201
|
Abstract
Mutations that alter signaling through the mammalian target of rapamycin complex 1 (mTORC1), a well established regulator of neuronal protein synthesis, have been linked to autism and cognitive dysfunction. Although previous studies have established a role for mTORC1 as necessary for enduring changes in postsynaptic function, here we demonstrate that dendritic mTORC1 activation in rat hippocampal neurons also drives a retrograde signaling mechanism promoting enhanced neurotransmitter release from apposed presynaptic terminals. This novel mode of synaptic regulation conferred by dendritic mTORC1 is locally implemented, requires downstream synthesis of brain-derived neurotrophic factor as a retrograde messenger, and is engaged in an activity-dependent fashion to support homeostatic trans-synaptic control of presynaptic function. Our findings thus reveal that mTORC1-dependent translation in dendrites subserves a unique mode of synaptic regulation, highlighting an alternative regulatory pathway that could contribute to the social and cognitive dysfunction that accompanies dysregulated mTORC1 signaling.
Collapse
|
202
|
Pielarski KN, van Stegen B, Andreyeva A, Nieweg K, Jüngling K, Redies C, Gottmann K. Asymmetric N-cadherin expression results in synapse dysfunction, synapse elimination, and axon retraction in cultured mouse neurons. PLoS One 2013; 8:e54105. [PMID: 23382872 PMCID: PMC3561303 DOI: 10.1371/journal.pone.0054105] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2012] [Accepted: 12/10/2012] [Indexed: 01/27/2023] Open
Abstract
Synapse elimination and pruning of axon collaterals are crucial developmental events in the refinement of neuronal circuits. While a control of synapse formation by adhesion molecules is well established, the involvement of adhesion molecules in developmental synapse loss is poorly characterized. To investigate the consequences of mis-match expression of a homophilic synaptic adhesion molecule, we analysed an asymmetric, exclusively postsynaptic expression of N-cadherin. This was induced by transfecting individual neurons in cultures of N-cadherin knockout mouse neurons with a N-cadherin expression vector. 2 days after transfection, patch-clamp analysis of AMPA receptor-mediated miniature postsynaptic currents revealed an impaired synaptic function without a reduction in the number of presynaptic vesicle clusters. Long-term asymmetric expression of N-cadherin for 8 days subsequently led to synapse elimination as indicated by a loss of colocalization of presynaptic vesicles and postsynaptic PSD95 protein. We further studied long-term asymmetric N-cadherin expression by conditional, Cre-induced knockout of N-cadherin in individual neurons in cultures of N-cadherin expressing cortical mouse neurons. This resulted in a strong retraction of axonal processes in individual neurons that lacked N-cadherin protein. Moreover, an in vivo asymmetric expression of N-cadherin in the developmentally transient cortico-tectal projection was indicated by in-situ hybridization with layer V neurons lacking N-cadherin expression. Thus, mis-match expression of N-cadherin might contribute to selective synaptic connectivity.
Collapse
Affiliation(s)
- Kim N. Pielarski
- Institute of Neuro- and Sensory Physiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Bernd van Stegen
- Institute of Neuro- and Sensory Physiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Aksana Andreyeva
- Institute of Neuro- and Sensory Physiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Katja Nieweg
- Institute of Neuro- and Sensory Physiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Kay Jüngling
- Institute of Neuro- and Sensory Physiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Christoph Redies
- Institute of Anatomy I, University of Jena School of Medicine, Jena University Hospital, Jena, Germany
| | - Kurt Gottmann
- Institute of Neuro- and Sensory Physiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
203
|
Abstract
All cells are influenced by mechanical forces. In the brain, force-generating and load-bearing proteins twist, turn, ratchet, flex, compress, expand and bend to mediate neuronal signalling and plasticity. Although the functions of mechanosensitive proteins have been thoroughly described in classical sensory systems, the effects of endogenous mechanical energy on cellular function in the brain have received less attention, and many working models in neuroscience do not currently integrate principles of cellular mechanics. An understanding of cellular-mechanical concepts is essential to allow the integration of mechanobiology into ongoing studies of brain structure and function.
Collapse
|
204
|
Short-term synaptic plasticity compensates for variability in number of motor neurons at a neuromuscular junction. J Neurosci 2013; 32:16007-17. [PMID: 23136437 DOI: 10.1523/jneurosci.2584-12.2012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We studied how similar postsynaptic responses are maintained in the face of interindividual variability in the number of presynaptic neurons. In the stomatogastric ganglion of the lobster, Homarus americanus, the pyloric (PY) neurons exist in variable numbers across animals. We show that each individual fiber of the stomach muscles innervated by PY neurons received synaptic input from all neurons present. We performed intracellular recordings of excitatory junction potentials (EJPs) in the muscle fibers to determine the consequences of differences in the number of motor neurons. Despite the variability in neuron number, the compound electrical response of muscle fibers to natural bursting input was similar across individuals. The similarity of total synaptic activation was not due to differences in the spiking activity of individual motor neurons across animals with different numbers of PY neurons. The amplitude of a unitary EJP in response to a single spike in a single motor neuron also did not depend on the number of PY neurons present. Consequently, the compound EJP in response to a single stimulus that activated all motor axons present was larger in individuals with more PY neurons. However, when axons were stimulated with trains of pulses mimicking bursting activity, EJPs facilitated more in individuals with fewer PY neurons. After a few stimuli, this resulted in depolarizations similar to the ones in individuals with more PY neurons. We interpret our findings as evidence that compensatory or homeostatic regulatory mechanisms can act on short-term synaptic dynamics instead of absolute synaptic strength.
Collapse
|
205
|
A preferentially segregated recycling vesicle pool of limited size supports neurotransmission in native central synapses. Neuron 2013; 76:579-89. [PMID: 23141069 PMCID: PMC3526798 DOI: 10.1016/j.neuron.2012.08.042] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2012] [Indexed: 01/01/2023]
Abstract
At small central synapses, efficient turnover of vesicles is crucial for stimulus-driven transmission, but how the structure of this recycling pool relates to its functional role remains unclear. Here we characterize the organizational principles of functional vesicles at native hippocampal synapses with nanoscale resolution using fluorescent dye labeling and electron microscopy. We show that the recycling pool broadly scales with the magnitude of the total vesicle pool, but its average size is small (∼45 vesicles), highly variable, and regulated by CDK5/calcineurin activity. Spatial analysis demonstrates that recycling vesicles are preferentially arranged near the active zone and this segregation is abolished by actin stabilization, slowing the rate of activity-driven exocytosis. Our approach reveals a similarly biased recycling pool distribution at synapses in visual cortex activated by sensory stimulation in vivo. We suggest that in small native central synapses, efficient release of a limited pool of vesicles relies on their favored spatial positioning within the terminal.
Collapse
|
206
|
Noreña AJ, Farley BJ. Tinnitus-related neural activity: Theories of generation, propagation, and centralization. Hear Res 2013; 295:161-71. [DOI: 10.1016/j.heares.2012.09.010] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 09/23/2012] [Accepted: 09/26/2012] [Indexed: 01/03/2023]
|
207
|
The presynaptic active zone protein RIM1α controls epileptogenesis following status epilepticus. J Neurosci 2012; 32:12384-95. [PMID: 22956829 DOI: 10.1523/jneurosci.0223-12.2012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
To ensure operation of synaptic transmission within an appropriate dynamic range, neurons have evolved mechanisms of activity-dependent plasticity, including changes in presynaptic efficacy. The multidomain protein RIM1α is an integral component of the cytomatrix at the presynaptic active zone and has emerged as key mediator of presynaptically expressed forms of synaptic plasticity. We have therefore addressed the role of RIM1α in aberrant cellular plasticity and structural reorganization after an episode of synchronous neuronal activity pharmacologically induced in vivo [status epilepticus (SE)]. Post-SE, all animals developed spontaneous seizure events, but their frequency was dramatically increased in RIM1α-deficient mice (RIM1α(-/-)). We found that in wild-type mice (RIM1α(+/+)) SE caused an increase in paired-pulse facilitation in the CA1 region of the hippocampus to the level observed in RIM1α(-/-) mice before SE. In contrast, this form of short-term plasticity was not further enhanced in RIM1α-deficient mice after SE. Intriguingly, RIM1α(-/-) mice showed a unique pattern of selective hilar cell loss (i.e., endfolium sclerosis), which so far has not been observed in a genetic epilepsy animal model, as well as less severe astrogliosis and attenuated mossy fiber sprouting. These findings indicate that the decrease in release probability and altered short- and long-term plasticity as present in RIM1α(-/-) mice result in the formation of a hyperexcitable network but act in part neuroprotectively with regard to neuropathological alterations associated with epileptogenesis. In summary, our results suggest that presynaptic plasticity and proper function of RIM1α play an important part in a neuron's adaptive response to aberrant electrical activity.
Collapse
|
208
|
Synapsins contribute to the dynamic spatial organization of synaptic vesicles in an activity-dependent manner. J Neurosci 2012; 32:12214-27. [PMID: 22933803 DOI: 10.1523/jneurosci.1554-12.2012] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The precise subcellular organization of synaptic vesicles (SVs) at presynaptic sites allows for rapid and spatially restricted exocytotic release of neurotransmitter. The synapsins (Syns) are a family of presynaptic proteins that control the availability of SVs for exocytosis by reversibly tethering them to each other and to the actin cytoskeleton in a phosphorylation-dependent manner. Syn ablation leads to reduction in the density of SV proteins in nerve terminals and increased synaptic fatigue under high-frequency stimulation, accompanied by the development of an epileptic phenotype. We analyzed cultured neurons from wild-type and Syn I,II,III(-/-) triple knock-out (TKO) mice and found that SVs were severely dispersed in the absence of Syns. Vesicle dispersion did not affect the readily releasable pool of SVs, whereas the total number of SVs was considerably reduced at synapses of TKO mice. Interestingly, dispersion apparently involved exocytosis-competent SVs as well; it was not affected by stimulation but was reversed by chronic neuronal activity blockade. Altogether, these findings indicate that Syns are essential to maintain the dynamic structural organization of synapses and the size of the reserve pool of SVs during intense SV recycling, whereas an additional Syn-independent mechanism, whose molecular substrate remains to be clarified, targets SVs to synaptic boutons at rest and might be outpaced by activity.
