee College of Medicine, Memphis TN 38163, USA.
| |
Collapse
|
241
|
Drenan RM, Grady SR, Steele AD, McKinney S, Patzlaff NE, McIntosh JM, Marks MJ, Miwa JM, Lester HA. Cholinergic modulation of locomotion and striatal dopamine release is mediated by alpha6alpha4* nicotinic acetylcholine receptors. J Neurosci 2010; 30:9877-89. [PMID: 20660270 PMCID: PMC3390922 DOI: 10.1523/jneurosci.2056-10.2010] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 06/14/2010] [Accepted: 06/16/2010] [Indexed: 11/21/2022] Open
Abstract
Dopamine (DA) release in striatum is governed by firing rates of midbrain DA neurons, striatal cholinergic tone, and nicotinic ACh receptors (nAChRs) on DA presynaptic terminals. DA neurons selectively express alpha6* nAChRs, which show high ACh and nicotine sensitivity. To help identify nAChR subtypes that control DA transmission, we studied transgenic mice expressing hypersensitive alpha6(L9'S)* receptors. alpha6(L9'S) mice are hyperactive, travel greater distance, exhibit increased ambulatory behaviors such as walking, turning, and rearing, and show decreased pausing, hanging, drinking, and grooming. These effects were mediated by alpha6alpha4* pentamers, as alpha6(L9'S) mice lacking alpha4 subunits displayed essentially normal behavior. In alpha6(L9'S) mice, receptor numbers are normal, but loss of alpha4 subunits leads to fewer and less sensitive alpha6* receptors. Gain-of-function nicotine-stimulated DA release from striatal synaptosomes requires alpha4 subunits, implicating alpha6alpha4beta2* nAChRs in alpha6(L9'S) mouse behaviors. In brain slices, we applied electrochemical measurements to study control of DA release by alpha6(L9'S) nAChRs. Burst stimulation of DA fibers elicited increased DA release relative to single action potentials selectively in alpha6(L9'S), but not WT or alpha4KO/alpha6(L9'S), mice. Thus, increased nAChR activity, like decreased activity, leads to enhanced extracellular DA release during phasic firing. Bursts may directly enhance DA release from alpha6(L9'S) presynaptic terminals, as there was no difference in striatal DA receptor numbers or DA transporter levels or function in vitro. These results implicate alpha6alpha4beta2* nAChRs in cholinergic control of DA transmission, and strongly suggest that these receptors are candidate drug targets for disorders involving the DA system.
Collapse
Affiliation(s)
- Ryan M. Drenan
- California Institute of Technology, Pasadena, California 91125
| | - Sharon R. Grady
- Institute for Behavioral Genetics, University of Colorado at Boulder, Boulder, Colorado 80309, and
| | | | - Sheri McKinney
- California Institute of Technology, Pasadena, California 91125
| | - Natalie E. Patzlaff
- Institute for Behavioral Genetics, University of Colorado at Boulder, Boulder, Colorado 80309, and
| | - J. Michael McIntosh
- Departments of Psychiatry and
- Biology, University of Utah, Salt Lake City, Utah 84112
| | - Michael J. Marks
- Institute for Behavioral Genetics, University of Colorado at Boulder, Boulder, Colorado 80309, and
| | - Julie M. Miwa
- California Institute of Technology, Pasadena, California 91125
| | - Henry A. Lester
- California Institute of Technology, Pasadena, California 91125
| |
Collapse
|
242
|
Lobb CJ, Wilson CJ, Paladini CA. A dynamic role for GABA receptors on the firing pattern of midbrain dopaminergic neurons. J Neurophysiol 2010; 104:403-13. [PMID: 20445035 PMCID: PMC2904231 DOI: 10.1152/jn.00204.2010] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Accepted: 04/29/2010] [Indexed: 01/10/2023] Open
Abstract
Dopaminergic neurons are subject to a significant background GABAergic input in vivo. The presence of this GABAergic background might be expected to inhibit dopaminergic neuron firing. However, dopaminergic neurons are not all silent but instead fire in single-spiking and burst firing modes. Here we present evidence that phasic changes in the tonic activity of GABAergic afferents are a potential extrinsic mechanism that triggers bursts and pauses in dopaminergic neurons. We find that spontaneous single-spiking is more sensitive to activation of GABA receptors than phasic N-methyl-D-aspartate (NMDA)-mediated burst firing in rat slices (P15-P31). Because tonic activation of GABA(A) receptors has previously been shown to suppress burst firing in vivo, our results suggest that the activity patterns seen in vivo are the result of a balance between excitatory and inhibitory conductances that interact with the intrinsic pacemaking currents observed in slices. Using the dynamic clamp technique, we applied balanced, constant NMDA and GABA(A) receptor conductances into dopaminergic neurons in slices. Bursts could be produced by disinhibition (phasic removal of the GABA(A) receptor conductance), and these bursts had a higher frequency than bursts produced by the same NMDA receptor conductance alone. Phasic increases in the GABA(A) receptor conductance evoked pauses in firing. In contrast to NMDA receptor, application of constant AMPA and GABA(A) receptor conductances caused the cell to go into depolarization block. These results support a bidirectional mechanism by which GABAergic inputs, in balance with NMDA receptor-mediated excitatory inputs, control the firing pattern of dopaminergic neurons.
