201
|
Siegmund S, Vengeliene V, Singer MV, Spanagel R. Influence of age at drinking onset on long-term ethanol self-administration with deprivation and stress phases. Alcohol Clin Exp Res 2006; 29:1139-45. [PMID: 16046868 DOI: 10.1097/01.alc.0000171928.40418.46] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Onset of alcohol use during adolescence has potentially long-lasting consequences, e.g., prospective alcohol dependence. To obtain new insight into the effects of early chronic ethanol consumption, we compared the drinking behavior of two adult male Wistar rat groups: one that initiated alcohol consumption during adolescence (adolescent group) and the other that initiated their drinking during adulthood (adult group) in a model of long-term alcohol self-administration. We investigated the magnitude of the effects of deprivation and stress on alcohol intake and the influence of these events on the alcohol drinking behavior across time. METHODS Heterogeneous Wistar rats aged 31 days (adolescents) and 71 days (adults) were given ad libitum access to water, as well as 5% and 20% ethanol solutions during an observation period of 30 wk. A deprivation phase of 14 days was instituted after eight wk of access to alcohol. After 16 and 26 wk of alcohol access, all animals were subjected for three consecutive days to forced swimming and electric foot shocks, respectively. RESULTS At the onset of drinking, adolescent animals consumed less alcohol and showed lower preference than adults. The deprivation phase was followed by increased intake of highly concentrated ethanol solution without appreciable differences between age groups. Repeated swim stress produced a slight increase in ethanol consumption in both animal groups; however, alcohol intake was not significantly different between groups, whereas the foot shock stress-induced increase in alcohol intake was significantly higher in the animal group that initiated alcohol consumption during adolescence. After swim stress, the drinking behavior of the adolescent group resembled that of the adult group. In particular, the adolescent group increased their preference for 20% ethanol solution for the remainder of the experiment. CONCLUSIONS Age of voluntary alcohol drinking onset does not appear to be a strong predictor for prospective alcohol intake and relapse-like drinking behavior under the present experimental conditions. However, male Wistar rats that initiated alcohol consumption during adolescence seem to be more susceptible to acute stressor-specific effects in terms of alcohol consumption.
Collapse
Affiliation(s)
- Sören Siegmund
- Department of Psychopharmacology, University of Heidelberg, Central Institute of Mental Health, Mannheim, Germany
| | | | | | | |
Collapse
|
202
|
Wismer Fries AB, Ziegler TE, Kurian JR, Jacoris S, Pollak SD. Early experience in humans is associated with changes in neuropeptides critical for regulating social behavior. Proc Natl Acad Sci U S A 2005; 102:17237-40. [PMID: 16303870 PMCID: PMC1287978 DOI: 10.1073/pnas.0504767102] [Citation(s) in RCA: 353] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2005] [Accepted: 09/20/2005] [Indexed: 11/18/2022] Open
Abstract
The formation of social attachments is a critical component of human relationships. Infants begin to bond to their caregivers from the moment of birth, and these social bonds continue to provide regulatory emotional functions throughout adulthood. It is difficult to examine the interactions between social experience and the biological origins of these complex behaviors because children undergo both brain development and accumulate social experience at the same time. We had a rare opportunity to examine children who were reared in extremely aberrant social environments where they were deprived of the kind of care-giving typical for our species. The present experiment in nature provides insight into the role of early experience on the brain systems underlying the development of emotional behavior. These data indicate that the vasopressin and oxytocin neuropeptide systems, which are critical in the establishment of social bonds and the regulation of emotional behaviors, are affected by early social experience. The results of this experiment suggest a potential mechanism whose atypical function may explain the pervasive social and emotional difficulties observed in many children who have experienced aberrant care-giving. The present findings are consistent with the view that there is a critical role for early experience in the development of the brain systems underlying basic aspects of human social behavior.
Collapse
Affiliation(s)
- Alison B Wismer Fries
- Department of Psychology, University of Wisconsin, 1202 West Johnson Street, Madison, WI 53706-1696, USA
| | | | | | | | | |
Collapse
|
203
|
Ebner K, Bosch OJ, Krömer SA, Singewald N, Neumann ID. Release of oxytocin in the rat central amygdala modulates stress-coping behavior and the release of excitatory amino acids. Neuropsychopharmacology 2005; 30:223-30. [PMID: 15536493 DOI: 10.1038/sj.npp.1300607] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Previous experiments have indicated that the release of oxytocin (OXT) occurs in various hypothalamic and extrahypothalamic brain areas. In the present study, we investigated in male rats whether swim stress triggers the release of OXT in the central amygdala (CeA), a key area in processing emotions and stress responses. Further, we examined the physiological significance of OXT released within the CeA for behavioral responses during forced swimming as well as effects on the local release of selected amino acids including glutamate, aspartate, arginine, taurine, and GABA, which are thought to modulate processing of emotions. Exposure to a 10-min forced swimming session caused a significant increase in OXT release (200%, p<0.01) within, but not outside, the CeA as monitored by microdialysis. Administration of the OXT receptor antagonist des-Gly-NH2d(CH2)5(Tyr(Me)2Thr4)OVT via inverse microdialysis into the amygdala before and during exposure to swimming reduced the floating time by 55% (p<0.05) and increased the swimming time by 29% (p<0.05) indicative of a more active stress-coping strategy. Simultaneously, local administration of the OXT receptor antagonist caused a significant increase in the stress-induced release of the excitatory amino acids glutamate and aspartate, whereas the basal release of these amino acids remained unchanged. Taken together, these findings demonstrate a significant activation of the oxytocinergic system in the CeA in response to swim stress. Furthermore, our data indicate that OXT receptor-mediated mechanisms within the amygdala are involved in the generation of passive stress-coping strategies, which might be mediated at least in part via its inhibitory influence on the local release of excitatory amino acids during stress.
Collapse
Affiliation(s)
- Karl Ebner
- Department of Pharmacology and Toxicology, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria.
| | | | | | | | | |
Collapse
|
204
|
Vasopressin and oxytocin. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/s0921-0709(05)80014-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
205
|
Abstract
This review is focused on the involvement of neuropeptides in the modulation of physiological and pathological anxiety. Neuropeptides play a major role as endogenous modulators of complex behaviours, including anxiety-related behaviour and psychopathology, particularly due to their high number and diversity, the dynamics of release patterns in distinct brain areas and the multiple and variable modes of interneuronal communication they are involved in. Manipulations of central neuropeptidergic systems to reveal their role in anxiety (and often comorbid depression-like behaviour) include a broad spectrum of loss-of-function and gain-of-function approaches. This article concentrates on those neuropeptides for which an involvement as endogenous anxiolytic or anxiogenic modulators is well established by such complementary approaches. Particular attention is paid to corticotropin-releasing hormone (CRH) and vasopressin (AVP) which, closely linked to stress, neuroendocrine regulation, social behaviour and learning/memory, play critical roles in the regulation of anxiety-related behaviour of rodents. Provided that their neurobiology, neuroendocrinology and molecular-genetic background are well characterized, these and other neuropeptidergic systems may be promising targets for future anxiolytic strategies.
Collapse
Affiliation(s)
- R Landgraf
- Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany.
| |
Collapse
|
206
|
Ebner K, Wotjak CT, Landgraf R, Engelmann M. Neuroendocrine and behavioral response to social confrontation: residents versus intruders, active versus passive coping styles. Horm Behav 2005; 47:14-21. [PMID: 15579261 DOI: 10.1016/j.yhbeh.2004.08.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2004] [Revised: 08/01/2004] [Accepted: 08/11/2004] [Indexed: 10/26/2022]
Abstract
We investigated in the present study the neuroendocrine correlates in intruder and resident rats of a social confrontation. Adult male Wistar rats (intruders) were introduced into the home cage of a well-trained resident to induce characteristic agonistic interactions including physical attacks prior to separation by a wire mesh. The hypothalamic-pituitary-adrenal (HPA) axis activity and the intrahypothalamic release of arginine vasopressin (AVP) were monitored via chronically implanted jugular venous catheters and microdialysis probes aimed at the hypothalamic paraventricular nucleus (PVN), respectively. Based on the behavioral data collected during the 30-min confrontation, intruders and residents were additionally classified into two different subgroups: intruders which showed almost no freezing behavior (active copers) versus those showing pronounced freezing behavior (passive copers) and residents which were either predominantly aggressive or non-aggressive. The neuroendocrine data show that social confrontation caused a significantly increased secretion of the adrenocorticotropic hormone (ACTH) into plasma in both intruder subgroups, independently of their coping strategy. In contrast, plasma ACTH in residents was increased in response to social confrontation in non-aggressive animals only, whereas aggressive residents failed to mount an ACTH response. Interestingly, plasma AVP decreased in response to social confrontation in active intruders. As measured in microdialysates, the two groups of residents and passive intruders failed to show significant changes of intra-PVN release of AVP. In contrast, an increased release of this neuropeptide within the PVN could be monitored for active intruders. The data of the present study suggest that the different interpretation of an aversive encounter results in differences in the neuroendocrine response and intrahypothalamic vasopressinergic signaling in intruders versus residents.
Collapse
Affiliation(s)
- Karl Ebner
- Leopold-Franzens-Universität, Institut für Pharmakologie und Toxikologie, Peter-Mayr-Str. 1, A-6020 Innsbruck, Austria
| | | | | | | |
Collapse
|
207
|
Hayes UL, Chambers KC. Peripheral vasopressin accelerates extinction of conditioned taste avoidance. Physiol Behav 2004; 84:147-56. [PMID: 15642618 DOI: 10.1016/j.physbeh.2004.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2003] [Revised: 10/06/2004] [Accepted: 11/08/2004] [Indexed: 10/26/2022]
Abstract
Both peripheral and central administration of vasopressin improves retention and delays extinction when given before or after acquisition of shock avoidance learning. For conditioned taste avoidance, however, vasopressin prolongs extinction when injected peripherally before acquisition tests and accelerates extinction when infused intracerebroventricularly after acquisition. The following experiments were designed to determine whether this inconsistency is based on the route of administration or timing of vasopressin treatment. Because acquisition of conditioned taste avoidance is strengthened when an agent that is capable of inducing avoidance is administered after LiCl injection, it was determined in experiment 1 that a 6 microg/kg dose of vasopressin did not induce conditioned taste avoidance when administered 50 min after consumption of a sucrose solution. In experiment 2, it was determined that this dose of vasopressin accelerated extinction of a LiCl-induced conditioned taste avoidance when given 50 min after LiCl injection. These results suggest that the inconsistency is not based on route of administration. In experiment 3, it was determined that there was a tendency for animals to show prolonged extinction when vasopressin was administered 20 min before access to a sucrose solution. All of the results taken together suggest that the differential effects of vasopressin on extinction are due to the timing of administration. It was suggested that vasopressin accelerates extinction when given after acquisition by reducing the effectiveness of LiCl and it prolongs extinction when given before acquisition by altering neural responsiveness in areas mediating conditioned taste avoidance.
