201
|
Abstract
Homeobox genes are an evolutionarily conserved class of transcription factors that are key regulators of developmental processes such as regional specification, patterning, migration and differentiation. In both mouse and humans, the developing forebrain is marked by distinct boundaries of homeobox gene expression at different developmental time points. These genes regulate the patterning of the forebrain along the dorsal/ventral and rostral/caudal axes and are also essential for the differentiation of specific neuronal subtypes. Inhibitory interneurons that arise from the ganglionic eminences and migrate tangentially to the neocortex and hippocampus are dramatically affected by mutations in several homeobox genes. In this review, we discuss the identification, expression patterns, loss- and/or gain-of-function models, and confirmed transcriptional targets for a set of homeobox genes required for the correct development of the forebrain in the mouse. In humans, mutations of homeobox genes expressed in the forebrain have been shown to result in mental retardation, epilepsy or movement disorders. The number of homeobox genes currently linked to human nervous system disease is surprisingly low, perhaps reflecting the essential functions of these genes throughout embryogenesis or the degree of functional redundancy during central nervous system development.
Collapse
Affiliation(s)
- J T Wigle
- Department of Biochemistry & Medical Genetics; Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, Winnipeg, Manitoba, Canada
| | | |
Collapse
|
202
|
Mueller T, Wullimann MF, Guo S. Early teleostean basal ganglia development visualized by ZebrafishDlx2a,Lhx6,Lhx7,Tbr2 (eomesa), andGAD67 gene expression. J Comp Neurol 2008; 507:1245-57. [DOI: 10.1002/cne.21604] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
203
|
Moreno N, González A. Regionalization of the telencephalon in urodele amphibians and its bearing on the identification of the amygdaloid complex. Front Neuroanat 2007; 1:1. [PMID: 18958195 PMCID: PMC2525920 DOI: 10.3389/neuro.05.001.2007] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Accepted: 12/05/2007] [Indexed: 02/02/2023] Open
Abstract
The brain of urodele amphibians has formed the basis for numerous comparative neuroanatomical studies because its simplified arrangement of neurons and fibers was considered to represent the basic pattern common to all tetrapods. However, on the basis of classical histological techniques many common features shared by the brain of amniotes could not be identified in the anamniotic amphibians. Recently, the combined analysis of the chemoarchitecture and hodology has demonstrated that the brain, and particularly the telencephalon, of anuran amphibians shares all major basic features with amniotes. In the present study, we have conducted a series of immunohistochemical detections for telencephalic regional markers (nitric oxide synthase (NOS), gamma-amino butyric acid (GABA), Islet-1 (Isl1), and Nkx2.1) that were useful tools for unraveling telencephalic organization in other vertebrates. In addition, the combination of tract-tracing techniques with dextran amines to demonstrate olfactory secondary centers, hypothalamic projections, and brainstem connections has served to propose subdivisions within the amygdaloid complex. The results of the present analysis of the urodele telencephalon using a multiple approach have demonstrated, among other features, the presence of a ventral pallial region, striatopallidal subdivision in the basal ganglia, and three main components of the amygdaloid complex. Therefore, in spite of its apparently simple organization, within the telencephalon of urodeles it is possible to identify most of the features observed in amniotes and anurans that are only revealed with the use of combined modern techniques in neuroanatomy.
Collapse
Affiliation(s)
- Nerea Moreno
- Department of Cell Biology, Faculty of Biology, University Complutense of MadridSpain
- Department of Biology, Faculty of Sciences, University Autonoma of MadridSpain
| | - Agustín González
- Department of Cell Biology, Faculty of Biology, University Complutense of MadridSpain
| |
Collapse
|
204
|
Aboitiz F, Montiel J. Co-option of signaling mechanisms from neural induction to telencephalic patterning. Rev Neurosci 2007; 18:311-42. [PMID: 18019612 DOI: 10.1515/revneuro.2007.18.3-4.311] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
This article provides an overview of signaling processes during early specification of the anterior neural tube, with special emphasis on the telencephalon. A series of signaling systems based on the action of distinct morphogens acts at different developmental stages, specifying interacting developmental fields that define axes of differentiation in the rostrocaudal and the dorsoventral domains. Interestingly, many of these signaling systems are co-opted for several differentiation processes. This strategy provides a simple and efficient mechanism to generate novel structures in evolution, and may have been especially important in the origin of the telencephalon and the mammalian cerebral cortex. For example, the action of fibroblast growth factor (FGF) secreted in early stages from the anterior neural ridge, but in later stages from the dorsal anterior forebrain, may have been a key factor in the early differentiation of the ventral telencephalon and in the eventual expansion of the mammalian neocortex. Likewise, bone morphogenetic proteins (BMPs) participate at several stages in neural patterning, even if early neural induction consists of the inhibition of the BMP pathway. BMPs, secreted dorsally, interact with FGFs in the frontal aspect of the hemispheres, and with PAX6-dependent signaling sources located laterally, to pattern the dorsal telencephalon. The actions of other morphogens are also described in this context, such as the ventralizing factor SHH, the dorsalizing element GLI3, and other factors related to the dorsomedial telencephalon such as WNTs and EMXs. The main conclusion we draw from this review is the well-known phylogenetic and developmental conservatism of signaling pathways, which in evolution have been applied in different embryological contexts, generating novel interactions between morphogenetic fields and leading to the generation of new morphological structures.
Collapse
Affiliation(s)
- Francisco Aboitiz
- Departamento de Psiquiatría y Centro de Investigaciones Médicas, Escuela de Medicina, Pontificia Universidad Católica de Chile.
| | | |
Collapse
|
205
|
de Melo J, Zhou QP, Zhang Q, Zhang S, Fonseca M, Wigle JT, Eisenstat DD. Dlx2 homeobox gene transcriptional regulation of Trkb neurotrophin receptor expression during mouse retinal development. Nucleic Acids Res 2007; 36:872-84. [PMID: 18086710 PMCID: PMC2241891 DOI: 10.1093/nar/gkm1099] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Dlx homeobox genes are first expressed in embryonic retina at E11.5. The Dlx1/Dlx2 null retina has a reduced ganglion cell layer (GCL), with loss of late-born differentiated retinal ganglion cells (RGCs) due to increased apoptosis. TrkB signaling is proposed to regulate the dynamics of RGC apoptosis throughout development. DLX2 expression markedly precedes the onset of TrkB expression in the GCL; TrkB co-expression with Dlx2 and RGC markers is well-established by E13.5. In the Dlx1/Dlx2 null retina, TrkB expression is significantly reduced by E16.5. We demonstrated that DLX2 binds to a specific region of the TrkB promoter in retinal neuroepithelium during embryogenesis. In vitro confirmation and the functional consequences of DLX2 binding to this TrkB regulatory region support TrkB as a Dlx2 transcriptional target. Furthermore, ectopic Dlx2 expression in retinal explants activates TrkB expression and Dlx2 knockdown in primary retinal cultures results in reduced TrkB expression. RGC differentiation and survival require the coordinated expression of transcription factors. This study establishes a direct transcriptional relationship between a homeodomain protein involved in RGC differentiation and a neurotrophin receptor implicated in RGC survival. Signaling mediated by TrkB may contribute to survival of late-born RGCs whose terminal differentiation is regulated by Dlx gene function.
Collapse
Affiliation(s)
- Jimmy de Melo
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | | | | | | | | | |
Collapse
|
206
|
Daza RAM, Englund C, Hevner RF. Organotypic slice culture of embryonic brain tissue. ACTA ACUST UNITED AC 2007; 2007:pdb.prot4914. [PMID: 21357004 DOI: 10.1101/pdb.prot4914] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
INTRODUCTIONThis protocol describes how to dissect, assemble, and cultivate mouse embryonic (E) brain tissue from age E11.5 to E18.5 (days) for organotypic slice culture. These preparations can be used for a variety of assays and studies including coculture of different brain regions, cell migration assays, axon guidance assays, and DNA electroporation experiments. During electroporation, an electric current is applied to the surface of a specific target area of the brain slice in order to open holes in the plasma membrane and introduce a plasmid of coding DNA. The floating slice-on-membrane construct helps to preserve the structural integrity of the brain slices, while maintaining easy experimental access and optimal viability. Experiments can be monitored in living slices (e.g., with confocal imaging), and further studies can be completed using slices that have been fixed and cryosectioned at the end of the experiment. Any region of embryonic brain or spinal tissue can be used in this protocol.
Collapse
Affiliation(s)
- Ray A M Daza
- Department of Pathology, University of Washington, Seattle, WA 98104, USA
| | | | | |
Collapse
|
207
|
Currie DA, de Vente J, Moody WJ. Developmental appearance of cyclic guanosine monophosphate (cGMP) production and nitric oxide responsiveness in embryonic mouse cortex and striatum. Dev Dyn 2007; 235:1668-77. [PMID: 16518821 DOI: 10.1002/dvdy.20732] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The second messenger cyclic guanosine monophosphate (cGMP) regulates multiple aspects of both structural development and physiological function in the developing nervous system. Recent in vitro experiments have shown that cGMP also modulates the response of developing vertebrate neurons to guidance molecules. This has led to the proposal that in vivo cGMP plays a critical role in directing the outgrowth of the apical dendrites of developing neurons in the cerebral cortex. Despite this proposed role, the onset, localization, and dynamics of cGMP production in the embryonic cortex are unknown. To investigate the potential contribution of cGMP in the embryo, we have used a pharmacological and immunohistochemical approach to test whether the endogenous production of cGMP, and the capacity to produce cGMP in response to nitric oxide (NO), in the cerebral cortex is compatible with the proposed developmental roles for cGMP. We find that cortical cGMP production and NO sensitivity are regionally and developmentally regulated. Cortical cGMP production begins at E15, later than in the ganglionic eminences, becomes high in the cortical plate but not the ventricular zone, and is dependent on nitric oxide synthase activity. Furthermore, although radially migrating neurons were not NO responsive until they reached the cortical plate, NO exposure revealed an additional population of tangentially migrating presumptive interneurons from the ganglionic eminences with the capacity to produce cGMP. These results provide a new level of understanding of the stage and cell type specific regulation of the NO/cGMP pathway during embryonic development.