Collapse
|
209
|
Multiple roles for mammalian target of rapamycin signaling in both glutamatergic and GABAergic synaptic transmission. J Neurosci 2012; 32:11441-52. [PMID: 22895726 DOI: 10.1523/jneurosci.1283-12.2012] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The mammalian target of rapamycin (mTOR) signaling pathway in neurons integrates a variety of extracellular signals to produce appropriate translational responses. mTOR signaling is hyperactive in neurological syndromes in both humans and mouse models that are characterized by epilepsy, autism, and cognitive disturbances. In addition, rapamycin, a clinically important immunosuppressant, is a specific and potent inhibitor of mTOR signaling. While mTOR is known to regulate growth and synaptic plasticity of glutamatergic neurons, its effects on basic parameters of synaptic transmission are less well studied, and its role in regulating GABAergic transmission is unexplored. We therefore performed an electrophysiological and morphological comparison of glutamatergic and GABAergic neurons in which mTOR signaling was either increased by loss of the repressor Pten or decreased by treatment with rapamycin. We found that hyperactive mTOR signaling increased evoked synaptic responses in both glutamatergic and GABAergic neurons by ∼50%, due to an increase in the number of synaptic vesicles available for release, the number of synapses formed, and the miniature event size. Prolonged (72 h) rapamycin treatment prevented these abnormalities and also decreased synaptic transmission in wild-type glutamatergic, but not GABAergic, neurons. Further analyses suggested that hyperactivation of the mTOR pathway also impairs presynaptic function, possibly by interfering with vesicle fusion. Despite this presynaptic impairment, the net effect of Pten loss is enhanced synaptic transmission in both GABAergic and glutamatergic neurons, which has numerous implications, depending on where in the brain mutations of an mTOR suppressor gene occur.
Collapse
|
210
|
Cheetham CEJ, Barnes SJ, Albieri G, Knott GW, Finnerty GT. Pansynaptic enlargement at adult cortical connections strengthened by experience. ACTA ACUST UNITED AC 2012; 24:521-31. [PMID: 23118196 PMCID: PMC3888373 DOI: 10.1093/cercor/bhs334] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Behavioral experience alters the strength of neuronal connections in adult neocortex. These changes in synaptic strength are thought to be central to experience-dependent plasticity, learning, and memory. However, it is not known how changes in synaptic transmission between neurons become persistent, thereby enabling the storage of previous experience. A long-standing hypothesis is that altered synaptic strength is maintained by structural modifications to synapses. However, the extent of synaptic modifications and the changes in neurotransmission that the modifications support remain unclear. To address these questions, we recorded from pairs of synaptically connected layer 2/3 pyramidal neurons in the barrel cortex and imaged their contacts with high-resolution confocal microscopy after altering sensory experience by whisker trimming. Excitatory connections strengthened by experience exhibited larger axonal varicosities, dendritic spines, and interposed contact zones. Electron microscopy showed that contact zone size was strongly correlated with postsynaptic density area. Therefore, our findings indicate that whole synapses are larger at strengthened connections. Synaptic transmission was both stronger and more reliable following experience-dependent synapse enlargement. Hence, sensory experience modified both presynaptic and postsynaptic function. Our findings suggest that the enlargement of synaptic contacts is an integral part of long-lasting strengthening of cortical connections and, hence, of information storage in the neocortex.
Collapse
Affiliation(s)
- Claire E J Cheetham
- MRC Centre for Neurodegeneration Research, King's College London, London, UK
| | | | | | | | | |
Collapse
|
211
|
Peixoto R, Kunz PA, Kwon H, Mabb AM, Sabatini BL, Philpot BD, Ehlers MD. Transsynaptic signaling by activity-dependent cleavage of neuroligin-1. Neuron 2012; 76:396-409. [PMID: 23083741 PMCID: PMC3783515 DOI: 10.1016/j.neuron.2012.07.006] [Citation(s) in RCA: 180] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2012] [Indexed: 12/28/2022]
Abstract
Adhesive contact between pre- and postsynaptic neurons initiates synapse formation during brain development and provides a natural means of transsynaptic signaling. Numerous adhesion molecules and their role during synapse development have been described in detail. However, once established, the mechanisms of adhesive disassembly and its function in regulating synaptic transmission have been unclear. Here, we report that synaptic activity induces acute proteolytic cleavage of neuroligin-1 (NLG1), a postsynaptic adhesion molecule at glutamatergic synapses. NLG1 cleavage is triggered by NMDA receptor activation, requires Ca2+ /calmodulin-dependent protein kinase, and is mediated by proteolytic activity of matrix metalloprotease 9 (MMP9). Cleavage of NLG1 occurs at single activated spines, is regulated by neural activity in vivo, and causes rapid destabilization of its presynaptic partner neurexin-1β (NRX1β). In turn, NLG1 cleavage depresses synaptic transmission by abruptly reducing presynaptic release probability. Thus, local proteolytic control of synaptic adhesion tunes synaptic transmission during brain development and plasticity.
Collapse
Affiliation(s)
- Rui Peixoto
- Department of Neurobiology, Duke University Medical Center, Durham NC, USA
- Gulbenkian PhD Program in Biomedicine, Oeiras, Portugal
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston MA, USA
| | - Portia A. Kunz
- Department of Cell and Molecular Physiology, Neuroscience Center, Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill NC, USA
| | - Hyungbae Kwon
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston MA, USA
| | - Angela M. Mabb
- Department of Cell and Molecular Physiology, Neuroscience Center, Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill NC, USA
| | - Bernardo L. Sabatini
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston MA, USA
| | - Benjamin D. Philpot
- Department of Cell and Molecular Physiology, Neuroscience Center, Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill NC, USA
| | - Michael D. Ehlers
- Department of Neurobiology, Duke University Medical Center, Durham NC, USA
- Pfizer Worldwide Research and Development, Neuroscience Research Unit, Cambridge MA, USA
| |
Collapse
|
212
|
Ermolyuk YS, Alder FG, Henneberger C, Rusakov DA, Kullmann DM, Volynski KE. Independent regulation of basal neurotransmitter release efficacy by variable Ca²+ influx and bouton size at small central synapses. PLoS Biol 2012; 10:e1001396. [PMID: 23049481 PMCID: PMC3457933 DOI: 10.1371/journal.pbio.1001396] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 08/16/2012] [Indexed: 01/19/2023] Open
Abstract
Concurrent imaging of vesicular release and calcium dynamics in small presynaptic boutons shows that the fusion probability of readily releasable vesicles is a major determinant of the overall variability in release probability. The efficacy of action potential evoked neurotransmitter release varies widely even among synapses supplied by the same axon, and the number of release-ready vesicles at each synapse is a major determinant of this heterogeneity. Here we identify a second, equally important, mechanism for release heterogeneity at small hippocampal synapses, the inter-synaptic variation of the exocytosis probability of release-ready vesicles. Using concurrent measurements of vesicular pool sizes, vesicular exocytosis rates, and presynaptic Ca2+ dynamics, in the same small hippocampal boutons, we show that the average fusion probability of release-ready vesicles varies among synapses supplied by the same axon with the size of the spike-evoked Ca2+ concentration transient. We further show that synapses with a high vesicular release probability exhibit a lower Ca2+ cooperativity, arguing that this is a direct consequence of increased Ca2+ influx at the active zone. We conclude that variability of neurotransmitter release under basal conditions at small central synapses is accounted for not only by the number of release-ready vesicles, but also by their fusion probabilities, which are set independently of bouton size by variable spike-evoked presynaptic Ca2+ influx.
Collapse
Affiliation(s)
| | | | | | | | | | - Kirill E. Volynski
- UCL Institute of Neurology, University College London, United Kingdom
- * E-mail:
| |
Collapse
|
213
|
Benita JM, Guillamon A, Deco G, Sanchez-Vives MV. Synaptic depression and slow oscillatory activity in a biophysical network model of the cerebral cortex. Front Comput Neurosci 2012; 6:64. [PMID: 22973221 PMCID: PMC3428579 DOI: 10.3389/fncom.2012.00064] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 08/09/2012] [Indexed: 11/30/2022] Open
Abstract
Short-term synaptic depression (STD) is a form of synaptic plasticity that has a large impact on network computations. Experimental results suggest that STD is modulated by cortical activity, decreasing with activity in the network and increasing during silent states. Here, we explored different activity-modulation protocols in a biophysical network model for which the model displayed less STD when the network was active than when it was silent, in agreement with experimental results. Furthermore, we studied how trains of synaptic potentials had lesser decay during periods of activity (UP states) than during silent periods (DOWN states), providing new experimental predictions. We next tackled the inverse question of what is the impact of modifying STD parameters on the emergent activity of the network, a question difficult to answer experimentally. We found that synaptic depression of cortical connections had a critical role to determine the regime of rhythmic cortical activity. While low STD resulted in an emergent rhythmic activity with short UP states and long DOWN states, increasing STD resulted in longer and more frequent UP states interleaved with short silent periods. A still higher synaptic depression set the network into a non-oscillatory firing regime where DOWN states no longer occurred. The speed of propagation of UP states along the network was not found to be modulated by STD during the oscillatory regime; it remained relatively stable over a range of values of STD. Overall, we found that the mutual interactions between synaptic depression and ongoing network activity are critical to determine the mechanisms that modulate cortical emergent patterns.