Collapse
Affiliation(s)
- UnJa L Hayes
- Center for Neuroendocrine Studies, University of Massachusetts, Tobin Hall, Amherst, MA 01003, USA.
| | | |
Collapse
|
208
|
Devarajan K, Rusak B. Oxytocin levels in the plasma and cerebrospinal fluid of male rats: effects of circadian phase, light and stress. Neurosci Lett 2004; 367:144-7. [PMID: 15331139 DOI: 10.1016/j.neulet.2004.05.112] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2003] [Revised: 03/30/2004] [Accepted: 05/07/2004] [Indexed: 11/29/2022]
Abstract
Oxytocin is involved in the regulation of reproductive and social behaviours, mood and stress responses. Previous work has indicated that oxytocin levels are regulated by circadian phase in brain tissue and plasma of both monkeys and rats, but in the cerebrospinal fluid (CSF) only of monkeys. We examined oxytocin levels in plasma and CSF of rats at two daily phases in darkness (mid subjective day and late subjective night) and after a 30 min exposure to light. We found that an apparent day-night difference in plasma oxytocin levels was eliminated by prior habituation to handling and injections. A previously reported daily oxytocin rhythm in rat plasma may instead reflect a rhythm of responsiveness to stressful experimental procedures. We also report for the first time that oxytocin levels in the CSF of rats are regulated by circadian phase and by prior exposure to light.
Collapse
Affiliation(s)
- Karthika Devarajan
- Department of Psychology, Life Sciences Centre, Dalhousie University, Halifax, NS, Canada B3H 4J1
| | | |
Collapse
|
209
|
Mantella RC, Vollmer RR, Rinaman L, Li X, Amico JA. Enhanced corticosterone concentrations and attenuated Fos expression in the medial amygdala of female oxytocin knockout mice exposed to psychogenic stress. Am J Physiol Regul Integr Comp Physiol 2004; 287:R1494-504. [PMID: 15319220 DOI: 10.1152/ajpregu.00387.2004] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Centrally released oxytocin (OT) is believed to attenuate the response of the hypothalamic-pituitary-adrenal (HPA) axis to psychogenic stress. To test this hypothesis, we measured plasma corticosterone concentrations and Fos-immunoreactive protein in the paraventricular nucleus of the hypothalamus (PVN) and limbic brain areas of female wild-type and OT knockout mice that were exposed to a shaker platform, a predominantly psychogenic stress. Plasma corticosterone concentrations after shaker stress were higher in female OT knockout mice than wild-type mice. Genotypic differences in the corticosterone response after shaker stress persisted across all stages of the estrous cycle and when mice were conditioned to repeated shaker stress. Shaker stress activated Fos in OT-positive neurons of wild-type mice and corticotropin-releasing hormone-positive, but not vasopressin-positive, neurons within the PVN of wild-type and OT knockout mice. Fos expression was also increased after shaker stress in the bed nucleus of the stria terminalis, medial and central nuclei of the amygdala, medial preoptic area, and the paraventricular nucleus of the thalamus of wild-type and OT knockout mice. However, Fos expression in the medial amygdala was significantly lower in female OT knockout mice than wild-type mice. Our findings indicate heightened stress-induced corticosterone release in female OT knockout mice. Therefore, the results suggest that OT pathways play a role in attenuating the HPA axis response to psychogenic stress in female mice.
Collapse
Affiliation(s)
- Rose C Mantella
- Department of Pharmaceutical Sciences, University of Pittsburgh, 904 Salk Hall, Pittsburgh, PA 15261, USA.
| | | | | | | | | |
Collapse
|
210
|
Zimmermann U, Spring K, Wittchen HU, Himmerich H, Landgraf R, Uhr M, Holsboer F. Arginine vasopressin and adrenocorticotropin secretion in response to psychosocial stress is attenuated by ethanol in sons of alcohol-dependent fathers. J Psychiatr Res 2004; 38:385-93. [PMID: 15203290 DOI: 10.1016/j.jpsychires.2003.11.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2003] [Revised: 11/17/2003] [Accepted: 11/25/2003] [Indexed: 11/26/2022]
Abstract
Familial risk and environmental stress promote the development of alcohol dependence. We investigated whether a positive family history of alcoholism affects the neuroendocrine response to a standardized laboratory stress test in healthy subjects without alcohol use disorders. Twenty-four high-risk subjects with a paternal history of alcoholism (PHA) and 16 family history negative (FHN) controls were evaluated. Psychosocial stress was induced by having subjects deliver a 5-min speech and mental arithmetics in front of an audience on separate days, after drinking either placebo or ethanol (0.6 g/kg) in a randomized sequence. Adrenocorticotropin (ACTH) was measured in 10 plasma samples covering up to 75 min after the stress test. Plasma arginine vasopressin (AVP) was determined before the stressor, at the time of maximum ACTH secretion, and at 75 min after stress onset. The stress test induced a phasic increase in ACTH secretion. At the time of maximum ACTH, AVP was significantly increased in relation to baseline. Compared to placebo, alcohol administration significantly attenuated maximum ACTH concentration in PHA but not FHN subjects, and decreased AVP measured in the same samples in PHA but not FHN subjects. We conclude that activation of the hypothalamic-pituitary-adrenal system by psychosocial stress is accompanied by an increase in peripheral plasma AVP levels. Secretion of both ACTH and AVP suggest that alcohol attenuates the stress response selectively in PHA but not FHN subjects. This might imply some short-term positive alcohol effect in sons of alcoholics, but also constitute a mechanism by which their risk to develop alcohol use disorders is increased.
Collapse
Affiliation(s)
- U Zimmermann
- Max-Planck Institute of Psychiatry, Kraepelinstrasse 10, 80804 Munich, Germany.
| | | | | | | | | | | | | |
Collapse
|
211
|
Windle RJ, Kershaw YM, Shanks N, Wood SA, Lightman SL, Ingram CD. Oxytocin attenuates stress-induced c-fos mRNA expression in specific forebrain regions associated with modulation of hypothalamo-pituitary-adrenal activity. J Neurosci 2004; 24:2974-82. [PMID: 15044536 PMCID: PMC6729832 DOI: 10.1523/jneurosci.3432-03.2004] [Citation(s) in RCA: 310] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We reported previously that the neuropeptide oxytocin attenuates stress-induced hypothalamo-pituitary-adrenal (HPA) activity and anxiety behavior. This study sought to identify forebrain target sites through which oxytocin may mediate its anti-stress effects. Ovariectomized, estradiol-treated rats received intracerebroventricular infusions of oxytocin (1 or 10 ng/hr) or vasopressin (10 ng/hr), and the patterns of neuronal activation after restraint stress were determined by semiquantitative mapping of c-fos mRNA expression. Oxytocin administration significantly attenuated the release of ACTH and corticosterone and the increase in corticotropin-releasing factor mRNA expression in the hypothalamic paraventricular nucleus (PVN) in response to 30 min restraint. Restraint also induced the expression of c-fos mRNA in selective regions of the forebrain, including the PVN, paraventricular thalamic nucleus, habenula, medial amygdala, ventrolateral septum (LSV), most subfields of the dorsal and ventral hippocampus, and piriform and endopiriform cortices. In most cases, this level of gene expression was unaffected by concomitant administration of oxytocin. However, in the PVN, LSV, and throughout all subfields of the dorsal hippocampus, restraint evoked no detectable increase in c-fos mRNA in animals treated with either dose of oxytocin. Vasopressin had no effects on either HPA axis responses or neuronal activation in response to restraint, indicating that the effects were highly peptide selective. These data show that central oxytocin attenuates both the stress-induced neuroendocrine and molecular responses of the HPA axis and that the dorsal hippocampus, LSV, and PVN constitute an oxytocin-sensitive forebrain stress circuit.
Collapse
Affiliation(s)
- Richard J Windle
- University Research Centre for Neuroendocrinology, University of Bristol, Bristol Royal Infirmary, Bristol BS2 8HW, United Kingdom.
| | | | | | | | | | | |
Collapse
|
212
|
Brown CH, Russell JA. Cellular mechanisms underlying neuronal excitability during morphine withdrawal in physical dependence: lessons from the magnocellular oxytocin system. Stress 2004; 7:97-107. [PMID: 15512853 DOI: 10.1080/10253890410001727776] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Opiates are used clinically as analgesics, but their euphoric actions can lead to continued use and to dependence and addiction. While there are many factors involved in drug abuse, avoidance of stressful withdrawal symptoms is a key feature of addiction and its treatment. Fundamental to this is the need to understand the cellular processes that induce dependence and lead to the withdrawal syndrome. Many neurones in the brain express opioid receptors but only a few types of neurone develop dependence during chronic morphine exposure. The physiology of opiate-dependent cells is altered such that they require the continued presence of the drug to function normally and this is revealed, in cells that are inhibited by initial acute exposure to opiate, by a rebound hyperexcitation upon opiate withdrawal. Hypothalamic oxytocin neurones robustly develop morphine dependence and provide an exceptional opportunity to probe the cellular mechanisms underlying morphine dependence and withdrawal excitation. Although expression of morphine withdrawal excitation by oxytocin cells requires afferent inputs, the underlying mechanisms appear to reside within the oxytocin neurones themselves and probably involve changes in the intrinsic membrane properties of these neurones.
