201
|
Stuebner E, Vichayanrat E, Low DA, Mathias CJ, Isenmann S, Haensch CA. Twenty-four hour non-invasive ambulatory blood pressure and heart rate monitoring in Parkinson's disease. Front Neurol 2013; 4:49. [PMID: 23720648 PMCID: PMC3654335 DOI: 10.3389/fneur.2013.00049] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 04/23/2013] [Indexed: 11/18/2022] Open
Abstract
Non-motor symptoms are now commonly recognized in Parkinson's disease (PD) and can include dysautonomia. Impairment of cardiovascular autonomic function can occur at any stage of PD but is typically prevalent in advanced stages or related to (anti-Parkinsonian) drugs and can result in atypical blood pressure (BP) readings and related symptoms such as orthostatic hypotension (OH) and supine hypertension. OH is usually diagnosed with a head-up-tilt test (HUT) or an (active) standing test (also known as Schellong test) in the laboratory, but 24 h ambulatory blood pressure monitoring (ABPM) in a home setting may have several advantages, such as providing an overview of symptoms in daily life alongside pathophysiology as well as assessment of treatment interventions. This, however, is only possible if ABPM is administrated correctly and an autonomic protocol (including a diary) is followed which will be discussed in this review. A 24-h ABPM does not only allow the detection of OH, if it is present, but also the assessment of cardiovascular autonomic dysfunction during and after various daily stimuli, such as postprandial and alcohol dependent hypotension, as well as exercise and drug induced hypotension. Furthermore, information about the circadian rhythm of BP and heart rate (HR) can be obtained and establish whether or not a patient has a fall of BP at night (i.e., "dipper" vs. non-"dipper"). The information about nocturnal BP may also allow the investigation or detection of disorders such as sleep dysfunction, nocturnal movement disorders, and obstructive sleep apnea, which are common in PD. Additionally, a 24-h ABPM should be conducted to examine the effectiveness of OH therapy. This review will outline the methodology of 24 h ABPM in PD, summarize findings of such studies in PD, and briefly consider common daily stimuli that might affect 24 h ABPM.
Collapse
Affiliation(s)
- Eva Stuebner
- Autonomic Laboratory, Department of Neurology and Clinical Neurophysiology, Faculty of Health, HELIOS-Klinikum Wuppertal, University of Witten/HerdeckeWuppertal, Germany
| | - Ekawat Vichayanrat
- Autonomic and Neurovascular Medicine Unit, Division of Brain Sciences, Faculty of Medicine, Imperial College London at St Mary’s HospitalLondon, UK
- Autonomic Unit, Queen Square/Division of Clinical Neurology, National Hospital for Neurology and Neurosurgery, Institute of Neurology, University College LondonLondon, UK
| | - David A. Low
- Autonomic and Neurovascular Medicine Unit, Division of Brain Sciences, Faculty of Medicine, Imperial College London at St Mary’s HospitalLondon, UK
- Autonomic Unit, Queen Square/Division of Clinical Neurology, National Hospital for Neurology and Neurosurgery, Institute of Neurology, University College LondonLondon, UK
| | - Christopher J. Mathias
- Autonomic and Neurovascular Medicine Unit, Division of Brain Sciences, Faculty of Medicine, Imperial College London at St Mary’s HospitalLondon, UK
- Autonomic Unit, Queen Square/Division of Clinical Neurology, National Hospital for Neurology and Neurosurgery, Institute of Neurology, University College LondonLondon, UK
| | - Stefan Isenmann
- Autonomic Laboratory, Department of Neurology and Clinical Neurophysiology, Faculty of Health, HELIOS-Klinikum Wuppertal, University of Witten/HerdeckeWuppertal, Germany
| | - Carl-Albrecht Haensch
- Autonomic Laboratory, Department of Neurology and Clinical Neurophysiology, Faculty of Health, HELIOS-Klinikum Wuppertal, University of Witten/HerdeckeWuppertal, Germany
| |
Collapse
|
202
|
Lanfumey L, Mongeau R, Hamon M. Biological rhythms and melatonin in mood disorders and their treatments. Pharmacol Ther 2013; 138:176-84. [DOI: 10.1016/j.pharmthera.2013.01.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 12/21/2012] [Indexed: 12/15/2022]
|
203
|
Abstract
There have been remarkable advances in our understanding of the molecular, cellular, and physiologic mechanisms underlying the regulation of circadian rhythms, and of the impact of circadian dysfunction on health and disease. This information has transformed our understanding of the effect of circadian rhythm sleep disorders (CRSD) on health, performance, and safety. CRSDs are caused by alterations of the central circadian timekeeping system, or a misalignment of the endogenous circadian rhythm and the external environment. This article reviews circadian biology and discusses the pathophysiology, clinical features, diagnosis, and treatment of the most commonly encountered CRSDs in clinical practice.
Collapse
Affiliation(s)
- Lirong Zhu
- Department of Neurology, Circadian Rhythms and Sleep Research Lab, Northwestern University, 710 North Lake Shore Drive, 5th Floor, Chicago, IL 60611, USA
| | | |
Collapse
|
204
|
Richards J, Gumz ML. Mechanism of the circadian clock in physiology. Am J Physiol Regul Integr Comp Physiol 2013; 304:R1053-64. [PMID: 23576606 DOI: 10.1152/ajpregu.00066.2013] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
It has been well established that the circadian clock plays a crucial role in the regulation of almost every physiological process. It also plays a critical role in pathophysiological states including those of obesity and diabetes. Recent evidence has highlighted the potential for targeting the circadian clock as a potential drug target. New studies have also demonstrated the existence of "clock-independent effects" of the circadian proteins, leading to exciting new avenues of research in the circadian clock field in physiology. The goal of this review is to provide an introduction to and overview of the circadian clock in physiology, including mechanisms, targets, and role in disease states. The role of the circadian clocks in the regulation of the cardiovascular system, renal function, metabolism, the endocrine system, immune, and reproductive systems will be discussed.
Collapse
Affiliation(s)
- Jacob Richards
- Department of Medicine, University of Florida, Gainesville, FL, USA
| | | |
Collapse
|
205
|
Melatonin and pancreatic islets: interrelationships between melatonin, insulin and glucagon. Int J Mol Sci 2013; 14:6981-7015. [PMID: 23535335 PMCID: PMC3645673 DOI: 10.3390/ijms14046981] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 03/07/2013] [Accepted: 03/11/2013] [Indexed: 12/15/2022] Open
Abstract
The pineal hormone melatonin exerts its influence in the periphery through activation of two specific trans-membrane receptors: MT1 and MT2. Both isoforms are expressed in the islet of Langerhans and are involved in the modulation of insulin secretion from β-cells and in glucagon secretion from α-cells. De-synchrony of receptor signaling may lead to the development of type 2 diabetes. This notion has recently been supported by genome-wide association studies identifying particularly the MT2 as a risk factor for this rapidly spreading metabolic disturbance. Since melatonin is secreted in a clearly diurnal fashion, it is safe to assume that it also has a diurnal impact on the blood-glucose-regulating function of the islet. This factor has hitherto been underestimated; the disruption of diurnal signaling within the islet may be one of the most important mechanisms leading to metabolic disturbances. The study of melatonin–insulin interactions in diabetic rat models has revealed an inverse relationship: an increase in melatonin levels leads to a down-regulation of insulin secretion and vice versa. Elucidation of the possible inverse interrelationship in man may open new avenues in the therapy of diabetes.
Collapse
|
206
|
Mühlbauer E, Bazwinsky-Wutschke I, Wolgast S, Labucay K, Peschke E. Differential and day-time dependent expression of nuclear receptors RORα, RORβ, RORγ and RXRα in the rodent pancreas and islet. Mol Cell Endocrinol 2013; 365:129-38. [PMID: 23073388 DOI: 10.1016/j.mce.2012.10.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 09/12/2012] [Accepted: 10/02/2012] [Indexed: 12/26/2022]
Abstract
The retinoic-acid-related receptor family of orphan receptors (RORs) act as transcriptional activators or repressors. One of their functions involves integrated actions within circadian oscillators, particularly of the periphery. The present paper describes differential expression of the orphan receptors RORα, RORβ and RORγ and of the nuclear retinoid receptor RXRα in the pancreas and islet of rats. Immunohistochemistry of rodent islets detected nuclear receptor expression. The RORα and RORβ signals were visualised in α-cells, whereas that of RORγ was largely confined to β-cells. RXRα was expressed throughout the islets. Quantitative RT-PCR revealed circadian expression in the rat pancreas for RORγ, RORα and RXRα, but not for RORβ. Circadian expression of RORγ mRNA was verified in mouse pancreas and in rat INS-1 β cells by serum shock experiments. The results point to differential and circadian expression and thus cell-type-specific functions of RORα and RORγ in islet cells secreting glucagon or insulin.
Collapse
MESH Headings
- Animals
- Brain/metabolism
- Cell Line, Tumor
- Circadian Rhythm
- Gene Expression Regulation
- Islets of Langerhans/metabolism
- Islets of Langerhans/physiology
- Liver/metabolism
- Male
- Mice
- Mice, Knockout
- Nuclear Receptor Subfamily 1, Group F, Member 1/genetics
- Nuclear Receptor Subfamily 1, Group F, Member 1/metabolism
- Nuclear Receptor Subfamily 1, Group F, Member 2/genetics
- Nuclear Receptor Subfamily 1, Group F, Member 2/metabolism
- Nuclear Receptor Subfamily 1, Group F, Member 3/genetics
- Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism
- Organ Specificity
- Pancreas/cytology
- Pancreas/metabolism
- Rats
- Rats, Wistar
- Receptor, Melatonin, MT1/genetics
- Receptor, Melatonin, MT1/metabolism
- Receptor, Melatonin, MT2/genetics
- Receptor, Melatonin, MT2/metabolism
- Retinoid X Receptor alpha/genetics
- Retinoid X Receptor alpha/metabolism
Collapse
|
207
|
Comai S, Ochoa-Sanchez R, Gobbi G. Sleep-wake characterization of double MT₁/MT₂ receptor knockout mice and comparison with MT₁ and MT₂ receptor knockout mice. Behav Brain Res 2013; 243:231-8. [PMID: 23333399 DOI: 10.1016/j.bbr.2013.01.008] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 12/12/2012] [Accepted: 01/08/2013] [Indexed: 01/11/2023]
Abstract
The neurohormone melatonin activates two G-protein coupled receptors, MT1 and MT2. Melatonin is implicated in circadian rhythms and sleep regulation, but the role of its receptors remains to be defined. We have therefore characterized the spontaneous vigilance states in wild-type (WT) mice and in three different types of transgenic mice: mice with genetic inactivation of MT1 (MT1(-/-)), MT2 (MT2(-/-)) and both MT1/MT2 (MT1(-/-)/MT2(-/-)) receptors. Electroencephalographic (EEG) and electromyographic sleep-wake patterns were recorded across the 24-h light-dark cycle. MT1(-/-)mice displayed a decrease (-37.3%) of the 24-h rapid eye movement sleep (REMS) time whereas MT2(-/-)mice showed a decrease (-17.3%) of the 24-h non rapid eye movement sleep (NREMS) time and an increase in wakefulness time (14.8%). These differences were the result of changes occurring in particular during the light/inactive phase. Surprisingly, MT1(-/-)/MT2(-/-) mice showed only an increase (8.9%) of the time spent awake during the 24-h. These changes were correlated to a decrease of the REMS EEG theta power in MT1(-/-)mice, of the NREMS EEG delta power in MT2(-/-)mice, and an increase of the REMS and wakefulness EEG theta power in MT1(-/-)/MT2(-/-) mice. Our results show that the genetic inactivation of both MT1 and MT2 receptors produces an increase of wakefulness, likely as a result of reduced NREMS due to the lack of MT2 receptors, and reduced REMS induced by the lack of MT1 receptors. Therefore, each melatonin receptor subtype differently regulates the vigilance states: MT2 receptors mainly NREMS, whereas MT1 receptors REMS.