Collapse
Affiliation(s)
- Douglas A Currie
- Department of Biology, University of Washington, Seattle, Washington, USA.
| | | | | |
Collapse
|
208
|
Jepsen K, Solum D, Zhou T, McEvilly RJ, Kim HJ, Glass CK, Hermanson O, Rosenfeld MG. SMRT-mediated repression of an H3K27 demethylase in progression from neural stem cell to neuron. Nature 2007; 450:415-9. [DOI: 10.1038/nature06270] [Citation(s) in RCA: 331] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Accepted: 09/20/2007] [Indexed: 11/09/2022]
|
209
|
Nomura T, Haba H, Osumi N. Role of a transcription factor Pax6 in the developing vertebrate olfactory system. Dev Growth Differ 2007; 49:683-90. [PMID: 17908181 DOI: 10.1111/j.1440-169x.2007.00965.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The olfactory system is responsible for capturing and processing odorant information, which significantly influences a variety of behaviors in animals. The vertebrate olfactory system consists of several neuronal components including the olfactory epithelium, olfactory bulb and olfactory cortex, which originate from distinct embryonic tissues. The transcription factor Pax6 is strongly expressed in the embryonic and postnatal olfactory systems, and regulates neuronal specification, migration and differentiation. Here we review classical and recent studies focusing on the role of Pax6 in the developing olfactory system, and highlight the cellular and molecular mechanisms underlying the highly coordinated developmental processes of the vertebrate olfactory system.
Collapse
Affiliation(s)
- Tadashi Nomura
- Division of Developmental Neuroscience, Center for Translational and Advanced Animal Research, Tohoku University Graduate School of Medicine, 2-1, Seiryo-machi Aoba-ku, Sendai, 980-8575, Japan.
| | | | | |
Collapse
|
210
|
Abstract
The vertebrate central nervous system contains a great diversity of neurons and glial cells, which are generated in the embryonic neural tube at specific times and positions. Several classes of transcription factors have been shown to control various steps in the differentiation of progenitor cells in the neural tube and to determine the identity of the cells produced. Recent evidence indicates that combinations of transcription factors of the homeodomain and basic helix-loop-helix families establish molecular codes that determine both where and when the different kinds of neurons and glial cells are generated.
Collapse
Affiliation(s)
- François Guillemot
- National Institute for Medical Research, The Ridgeway, Mill Hill, NW7 1AA London, UK.
| |
Collapse
|
211
|
Petryniak MA, Potter GB, Rowitch DH, Rubenstein JLR. Dlx1 and Dlx2 control neuronal versus oligodendroglial cell fate acquisition in the developing forebrain. Neuron 2007; 55:417-33. [PMID: 17678855 PMCID: PMC2039927 DOI: 10.1016/j.neuron.2007.06.036] [Citation(s) in RCA: 264] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Revised: 05/21/2007] [Accepted: 06/28/2007] [Indexed: 10/23/2022]
Abstract
Progenitors within the ventral telencephalon can generate GABAergic neurons and oligodendrocytes, but regulation of the neuron-glial switch is poorly understood. We investigated the combinatorial expression and function of Dlx1&2, Olig2, and Mash1 transcription factors in the ventral telencephalon. We show that Dlx homeobox transcription factors, required for GABAergic interneuron production, repress oligodendrocyte precursor cell (OPC) formation by acting on a common progenitor to determine neuronal versus oligodendroglial cell fate acquisition. We demonstrate that Dlx1&2 negatively regulate Olig2-dependant OPC formation and that Mash1 promotes OPC formation by restricting the number of Dlx+ progenitors. Progenitors transplanted from Dlx1&2 mutant ventral telencephalon into newborn wild-type mice do not produce neurons but differentiate into myelinating oligodendrocytes that survive into adulthood. Our results identify another role for Dlx genes as modulators of neuron versus oligodendrocyte development in the ventral embryonic forebrain.
Collapse
Affiliation(s)
- Magdalena A. Petryniak
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, University of California at San Francisco, San Francisco, CA 94158-2611, USA
- Division of Neonatology, Department of Pediatrics, University of California at San Francisco, 533 Parnassus, San Francisco, CA, 94143-0748
| | - Gregory B. Potter
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, University of California at San Francisco, San Francisco, CA 94158-2611, USA
- Corresponding authors: , Ph: 415-476-7872, Fax: 415-476-7884; , Ph: 415-476-7862, Fax: 415-502-7618
| | - David H. Rowitch
- Division of Neonatology, Department of Pediatrics, University of California at San Francisco, 533 Parnassus, San Francisco, CA, 94143-0748
- Institute for Regeneration Medicine, Department of Neurological Surgery, UCSF
| | - John L. R. Rubenstein
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, University of California at San Francisco, San Francisco, CA 94158-2611, USA
- Corresponding authors: , Ph: 415-476-7872, Fax: 415-476-7884; , Ph: 415-476-7862, Fax: 415-502-7618
| |
Collapse
|
212
|
Cobos I, Borello U, Rubenstein JLR. Dlx transcription factors promote migration through repression of axon and dendrite growth. Neuron 2007; 54:873-88. [PMID: 17582329 PMCID: PMC4921237 DOI: 10.1016/j.neuron.2007.05.024] [Citation(s) in RCA: 180] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Revised: 04/08/2007] [Accepted: 05/14/2007] [Indexed: 01/16/2023]
Abstract
In the mouse telencephalon, Dlx homeobox transcription factors are essential for the tangential migration of subpallial-derived GABAergic interneurons to neocortex. However, the mechanisms underlying this process are poorly understood. Here, we demonstrate that Dlx1/2 has a central role in restraining neurite growth of subpallial-derived immature interneurons at a stage when they migrate tangentially to cortex. In Dlx1-/-;Dlx2-/- mutants, neurite length is increased and cells fail to migrate. In Dlx1-/-;Dlx2+/- mutants, while the tangential migration of immature interneurons appears normal, they develop dendritic and axonal processes with increased length and decreased branching, and have deficits in their neocortical laminar positions. Thus, Dlx1/2 is required for coordinating programs of neurite maturation and migration. In this regard, we provide genetic evidence that in immature interneurons Dlx1/2 repression of the p21-activated serine/threonine kinase PAK3, a downstream effector of the Rho family of GTPases, is critical in restraining neurite growth and promoting tangential migration.
Collapse
Affiliation(s)
- Inma Cobos
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94158, USA.
| | | | | |
Collapse
|
213
|
Samanta J, Burke GM, McGuire T, Pisarek AJ, Mukhopadhyay A, Mishina Y, Kessler JA. BMPR1a signaling determines numbers of oligodendrocytes and calbindin-expressing interneurons in the cortex. J Neurosci 2007; 27:7397-407. [PMID: 17626200 PMCID: PMC6672617 DOI: 10.1523/jneurosci.1434-07.2007] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Progenitor cells that express the transcription factor olig1 generate several neural cell types including oligodendrocytes and GABAergic interneurons in the dorsal cortex. The fate of these progenitor cells is regulated by a number of signals including bone morphogenetic proteins (BMPs) secreted in the dorsal forebrain. BMPs signal by binding to heteromeric serine-threonine kinase receptors formed by type I (BMPR1a, BMPR1b, Alk2) and type II (BMPRII) subunits. To determine the specific role of the BMPR1a subunit in lineage commitment by olig1-expressing cells, we used a cre/loxP genetic approach to ablate BMPR1a in these cells while leaving signaling from other subunits intact. There was a reduction in numbers of immature oligodendrocytes in the BMPR1a-null mutant brains at birth. However, by postnatal day 20, the BMPR1a-null mice had a significant increase in the number of mature and immature oligodendrocytes compared with wild-type littermates. There was also an increase in the proportion of calbindin-positive interneurons in the dorsomedial cortex of BMPR1a-null mice at birth without any change in the number of parvalbumin- or calretinin-positive cells. These effects were attributable, at least in part, to a decrease in the length of the cell cycle in subventricular zone progenitor cells. Thus, our findings indicate that BMPR1a mediates the suppressive effects of BMP signaling on oligodendrocyte lineage commitment and on the specification of calbindin-positive interneurons in the dorsomedial cortex.
Collapse
Affiliation(s)
- Jayshree Samanta
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, and
| | - Gordon M. Burke
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, and
| | - Tammy McGuire
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, and
| | - Anna J. Pisarek
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, and
| | - Abhishek Mukhopadhyay
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, and
| | - Yuji Mishina
- Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709
| | - John A. Kessler
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, and
| |
Collapse
|
214
|
Kohwi M, Petryniak MA, Long JE, Ekker M, Obata K, Yanagawa Y, Rubenstein JLR, Alvarez-Buylla A. A subpopulation of olfactory bulb GABAergic interneurons is derived from Emx1- and Dlx5/6-expressing progenitors. J Neurosci 2007; 27:6878-91. [PMID: 17596436 PMCID: PMC4917362 DOI: 10.1523/jneurosci.0254-07.2007] [Citation(s) in RCA: 188] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The subventricular zone (SVZ) of the postnatal brain continuously generates olfactory bulb (OB) interneurons. We show that calretinin+, calbindin+, and dopaminergic (TH+) periglomerular OB interneurons correspond to distinct subtypes of GABAergic cells; all were produced in the postnatal mouse brain, but they matured and were eliminated at different rates. The embryonic lateral ganglionic eminence (LGE) is thought to be the site of origin of postnatal SVZ neural progenitors. Consistently, grafts of the embryonic LGE into the adult brain SVZ generated many OB interneurons, including TH+ and calbindin+ periglomerular interneurons. However, calretinin+ cells were not produced from these LGE grafts. Surprisingly, pallial and septal embryonic progenitors transplanted into the adult brain SVZ also resulted in the generation of OB interneurons, including calretinin+ cells. A subset of Dlx2+ OB interneurons was derived from cells expressing Emx1, a transcription factor largely restricted to the pallium during development. Emx1 lineage-derived cells contributed a substantial portion of GABAergic cells in the OB, including calretinin+ interneurons. This is in contrast to cortex, in which Emx1 lineage-derived cells do not differentiate into GABAergic neurons. Our results suggest that some OB interneurons are derived from progenitors outside the LGE and that precursors expressing what has classically been considered a pallial transcription factor generate GABAergic interneurons.