Collapse
Affiliation(s)
- Colin H Brown
- School of Biomedical and Clinical Laboratory Sciences, University of Edinburgh, UK.
| | | |
Collapse
|
213
|
Engelmann M, Ludwig M. The activity of the hypothalamo-neurohypophysial system in response to acute stressor exposure: neuroendocrine and electrophysiological observations. Stress 2004; 7:91-6. [PMID: 15512852 DOI: 10.1080/10253890410001677240] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
The present mini review focuses on stress-induced alterations of the electrical and secretory activity of vasopressin (AVP) and oxytocin (OXT) neurones originating within the supraoptic nucleus (SON) and constituting the hypothalamo-neurohypophysial system (HNS) in the male rat. Previously, it was thought that SON neurones are predominantly activated by osmotic and reproductive stimuli. However, recent findings also suggest a selective activation of AVP and/or OXT neurones in response to specific stressors. Inhibitory amino acids seem to participate at the level of the SON in the control of HNS activity during stress. Taurine, probably of glial origin, selectively inhibits the secretory activity of AVP neurones. In contrast, GABA, probably of neuronal origin, interferes with the release of OXT both from axon terminals into blood and from somata/dendrites into the extracellular fluid of the SON. Depending upon whether a defined stressor triggers taurine and/or GABA release within the SON the secretion of AVP and/or OXT from HNS neurones will be inhibited. These observations shed new light on the neurone-neurone and glial-neurone interactions that ensure an appropriate neuroendocrine stress response.
Collapse
Affiliation(s)
- Mario Engelmann
- Otto-von-Guericke-Universität Magdeburg, Institut für Medizinische Neurobiologie, Leipziger Str. 44, D-39120, Germany.
| | | |
Collapse
|
214
|
Tataroğlu O, Aksoy A, Yilmaz A, Canbeyli R. Effect of lesioning the suprachiasmatic nuclei on behavioral despair in rats. Brain Res 2004; 1001:118-24. [PMID: 14972660 DOI: 10.1016/j.brainres.2003.11.063] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2003] [Indexed: 11/18/2022]
Abstract
The suprachiasmatic nucleus (SCN) is involved in regulating many biological rhythms. Several lines of research implicate the SCN in affective behavior. The SCN is directly involved in regulating the daily rhythms of the hypothalamo-pituitary-adrenal (HPA) axis hormones involved in stress. Bilateral lesions of the SCN disrupt both the rhythms and the basal levels of the HPA axis hormones involved in coping with stress. Moreover, stress can affect the biological rhythms regulated by the SCN, and disruption of biological rhythms in turn can cause stress. The present study assessed the effect of bilateral destruction of the SCN on behavioral despair, an animal model of depression sensitive to antidepressant treatment. The results indicate that bilateral destruction of the SCN results in reduced immobility in the second forced swimming test (FST) compared to sham controls and animals with incomplete lesions. These results indicate that bilateral destruction of the SCN has a protective effect in the induction of behavioral despair which may arise out of disruption of the secretion of the HPA axis hormones and/or of the neural connections between the SCN and the limbic structures that modulate the response to swim stress.
Collapse
Affiliation(s)
- Ozgür Tataroğlu
- Psychobiology Laboratory, Department of Psychology, Boğaziçi University, 80815, Bebek, Istanbul, Turkey
| | | | | | | |
Collapse
|
215
|
Kleindienst A, Hildebrandt G, Kroemer SA, Franke G, Gaab MR, Landgraf R. Hypothalamic neuropeptide release after experimental subarachnoid hemorrhage: in vivo microdialysis study. Acta Neurol Scand 2004; 109:361-8. [PMID: 15080864 DOI: 10.1046/j.1600-0404.2003.00245.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVES As evidence exists about independent regulation of peripheral and central release of the vasoactive and natriuretic neuropeptides arginine-vasopressin (AVP) and oxytocin (OXT), we investigated their release patterns following subarachnoid hemorrhage (SAH). MATERIALS AND METHODS After injection of 0.1 ml arterial blood or saline into the great cistern of 33 Wistar rats, AVP and OXT levels were measured in blood and by microdialysis in the hypothalamic supraoptic (SON) and paraventricular nucleus (PVN). For statistical analysis, the analysis of variance (ANOVA) was used with Tukey HSD post hoc ANOVA tests to determine specific group differences. RESULTS Plasma AVP and OXT peaked 2 h after SAH (P < 0.05), and normalized at 4 h. In the SON, both AVP and OXT peaked 4 h after SAH (P < 0.05). In the PVN, AVP increased in both groups (P < 0.05), while no OXT release occurred. By the sham group, any effect of experimental procedure was excluded. CONCLUSIONS The SAH-specific central neuropeptide release, which exceeded peripheral release and continued longer, may contribute to pathophysiological events following SAH.
Collapse
Affiliation(s)
- A Kleindienst
- Neurosurgical Department, University of Greifswald, Greifswald, Germany.
| | | | | | | | | | | |
Collapse
|
216
|
Bulduk S, Canbeyli R. Effect of inescapable tones on behavioral despair in Wistar rats. Prog Neuropsychopharmacol Biol Psychiatry 2004; 28:471-5. [PMID: 15093953 DOI: 10.1016/j.pnpbp.2003.11.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/14/2003] [Indexed: 10/26/2022]
Abstract
The present experiment investigated the potentially differential effects of presenting inescapable tones with progressively increasing or decreasing durations on performance in behavioral despair, an animal model of depression based on two forced swim tests. Groups of female Wistar rats (n=8 each) were exposed to 60 inescapable tones (2000 Hz, 120 dB) either in a series of increasing or decreasing durations. Duration of tone exposure was incrementally increased (from 1 to 10 s) or decreased (from 10 to 1 s) by 1 s every six trials. A third group (n=8) was kept in the experimental chamber for a similar period but not exposed to tones. Animals were exposed to a 15 min forced swim test a day after tone (or control) treatment, followed by a 5 min swim test 24 h later. Analyses were done on diving, jumping, head shakes, duration and time of onset of immobility for the two swim tests. Compared to controls, animals that received tone exposure displayed greater immobility in the second swim test, indicating aggravation of behavioral despair due to inescapable tones.
Collapse
Affiliation(s)
- Sevda Bulduk
- Department of Psychology, Faculty of Letters, Istanbul University, 34459 Vezneciler, Istanbul, Turkey
| | | |
Collapse
|
217
|
Engelmann M, Bull PM, Brown CH, Landgraf R, Horn TFW, Singewald N, Ludwig M, Wotjak CT. GABA selectively controls the secretory activity of oxytocin neurons in the rat supraoptic nucleus. Eur J Neurosci 2004; 19:601-8. [PMID: 14984410 DOI: 10.1111/j.1460-9568.2004.03151.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recently we reported that a single social defeat experience triggers the release of oxytocin (OXT) from somata and dendrites, but not axon terminals, of neurons of the hypothalamic-neurohypophysial system. To further investigate the regulatory mechanisms underlying this dissociated release, we exposed male Wistar rats to a 30-min social defeat and monitored release of the inhibitory amino acids gamma amino butyric acid (GABA) and taurine within the hypothalamic supraoptic nucleus (SON) using microdialysis. Social defeat caused a significant increase in the release of both GABA and taurine within the SON (up to 480%; P < 0.01 vs. prestress release). To reveal the physiological significance of centrally released GABA, the specific GABAA-receptor antagonist bicuculline (0.02 mm) was administered into the SON via retrodialysis. This approach caused a significant increase in the release of OXT both within the SON and into the blood under basal conditions and during stress (up to 300 and 200%, respectively; P < 0.05 vs. basal values), without affecting plasma vasopressin. Electrophysiological studies confirmed the selective action of bicuculline on the firing activity of OXT neurons in the SON. Taken together, our data demonstrate that GABA is released within the SON during emotional stress to act as a selective inhibitor of both central and peripheral OXT secretion.
Collapse
Affiliation(s)
- Mario Engelmann
- Otto-von-Guericke-Universität Magdeburg, Institut für Medizinische Neurobiologie, Leipziger Str. 44, D-39120 Magdeburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
218
|
Bosch OJ, Krömer SA, Brunton PJ, Neumann ID. Release of oxytocin in the hypothalamic paraventricular nucleus, but not central amygdala or lateral septum in lactating residents and virgin intruders during maternal defence. Neuroscience 2004; 124:439-48. [PMID: 14980393 DOI: 10.1016/j.neuroscience.2003.11.028] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2003] [Indexed: 10/26/2022]
Abstract
In lactating rats, the neuroendocrine responses of the oxytocinergic system and the hypothalamo-pituitary-adrenal axis to various kinds of stressors are attenuated. In this study, using intracerebral microdialysis in combination with a highly sensitive radioimmunoassay, we characterised oxytocin (OXT) release within the paraventricular nucleus (PVN), the central amygdala (CeA), and the medio-lateral septum (mS) before, during and after a psycho-social stressor (the maternal defence test) in both the virgin intruder and the lactating resident rat (day 3 of lactation). Within the PVN, local OXT release was found to increase significantly in virgin intruders during exposure to the resident (2.1-fold, P < 0.05), as well as in lactating residents when exposed to the virgin intruder, though to a lesser extent when compared with basal levels (1.7-fold, P < 0.05). In contrast, OXT release remained unchanged within the CeA and the mS of both virgin intruders and lactating residents. Release of OXT under basal conditions was clearly above the detection limit of the radioimmunoassay, and did not differ between lactating and virgin rats in any of the brain regions studied. Our study also demonstrates that recent surgery or ongoing intracerebral microdialysis does not affect the behavioural performance of the intruders or residents when comparing dialysed and non-dialysed rats. The results indicate that exposure to the maternal defence test is a relevant stressor for the brain OXT system which becomes activated in both intruder and resident rats, although to varying degrees depending upon their reproductive status and in a region-dependent manner. The behavioural and/or neuroendocrine functions of intra-PVN released OXT during this psycho-social challenge remain to be clarified.
Collapse
Affiliation(s)
- O J Bosch
- Institute of Zoology, Department of Zoology, University of Regensburg, 93040 Regensburg, Germany
| | | | | | | |
Collapse
|
219
|
Ragnauth AK, Goodwillie A, Brewer C, Muglia LJ, Pfaff DW, Kow LM. Vasopressin stimulates ventromedial hypothalamic neurons via oxytocin receptors in oxytocin gene knockout male and female mice. Neuroendocrinology 2004; 80:92-9. [PMID: 15528951 DOI: 10.1159/000081844] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2004] [Accepted: 08/09/2004] [Indexed: 11/19/2022]
Abstract
A wealth of neuropharmacological data demonstrates that oxytocin (OT) actions in the mammalian forebrain support a wide variety of affiliative behaviors and repress aggressive behaviors. Based on that literature, it was expected that reproductive and affiliative behaviors would be vastly decreased and aggression markedly increased in OT gene knockout (OTKO) mice. The initial publications reporting the behaviors of these mice did not include such phenotypes. Here, we compared single-unit activities recorded from the ventromedial hypothalamus in tissue slices of male and female OTKO mice and their wild-type littermate to test two hypotheses about OT functional genomics. First, we proposed that in OTKO mice, a very similar 9-amino-acid neuropeptide, arginine vasopressin (a likely gene duplication product), can 'cross over' and compensate for the lack of OT. This hypothesis was confirmed in both males and females. Further, we proposed that because of the lifelong absence of OT in OTKO, OT receptors would be more sensitive to OT in the knockout animals. We tested this idea in males and found that it was correct. Thus, an answer to the 'OTKO paradox' is put forth, with implications for OT-sensitive behaviors in a variety of species.