Collapse
Affiliation(s)
- Collin J Lobb
- Neurosciences Institute, University of Texas at San Antonio, San Antonio, Texas 78249, USA
| | | | | |
Collapse
|
243
|
Addy NA, Daberkow DP, Ford JN, Garris PA, Wightman RM. Sensitization of rapid dopamine signaling in the nucleus accumbens core and shell after repeated cocaine in rats. J Neurophysiol 2010; 104:922-31. [PMID: 20554845 PMCID: PMC2934942 DOI: 10.1152/jn.00413.2010] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Repeated cocaine exposure and withdrawal leads to long-term changes, including behavioral and dopamine sensitization to an acute cocaine challenge, that are most pronounced after long withdrawal periods. However, the changes in dopamine neurotransmission after short withdrawal periods are less well defined. To study dopamine neurotransmission after 1-day withdrawal, we used fast-scan cyclic voltammetry (FSCV) to determine whether repeated cocaine alters rapid dopamine release and uptake in the nucleus accumbens (NAc) core and shell. FSCV was performed in urethane anesthetized male Sprague-Dawley rats that had previously received one or seven daily injections of saline or cocaine (15 mg/kg, ip). In response to acute cocaine, subjects showed increased dopamine overflow that resulted from both increased dopamine release and slowed dopamine uptake. One-day cocaine pre-exposure, however, did not alter dopaminergic responses to a subsequent cocaine challenge. In contrast, 7-day cocaine-treated subjects showed a potentiated rapid dopamine response in both the core and shell after an acute cocaine challenge. In addition, kinetic analysis during the cocaine challenge showed a greater increase in apparent K(m) of 7-day cocaine exposed subjects. Together, the data provide the first in vivo demonstration of rapid dopamine sensitization in the NAc core and shell after a short withdrawal period. In addition, the data clearly delineate cocaine's release and uptake effects and suggest that the observed sensitization results from greater uptake inhibition in cocaine pre-exposed subjects.