Collapse
Affiliation(s)
- Minoree Kohwi
- Department of Neurosurgery and Developmental and Stem Cell Biology Program, University of California at San Francisco, San Francisco, California 94143
| | - Magdalena A. Petryniak
- Department of Pediatrics, University of California at San Francisco, San Francisco, California 94143-0748
| | - Jason E. Long
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, University of California at San Francisco, San Francisco, California 94158-2611
| | - Marc Ekker
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
| | - Kunihiko Obata
- Obata Research Unit, RIKEN Brain Science Institute, Wako 351-0198, Japan, and
| | - Yuchio Yanagawa
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine and Solution-Oriented Research for Science and Technology, Japan Science and Technology Agency, Maebashi 371-8511, Japan
| | - John L. R. Rubenstein
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, University of California at San Francisco, San Francisco, California 94158-2611
| | - Arturo Alvarez-Buylla
- Department of Neurosurgery and Developmental and Stem Cell Biology Program, University of California at San Francisco, San Francisco, California 94143
| |
Collapse
|
215
|
Cheung AFP, Pollen AA, Tavare A, DeProto J, Molnár Z. Comparative aspects of cortical neurogenesis in vertebrates. J Anat 2007; 211:164-76. [PMID: 17634059 PMCID: PMC2375772 DOI: 10.1111/j.1469-7580.2007.00769.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The mammalian neocortex consists of six layers. By contrast, the reptilian and avian cortices have only three, which are believed to be equivalent to layers I, V and VI of mammals. In mammals, the majority of cortical cell proliferation occurs in the ventricular and subventricular zones, but there are a small number of scattered individual divisions throughout the cortex. Neurogenesis in the cortical subventricular zone is believed to contribute to the supragranular layers. To estimate the proportions of different forms of divisions in reptiles and birds, we examined the site of proliferation in embryonic turtle (stages 18-25) and chick (embryonic days 8-15) brains using phospho-histone H3 (a G2 and M phase marker) immunohistochemistry. In turtle, only few scattered abventricular H3-immunoreactive cells were found outside the ventricular zone; the majority of the H3-immunoreactive cells were located in the ventricular zone throughout the entire turtle brain. Ventricular zone cell proliferation peaks at stages 18 and 20, before an increase of abventricular proliferation at stages 23 and 25. In turtle cortex, however, abventricular proliferation at any given stage never exceeded 17.5+/-2.47% of the total division and the mitotic profiles did not align parallel to the ventricular zone. Phospho-histone H3 immunoreactivity in embryonic chick brains suggests the lack of subventricular zone in the dorsal cortex, but the presence of subventricular zone in the ventral telencephalon. We were able to demonstrate that the avian subventricular zone is present in both pallial and subpallial regions of the ventral telencephalon during embryonic development, and we characterize the spatial and temporal organization of the subventricular zone. Comparative studies suggest that the subventricular zone was involved in the laminar expansion of the cortex to six layers in mammals from the three-layered cortex found in reptiles and birds. Within mammals, the number of neurons in a cortical column appears to be largely constant; nevertheless, there are considerable differences between the germinal zones in mammalian species. It is yet to be determined whether these elaborations of the subventricular zone may have contributed to cell diversity, tangential expansion or gyrus formation of the neocortex and whether it might have been the major driving force behind the evolution of the six-layered neocortex in mammals.
Collapse
Affiliation(s)
- Amanda F P Cheung
- Department of Physiology, Anatomy and Genetics, University of Oxford, UK
| | | | | | | | | |
Collapse
|
216
|
Zeng SJ, Xi C, Zhang XW, Zuo MX. Differences in neurogenesis differentiate between core and shell regions of auditory nuclei in the turtle (Pelodiscus sinensis): evolutionary implications. BRAIN, BEHAVIOR AND EVOLUTION 2007; 70:174-86. [PMID: 17595537 DOI: 10.1159/000104308] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2006] [Accepted: 08/21/2006] [Indexed: 11/19/2022]
Abstract
There is a clear core-versus-shell distinction in cytoarchitecture, electrophysiological properties and neural connections in the mesencephalic and diencephalic auditory nuclei of amniotes. Determining whether the embryogenesis of auditory nuclei shows a similar organization is helpful for further understanding the constituent organization and evolution of auditory nuclei. Therefore in the present study, we injected [(3)H]-thymidine into turtle embryos (Pelodiscus sinensis) at various stages of development. Upon hatching, [(3)H]-thymidine labeling was examined in both the core and shell auditory regions in the midbrain, diencephalon and dorsal ventricular ridge. Met-enkephalin and substance P immunohistochemistry was used to distinguish the core and shell regions. In the mesencephalic auditory nucleus, the occurrence of heavily labeled neurons in the nucleus centralis of the torus semicircularis reached its peak at embryonic day 9, one day later than the surrounding shell. In the diencephalic auditory nucleus, the production of heavily labeled neurons in the central region of the reuniens (Re) was highest at embryonic day (E) 8, one day later than that in the shell region of reuniens. In the region of the dorsal ventricular ridge that received inputs from the central region of Re, the appearance of heavily labeled neurons also reached a peak one day later than that in the area receiving inputs from the shell region of reuniens. Thus, there is a core-versus-shell organization of neuronal generation in reptilian auditory areas.
Collapse
Affiliation(s)
- Shao-Ju Zeng
- College of Life Sciences, Beijing Normal University, Beijing, China.
| | | | | | | |
Collapse
|
217
|
Ghanem N, Yu M, Long J, Hatch G, Rubenstein JLR, Ekker M. Distinct cis-regulatory elements from the Dlx1/Dlx2 locus mark different progenitor cell populations in the ganglionic eminences and different subtypes of adult cortical interneurons. J Neurosci 2007; 27:5012-22. [PMID: 17494687 PMCID: PMC4917363 DOI: 10.1523/jneurosci.4725-06.2007] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Distinct subtypes of cortical GABAergic interneurons provide inhibitory signals that are indispensable for neural network function. The Dlx homeobox genes have a central role in regulating their development and function. We have characterized the activity of three cis-regulatory sequences involved in forebrain expression of vertebrate Dlx genes: upstream regulatory element 2 (URE2), I12b, and I56i. The three regulatory elements display regional and temporal differences in their activities within the lateral ganglionic eminence (LGE), medial ganglionic eminence (MGE), and caudal ganglionic eminence (CGE) and label distinct populations of tangentially migrating neurons at embryonic day 12.5 (E12.5) and E13.5. We provide evidence that the dorsomedial and ventral MGE are distinct sources of tangentially migrating neurons during midgestation. In the adult cortex, URE2 and I12b/I56i are differentially expressed in parvalbumin-, calretinin-, neuropeptide Y-, and neuronal nitric oxide synthase-positive interneurons; I12b and I56i were specifically active in somatostatin-, vasoactive intestinal peptide-, and calbindin-positive interneurons. These data suggest that interneuron subtypes use distinct combinations of Dlx1/Dlx2 enhancers from the time they are specified through adulthood.
Collapse
Affiliation(s)
- Noël Ghanem
- Centre for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5, and
| | - Man Yu
- Centre for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5, and
| | - Jason Long
- Nina Ireland Laboratory of Developmental Neurobiology, Centre for Neurobiology and Psychiatry Genetics, Department of Psychiatry, University of California, San Francisco, San Francisco, California 94143
| | - Gary Hatch
- Centre for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5, and
| | - John L. R. Rubenstein
- Nina Ireland Laboratory of Developmental Neurobiology, Centre for Neurobiology and Psychiatry Genetics, Department of Psychiatry, University of California, San Francisco, San Francisco, California 94143
| | - Marc Ekker
- Centre for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5, and
| |
Collapse
|
218
|
Inoue T, Ota M, Ogawa M, Mikoshiba K, Aruga J. Zic1 and Zic3 regulate medial forebrain development through expansion of neuronal progenitors. J Neurosci 2007; 27:5461-73. [PMID: 17507568 PMCID: PMC6672357 DOI: 10.1523/jneurosci.4046-06.2007] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The medial telencephalon is a source of neurons that follow distinct tangential trajectories of migration to various structures such as the cerebral cortex, striatum, and olfactory bulb. In the present study, we characterized the forebrain anomalies in Zic1/Zic3 compound mutant mice. Zic1 and Zic3 were strongly expressed in the medial structures, including the septum, medial cerebral cortex, and choroid plexus. Mice homozygous for the Zic1 mutant allele together with the null Zic3 allele showed medial forebrain defects, which were not obvious in either Zic1 or Zic3 single mutants. Absence of both Zic1 and Zic3 caused hypoplasia of the hippocampus, septum, and olfactory bulb. Analysis of the cell cycle revealed that the cell cycle exit rate was increased in the septa of double mutants. Misexpression of Zic3 in the ventricular layer of the cerebral cortex inhibited neuronal differentiation. These results indicated that both Zic1 and Zic3 function in maintaining neural precursor cells in an undifferentiated state. The functions of these genes may be essential to increasing neural cell numbers regionally in the medial telencephalon and to proper mediolateral patterning of the telencephalon.