Collapse
Affiliation(s)
- Jose M Benita
- Department of Applied Mathematics I - EPSEB, Universitat Politècnica de Catalunya Barcelona, Spain
| | | | | | | |
Collapse
|
214
|
Short-term plasticity constrains spatial organization of a hippocampal presynaptic terminal. Proc Natl Acad Sci U S A 2012; 109:14657-62. [PMID: 22908295 DOI: 10.1073/pnas.1211971109] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Although the CA3-CA1 synapse is critically important for learning and memory, experimental limitations have to date prevented direct determination of the structural features that determine the response plasticity. Specifically, the local calcium influx responsible for vesicular release and short-term synaptic facilitation strongly depends on the distance between the voltage-dependent calcium channels (VDCCs) and the presynaptic active zone. Estimates for this distance range over two orders of magnitude. Here, we use a biophysically detailed computational model of the presynaptic bouton and demonstrate that available experimental data provide sufficient constraints to uniquely reconstruct the presynaptic architecture. We predict that for a typical CA3-CA1 synapse, there are ~70 VDCCs located 300 nm from the active zone. This result is surprising, because structural studies on other synapses in the hippocampus report much tighter spatial coupling. We demonstrate that the unusual structure of this synapse reflects its functional role in short-term plasticity (STP).
Collapse
|
215
|
Abstract
Synaptic vesicles release neurotransmitter at chemical synapses, thus initiating the flow of information in neural networks. To achieve this, vesicles undergo a dynamic cycle of fusion and retrieval to maintain the structural and functional integrity of the presynaptic terminals in which they reside. Moreover, compelling evidence indicates these vesicles differ in their availability for release and mobilization in response to stimuli, prompting classification into at least three different functional pools. Ongoing studies of the molecular and cellular bases for this heterogeneity attempt to link structure to physiology and clarify how regulation of vesicle pools influences synaptic strength and presynaptic plasticity. We discuss prevailing perspectives on vesicle pools, the role they play in shaping synaptic transmission, and the open questions that challenge current understanding.
Collapse
Affiliation(s)
- AbdulRasheed A Alabi
- Department of Molecular and Cellular Physiology, Stanford Institute for Neuro-Innovation and Translational Neurosciences, Stanford Medical School, Stanford, California 94305, USA
| | | |
Collapse
|
216
|
Pathways for emotions and attention converge on the thalamic reticular nucleus in primates. J Neurosci 2012; 32:5338-50. [PMID: 22496579 DOI: 10.1523/jneurosci.4793-11.2012] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
How do emotional events readily capture our attention? To address this question we used neural tracers to label pathways linking areas involved in emotional and attentional processes in the primate brain (Macaca mulatta). We report that a novel pathway from the amygdala, the brain's emotional center, targets the inhibitory thalamic reticular nucleus (TRN), a key node in the brain's attentional network. The amygdalar pathway formed unusual synapses close to cell bodies of TRN neurons and had more large and efficient terminals than pathways from the orbitofrontal cortex and the thalamic mediodorsal nucleus, which similarly innervated extensive TRN sites. The robust amygdalar pathway provides a mechanism for rapid shifting of attention to emotional stimuli. Acting synergistically, pathways from the amygdala and orbitofrontal cortex provide a circuit for purposeful assessment of emotional stimuli. The different pathways to TRN suggest distinct mechanisms of attention to external and internal stimuli that may be differentially disrupted in anxiety and mood disorders and may be selectively targeted for therapeutic interventions.
Collapse
|
217
|
Holderith N, Lorincz A, Katona G, Rózsa B, Kulik A, Watanabe M, Nusser Z. Release probability of hippocampal glutamatergic terminals scales with the size of the active zone. Nat Neurosci 2012; 15:988-97. [PMID: 22683683 PMCID: PMC3386897 DOI: 10.1038/nn.3137] [Citation(s) in RCA: 319] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 05/15/2012] [Indexed: 12/15/2022]
Abstract
Cortical synapses have structural, molecular and functional heterogeneity; our knowledge regarding the relationship between their ultrastructural and functional parameters is still fragmented. Here we asked how the neurotransmitter release probability and presynaptic [Ca(2+)] transients relate to the ultrastructure of rat hippocampal glutamatergic axon terminals. Two-photon Ca(2+) imaging-derived optical quantal analysis and correlated electron microscopic reconstructions revealed a tight correlation between the release probability and the active-zone area. Peak amplitude of [Ca(2+)] transients in single boutons also positively correlated with the active-zone area. Freeze-fracture immunogold labeling revealed that the voltage-gated calcium channel subunit Cav2.1 and the presynaptic protein Rim1/2 are confined to the active zone and their numbers scale linearly with the active-zone area. Gold particles labeling Cav2.1 were nonrandomly distributed in the active zones. Our results demonstrate that the numbers of several active-zone proteins, including presynaptic calcium channels, as well as the number of docked vesicles and the release probability, scale linearly with the active-zone area.
Collapse
Affiliation(s)
- Noemi Holderith
- Laboratory of Cellular Neurophysiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, HUNGARY
| | - Andrea Lorincz
- Laboratory of Cellular Neurophysiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, HUNGARY
| | - Gergely Katona
- Two-Photon Imaging Center, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, HUNGARY
| | - Balázs Rózsa
- Two-Photon Imaging Center, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, HUNGARY
| | - Akos Kulik
- Institute of Anatomy and Cell Biology, Department of Neuroanatomy, Department of Physiology II, University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Studies, University of Freiburg, Freiburg, Germany
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University School of Medicine, Sapporo, Japan
| | - Zoltan Nusser
- Laboratory of Cellular Neurophysiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, HUNGARY
| |
Collapse
|
218
|
Wherefore art thou, homeo(stasis)? Functional diversity in homeostatic synaptic plasticity. Neural Plast 2012; 2012:718203. [PMID: 22685679 PMCID: PMC3362963 DOI: 10.1155/2012/718203] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 01/06/2012] [Accepted: 01/09/2012] [Indexed: 11/18/2022] Open
Abstract
Homeostatic plasticity has emerged as a fundamental regulatory principle that strives to maintain neuronal activity within optimal ranges by altering diverse aspects of neuronal function. Adaptation to network activity is often viewed as an essential negative feedback restraint that prevents runaway excitation or inhibition. However, the precise importance of these homeostatic functions is often theoretical rather than empirically derived. Moreover, a remarkable multiplicity of homeostatic adaptations has been observed. To clarify these issues, it may prove useful to ask: why do homeostatic mechanisms exist, what advantages do these adaptive responses confer on a given cell population, and why are there so many seemingly divergent effects? Here, we approach these questions by applying the principles of control theory to homeostatic synaptic plasticity of mammalian neurons and suggest that the varied responses observed may represent distinct functional classes of control mechanisms directed toward disparate physiological goals.
Collapse
|
219
|
Peng X, Parsons TD, Balice-Gordon RJ. Determinants of synaptic strength vary across an axon arbor. J Neurophysiol 2012; 107:2430-41. [PMID: 22279193 PMCID: PMC3362249 DOI: 10.1152/jn.00615.2011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 01/23/2012] [Indexed: 12/20/2022] Open
Abstract
We used synaptophysin-pHluorin expressed in hippocampal neurons to address how functional properties of terminals, namely, evoked release, total vesicle pool size, and release fraction, vary spatially across individual axon arbors. Consistent with previous reports, over short arbor distances (≈ 100 μm), evoked release was spatially heterogeneous when terminals contacted different postsynaptic dendrites or neurons. Regardless of the postsynaptic configuration, the evoked release and total vesicle pool size spatially covaried, suggesting that the fraction of synaptic vesicles available for release (release fraction) was similar over short distances. Evoked release and total vesicle pool size were highly correlated with the amount of NMDA receptors and PSD-95 in postsynaptic specialization. However, when individual axons were followed over longer distances (several hundred micrometers), a significant increase in evoked release was observed distally that was associated with an increased release fraction in distal terminals. The increase in distal release fraction can be accounted for by changes in individual vesicle release probability as well as readily releasable pool size. Our results suggest that for a single axon arbor, presynaptic strength indicated by evoked release over short distances is correlated with heterogeneity in total vesicle pool size, whereas over longer distances presynaptic strength is correlated with the spatial modulation of release fraction. Thus the mechanisms that determine synaptic strength differ depending on spatial scale.
Collapse
Affiliation(s)
- Xiaoyu Peng
- Department of Biology Graduate Group, University of Pennsylvania School of Arts and Sciences, Philadelphia, PA, USA
| | | | | |
Collapse
|
220
|
de Jong APH, Schmitz SK, Toonen RFG, Verhage M. Dendritic position is a major determinant of presynaptic strength. ACTA ACUST UNITED AC 2012; 197:327-37. [PMID: 22492722 PMCID: PMC3328377 DOI: 10.1083/jcb.201112135] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Different regulatory principles influence synaptic coupling between neurons, including positional principles. In dendrites of pyramidal neurons, postsynaptic sensitivity depends on synapse location, with distal synapses having the highest gain. In this paper, we investigate whether similar rules exist for presynaptic terminals in mixed networks of pyramidal and dentate gyrus (DG) neurons. Unexpectedly, distal synapses had the lowest staining intensities for vesicular proteins vGlut, vGAT, Synaptotagmin, and VAMP and for many nonvesicular proteins, including Bassoon, Munc18, and Syntaxin. Concomitantly, distal synapses displayed less vesicle release upon stimulation. This dependence of presynaptic strength on dendritic position persisted after chronically blocking action potential firing and postsynaptic receptors but was markedly reduced on DG dendrites compared with pyramidal dendrites. These data reveal a novel rule, independent of neuronal activity, which regulates presynaptic strength according to dendritic position, with the strongest terminals closest to the soma. This gradient is opposite to postsynaptic gradients observed in pyramidal dendrites, and different cell types apply this rule to a different extent.
