201
|
Zhang Q, Zheng L, Luo D, Huang M, Feng Y, Zhao M. Peptide WCPFSRSF alleviates sleep deprivation-induced memory impairment by inhibiting neuroinflammation and modulating IL-6/JAK/STAT signaling pathway. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
202
|
Hu Y, Subagdja B, Tan AH, Yin Q. Vision-Based Topological Mapping and Navigation With Self-Organizing Neural Networks. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2022; 33:7101-7113. [PMID: 34138715 DOI: 10.1109/tnnls.2021.3084212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Spatial mapping and navigation are critical cognitive functions of autonomous agents, enabling one to learn an internal representation of an environment and move through space with real-time sensory inputs, such as visual observations. Existing models for vision-based mapping and navigation, however, suffer from memory requirements that increase linearly with exploration duration and indirect path following behaviors. This article presents e -TM, a self-organizing neural network-based framework for incremental topological mapping and navigation. e -TM models the exploration trajectories explicitly as episodic memory, wherein salient landmarks are sequentially extracted as "events" from streaming observations. A memory consolidation procedure then performs a playback mechanism and transfers the embedded knowledge of the environmental layout into spatial memory, encoding topological relations between landmarks. Fusion adaptive resonance theory (ART) networks, as the building block of the two memory modules, can generalize multiple input patterns into memory templates and, therefore, provide a compact spatial representation and support the discovery of novel shortcuts through inferences. For navigation, e -TM applies a transfer learning paradigm to integrate human demonstrations into a pretrained locomotion network for smoother movements. Experimental results based on VizDoom, a simulated 3-D environment, have shown that, compared to semiparametric topological memory (SPTM), a state-of-the-art model, e -TM reduces the time costs of navigation significantly while learning much sparser topological graphs.
Collapse
|
203
|
Bayrak Ş, de Wael RV, Schaare HL, Hettwer MD, Caldairou B, Bernasconi A, Bernasconi N, Bernhardt BC, Valk SL. Heritability of hippocampal functional and microstructural organisation. Neuroimage 2022; 264:119656. [PMID: 36183945 DOI: 10.1016/j.neuroimage.2022.119656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/18/2022] [Accepted: 09/28/2022] [Indexed: 01/07/2023] Open
Abstract
The hippocampus is a uniquely infolded allocortical structure in the medial temporal lobe that consists of the microstructurally and functionally distinct subregions: subiculum, cornu ammonis, and dentate gyrus. The hippocampus is a remarkably plastic region that is implicated in learning and memory. At the same time it has been shown that hippocampal subregion volumes are heritable, and that genetic expression varies along a posterior to anterior axis. Here, we studied how a heritable, stable, hippocampal organisation may support its flexible function in healthy adults. Leveraging the twin set-up of the Human Connectome Project with multimodal neuroimaging, we observed that the functional connectivity between hippocampus and cortex was heritable and that microstructure of the hippocampus genetically correlated with cortical microstructure. Moreover, both functional and microstructural organisation could be consistently captured by anterior-to-posterior and medial-to-lateral axes across individuals. However, heritability of functional, relative to microstructural, organisation was found reduced, suggesting individual variation in functional organisation may be explained by experience-driven factors. Last, we demonstrate that structure and function couple along an inherited macroscale organisation, suggesting an interplay of stability and plasticity within the hippocampus. Our study provides new insights on the heritability of the hippocampal of the structure and function within the hippocampal organisation.
Collapse
Affiliation(s)
- Şeyma Bayrak
- Otto Hahn Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, FZ Jülich, Jülich, Germany; Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Department of Cognitive Neurology, University Hospital Leipzig and Faculty of Medicine, University of Leipzig, Leipzig, Germany.