Collapse
Affiliation(s)
| | - Maya Ota
- Laboratory for Comparative Neurogenesis, and
| | | | - Katsuhiko Mikoshiba
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, Wako-shi, Saitama 351-0198, Japan
| | - Jun Aruga
- Laboratory for Comparative Neurogenesis, and
| |
Collapse
|
219
|
Poitras L, Ghanem N, Hatch G, Ekker M. The proneural determinant MASH1 regulates forebrain Dlx1/2expression through the I12b intergenic enhancer. Development 2007; 134:1755-65. [PMID: 17409112 DOI: 10.1242/dev.02845] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Establishment of neuronal networks is an extremely complex process involving the interaction of a diversity of neuronal cells. During mammalian development, these highly organized networks are formed through the differentiation of multipotent neuronal progenitors into multiple neuronal cell lineages. In the developing forebrain of mammals, the combined function of the Dlx1, Dlx2, Dlx5 and Dlx6 homeobox genes is necessary for the differentiation of the GABAergic interneurons born in the ventricular and subventricular zones of the ventral telencephalon, as well as for the migration of these neurons to the hippocampus, cerebral cortex and olfactory bulbs. The 437 bp I12b enhancer sequence in the intergenic region of the Dlx1/2 bigene cluster is involved in the forebrain regulation of Dlx1/2. Using DNase I footprinting, we identified six regions of I12b potentially bound by transcription factors. Mutagenesis of each binding site affected the expression of reporter constructs in transgenic mice. However,the effects of impairing protein-DNA interactions were not uniform across the forebrain Dlx1/2 expression domains, suggesting that distinct regulatory interactions are taking place in the different populations of neuronal precursors. Analyses of protein-DNA interactions provide evidence of a direct role for MASH1 in Dlx1/2 regulation in the forebrain. DLX proteins play a crucial role in the maintenance of their own expression, as shown by transgenic and co-transfection experiments. These studies suggest that the seemingly continuous domains of Dlx gene expression in the telencephalon and diencephalon are in fact the combination of distinct cell populations within which different genetic regulatory interactions take place.
Collapse
Affiliation(s)
- Luc Poitras
- Center for Advanced Research in Environmental Genomics (CAREG Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | | | | | | |
Collapse
|
220
|
Colombo E, Collombat P, Colasante G, Bianchi M, Long J, Mansouri A, Rubenstein JLR, Broccoli V. Inactivation of Arx, the murine ortholog of the X-linked lissencephaly with ambiguous genitalia gene, leads to severe disorganization of the ventral telencephalon with impaired neuronal migration and differentiation. J Neurosci 2007; 27:4786-98. [PMID: 17460091 PMCID: PMC4916654 DOI: 10.1523/jneurosci.0417-07.2007] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2006] [Revised: 03/05/2007] [Accepted: 03/06/2007] [Indexed: 11/21/2022] Open
Abstract
ARX loss-of-function mutations cause X-linked lissencephaly with ambiguous genitalia (XLAG), a severe neurological condition that results in profound brain malformations, including microcephaly, absence of corpus callosum, and impairment of the basal ganglia. Despite such dramatic defects, their nature and origin remain largely unknown. Here, we used Arx mutant mice as a model to characterize the cellular and molecular mechanisms underlying the basal ganglia alterations. In these animals, the early differentiation of this tissue appeared normal, whereas subsequent differentiation was impaired, leading to the periventricular accumulation of immature neurons in both the lateral ganglionic eminence and medial ganglionic eminence (MGE). Both tangential migration toward the cortex and striatum and radial migration to the globus pallidus and striatum were greatly reduced in the mutants, causing a periventricular accumulation of NPY+ or calretinin+ neurons in the MGE. Arx mutant neurons retained their differentiation potential in vitro but exhibited deficits in morphology and migration ability. These findings imply that cell-autonomous defects in migration underlie the neuronal localization defects. Furthermore, Arx mutants lacked a large fraction of cholinergic neurons and displayed a strong impairment of thalamocortical projections, in which major axon fiber tracts failed to traverse the basal ganglia. Altogether, these results highlight the critical functions of Arx in promoting neural migration and regulating basal ganglia differentiation in mice, consistent with the phenotype of XLAG patients.
Collapse
Affiliation(s)
- Elena Colombo
- Stem Cell Research Department, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Patrick Collombat
- Department of Molecular Cell Biology, Max-Planck Institute for Biophysical Chemistry, 37077 Goettingen, Germany, and
| | - Gaia Colasante
- Stem Cell Research Department, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Marta Bianchi
- Stem Cell Research Department, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Jason Long
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, University of California, San Francisco, San Francisco, California 94158
| | - Ahmed Mansouri
- Department of Molecular Cell Biology, Max-Planck Institute for Biophysical Chemistry, 37077 Goettingen, Germany, and
| | - John L. R. Rubenstein
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, University of California, San Francisco, San Francisco, California 94158
| | - Vania Broccoli
- Stem Cell Research Department, San Raffaele Scientific Institute, 20132 Milan, Italy
| |
Collapse
|
221
|
Long JE, Garel S, Alvarez-Dolado M, Yoshikawa K, Osumi N, Alvarez-Buylla A, Rubenstein JLR. Dlx-dependent and -independent regulation of olfactory bulb interneuron differentiation. J Neurosci 2007; 27:3230-43. [PMID: 17376983 PMCID: PMC4922751 DOI: 10.1523/jneurosci.5265-06.2007] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Olfactory bulb interneuron development is a complex multistep process that involves cell specification in the ventral telencephalon, tangential migration into the olfactory bulb, and local neuronal maturation. Although several transcription factors have been implicated in this process, how or when they act remains to be elucidated. Here we explore the mechanisms that result in olfactory bulb interneuron defects in Dlx1&2-/- (distal-less homeobox 1 and 2) and Mash1-/- (mammalian achaete-schute homolog 1) mutants. We provide evidence that Dlx1&2 and Mash1 regulate parallel molecular pathways that are required for the generation of these cells, thereby providing new insights into the mechanisms underlying olfactory bulb development. The analysis also defined distinct anatomical zones related to olfactory bulb development. Finally we show that Dlx1&2 are required for promoting tangential migration to the olfactory bulb, potentially via regulating the expression of ErbB4 (v-erb-a erythroblastic leukemia viral oncogene homolog 4), Robo2 (roundabout homolog 2), Slit1 (slit homolog 1), and PK2 (prokineticin 2), which have all been shown to play essential roles in this migration.
Collapse
Affiliation(s)
- Jason E. Long
- Nina Ireland Laboratory of Developmental Neurobiology and
| | - Sonia Garel
- Nina Ireland Laboratory of Developmental Neurobiology and
- Institut National de la Santé et de la Recherche Médicale, Unité 784, École Normale Supérieure, 75230 Paris cedex 05, France
| | - Manuel Alvarez-Dolado
- Department of Neurological Surgery and Developmental and Stem Cell Biology Program, University of California at San Francisco, San Francisco, California 94143
- Laboratorio de Regeneración Celular, Centro Investigación Príncipe Felipe, 46013 Valencia, Spain
| | - Kazuaki Yoshikawa
- Laboratory of Regulation of Neuronal Development, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan, and
| | - Noriko Osumi
- Division of Developmental Neuroscience, Center for Translational and Advanced Animal Research, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Arturo Alvarez-Buylla
- Department of Neurological Surgery and Developmental and Stem Cell Biology Program, University of California at San Francisco, San Francisco, California 94143
| | | |
Collapse
|
222
|
Saha B, Hari P, Huilgol D, Tole S. Dual role for LIM-homeodomain gene Lhx2 in the formation of the lateral olfactory tract. J Neurosci 2007; 27:2290-7. [PMID: 17329426 PMCID: PMC2092498 DOI: 10.1523/jneurosci.5571-06.2007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The development of the olfactory system in vertebrates is a multistep process, in which several regulatory molecules are required at different stages. The development of the olfactory sensory epithelium and its projection to the olfactory bulb are both known to require the LIM-homeodomain transcription factor Lhx2. We examined whether Lhx2 plays a role in the development of the OB itself, as well as its projection to the olfactory cortex. Although there is no morphological OB protuberance in the Lhx2 mutant, mitral cells are normally specified and cluster in a displaced olfactory bulb-like structure (OBLS). The OBLS is not able to pioneer the lateral olfactory tract (LOT) projection in vivo or when provided control (host) telencephalic territory in an in vitro assay. Strikingly, the mutant OBLS is capable of projecting along the LOT if provided with an existing normal LOT in the host explant. This is the first report of a role for a transcription factor expressed in the OB that selectively affects the axon guidance but not the specification of mitral cells. Furthermore, the Lhx2 mutant lateral telencephalon does not support growth of an LOT projection from control OB explants. The defect correlates with the disruption of a cellular mechanism that is thought to be critical for LOT pathfinding: a specialized cell population, the "lot cells," is mislocalized in the Lhx2 mutant. In addition, the expression of Sema6A is aberrantly upregulated. Together, these findings reveal a dual role for Lhx2, in the OB as well as in the lateral telencephalon, for establishing the LOT projection.
Collapse
Affiliation(s)
- Bhaskar Saha
- Department of Biological Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai 400 005, India
| | - Padmanabhan Hari
- Department of Biological Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai 400 005, India
| | - Dhananjay Huilgol
- Department of Biological Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai 400 005, India
| | - Shubha Tole
- Department of Biological Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai 400 005, India
| |
Collapse
|
223
|
|
224
|
Bogush A, Pedrini S, Pelta-Heller J, Chan T, Yang Q, Mao Z, Sluzas E, Gieringer T, Ehrlich ME. AKT and CDK5/p35 Mediate Brain-derived Neurotrophic Factor Induction of DARPP-32 in Medium Size Spiny Neurons in Vitro. J Biol Chem 2007; 282:7352-9. [PMID: 17209049 DOI: 10.1074/jbc.m606508200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mature striatal medium size spiny neurons express the dopamine and cyclic AMP-regulated phosphoprotein, 32 kDa (DARPP-32), but little is known about the mechanisms regulating its levels or the specification of fully differentiated neuronal subtypes. Cell extrinsic molecules that increase DARPP-32 mRNA and/or protein levels include brain-derived neurotrophic factor (BDNF), retinoic acid, and estrogen. DARPP-32 induction by BDNF in vitro requires phosphatidylinositide 3-kinase (PI3K), but inhibition of phosphorylation of protein kinase B/Akt does not entirely abolish expression of DARPP-32. Moreover, the requirement for Akt has not been established. Using pharmacologic inhibitors of PI3K, Akt, and cyclin-dependent kinase 5 (cdk5) and constitutively active and dominant negative PI3K, Akt, cdk5, and p35 viruses in cultured striatal neurons, we measured BDNF-induced levels of DARPP-32 protein and/or mRNA. We demonstrated that both the PI3K/Akt/mammalian target of rapamycin and the cdk5/p35 signal transduction pathways contribute to the induction of DARPP-32 protein levels by BDNF and that the effects are on both the transcriptional and translational levels. It also appears that PI3K is upstream of cdk5/p35, and its activation can lead to an increase in p35 protein levels. These data support the presence of multiple signal transduction pathways mediating expression of DARPP-32 in vitro, including a novel, important pathway via by which PI3K regulates the contribution of cdk5/p35.