Collapse
Affiliation(s)
- André K Ragnauth
- Laboratory of Neurobiology and Behavior, The Rockefeller University, New York, NY 10021, USA
| | | | | | | | | | | |
Collapse
|
220
|
|
221
|
Heinrichs M, Baumgartner T, Kirschbaum C, Ehlert U. Social support and oxytocin interact to suppress cortisol and subjective responses to psychosocial stress. Biol Psychiatry 2003; 54:1389-98. [PMID: 14675803 DOI: 10.1016/s0006-3223(03)00465-7] [Citation(s) in RCA: 1261] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND The presence of social support has been associated with decreased stress responsiveness. Recent animal studies suggest that the neuropeptide oxytocin is implicated both in prosocial behavior and in the central nervous control of neuroendocrine responses to stress. This study was designed to determine the effects of social support and oxytocin on cortisol, mood, and anxiety responses to psychosocial stress in humans. METHODS In a placebo-controlled, double-blind study, 37 healthy men were exposed to the Trier Social Stress Test. All participants were randomly assigned to receive intranasal oxytocin (24 IU) or placebo 50 min before stress, and either social support from their best friend during the preparation period or no social support. RESULTS Salivary free cortisol levels were suppressed by social support in response to stress. Comparisons of pre- and poststress anxiety levels revealed an anxiolytic effect of oxytocin. More importantly, the combination of oxytocin and social support exhibited the lowest cortisol concentrations as well as increased calmness and decreased anxiety during stress. CONCLUSIONS Oxytocin seems to enhance the buffering effect of social support on stress responsiveness. These results concur with data from animal research suggesting an important role of oxytocin as an underlying biological mechanism for stress-protective effects of positive social interactions.
Collapse
Affiliation(s)
- Markus Heinrichs
- Department of Clinical Psychology, University of Zürich, Zürich, Switzerland
| | | | | | | |
Collapse
|
222
|
Bealer SL, Flynn FW. Central neurokinin 3 receptors increase systemic oxytocin release: interaction with norepinephrine. Exp Neurol 2003; 184:1027-33. [PMID: 14769397 DOI: 10.1016/j.expneurol.2003.08.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2003] [Revised: 07/25/2003] [Accepted: 08/11/2003] [Indexed: 11/19/2022]
Abstract
Stimulation of central tachykinin receptors contributes to neuroendocrine functions of the hypothalamo-neurohypophyseal system. However, the specific role of each tachykinin receptor subtype has not been completely characterized. Specifically, while neurokinin 3 (NK3) receptor stimulation increases systemic vasopressin, the effects on oxytocin (OT) are not known. Therefore, the present studies investigated the effect of central NK3 receptor stimulation with senktide on release of systemic and central OT. Furthermore, since central NK3 receptors activate noradrenergic systems, which contribute to OT release, the effects of alpha-adrenergic receptor blockade on senktide-induced changes in OT release were evaluated. Female rats were implanted with a cannula in the third cerebral ventricle, and changes in plasma OT concentration determined before and following central administration of senktide in vehicle-treated rats, and animals following central administration of the alpha-adrenergic antagonist phentolamine. Other rats were implanted with microdialysis probes adjacent to the paraventricular nucleus (PVN), and dialysate and plasma OT concentrations were determined before and during administration of senktide through the dialysis probe. Central senktide increased systemic OT release, which was prevented by pretreatment with phentolamine. Furthermore, there was no detectable change in extracellular OT concentration in the PVN during dialysis administration of senktide. These data demonstrate that activation of central NK3 receptors stimulates systemic release of OT by activation of central noradrenergic systems, apparently without increasing intranuclear OT release in the PVN.
Collapse
Affiliation(s)
- Steven L Bealer
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT 84112-5820, USA.
| | | |
Collapse
|
223
|
|
224
|
Abstract
In the period before and after parturition, i.e., in pregnancy and lactation, a variety of neuroendocrine alterations occur that are accompanied by marked behavioral changes, including emotional responsiveness to external challenging situations. On the one hand, activation of neuroendocrine systems (oxytocin, prolactin) ensures reproduction-related physiological processes, but in a synergistic manner also ensures accompanying behaviors necessary for the survival of the offspring. On the other hand, there is a dramatic reduction in the responsiveness of neuroendocrine systems to stimuli not relevant for reproduction, such as the hypothalamo-pituitary-adrenal (HPA) axis responses to physical or emotional stimuli in both pregnant and lactating rats. With CRH being the main regulator of the HPA axis, downregulation of the brain CRH system may result in various behavioral, in particular emotional, adaptations of the maternal organisms, including changes in anxiety-related behavior. In support of this, the lactating rat becomes less emotionally responsive to novel situations, demonstrating reduced anxiety, and shows a higher degree of aggressive behavior in the test for agonistic behavior as well as in the maternal defense test. These changes in emotionality are independent of the innate (pre-lactation) level of anxiety and are seen in both rats bred for high as well as low levels of anxiety. Both brain oxytocin and prolactin, highly activated at this time, play a significant role in these behavioral and possibly also neuroendocrine adaptations in the peripartum period.
Collapse
Affiliation(s)
- Inga D Neumann
- Institute of Zoology, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
225
|
Engelmann M, Wolf G, Putzke J, Bloom FE, Raber J, Landgraf R, Spina MG, Horn TFW. Nitric oxide is not involved in the control of vasopressin release during acute forced swimming in rats. Amino Acids 2003; 26:37-43. [PMID: 14752614 DOI: 10.1007/s00726-003-0040-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2003] [Accepted: 06/25/2003] [Indexed: 10/26/2022]
Abstract
Neurons of the hypothalamo-neurohypophyseal system (HNS) are known to contain high amounts of neuronal nitric oxide (NO) synthase (nNOS). NO produced by those neurons is commonly supposed to be involved as modulator in the release of the two nonapeptides vasopressin (AVP) and oxytocin into the blood stream. Previous studies showed that forced swimming fails to increase the release of AVP into the blood stream while its secretion into the hypothalamus is triggered. We investigated here whether hypothalamically acting NO contributes to the control of the AVP release into blood under forced swimming conditions. Intracerebral microdialysis and in situ hybridization were employed to analyze the activity of the nitrergic system within the supraoptic nucleus (SON), the hypothalamic origin of the HNS. A 10-min forced swimming session failed to significantly alter the local NO release as indicated both by nitrite and, the main by-product of NO synthesis, citrulline levels in microdialysis samples collected from the SON. Microdialysis administration of NO directly into the SON increased the concentration of AVP in plasma samples collected during simultaneous forced swimming. In an additional experiment the effect of the defined stressor exposure on the concentration of mRNA coding for nNOS within the SON was investigated by in situ hybridization. Forced swimming increased the expression of nNOS mRNA at two and four hours after onset of the stressor compared to untreated controls. Taken together, our results imply that NO within the SON does not contribute to the regulation of the secretory activity of HNS neurons during acute forced swimming. Increased nNOS mRNA in the SON after forced swimming and the increase in AVP release in the presence of exogenous NO under forced swimming points to a possible role of NO in the regulation of the HNS under repeated stressor exposure.
Collapse
Affiliation(s)
- M Engelmann
- Institut für Medizinische Neurobiologie, Otto-von-Guericke-Universität Magdeburg, Magdeburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
226
|
Lancel M, Krömer S, Neumann ID. Intracerebral oxytocin modulates sleep-wake behaviour in male rats. REGULATORY PEPTIDES 2003; 114:145-52. [PMID: 12832103 DOI: 10.1016/s0167-0115(03)00118-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Oxytocin released within the brain under basal conditions and in response to stress is differentially involved in the regulation of the hypothalamo-pituitary-adrenal (HPA) axis. Because the HPA axis plays an important role in the regulation of wakefulness, central oxytocin may modulate sleep-wake behaviour. In the present vehicle-controlled study, we assessed the influence of a selective oxytocin receptor antagonist (des-Gly-NH2d(CH2)5 [Tyr(Me)2,Thr4] OVT; 0.75 microg/5 microl) or of synthetic oxytocin (0.1 microg and 1 microg/5 microl), infused into the lateral ventricle (i.c.v.), on the sleep pattern in male Wistar rats (n=7). Compared to vehicle, the oxytocin antagonist slightly but persistently increased wakefulness at the expense of all sleep states. This finding indicates that endogenous brain oxytocin promotes sleep. However, acute icv infusion of oxytocin delayed sleep onset latency, which resulted in a transient reduction of non-REMS and REMS, and augmented high-frequency activity in the electroencephalogram (EEG) within non-REMS. These observations agree with previous reports that icv oxytocin induces a state of arousal. Based on these findings, we postulate that oxytocin has a dual mechanism of action in dependence of the physiological state. Under basal, stress-free conditions, endogenous oxytocin may promote sleep. Conversely, the high brain levels of oxytocin after central oxytocin infusion may reflect a condition of stress accompanied by behavioural arousal and, possibly via an excitatory action on the CRH system, increase vigilance.