Collapse
Affiliation(s)
- Nii A Addy
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina, USA
| | | | | | | | | |
Collapse
|
244
|
Good CH, Lupica CR. Afferent-specific AMPA receptor subunit composition and regulation of synaptic plasticity in midbrain dopamine neurons by abused drugs. J Neurosci 2010; 30:7900-9. [PMID: 20534838 PMCID: PMC2900154 DOI: 10.1523/jneurosci.1507-10.2010] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Accepted: 04/22/2010] [Indexed: 12/29/2022] Open
Abstract
Ventral tegmental area (VTA) dopamine (DA) neurons play a pivotal role in processing reward-related information and are involved in drug addiction and mental illness in humans. Information is conveyed to the VTA in large part by glutamatergic afferents that arise in various brain nuclei, including the pedunculopontine nucleus (PPN). Using a unique rat brain slice preparation, we found that PPN stimulation activates afferents targeting GluR2-containing AMPA receptors (AMPAR) on VTA DA neurons, and these afferents did not exhibit long-term depression (LTD). In contrast, activation of glutamate afferents onto the same DA neurons via stimulation within the VTA evoked EPSCs mediated by GluR2-lacking AMPARs that demonstrated LTD or EPSCs mediated by GluR2-containing AMPA receptors that did not express LTD. Twenty-four hours after single cocaine injections to rats, GluR2-lacking AMPARs were increased at both PPN and local VTA projections, and this permitted LTD expression in both pathways. Single injections with the main psychoactive ingredient of marijuana, Delta(9)-tetrahydrocannabinol (Delta(9)-THC), increased GluR2-lacking AMPA receptors and permitted LTD in only the PPN pathway, and these effects were prevented by in vivo pretreatment with the cannabinoid CB1 receptor antagonist AM251. These results demonstrate that cocaine more globally increases GluR2-lacking AMPA receptors at all glutamate synapses on VTA dopamine neurons, whereas Delta(9)-THC selectively increased GluR2-lacking AMPA receptors at subcortical PPN synapses. This suggests that different abused drugs may exert influence over distinct sets of glutamatergic afferents to VTA DA neurons which may be associated with different reinforcing or addictive properties of these drugs.
Collapse
Affiliation(s)
- Cameron H. Good
- Electrophysiology Research Section, Cellular Neurobiology Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224
| | - Carl R. Lupica
- Electrophysiology Research Section, Cellular Neurobiology Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224
| |
Collapse
|
245
|
Ebner SR, Roitman MF, Potter DN, Rachlin AB, Chartoff EH. Depressive-like effects of the kappa opioid receptor agonist salvinorin A are associated with decreased phasic dopamine release in the nucleus accumbens. Psychopharmacology (Berl) 2010; 210:241-52. [PMID: 20372879 PMCID: PMC2894632 DOI: 10.1007/s00213-010-1836-5] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Accepted: 03/11/2010] [Indexed: 11/25/2022]
Abstract
RATIONALE Kappa opioid receptors (KORs) have been implicated in depressive-like states associated with chronic administration of drugs of abuse and stress. Although KOR agonists decrease dopamine in the nucleus accumbens (NAc), KOR modulation of phasic dopamine release in the core and shell subregions of the NAc-which have distinct roles in reward processing-remains poorly understood. OBJECTIVES Studies were designed to examine whether the time course of effects of KOR activation on phasic dopamine release in the NAc core or shell are similar to effects on motivated behavior. METHODS The effect of systemic administration of the KOR agonist salvinorin A (salvA)-at a dose (2.0 mg/kg) previously determined to have depressive-like effects-was measured on electrically evoked phasic dopamine release in the NAc core or shell of awake and behaving rats using fast scan cyclic voltammetry. In parallel, the effects of salvA on intracranial self-stimulation (ICSS) and sucrose-reinforced responding were assessed. For comparison, a threshold dose of salvA (0.25 mg/kg) was also tested. RESULTS The active, but not threshold, dose of salvA significantly decreased phasic dopamine release without affecting dopamine reuptake in the NAc core and shell. SalvA increased ICSS thresholds and significantly lowered breakpoint on the progressive ratio schedule, indicating a decrease in motivation. The time course of the KOR-mediated decrease in dopamine in the core was qualitatively similar to the effects on motivated behavior. CONCLUSIONS These data suggest that the effects of KOR activation on motivation are due, in part, to inhibition of phasic dopamine signaling in the NAc core.