Collapse
Affiliation(s)
- Alexey Bogush
- Farber Institute for Neurosciences and Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
225
|
Abstract
Interneurons are GABAergic neurons responsible for inhibitory activity in the adult hippocampus, thereby controlling the activity of principal excitatory cells through the activation of postsynaptic GABAA receptors. Subgroups of GABAergic neurons innervate specific parts of excitatory neurons. This specificity indicates that particular interneuron subgroups are able to recognize molecules segregated on the membrane of the pyramidal neuron. Once these specific connections are established, a quantitative regulation of their strength must be performed to achieve the proper balance of excitation and inhibition. We will review when and where interneurons are generated. We will then detail their migration toward and within the hippocampus, and the maturation of their morphological and neurochemical characteristics. We will finally review potential mechanisms underlying the development of GABAergic interneurons.
Collapse
Affiliation(s)
- Lydia Danglot
- Laboratoire de Biologie de la Synapse Normale et Pathologique, Unité Inserm U789, Ecole Normale Supérieure, 46 rue d'Ulm, 75005 Paris, France.
| | | | | |
Collapse
|
226
|
Le TN, Du G, Fonseca M, Zhou QP, Wigle JT, Eisenstat DD. Dlx homeobox genes promote cortical interneuron migration from the basal forebrain by direct repression of the semaphorin receptor neuropilin-2. J Biol Chem 2007; 282:19071-81. [PMID: 17259176 DOI: 10.1074/jbc.m607486200] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Dlx homeobox genes play an important role in vertebrate forebrain development. Dlx1/Dlx2 null mice die at birth with an abnormal cortical phenotype, including impaired differentiation and migration of GABAergic interneurons to the neocortex. However, the molecular basis for these defects downstream of loss of Dlx1/Dlx2 function is unknown. Neuropilin-2 (NRP-2) is a receptor for Class III semaphorins, which inhibit neuronal migration. Herein, we show that Neuropilin-2 is a specific DLX1 and DLX2 transcriptional target by applying chromatin immunoprecipitation to embryonic forebrain tissues. Both homeobox proteins repress Nrp-2 expression in vitro, confirming the functional significance of DLX binding. Furthermore, the homeodomain of DLX1 and DLX2 is necessary for DNA binding and this binding is essential for Dlx repression of Nrp-2 expression. Of importance, there is up-regulated and aberrant expression of NRP-2 in the forebrains of Dlx1/Dlx2 null mice. This is the first report that DLX1 or DLX2 can function as transcriptional repressors. Our data show that DLX proteins specifically mediate the repression of Neuropilin-2 in the developing forebrain. As well, our results support the hypothesis that down-regulation of Neuropilin-2 expression may facilitate tangential interneuron migration from the basal forebrain.
Collapse
Affiliation(s)
- Trung N Le
- Department of Biochemistry and Medical Genetics, Manitoba Institute of Cell Biology, University of Manitoba, Winnipeg, Manitoba R3E 0V9, Canada
| | | | | | | | | | | |
Collapse
|
227
|
Yang Z. Postnatal subventricular zone progenitors give rise not only to granular and periglomerular interneurons but also to interneurons in the external plexiform layer of the rat olfactory bulb. J Comp Neurol 2007; 506:347-58. [DOI: 10.1002/cne.21557] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
228
|
Takahashi H, Liu FC. Genetic patterning of the mammalian telencephalon by morphogenetic molecules and transcription factors. ACTA ACUST UNITED AC 2006; 78:256-66. [PMID: 17061260 DOI: 10.1002/bdrc.20077] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Patterning centers that produce gradients of morphogenetic molecules, including fibroblast growth factor (FGF), bone morphogenetic proteins (BMP), Wnt, Sonic hedgehog (Shh), and retinoic acid (RA), are located in telencephalic anlage during early stages of development. Genetic evidence based on loss-of-function and gain-of-function studies indicate that they are involved in regional specification of the dorsal, ventral, and lateral telencephalon. For patterning of the dorsal telencephalon, FGF8 controls the anteroposterior patterning, while BMP and Wnt molecules regulate the mediolateral patterning. Shh and retinoic acid regulate patterning of the ventral and the lateral telencephalon. The regionalization of telencephalon is accompanied by expression of region-specific codes of transcription factors, which in turn regulate different phases of neuronal development to generate different cell types in each brain region. Therefore, bioactive signals of morphogenetic molecules are translated into transcription factor codes for regional specification, which subsequently leads to neurogenesis of the diversity of cell types in different regions of the telencephalon.
Collapse
Affiliation(s)
- Hiroshi Takahashi
- Developmental Neurobiology Group, Mitsubishi Kagaku Institute of Life Sciences, Tokyo, Japan
| | | |
Collapse
|
229
|
Willaime-Morawek S, Seaberg RM, Batista C, Labbé E, Attisano L, Gorski JA, Jones KR, Kam A, Morshead CM, van der Kooy D. Embryonic cortical neural stem cells migrate ventrally and persist as postnatal striatal stem cells. ACTA ACUST UNITED AC 2006; 175:159-68. [PMID: 17030986 PMCID: PMC2064507 DOI: 10.1083/jcb.200604123] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Embryonic cortical neural stem cells apparently have a transient existence, as they do not persist in the adult cortex. We sought to determine the fate of embryonic cortical stem cells by following Emx1IREScre; LacZ/EGFP double-transgenic murine cells from midgestation into adulthood. Lineage tracing in combination with direct cell labeling and time-lapse video microscopy demonstrated that Emx1-lineage embryonic cortical stem cells migrate ventrally into the striatal germinal zone (GZ) perinatally and intermingle with striatal stem cells. Upon integration into the striatal GZ, cortical stem cells down-regulate Emx1 and up-regulate Dlx2, which is a homeobox gene characteristic of the developing striatum and striatal neural stem cells. This demonstrates the existence of a novel dorsal-to-ventral migration of neural stem cells in the perinatal forebrain.
Collapse
Affiliation(s)
- Sandrine Willaime-Morawek
- Department of Medical Genetics and Microbiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
230
|
Wang X, Yang N, Uno E, Roeder RG, Guo S. A subunit of the mediator complex regulates vertebrate neuronal development. Proc Natl Acad Sci U S A 2006; 103:17284-9. [PMID: 17088561 PMCID: PMC1859923 DOI: 10.1073/pnas.0605414103] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The unique profiles of gene expression dictate distinct cellular identity. How these profiles are established during development is not clear. Here we report that the mutant motionless (mot), identified in a genetic screen for mutations that affect neuronal development in zebrafish, displays deficits of monoaminergic neurons and cranial sensory ganglia, whereas expression of the pan-neuronal marker Hu is largely unperturbed; GABAergic and subsets of cranial motor neurons do not appear to be deficient. Positional cloning reveals that mot encodes Med12, a component of the evolutionarily conserved Mediator complex, whose in vivo function is not well understood in vertebrates. mot/med12 transcripts are enriched in the embryonic brain and appear distinct from two other Mediator components Med17 and Med21. Delivery of human med12 RNA into zebrafish restores normality to the mot mutant and, strikingly, leads to premature neuronal differentiation and an increased production of monoaminergic neuronal subtypes in WT. Further investigation reveals that mot/med12 is necessary to regulate, and when overexpressed is capable of increasing, the expression of distinct neuronal determination genes, including zash1a and lim1, and serves as an in vivo cofactor for Sox9 in this process. Together, our analyses reveal a regulatory role of Mot/Med12 in vertebrate neuronal development.
Collapse
Affiliation(s)
- Xiaoqun Wang
- *Programs in Genetics, Neuroscience, and Developmental Biology, Department of Biopharmaceutical Sciences, and Center for Human Genetics, University of California, San Francisco, CA 94143; and
| | - Nan Yang
- *Programs in Genetics, Neuroscience, and Developmental Biology, Department of Biopharmaceutical Sciences, and Center for Human Genetics, University of California, San Francisco, CA 94143; and
| | - Etsuko Uno
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10021
| | - Robert G. Roeder
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10021
| | - Su Guo
- *Programs in Genetics, Neuroscience, and Developmental Biology, Department of Biopharmaceutical Sciences, and Center for Human Genetics, University of California, San Francisco, CA 94143; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
231
|
Kriegstein A, Noctor S, Martínez-Cerdeño V. Patterns of neural stem and progenitor cell division may underlie evolutionary cortical expansion. Nat Rev Neurosci 2006; 7:883-90. [PMID: 17033683 DOI: 10.1038/nrn2008] [Citation(s) in RCA: 553] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The dramatic evolutionary expansion of the cerebral cortex of Homo sapiens underlies our unique higher cortical functions, and therefore bears on the ultimate issue of what makes us human. Recent insights into developmental events during early proliferative stages of cortical development indicate how neural stem and progenitor cells might interact to produce cortical expansion during development, and could shed light on evolutionary changes in cortical structure.