Collapse
|
227
|
Zhu LL, Onaka T. Facilitative role of prolactin-releasing peptide neurons in oxytocin cell activation after conditioned-fear stimuli. Neuroscience 2003; 118:1045-53. [PMID: 12732249 DOI: 10.1016/s0306-4522(03)00059-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Emotional stress activates oxytocin neurons in the hypothalamic supraoptic and paraventricular nuclei and stimulates oxytocin release from the posterior pituitary. Oxytocin neurons in the hypothalamus have synaptic contact with prolactin-releasing peptide (PrRP) neurons. Intracerebroventricular administration of PrRP stimulates oxytocin release from the pituitary. These observations raise the possibility that PrRP neurons play a role in oxytocin response to emotional stress. To test this hypothesis, we first examined expression of Fos protein, an immediate early gene product, in the PrRP neurons in the medulla oblongata after conditioned-fear stimuli. Conditioned-fear stimuli increased the number of PrRP cells expressing Fos protein especially in the dorsomedial medulla. In order to determine whether PrRP cells projecting to the supraoptic nucleus are activated after conditioned-fear stimuli, we injected retrograde tracers into the supraoptic nucleus. Conditioned-fear stimuli induced expression of Fos protein in retrogradely labeled PrRP cells in the dorsomedial medulla. Finally we investigated whether immunoneutralization of endogenous PrRP impairs oxytocin release after emotional stimuli. An i.c.v. injection of a mouse monoclonal anti-PrRP antibody impaired release of oxytocin but not of adrenocorticotrophic hormone or prolactin and did not significantly change freezing behavior in response to conditioned-fear stimuli. From these data, we conclude that PrRP neurons in the dorsomedial medulla that project to the hypothalamus play a facilitative role in oxytocin release after emotional stimuli in rats.
Collapse
Affiliation(s)
- L L Zhu
- Department of Physiology, Jichi Medical School, Minamikawachi-machi, Tochigi-ken 329-0498, Japan
| | | |
Collapse
|
228
|
Caba M, Rovirosa MJ, Silver R. Suckling and genital stroking induces Fos expression in hypothalamic oxytocinergic neurons of rabbit pups. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2003; 143:119-28. [PMID: 12855183 DOI: 10.1016/s0165-3806(03)00064-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Maternal behaviour in the rabbit is unusual among mammals because the doe visits her litter to nurse once every 24 h. In the present study we examined the consequences of milk intake on oxytocinergic (OT) and vasopressinergic (AVP) neurons of the supraoptic (SON) and paraventricular (PVN) nuclei of 7-day-old pups before suckling, after suckling and following anogenital stroking in un-nursed pups. To determine neuronal activation we assessed the expression of the Fos protein combined with antibodies against OT and AVP at two levels in the SON (supraoptic rostral, SOr, and supraoptic retrochiasmatic, SOrch), and three levels in the PVN (anterior, PVab; medial PVm and caudal, PVc). Daily nursing bouts lasted only 228+/-6 s throughout the observed 7 days, and pups ingested up to 34.95+/-9.0% of their body weight in milk on day 7, the day of perfusion. Suckling induced a significant increase in the number of double-labeled Fos/OT cells in both subdivisions of the SON (P<0.01) and in PVab and PVm (P<0.01). The effect in the SON was related to suckling, as it was not seen in stroked, un-nursed pups, which showed Fos increases only in PVab and PVm. All regions in the SON and PVN showed significant increases in the number of Fos/AVP neurons after suckling or stroking but, contrary to OT, the number of double-labeled Fos/AVP cells was very low. In conclusion, our results show that the oxytocinergic system of the SON and PVN is differentially activated by suckling of milk and anogenital stroking, and that the vagal-hypothalamic axis is mature in 7-day-old rabbits.
Collapse
Affiliation(s)
- Mario Caba
- Lab. Biologi;a de la Reproducción, IIB, Universidad Veracruzana, A.P. 114, Xalapa, Ver. 91,000, Mexico.
| | | | | |
Collapse
|
229
|
Vengeliene V, Siegmund S, Singer MV, Sinclair JD, Li TK, Spanagel R. A comparative study on alcohol-preferring rat lines: effects of deprivation and stress phases on voluntary alcohol intake. Alcohol Clin Exp Res 2003; 27:1048-54. [PMID: 12878910 DOI: 10.1097/01.alc.0000075829.81211.0c] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Voluntary alcohol intake in rats can be influenced by alcohol deprivation phases and stress. We investigated the magnitude of the effects of both deprivation and stress (forced swimming in cold water and foot-shock had been chosen as stressors distinct in their physical and psychological features) on alcohol intake and the influence of these experiences on the time course of alcohol drinking behavior. For the alcohol drinking procedure, a long-term model of alcohol self-administration originally developed for heterogeneous Wistar rats was used and was compared with different alcohol-preferring rat lines. METHODS Adult male Alko alcohol (AA), alcohol-preferring (P), high-alcohol-drinking (HAD), and unselected Wistar rats were given ad libitum access to water, 5%, and 20% alcohol solutions for 6 months. A deprivation phase of 14 days was performed after 8 weeks of access to alcohol. After 16 weeks and 22 weeks of alcohol access, all animals were subjected to forced swimming and foot-shock, respectively, for 3 consecutive days, while alcohol intake was still being measured. RESULTS Alcohol deprivation led to a significant increase in alcohol intake in Wistar rats and P rats. No alcohol deprivation effect was observed in HAD and AA rats; after deprivation, however, their preference for the 20% alcohol solution increased, immediately in the HAD rats and gradually over time in the AA rats. Repeated swim stress caused an increase in alcohol intake in Wistar rats but no changes in the alcohol-preferring rat lines. Foot-shock stress increased alcohol consumption in all lines of rats, but the most pronounced effects were observed in HAD and P rats. CONCLUSIONS Wistar, HAD, P, and AA rats differentially respond to alcohol deprivation and stress, showing that the genetic background of these different rat lines profoundly affects relapse-like drinking and stress-induced drinking.
Collapse
Affiliation(s)
- Valentina Vengeliene
- Department of Psychopharmacology, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany.
| | | | | | | | | | | |
Collapse
|
230
|
Mohr E, Richter D. Local synthesis of the rat Vasopressin precursor in dendrites of in vitro cultured nerve cells. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2003; 114:115-22. [PMID: 12829321 DOI: 10.1016/s0169-328x(03)00137-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Vasopressin (VP) mRNA is subject to dendritic targeting both in vivo and in primary cultured neurons microinjected with an appropriate expression vector. We have constructed a vector encoding the mutant Brattleboro rat VP precursor which is non-diffusable, because it cannot leave the site of its synthesis, the rough endoplasmic reticulum. Expression of this construct in cultured nerve cells shows that the mutant protein is readily detectable in dendrites when mRNA transport has occurred, while dendrites devoid of the mRNA lack the protein. These results demonstrate that neurons have the capacity to locally synthesize secretory proteins in the dendritic compartment.
Collapse
Affiliation(s)
- Evita Mohr
- Institut fuer Zellbiochemie und Klinische Neurobiologie, University of Hamburg, Martinistrasse 52, 20246 Hamburg, Germany.
| | | |
Collapse
|
231
|
Abstract
Fear is an adaptive component of the acute "stress" response to potentially-dangerous (external and internal) stimuli which threaten to perturb homeostasis. However, when disproportional in intensity, chronic and/or irreversible, or not associated with any genuine risk, it may be symptomatic of a debilitating anxious state: for example, social phobia, panic attacks or generalized anxiety disorder. In view of the importance of guaranteeing an appropriate emotional response to aversive events, it is not surprising that a diversity of mechanisms are involved in the induction and inhibition of anxious states. Apart from conventional neurotransmitters, such as monoamines, gamma-amino-butyric acid (GABA) and glutamate, many other modulators have been implicated, including: adenosine, cannabinoids, numerous neuropeptides, hormones, neurotrophins, cytokines and several cellular mediators. Accordingly, though benzodiazepines (which reinforce transmission at GABA(A) receptors), serotonin (5-HT)(1A) receptor agonists and 5-HT reuptake inhibitors are currently the principle drugs employed in the management of anxiety disorders, there is considerable scope for the development of alternative therapies. In addition to cellular, anatomical and neurochemical strategies, behavioral models are indispensable for the characterization of anxious states and their modulation. Amongst diverse paradigms, conflict procedures--in which subjects experience opposing impulses of desire and fear--are of especial conceptual and therapeutic pertinence. For example, in the Vogel Conflict Test (VCT), the ability of drugs to release punishment-suppressed drinking behavior is evaluated. In reviewing the neurobiology of anxious states, the present article focuses in particular upon: the multifarious and complex roles of individual modulators, often as a function of the specific receptor type and neuronal substrate involved in their actions; novel targets for the management of anxiety disorders; the influence of neurotransmitters and other agents upon performance in the VCT; data acquired from complementary pharmacological and genetic strategies and, finally, several open questions likely to orientate future experimental- and clinical-research. In view of the recent proliferation of mechanisms implicated in the pathogenesis, modulation and, potentially, treatment of anxiety disorders, this is an opportune moment to survey their functional and pathophysiological significance, and to assess their influence upon performance in the VCT and other models of potential anxiolytic properties.
Collapse
Affiliation(s)
- Mark J Millan
- Psychopharmacology Department, Centre de Rescherches de Croissy, Institut de Recherches (IDR) Servier, 125 Chemin de Ronde, 78290 Croissy-sur-Seine, Paris, France.
| |
Collapse
|
232
|
Jørgensen H, Kjaer A, Knigge U, Møller M, Warberg J. Serotonin stimulates hypothalamic mRNA expression and local release of neurohypophysial peptides. J Neuroendocrinol 2003; 15:564-71. [PMID: 12716407 DOI: 10.1046/j.1365-2826.2003.01032.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The neurotransmitter serotonin (5-HT) stimulates the secretion of vasopressin and oxytocin, and 5-HT is involved in the mediation of the vasopressin and oxytocin response to stress. In male Wistar rats, we investigated the 5-HT receptors involved in the 5-HT-induced increase of mRNA expression of vasopressin and oxytocin in the hypothalamic paraventricular nucleus (PVN) and supraoptic nucleus (SON). The 5-HT precursor, 5-hydroxytryptophan, injected in combination with the 5-HT reuptake inhibitor, fluoxetine, increased oxytocin mRNA expression in the PVN, and the concentration of vasopressin and oxytocin in plasma, whereas mRNA in the SON was not affected. Intracerebroventricular infusion of 5-HT agonists selective for the 5-HT1A, 5-HT1B, 5-HT2A and 5-HT2C receptor increased oxytocin mRNA in the SON and PVN. Infusion of agonists selective for the 5-HT2A + 2C receptor increased vasopressin mRNA in the PVN, whereas none of the 5-HT agonists affected vasopressin mRNA in the SON. All the 5-HT agonists infused increased peripheral oxytocin concentration and vasopressin was increased by stimulation of the 5-HT2A, 5-HT2C and 5-HT3 receptor. Intracerebroventricular infusion of 100 nmol 5-HT increased the extracellular hypothalamic concentration of vasopressin as measured by microdialysis in the PVN. To evaluate the involvement of hypothalamic-pituitary system in the 5-hydroxytryptophan and fluoxetine-induced vasopressin secretion, rats were immunoneutralized with a specific anti-corticotropin-releasing hormone antiserum. This treatment reduced plasma vasopressin and oxytocin responses. We conclude that stimulation with 5-hydroxytryptophan or 5-HT agonists increases mRNA expression of oxytocin in the PVN and the SON via stimulation of at least 5-HT1A, 5-HT1B, 5-HT2A and 5-HT2C receptors. Vasopressin mRNA in the PVN was increased only via the 5-HT2 receptor, whereas vasopressin mRNA in the SON does not seem to be affected by 5-HT stimulation. Corticotropin-releasing hormone appears to be partly involved in the mediation of 5-HT induced vasopressin and oxytocin secretion.