Collapse
Affiliation(s)
- Stefano Comai
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University Health Center, McGill University, Montreal, QC, Canada
| | | | | |
Collapse
|
208
|
A double-blind, randomized, placebo-controlled trial of adjunctive ramelteon for the treatment of insomnia and mood stability in patients with euthymic bipolar disorder. J Affect Disord 2013; 144:141-7. [PMID: 22963894 DOI: 10.1016/j.jad.2012.06.023] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 05/30/2012] [Accepted: 06/12/2012] [Indexed: 11/21/2022]
Abstract
BACKGROUND Abnormalities in circadian rhythms are prominent features of bipolar disorder. Disrupted circadian rhythms are associated with an increased risk of relapse in bipolar disorder. Normalizing the circadian rhythm pattern of bipolar patients may improve their sleep and lead to fewer mood exacerbations. This study evaluated adjunctive ramelteon for the treatment of insomnia and mood stability in euthymic bipolar patients. METHODS Participants with euthymic bipolar disorder and sleep disturbances were randomized to receive adjunctive ramelteon or placebo in addition to their regular psychiatric medications for up to 24 weeks or until they experienced a relapse (defined as a depressed or manic event). RESULTS 83 participants were randomized to receive ramelteon (n=42) or placebo (n=41). Forty participants relapsed (48.2%). Cox regression analyses indicated that participants who received ramelteon (odds ratio 0.48, p=.024) were less likely to relapse. Kaplan Meier curves also indicated longer median survival times in the ramelteon group (Mdn=188 days) versus the placebo group (Mdn=84 days) X2(1)=5.33, p=.02. There were no serious adverse events in this study. LIMITATIONS This was a small study with only 83 participants. The one-week window of confirmed stability is shorter than time intervals used in other studies. CONCLUSIONS The present study shows that ramelteon was effective in maintaining stability for individuals with bipolar disorder. Patients treated with ramelteon were approximately half as likely to relapse as patients treated with placebo throughout the 24-week treatment period.
Collapse
|
209
|
Huang H, Wang Z, Weng SJ, Sun XH, Yang XL. Neuromodulatory role of melatonin in retinal information processing. Prog Retin Eye Res 2013; 32:64-87. [PMID: 22986412 DOI: 10.1016/j.preteyeres.2012.07.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 07/24/2012] [Accepted: 07/25/2012] [Indexed: 12/15/2022]
Affiliation(s)
- Hai Huang
- Institute of Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, PR China
| | | | | | | | | |
Collapse
|
210
|
|
211
|
Cardinali DP, Vidal MF, Vigo DE. Agomelatine: Its Role in the Management of Major Depressive Disorder. ACTA ACUST UNITED AC 2012. [DOI: 10.4137/cmpsy.s7989] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Circadian rhythm abnormalities, as shown by sleep/wake cycle disturbances, constitute one the most prevalent signs of depressive illness; advances or delays in the circadian phase are documented in patients with major depressive disorder (MDD), bipolar disorder, and seasonal affective disorder (SAD). The disturbances in the amplitude and phase of rhythm in melatonin secretion that occur in patients with depression resemble those seen in chronobiological disorders, thus suggesting a link between disturbed melatonin secretion and depressed mood. Based on this, agomelatine, the first MT1/MT2 melatonergic agonist displaying also 5-HT2C serotonergic antagonism, has been introduced as an antidepressant. Agomelatine has been shown to be effective in several animal models of depression and anxiety and it has beneficial effects in patients with MDD, bipolar disorder, or SAD. Among agomelatine's characteristics are a rapid onset of action and a pronounced effectiveness for correcting circadian rhythm abnormalities and improving the sleep/wake cycle. Agomelatine also improves the 3 functional dimensions of depression—emotional, cognitive, and social—thus aiding in the full recovery of patients to a normal life.
Collapse
Affiliation(s)
- Daniel P. Cardinali
- Department of Teaching and Research, Faculty of Medical Sciences, Pontificia Universidad Católica Argentina, Buenos Aires, Argentina
| | - María F. Vidal
- Department of Teaching and Research, Faculty of Medical Sciences, Pontificia Universidad Católica Argentina, Buenos Aires, Argentina
| | - Daniel E. Vigo
- Department of Teaching and Research, Faculty of Medical Sciences, Pontificia Universidad Católica Argentina, Buenos Aires, Argentina
| |
Collapse
|
212
|
Bähr I, Mühlbauer E, Albrecht E, Peschke E. Evidence of the receptor-mediated influence of melatonin on pancreatic glucagon secretion via the Gαq protein-coupled and PI3K signaling pathways. J Pineal Res 2012; 53:390-8. [PMID: 22672634 DOI: 10.1111/j.1600-079x.2012.01009.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Melatonin has been shown to modulate glucose metabolism by influencing insulin secretion. Recent investigations have also indicated a regulatory function of melatonin on the pancreatic α-cells. The present in vitro and in vivo studies evaluated whether melatonin mediates its effects via melatonin receptors and which signaling cascade is involved. Incubation experiments using the glucagon-producing mouse pancreatic α-cell line αTC1 clone 9 (αTC1.9) as well as isolated pancreatic islets of rats and mice revealed that melatonin increases glucagon secretion. Preincubation of αTC1.9 cells with the melatonin receptor antagonists luzindole and 4P-PDOT abolished the glucagon-stimulatory effect of melatonin. In addition, glucagon secretion was lower in the pancreatic islets of melatonin receptor knockout mice than in the islets of the wild-type (WT) control animals. Investigations of melatonin receptor knockout mice revealed decreased plasma glucagon concentrations and elevated mRNA expression levels of the hepatic glucagon receptor when compared to WT mice. Furthermore, studies using pertussis toxin, as well as measurements of cAMP concentrations, ruled out the involvement of Gαi- and Gαs-coupled signaling cascades in mediating the glucagon increase induced by melatonin. In contrast, inhibition of phospholipase C in αTC1.9 cells prevented the melatonin-induced effect, indicating the physiological relevance of the Gαq-coupled pathway. Our data point to the involvement of the phosphatidylinositol 3-kinase signaling cascade in mediating melatonin effects in pancreatic α-cells. In conclusion, these findings provide evidence that the glucagon-stimulatory effect of melatonin in pancreatic α-cells is melatonin receptor mediated, thus supporting the concept of melatonin-modulated and diurnal glucagon release.
Collapse
MESH Headings
- Animals
- Cell Line
- Cyclic AMP/metabolism
- Diabetes Mellitus, Type 2/enzymology
- Disease Models, Animal
- Dose-Response Relationship, Drug
- GTP-Binding Protein alpha Subunits, Gq-G11/metabolism
- Gene Expression Regulation
- Glucagon/blood
- Glucagon/metabolism
- Glucagon-Secreting Cells/drug effects
- Glucagon-Secreting Cells/enzymology
- Glucagon-Secreting Cells/metabolism
- Liver/drug effects
- Liver/metabolism
- Male
- Melanins/pharmacology
- Mice
- Mice, Knockout
- Pertussis Toxin/pharmacology
- Phosphatidylinositol 3-Kinase/metabolism
- RNA, Messenger/metabolism
- Rats
- Rats, Wistar
- Receptor, Melatonin, MT1/deficiency
- Receptor, Melatonin, MT1/drug effects
- Receptor, Melatonin, MT1/genetics
- Receptor, Melatonin, MT2/deficiency
- Receptor, Melatonin, MT2/drug effects
- Receptor, Melatonin, MT2/genetics
- Receptors, Glucagon/drug effects
- Receptors, Glucagon/genetics
- Receptors, Glucagon/metabolism
- Signal Transduction/drug effects
- Tetrahydronaphthalenes/pharmacology
- Tissue Culture Techniques
- Tryptamines/pharmacology
- Type C Phospholipases/metabolism
Collapse
Affiliation(s)
- Ina Bähr
- Institute of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, Halle, Germany.
| | | | | | | |
Collapse
|
213
|
Hutchinson AJ, Hudson RL, Dubocovich ML. Genetic deletion of MT(1) and MT(2) melatonin receptors differentially abrogates the development and expression of methamphetamine-induced locomotor sensitization during the day and the night in C3H/HeN mice. J Pineal Res 2012; 53:399-409. [PMID: 22672659 PMCID: PMC3568497 DOI: 10.1111/j.1600-079x.2012.01010.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This study explored the role of the melatonin receptors in methamphetamine (METH)-induced locomotor sensitization during the light and dark phases in C3H/HeN mice with genetic deletion of the MT(1) and/or MT(2) melatonin receptors. Six daily treatments with METH (1.2 mg/kg, i.p.) in a novel environment during the light phase led to the development of locomotor sensitization in wild-type (WT), MT(1)KO and MT(2)KO mice. Following four full days of abstinence, METH challenge (1.2 mg/kg, i.p.) triggered the expression of locomotor sensitization in METH-pretreated but not in vehicle (VEH)-pretreated mice. In MT(1)/MT(2)KO mice, the development of sensitization during the light phase was significantly reduced and the expression of sensitization was completely abrogated upon METH challenge. During the dark phase the development of locomotor sensitization in METH-pretreated WT, MT(1)KO and MT(2)KO mice was statistically different from VEH-treated controls. However, WT and MT(2)KO, but not MT(1)KO mice receiving repeated VEH pretreatments during the dark phase expressed a sensitized response to METH challenge that is of an identical magnitude to that observed upon 6 days of METH pretreatment. We conclude that exposure to a novel environment during the dark phase, but not during the light phase, facilitated the expression of sensitization to a METH challenge in a manner dependent on MT(1) melatonin receptor activation by endogenous melatonin. We suggest that MT(1) and MT(2) melatonin receptors are potential targets for pharmacotherapeutic intervention in METH abusers.