Collapse
Affiliation(s)
- Arnold Kriegstein
- Institute for Stem Cell and Tissue Biology, University of California, San Francisco, 513 Parnassus Ave, HSW, 1201, San Francisco, California, USA.
| | | | | |
Collapse
|
232
|
|
233
|
Englund C, Kowalczyk T, Daza RAM, Dagan A, Lau C, Rose MF, Hevner RF. Unipolar brush cells of the cerebellum are produced in the rhombic lip and migrate through developing white matter. J Neurosci 2006; 26:9184-95. [PMID: 16957075 PMCID: PMC6674506 DOI: 10.1523/jneurosci.1610-06.2006] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Unipolar brush cells (UBCs) are glutamatergic interneurons in the cerebellar cortex and dorsal cochlear nucleus. We studied the development of UBCs, using transcription factor Tbr2/Eomes as a marker for UBCs and their progenitors in embryonic and postnatal mouse cerebellum. Tbr2+ UBCs appeared to migrate out of the upper rhombic lip via two cellular streams: a dorsal pathway into developing cerebellar white matter, where the migrating cells dispersed widely before entering the internal granular layer, and a rostral pathway along the cerebellar ventricular zone toward the brainstem. Ablation of the rhombic lip in organotypic slice cultures substantially reduced the production of Tbr2+ UBCs. In coculture experiments, Tbr2+ UBCs migrated from rhombic lip explants directly into the developing white matter of adjacent cerebellar slices. The origin of Tbr2+ UBCs was confirmed by colocalization with beta-galactosidase expressed from the Math1 locus, a molecular marker of rhombic lip lineages. Moreover, the production of Tbr2+ UBCs was Math1 dependent, as Tbr2+ UBCs were severely reduced in Math1-null cerebellum. In reeler mutant mice, Tbr2+ UBCs accumulated near the rhombic lip, consistent with impaired migration through developing white matter. Our results suggest that UBCs arise from the rhombic lip and migrate via novel pathways to their final destinations in the cerebellum and dorsal cochlear nucleus. Our findings support a model of cerebellar neurogenesis, in which glutamatergic and GABAergic neurons are produced from separate progenitor pools located mainly in the rhombic lip and the cerebellar ventricular zone, respectively.
Collapse
Affiliation(s)
- Chris Englund
- Department of Pathology, University of Washington, Seattle, Washington 98104, USA
| | | | | | | | | | | | | |
Collapse
|
234
|
Gutin G, Fernandes M, Palazzolo L, Paek H, Yu K, Ornitz DM, McConnell SK, Hébert JM. FGF signalling generates ventral telencephalic cells independently of SHH. Development 2006; 133:2937-46. [PMID: 16818446 DOI: 10.1242/dev.02465] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Sonic hedgehog (SHH) is required to generate ventral cell types throughout the central nervous system. Its role in directly specifying ventral cells,however, has recently been questioned because loss of the Shh gene has little effect on ventral development if the Gli3 gene is also mutant. Consequently, another ventral determinant must exist. Here, genetic evidence establishes that FGFs are required for ventral telencephalon development. First, simultaneous deletion of Fgfr1 and Fgfr3specifically in the telencephalon results in the loss of differentiated ventromedial cells; and second, in the Fgfr1;Fgfr2 double mutant, ventral precursor cells are lost, mimicking the phenotype obtained previously with a loss of SHH signalling. Yet, in the Fgfr1;Fgfr2 mutant, Shh remains expressed, as does Gli1, the transcription of which depends on SHH activity, suggesting that FGF signalling acts independently of SHH to generate ventral precursors. Moreover, the Fgfr1;Fgfr2 phenotype, unlike the Shhphenotype, is not rescued by loss of Gli3, further indicating that FGFs act downstream of Shh and Gli3 to generate ventral telencephalic cell types.
Collapse
Affiliation(s)
- Grigoriy Gutin
- Departments of Neuroscience and Molecular Genetics, Albert Einstein College of Medicine, 1410 Pelham Parkway South, Bronx, NY 10461, USA
| | | | | | | | | | | | | | | |
Collapse
|
235
|
Kuwajima T, Nishimura I, Yoshikawa K. Necdin promotes GABAergic neuron differentiation in cooperation with Dlx homeodomain proteins. J Neurosci 2006; 26:5383-92. [PMID: 16707790 PMCID: PMC6675313 DOI: 10.1523/jneurosci.1262-06.2006] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Necdin, a member of the MAGE (melanoma antigen) protein family, is expressed predominantly in terminally differentiated neurons. The necdin gene NDN is maternally imprinted and expressed only from the paternal allele, the deficiency of which is implicated in the pathogenesis of the neurodevelopmental disorder Prader-Willi syndrome. Necdin binds to its homologous MAGE protein MAGE-D1 (also known as NRAGE or Dlxin-1), which interacts with Msx (msh homeobox) and Dlx (distal-less homeobox) family homeodomain transcription factors. Members of the Dlx homeobox gene family are involved in the differentiation and specification of forebrain GABAergic neurons. Here we demonstrate that necdin associates with Dlx homeodomain proteins via MAGE-D1 to promote the differentiation of GABAergic neurons in mouse embryonic forebrain. Immunohistochemical analysis revealed that necdin was coexpressed with Dlx2, Dlx5, or MAGE-D1 in a subpopulation of embryonic forebrain cells. Necdin bound to Dlx2 and Dlx5 via MAGE-D1 and enhanced Dlx2-dependent activation of the Wnt1 (wingless-type MMTV integration site family) promoter. Necdin significantly increased the populations of cells expressing the GABAergic neuron markers calbindin D-28k and glutamic acid decarboxylase when overexpressed by electroporation in cultured forebrain slices. In this assay, Dlx5N, a truncated Dlx5 mutant that competes with Dlx2 to bind MAGE-D1, diminished the effect of necdin on GABAergic neuron differentiation. Furthermore, mutant mice lacking the paternal necdin allele showed a significant reduction in the differentiation of forebrain GABAergic neurons in vivo and in vitro. These results suggest that paternally expressed necdin facilitates the differentiation and specification of GABAergic neurons in cooperation with Dlx homeodomain proteins.
Collapse
|
236
|
Feng J, Bi C, Clark BS, Mady R, Shah P, Kohtz JD. The Evf-2 noncoding RNA is transcribed from the Dlx-5/6 ultraconserved region and functions as a Dlx-2 transcriptional coactivator. Genes Dev 2006; 20:1470-84. [PMID: 16705037 PMCID: PMC1475760 DOI: 10.1101/gad.1416106] [Citation(s) in RCA: 559] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The identification of ultraconserved noncoding sequences in vertebrates has been associated with developmental regulators and DNA-binding proteins. One of the first of these was identified in the intergenic region between the Dlx-5 and Dlx-6 genes, members of the Dlx/dll homeodomain-containing protein family. In previous experiments, we showed that Sonic hedgehog treatment of forebrain neural explants results in the activation of Dlx-2 and the novel noncoding RNA (ncRNA), Evf-1. In this report, we show that the Dlx-5/6 ultraconserved region is transcribed to generate an alternatively spliced form of Evf-1, the ncRNA Evf-2. Evf-2 specifically cooperates with Dlx-2 to increase the transcriptional activity of the Dlx-5/6 enhancer in a target and homeodomain-specific manner. A stable complex containing the Evf-2 ncRNA and the Dlx-2 protein forms in vivo, suggesting that the Evf-2 ncRNA activates transcriptional activity by directly influencing Dlx-2 activity. These experiments identify a novel mechanism whereby transcription is controlled by the cooperative actions of an ncRNA and a homeodomain protein. The possibility that a subset of vertebrate ultraconserved regions may function at both the DNA and RNA level to control key developmental regulators may explain why ultraconserved sequences exhibit 90% or more conservation even after 450 million years of vertebrate evolution.
Collapse
Affiliation(s)
- Jianchi Feng
- Program in Neurobiology and Department of Pediatrics, Children's Memorial Hospital and Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60614, USA
| | | | | | | | | | | |
Collapse
|
237
|
Molnár Z, Métin C, Stoykova A, Tarabykin V, Price DJ, Francis F, Meyer G, Dehay C, Kennedy H. Comparative aspects of cerebral cortical development. Eur J Neurosci 2006; 23:921-34. [PMID: 16519657 PMCID: PMC1931431 DOI: 10.1111/j.1460-9568.2006.04611.x] [Citation(s) in RCA: 183] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This review aims to provide examples of how both comparative and genetic analyses contribute to our understanding of the rules for cortical development and evolution. Genetic studies have helped us to realize the evolutionary rules of telencephalic organization in vertebrates. The control of the establishment of conserved telencephalic subdivisions and the formation of boundaries between these subdivisions has been examined and the very specific alterations at the striatocortical junction have been revealed. Comparative studies and genetic analyses both demonstrate the differential origin and migratory pattern of the two basic neuron types of the cerebral cortex. GABAergic interneurons are mostly generated in the subpallium and a common mechanism governs their migration to the dorsal cortex in both mammals and sauropsids. The pyramidal neurons are generated within the cortical germinal zone and migrate radially, the earliest generated cell layers comprising preplate cells. Reelin-positive Cajal-Retzius cells are a general feature of all vertebrates studied so far; however, there is a considerable amplification of the Reelin signalling with cortical complexity, which might have contributed to the establishment of the basic mammalian pattern of cortical development. Based on numerous recent observations we shall present the argument that specialization of the mitotic compartments may constitute a major drive behind the evolution of the mammalian cortex. Comparative developmental studies have revealed distinct features in the early compartments of the developing macaque brain, drawing our attention to the limitations of some of the current model systems for understanding human developmental abnormalities of the cortex. Comparative and genetic aspects of cortical development both reveal the workings of evolution.
Collapse
Affiliation(s)
- Zoltán Molnár
- Department of Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
238
|
Tanaka DH, Maekawa K, Yanagawa Y, Obata K, Murakami F. Multidirectional and multizonal tangential migration of GABAergic interneurons in the developing cerebral cortex. Development 2006; 133:2167-76. [PMID: 16672340 DOI: 10.1242/dev.02382] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Most GABAergic interneurons originate from the basal forebrain and migrate tangentially into the cortex. The migratory pathways and mode of interneuron migration within the developing cerebral cortex, however, previously was largely unknown. Time-lapse imaging and in vivo labelling with glutamate decarboxylase (GAD)67-green fluorescence protein (GFP) knock-in embryonic mice with expression of GFP in gamma-aminobutyric acid (GABA)ergic neurons indicated that multidirectional tangential (MDT) migration of interneurons takes place in both the marginal zone (MZ) and the ventricular zone (VZ) of the cortex. Quantitative analysis of migrating interneurons showed that rostrocaudally migrating neurons outnumber those migrating mediolaterally in both of these zones. In vivo labelling with a lipophilic dye showed that the MDT migration in the MZ occurs throughout the cortex over distances of up to 3 mm during a period of a few days. These results indicate that MZ cortical interneurons undergo a second phase of tangential migration in all directions and over long distances, after reaching the cortex by dorsomedial tangential migration. The MDT migration in the MZ may disperse and intermix interneurons within the cortex, resulting in a balanced distribution of interneuron subtypes.