Collapse
Affiliation(s)
- H Jørgensen
- Department of Medical Physiology, The Panum Institute 12.3.21, Rigshospitalet, University of Copenhagen, Blegdamsvej 3, DK-2200N Copenhagen, Denmark.
| | | | | | | | | |
Collapse
|
233
|
Abstract
Classical transmitters and neuropeptides can be released from the dendrites of many neuronal populations, to act as retrograde signals that modulate synaptic transmission, electrical activity and, in some cases, morphology of the cell of origin. For the hypothalamic neuroendocrine cells that release vasopressin and oxytocin, the stimuli, mechanisms and physiological functions of dendritic release have been revealed in detail that is not yet available for other neurons. The regulation of dendritic transmitter release is complex and at least partially independent from axon terminal release. Here, we provide an overview of recent findings on the mechanisms and physiological consequences of dendritic neuropeptide release and place this in the context of discoveries of dendritic neurotransmitter release in other brain regions.
Collapse
Affiliation(s)
- Mike Ludwig
- Division of Biomedical Sciences, University of Edinburgh Medical School, George Square, Edinburgh EH8 9XD, UK.
| | | |
Collapse
|
234
|
Bealer SL, Crowley WR. Angiotensin II-induced release of oxytocin: interaction with norepinephrine and role in lactation. REGULATORY PEPTIDES 2003; 111:41-6. [PMID: 12609747 DOI: 10.1016/s0167-0115(02)00222-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
These studies examined the receptors involved in angiotensin II (Ang II) stimulated secretion of systemic oxytocin (OT) and the role of this peptide in release of OT during suckling. Plasma OT concentrations were measured following intracerebroventricular (icv) injection of vehicle, Ang II, or Ang II following pretreatment with a selective AT1 (Losartan) or AT2 (PD 123319) receptor antagonist. Furthermore, we measured Ang II-induced OT release during central alpha-adrenergic receptor blockade (phentolamine). Finally, plasma OT concentrations before and during suckling were evaluated following central administration of Ang II receptor antagonists. The increase in systemic OT following central Ang II was abolished by AT1 receptor blockade and inhibited by the AT2 receptor antagonist. Furthermore, pretreatment with phentolamine significantly diminished systemic OT release in response to icv Ang II. Finally, central Ang II receptor blockade did not alter the increase in circulating OT during suckling. These data demonstrate that Ang II evoked OT release is mediated through activation of both AT1 and AT2 receptors and suggest that a component of Ang II-induced OT stimulation is due to norepinephrine release. Furthermore, central angiotensin systems do not have a direct role in stimulating OT release during suckling.
Collapse
Affiliation(s)
- Steven L Bealer
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, 30 South 2000 East Rm 201, Salt Lake City, UT 84112, USA
| | | |
Collapse
|
235
|
Neumann ID. Involvement of the brain oxytocin system in stress coping: interactions with the hypothalamo-pituitary-adrenal axis. PROGRESS IN BRAIN RESEARCH 2002; 139:147-62. [PMID: 12436933 DOI: 10.1016/s0079-6123(02)39014-9] [Citation(s) in RCA: 263] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
In response to various ethologically relevant stressors, oxytocin is released not only from neurohypophysial terminals into the blood, but also within distinct brain regions, for example the hypothalamic supraoptic and paraventricular nuclei, the septum and the amygdala in dependence on the quality and intensity of the stressor. Thus, oxytocin secretory activity may accompany the response of the hypothalamo-pituitary-adrenal (HPA) axis to a given stressor. In the present chapter, I try to summarize our efforts to reveal the physiological significance of intracerebrally released oxytocin in rats with respect to the regulation of the HPA axis under basal and stress conditions as well as with respect to behavioural stress responses. The effects of oxytocin appear to depend on the brain region studied and the state of activity of the animal (basal versus stress). In order to reveal interactions between the oxytocin system and the HPA axis, preliminary results are presented pointing towards a differential action of glucocorticoids on intracerebral and peripheral oxytocin release.
Collapse
Affiliation(s)
- Inga D Neumann
- Institute of Zoology, University of Regensburg, 93040 Regensburg, Germany.
| |
Collapse
|
236
|
Ludwig M, Sabatier N, Dayanithi G, Russell JA, Leng G. The active role of dendrites in the regulation of magnocellular neurosecretory cell behavior. PROGRESS IN BRAIN RESEARCH 2002; 139:247-56. [PMID: 12436940 DOI: 10.1016/s0079-6123(02)39021-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
The interactions of the dendritically released neuropeptides vasopressin and oxytocin with co-released neuroactive substances such as opioids and nitric oxide are reviewed. Endogenous opioids regulate magnocellular neurons at the level of the supraoptic nucleus and the relationship of dendritically released peptides and co-released opioids seems to be dependent on the stimulus given and the physiological state of the animal. Nitric oxide has a prominent inhibitory action on supraoptic neurons and these actions are predominantly mediated indirectly by GABA inputs. The role of these co-released neuroactive substances in differentially regulated release of neuropeptides from dendrites versus distant axon terminals has to be determined in more detail. A picture emerges in which release of vasopressin and oxytocin from different anatomical compartments of a single neuron may arise from different intracellular secretory pools and their preparation before release.
Collapse
Affiliation(s)
- Mike Ludwig
- Department of Biomedical Sciences, University of Edinburgh Medical School, George Square, Edinburgh EH8 9XD, UK.
| | | | | | | | | |
Collapse
|
237
|
Wigger A, Neumann ID. Endogenous opioid regulation of stress-induced oxytocin release within the hypothalamic paraventricular nucleus is reversed in late pregnancy: a microdialysis study. Neuroscience 2002; 112:121-9. [PMID: 12044477 DOI: 10.1016/s0306-4522(02)00068-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Oxytocin secretion into blood in response to swim stress is differentially regulated by endogenous opioids in virgin and pregnant rats. Here, the influence of endogenous opioids on oxytocin release within the hypothalamic paraventricular and supraoptic nuclei was investigated using microdialysis in virgin and pregnant (day 19-21) rats. Rats fitted with a U-shaped microdialysis probe 3 days before testing were injected with naloxone (5 mg/kg body weight, s.c.) or vehicle (sterile saline) and, 3 min later, were forced to swim (10 min at 19 degrees C). Within the paraventricular nucleus, basal and stimulated oxytocin release did not significantly differ between vehicle-treated virgin and pregnant rats. After naloxone, local oxytocin release in response to swimming was lowered in virgin rats (P<0.01), whereas it was further increased in pregnant rats (P<0.01). Within the supraoptic nucleus, basal oxytocin release was significantly lower in pregnant compared to virgin rats (P<0.01). Forced swimming induced a similar rise in intranuclear oxytocin release in both vehicle-treated virgin and pregnant rats, but peak levels were still higher in the virgin controls. In contrast to the paraventricular nucleus, naloxone did not alter swim-induced oxytocin release within the supraoptic nucleus either in virgin or pregnant rats. Vasopressin release in the paraventricular nucleus was also increased by forced swimming but there was no effect of pregnancy or naloxone on it. In summary, in pregnancy, basal and stress-induced oxytocin release within the paraventricular nucleus was not changed, whereas it was blunted within the supraoptic nucleus. Further, within the paraventricular nucleus the excitatory effect of endogenous opioids on local oxytocin release seen in virgins was switched into an inhibitory action in pregnancy. In contrast, endogenous opioids were evidently not involved in the regulation of swim-induced oxytocin release within the supraoptic nucleus either in virgin or pregnant rats. Thus, pregnancy-related neuroendocrine plasticity also includes site-specific functional alterations in opioid receptor-mediated actions in the hypothalamus.
Collapse
Affiliation(s)
- A Wigger
- Max Planck Institute of Psychiatry, Kraepelinstrasse 2, 80804 Munich, Germany
| | | |
Collapse
|
238
|
Wotjak CT, Ludwig M, Ebner K, Russell JA, Singewald N, Landgraf R, Engelmann M. Vasopressin from hypothalamic magnocellular neurons has opposite actions at the adenohypophysis and in the supraoptic nucleus on ACTH secretion. Eur J Neurosci 2002; 16:477-85. [PMID: 12193191 DOI: 10.1046/j.1460-9568.2002.02101.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Magnocellular vasopressinergic and oxytocinergic neurons of the hypothalamic supraoptic (SON) and paraventricular nuclei comprise the hypothalamic-neurohypophysial system, which is crucially involved in the regulation of body fluid and electrolyte homeostasis. However, still controversial is to what extent the same system influences the secretion of adrenocorticotropic hormone (ACTH) from the adenohypophysis. Therefore, we selectively stimulated magnocellular neurons of the SON of conscious male Wistar rats via retrodialysis. As expected, dialysis of the SON with hypertonic medium increased both the release of vasopressin within the SON and the secretion of vasopressin and oxytocin into the systemic blood circulation. This activation of the hypothalamic-neurohypophysial system was accompanied by a fivefold increase in plasma ACTH concentration. This effect was observed only if the tip of the microdialysis probe was within the SON. Intravenous infusion of the vasopressin V1 receptor antagonist d(CH2)5Tyr(Me)AVP significantly attenuated the effects of local osmotic stimulation of the SON on ACTH secretion. In contrast, administration of the same antagonist directly into the SON significantly enhanced the osmotically stimulated secretion of ACTH and corticosterone, primarily by delaying the restoration of the hormone secretion to prestimulation levels. We conclude from these findings that vasopressin from the hypothalamic-neurohypophysial system participates in the regulation of the hormonal stress response in a counterbalanced manner at the level of the SON and the adenohypophysis.