Collapse
Affiliation(s)
- Arthur P H de Jong
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University Amsterdam and VU Medical Center, 1081 HV Amsterdam, Netherlands
| | | | | | | |
Collapse
|
221
|
Karbowski J. Approximate invariance of metabolic energy per synapse during development in mammalian brains. PLoS One 2012; 7:e33425. [PMID: 22479396 PMCID: PMC3314021 DOI: 10.1371/journal.pone.0033425] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 02/13/2012] [Indexed: 11/19/2022] Open
Abstract
During mammalian development the cerebral metabolic rate correlates qualitatively with synaptogenesis, and both often exhibit bimodal temporal profiles. Despite these non-monotonic dependencies, it is found based on empirical data for different mammals that regional metabolic rate per synapse is approximately conserved from birth to adulthood for a given species (with a slight deviation from this constancy for human visual and temporal cortices during adolescence). A typical synapse uses about glucose molecules per second in primate cerebral cortex, and about five times of that amount in cat and rat visual cortices. A theoretical model for brain metabolic expenditure is used to estimate synaptic signaling and neural spiking activity during development. It is found that synaptic efficacy is generally inversely correlated with average firing rate, and, additionally, synapses consume a bulk of metabolic energy, roughly during most of the developmental process (except human temporal cortex ). Overall, these results suggest a tight regulation of brain electrical and chemical activities during the formation and consolidation of neural connections. This presumably reflects strong energetic constraints on brain development.
Collapse
Affiliation(s)
- Jan Karbowski
- Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
222
|
Ostroff LE, Cain CK, Jindal N, Dar N, Ledoux JE. Stability of presynaptic vesicle pools and changes in synapse morphology in the amygdala following fear learning in adult rats. J Comp Neurol 2012; 520:295-314. [PMID: 21674493 DOI: 10.1002/cne.22691] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Changes in synaptic strength in the lateral amygdala (LA) that occur with fear learning are believed to mediate memory storage, and both presynaptic and postsynaptic mechanisms have been proposed to contribute. In a previous study we used serial section transmission electron microscopy (ssTEM) to observe differences in dendritic spine morphology in the adult rat LA after fear conditioning, conditioned inhibition (safety conditioning), or naïve control handling (Ostroff et al. [2010] Proc Natl Acad Sci U S A 107:9418-9423). We have now reconstructed axons from the same dataset and compared their morphology and relationship to the postsynaptic spines between the three training groups. Relative to the naïve control and conditioned inhibition groups, the ratio of postsynaptic density (PSD) area to docked vesicles at synapses was greater in the fear-conditioned group, while the size of the synaptic vesicle pools was unchanged. There was significant coherence in synapse size between neighboring boutons on the same axon in the naïve control and conditioned inhibition groups, but not in the fear-conditioned group. Within multiple-synapse boutons, both synapse size and the PSD-to-docked vesicle ratio were variable between individual synapses. Our results confirm that synaptic connectivity increases in the LA with fear conditioning. In addition, we provide evidence that boutons along the same axon and even synapses on the same bouton are independent in their structure and learning-related morphological plasticity.
Collapse
Affiliation(s)
- Linnaea E Ostroff
- Center for Neural Science, New York University, New York, New York, USA.
| | | | | | | | | |
Collapse
|
223
|
Bagley EE, Westbrook GL. Short-term field stimulation mimics synaptic maturation of hippocampal synapses. J Physiol 2012; 590:1641-54. [PMID: 22351628 DOI: 10.1113/jphysiol.2011.224964] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Many aspects of synaptic transmission are modified during development, reflecting not only the consequence of developmental programmes of gene expression, but also the effects of ongoing neural activity. We investigated the role of synaptic activity in the maturation of Schaffer collateral (SC)-CA1 synapses using sustained low frequency field stimulation of acute brain slices. Between postnatal days 4-6 and 14-16, mouse SC-CA1 synapses in naïve slices showed a developmental decrease in the probability of transmitter release (P(r)) and an increase in the contribution of GluN2A (NR2A) subunits to the NMDA receptor-mediated excitatory postsynaptic current (EPSC). Surprisingly, these developmental changes could be mimicked by short term (4 h) in vitro synaptic activity in slices taken from postnatal days (PND) 4-6 mice. However, different activity levels were required to alter release probability compared to the NMDA receptor subunit composition. Spontaneous synaptic activity was sufficient to alter the NMDA receptor subunit composition, but sustained low-frequency field stimulation of the brain slice (0.1 Hz, 4 h) was necessary to reduce release probability, as assessed 1 h following the cessation of stimulation. The protein synthesis inhibitor anisomycin blocked the effect of field stimulation on release probability. These results indicate that features of mature excitatory synapses can be rapidly induced in immature neurons. The activity dependence of the P(r) and NMDA receptor subunit composition serves as a sensitive indicator of prior neural activity, and provides dual mechanisms for homeostatic control of excitatory synaptic efficacy.
Collapse
Affiliation(s)
- Elena E Bagley
- Discipline of Pharmacology, University of Sydney, Sydney, Australia.
| | | |
Collapse
|
224
|
Welzel O, Tischbirek CH, Kornhuber J, Groemer TW. Pool-independent labelling of synaptic vesicle exocytosis with single vesicle resolution in rat hippocampal neurons. J Neurosci Methods 2012; 205:258-64. [PMID: 22306057 DOI: 10.1016/j.jneumeth.2012.01.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 12/21/2011] [Accepted: 01/20/2012] [Indexed: 11/26/2022]
Abstract
FM dyes are an established tool to analyze synaptic vesicle pools. However, quantitative measurements using FM dyes are typically based on the re-release properties of previously labelled vesicles, which might vary depending on the experimental setup. An FM dye protocol independent of the previous labelling of vesicle membrane has not been applied for quantitative measurements of individual synaptic vesicles before. We therefore analyzed the direct staining of newly exocytosed vesicle membrane with FM dyes in cultured rat hippocampal neurons. In the presence of FM 1-43, stimulation-induced synaptic activity led to a stable fluorescence increase. The quantal release of synaptic vesicles was preserved and its amplitude correlated highly with the exocytic dye loss induced by a subsequent stimulation. Thus, the method presented here provides a tool for the pool-independent measurement of synaptic vesicle exocytosis.
Collapse
Affiliation(s)
- Oliver Welzel
- Department of Psychiatry and Psychotherapy, University of Erlangen-Nuremberg, Schwabachanlage 6, 91054 Erlangen, Germany
| | | | | | | |
Collapse
|
225
|
Ratnayaka A, Marra V, Bush D, Burden JJ, Branco T, Staras K. Recruitment of resting vesicles into recycling pools supports NMDA receptor-dependent synaptic potentiation in cultured hippocampal neurons. J Physiol 2012; 590:1585-97. [PMID: 22271866 PMCID: PMC3413500 DOI: 10.1113/jphysiol.2011.226688] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Most presynaptic terminals in the central nervous system are characterized by two functionally distinct vesicle populations: a recycling pool, which supports action potential-driven neurotransmitter release via vesicle exocytosis, and a resting pool. The relative proportions of these two pools are highly variable between individual synapses, prompting speculation on their specific relationship, and on the possible functions of the resting pool. Using fluorescence imaging of FM-styryl dyes and synaptophysinI-pHluorin (sypHy) as well as correlative electron microscopy approaches, we show here that Hebbian plasticity-dependent changes in synaptic strength in rat hippocampal neurons can increase the recycling pool fraction at the expense of the resting pool in individual synaptic terminals. This recruitment process depends on NMDA-receptor activation, nitric oxide signalling and calcineurin and is accompanied by an increase in the probability of neurotransmitter release at individual terminals. Blockade of actin-mediated intersynaptic vesicle exchange does not prevent recycling pool expansion demonstrating that vesicle recruitment is intrasynaptic. We propose that the conversion of resting pool vesicles to the functionally recycling pool provides a rapid mechanism to implement long-lasting changes in presynaptic efficacy.
Collapse
Affiliation(s)
- Arjuna Ratnayaka
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | | | | | | | | | | |
Collapse
|
226
|
Abstract
Recent studies indicate that synaptic vesicles (SVs) are continuously interchanged among nearby synapses at very significant rates. These dynamics and the lack of obvious barriers confining synaptic vesicles to specific synapses would seem to challenge the ability of synapses to maintain a constant amount of synaptic vesicles over prolonged time scales. Moreover, the extensive mobilization of synaptic vesicles associated with presynaptic activity might be expected to intensify this challenge. Here we examined the ability of individual presynaptic boutons of rat hippocampal neurons to maintain their synaptic vesicle content, and the degree to which this ability is affected by continuous activity. We found that the synaptic vesicle content of individual boutons belonging to the same axons gradually changed over several hours, and that these changes occurred independently of activity. Intermittent stimulation for 1 h accelerated rates of vesicle pool size change. Interestingly, however, following stimulation cessation, vesicle pool size change rates gradually converged with basal change rates. Over similar time scales, active zones (AZs) exhibited substantial remodeling; yet, unlike synaptic vesicles, AZ remodeling was not affected by the stimulation paradigms used here. These findings indicate that enhanced activity levels can increase synaptic vesicle redistribution among nearby synapses, but also highlight the presence of forces that act to restore particular set points in terms of SV contents, and support a role for active zones in preserving such set points. These findings also indicate, however, that neither AZ size nor SV content set points are particularly stable, questioning the long-term tenacity of presynaptic specializations.