Collapse
Affiliation(s)
- Daisuke H Tanaka
- Graduate School of Frontier Biosciences, Osaka University, Japan Science and Technology Corporation, Japan
| | | | | | | | | |
Collapse
|
239
|
Hammond V, So E, Gunnersen J, Valcanis H, Kalloniatis M, Tan SS. Layer positioning of late-born cortical interneurons is dependent on Reelin but not p35 signaling. J Neurosci 2006; 26:1646-55. [PMID: 16452688 PMCID: PMC6675480 DOI: 10.1523/jneurosci.3651-05.2006] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We tested the response of interneurons to the absence of Reelin signaling or p35 in the mouse neocortex. We provide three independent strands of evidence to demonstrate that layering of late-born (but not early-born) interneurons is regulated by Reelin signaling. First, early-born and late-born interneurons behaved differently in mice lacking Reelin or disabled 1 (Dab1). Early-born interneurons showed layer inversion, whereas late-born interneurons did not demonstrate layer inversion but were randomly distributed across the cortex. Second, in p35 mutant brains (in which Reelin signaling is intact), late-born interneurons are appropriately positioned in the upper layers despite the malpositioning of all other cortical neurons in these mice. Third, transplanted late-born interneuron precursors (wild type) into Dab1(-/-) cortices showed appropriate upper layer segregation. Together, these results indicate that, in the absence of Reelin signaling, late-born interneurons fail to laminate properly, and this is restored in an environment in which Reelin signaling is intact. These studies suggest different mechanisms for the stratification of cortical interneurons. Whereas the early-born interneurons appear to be associated with projection neuron layering, late-born interneurons rely on Reelin signaling for their correct lamination.
Collapse
|
240
|
Mueller T, Vernier P, Wullimann MF. A phylotypic stage in vertebrate brain development: GABA cell patterns in zebrafish compared with mouse. J Comp Neurol 2006; 494:620-34. [PMID: 16374795 DOI: 10.1002/cne.20824] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A recent comparison of early forebrain gene expression in mouse and zebrafish revealed highly comparable expression patterns of developmentally relevant genes, for example, of proneural (Neurogenin1, NeuroD, Mash1/Zash1a) genes involved in neurogenesis at a particular time window (mouse: embryonic day 12.5/13.5; zebrafish: 3 days). Here we extend this analysis to the description of gamma-aminobutyric acid (GABA) cell patterns in the early postembryonic zebrafish brain (i.e., during early secondary neurogenesis). We find again an astonishing degree of correspondences of GABA cell patterns between zebrafish and mouse during this previously established critical time window, for example, regarding absence of GABA cells in certain forebrain regions (pallium, dorsal thalamus, eminentia thalami) or with respect to the spatiotemporal occurrence of GABA cells (e.g., late cerebellar GABA cells). Furthermore, there is perfect correlation with previously established proneural gene expression patterns (i.e., absence of Mash1/Zash1a gene expression in GABA-cell-free forebrain regions) between mouse and zebrafish. The available information in additional vertebrate species, especially in Xenopus, is also highly consistent with our analysis here and suggests that a "phylotypic stage" of neurogenesis during vertebrate brain development may be present.
Collapse
Affiliation(s)
- Thomas Mueller
- Centre National de la Recherche Scientifique, Institute of Neurobiology A. Fessard, "Development, Evolution, and Plasticity of the Nervous System," Research Unit 2197, 91198 Gif-sur-Yvette, France
| | | | | |
Collapse
|
241
|
DeLorey TM. GABRB3 gene deficient mice: a potential model of autism spectrum disorder. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2006; 71:359-82. [PMID: 16512358 DOI: 10.1016/s0074-7742(05)71015-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
242
|
Schmitz C, van Kooten IAJ, Hof PR, van Engeland H, Patterson PH, Steinbusch HWM. Autism: neuropathology, alterations of the GABAergic system, and animal models. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2006; 71:1-26. [PMID: 16512344 DOI: 10.1016/s0074-7742(05)71001-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Christoph Schmitz
- Department of Psychiatry and Neuropsychology, Division of Cellular Neuroscience Maastricht University, The Netherlands
| | | | | | | | | | | |
Collapse
|
243
|
Aboitiz F, Montiel J, García RR. Ancestry of the mammalian preplate and its derivatives: evolutionary relicts or embryonic adaptations? Rev Neurosci 2006; 16:359-76. [PMID: 16519011 DOI: 10.1515/revneuro.2005.16.4.359] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Mammalian cortical development is preceded by the elaboration of a transient preplate, which is split into a superficial marginal zone and a deep subplate after the arrival of the cortical plate. There has been some controversy in the evolutionary interpretation of this transient structure, as some propose it to represent the ancestral cortex or pallium of non-mammals, while others consider it to be a phylogenetic novelty. The preplate and its derivatives contain components derived by both tangential and radial migration. Tangentially migrating elements include pioneer neurons and interneurons, both of subpallial origin, and Cajal-Retzius cells, mostly of pallial origin. Pioneer neurons were probably present in the ancestors of mammals, but may have changed their original superficial position to one below the developing cortex, thus attracting thalamic afferents in the subcortical white matter, and making them penetrate the cortex radially. In mammals, Cajal-Retzius cells appear to have increased both in number and on their level of reelin expression, perhaps in the context of controlling the final stages of migration in a radially expanding neoocortex. Radial-migrating cells are partly represented by the pyramidal-like cells of the subplate. These neurons resemble the excitatory elements of the adult reptilian cortex, but is not clear whether they are their true homologues. One possibility is that these cells appeared by virtue of a heterochronic process in which the earliest radial elements of the cortical plate began to be produced at progressively earlier developmental stages. Thus, we conclude that the mammalian preplate and its derivatives contain both ancestral and derived elements, all of which have been modified in the course of mammalian evolution to support an increasingly complex cortical plate development.
Collapse
Affiliation(s)
- Francisco Aboitiz
- Departamento de Psiquiatría, Escuela de Medicina, Pontificia Universidad Católica de Chile.
| | | | | |
Collapse
|
244
|
Depew MJ, Simpson CA, Morasso M, Rubenstein JLR. Reassessing the Dlx code: the genetic regulation of branchial arch skeletal pattern and development. J Anat 2006; 207:501-61. [PMID: 16313391 PMCID: PMC1571560 DOI: 10.1111/j.1469-7580.2005.00487.x] [Citation(s) in RCA: 203] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The branchial arches are meristic vertebrate structures, being metameric both between each other within the rostrocaudal series along the ventrocephalic surface of the embryonic head and within each individual arch: thus, just as each branchial arch must acquire a unique identity along the rostrocaudal axis, each structure within the proximodistal axis of an arch must also acquire a unique identity. It is believed that regional specification of metameric structures is controlled by the nested expression of related genes resulting in a regional code, a principal that is though to be demonstrated by the regulation of rostrocaudal axis development in animals exerted by the nested HOM-C/Hox homeobox genes. The nested expression pattern of the Dlx genes within the murine branchial arch ectomesenchyme has more recently led to the proposal of a Dlx code for the regional specification along the proximodistal axis of the branchial arches (i.e. it establishes intra-arch identity). This review re-examines this hypothesis, and presents new work on an allelic series of Dlx loss-of-function mouse mutants that includes various combinations of Dlx1, Dlx2, Dlx3, Dlx5 and Dlx6. Although we confirm fundamental aspects of the hypothesis, we further report a number of novel findings. First, contrary to initial reports, Dlx1, Dlx2 and Dlx1/2 heterozygotes exhibit alterations of branchial arch structures and Dlx2-/- and Dlx1/2-/- mutants have slight alterations of structures derived from the distal portions of their branchial arches. Second, we present evidence for a role for murine Dlx3 in the development of the branchial arches. Third, analysis of compound Dlx mutants reveals four grades of mandibular arch transformations and that the genetic interactions of cis first-order (e.g. Dlx5 and Dlx6), trans second-order (e.g. Dlx5 and Dlx2) and trans third-order paralogues (e.g. Dlx5 and Dlx1) result in significant and distinct morphological differences in mandibular arch development. We conclude by integrating functions of the Dlx genes within the context of a hypothesized general mechanism for the establishment of pattern and polarity in the first branchial arch of gnathostomes that includes regionally secreted growth factors such as Fgf8 and Bmp and other transcription factors such as Msx1, and is consistent both with the structure of the conserved gnathostome jaw bauplan and the elaboration of this bauplan to meet organismal end-point designs.
Collapse
Affiliation(s)
- Michael J Depew
- Department of Craniofacial Development, King's College London, Guy's Hospital, London, UK.
| | | | | | | |
Collapse
|
245
|
Yozu M, Tabata H, Nakajima K. The caudal migratory stream: a novel migratory stream of interneurons derived from the caudal ganglionic eminence in the developing mouse forebrain. J Neurosci 2006; 25:7268-77. [PMID: 16079409 PMCID: PMC6725225 DOI: 10.1523/jneurosci.2072-05.2005] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The migratory paths of interneurons derived from the ganglionic eminence (GE), and particularly its caudal portion (CGE), remain essentially unknown. To clarify the three-dimensional migration profile of interneurons derived from each part of the GE, we developed a technique involving focal electroporation into a small, defined portion of the telencephalic hemisphere. While the medial GE cells migrated laterally and spread widely throughout the cortex, the majority of the CGE cells migrated caudally toward the caudal-most end of the telencephalon. Time-lapse imaging and an in vivo immunohistochemical study confirmed the existence of a migratory stream depicted by a population of CGE cells directed caudally that eventually reached the hippocampus. Transplantation experiments suggested that the caudal direction of migration of the CGE cells was intrinsically determined as early as embryonic day 13.5. The caudal migratory stream is a novel migratory path for a population of CGE-derived interneurons passing from the subpallium to the hippocampus.