Collapse
Affiliation(s)
- Carsten T Wotjak
- Max-Planck-Institut für Psychiatrie, Kraepelinstr. 2, D-80804 München, Germany
| | | | | | | | | | | | | |
Collapse
|
239
|
Nakashima T, Noguchi T, Furukawa T, Yamasaki M, Makino S, Miyata S, Kiyohara T. Brain oxytocin augments stress-induced long-lasting plasma adrenocorticotropic hormone elevation in rats. Neurosci Lett 2002; 321:161-4. [PMID: 11880197 DOI: 10.1016/s0304-3940(01)02548-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Single stress induces long-lasting changes in the hypothalamo-pituitary--adrenal (HPA) axis of adult animals. Selective oxytocin (OXT) receptor antagonist was administrated into the cerebroventricle of male rats to test its influence on plasma adrenocorticotropic hormone (ACTH) responses induced by immobilization stress. The ACTH level is significantly higher than the control level (P<0.05) up to 6 days after single stress. Although the OXT antagonist did not change the plasma ACTH level at the end of single stress (P=0.59), the antagonist significantly decreased the ACTH concentration at the end of repeated (3 days) stress and 2 days after single stress (P<0.05) compared with controls. The results suggest that endogenous brain OXT enhances the long-lasting but not immediate HPA axis response to stress.
Collapse
Affiliation(s)
- Toshihiro Nakashima
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, Japan.
| | | | | | | | | | | | | |
Collapse
|
240
|
Laube G, Bernstein HG, Wolf G, Veh RW. Differential distribution of spermidine/spermine-like immunoreactivity in neurons of the adult rat brain. J Comp Neurol 2002; 444:369-86. [PMID: 11891649 DOI: 10.1002/cne.10157] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The polyamines spermidine and spermine are small, widely distributed polycations. In the brain, they confer rectification properties upon inwardly rectifying potassium channels and Ca(2+)-permeable alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionate (AMPA)/kainate receptors and also modify functional properties of N-methyl-D-aspartate receptors. Therefore, functional roles of spermidine/spermine in the adult brain will depend on the colocalization of the spermidine/spermine-sensitive receptors/channels and the polyamines either in the same or in closely associated cell types. We previously immunocytochemically demonstrated a prominent localization of spermidine/spermine in glial cells, especially astrocytes (Laube and Veh [ 1997] Glia 19:171-179). In contrast to the commonly accepted assumption of a ubiquitous distribution of polyamines in various cell types, in neurons of the rat brain, we detected a highly diverse spermidine/spermine-like immunoreactivity. The immunoreactivity in neurons and neuropil throughout the rat brain is listed according to intensity in arbitrary groups. The strongest neuronal staining was observed in the hypothalamic paraventricular, supraoptic, and accessory neurosecretory nuclei. Strong cytoplasmic staining was also evident in some motor and somatosensory areas such as the Me5 nucleus of the mesencephalic trigeminal tract, the nucleus ruber, and the large motor neurons of the spinal cord ventral horn. In contrast, in most cortical and hippocampal regions spermidine/spermine-like immunoreactivity in neurons was relatively weak, whereas in these areas, the labeling pattern was dominated by a diffuse neuropil labeling. In addition to spermidine/spermine immunocytochemistry, ornithine decarboxylase labeling was performed and the resulting labeling patterns were compared. The prominent localization of spermidine/spermine in neurosecretory neurons might point to a functional role different from channel/receptor modification. In these neurons, polyamines might be involved in secretory processes.
Collapse
Affiliation(s)
- Gregor Laube
- Institute for Medical Neurobiology, Medical Faculty, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany.
| | | | | | | |
Collapse
|
241
|
Yamashita T, Liu X, Onaka T, Honda K, Saito T, Yagi K. Vasopressin differentially modulates noradrenaline release in the rat supraoptic nucleus. Neuroreport 2001; 12:3509-11. [PMID: 11733701 DOI: 10.1097/00001756-200111160-00027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Vasopressin is released not only from axon terminals in the neurohypophysis but also from soma/dendrite regions in the supraoptic nucleus. In order to investigate presynaptic roles of dendritically released vasopressin, we examined effects of local application of vasopressin upon noradrenaline release within the supraoptic nucleus by a microdialysis method. Noradrenaline release within the supraoptic nucleus was facilitated by local perfusion with high K+ or an NMDA receptor antagonist. Vasopressin augmented noradrenaline increase after high K+ but reduced it after an NMDA receptor antagonist, AP-5. The results suggest that dendritically released vasopressin modulates noradrenaline release within the supraoptic nucleus in a bimodal fashion.
Collapse
Affiliation(s)
- T Yamashita
- Department of Physiology, Jichi Medical School, Tochigi-ken 329-0498, Japan
| | | | | | | | | | | |
Collapse
|
242
|
Neumann ID. Alterations in behavioral and neuroendocrine stress coping strategies in pregnant, parturient and lactating rats. PROGRESS IN BRAIN RESEARCH 2001; 133:143-52. [PMID: 11589127 DOI: 10.1016/s0079-6123(01)33011-x] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
In the present chapter the behavioral and neuroendocrine alterations accompanying pregnancy and lactation will be discussed. It will be shown that many are dependent on the innate level of emotionality of the rats. In late pregnancy the level of anxiety, as measured on the elevated plus-maze is increased in rats with both high and low level of innate anxiety-related behavior, whereas lactating rats display less anxiety in such tests and higher degrees of aggressive behavior in tests for agonistic behavior. There is a dramatic reduction in the responsiveness of the hypothalamo-pituitary-adrenal (HPA) axis to various physical or emotional stimuli in both pregnant and lactating rats. This appears to be due to changes throughout the HPA axis. Oxytocin has been implicated in the control of the axis at this time, but the inhibitory action of central oxytocin on ACTH or corticosterone secretion seen in virgin female rats is not evident during pregnancy and lactation. However, central oxytocin is involved in the regulation of emotionality at this time. In addition to its anxiolytic effect, prolactin, acting at brain prolactin receptors, seems to exert an inhibitory effect on HPA axis responsiveness. At the time of parturition, the HPA axis is not stimulated by parturition-related stimuli and is under strong inhibition by endogenous opioids as revealed by the application of the opioid receptor antagonist naloxone.
Collapse
Affiliation(s)
- I D Neumann
- Department of Zoology, University of Regensburg, D-93040 Regensburg, Germany.
| |
Collapse
|
243
|
Facilitation of affiliation and pair-bond formation by vasopressin receptor gene transfer into the ventral forebrain of a monogamous vole. J Neurosci 2001. [PMID: 11549749 DOI: 10.1523/jneurosci.21-18-07392.2001] [Citation(s) in RCA: 205] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Behaviors associated with monogamy, including pair-bond formation, are facilitated by the neuropeptide vasopressin and are prevented by a vasopressin receptor [V1a receptor (V1aR)] antagonist in the male prairie vole. The neuroanatomical distribution of V1aR dramatically differs between monogamous and nonmonogamous species. V1aR binding is denser in the ventral pallidal region of several unrelated monogamous species compared with nonmonogamous species. Because the ventral pallidum is involved in reinforcement and addiction, we hypothesize that V1aR activation in this region promotes pair-bond formation via a mechanism similar to conditioning. Using an adeno-associated viral vector to deliver the V1aR gene, we increased the density of V1aR binding in the ventral pallial region of male prairie voles. These males exhibited increased levels of both anxiety and affiliative behavior compared with control males. In addition, males overexpressing the V1aR in the ventral pallidal region, but not control males, formed strong partner preferences after an overnight cohabitation, without mating, with a female. These data demonstrate a role for ventral pallidal V1aR in affiliation and social attachment and provide a potential molecular mechanism for species differences in social organization.
Collapse
|
244
|
Engelmann M, Ludwig M, Singewald N, Ebner K, Sabatier N, Lubec G, Landgraf R, Wotjak CT. Taurine selectively modulates the secretory activity of vasopressin neurons in conscious rats. Eur J Neurosci 2001; 14:1047-55. [PMID: 11683896 DOI: 10.1046/j.0953-816x.2001.01729.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Previous experiments have shown that a 10-min forced swimming session triggers the release of vasopressin from somata and dendrites, but not axon terminals, of neurons of the hypothalamic-neurohypophysial system. To further investigate regulatory mechanisms underlying this dissociated release, we forced male Wistar rats to swim in warm (20 degrees C) water and monitored release of the potentially inhibitory amino acids gamma amino butyric acid (GABA) and taurine into the hypothalamic supraoptic nucleus using microdialysis. Forced swimming caused a significant increase in the release of taurine (up to 350%; P < 0.05 vs. prestress release), but not GABA. To reveal the physiological significance of centrally released taurine, the specific taurine antagonist 6-aminomethyl-3-methyl-4H-1,2,4-benzothiadiazine-1,1-dioxide was administered into the supraoptic nucleus via retrodialysis. Administration of this antagonist caused a significant increase in the release of vasopressin within the supraoptic nucleus and into the blood both under basal conditions and during stress (up to 800%; P < 0.05 vs. basal values), without affecting hypothalamic or plasma oxytocin. Local administration of the GABA(A) receptor antagonist bicuculline, in contrast, failed to influence vasopressin secretion at either time point. In a separate series of in vivo electrophysiological experiments, administration of the same dosage of the taurine antagonist into the supraoptic nucleus via microdialysis resulted in an increased electrical activity of identified vasopressinergic, but not oxytocinergic, neurons. Taken together our data demonstrate that taurine is released within the supraoptic nucleus during physical/emotional stress. Furthermore, at the level of the supraoptic nucleus, taurine inhibits not only the electrical activity of vasopressin neurons but also acts as an inhibitor of both central and peripheral vasopressin secretion during different physiological states.