Collapse
Affiliation(s)
- Stephanie R Ebner
- Department of Psychology, University of Illinois at Chicago, Chicago, IL 60607, USA
| | | | | | | | | |
Collapse
|
246
|
Kuznetsova AY, Huertas MA, Kuznetsov AS, Paladini CA, Canavier CC. Regulation of firing frequency in a computational model of a midbrain dopaminergic neuron. J Comput Neurosci 2010; 28:389-403. [PMID: 20217204 PMCID: PMC2929809 DOI: 10.1007/s10827-010-0222-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Revised: 01/15/2010] [Accepted: 02/01/2010] [Indexed: 11/25/2022]
Abstract
Dopaminergic (DA) neurons of the mammalian midbrain exhibit unusually low firing frequencies in vitro. Furthermore, injection of depolarizing current induces depolarization block before high frequencies are achieved. The maximum steady and transient rates are about 10 and 20 Hz, respectively, despite the ability of these neurons to generate bursts at higher frequencies in vivo. We use a three-compartment model calibrated to reproduce DA neuron responses to several pharmacological manipulations to uncover mechanisms of frequency limitation. The model exhibits a slow oscillatory potential (SOP) dependent on the interplay between the L-type Ca(2+) current and the small conductance K(+) (SK) current that is unmasked by fast Na(+) current block. Contrary to previous theoretical work, the SOP does not pace the steady spiking frequency in our model. The main currents that determine the spontaneous firing frequency are the subthreshold L-type Ca(2+) and the A-type K(+) currents. The model identifies the channel densities for the fast Na(+) and the delayed rectifier K(+) currents as critical parameters limiting the maximal steady frequency evoked by a depolarizing pulse. We hypothesize that the low maximal steady frequencies result from a low safety factor for action potential generation. In the model, the rate of Ca(2+) accumulation in the distal dendrites controls the transient initial frequency in response to a depolarizing pulse. Similar results are obtained when the same model parameters are used in a multi-compartmental model with a realistic reconstructed morphology, indicating that the salient contributions of the dendritic architecture have been captured by the simpler model.
Collapse
Affiliation(s)
- Anna Y Kuznetsova
- Department of Biology and Neurosciences Institute, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA
| | | | | | | | | |
Collapse
|
247
|
Tecuapetla F, Patel JC, Xenias H, English D, Tadros I, Shah F, Berlin J, Deisseroth K, Rice ME, Tepper JM, Koos T. Glutamatergic signaling by mesolimbic dopamine neurons in the nucleus accumbens. J Neurosci 2010; 30:7105-10. [PMID: 20484653 PMCID: PMC3842465 DOI: 10.1523/jneurosci.0265-10.2010] [Citation(s) in RCA: 243] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2010] [Revised: 02/27/2010] [Accepted: 03/31/2010] [Indexed: 11/21/2022] Open
Abstract
Recent evidence suggests the intriguing possibility that midbrain dopaminergic (DAergic) neurons may use fast glutamatergic transmission to communicate with their postsynaptic targets. Because of technical limitations, direct demonstration of the existence of this signaling mechanism has been limited to experiments using cell culture preparations that often alter neuronal function including neurotransmitter phenotype. Consequently, it remains uncertain whether glutamatergic signaling between DAergic neurons and their postsynaptic targets exists under physiological conditions. Here, using an optogenetic approach, we provide the first conclusive demonstration that mesolimbic DAergic neurons in mice release glutamate and elicit excitatory postsynaptic responses in projection neurons of the nucleus accumbens. In addition, we describe the properties of the postsynaptic glutamatergic responses of these neurons during experimentally evoked burst firing of DAergic axons that reproduce the reward-related phasic population activity of the mesolimbic projection. These observations indicate that, in addition to DAergic mechanisms, mesolimbic reward signaling may involve glutamatergic transmission.