Collapse
MESH Headings
- Animals
- Behavior, Animal/drug effects
- Behavior, Animal/radiation effects
- Central Nervous System/drug effects
- Central Nervous System/metabolism
- Central Nervous System/radiation effects
- Central Nervous System Sensitization/drug effects
- Central Nervous System Sensitization/radiation effects
- Central Nervous System Stimulants/pharmacology
- Gene Deletion
- Male
- Melatonin/metabolism
- Methamphetamine/pharmacology
- Mice
- Mice, Inbred C3H
- Mice, Knockout
- Motor Activity/drug effects
- Motor Activity/radiation effects
- Photoperiod
- Receptor, Melatonin, MT1/deficiency
- Receptor, Melatonin, MT1/genetics
- Receptor, Melatonin, MT2/deficiency
- Receptor, Melatonin, MT2/genetics
- Time Factors
Collapse
Affiliation(s)
- Anthony J. Hutchinson
- Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences. University at Buffalo (SUNY), Buffalo, NY, USA
| | - Randall L. Hudson
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences. University at Buffalo (SUNY), Buffalo, NY, USA
| | - Margarita L. Dubocovich
- Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences. University at Buffalo (SUNY), Buffalo, NY, USA
| |
Collapse
|
214
|
Scheer FAJL, Morris CJ, Garcia JI, Smales C, Kelly EE, Marks J, Malhotra A, Shea SA. Repeated melatonin supplementation improves sleep in hypertensive patients treated with beta-blockers: a randomized controlled trial. Sleep 2012; 35:1395-402. [PMID: 23024438 PMCID: PMC3443766 DOI: 10.5665/sleep.2122] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
STUDY OBJECTIVES In the United States alone, approximately 22 million people take beta-blockers chronically. These medications suppress endogenous nighttime melatonin secretion, which may explain a reported side effect of insomnia. Therefore, we tested whether nightly melatonin supplementation improves sleep in hypertensive patients treated with beta-blockers. DESIGN Randomized, double-blind, placebo-controlled, parallel-group design. SETTING Clinical and Translational Research Center at Brigham and Women's Hospital, Boston. PATIENTS Sixteen hypertensive patients (age 45-64 yr; 9 women) treated with the beta-blockers atenolol or metoprolol. INTERVENTIONS Two 4-day in-laboratory admissions including polysomnographically recorded sleep. After the baseline assessment during the first admission, patients were randomized to 2.5 mg melatonin or placebo (nightly for 3 weeks), after which sleep was assessed again during the second 4-day admission. Baseline-adjusted values are reported. One patient was removed from analysis because of an unstable dose of prescription medication. MEASUREMENTS AND RESULTS In comparison with placebo, 3 weeks of melatonin supplementation significantly increased total sleep time (+36 min; P = 0.046), increased sleep efficiency (+7.6%; P = 0.046), and decreased sleep onset latency to Stage 2 (-14 min; P = 0.001) as assessed by polysomnography. Compared with placebo, melatonin significantly increased Stage 2 sleep (+41 min; P = 0.037) but did not significantly change the durations of other sleep stages. The sleep onset latency remained significantly shortened on the night after discontinuation of melatonin administration (-25 min; P = 0.001), suggesting a carryover effect. CONCLUSION n hypertensive patients treated with beta-blockers, 3 weeks of nightly melatonin supplementation significantly improved sleep quality, without apparent tolerance and without rebound sleep disturbance during withdrawal of melatonin supplementation (in fact, a positive carryover effect was demonstrated). These findings may assist in developing countermeasures against sleep disturbances associated with beta-blocker therapy. CLINICAL TRIAL INFORMATION his study is registered with ClinicalTrials.gov, identifier: NCT00238108; trial name: Melatonin Supplements for Improving Sleep in Individuals with Hypertension; URL: http://www.clinicaltrials.gov/ct2/show/NCT00238108.
Collapse
Affiliation(s)
- Frank A J L Scheer
- Medical Chronobiology Program, Division of Sleep Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA.
| | | | | | | | | | | | | | | |
Collapse
|
215
|
Abstract
Melatonin (MEL) is a hormone synthesized and secreted by the pineal gland deep within the brain in response to photoperiodic cues relayed from the retina via an endogenous circadian oscillator within the suprachiasmatic nucleus in the hypothalamus. The circadian rhythm of melatonin production and release, characterized by nocturnal activity and daytime quiescence, is an important temporal signal to the body structures that can read it. Melatonin acts through high-affinity receptors located centrally and in numerous peripheral organs. Different receptor subtypes have been cloned and characterized: MT(1) and MT(2) (transmembrane G-protein-coupled receptors), and MT(3). However, their physiological role remains unelucidated, although livestock management applications already include the control of seasonal breeding and milk production. As for potential therapeutic applications, exogenous melatonin or a melatonin agonist and selective 5-hydroxytrypiamine receptor (5-HT(2c)) antagonist, eg, S 20098, can be used to manipulate circadian processes such as the sleep-vake cycle, which are frequently disrupted in many conditions, most notably seasonal affective disorder.
Collapse
Affiliation(s)
- Paul Pévet
- Laboratoire de Neurobiologie des Rythmes, UMR 7518 CNRS-Université Louis Pasteur, Strasbourg, France
| |
Collapse
|
216
|
Abstract
Melatonin is a hormone synthesized and secreted during the night by the pineal gland. Its production is mainly driven by the Orcadian clock, which, in mammals, is situated in the suprachiasmatic nucleus of the hypothalamus. The melatonin production and release displays characteristic daily (nocturnal) and seasonal patterns (changes in duration proportional to the length of the night) of secretion. These rhythms in circulating melatonin are strong synchronizers for the expression of numerous physiological processes. In mammals, the role of melatonin in the control of seasonality is well documented, and the sites and mechanisms of action involved are beginning to be identified. The exact role of the hormone in the diurnal (Orcadian) timing system remains to be determined. However, exogenous melatonin has been shown to affect the circadian clock. The molecular and cellular mechanisms involved in this well-characterized “chronobiotic” effect have also begun to be characterized. The circadian clock itself appears to be an important site for the entrapment effect of melatonin and the presence of melatonin receptors appears to be a prerequisite. A better understanding of such “chronobiotic” effects of melatonin will allow clarification of the role of endogenous melatonin in circadian organization.
Collapse
Affiliation(s)
- Paul Pévet
- Laboratoire de Neurobiologie des Rythmes, UMR 7518 CNRS-Université Louis Pasteur, Strasbourg, France
| |
Collapse
|
217
|
Richards J, Gumz ML. Advances in understanding the peripheral circadian clocks. FASEB J 2012; 26:3602-13. [PMID: 22661008 PMCID: PMC3425819 DOI: 10.1096/fj.12-203554] [Citation(s) in RCA: 153] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 05/21/2012] [Indexed: 12/22/2022]
Abstract
In the past decade, it has become increasingly evident that the circadian clock system plays an important role in many physiological processes. The circadian clock can be divided into 2 parts: the central clock, residing in the suprachiasmatic nucleus of the hypothalamus, which receives light cues, and the peripheral clocks that reside in various tissues throughout the body. The peripheral clocks play an integral and unique role in each of their respective tissues, driving the circadian expression of specific genes involved in a variety of physiological functions. The goal of this review is to provide an introduction to and overview of the peripheral clocks, including potential mechanisms, targets, and implications for disease states. The peripheral clocks include the cardiovascular, metabolic, endocrine, immune, and reproductive systems.
Collapse
Affiliation(s)
- Jacob Richards
- Department of Medicine and Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | - Michelle L. Gumz
- Department of Medicine and Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
218
|
Srinivasan V, De Berardis D, Shillcutt SD, Brzezinski A. Role of melatonin in mood disorders and the antidepressant effects of agomelatine. Expert Opin Investig Drugs 2012; 21:1503-22. [DOI: 10.1517/13543784.2012.711314] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
219
|
Mexal S, Horton WJ, Crouch EL, Maier SIB, Wilkinson AL, Marsolek M, Stitzel JA. Diurnal variation in nicotine sensitivity in mice: role of genetic background and melatonin. Neuropharmacology 2012; 63:966-73. [PMID: 22820272 DOI: 10.1016/j.neuropharm.2012.06.065] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 05/29/2012] [Accepted: 06/28/2012] [Indexed: 11/17/2022]
Abstract
Despite the evidence that there is a daily rhythm in smoking behavior and that the effects of drugs of abuse exhibit diurnal variations, very few studies have explored the extent to which sensitivity to the effects of nicotine vary over the course of the day. In the studies described in this report, the melatonin proficient mouse strain C3H/Ibg and the melatonin deficient mouse strains C57BL/6J and DBA/2J were assessed for diurnal variations in sensitivity to the effects of nicotine. Results indicated that there is significant variation in sensitivity to both activity and body temperature depressant effects of nicotine in the melatonin proficient C3H/Ibg strain with maximal sensitivity occurring during the latter third of the light period of the light cycle and minimal sensitivity taking place during the last third of the dark phase of the light cycle. The melatonin deficient strains did not exhibit diurnal differences in sensitivity to the effects of nicotine suggesting a potential role for melatonin in modulating the effects of nicotine. Experiments with knockout mice lacking both the Mtnr1a and Mtnr1b melatonin receptors confirmed that the reduced sensitivity observed during the dark phase is melatonin dependent. Diurnal variation in nicotinic receptor expression also was measured in cortex, hippocampus, hypothalamus and striatum using [(125)I]-α-bungarotoxin and [(125)I]-epibatidine. [(125)I]-α-bungarotoxin binding in hypothalamus of C3H mice exhibited a diurnal pattern with maximal binding observed in the latter third of the light portion of the light cycle. No other significant differences in binding were detected.