| | - Reinder Vos de Wael
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - H Lina Schaare
- Otto Hahn Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, FZ Jülich, Jülich, Germany; Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Meike D Hettwer
- Otto Hahn Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, FZ Jülich, Jülich, Germany; Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Max Planck School of Cognition, Max Planck Institute of Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Benoit Caldairou
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Andrea Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Neda Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Boris C Bernhardt
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Sofie L Valk
- Otto Hahn Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, FZ Jülich, Jülich, Germany; Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
204
|
Das A, Menon V. Replicable patterns of causal information flow between hippocampus and prefrontal cortex during spatial navigation and spatial-verbal memory formation. Cereb Cortex 2022; 32:5343-5361. [PMID: 35136979 PMCID: PMC9712747 DOI: 10.1093/cercor/bhac018] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 12/27/2022] Open
Abstract
Interactions between the hippocampus and prefrontal cortex (PFC) play an essential role in both human spatial navigation and episodic memory, but the underlying causal flow of information between these regions across task domains is poorly understood. Here we use intracranial EEG recordings and spectrally resolved phase transfer entropy to investigate information flow during two different virtual spatial navigation and memory encoding/recall tasks and examine replicability of information flow patterns across spatial and verbal memory domains. Information theoretic analysis revealed a higher causal information flow from hippocampus to lateral PFC than in the reverse direction. Crucially, an asymmetric pattern of information flow was observed during memory encoding and recall periods of both spatial navigation tasks. Further analyses revealed frequency specificity of interactions characterized by greater bottom-up information flow from hippocampus to PFC in delta-theta band (0.5-8 Hz); in contrast, top-down information flow from PFC to hippocampus was stronger in beta band (12-30 Hz). Bayesian analysis revealed a high degree of replicability between the two spatial navigation tasks (Bayes factor > 5.46e+3) and across tasks spanning the spatial and verbal memory domains (Bayes factor > 7.32e+8). Our findings identify a domain-independent and replicable frequency-dependent feedback loop engaged during memory formation in the human brain.
Collapse
Affiliation(s)
- Anup Das
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Vinod Menon
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
- Stanford Neurosciences Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
205
|
Representations and decodability of diverse cognitive functions are preserved across the human cortex, cerebellum, and subcortex. Commun Biol 2022; 5:1245. [PMCID: PMC9663596 DOI: 10.1038/s42003-022-04221-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 11/03/2022] [Indexed: 11/16/2022] Open
Abstract
AbstractWhich part of the brain contributes to our complex cognitive processes? Studies have revealed contributions of the cerebellum and subcortex to higher-order cognitive functions; however, it has been unclear whether such functional representations are preserved across the cortex, cerebellum, and subcortex. In this study, we use functional magnetic resonance imaging data with 103 cognitive tasks and construct three voxel-wise encoding and decoding models independently using cortical, cerebellar, and subcortical voxels. Representational similarity analysis reveals that the structure of task representations is preserved across the three brain parts. Principal component analysis visualizes distinct organizations of abstract cognitive functions in each part of the cerebellum and subcortex. More than 90% of the cognitive tasks are decodable from the cerebellum and subcortical activities, even for the novel tasks not included in model training. Furthermore, we show that the cerebellum and subcortex have sufficient information to reconstruct activity in the cerebral cortex.
Collapse
|
206
|
Zhao Q, Cao H, Zhang W, Li S, Xiao Y, Tamminga CA, Keshavan MS, Pearlson GD, Clementz BA, Gershon ES, Hill SK, Keedy SK, Ivleva EI, Lencer R, Sweeney JA, Gong Q, Lui S. A subtype of institutionalized patients with schizophrenia characterized by pronounced subcortical and cognitive deficits. Neuropsychopharmacology 2022; 47:2024-2032. [PMID: 35260788 PMCID: PMC9556672 DOI: 10.1038/s41386-022-01300-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 01/28/2022] [Accepted: 02/19/2022] [Indexed: 02/05/2023]
Abstract
Some patients with schizophrenia have severe cognitive impairment and functional deficits that require long-term institutional care. The patterns of brain-behavior alterations in these individuals, and their differences from patients living successfully in the community, remain poorly understood. Previous cognition-based studies for stratifying schizophrenia patients highlight the importance of subcortical structures in the context of illness heterogeneity. In the present study, subcortical volumes from 96 institutionalized patients with long-term schizophrenia were evaluated using cluster analysis to test for heterogeneity. These data were compared to those from two groups of community-dwelling individuals with schizophrenia for comparison purposes, including 68 long-term ill and 126 first-episode individuals. A total of 290 demographically matched healthy participants were included as normative references at a 1:1 ratio for each patient sample. A subtype of institutionalized patients was identified based on their pattern of subcortical alterations. Using a machine learning algorithm developed to discriminate the two groups of institutionalized patients, all three patient samples were found to have similar rates of patients assigned to the two subtypes (approximately 50% each). In institutionalized patients, only the subtype with the identified pattern of subcortical alterations had greater neocortical and cognitive abnormalities than those in the similarity classified community-dwelling patients with long-term illness. Thus, for the subtype of patients with a distinctive pattern of subcortical alterations, when the distinct pattern of subcortical alterations is present and particularly severe, it is associated with cognitive impairments that may contribute to persistent disability and institutionalization.