Collapse
|
227
|
Cooke RM, Luco S, Parker D. Manipulations of spinal cord excitability evoke developmentally-dependent compensatory changes in the lamprey spinal cord. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2012; 198:25-41. [DOI: 10.1007/s00359-011-0683-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 09/09/2011] [Accepted: 09/14/2011] [Indexed: 10/15/2022]
|
228
|
Perlini LE, Botti F, Fornasiero EF, Giannandrea M, Bonanomi D, Amendola M, Naldini L, Benfenati F, Valtorta F. Effects of phosphorylation and neuronal activity on the control of synapse formation by synapsin I. J Cell Sci 2011; 124:3643-53. [DOI: 10.1242/jcs.086223] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Synapsins are synaptic vesicle (SV)-associated proteins that regulate synaptic transmission and neuronal differentiation. At early stages, Syn I and II phosphorylation at Ser9 by cAMP-dependent protein kinase (PKA) and Ca2+/calmodulin-dependent protein kinase I/IV modulates axon elongation and SV-precursor dynamics. We evaluated the requirement of Syn I for synapse formation by siRNA-mediated knockdown as well as by overexpression of either its wild-type (WT) form or its phosphorylation mutants. Syn1 knockdown at 14 days in vitro caused a decrease in the number of synapses, accompanied by a reduction of SV recycling. Although overexpression of WT Syn I was ineffective, overexpression of its phosphorylation mutants resulted in a complex temporal regulation of synapse density. At early stages of synaptogenesis, phosphomimetic Syn I S9E significantly increased the number of synapses. Conversely, dephosphomimetic Syn I S9A decreased synapse number at more advanced stages. Overexpression of either WT Syn I or its phosphomimetic S9E mutant rescued the decrease in synapse number caused by chronic treatment with tetrodotoxin at early stages, suggesting that Syn I participates in an alternative PKA-dependent mechanism that can compensate for the impairment of the activity-dependent synaptogenic pathway. Altogether these results indicate that Syn I is an important regulator of synapse formation, which adjusts synapse number in response to extracellular signals.
Collapse
Affiliation(s)
- Laura E. Perlini
- San Raffaele Scientific Institute and Vita-Salute University, Via Olgettina 58, 20132 Milano, Italy
- Department of Neuroscience and Brain Technologies, The Italian Institute of Technology, Via Morego 30, 16163 Genova, Italy
| | - Francesca Botti
- San Raffaele Scientific Institute and Vita-Salute University, Via Olgettina 58, 20132 Milano, Italy
| | - Eugenio F. Fornasiero
- San Raffaele Scientific Institute and Vita-Salute University, Via Olgettina 58, 20132 Milano, Italy
| | - Maila Giannandrea
- San Raffaele Scientific Institute and Vita-Salute University, Via Olgettina 58, 20132 Milano, Italy
| | - Dario Bonanomi
- San Raffaele Scientific Institute and Vita-Salute University, Via Olgettina 58, 20132 Milano, Italy
| | - Mario Amendola
- San Raffaele Scientific Institute and Vita-Salute University, Via Olgettina 58, 20132 Milano, Italy
- TIGET, Telethon Institute for Genetics and Medicine, Via Olgettina 58, 20132 Milano, Italy
| | - Luigi Naldini
- San Raffaele Scientific Institute and Vita-Salute University, Via Olgettina 58, 20132 Milano, Italy
- TIGET, Telethon Institute for Genetics and Medicine, Via Olgettina 58, 20132 Milano, Italy
| | - Fabio Benfenati
- Department of Neuroscience and Brain Technologies, The Italian Institute of Technology, Via Morego 30, 16163 Genova, Italy
- Department of Experimental Medicine, Section of Physiology, University of Genoa and National Institute of Neuroscience, Viale Benedetto XV, 3, 16132 Genova, Italy
| | - Flavia Valtorta
- San Raffaele Scientific Institute and Vita-Salute University, Via Olgettina 58, 20132 Milano, Italy
| |
Collapse
|
229
|
Homeostatic responses by surviving cortical pyramidal cells in neurodegenerative tauopathy. Acta Neuropathol 2011; 122:551-64. [PMID: 21968531 DOI: 10.1007/s00401-011-0877-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 09/16/2011] [Accepted: 09/16/2011] [Indexed: 10/17/2022]
Abstract
Cortical neuron death is prevalent by 9 months in rTg(tau(P301L))4510 tau mutant mice (TG) and surviving pyramidal cells exhibit dendritic regression and spine loss. We used whole-cell patch-clamp recordings to investigate the impact of these marked structural changes on spontaneous excitatory and inhibitory postsynaptic currents (sEPSCs and sIPSCs) of layer 3 pyramidal cells in frontal cortical slices from behaviorally characterized TG and non-transgenic (NT) mice at this age. Frontal lobe function of TG mice was intact following a short delay interval but impaired following a long delay interval in an object recognition test, and cortical atrophy and cell loss were pronounced. Surviving TG cells had significantly reduced dendritic diameters, total spine density, and mushroom spines, yet sEPSCs were increased and sIPSCs were unchanged in frequency. Thus, despite significant regressive structural changes, synaptic responses were not reduced in TG cells, indicating that homeostatic compensatory mechanisms occur during progressive tauopathy. Consistent with this idea, surviving TG cells were more intrinsically excitable than NT cells, and exhibited sprouting of filopodia and axonal boutons. Moreover, the neuropil in TG mice showed an increased density of asymmetric synapses, although their mean size was reduced. Taken together, these data indicate that during progressive tauopathy, cortical pyramidal cells compensate for loss of afferent input by increased excitability and establishment of new synapses. These compensatory homeostatic mechanisms may play an important role in slowing the progression of neuronal network dysfunction during neurodegenerative tauopathies.
Collapse
|
230
|
Abstract
Dendritic spines are dynamic structures that accommodate the majority of excitatory synapses in the brain and are influenced by extracellular signals from presynaptic neurons, glial cells, and the extracellular matrix (ECM). The ECM surrounds dendritic spines and extends into the synaptic cleft, maintaining synapse integrity as well as mediating trans-synaptic communications between neurons. Several scaffolding proteins and glycans that compose the ECM form a lattice-like network, which serves as an attractive ground for various secreted glycoproteins, lectins, growth factors, and enzymes. ECM components can control dendritic spines through the interactions with their specific receptors or by influencing the functions of other synaptic proteins. In this review, we focus on ECM components and their receptors that regulate dendritic spine development and plasticity in the normal and diseased brain.
Collapse
Affiliation(s)
- Lorraine E. Dansie
- Division of Biomedical Sciences, Biochemistry and Molecular Biology Program, University of California Riverside, Riverside, California 92521
| | - Iryna M. Ethell
- Division of Biomedical Sciences, Biochemistry and Molecular Biology Program, University of California Riverside, Riverside, California 92521
| |
Collapse
|
231
|
Zhu H, Bhattacharyya BJ, Lin H, Gomez CM. Skeletal muscle IP3R1 receptors amplify physiological and pathological synaptic calcium signals. J Neurosci 2011; 31:15269-83. [PMID: 22031873 PMCID: PMC3237715 DOI: 10.1523/jneurosci.3766-11.2011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 08/24/2011] [Accepted: 09/01/2011] [Indexed: 01/11/2023] Open
Abstract
Ca(2+) release from internal stores is critical for mediating both normal and pathological intracellular Ca(2+) signaling. Recent studies suggest that the inositol 1,4,5-triphosphate (IP(3)) receptor mediates Ca(2+) release from internal stores upon cholinergic activation of the neuromuscular junction (NMJ) in both physiological and pathological conditions. Here, we report that the type I IP(3) receptor (IP(3)R(1))-mediated Ca(2+) release plays a crucial role in synaptic gene expression, development, and neuromuscular transmission, as well as mediating degeneration during excessive cholinergic activation. We found that IP(3)R(1)-mediated Ca(2+) release plays a key role in early development of the NMJ, homeostatic regulation of neuromuscular transmission, and synaptic gene expression. Reducing IP(3)R(1)-mediated Ca(2+) release via siRNA knockdown or IP(3)R blockers in C2C12 cells decreased calpain activity and prevented agonist-induced acetylcholine receptor (AChR) cluster dispersal. In fully developed NMJ in adult muscle, IP(3)R(1) knockdown or blockade effectively increased synaptic strength at presynaptic and postsynaptic sites by increasing both quantal release and expression of AChR subunits and other NMJ-specific genes in a pattern resembling muscle denervation. Moreover, in two mouse models of cholinergic overactivity and NMJ Ca(2+) overload, anti-cholinesterase toxicity and the slow-channel myasthenic syndrome (SCS), IP(3)R(1) knockdown eliminated NMJ Ca(2+) overload, pathological activation of calpain and caspase proteases, and markers of DNA damage at subsynaptic nuclei, and improved both neuromuscular transmission and clinical measures of motor function. Thus, blockade or genetic silencing of muscle IP(3)R(1) may be an effective and well tolerated therapeutic strategy in SCS and other conditions of excitotoxicity or Ca(2+) overload.