Collapse
Affiliation(s)
- Sharon Mexal
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO 80309, USA
| | | | | | | | | | | | | |
Collapse
|
220
|
Matagne V, Kim JG, Ryu BJ, Hur MK, Kim MS, Kim K, Park BS, Damante G, Smiley G, Lee BJ, Ojeda SR. Thyroid transcription factor 1, a homeodomain containing transcription factor, contributes to regulating periodic oscillations in GnRH gene expression. J Neuroendocrinol 2012; 24:916-29. [PMID: 22356123 PMCID: PMC3350608 DOI: 10.1111/j.1365-2826.2012.02302.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Thyroid transcription factor 1 (TTF1), a member of the Nkx family of transcription factors required for basal forebrain morphogenesis, functions in the postnatal hypothalamus as a transcriptional regulator of genes encoding neuromodulators and hypophysiotrophic peptides. One of these peptides is gonadotrophin-releasing hormone (GnRH). In the present study, we show that Ttf1 mRNA abundance varies in a diurnal and melatonin-dependent fashion in the preoptic area of the rat, with maximal Ttf1 expression attained during the dark phase of the light/dark cycle, preceding the nocturnal peak in GnRH mRNA content. GnRH promoter activity oscillates in a circadian manner in GT1-7 cells, and this pattern is enhanced by TTF1 and blunted by small interfering RNA-mediated Ttf1 gene silencing. TTF1 transactivates GnRH transcription by binding to two sites in the GnRH promoter. Rat GnRH neurones in situ contain key proteins components of the positive (BMAL1, CLOCK) and negative (PER1) limbs of the circadian oscillator, and these proteins repress Ttf1 promoter activity in vitro. By contrast, Ttf1 transcription is activated by CRY1, a clock component required for circadian rhythmicity. In turn, TTF1 represses transcription of Rev-erbα, a heme receptor that controls circadian transcription within the positive limb of the circadian oscillator. These findings suggest that TTF1 is a component of the molecular machinery controlling circadian oscillations in GnRH gene transcription.
Collapse
Affiliation(s)
- Valerie Matagne
- Division of Neuroscience, Oregon National Primate Research Center/Oregon Health Sciences University, Beaverton, Oregon 97006, USA
| | - Jae Geun Kim
- Department of Biological Sciences, University of Ulsan, Ulsan 680-749
| | - Byung Jun Ryu
- Department of Biological Sciences, University of Ulsan, Ulsan 680-749
| | - Min Kyu Hur
- Department of Biological Sciences, University of Ulsan, Ulsan 680-749
| | - Min Sung Kim
- Department of Biological Sciences, University of Ulsan, Ulsan 680-749
| | - Kyungjin Kim
- School of Biological Sciences, Seoul National University, Seoul 151-742, South Korea
| | - Byong Seo Park
- Department of Biological Sciences, University of Ulsan, Ulsan 680-749
| | - Giuseppe Damante
- Department of Medical and Biological Sciences, University of Udine, 33100, Italy
| | - Gregory Smiley
- Division of Neuroscience, Oregon National Primate Research Center/Oregon Health Sciences University, Beaverton, Oregon 97006, USA
| | - Byung Ju Lee
- Department of Biological Sciences, University of Ulsan, Ulsan 680-749
| | - Sergio R. Ojeda
- Division of Neuroscience, Oregon National Primate Research Center/Oregon Health Sciences University, Beaverton, Oregon 97006, USA
| |
Collapse
|
221
|
Fischer C, Christ E, Korf HW, von Gall C. Tafa-3 encoding for a secretory peptide is expressed in the mouse pars tuberalis and is affected by melatonin 1 receptor deficiency. Gen Comp Endocrinol 2012; 177:98-103. [PMID: 22426341 DOI: 10.1016/j.ygcen.2012.02.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 02/24/2012] [Accepted: 02/25/2012] [Indexed: 11/22/2022]
Abstract
The hypophysial pars tuberalis (PT) is an important interface between neuroendocrine brain centers (hypothalamus, pineal organ) and the anterior lobe of the hypophysis (PD). The best investigated role of the PT is the control of seasonally changing functions. In mammals, melatonin secreted from the pineal organ represents a major input signal to the PT. By acting upon melatonin type 1 receptors (MT1) melatonin controls the functional activity of the PT. Most interestingly, the PT sends its output signals in two directions: via a "retrograde" pathway to the hypothalamus and via an "anterograde" pathway to the PD. TSH has been identified as "retrograde" messenger, while endocannabinoids function as messengers of the "anterograde" pathway. Here we show in mice that the PT expresses Tafa-3 encoding for a secretory peptide. In the PT of wild type mice Tafa-3 mRNA levels varied between day and night: they were low at mid-day and high at mid-night. This day/night difference was not observed in the PT of mice with a targeted deletion of the MT1 receptor indicating that Tafa-3 mRNA expression in the PT is controlled by melatonin acting through the MT1 receptor. Notably, Tafa-3 expression was not restricted to the PT, but was also found in other brain regions, such as the hippocampus, the habenular and thalamic nuclei. In these regions, Tafa-3 expression did not display a day/night difference and was not affected by MT1-deficiency. Thus, Tafa-3 expression appears to be controlled by region-specific mechanisms. Our data suggest that TAFA-3 is a signaling molecule from the PT and provides further evidence for the emerging concept that the PT rather than relying upon highly organ-specific messengers employs a cocktail of signaling molecules that also operate in other brain systems.
Collapse
Affiliation(s)
- Claudia Fischer
- Dr. Senckenbergische Anatomie, Institut für Anatomie II, Goethe-Universität, Theodor-Stern-Kai 7, D-60590 Frankfurt/M, Germany
| | | | | | | |
Collapse
|
222
|
Mühlbauer E, Albrecht E, Bazwinsky-Wutschke I, Peschke E. Melatonin influences insulin secretion primarily via MT(1) receptors in rat insulinoma cells (INS-1) and mouse pancreatic islets. J Pineal Res 2012; 52:446-59. [PMID: 22288848 DOI: 10.1111/j.1600-079x.2012.00959.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Several studies have revealed that melatonin affects the insulin secretion via MT(1) and MT(2) receptor isoforms. Owing to the lack of selective MT(1) receptor antagonists, we used RNA interference technology to generate an MT(1) knockdown in a clonal β-cell line to evaluate whether melatonin modulates insulin secretion specifically via the MT(1) receptor. Incubation experiments were carried out, and the insulin concentration in supernatants was measured using a radioimmunoassay. Furthermore, the intracellular cAMP was determined using an enzyme-linked immunosorbent assay. Real-time RT-PCR indicated that MT(1) knockdown resulted in a significant increase in the rIns1 mRNA and a significantly elevated basal insulin secretion of INS-1 cells. Incubation with melatonin decreased the amount of glucagon-like peptide 1 or inhibited the glucagon-stimulated insulin release of INS-1 cells, while, in MT(1) -knockdown cells, no melatonin-induced reduction in insulin secretion could be found. No decrease in 3-isobutyl-1-methylxanthine-stimulated intracellular cAMP in rMT(1) -knockdown cells was detectable after treatment with melatonin either, and immunocytochemistry proved that MT(1) knockdown abolished phosphorylation of cAMP-response-element-binding protein. In contrast to the INS-1 cells, preincubation with melatonin did not sensitize the insulin secretion of rMT(1) -knockdown cells. We also monitored insulin secretion from isolated islets of wild-type and melatonin-receptor knockout mice ex vivo. In islets of wild-type mice, melatonin treatment resulted in a decrease in insulin release, whereas melatonin treatment of islets from MT(1) knockout and MT(1/2) double-knockout mice did not show a significant effect. The data indicate that melatonin inhibits insulin secretion, primarily via the MT(1) receptor in rat INS-1 cells and isolated mouse islets.
Collapse
|
223
|
Abstract
Benzodiazepine sedative-hypnotic drugs are widely used for the treatment of insomnia. Nevertheless, their adverse effects, such as next-day hangover, dependence and impairment of memory, make them unsuitable for long-term treatment. Melatonin has been used for improving sleep in patients with insomnia mainly because it does not cause hangover or show any addictive potential. However, there is a lack of consistency on its therapeutic value (partly because of its short half-life and the small quantities of melatonin employed). Thus, attention has been focused either on the development of more potent melatonin analogs with prolonged effects or on the design of slow release melatonin preparations. The MT(1) and MT(2) melatonergic receptor ramelteon was effective in increasing total sleep time and sleep efficiency, as well as in reducing sleep latency, in insomnia patients. The melatonergic antidepressant agomelatine, displaying potent MT(1) and MT(2) melatonergic agonism and relatively weak serotonin 5HT(2C) receptor antagonism, was found effective in the treatment of depressed patients. However, long-term safety studies are lacking for both melatonin agonists, particularly considering the pharmacological activity of their metabolites. In view of the higher binding affinities, longest half-life and relative higher potencies of the different melatonin agonists, studies using 2 or 3mg/day of melatonin are probably unsuitable to give appropriate comparison of the effects of the natural compound. Hence, clinical trials employing melatonin doses in the range of 50-100mg/day are warranted before the relative merits of the melatonin analogs versus melatonin can be settled.
Collapse
Affiliation(s)
- Daniel P Cardinali
- Departmento de Docencia e Investigación, Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina, Buenos Aires, Argentina.
| | | | | | | |
Collapse
|
224
|
Pfeffer M, Rauch A, Korf HW, von Gall C. The endogenous melatonin (MT) signal facilitates reentrainment of the circadian system to light-induced phase advances by acting upon MT2 receptors. Chronobiol Int 2012; 29:415-29. [PMID: 22489607 DOI: 10.3109/07420528.2012.667859] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The indolamine melatonin is an important rhythmic endocrine signal in the circadian system. Exogenous melatonin can entrain circadian rhythms in physiology and behavior, but the role of endogenous melatonin and the two membrane-bound melatonin receptor types, MT1 and MT2, in reentrainment of daily rhythms to light-induced phase shifts is not understood. The present study analyzed locomotor activity rhythms and clock protein levels in the suprachiasmatic nuclei (SCN) of melatonin-deficient (C57BL/6J) and melatonin-proficient (C3H/HeN) mice, as well as in melatonin-proficient (C3H/HeN) mice with targeted deletion of the MT1, MT2, or both receptors, to determine effects associated with phase delays or phase advances of the light/dark (LD) cycle. In all mouse strains and genotypes, reentrainment of locomotor activity rhythms was significantly faster after a 6-h phase delay than a 6-h phase advance. Reentrainment after the phase advance was, however, significantly slower than in melatonin-deficient animals and in mice lacking functional MT2 receptors than melatonin-proficient animals with intact MT2 receptors. To investigate whether these behavioral differences coincide with differences in reentrainment of clock protein levels in the SCN, mPER1, mCRY1 immunoreactions were compared between control mice kept under the original LD cycle and killed at zeitgeber time 04 (ZT04) or at ZT10, respectively, and experimental mice subjected to a 6-h phase advance of the LD cycle and sacrificed at ZT10 on the third day after phase advance. This ZT corresponds to ZT04 of the original LD cycle. Under the original LD cycle, the numbers of mPER1- and mCRY1-immunoreactive cell nuclei were low at ZT04 and high at ZT10 in the SCN of all mouse strains and genotypes investigated. Notably, mouse strains with intact melatonin signaling and functional MT2 receptors showed a significant increase in the number of mPER1- and mCRY1-immunoreactive cell nuclei at the new ZT10 as compared to the former ZT04. These data suggest the endogenous melatonin signal facilitates reentrainment of the circadian system to phase advances on the level of the SCN molecular clockwork by acting upon MT2 receptors.