Collapse
Affiliation(s)
- Qiannan Zhao
- Huaxi MR Research Center, Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan Province, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Hengyi Cao
- Huaxi MR Research Center, Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
- Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, Manhasset, NY, USA
- Division of Psychiatry Research, Zucker Hillside Hospital, Glen Oaks, NY, USA
| | - Wenjing Zhang
- Huaxi MR Research Center, Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan Province, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Siyi Li
- Huaxi MR Research Center, Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan Province, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Yuan Xiao
- Huaxi MR Research Center, Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan Province, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Carol A Tamminga
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Matcheri S Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Godfrey D Pearlson
- Departments of Psychiatry and Neurobiology, Yale University and Olin Neuropsychiatric Research Center, Hartford, CT, USA
| | - Brett A Clementz
- Department of Psychology, University of Georgia, Athens, GA, USA
| | - Elliot S Gershon
- Department of Psychiatry, University of Chicago, Chicago, IL, USA
| | - Scot Kristian Hill
- Department of Psychology, Rosalind Franklin University of Medicine and Science, Chicago, IL, USA
| | - Sarah K Keedy
- Department of Psychiatry, University of Chicago, Chicago, IL, USA
| | - Elena I Ivleva
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Rebekka Lencer
- Department of Psychiatry and Psychotherapy, University of Münster, Münster, Germany
| | - John A Sweeney
- Huaxi MR Research Center, Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Qiyong Gong
- Huaxi MR Research Center, Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China.
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan Province, China.
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China.
| | - Su Lui
- Huaxi MR Research Center, Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China.
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan Province, China.
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
207
|
Polykretis I, Michmizos KP. The role of astrocytes in place cell formation: A computational modeling study. J Comput Neurosci 2022; 50:505-518. [PMID: 35840871 PMCID: PMC9671849 DOI: 10.1007/s10827-022-00828-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 05/20/2022] [Accepted: 07/12/2022] [Indexed: 11/30/2022]
Abstract
Place cells develop spatially-tuned receptive fields during the early stages of novel environment exploration. The generative mechanism underlying these spatially-selective responses remains largely elusive, but has been associated with theta rhythmicity. An important factor implicating the transformation of silent cells to place cells is a spatially-uniform depolarization that is mediated by a persistent sodium current. This neuronal current is modulated by extracellular calcium concentration, which, in turn, is actively controlled by astrocytes. However, there is no established relationship between the neuronal depolarization and astrocytic activity. To consider this link, we designed a bioplausible computational model of a neuronal-astrocytic network, where astrocytes induced the transient emergence of place fields in silent cells, and accelerated the plasticity-induced consolidation of place cells. Interestingly, theta oscillations emerged naturally at the network level, resulting from the astrocytic modulation of subcellular neuronal properties. Our results suggest that astrocytes participate in spatial mapping and exploration, and further highlight the computational roles of these cells in the brain.
Collapse
Affiliation(s)
- Ioannis Polykretis
- Computational Brain Lab, Department of Computer Science, Rutgers University, New Brunswick, New Jersey, USA
| | - Konstantinos P Michmizos
- Computational Brain Lab, Department of Computer Science, Rutgers University, New Brunswick, New Jersey, USA.