Collapse
MESH Headings
- Action Potentials/drug effects
- Action Potentials/genetics
- Animals
- Boron Compounds/pharmacology
- Calcium/metabolism
- Calcium Signaling/genetics
- Calcium Signaling/physiology
- Calpain/metabolism
- Carbachol/pharmacology
- Caspase 3/metabolism
- Caspase 9/metabolism
- Cell Line, Transformed
- Cholinergic Agonists/pharmacology
- Cholinesterase Inhibitors/toxicity
- Disease Models, Animal
- Electromyography
- Electroporation/methods
- Exercise Test
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/genetics
- Green Fluorescent Proteins/genetics
- Histone Deacetylases/metabolism
- Histones/genetics
- Histones/metabolism
- In Vitro Techniques
- Inositol 1,4,5-Trisphosphate Receptors/deficiency
- Inositol 1,4,5-Trisphosphate Receptors/physiology
- Male
- Membrane Potentials/drug effects
- Membrane Potentials/genetics
- Mice
- Mice, Transgenic
- Muscle, Skeletal/metabolism
- Myasthenic Syndromes, Congenital/genetics
- Myasthenic Syndromes, Congenital/pathology
- Myasthenic Syndromes, Congenital/therapy
- Neostigmine/toxicity
- Nerve Tissue Proteins/metabolism
- Neuromuscular Junction/metabolism
- Neuromuscular Junction/physiology
- Neurotoxicity Syndromes/etiology
- Neurotoxicity Syndromes/pathology
- Neurotoxicity Syndromes/therapy
- Patch-Clamp Techniques
- RNA, Small Interfering/pharmacology
- Receptors, Cholinergic/classification
- Receptors, Cholinergic/genetics
- Receptors, Cholinergic/metabolism
- Sciatic Nerve/physiopathology
- Time Factors
Collapse
Affiliation(s)
- Haipeng Zhu
- Department of Neurology, University of Chicago Medical Center, Chicago, Illinois 60637
| | - Bula J. Bhattacharyya
- Department of Molecular Pharmacology and Biological Chemistry, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, and
| | - Hong Lin
- Departments of Neurology and Pediatrics, the Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104-4318
| | - Christopher M. Gomez
- Department of Neurology, University of Chicago Medical Center, Chicago, Illinois 60637
| |
Collapse
|
232
|
Gundelfinger ED, Fejtova A. Molecular organization and plasticity of the cytomatrix at the active zone. Curr Opin Neurobiol 2011; 22:423-30. [PMID: 22030346 DOI: 10.1016/j.conb.2011.10.005] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 09/25/2011] [Accepted: 10/06/2011] [Indexed: 02/06/2023]
Abstract
Regulated neurotransmitter release from presynaptic boutons is crucial for the functioning of chemical synapses, what in turn governs the functional performance of the nervous system. Release occurs at the active zone (AZ), a specialized region of the presynaptic plasma membrane that is defined by a unique and complex meshwork of proteins--the cytomatrix at the AZ (CAZ). Important functions of CAZ proteins include recruitment, docking and priming of synaptic vesicles as well as appropriate localization of voltage-gated calcium channels near vesicle docking sites. We will discuss recent progress in the understanding of the topological localization and the molecular functions of characteristic CAZ proteins as well as emerging molecular mechanisms underlying presynaptic plasticity that involve significant structural CAZ remodeling.
Collapse
Affiliation(s)
- Eckart D Gundelfinger
- Leibniz Institute for Neurobiology (LIN), Brenneckestr. 6, 39118 Magdeburg, Germany.
| | | |
Collapse
|
233
|
Kleschevnikov AM, Belichenko PV, Gall J, George L, Nosheny R, Maloney MT, Salehi A, Mobley WC. Increased efficiency of the GABAA and GABAB receptor-mediated neurotransmission in the Ts65Dn mouse model of Down syndrome. Neurobiol Dis 2011; 45:683-91. [PMID: 22062771 DOI: 10.1016/j.nbd.2011.10.009] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 09/14/2011] [Accepted: 10/08/2011] [Indexed: 01/06/2023] Open
Abstract
Cognitive impairment in Down syndrome (DS) involves the hippocampus. In the Ts65Dn mouse model of DS, deficits in hippocampus-dependent learning and synaptic plasticity were linked to enhanced inhibition. However, the mechanistic basis of changes in inhibitory efficiency remains largely unexplored, and efficiency of the GABAergic synaptic neurotransmission has not yet been investigated in direct electrophysiological experiments. To investigate this important feature of neurobiology of DS, we examined synaptic and molecular properties of the GABAergic system in the dentate gyrus (DG) of adult Ts65Dn mice. Both GABAA and GABAB receptor-mediated components of evoked inhibitory postsynaptic currents (IPSCs) were significantly increased in Ts65Dn vs. control (2N) DG granule cells. These changes were unaccompanied by alterations in hippocampal levels of GABAA (α1, α2, α3, α5 and γ2) or GABAB (Gbr1a and Gbr1b) receptor subunits. Immunoreactivity for GAD65, a marker for GABAergic terminals, was also unchanged. In contrast, there was a marked change in functional parameters of GABAergic synapses. Paired stimulations showed reduced paired-pulse ratios of both GABAA and GABAB receptor-mediated IPSC components (IPSC2/IPSC1), suggesting an increase in presynaptic release of GABA. Consistent with increased gene dose, the level of the Kir3.2 subunit of potassium channels, effectors for postsynaptic GABAB receptors, was increased. This change was associated with enhanced postsynaptic GABAB/Kir3.2 signaling following application of the GABAB receptor agonist baclofen. Thus, both GABAA and GABAB receptor-mediated synaptic efficiency is increased in the Ts65Dn DG, thus likely contributing to deficient synaptic plasticity and poor learning in DS.
Collapse
Affiliation(s)
- Alexander M Kleschevnikov
- Department of Neurosciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| | | | | | | | | | | | | | | |
Collapse
|
234
|
Vitureira N, Letellier M, Goda Y. Homeostatic synaptic plasticity: from single synapses to neural circuits. Curr Opin Neurobiol 2011; 22:516-21. [PMID: 21983330 DOI: 10.1016/j.conb.2011.09.006] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 09/21/2011] [Indexed: 10/16/2022]
Abstract
Homeostatic synaptic plasticity remains an enigmatic form of synaptic plasticity. Increasing interest on the topic has fuelled a surge of recent studies that have identified key molecular players and the signaling pathways involved. However, the new findings also highlight our lack of knowledge concerning some of the basic properties of homeostatic synaptic plasticity. In this review we address how homeostatic mechanisms balance synaptic strengths between the presynaptic and the postsynaptic terminals and across synapses that share the same postsynaptic neuron.
Collapse
Affiliation(s)
- Nathalia Vitureira
- MRC Laboratory for Molecular Cell Biology and Cell Biology Unit, University College London, Gower Street, London WC1E 6BT, UK
| | | | | |
Collapse
|
235
|
Extensive remodeling of the presynaptic cytomatrix upon homeostatic adaptation to network activity silencing. J Neurosci 2011; 31:10189-200. [PMID: 21752995 DOI: 10.1523/jneurosci.2088-11.2011] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Global changes of activity in neuronal networks induce homeostatic adaptations of synaptic strengths, which involve functional remodeling of both presynaptic and postsynaptic apparatuses. Despite considerable advances in understanding cellular properties of homeostatic synaptic plasticity, the underlying molecular mechanisms are not fully understood. Here, we explored the hypothesis that adaptive homeostatic adjustment of presynaptic efficacy involves molecular remodeling of the release apparatus including the presynaptic cytomatrix, which spatially and functionally coordinates neurotransmitter release. We found significant downregulation of cellular expression levels of presynaptic scaffolding proteins Bassoon, Piccolo, ELKS/CAST, Munc13, RIM, liprin-α, and synapsin upon prolonged (48 h) activity depletion in rat neuronal cultures. This was accompanied by a general reduction of Bassoon, Piccolo, ELKS/CAST, Munc13, and synapsin levels at synaptic sites. Interestingly, RIM was upregulated in a subpopulation of synapses. At the level of individual synapses, RIM quantities correlated well with synaptic activity, and a constant relationship between RIM levels and synaptic activity was preserved upon silencing. Silencing also induced synaptic enrichment of other previously identified regulators of presynaptic release probability, i.e., synaptotagmin1, SV2B, and P/Q-type calcium channels. Seeking responsible cellular mechanisms, we revealed a complex role of the ubiquitin-proteasome system in the functional presynaptic remodeling and enhanced degradation rates of Bassoon and liprin-α upon silencing. Together, our data indicate a significant molecular reorganization of the presynaptic release apparatus during homeostatic adaptation to network inactivity and identify RIM, synaptotagmin1, Ca(v)2.1, and SV2B as molecular candidates underlying the main silencing-induced functional hallmark at presynapse, i.e., increase of neurotransmitter release probability.
Collapse
|
236
|
Pattern of trauma determines the threshold for epileptic activity in a model of cortical deafferentation. Proc Natl Acad Sci U S A 2011; 108:15402-7. [PMID: 21896754 DOI: 10.1073/pnas.1112066108] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Epileptic activity often occurs in the cortex after a latent period after head trauma; this delay has been attributed to the destabilizing influence of homeostatic synaptic scaling and changes in intrinsic properties. However, the impact of the spatial organization of cortical trauma on epileptogenesis is poorly understood. We addressed this question by analyzing the dynamics of a large-scale biophysically realistic cortical network model subjected to different patterns of trauma. Our results suggest that the spatial pattern of trauma can greatly affect the propensity for developing posttraumatic epileptic activity. For the same fraction of lesioned neurons, spatially compact trauma resulted in stronger posttraumatic elevation of paroxysmal activity than spatially diffuse trauma. In the case of very severe trauma, diffuse distribution of a small number of surviving intact neurons alleviated posttraumatic epileptogenesis. We suggest that clinical evaluation of the severity of brain trauma should take into account the spatial pattern of the injured cortex.
Collapse
|
237
|
Hogins J, Crawford DC, Jiang X, Mennerick S. Presynaptic silencing is an endogenous neuroprotectant during excitotoxic insults. Neurobiol Dis 2011; 43:516-25. [PMID: 21605675 PMCID: PMC3114267 DOI: 10.1016/j.nbd.2011.05.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 04/26/2011] [Accepted: 05/07/2011] [Indexed: 12/20/2022] Open
Abstract
Glutamate release is a root cause of acute and delayed neuronal damage in response to hypoxic/ischemic insults. Nevertheless, therapeutics that target the postsynaptic compartment have been disappointing clinically. Here we explored whether presynaptic silencing (muting) of glutamatergic terminals is sufficient to reduce excitotoxic damage resulting from hypoxia and oxygen/glucose deprivation. Our evidence suggests that strong depolarization, previously shown to mute glutamate synapses, protects neurons by a presynaptic mechanism that is sensitive to inhibition of the proteasome. Postsynaptic Ca2+ rises in response to glutamate application and toxicity in response to exogenous glutamate treatment were unaffected by depolarization preconditioning. These features strongly suggest that reduced glutamate release explains preconditioning protection. We addressed whether hypoxic depolarization itself induces presynaptic silencing, thereby participating in the damage threshold for hypoxic insult. Indeed, we found that the hypoxic insult increased the percentage of mute glutamate synapses in a proteasome-dependent manner. Furthermore, proteasome inhibition exacerbated neuronal loss to mild hypoxia and prevented hypoxia-induced muting. In total our results suggest that presynaptic silencing is an endogenous neuroprotective mechanism that could be exploited to reduce damage from insults involving excess synaptic glutamate release.