Collapse
Affiliation(s)
- Fatuel Tecuapetla
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, New Jersey 07102
| | - Jyoti C. Patel
- Departments of Neurosurgery and Physiology and Neuroscience, New York University School of Medicine, New York, New York 10016
| | - Harry Xenias
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, New Jersey 07102
| | - Daniel English
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, New Jersey 07102
| | - Ibrahim Tadros
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, New Jersey 07102
| | - Fulva Shah
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, New Jersey 07102
| | - Joshua Berlin
- Department of Pharmacology and Physiology, New Jersey Medical School, Newark, New Jersey 07103, and
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, California 94305
| | - Margaret E. Rice
- Departments of Neurosurgery and Physiology and Neuroscience, New York University School of Medicine, New York, New York 10016
| | - James M. Tepper
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, New Jersey 07102
| | - Tibor Koos
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, New Jersey 07102
| |
Collapse
|
248
|
Lee CR, Tepper JM. Basal ganglia control of substantia nigra dopaminergic neurons. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 2010:71-90. [PMID: 20411769 DOI: 10.1007/978-3-211-92660-4_6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2023]
Abstract
Although substantia nigra dopaminergic neurons are spontaneously active both in vivo and in vitro, this activity does not depend on afferent input as these neurons express an endogenous calcium-dependent oscillatory mechanism sufficient to drive action potential generation. However, afferents to these neurons, a large proportion of them GABAergic and arising from other nuclei in the basal ganglia, play a crucial role in modulating the activity of dopaminergic neurons. In the absence of afferent activity or when in brain slices, dopaminergic neurons fire in a very regular, pacemaker-like mode. Phasic activity in GABAergic, glutamatergic, and cholinergic inputs modulates the pacemaker activity into two other modes. The most common is a random firing pattern in which interspike intervals assume a Poisson-like distribution, and a less common pattern, often in response to a conditioned stimulus or a reward in which the neurons fire bursts of 2-8 spikes time-locked to the stimulus. Typically in vivo, all three firing patterns are observed, intermixed, in single nigrostriatal neurons varying over time. Although the precise mechanism(s) underlying the burst are currently the focus of intensive study, it is obvious that bursting must be triggered by afferent inputs. Most of the afferents to substantia nigra pars compacta dopaminergic neurons comprise monosynaptic inputs from GABAergic projection neurons in the ipsilateral neostriatum, the globus pallidus, and the substantia nigra pars reticulata. A smaller fraction of the basal ganglia inputs, something less than 30%, are glutamatergic and arise principally from the ipsilateral subthalamic nucleus and pedunculopontine nucleus. The pedunculopontine nucleus also sends a cholinergic input to nigral dopaminergic neurons. The GABAergic pars reticulata projection neurons also receive inputs from all of these sources, in some cases relaying them disynaptically to the dopaminergic neurons, thereby playing a particularly significant role in setting and/or modulating the firing pattern of the nigrostriatal neurons.
Collapse
Affiliation(s)
- Christian R Lee
- Department of Neurosurgery, New York University School of Medicine, 4 New York, NY 10016, USA.
| | | |
Collapse
|
249
|
Puryear CB, Kim MJ, Mizumori SJ. Conjunctive encoding of movement and reward by ventral tegmental area neurons in the freely navigating rodent. Behav Neurosci 2010; 124:234-47. [PMID: 20364883 PMCID: PMC2864532 DOI: 10.1037/a0018865] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
As one of the two main sources of brain dopamine, the ventral tegmental area (VTA) is important for several complex functions, including motivation, reward prediction, and contextual learning. Although many studies have identified the potential neural substrate of VTA dopaminergic activity in reward prediction functions during Pavlovian and operant conditioning tasks, less is understood about the role of VTA neuronal activity in motivated behaviors and more naturalistic forms of context-dependent learning. Therefore, VTA neural activity was recorded as rats performed a spatial memory task under varying contextual conditions. In addition to reward- and reward predicting cue-related firing commonly observed during conditioning tasks, the activity of a large proportion of VTA neurons was also related to the velocity and/or acceleration of the animal's movement. It is important to note that movement-related activity was strongest when rats displayed more motivation to obtain reward. Furthermore, many cells displayed a dual code of movement- and reward-related activity. These two modes of firing, however, were differentially regulated by context information, suggesting that movement- and reward-related firing are two independently regulated modes of VTA neuronal activity and may serve separate functions.
Collapse
Affiliation(s)
- Corey B. Puryear
- Present Address: Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Building 46-5285, 43 Vassar St., Cambridge, MA 02139
| | - Min Jung Kim
- University of Washington Department of Psychology Box 351525 Seattle, WA 98195
| | - Sheri J.Y. Mizumori
- University of Washington Department of Psychology Box 351525 Seattle, WA 98195
| |
Collapse
|
250
|
Zakharov DG, Kuznetsov AS, Nekorkin VI. A two-compartment phenomenological model of a dopaminergic neuron. Biophysics (Nagoya-shi) 2010. [DOI: 10.1134/s0006350910020132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|