| |
Collapse
|
208
|
Polti I, Nau M, Kaplan R, van Wassenhove V, Doeller CF. Rapid encoding of task regularities in the human hippocampus guides sensorimotor timing. eLife 2022; 11:e79027. [PMID: 36317500 PMCID: PMC9625083 DOI: 10.7554/elife.79027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 10/02/2022] [Indexed: 11/17/2022] Open
Abstract
The brain encodes the statistical regularities of the environment in a task-specific yet flexible and generalizable format. Here, we seek to understand this process by bridging two parallel lines of research, one centered on sensorimotor timing, and the other on cognitive mapping in the hippocampal system. By combining functional magnetic resonance imaging (fMRI) with a fast-paced time-to-contact (TTC) estimation task, we found that the hippocampus signaled behavioral feedback received in each trial as well as performance improvements across trials along with reward-processing regions. Critically, it signaled performance improvements independent from the tested intervals, and its activity accounted for the trial-wise regression-to-the-mean biases in TTC estimation. This is in line with the idea that the hippocampus supports the rapid encoding of temporal context even on short time scales in a behavior-dependent manner. Our results emphasize the central role of the hippocampus in statistical learning and position it at the core of a brain-wide network updating sensorimotor representations in real time for flexible behavior.
Collapse
Affiliation(s)
- Ignacio Polti
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, The Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, Jebsen Centre for Alzheimer’s Disease, Norwegian University of Science and TechnologyTrondheimNorway
- Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| | - Matthias Nau
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, The Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, Jebsen Centre for Alzheimer’s Disease, Norwegian University of Science and TechnologyTrondheimNorway
- Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| | - Raphael Kaplan
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, The Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, Jebsen Centre for Alzheimer’s Disease, Norwegian University of Science and TechnologyTrondheimNorway
- Department of Basic Psychology, Clinical Psychology, and Psychobiology, Universitat Jaume ICastellón de la PlanaSpain
| | - Virginie van Wassenhove
- CEA DRF/Joliot, NeuroSpin; INSERM, Cognitive Neuroimaging Unit; CNRS, Université Paris-SaclayGif-Sur-YvetteFrance
| | - Christian F Doeller
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, The Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, Jebsen Centre for Alzheimer’s Disease, Norwegian University of Science and TechnologyTrondheimNorway
- Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
- Wilhelm Wundt Institute of Psychology, Leipzig UniversityLeipzigGermany
| |
Collapse
|
209
|
Simon KC, Clemenson GD, Zhang J, Sattari N, Shuster AE, Clayton B, Alzueta E, Dulai T, de Zambotti M, Stark C, Baker FC, Mednick SC. Sleep facilitates spatial memory but not navigation using the Minecraft Memory and Navigation task. Proc Natl Acad Sci U S A 2022; 119:e2202394119. [PMID: 36252023 PMCID: PMC9618094 DOI: 10.1073/pnas.2202394119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 08/04/2022] [Indexed: 11/18/2022] Open
Abstract
Sleep facilitates hippocampal-dependent memories, supporting the acquisition and maintenance of internal representation of spatial relations within an environment. In humans, however, findings have been mixed regarding sleep's contribution to spatial memory and navigation, which may be due to task designs or outcome measurements. We developed the Minecraft Memory and Navigation (MMN) task for the purpose of disentangling how spatial memory accuracy and navigation change over time, and to study sleep's independent contributions to each. In the MMN task, participants learned the locations of objects through free exploration of an open field computerized environment. At test, they were teleported to random positions around the environment and required to navigate to the remembered location of each object. In study 1, we developed and validated four unique MMN environments with the goal of equating baseline learning and immediate test performance. A total of 86 participants were administered the training phases and immediate test. Participants' baseline performance was equivalent across all four environments, supporting the use of the MMN task. In study 2, 29 participants were trained, tested immediately, and again 12 h later after a period of sleep or wake. We found that the metric accuracy of object locations, i.e., spatial memory, was maintained over a night of sleep, while after wake, metric accuracy declined. In contrast, spatial navigation improved over both sleep and wake delays. Our findings support the role of sleep in retaining the precise spatial relationships within a cognitive map; however, they do not support a specific role of sleep in navigation.