Collapse
Affiliation(s)
- Joshua Hogins
- Dept of Psychiatry, Washington University in St. Louis, 660 S. Euclid Ave., St. Louis, MO 63110
| | - Devon C. Crawford
- Dept of Psychiatry, Washington University in St. Louis, 660 S. Euclid Ave., St. Louis, MO 63110
- Graduate Program in Neuroscience, Washington University in St. Louis, 660 S. Euclid Ave., St. Louis, MO 63110
| | - Xiaoping Jiang
- Dept of Psychiatry, Washington University in St. Louis, 660 S. Euclid Ave., St. Louis, MO 63110
| | - Steven Mennerick
- Dept of Psychiatry, Washington University in St. Louis, 660 S. Euclid Ave., St. Louis, MO 63110
- Dept of Anatomy and Neurobiology, Washington University in St. Louis, 660 S. Euclid Ave., St. Louis, MO 63110
| |
Collapse
|
238
|
Valtorta F, Pozzi D, Benfenati F, Fornasiero EF. The synapsins: multitask modulators of neuronal development. Semin Cell Dev Biol 2011; 22:378-86. [PMID: 21798361 DOI: 10.1016/j.semcdb.2011.07.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 07/13/2011] [Indexed: 01/10/2023]
Abstract
Neurons are examples of specialized cells that evolved the extraordinary ability to transmit electrochemical information in complex networks of interconnected cells. During their development, neurons undergo precisely regulated processes that define their lineage, positioning, morphogenesis and pattern of activity. The events leading to the establishment of functional neuronal networks follow a number of key steps, including asymmetric cell division from neuronal precursors, migration, establishment of polarity, neurite outgrowth and synaptogenesis. Synapsins are a family of abundant neuronal phosphoproteins that have been extensively studied for their role in the regulation of neurotransmission in presynaptic terminals. Beside their implication in the homeostasis of adult cells, synapsins influence the development of young neurons, interacting with cytoskeletal and vesicular components and regulating their dynamics. Although the exact molecular mechanisms determining synapsin function in neuronal development are still largely unknown, in this review we summarize the most important literature on the subject, providing a conceptual framework for the progress of present and future research.
Collapse
Affiliation(s)
- Flavia Valtorta
- San Raffaele Scientific Institute and Vita-Salute University, Via Olgettina 58, Milano, Italy.
| | | | | | | |
Collapse
|
239
|
Abstract
How can synapses change the amount of neurotransmitter released during synaptic plasticity? Although release in general is intensely investigated, its determinants during plasticity are still poorly understood. As a model for plastic strengthening of synaptic release, we here use the well-established presynaptic homeostatic compensation during interference with postsynaptic glutamate receptors at the Drosophila neuromuscular junction. Combining short-term plasticity analysis, cumulative EPSC analysis, fluctuation analysis, and quantal short-term plasticity modeling, we found an increase in the number of release-ready vesicles during presynaptic strengthening. High-resolution light microscopy revealed an increase in the amount of the active zone protein Bruchpilot and an enlargement of the presynaptic cytomatrix structure. Furthermore, these functional and structural alterations of the active zone were not only observed after lifelong but already after minutes of presynaptic strengthening. Our results demonstrate that presynaptic plasticity can induce active zone remodeling, which regulates the number of release-ready vesicles within minutes.
Collapse
|
240
|
Bleckert A, Wong ROL. Identifying roles for neurotransmission in circuit assembly: insights gained from multiple model systems and experimental approaches. Bioessays 2011; 33:61-72. [PMID: 21110347 DOI: 10.1002/bies.201000095] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In the adult nervous system, chemical neurotransmission between neurons is essential for information processing. However, neurotransmission is also important for patterning circuits during development, but its precise roles have yet to be identified, and some remain highly debated. Here, we highlight viewpoints that have come to be widely accepted or still challenged. We discuss how distinct techniques and model systems employed to probe the developmental role of neurotransmission may reconcile disparate ideas. We underscore how the effects of perturbing neurotransmission during development vary with model systems, the stage of development when transmission is altered, the nature of the perturbation, and how connectivity is assessed. Based on findings in circuits with connectivity arranged in layers, we raise the possibility that there exist constraints in neuronal network design that limit the role of neurotransmission. We propose that activity-dependent mechanisms are effective in refining connectivity patterns only when inputs from different cells are close enough, spatially, to influence each other's outcome.
Collapse
Affiliation(s)
- Adam Bleckert
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | | |
Collapse
|
241
|
Yun-Hong Y, Chih-Fan C, Chia-Wei C, Yen-Chung C. A study of the spatial protein organization of the postsynaptic density isolated from porcine cerebral cortex and cerebellum. Mol Cell Proteomics 2011; 10:M110.007138. [PMID: 21715321 DOI: 10.1074/mcp.m110.007138] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Postsynaptic density (PSD) is a protein supramolecule lying underneath the postsynaptic membrane of excitatory synapses and has been implicated to play important roles in synaptic structure and function in mammalian central nervous system. Here, PSDs were isolated from two distinct regions of porcine brain, cerebral cortex and cerebellum. SDS-PAGE and Western blotting analyses indicated that cerebral and cerebellar PSDs consisted of a similar set of proteins with noticeable differences in the abundance of various proteins between these samples. Subsequently, protein localization in these PSDs was analyzed by using the Nano-Depth-Tagging method. This method involved the use of three synthetic reagents, as agarose beads whose surface was covalently linked with a fluorescent, photoactivable, and cleavable chemical crosslinker by spacers of varied lengths. After its application was verified by using a synthetic complex consisting of four layers of different proteins, the Nano-Depth-Tagging method was used here to yield information concerning the depth distribution of various proteins in the PSD. The results indicated that in both cerebral and cerebellar PSDs, glutamate receptors, actin, and actin binding proteins resided in the peripheral regions within ∼ 10 nm deep from the surface and that scaffold proteins, tubulin subunits, microtubule-binding proteins, and membrane cytoskeleton proteins found in mammalian erythrocytes resided in the interiors deeper than 10 nm from the surface in the PSD. Finally, by using the immunoabsorption method, binding partner proteins of two proteins residing in the interiors, PSD-95 and α-tubulin, and those of two proteins residing in the peripheral regions, elongation factor-1α and calcium, calmodulin-dependent protein kinase II α subunit, of cerebral and cerebellar PSDs were identified. Overall, the results indicate a striking similarity in protein organization between the PSDs isolated from porcine cerebral cortex and cerebellum. A model of the molecular structure of the PSD has also been proposed here.
Collapse
Affiliation(s)
- Yen Yun-Hong
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | | | | | | |
Collapse
|
242
|
Abstract
The functions of sleep remain elusive, but a strong link exists between sleep need and neuronal plasticity. We tested the hypothesis that plastic processes during wake lead to a net increase in synaptic strength and sleep is necessary for synaptic renormalization. We found that, in three Drosophila neuronal circuits, synapse size or number increases after a few hours of wake and decreases only if flies are allowed to sleep. A richer wake experience resulted in both larger synaptic growth and greater sleep need. Finally, we demonstrate that the gene Fmr1 (fragile X mental retardation 1) plays an important role in sleep-dependent synaptic renormalization.
Collapse
Affiliation(s)
- Daniel Bushey
- Department of Psychiatry, University of Wisconsin/Madison, Wisconsin, U.S.A
| | - Giulio Tononi
- Department of Psychiatry, University of Wisconsin/Madison, Wisconsin, U.S.A
| | - Chiara Cirelli
- Department of Psychiatry, University of Wisconsin/Madison, Wisconsin, U.S.A
| |
Collapse
|
243
|
Mainardi M, Landi S, Gianfranceschi L, Baldini S, De Pasquale R, Berardi N, Maffei L, Caleo M. Environmental enrichment potentiates thalamocortical transmission and plasticity in the adult rat visual cortex. J Neurosci Res 2011; 88:3048-59. [PMID: 20722076 DOI: 10.1002/jnr.22461] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
It has been demonstrated that the complex sensorimotor and social stimulation achieved by rearing animals in an enriched environment (EE) can reinstate juvenile-like plasticity in the adult cortex. However, it is not known whether EE can affect thalamocortical transmission. Here, we recorded in vivo field potentials from the visual cortex evoked by electrical stimulation of the dorsal lateral geniculate nucleus (dLGN) in anesthetized rats. We found that a period of EE during adulthood shifted the input-output curves and increased paired-pulse depression, suggesting an enhanced synaptic strength at thalamocortical terminals. Accordingly, EE animals showed an increased expression of the vesicular glutamate transporter 2 (vGluT-2) in geniculocortical afferents to layer IV. Rats reared in EE also showed an enhancement of thalamocortical long-term potentiation (LTP) triggered by theta-burst stimulation (TBS) of the dLGN. To monitor the functional consequences of increased LTP in EE rats, we recorded visual evoked potentials (VEPs) before and after application of TBS to the geniculocortical pathway. We found that responses to visual stimulation were enhanced across a range of contrasts in EE animals. This was accompanied by an up-regulation of the intracortical excitatory synaptic marker vGluT-1 and a decrease in the expression of the vesicular GABA transporter (vGAT), indicating a shift in the excitation/inhibition ratio. Thus, in the adult rat, EE enhances synaptic strength and plasticity of the thalamocortical pathway associated with specific changes in glutamatergic and GABAergic neurotransmission. These data provide novel insights into the mechanisms by which EE shapes the adult brain.