Collapse
Affiliation(s)
- Martina Pfeffer
- Dr. Senckenbergische Anatomie, Institut Fachbereich Medizin, Goethe-Universität Frankfurt, Frankfurt am Main, Germany.
| | | | | | | |
Collapse
|
225
|
Morris CJ, Aeschbach D, Scheer FAJL. Circadian system, sleep and endocrinology. Mol Cell Endocrinol 2012; 349:91-104. [PMID: 21939733 PMCID: PMC3242827 DOI: 10.1016/j.mce.2011.09.003] [Citation(s) in RCA: 260] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 08/19/2011] [Accepted: 09/01/2011] [Indexed: 11/23/2022]
Abstract
Levels of numerous hormones vary across the day and night. Such fluctuations are not only attributable to changes in sleep/wakefulness and other behaviors but also to a circadian timing system governed by the suprachiasmatic nucleus of the hypothalamus. Sleep has a strong effect on levels of some hormones such as growth hormone but little effect on others which are more strongly regulated by the circadian timing system (e.g., melatonin). Whereas the exact mechanisms through which sleep affects circulating hormonal levels are poorly understood, more is known about how the circadian timing system influences the secretion of hormones. The suprachiasmatic nucleus exerts its influence on hormones via neuronal and humoral signals but it is now also apparent that peripheral tissues contain circadian clock proteins, similar to those in the suprachiasmatic nucleus, that are also involved in hormone regulation. Under normal circumstances, behaviors and the circadian timing system are synchronized with an optimal phase relationship and consequently hormonal systems are exquisitely regulated. However, many individuals (e.g., shift-workers) frequently and/or chronically undergo circadian misalignment by desynchronizing their sleep/wake and fasting/feeding cycle from the circadian timing system. Recent experiments indicate that circadian misalignment has an adverse effect on metabolic and hormonal factors such as circulating glucose and insulin. Further research is needed to determine the underlying mechanisms that cause the negative effects induced by circadian misalignment. Such research could aid the development of novel countermeasures for circadian misalignment.
Collapse
Affiliation(s)
- Christopher J Morris
- Division of Sleep Medicine, Brigham and Women's Hospital, Boston, MA, United States.
| | | | | |
Collapse
|
226
|
Quera Salva MA, Hartley S. Mood disorders, circadian rhythms, melatonin and melatonin agonists. J Cent Nerv Syst Dis 2012; 4:15-26. [PMID: 23650464 PMCID: PMC3619438 DOI: 10.4137/jcnsd.s4103] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Recent advances in the understanding of circadian rhythms have led to an interest in the treatment of major depressive disorder with chronobiotic agents. Many tissues have autonomous circadian rhythms, which are orchestrated by the master clock, situated in the suprachiasmatic nucleus (SNC). Melatonin (N-acetyl-5-hydroxytryptamine) is secreted from the pineal gland during darkness. Melatonin acts mainly on MT1 and MT2 receptors, which are present in the SNC, regulating physiological and neuroendocrine functions, including circadian entrainment, referred to as the chronobiotic effet. Circadian rhythms has been shown to be either misaligned or phase shifted or decreased in amplitude in both acute episodes and relapse of major depressive disorder (MDD) and bipolar disorder. Manipulation of circadian rhythms either using physical treatments (such as high intensity light) or behavioral therapy has shown promise in improving symptoms. Pharmacotherapy using melatonin and pure melatonin receptor agonists, while improving sleep, has not been shown to improve symptoms of depression. A novel antidepressant, agomelatine, combines 5HT2c antagonist and melatonin agonist action, and has shown promise in both acute treatment of MDD and in preventing relapse.
Collapse
Affiliation(s)
- M A Quera Salva
- Sleep Unit, Physiology Department, Hôpital Raymond Poincaré, 104 Boulevard Raymond Poincaré, 92380 Garches, France
| | | |
Collapse
|
227
|
Ochoa-Sanchez R, Comai S, Lacoste B, Bambico FR, Dominguez-Lopez S, Spadoni G, Rivara S, Bedini A, Angeloni D, Fraschini F, Mor M, Tarzia G, Descarries L, Gobbi G. Promotion of non-rapid eye movement sleep and activation of reticular thalamic neurons by a novel MT2 melatonin receptor ligand. J Neurosci 2011; 31:18439-52. [PMID: 22171046 PMCID: PMC6623882 DOI: 10.1523/jneurosci.2676-11.2011] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Revised: 10/28/2011] [Accepted: 11/01/2011] [Indexed: 11/21/2022] Open
Abstract
Melatonin activates two brain G-protein coupled receptors, MT(1) and MT(2), whose differential roles in the sleep-wake cycle remain to be defined. The novel MT(2) receptor partial agonist, N-{2-[(3-methoxyphenyl) phenylamino] ethyl} acetamide (UCM765), is here shown to selectively promote non-rapid eye movement sleep (NREMS) in rats and mice. The enhancement of NREMS by UCM765 is nullified by the pharmacological blockade or genetic deletion of MT(2) receptors. MT(2), but not MT(1), knock-out mice show a decrease in NREMS compared to the wild strain. Immunohistochemical labeling reveals that MT(2) receptors are localized in sleep-related brain regions, and notably the reticular thalamic nucleus (Rt). Microinfusion of UCM765 in the Rt promotes NREMS, and its systemic administration induces an increase in firing and rhythmic burst activity of Rt neurons, which is blocked by the MT(2) antagonist 4-phenyl-2-propionamidotetralin. Since developing hypnotics that increase NREMS without altering sleep architecture remains a medical challenge, MT(2) receptors may represent a novel target for the treatment of sleep disorders.
Collapse
Affiliation(s)
- Rafael Ochoa-Sanchez
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University and McGill University Health Center, Montreal, Quebec, Canada H3A 1A1
| | - Stefano Comai
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University and McGill University Health Center, Montreal, Quebec, Canada H3A 1A1
| | - Baptiste Lacoste
- Departments of Pathology and Cell Biology and
- Physiology, Groupe de recherche sur le système nerveux central, Université de Montréal, Montreal, Quebec, Canada H3T 1J4
| | - Francis Rodriguez Bambico
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University and McGill University Health Center, Montreal, Quebec, Canada H3A 1A1
| | - Sergio Dominguez-Lopez
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University and McGill University Health Center, Montreal, Quebec, Canada H3A 1A1
| | - Gilberto Spadoni
- Institute of Medicinal Chemistry, Carlo Bo University of Urbino, Urbino, Italy 61029
| | - Silvia Rivara
- Pharmaceutical Department University of Parma, Parma, Italy 43124
| | - Annalida Bedini
- Institute of Medicinal Chemistry, Carlo Bo University of Urbino, Urbino, Italy 61029
| | | | - Franco Fraschini
- Department of Pharmacology, Chemiotherapy and Medical Toxicology, University of Milan, Milan, Italy 20129
| | - Marco Mor
- Pharmaceutical Department University of Parma, Parma, Italy 43124
| | - Giorgio Tarzia
- Institute of Medicinal Chemistry, Carlo Bo University of Urbino, Urbino, Italy 61029
| | - Laurent Descarries
- Departments of Pathology and Cell Biology and
- Physiology, Groupe de recherche sur le système nerveux central, Université de Montréal, Montreal, Quebec, Canada H3T 1J4
| | - Gabriella Gobbi
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University and McGill University Health Center, Montreal, Quebec, Canada H3A 1A1
| |
Collapse
|
228
|
Srinivasan V, Cardinali DP, Srinivasan US, Kaur C, Brown GM, Spence DW, Hardeland R, Pandi-Perumal SR. Therapeutic potential of melatonin and its analogs in Parkinson's disease: focus on sleep and neuroprotection. Ther Adv Neurol Disord 2011; 4:297-317. [PMID: 22010042 DOI: 10.1177/1756285611406166] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Sleep disorders constitute major nonmotor features of Parkinson's disease (PD) that have a substantial effect on patients' quality of life and can be related to the progression of the neurodegenerative disease. They can also serve as preclinical markers for PD, as it is the case for rapid eye movement (REM)-associated sleep behavior disorder (RBD). Although the etiology of sleep disorders in PD remains undefined, the assessment of the components of the circadian system, including melatonin secretion, could give therapeutically valuable insight on their pathophysiopathology. Melatonin is a regulator of the sleep/wake cycle and also acts as an effective antioxidant and mitochondrial function protector. A reduction in the expression of melatonin MT(1) and MT(2) receptors has been documented in the substantia nigra of PD patients. The efficacy of melatonin for preventing neuronal cell death and for ameliorating PD symptoms has been demonstrated in animal models of PD employing neurotoxins. A small number of controlled trials indicate that melatonin is useful in treating disturbed sleep in PD, in particular RBD. Whether melatonin and the recently developed melatonergic agents (ramelteon, tasimelteon, agomelatine) have therapeutic potential in PD is also discussed.