Collapse
Affiliation(s)
- Katharine C. Simon
- Department of Cognitive Sciences, School of Social Sciences, University of California, Irvine, CA 92697
| | - Gregory D. Clemenson
- Department of Neurobiology and Behavior, School of Biological Sciences, University of California, Irvine, CA 92697
| | - Jing Zhang
- Department of Cognitive Sciences, School of Social Sciences, University of California, Irvine, CA 92697
| | - Negin Sattari
- Department of Cognitive Sciences, School of Social Sciences, University of California, Irvine, CA 92697
| | - Alessandra E. Shuster
- Department of Cognitive Sciences, School of Social Sciences, University of California, Irvine, CA 92697
| | - Brandon Clayton
- Department of Cognitive Sciences, School of Social Sciences, University of California, Irvine, CA 92697
| | - Elisabet Alzueta
- Center for Health Sciences, SRI International, Menlo Park, CA 94025
| | - Teji Dulai
- Center for Health Sciences, SRI International, Menlo Park, CA 94025
| | | | - Craig Stark
- Department of Neurobiology and Behavior, School of Biological Sciences, University of California, Irvine, CA 92697
| | - Fiona C. Baker
- Center for Health Sciences, SRI International, Menlo Park, CA 94025
- Brain Function Research Group, School of Physiology, University of the Witwatersrand, Johannesburg, 2193, South Africa
| | - Sara C. Mednick
- Department of Cognitive Sciences, School of Social Sciences, University of California, Irvine, CA 92697
| |
Collapse
|
210
|
Moghadam M, Towhidkhah F, Gharibzadeh S. A fuzzy-oscillatory model of medial prefrontal cortex control function in spatial memory retrieval in human navigation function. Front Syst Neurosci 2022; 16:972985. [PMID: 36341478 PMCID: PMC9634066 DOI: 10.3389/fnsys.2022.972985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 10/03/2022] [Indexed: 11/17/2022] Open
Abstract
Navigation can be broadly defined as the process of moving from an origin to a destination through path-planning. Previous research has shown that navigation is mainly related to the function of the medial temporal lobe (MTL), including the hippocampus (HPC), and medial prefrontal cortex (mPFC), which controls retrieval of the spatial memories from this region. In this study, we suggested a cognitive and computational model of human navigation with a focus on mutual interactions between the hippocampus (HPC) and the mPFC using the concept of synchrony. The Van-der-pol oscillator was used to model the synchronous process of receiving and processing “what stream” information. A fuzzy lookup table system was applied for modeling the controlling function of the mPFC in retrieving spatial information from the HPC. The effect of attention level was also included and simulated. The performance of the model was evaluated using information reported in previous experimental research. Due to the inherent stability of the proposed fuzzy-oscillatory model, it is less sensitive to the exact values of the initial conditions, and therefore, it is shown that it is consistent with the actual human performance in real environments. Analyzing the proposed cognitive and fuzzy-oscillatory computational model demonstrates that the model is able to reproduce certain cognitive and functional disturbances in navigation in related diseases such as Alzheimer’s disease (AD). We have shown that an increase in the bifurcation parameter of the Van-der-pol equation represents an increase in the low-frequency spectral power density and a decrease in the high-frequency spectral power as occurs in AD due to an increase in the amyloid plaques in the brain. These changes in the frequency characteristics of neuronal activity, in turn, lead to impaired recall and retrieval of landmarks information and learned routes upon encountering them. As a result, and because of the wrong frequency code being transmitted, the relevant set of rules in the mPFC is not activated, or another unrelated set will be activated, which leads to forgetfulness and erroneous decisions in routing and eventually losing the route in Alzheimer’s patients.
Collapse
Affiliation(s)
- Maryam Moghadam
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Farzad Towhidkhah
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
- *Correspondence: Farzad Towhidkhah
| | - Shahriar Gharibzadeh
- Cognitive Rehabilitation Clinic, Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
211
|
Cholvin T, Bartos M. Hemisphere-specific spatial representation by hippocampal granule cells. Nat Commun 2022; 13:6227. [PMID: 36266288 PMCID: PMC9585038 DOI: 10.1038/s41467-022-34039-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 10/11/2022] [Indexed: 12/24/2022] Open
Abstract
The dentate gyrus (DG) output plays a key role in the emergence of spatial and contextual map representation within the hippocampus during learning. Differences in neuronal network activity have been observed between left and right CA1-3 areas, implying lateralization in spatial coding properties. Whether bilateral differences of DG granule cell (GC) assemblies encoding spatial and contextual information exist remains largely unexplored. Here, we employed two-photon calcium imaging of the left or the right DG to record the activity of GC populations over five consecutive days in head-fixed mice navigating through familiar and novel virtual environments. Imaging revealed similar mean GC activity on both sides. However, spatial tuning, context-selectivity and run-to-run place field reliability was markedly higher for DG place cells in the left than the right hemisphere. Moreover, the proportion of GCs reconfiguring their place fields between contexts was greater in the left DG. Thus, our data suggest that contextual information is differentially processed by GC populations depending on the hemisphere, with higher context discrimination in the left but a bias towards generalization in the right DG.