Collapse
Affiliation(s)
- Marco Mainardi
- Laboratory of Neurobiology, Scuola Normale Superiore, Pisa, Italy
| | | | | | | | | | | | | | | |
Collapse
|
244
|
Abstract
Homeostatic mechanisms are required to control formation and maintenance of synaptic connections to maintain the general level of neural impulse activity within normal limits. How genes controlling these processes are co-coordinately regulated during homeostatic synaptic plasticity is unknown. MicroRNAs (miRNAs) exert regulatory control over mRNA stability and translation and may contribute to local and activity-dependent posttranscriptional control of synapse-associated mRNAs. However, identifying miRNAs that function through posttranscriptional gene silencing at synapses has remained elusive. Using a bioinformatics screen to identify sequence motifs enriched in the 3'UTR of rapidly destabilized mRNAs, we identified a developmentally and activity-regulated miRNA (miR-485) that controls dendritic spine number and synapse formation in an activity-dependent homeostatic manner. We find that many plasticity-associated genes contain predicted miR-485 binding sites and further identify the presynaptic protein SV2A as a target of miR-485. miR-485 negatively regulated dendritic spine density, postsynaptic density 95 (PSD-95) clustering, and surface expression of GluR2. Furthermore, miR-485 overexpression reduced spontaneous synaptic responses and transmitter release, as measured by miniature excitatory postsynaptic current (EPSC) analysis and FM 1-43 staining. SV2A knockdown mimicked the effects of miR-485, and these effects were reversed by SV2A overexpression. Moreover, 5 d of increased synaptic activity induced homeostatic changes in synaptic specializations that were blocked by a miR-485 inhibitor. Our findings reveal a role for this previously uncharacterized miRNA and the presynaptic protein SV2A in homeostatic plasticity and nervous system development, with possible implications in neurological disorders (e.g., Huntington and Alzheimer's disease), where miR-485 has been found to be dysregulated.
Collapse
|
245
|
Armbruster M, Ryan TA. Synaptic vesicle retrieval time is a cell-wide rather than individual-synapse property. Nat Neurosci 2011; 14:824-6. [PMID: 21623361 PMCID: PMC3125437 DOI: 10.1038/nn.2828] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 03/31/2011] [Indexed: 11/21/2022]
Abstract
Although individual nerve terminals from the same neuron often differ in neurotransmitter release characteristics, the extent to which endocytic retrieval of synaptic vesicle components differs is unknown. We used high-fidelity optical recordings to undertake a large-scale analysis of endocytosis kinetics of individual boutons in hippocampal rat neurons. Our data indicate that endocytosis kinetics do not differ substantially across boutons from the same cell but instead appear to be controlled at a cell-wide level.
Collapse
Affiliation(s)
- Moritz Armbruster
- David Rockefeller Graduate Program of Rockefeller University, 1230 York Avenue, New York, NY 10065
- The Department of Biochemistry, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065
| | - Timothy A. Ryan
- The Department of Biochemistry, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065
| |
Collapse
|
246
|
Zhao C, Dreosti E, Lagnado L. Homeostatic synaptic plasticity through changes in presynaptic calcium influx. J Neurosci 2011; 31:7492-6. [PMID: 21593333 PMCID: PMC3124754 DOI: 10.1523/jneurosci.6636-10.2011] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 03/08/2011] [Accepted: 04/03/2011] [Indexed: 01/29/2023] Open
Abstract
Chronic perturbations of electrical activity within neural circuits lead to compensatory changes in synaptic strength collectively termed homeostatic synaptic plasticity. The postsynaptic mechanisms underlying these modifications have been characterized in some detail, but the presynaptic mechanisms that alter the efficiency of evoked neurotransmitter release are less clear. To investigate the role of presynaptic calcium influx, we have combined the use of two fluorescent proteins in cultured hippocampal neurons: a calcium reporter localized to synaptic vesicles, SyGCaMP2, and a reporter of vesicle fusion, SypHy. We find that a decrease in the activity of the network causes an increase in the amount of calcium entering the synaptic bouton in response to an action potential and an increase in the probability of vesicle fusion. Homeostatic changes in release probability varied as the third power of calcium influx. These results indicate that changes in the number and/or function of presynaptic calcium channels are major determinants of homeostatic changes in synaptic strength.
Collapse
Affiliation(s)
- CongJian Zhao
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Elena Dreosti
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Leon Lagnado
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| |
Collapse
|
247
|
Krahe TE, Guido W. Homeostatic plasticity in the visual thalamus by monocular deprivation. J Neurosci 2011; 31:6842-9. [PMID: 21543614 PMCID: PMC3319043 DOI: 10.1523/jneurosci.1173-11.2011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 03/22/2011] [Indexed: 11/21/2022] Open
Abstract
Monocular deprivation (MD) is a classic paradigm for experience-dependent cortical plasticity. One form is known as homeostatic plasticity, in which neurons innervated by the deprived eye show a remarkable capacity to compensate for degraded visual signals in an attempt to stabilize network activity. Although the evidence supporting homeostatic plasticity in visual cortex is extensive, it remains unclear whether neurons in subcortical visual structures respond to MD in a similar manner. Here we examined whether cells in the dorsal lateral geniculate nucleus (dLGN), the thalamic relay between the retina and visual cortex, show similar forms of experience-dependent homeostatic plasticity following MD. Two-week-old mice were monocularly deprived for a period of 5-7 d and miniature EPSCs (mEPSCs) were obtained from cells located in dLGN regions receiving input from the deprived or nondeprived eye. We found that MD promotes increases in the frequency and amplitude of mEPSCs and were restricted to the monocular segment contralateral to the deprived eye. These changes were accompanied by an increase in the probability of glutamate release at corticothalamic terminals that arise from the deprived visual cortex. Our findings indicate that homeostatic synaptic regulation from MD extends beyond cortical circuitry and shed light on how the brain modulates and integrates activity in the face of altered sensory experience.
Collapse
Affiliation(s)
- Thomas E. Krahe
- Department of Anatomy and Neurobiology, Virginia Commonwealth University Medical Center, Richmond, Virginia 23298
| | - William Guido
- Department of Anatomy and Neurobiology, Virginia Commonwealth University Medical Center, Richmond, Virginia 23298
| |
Collapse
|
248
|
Tripovic D, Al Abed A, Rummery NM, Johansen NJ, McLachlan EM, Brock JA. Nerve-Evoked Constriction of Rat Tail Veins Is Potentiated and Venous Diameter Is Reduced after Chronic Spinal Cord Transection. J Neurotrauma 2011; 28:821-9. [DOI: 10.1089/neu.2008.0788] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Diana Tripovic
- Prince of Wales Medical Research Institute, University of New South Wales, Randwick, Australia
| | - Amr Al Abed
- Prince of Wales Medical Research Institute, University of New South Wales, Randwick, Australia
- Current address: Graduate School of Biomedical Engineering, University of New South Wales, Kensington, Australia
| | - Nicole M. Rummery
- Prince of Wales Medical Research Institute, University of New South Wales, Randwick, Australia
| | - Niloufer J. Johansen
- Prince of Wales Medical Research Institute, University of New South Wales, Randwick, Australia
- Current address: Department of Anatomy and Cell Biology, University of Melbourne, Parkville, Australia
| | - Elspeth M. McLachlan
- Prince of Wales Medical Research Institute, University of New South Wales, Randwick, Australia
| | - James A. Brock
- Prince of Wales Medical Research Institute, University of New South Wales, Randwick, Australia
- Current address: Department of Anatomy and Cell Biology, University of Melbourne, Parkville, Australia
| |
Collapse
|
249
|
Peled ES, Isacoff EY. Optical quantal analysis of synaptic transmission in wild-type and rab3-mutant Drosophila motor axons. Nat Neurosci 2011; 14:519-26. [PMID: 21378971 DOI: 10.1038/nn.2767] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Accepted: 01/21/2011] [Indexed: 02/06/2023]
Abstract
Synaptic transmission from a neuron to its target cells occurs via neurotransmitter release from dozens to thousands of presynaptic release sites whose strength and plasticity can vary considerably. We report an in vivo imaging method that monitors real-time synaptic transmission simultaneously at many release sites with quantal resolution. We applied this method to the model glutamatergic system of the Drosophila melanogaster larval neuromuscular junction. We find that, under basal conditions, about half of release sites have a very low release probability, but these are interspersed with sites with as much as a 50-fold higher probability. Paired-pulse stimulation depresses high-probability sites, facilitates low-probability sites, and recruits previously silent sites. Mutation of the small GTPase Rab3 substantially increases release probability but still leaves about half of the sites silent. Our findings suggest that basal synaptic strength and short-term plasticity are regulated at the level of release probability at individual sites.
Collapse
Affiliation(s)
- Einat S Peled
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| | | |
Collapse
|
250
|
Rodrigues AJ, Leão P, Carvalho M, Almeida OFX, Sousa N. Potential programming of dopaminergic circuits by early life stress. Psychopharmacology (Berl) 2011; 214:107-20. [PMID: 21088961 DOI: 10.1007/s00213-010-2085-3] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Accepted: 10/30/2010] [Indexed: 12/29/2022]
Abstract
Stress and high levels of glucocorticoids during pre- and early postnatal life seem to alter developmental programs that assure dopaminergic transmission in the mesolimbic, mesocortical, and nigrostriatal systems. The induced changes are likely to be determined by the ontogenetic state of development of these brain regions at the time of stress exposure and their stability is associated with increased lifetime susceptibility to psychiatric disorders, including drug addiction. This article is intended to serve as a starting point for future studies aimed at the attenuation or reversal of the effects of adverse early life events on dopamine-regulated behaviors.
Collapse
Affiliation(s)
- Ana-João Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710-057, Braga, Portugal
| | | | | | | | | |
Collapse
|