Collapse
Affiliation(s)
- Venkatramanujam Srinivasan
- Sri Sathya Sai Medical Educational and Research Foundation, Prasanthi Nilayam, Plot-40, Kovai Thirunagar, Coimbatore 641014, India
| | | | | | | | | | | | | | | |
Collapse
|
229
|
Afonso P, Figueira ML, Paiva T. Sleep-promoting action of the endogenous melatonin in schizophrenia compared to healthy controls. Int J Psychiatry Clin Pract 2011; 15:311-5. [PMID: 22122006 DOI: 10.3109/13651501.2011.605954] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE The aim of this study was to compare the endogenous melatonin sleep-promoting effect in schizophrenic patients to a sample of healthy controls. METHODS Thirty-four schizophrenia outpatients (SP) and 34 healthy subjects (HS) participated in this study. Wrist-actigraphy recordings and a sleep diary were used for sleep-wake cycle assessment. The quality and patterns of sleep were measured with the Pittsburgh Sleep Quality Index (PSQI) and the Positive and Negative Syndrome Scale (PANSS) was used for psychopathology assessment. To quantify and assess nocturnal melatonin profiles, saliva samples were collected for one night under dim light conditions (<50 lux) hourly from 20:00 h to 23:00 h. RESULTS Scores on PSQI were significantly higher in SP as compared to HS, indicating a worse quality of sleep. Patients sleep more at night, but have poorer sleep efficiency, than HS. Sleep latency and nighttime awakenings were significant higher in SP. Melatonin levels were negatively correlated with sleep latency, total sleep time and positively correlated with sleep efficiency in HS but not in SP. CONCLUSION The results of the present study indicate that endogenous melatonin sleep-promoting action seems to be compromised in schizophrenia.
Collapse
Affiliation(s)
- Pedro Afonso
- Psychiatric Hospital Center of Lisbon, Lisbon, Portugal.
| | | | | |
Collapse
|
230
|
Sengupta A, Baba K, Mazzoni F, Pozdeyev NV, Strettoi E, Iuvone PM, Tosini G. Localization of melatonin receptor 1 in mouse retina and its role in the circadian regulation of the electroretinogram and dopamine levels. PLoS One 2011; 6:e24483. [PMID: 21915336 PMCID: PMC3168505 DOI: 10.1371/journal.pone.0024483] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Accepted: 08/11/2011] [Indexed: 11/30/2022] Open
Abstract
Melatonin modulates many important functions within the eye by interacting with a family of G-protein-coupled receptors that are negatively coupled with adenylate cyclase. In the mouse, Melatonin Receptors type 1 (MT1) mRNAs have been localized to photoreceptors, inner retinal neurons, and ganglion cells, thus suggesting that MT1 receptors may play an important role in retinal physiology. Indeed, we have recently reported that absence of the MT1 receptors has a dramatic effect on the regulation of the daily rhythm in visual processing, and on retinal cell viability during aging. We have also shown that removal of MT1 receptors leads to a small (3–4 mmHg) increase in the level of the intraocular pressure during the night and to a significant loss (25–30%) in the number of cells within the retinal ganglion cell layer during aging. In the present study we investigated the cellular distribution in the C3H/f+/+ mouse retina of MT1 receptors using a newly developed MT1 receptor antibody, and then we determined the role that MT1 signaling plays in the circadian regulation of the mouse electroretinogram, and in the retinal dopaminergic system. Our data indicate that MT1 receptor immunoreactivity is present in many retinal cell types, and in particular, on rod and cone photoreceptors and on intrinsically photosensitive ganglion cells (ipRGCs). MT1 signaling is necessary for the circadian rhythm in the photopic ERG, but not for the circadian rhythm in the retinal dopaminergic system. Finally our data suggest that the circadian regulation of dopamine turnover does not drive the photopic ERG rhythm.
Collapse
Affiliation(s)
- Anamika Sengupta
- Circadian Rhythms and Sleep Disorders Program, Neuroscience Institute and Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Kenkichi Baba
- Circadian Rhythms and Sleep Disorders Program, Neuroscience Institute and Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Francesca Mazzoni
- Istituto di Neuroscience, Consiglio Nazionale delle Ricerche, Pisa, Italy
| | - Nikita V. Pozdeyev
- Departments of Ophthalmology and Pharmacology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Enrica Strettoi
- Istituto di Neuroscience, Consiglio Nazionale delle Ricerche, Pisa, Italy
| | - P. Michael Iuvone
- Departments of Ophthalmology and Pharmacology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Gianluca Tosini
- Circadian Rhythms and Sleep Disorders Program, Neuroscience Institute and Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
231
|
Stehle JH, Saade A, Rawashdeh O, Ackermann K, Jilg A, Sebestény T, Maronde E. A survey of molecular details in the human pineal gland in the light of phylogeny, structure, function and chronobiological diseases. J Pineal Res 2011; 51:17-43. [PMID: 21517957 DOI: 10.1111/j.1600-079x.2011.00856.x] [Citation(s) in RCA: 316] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The human pineal gland is a neuroendocrine transducer that forms an integral part of the brain. Through the nocturnally elevated synthesis and release of the neurohormone melatonin, the pineal gland encodes and disseminates information on circadian time, thus coupling the outside world to the biochemical and physiological internal demands of the body. Approaches to better understand molecular details behind the rhythmic signalling in the human pineal gland are limited but implicitly warranted, as human chronobiological dysfunctions are often associated with alterations in melatonin synthesis. Current knowledge on melatonin synthesis in the human pineal gland is based on minimally invasive analyses, and by the comparison of signalling events between different vertebrate species, with emphasis put on data acquired in sheep and other primates. Together with investigations using autoptic pineal tissue, a remnant silhouette of premortem dynamics within the hormone's biosynthesis pathway can be constructed. The detected biochemical scenario behind the generation of dynamics in melatonin synthesis positions the human pineal gland surprisingly isolated. In this neuroendocrine brain structure, protein-protein interactions and nucleo-cytoplasmic protein shuttling indicate furthermore a novel twist in the molecular dynamics in the cells of this neuroendocrine brain structure. These findings have to be seen in the light that an impaired melatonin synthesis is observed in elderly and/or demented patients, in individuals affected by Alzheimer's disease, Smith-Magenis syndrome, autism spectrum disorder and sleep phase disorders. Already, recent advances in understanding signalling dynamics in the human pineal gland have significantly helped to counteract chronobiological dysfunctions through a proper restoration of the nocturnal melatonin surge.
Collapse
Affiliation(s)
- Jörg H Stehle
- Institute of Anatomy III (Cellular and Molecular Anatomy), Goethe-University Frankfurt, Frankfurt, Germany.
| | | | | | | | | | | | | |
Collapse
|
232
|
Melatonin: both master clock output and internal time-giver in the circadian clocks network. ACTA ACUST UNITED AC 2011; 105:170-82. [PMID: 21914478 DOI: 10.1016/j.jphysparis.2011.07.001] [Citation(s) in RCA: 225] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Daily rhythms in physiological and behavioral processes are controlled by a network of circadian clocks, reset by inputs and delivering circadian signals to the brain and peripheral organs. In mammals, at the top of the network is a master clock located in the suprachiasmatic nuclei (SCN) of the hypothalamus, mainly reset by ambient light. The nocturnal synthesis and release of melatonin by the pineal gland are tightly controlled by the SCN clock and inhibited by light exposure. Several roles of melatonin in the circadian system have been identified. As a major hormonal output, melatonin distributes temporal cues generated by the SCN to the multitude of tissue targets expressing melatonin receptors. In some target structures, like the Pars tuberalis of the adenohypophysis, these melatonin signals can drive daily rhythmicity that would otherwise be lacking. In other target structures, melatonin signals are used for the synchronization (i.e., adjustment of the timing of existing oscillations) of peripheral oscillators, such as the fetal adrenal gland. Due to the expression of melatonin receptors in the SCN, endogenous melatonin is also able to feedback onto the master clock, although its physiological significance needs further characterization. Of note, pharmacological treatment with exogenous melatonin can synchronize the SCN clock. From a clinical point of view, provided that the subject is not exposed to light at night, the daily profile of circulating melatonin provides a reliable estimate of the timing of the human SCN. During the past decade, a number of melatonin agonists have been developed for treating circadian, psychiatric and sleep disorders. These drugs may target the SCN for improving circadian timing or act indirectly at some downstream level of the circadian network to restore proper internal synchronization.
Collapse
|
233
|
Abstract
Shift work is a fundamental component of the US workforce and an integral part of the lifestyles of a large proportion of the population. More than 22 million Americans work on shifts as part of their work life. Emerging research suggests that shift workers are at higher risk for a range of metabolic disorders and diseases (eg, obesity, cardiovascular disease, peptic ulcers, gastrointestinal problems, abnormal blood glucose levels, and metabolic syndrome). Sleep disorders associated with shift work also pose a serious public health risk, as they can impair an individual's ability to perform effectively and may lead to occupational and traffic accidents.
Collapse
|
234
|
Koike T, Takai T, Hoashi Y, Nakayama M, Kosugi Y, Nakashima M, Yoshikubo SI, Hirai K, Uchikawa O. Synthesis of a novel series of tricyclic dihydrofuran derivatives: discovery of 8,9-dihydrofuro[3,2-c]pyrazolo[1,5-a]pyridines as melatonin receptor (MT1/MT2) ligands. J Med Chem 2011; 54:4207-18. [PMID: 21568291 DOI: 10.1021/jm200385u] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Novel tricyclic dihydrofuran derivatives were designed, synthesized, and evaluated as melatonin receptor (MT(1)/MT(2)) ligands based on the previously reported 1,6-dihydro-2H-indeno[5,4-b]furan 1a. By screening the central tricyclic cores, we identified 8,9-dihydrofuro[3,2-c]pyrazolo[1,5-a]pyridine as a potent scaffold with a high ligand-lipophilicity efficiency (LLE) value. Subsequent optimization of the side chains led to identification of the potent MT(1)/MT(2) agonist 4d (MT(1), K(i) = 0.062 nM; MT(2), K(i) = 0.420 nM) with good oral absorption and blood-brain barrier (BBB) penetration in rats. The oral administration of compound 4d exhibited a sleep-promoting action in freely moving cats at 0.1 mg/kg.
Collapse
Affiliation(s)
- Tatsuki Koike
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 17-85 Jusohonmachi, 2-Chome, Yodogawa-ku, Osaka 532-8686, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
235
|
Abstract
Melatonin has multiple receptor-dependent and receptor-independent functions. At the cell membrane, melatonin interacts with its receptors MT1 and MT2, which are expressed in numerous tissues. Genome-wide association studies have recently shown that the MTNR1B/MT2 receptor may be involved in the pathogenesis of type 2 diabetes mellitus. In line with these findings, expression of melatonin receptors has been shown in mouse, rat, and human pancreatic islets. MT1 and MT2 are G-protein-coupled receptors and are proposed to exert inhibitory effects on insulin secretion. Here, we show by immunocytochemistry that these membrane melatonin receptors have distinct locations in the mouse islet. MT1 is expressed in α-cells while MT2 is located to the β-cells. These findings help to unravel the complex machinery underlying melatonin's role in the regulation of islet function.