Collapse
Affiliation(s)
- Masato Yozu
- Department of Anatomy, Keio University School of Medicine, Tokyo 160-8582, Japan
| | | | | |
Collapse
|
246
|
Tonchev AB, Yamashima T, Sawamoto K, Okano H. Transcription factor protein expression patterns by neural or neuronal progenitor cells of adult monkey subventricular zone. Neuroscience 2006; 139:1355-67. [PMID: 16580139 DOI: 10.1016/j.neuroscience.2006.01.053] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2005] [Revised: 01/18/2006] [Accepted: 01/26/2006] [Indexed: 01/18/2023]
Abstract
The anterior subventricular zone of the adult mammalian brain contains progenitor cells which are upregulated after cerebral ischemia. We have previously reported that while a part of the progenitors residing in adult monkey anterior subventricular zone travels to the olfactory bulb, many of these cells sustain location in the anterior subventricular zone for months after injury, exhibiting a phenotype of either neural or neuronal precursors. Here we show that ischemia increased the numbers of anterior subventricular zone progenitor cells expressing developmentally regulated transcription factors including Pax6 (paired-box 6), Emx2 (empty spiracles-homeobox 2), Sox 1-3 (sex determining region Y-box 1-3), Ngn1 (neurogenin 1), Dlx1,5 (distalless-homeobox 1,5), Olig1,3 (oligodendrocyte lineage gene 1,3) and Nkx2.2 (Nk-box 2.2), as compared with control brains. Analysis of transcription factor protein expression by sustained neural or neuronal precursors in anterior subventricular zone revealed that these two cell types were positive for characteristic sets of transcription factors. The proteins Pax6, Emx2, Sox2,3 and Olig1 were predominantly localized to dividing neural precursors while the factors Sox1, Ngn1, Dlx1,5, Olig2 and Nkx2.2 were mainly expressed by neuronal precursors. Further, differences between monkeys and non-primate mammals emerged, related to expression patterns of Pax6, Olig2 and Dlx2. Our results suggest that a complex network of developmental signals might be involved in the specification of primate progenitor cells.
Collapse
Affiliation(s)
- A B Tonchev
- Department of Restorative Neurosurgery, Division of Neuroscience, Kanazawa University Graduate School of Medical Science, Japan
| | | | | | | |
Collapse
|
247
|
Pellicano F, Inglis-Broadgate SL, Pante G, Ansorge W, Iwata T. Expression of coiled-coil protein 1, a novel gene downstream of FGF2, in the developing brain. Gene Expr Patterns 2005; 6:285-93. [PMID: 16378758 DOI: 10.1016/j.modgep.2005.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2005] [Revised: 06/29/2005] [Accepted: 07/20/2005] [Indexed: 11/22/2022]
Abstract
Fibroblast growth factor 2 (FGF2) plays an important role in cortical development. However, the genes downstream of FGF2 that mediate its effect are largely unknown. We have performed a microarray screening of genes regulated by FGF2 using primary cortical neuron culture derived from embryonic day 14.5 (E14.5) mouse forebrains. In this study, we have analysed a previously uncharacterised gene encoding a 180-amino acid protein, hereby named 'coiled-coil protein 1 (ccp1)', that showed a modest up-regulation upon FGF2 stimulation. Northern blots and RT-PCR showed specific expression of ccp1 in multiple tissues including adult and embryonic brains. In situ hybridizations revealed that ccp1 was expressed in the cortical plate between Reelin and Tbr1-positive layers in the dorsal cortex at E15.5. Furthermore, the expression pattern of ccp1 at E13.5-E14.5 reflected some of the aspects of tangential migration of cortical progenitors during the early phase. We observed that the expressed ccp1 protein was localised to endo/lysosomal compartment in the cell body as well as to vesicles present in the processes of primary cortical neurons and oligodendrocyte cell line.
Collapse
Affiliation(s)
- Francesca Pellicano
- Beatson Laboratories for Cancer Research, Division of Cancer Sciences and Molecular Pathology, Faculty of Medicine, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | | | | | | | | |
Collapse
|
248
|
Sugino K, Hempel CM, Miller MN, Hattox AM, Shapiro P, Wu C, Huang ZJ, Nelson SB. Molecular taxonomy of major neuronal classes in the adult mouse forebrain. Nat Neurosci 2005; 9:99-107. [PMID: 16369481 DOI: 10.1038/nn1618] [Citation(s) in RCA: 420] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2005] [Accepted: 11/22/2005] [Indexed: 12/18/2022]
Abstract
Identifying the neuronal cell types that comprise the mammalian forebrain is a central unsolved problem in neuroscience. Global gene expression profiles offer a potentially unbiased way to assess functional relationships between neurons. Here, we carried out microarray analysis of 12 populations of neurons in the adult mouse forebrain. Five of these populations were chosen from cingulate cortex and included several subtypes of GABAergic interneurons and pyramidal neurons. The remaining seven were derived from the somatosensory cortex, hippocampus, amygdala and thalamus. Using these expression profiles, we were able to construct a taxonomic tree that reflected the expected major relationships between these populations, such as the distinction between cortical interneurons and projection neurons. The taxonomic tree indicated highly heterogeneous gene expression even within a single region. This dataset should be useful for the classification of unknown neuronal subtypes, the investigation of specifically expressed genes and the genetic manipulation of specific neuronal circuit elements.
Collapse
Affiliation(s)
- Ken Sugino
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, MS 008, 415 South Street, Waltham, Massachusetts 02454-9110, USA
| | | | | | | | | | | | | | | |
Collapse
|
249
|
Hamilton SP, Woo JM, Carlson EJ, Ghanem N, Ekker M, Rubenstein JLR. Analysis of four DLX homeobox genes in autistic probands. BMC Genet 2005; 6:52. [PMID: 16266434 PMCID: PMC1310613 DOI: 10.1186/1471-2156-6-52] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2005] [Accepted: 11/02/2005] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Linkage studies in autism have identified susceptibility loci on chromosomes 2q and 7q, regions containing the DLX1/2 and DLX5/6 bigene clusters. The DLX genes encode homeodomain transcription factors that control craniofacial patterning and differentiation and survival of forebrain inhibitory neurons. We investigated the role that sequence variants in DLX genes play in autism by in-depth resequencing of these genes in 161 autism probands from the AGRE collection. RESULTS Sequencing of exons, exon/intron boundaries and known enhancers of DLX1, 2, 5 and 6 identified several nonsynonymous variants in DLX2 and DLX5 and a variant in a DLX5/6 intragenic enhancer. The nonsynonymous variants were detected in 4 of 95 families from which samples were sequenced. Two of these four SNPs were not observed in 378 undiagnosed samples from North American populations, while the remaining 2 were seen in one sample each. CONCLUSION Segregation of these variants in pedigrees did not generally support a contribution to autism susceptibility by these genes, although functional analyses may provide insight into the biological understanding of these important proteins.
Collapse
Affiliation(s)
- Steven P Hamilton
- Department of Psychiatry, University of California, San Francisco, CA, USA
- Center for Human Genetics, University of California, San Francisco, CA, USA
| | - Jonathan M Woo
- Genomics Core Facility, University of California, San Francisco, CA, USA
| | - Elaine J Carlson
- Genomics Core Facility, University of California, San Francisco, CA, USA
| | - Nöel Ghanem
- Department of Biology, University of Ottawa, Ontario, Canada
| | - Marc Ekker
- Department of Biology, University of Ottawa, Ontario, Canada
| | - John LR Rubenstein
- Department of Psychiatry, University of California, San Francisco, CA, USA
- Nina Ireland Laboratory, University of California, San Francisco, CA, USA
| |
Collapse
|
250
|
Mühlfriedel S, Kirsch F, Gruss P, Stoykova A, Chowdhury K. A roof plate-dependent enhancer controls the expression of Homeodomain only protein in the developing cerebral cortex. Dev Biol 2005; 283:522-34. [PMID: 15967424 DOI: 10.1016/j.ydbio.2005.04.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2005] [Revised: 04/18/2005] [Accepted: 04/27/2005] [Indexed: 01/16/2023]
Abstract
The smallest known homeodomain protein, Homeodomain only protein (Hop), was identified and described here as a temporally and spatially restricted gene in the neurogenic regions of the developing murine CNS including the cerebral cortex. Furthermore, an evolutionarily conserved 418 base pair upstream cis-regulatory DNA sequence was found to confine the Hop expression to the CNS of transgenic mice, but not to the heart which is the second major Hop expressing organ Chen, F., Kook, H., Milewski, R., Gitler, A.D., Lu, M.M., Li, J., Nazarian, R., Schnepp, R., Jen, K., Biben, C., Runke, G., Mackay, J.P., Novotny, J., Schwartz, R.J., Harvey, R.P., Mullins, M.C., Epstein, J.A., 2002. Hop is an unusual homeobox gene that modulates cardiac development. Cell 110, 713-723; Shin, C.H., Liu, Z.P., Passier, R., Zhang, C.L., Wang, D.Z., Harris, T.M., Yamagishi, H., Richardson, J.A., Childs, G., Olson, E.N., 2002. Modulation of cardiac growth and development by HOP, an unusual homeodomain protein. Cell 110, 725-735. The forebrain enhancer activity was successfully reproduced in vitro utilizing a combination of the electroporation and the organotypic brain culture method. Using this approach, the minimal requirement for the forebrain-specific enhancer sequence was delineated down to 200 base pairs. We further demonstrate that the Hop enhancer activity is inducible ectopically in a transgenic tissue by wild-type roof plate transplantation in vitro. Thus Hop is regulated in the forebrain by a so far unidentified paracrine signaling factor from the roof plate. Furthermore, the identified enhancer sequence provides an important tool for the targeted expression of transgenes in the medial cortex and the cortical hem.
Collapse
Affiliation(s)
- Sven Mühlfriedel
- Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | | | | | | | | |
Collapse
|