Collapse
Affiliation(s)
- M Engelmann
- Institut für Medizinische Neurobiologie, Otto-von-Guericke-Universität Magdeburg, Leipziger Str. 44. D-39120 Magdeburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
245
|
Wotjak CT, Naruo T, Muraoka S, Simchen R, Landgraf R, Engelmann M. Forced swimming stimulates the expression of vasopressin and oxytocin in magnocellular neurons of the rat hypothalamic paraventricular nucleus. Eur J Neurosci 2001; 13:2273-81. [PMID: 11454031 DOI: 10.1046/j.0953-816x.2001.01613.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Previous studies have shown that a 10-min forced swimming session triggers the release of both vasopressin and oxytocin into the extracellular fluid of the hypothalamic paraventricular (PVN) and supraoptic nuclei (SON) in rats. At the same time oxytocin, but not vasopressin, was released from the axon terminals into the blood. Here we combined forced swimming with in situ hybridization to investigate whether (i) the stressor-induced release of vasopressin and oxytocin within the PVN originates from parvo- or magnocellular neurons of the nucleus, and (ii) central release with or without concomitant peripheral secretion is followed by changes in the synthesis of vasopressin and/or oxytocin. Adult male Wistar rats were killed 2, 4 or 8 h after a 10-min forced swimming session and their brains processed for in situ hybridization using 35S-labelled oligonucleotide probes. As measured on photo-emulsion-coated slides, cellular vasopressin mRNA concentration increased in magnocellular PVN neurons 2 and 4 h after swimming (P < 0.05). Similarly, oxytocin mRNA concentration was significantly increased in magnocellular neurons of the PVN at 2 and 8 h (P < 0.05). We failed to observe significant effects on vasopressin and oxytocin mRNA levels in the parvocellular PVN and in the SON. Taken together with results from previous studies, our data suggest that magnocellular neurons are the predominant source of vasopressin and oxytocin released within PVN in response to forced swimming. Furthermore, in the case of vasopressin, central release in the absence of peripheral secretion is followed by increased mRNA levels, implying a refill of depleted somato-dendritic vasopressin stores. Within the SON, however, mRNA levels are poor indicators of the secretory activity of magnocellular neurons during stress.
Collapse
Affiliation(s)
- C T Wotjak
- Max-Planck-Institut für Psychiatrie, Kraepelinstr. 2, D-80804 München, Germany
| | | | | | | | | | | |
Collapse
|
246
|
Abstract
The neurohypophysial peptide oxytocin (OT) and OT-like hormones facilitate reproduction in all vertebrates at several levels. The major site of OT gene expression is the magnocellular neurons of the hypothalamic paraventricular and supraoptic nuclei. In response to a variety of stimuli such as suckling, parturition, or certain kinds of stress, the processed OT peptide is released from the posterior pituitary into the systemic circulation. Such stimuli also lead to an intranuclear release of OT. Moreover, oxytocinergic neurons display widespread projections throughout the central nervous system. However, OT is also synthesized in peripheral tissues, e.g., uterus, placenta, amnion, corpus luteum, testis, and heart. The OT receptor is a typical class I G protein-coupled receptor that is primarily coupled via G(q) proteins to phospholipase C-beta. The high-affinity receptor state requires both Mg(2+) and cholesterol, which probably function as allosteric modulators. The agonist-binding region of the receptor has been characterized by mutagenesis and molecular modeling and is different from the antagonist binding site. The function and physiological regulation of the OT system is strongly steroid dependent. However, this is, unexpectedly, only partially reflected by the promoter sequences in the OT receptor gene. The classical actions of OT are stimulation of uterine smooth muscle contraction during labor and milk ejection during lactation. While the essential role of OT for the milk let-down reflex has been confirmed in OT-deficient mice, OT's role in parturition is obviously more complex. Before the onset of labor, uterine sensitivity to OT markedly increases concomitant with a strong upregulation of OT receptors in the myometrium and, to a lesser extent, in the decidua where OT stimulates the release of PGF(2 alpha). Experiments with transgenic mice suggest that OT acts as a luteotrophic hormone opposing the luteolytic action of PGF(2 alpha). Thus, to initiate labor, it might be essential to generate sufficient PGF(2 alpha) to overcome the luteotrophic action of OT in late gestation. OT also plays an important role in many other reproduction-related functions, such as control of the estrous cycle length, follicle luteinization in the ovary, and ovarian steroidogenesis. In the male, OT is a potent stimulator of spontaneous erections in rats and is involved in ejaculation. OT receptors have also been identified in other tissues, including the kidney, heart, thymus, pancreas, and adipocytes. For example, in the rat, OT is a cardiovascular hormone acting in concert with atrial natriuretic peptide to induce natriuresis and kaliuresis. The central actions of OT range from the modulation of the neuroendocrine reflexes to the establishment of complex social and bonding behaviors related to the reproduction and care of the offspring. OT exerts potent antistress effects that may facilitate pair bonds. Overall, the regulation by gonadal and adrenal steroids is one of the most remarkable features of the OT system and is, unfortunately, the least understood. One has to conclude that the physiological regulation of the OT system will remain puzzling as long as the molecular mechanisms of genomic and nongenomic actions of steroids have not been clarified.
Collapse
Affiliation(s)
- G Gimpl
- Institut für Biochemie, Johannes Gutenberg Universität, Mainz, Germany.
| | | |
Collapse
|
247
|
Abstract
Microdialysis provides a direct approach to monitor changes in interneuronal communication by monitoring the fluctuation of local, extracellular concentrations of potential neurotransmitters/neuromodulators. The present article is based on more than 10 years experience in performing microdialysis experiments in freely moving animals with inexpensive self-made microdialysis probes and accessories for monitoring of intracerebral neuropeptide release. On the basis of this experience, we provide a guide for the construction of different types of microdialysis probes and their application. Furthermore, we give information about organizing and performing a microdialysis experiment that can easily be adapted to fit individual applications needs. Finally, on the basis of theoretical background information advantages as well as limitations of the microdialysis technique are discussed with the intent to provide help to potential users for designing an appropriate microdialysis experiment.
Collapse
Affiliation(s)
- T F Horn
- Institute for Medical Neurobiology, OttovonGuericke University, Magdeburg, D-39120, Germany.
| | | |
Collapse
|
248
|
Neumann ID, Krömer SA, Toschi N, Ebner K. Brain oxytocin inhibits the (re)activity of the hypothalamo-pituitary-adrenal axis in male rats: involvement of hypothalamic and limbic brain regions. REGULATORY PEPTIDES 2000; 96:31-8. [PMID: 11102649 DOI: 10.1016/s0167-0115(00)00197-x] [Citation(s) in RCA: 197] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In response to various stressors, oxytocin is released not only into blood, but also within hypothalamic and extrahypothalamic limbic brain regions. Here, we describe the involvement of intracerebrally released oxytocin in the regulation of the activity of the hypothalamo-pituitary-adrenal (HPA) axis by infusion of the oxytocin receptor antagonist (des Gly-NH(2) d(CH(2))(5) [Tyr(Me)(2), Thr(4)] OVT; pH 7.4; Dr. M. Manning, Toledo, OH, USA) either into the lateral cerebral ventricle (icv[0.75 microg/5 microl,]) or via retrodialysis (10 microg/ml, 3.3 microl/min, 15 min) into the hypothalamic paraventricular nuclei (PVN), the medio-lateral septum or the amygdala. Male Wistar rats fitted with a chronic jugular vein catheter and an icv guide cannula or a microdialysis probe targeting the respective brain region 4 days prior to the experiment were blood sampled under basal as well as stressful conditions. Rats were exposed to the elevated platform (emotional stressor) and/or to forced swimming (combined physical and emotional stressor). Blockade of the receptor-mediated action of endogenous oxytocin within the PVN resulted in an enhanced basal secretion of ACTH whereas, in response to forced swimming, ACTH secretion was rather reduced, indicating a tonic inhibitory effect of OXT on basal HPA axis activity, but a potentiating action under conditions of stress. Within the medio-lateral septum, antagonist treatment did not alter basal ACTH secretion, but significantly disinhibited ACTH secretion in response to the elevated platform, but not to forced swimming. Within the amygdala, no significant effects either on basal or stress-induced HPA axis activity could be found. The results indicate a differential involvement of brain oxytocin in the regulation of the HPA axis activity which depends both on the site of intracerebral oxytocin release and the stressor the animals are exposed to.
Collapse
Affiliation(s)
- I D Neumann
- Max Planck Institute of Psychiatry, Kraepelinstr. 2, D80804, Munich, Germany.
| | | | | | | |
Collapse
|
249
|
Keck ME, Sillaber I, Ebner K, Welt T, Toschi N, Kaehler ST, Singewald N, Philippu A, Elbel GK, Wotjak CT, Holsboer F, Landgraf R, Engelmann M. Acute transcranial magnetic stimulation of frontal brain regions selectively modulates the release of vasopressin, biogenic amines and amino acids in the rat brain. Eur J Neurosci 2000; 12:3713-20. [PMID: 11029641 DOI: 10.1046/j.1460-9568.2000.00243.x] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Using intracerebral microdialysis in urethane-anaesthetized adult male Wistar rats, we monitored the effects of acute repetitive transcranial magnetic stimulation (rTMS; 20 trains of 20 Hz, 2.5 s) on the intrahypothalamic release of arginine vasopressin (AVP) and selected amino acids (glutamate, glutamine, aspartate, serine, arginine, taurine, gamma-aminobutyric acid) and the intrahippocampal release of monoamines (dopamine, noradrenaline, serotonin) and their metabolites (homovanillic acid, 3,4-dihydroxyphenylacetic acid, 5-hydroxyindoleacetic acid). The stimulation parameters were adjusted according to the results of accurate computer reconstructions of the current density distributions induced by rTMS in the rat and human brains, ensuring similar stimulation patterns in both cases. There was a continuous reduction in AVP release of up to 50% within the hypothalamic paraventricular nucleus in response to rTMS. In contrast, the release of taurine, aspartate and serine was selectively stimulated within this nucleus by rTMS. Furthermore, in the dorsal hippocampus the extracellular concentration of dopamine was elevated in response to rTMS. Taken together, these data provide the first in vivo evidence that acute rTMS of frontal brain regions has a differentiated modulatory effect on selected neurotransmitter/neuromodulator systems in distinct brain areas.
Collapse
Affiliation(s)
- M E Keck
- Max Planck Institute of Psychiatry, Munich, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
250
|
Abstract
The effect of electrically evoked dendritic vasopressin release on noradrenaline release into the hypothalamic supraoptic nucleus was assessed by in vivo microdialysis in conjunction with high pressure liquid chromatography and electrochemical detection. Electrical activation of magnocellular supraoptic neurones by stimulation of their axons at the level of the neural lobe significantly increased noradrenaline release into the nucleus (2.5-fold, P<0.03). This increase was completely blocked by administration of a nonpeptide vasopressin V1a receptor antagonist via the microdialysis probe. These data suggest that dendritically released vasopressin facilitates noradrenaline release into the hypothalamic nucleus.
Collapse
Affiliation(s)
- M Ludwig
- Department of Biomedical Sciences, University of Edinburgh Medical School, Edinburgh, UK.
| | | | | |
Collapse
|