Collapse
MESH Headings
- Animals
- Female
- Immunohistochemistry
- Islets of Langerhans/metabolism
- Male
- Mice
- Receptor, Melatonin, MT1/genetics
- Receptor, Melatonin, MT1/metabolism
- Receptor, Melatonin, MT2/genetics
- Receptor, Melatonin, MT2/metabolism
- Receptors, Melatonin/genetics
- Receptors, Melatonin/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
Collapse
Affiliation(s)
- Cecilia L F Nagorny
- Department of Clinical Sciences, Unit of Molecular Metabolism, Lund University Diabetes Centre, Malmö, Sweden.
| | | | | | | | | |
Collapse
|
236
|
Pandi-Perumal SR, Spence DW, Verster JC, Srinivasan V, Brown GM, Cardinali DP, Hardeland R. Pharmacotherapy of insomnia with ramelteon: safety, efficacy and clinical applications. J Cent Nerv Syst Dis 2011; 3:51-65. [PMID: 23861638 PMCID: PMC3663615 DOI: 10.4137/jcnsd.s1611] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Ramelteon is a tricyclic synthetic analog of melatonin that acts specifically on MT1 and MT2 melatonin receptors. Ramelteon is the first melatonin receptor agonist approved by the Food and Drug Administration (FDA) for the treatment of insomnia characterized by sleep onset difficulties. Ramelteon is both a chronobiotic and a hypnotic that has been shown to promote sleep initiation and maintenance in various preclinical and in clinical trials. The efficacy and safety of ramelteon in patients with chronic insomnia was initially confirmed in short-term placebo-controlled trials. These showed little evidence of next-day residual effects, withdrawal symptoms or rebound insomnia. Other studies indicated that ramelteon lacked abuse potential and had a minimal risk of producing dependence or adverse effects on cognitive or psychomotor performance. A 6-month placebo-controlled international study and a 1-year open-label study in the USA demonstrated that ramelteon was effective and well tolerated. Other potential off-label uses of ramelteon include circadian rhythm sleep disorders such as shift-work and jet lag. At the present time the drug should be cautiously prescribed for short-term treatment only.
Collapse
|
237
|
Koike T, Hoashi Y, Takai T, Nakayama M, Yukuhiro N, Ishikawa T, Hirai K, Uchikawa O. 1,6-Dihydro-2H-indeno[5,4-b]furan derivatives: design, synthesis, and pharmacological characterization of a novel class of highly potent MT₂-selective agonists. J Med Chem 2011; 54:3436-44. [PMID: 21473625 DOI: 10.1021/jm200221q] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A novel series of 1,6-dihydro-2H-indeno[5,4-b]furan derivatives were designed and synthesized as MT(2)-selective ligands. This scaffold was identified as a potent mimic of the 5-methoxy indole core of melatonin, and introduction of a cyclohexylmethyl group at the 7-position of this scaffold afforded an MT(2)-selective ligand 15 (K(i) = 0.012 nM) with high MT(1)/MT(2) selectivity (799). Compound 15 was identified as a potent full agonist for the MT(2) subtype and exhibited reentrainment effects to a new light/dark cycle in ICR mice at 3-30 mg/kg. This result demonstrated the involvement of the MT(2) receptors in chronobiotic activity.
Collapse
Affiliation(s)
- Tatsuki Koike
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited , 17-85 Jusohonmachi, 2-Chome, Yodogawa-ku, Osaka 532-8686, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
238
|
Abstract
Recent investigations have demonstrated that melatonin influences carbohydrate metabolism mediated by insulin-inhibiting effects on pancreatic β-cells. This study evaluated whether melatonin has also an effect on pancreatic α-cells and glucagon expression as well as the glucagon secretion in vitro and in vivo. Glucagon-producing pancreatic α-cell line αTC1 clone 9 (αTC1.9) was used, which was characterized as an appropriate model with glucose responsiveness and expression of the melatonin receptors MT1 and MT2. The results demonstrate that melatonin incubation significantly enhanced the expression as well as the secretion of glucagon. These effects appeared to be more pronounced under hyperglycemic conditions compared to basal glucose concentrations. Notably, in vivo studies demonstrated that long-term oral melatonin administration led to significantly elevated plasma glucagon concentrations in Wistar rats. In contrast, plasma glucagon levels were found to be slightly decreased in type 2 diabetic Goto-Kakizaki rats. Moreover, investigations measuring the relative glucagon receptor mRNA expression showed marked differences in the liver of melatonin-substituted rats as well as in melatonin receptor knockout mice. In conclusion, these findings revealed evidence that melatonin influences pancreatic glucagon expression and secretion as well as the peripheral glucagon action.
Collapse
Affiliation(s)
- Ina Bähr
- Institute of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| | | | | | | |
Collapse
|
239
|
Kohyama J. Sleep health and asynchronization. Brain Dev 2011; 33:252-9. [PMID: 20937552 DOI: 10.1016/j.braindev.2010.09.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 09/16/2010] [Accepted: 09/17/2010] [Indexed: 11/16/2022]
Abstract
Recent surveys in Japan reported that more than half of children interviewed complained of daytime sleepiness, approximately one quarter reported insomnia, and some complained of both nocturnal insomnia and daytime sleepiness. To explain the pathophysiology of this type of sleep disturbance, a novel clinical concept of asynchronization has been proposed. Asynchronization involves disturbances in various aspects of biological rhythms that normally exhibit circadian oscillations. The putative major triggers for asynchronization include a combination of nighttime light exposure, which can disturb the biological clock and decrease melatonin secretion, and a lack of morning light exposure, which can prohibit normal synchronization of the biological clock to a 24-h cycle and decrease activity in the serotonergic system. The early phase of asynchronization may be caused by inadequate sleep hygiene, is likely to be functional, and to be relatively easily resolved by establishing a regular sleep-wakefulness cycle. However, without adequate intervention, these disturbances may gradually worsen, resulting into the chronic phase. No single symptom appears to be specific for the clinical phases, and the chronic phase is defined in terms of the response to interventions. The factors causing the transition from the early to chronic phase of asynchronization and those producing the difficulties of recovering patients with the chronic phase of asynchronization are currently unclear.
Collapse
Affiliation(s)
- Jun Kohyama
- Tokyo Bay Urayasu/Ichikawa Medical Center, Urayasu, Chiba, Japan.
| |
Collapse
|
240
|
Rawashdeh O, Hudson RL, Stepien I, Dubocovich ML. Circadian periods of sensitivity for ramelteon on the onset of running-wheel activity and the peak of suprachiasmatic nucleus neuronal firing rhythms in C3H/HeN mice. Chronobiol Int 2011; 28:31-8. [PMID: 21182402 PMCID: PMC5040068 DOI: 10.3109/07420528.2010.532894] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Ramelteon, an MT(1)/MT(2) melatonin receptor agonist, is used for the treatment of sleep-onset insomnia and circadian sleep disorders. Ramelteon phase shifts circadian rhythms in rodents and humans when given at the end of the subjective day; however, its efficacy at other circadian times is not known. Here, the authors determined in C3H/HeN mice the maximal circadian sensitivity for ramelteon in vivo on the onset of circadian running-wheel activity rhythms, and in vitro on the peak of circadian rhythm of neuronal firing in suprachiasmatic nucleus (SCN) brain slices. The phase response curve (PRC) for ramelteon (90 µg/mouse, subcutaneous [sc]) on circadian wheel-activity rhythms shows maximal sensitivity during the late mid to end of the subjective day, between CT8 and CT12 (phase advance), and late subjective night and early subjective day, between CT20 and CT2 (phase delay), using a 3-day-pulse treatment regimen in C3H/HeN mice. The PRC for ramelteon resembles that for melatonin in C3H/HeN mice, showing the same magnitude of maximal shifts at CT10 and CT2, except that the range of sensitivity for ramelteon (CT8-CT12) during the subjective day is broader. Furthermore, in SCN brain slices in vitro, ramelteon (10 pM) administered at CT10 phase advances (5.6 ± 0.29 h, n = 3) and at CT2 phase delays (-3.2 ± 0.12 h, n = 6) the peak of circadian rhythm of neuronal firing, with the shifts being significantly larger than those induced by melatonin (10 pM) at the same circadian times (CT10: 2.7 ± 0.15 h, n = 4, p < .05; CT2: -1.13 ± 0.08 h, n = 6, p < .001, respectively). The phase shifts induced by both melatonin and ramelteon in the SCN brain slice at either CT10 or CT2 corresponded with the period of sensitivity observed in vivo. In conclusion, melatonin and ramelteon showed identical periods of circadian sensitivity at CT10 (advance) and CT2 (delay) to shift the onset of circadian activity rhythms in vivo and the peak of SCN neuronal firing rhythms in vitro.
Collapse
Affiliation(s)
- Oliver Rawashdeh
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Randall L. Hudson
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Physiology and Biophysics, University at Illinois in Chicago, Chicago, Illinois, USA
- Department of Physiology and Biophysics, School of Medicine and Biomedical Science, University at Buffalo, Buffalo, New York, USA
| | - Iwona Stepien
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Pharmacology and Toxicology, School of Medicine and Biomedical Science, University at Buffalo, Buffalo, New York, USA
| | - Margarita L. Dubocovich
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Pharmacology and Toxicology, School of Medicine and Biomedical Science, University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
241
|
Abstract
The mammalian circadian system is a complex hierarchical temporal network which is organized around an ensemble of uniquely coupled cells comprising the principal circadian pacemaker in the suprachiasmatic nucleus of the hypothalamus. This central pacemaker is entrained each day by the environmental light/dark cycle and transmits synchronizing cues to cell-autonomous oscillators in tissues throughout the body. Within cells of the central pacemaker and the peripheral tissues, the underlying molecular mechanism by which oscillations in gene expression occur involves interconnected feedback loops of transcription and translation. Over the past 10 years, we have learned much regarding the genetics of this system, including how it is particularly resilient when challenged by single-gene mutations, how accessory transcriptional loops enhance the robustness of oscillations, how epigenetic mechanisms contribute to the control of circadian gene expression, and how, from coupled neuronal networks, emergent clock properties arise. Here, we will explore the genetics of the mammalian circadian system from cell-autonomous molecular oscillations, to interactions among central and peripheral oscillators and ultimately, to the daily rhythms of behavior observed in the animal.