Collapse
Affiliation(s)
- Thibault Cholvin
- grid.5963.9Institute for Physiology I, University of Freiburg, Medical Faculty, 79104 Freiburg, Germany
| | - Marlene Bartos
- grid.5963.9Institute for Physiology I, University of Freiburg, Medical Faculty, 79104 Freiburg, Germany
| |
Collapse
|
212
|
Yan Y, Wang X, Chaput D, Shin MK, Koh Y, Gan L, Pieper AA, Woo JAA, Kang DE. X-linked ubiquitin-specific peptidase 11 increases tauopathy vulnerability in women. Cell 2022; 185:3913-3930.e19. [PMID: 36198316 PMCID: PMC9588697 DOI: 10.1016/j.cell.2022.09.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/31/2022] [Accepted: 08/31/2022] [Indexed: 01/26/2023]
Abstract
Although women experience significantly higher tau burden and increased risk for Alzheimer's disease (AD) than men, the underlying mechanism for this vulnerability has not been explained. Here, we demonstrate through in vitro and in vivo models, as well as human AD brain tissue, that X-linked ubiquitin specific peptidase 11 (USP11) augments pathological tau aggregation via tau deubiquitination initiated at lysine-281. Removal of ubiquitin provides access for enzymatic tau acetylation at lysines 281 and 274. USP11 escapes complete X-inactivation, and female mice and people both exhibit higher USP11 levels than males. Genetic elimination of usp11 in a tauopathy mouse model preferentially protects females from acetylated tau accumulation, tau pathology, and cognitive impairment. USP11 levels also strongly associate positively with tau pathology in females but not males. Thus, inhibiting USP11-mediated tau deubiquitination may provide an effective therapeutic opportunity to protect women from increased vulnerability to AD and other tauopathies.
Collapse
Affiliation(s)
- Yan Yan
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH, USA; Department of Molecular Medicine, USF Health College of Medicine, Tampa, FL, USA
| | - Xinming Wang
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH, USA
| | - Dale Chaput
- Department of Molecular Medicine, USF Health College of Medicine, Tampa, FL, USA
| | - Min-Kyoo Shin
- Department of Psychiatry, Case Western Reserve University, School of Medicine, Cleveland, OH, USA; Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Yeojung Koh
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH, USA; Department of Psychiatry, Case Western Reserve University, School of Medicine, Cleveland, OH, USA; Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Li Gan
- Helen and Robert Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Andrew A Pieper
- Department of Psychiatry, Case Western Reserve University, School of Medicine, Cleveland, OH, USA; Department of Neuroscience, Case Western Reserve University, School of Medicine, Cleveland, OH, USA; Institute for Transformative Molecular Medicine, Case Western Reserve University, School of Medicine, Cleveland, OH, USA; Geriatric Psychiatry, GRECC, Cleveland, Louis Stokes Cleveland VA Medical Center, OH, USA; Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Jung-A A Woo
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH, USA; Department of Molecular Medicine, USF Health College of Medicine, Tampa, FL, USA.
| | - David E Kang
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH, USA; Louis Strokes Cleveland VA Medical Center, Cleveland, OH, USA; Department of Molecular Medicine, USF Health College of Medicine, Tampa, FL, USA.