Collapse
|
242
|
Srinivasan V, Cardinali D, PandiPerumal S, Brown G. Melatonin agonists for treatment of sleep and depressive disorders. ACTA ACUST UNITED AC 2011. [DOI: 10.5455/jeim.100511.ir.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
243
|
|
244
|
Zhu J, Hu Y, Ho MK, Wong YH. 3-Methoxylphenylpropyl amides as novel receptor subtype-selective melatoninergic ligands: characterization of physicochemical and pharmacokinetic properties. Xenobiotica 2010; 41:35-45. [DOI: 10.3109/00498254.2010.524264] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
245
|
Scott FF, Belle MDC, Delagrange P, Piggins HD. Electrophysiological effects of melatonin on mouse Per1 and non-Per1 suprachiasmatic nuclei neurones in vitro. J Neuroendocrinol 2010; 22:1148-56. [PMID: 20819119 DOI: 10.1111/j.1365-2826.2010.02063.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The master circadian pacemaker in the suprachiasmatic nuclei (SCN) regulates the nocturnal secretion of the pineal hormone melatonin. Melatonin, in turn, has feedback effects on SCN neuronal activity rhythms via high affinity G protein-coupled receptors (MT(1) and MT(2) ). However, the precise effects of melatonin on the electrical properties of individual SCN neurones are unclear. In the present study, we investigated the acute effects of exogenous melatonin on SCN neurones using whole-cell patch-clamp recordings in brain slices prepared from Per1::d2EGFP-expressing transgenic mice. In current-clamp mode, bath applied melatonin, at near-physiological concentrations (1 nM), hyperpolarised the majority (63.7%) of SCN neurones tested at all times of the projected light/dark cycle. In addition, melatonin depolarised a small proportion of cells (11.0%). No differences were observed for the effects of melatonin between Per1::GFP or non-Per1::GFP SCN neurones. Melatonin-induced effects were blocked by the MT(1)/MT(2) antagonist, luzindole (1 μM) and the proportion of SCN neurones responsive to melatonin was greatly reduced in the presence of either tetrodotoxin (200 or 500 nM) or gabazine (20 μM). In voltage-clamp recordings, 1 nM melatonin increased the frequency of GABA-mediated currents. These findings indicate, for the first time, that exogenous melatonin can alter neuronal excitability in the majority of SCN neurones, regardless of whether or not they overtly express the core clock gene Per1. The results also suggest that melatonin acts mainly by modulating inhibitory GABAergic transmission within the SCN. This may explain why exogenous application of melatonin has heterogenous effects on individual SCN neurones.
Collapse
Affiliation(s)
- F F Scott
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | | | | | | |
Collapse
|
246
|
Srinivasan V, Singh J, Pandi-Perumal SR, Brown GM, Spence DW, Cardinali DP. Jet lag, circadian rhythm sleep disturbances, and depression: the role of melatonin and its analogs. Adv Ther 2010; 27:796-813. [PMID: 20827520 DOI: 10.1007/s12325-010-0065-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Indexed: 12/12/2022]
Abstract
Traveling through several time zones results in a constellation of symptoms known as jet lag. These include reduced alertness, daytime fatigue, loss of appetite, reduced cognitive skills, and disruption of the sleep/wake cycle. In susceptible air travel passengers, jet lag may exacerbate affective illness and result in psychiatric morbidity. Dysregulation of circadian rhythms and melatonin secretion represent the common underlying factor in jet lag and other circadian disorders. Recent studies have established the effectiveness of strategically timed administration of melatonin and appropriate timed exposure to environmental schedules including light in counteracting the dysregulation (chronobiologic actions). With the introduction of melatonergic agonists such as ramelteon and tasimelteon, which have both a stronger affinity for MT₁ and MT₂ melatonin receptors and a longer half-life, new therapeutic options now exist for treating the sleep disturbances associated with jet lag. The melatonin analogs are unique inasmuch as they can also enhance daytime alertness. The recently introduced melatonergic antidepressant agomelatine, which has established its supremacy over other antidepressants in having a significant chronobiologic activity, represents a good choice for treating depressive symptoms that are associated with jet lag.
Collapse
|
247
|
Hirai K, Kato K, Nishikawa H, Yukuhiro N, Nishiyama K, Miyamoto M. [Preclinical pharmacological profiles and clinical outcome of the novel melatonin-receptor agonist ramelteon (Rozerem 8 mg).]. Nihon Yakurigaku Zasshi 2010; 136:51-60. [PMID: 20628215 DOI: 10.1254/fpj.136.51] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
248
|
Fradin D, Cheslack-Postava K, Ladd-Acosta C, Newschaffer C, Chakravarti A, Arking DE, Feinberg A, Fallin MD. Parent-of-origin effects in autism identified through genome-wide linkage analysis of 16,000 SNPs. PLoS One 2010; 5:e12513. [PMID: 20824079 PMCID: PMC2932694 DOI: 10.1371/journal.pone.0012513] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Accepted: 08/04/2010] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Autism is a common heritable neurodevelopmental disorder with complex etiology. Several genome-wide linkage and association scans have been carried out to identify regions harboring genes related to autism or autism spectrum disorders, with mixed results. Given the overlap in autism features with genetic abnormalities known to be associated with imprinting, one possible reason for lack of consistency would be the influence of parent-of-origin effects that may mask the ability to detect linkage and association. METHODS AND FINDINGS We have performed a genome-wide linkage scan that accounts for potential parent-of-origin effects using 16,311 SNPs among families from the Autism Genetic Resource Exchange (AGRE) and the National Institute of Mental Health (NIMH) autism repository. We report parametric (GH, Genehunter) and allele-sharing linkage (Aspex) results using a broad spectrum disorder case definition. Paternal-origin genome-wide statistically significant linkage was observed on chromosomes 4 (LOD(GH) = 3.79, empirical p<0.005 and LOD(Aspex) = 2.96, p = 0.008), 15 (LOD(GH) = 3.09, empirical p<0.005 and LOD(Aspex) = 3.62, empirical p = 0.003) and 20 (LOD(GH) = 3.36, empirical p<0.005 and LOD(Aspex) = 3.38, empirical p = 0.006). CONCLUSIONS These regions may harbor imprinted sites associated with the development of autism and offer fruitful domains for molecular investigation into the role of epigenetic mechanisms in autism.
Collapse
Affiliation(s)
- Delphine Fradin
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Medicine, Center for Epigenetics, Institute for Basic Biomedical Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Keely Cheslack-Postava
- Robert Wood Johnson Foundation Health & Society Scholars, Columbia University, New York, New York, United States of America
| | - Christine Ladd-Acosta
- Department of Medicine, Center for Epigenetics, Institute for Basic Biomedical Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Craig Newschaffer
- Department of Epidemiology, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Aravinda Chakravarti
- Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Dan E. Arking
- Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Andrew Feinberg
- Department of Medicine, Center for Epigenetics, Institute for Basic Biomedical Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - M. Daniele Fallin
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| |
Collapse
|
249
|
Dubocovich ML, Delagrange P, Krause DN, Sugden D, Cardinali DP, Olcese J. International Union of Basic and Clinical Pharmacology. LXXV. Nomenclature, classification, and pharmacology of G protein-coupled melatonin receptors. Pharmacol Rev 2010; 62:343-80. [PMID: 20605968 PMCID: PMC2964901 DOI: 10.1124/pr.110.002832] [Citation(s) in RCA: 420] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The hormone melatonin (5-methoxy-N-acetyltryptamine) is synthesized primarily in the pineal gland and retina, and in several peripheral tissues and organs. In the circulation, the concentration of melatonin follows a circadian rhythm, with high levels at night providing timing cues to target tissues endowed with melatonin receptors. Melatonin receptors receive and translate melatonin's message to influence daily and seasonal rhythms of physiology and behavior. The melatonin message is translated through activation of two G protein-coupled receptors, MT(1) and MT(2), that are potential therapeutic targets in disorders ranging from insomnia and circadian sleep disorders to depression, cardiovascular diseases, and cancer. This review summarizes the steps taken since melatonin's discovery by Aaron Lerner in 1958 to functionally characterize, clone, and localize receptors in mammalian tissues. The pharmacological and molecular properties of the receptors are described as well as current efforts to discover and develop ligands for treatment of a number of illnesses, including sleep disorders, depression, and cancer.
Collapse
Affiliation(s)
- Margarita L Dubocovich
- Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, University at Buffalo State University of New York, 3435 Main Street, Buffalo, NY 14214, USA.
| | | | | | | | | | | |
Collapse
|
250
|
Wade AG, Ford I, Crawford G, McConnachie A, Nir T, Laudon M, Zisapel N. Nightly treatment of primary insomnia with prolonged release melatonin for 6 months: a randomized placebo controlled trial on age and endogenous melatonin as predictors of efficacy and safety. BMC Med 2010; 8:51. [PMID: 20712869 PMCID: PMC2933606 DOI: 10.1186/1741-7015-8-51] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Accepted: 08/16/2010] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Melatonin is extensively used in the USA in a non-regulated manner for sleep disorders. Prolonged release melatonin (PRM) is licensed in Europe and other countries for the short term treatment of primary insomnia in patients aged 55 years and over. However, a clear definition of the target patient population and well-controlled studies of long-term efficacy and safety are lacking. It is known that melatonin production declines with age. Some young insomnia patients also may have low melatonin levels. The study investigated whether older age or low melatonin excretion is a better predictor of response to PRM, whether the efficacy observed in short-term studies is sustained during continued treatment and the long term safety of such treatment. METHODS Adult outpatients (791, aged 18-80 years) with primary insomnia, were treated with placebo (2 weeks) and then randomized, double-blind to 3 weeks with PRM or placebo nightly. PRM patients continued whereas placebo completers were re-randomized 1:1 to PRM or placebo for 26 weeks with 2 weeks of single-blind placebo run-out. Main outcome measures were sleep latency derived from a sleep diary, Pittsburgh Sleep Quality Index (PSQI), Quality of Life (World Health Organzaton-5) Clinical Global Impression of Improvement (CGI-I) and adverse effects and vital signs recorded at each visit. RESULTS On the primary efficacy variable, sleep latency, the effects of PRM (3 weeks) in patients with low endogenous melatonin (6-sulphatoxymelatonin [6-SMT] <or=8 microg/night) regardless of age did not differ from the placebo, whereas PRM significantly reduced sleep latency compared to the placebo in elderly patients regardless of melatonin levels (-19.1 versus -1.7 min; P = 0.002). The effects on sleep latency and additional sleep and daytime parameters that improved with PRM were maintained or enhanced over the 6-month period with no signs of tolerance. Most adverse events were mild in severity with no clinically relevant differences between PRM and placebo for any safety outcome. CONCLUSIONS The results demonstrate short- and long-term efficacy and safety of PRM in elderly insomnia patients. Low melatonin production regardless of age is not useful in predicting responses to melatonin therapy in insomnia. The age cut-off for response warrants further investigation.
Collapse
|