| |
Collapse
|
213
|
Shen T, Pu JL, Jiang YS, Yue YM, He TT, Qu BY, Zhao S, Yan YP, Lai HY, Zhang BR. Impact of cognition-related single nucleotide polymorphisms on brain imaging phenotype in Parkinson's disease. Neural Regen Res 2022; 18:1154-1160. [PMID: 36255006 PMCID: PMC9827791 DOI: 10.4103/1673-5374.355764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Multiple single nucleotide polymorphisms may contribute to cognitive decline in Parkinson's disease. However, the mechanism by which these single nucleotide polymorphisms modify brain imaging phenotype remains unclear. The aim of this study was to investigate the potential effects of multiple single nucleotide polymorphisms on brain imaging phenotype in Parkinson's disease. Forty-eight Parkinson's disease patients and 39 matched healthy controls underwent genotyping and 7T magnetic resonance imaging. A cognitive-weighted polygenic risk score model was designed, in which the effect sizes were determined individually for 36 single nucleotide polymorphisms. The correlations between polygenic risk score, neuroimaging features, and clinical data were analyzed. Furthermore, individual single nucleotide polymorphism analysis was performed to explore the main effects of genotypes and their interactive effects with Parkinson's disease diagnosis. We found that, in Parkinson's disease, the polygenic risk score was correlated with the neural activity of the hippocampus, parahippocampus, and fusiform gyrus, and with hippocampal-prefrontal and fusiform-temporal connectivity, as well as with gray matter alterations in the orbitofrontal cortex. In addition, we found that single nucleotide polymorphisms in α-synuclein (SNCA) were associated with white matter microstructural changes in the superior corona radiata, corpus callosum, and external capsule. A single nucleotide polymorphism in catechol-O-methyltransferase was associated with the neural activities of the lingual, fusiform, and occipital gyri, which are involved in visual cognitive dysfunction. Furthermore, DRD3 was associated with frontal and temporal lobe function and structure. In conclusion, imaging genetics is useful for providing a better understanding of the genetic pathways involved in the pathophysiologic processes underlying Parkinson's disease. This study provides evidence of an association between genetic factors, cognitive functions, and multi-modality neuroimaging biomarkers in Parkinson's disease.
Collapse
Affiliation(s)
- Ting Shen
- Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China,Department of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Jia-Li Pu
- Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Ya-Si Jiang
- Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China,Department of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Yu-Mei Yue
- Department of Neurology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Ting-Ting He
- Department of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China,College of Biomedical Engineering and Instrument Science, Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Bo-Yi Qu
- Department of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China,College of Biomedical Engineering and Instrument Science, Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Shuai Zhao
- Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Ya-Ping Yan
- Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Hsin-Yi Lai
- Department of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China,Department of Neurology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China,College of Biomedical Engineering and Instrument Science, Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, Zhejiang Province, China,Correspondence to: Bao-Rong Zhang, ; Hsin-Yi Lai, .
| | - Bao-Rong Zhang
- Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China,Correspondence to: Bao-Rong Zhang, ; Hsin-Yi Lai, .
| |
Collapse
|
214
|
Haskell-Ramsay CF, Dodd FL, Smith D, Cuthbertson L, Nelson A, Lodge JK, Jackson PA. Mixed Tree Nuts, Cognition, and Gut Microbiota: A 4-Week, Placebo-Controlled, Randomized Crossover Trial in Healthy Nonelderly Adults. J Nutr 2022; 152:2778-2788. [PMID: 36202391 PMCID: PMC9840001 DOI: 10.1093/jn/nxac228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/19/2022] [Accepted: 09/29/2022] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Beneficial effects of nut supplementation on cognitive function have previously been demonstrated in young and older adults. Alterations to gut microbiota have also been shown following tree nut consumption. However, no data exists on the effects of nuts on cognition and intestinal microbial communities assessed within the same study. OBJECTIVES The study aimed to examine the effects of daily consumption of tree nuts for 4 wk on cognitive function (primary outcome), mood, metabolomics, and gut microbial species (secondary outcomes) in healthy, nonelderly adults. METHODS This randomized, placebo-controlled, double-blind, counterbalanced crossover study assessed the effects of 4 wk of supplementation with 30 g/d mixed tree nuts versus placebo on cognition and mood in 79 healthy adults aged 18-49 y. Metabolic responses, gut bacterial community structure, and the potential for these to impact cognition were explored using a multi-omic approach. Bacterial community analysis was conducted in Quantitative Insights Into Microbial Ecology 2 (QIIME2). RESULTS Mixed model analysis indicated that nut consumption led to significant improvements to accuracy (placebo M = 92.2% compared with NUTS M = 94.5%; P = 0.019) and speed of response (placebo M = 788 ms compared with NUTS M = 757 ms; P = 0.004) on a picture recognition task. No significant changes to bacterial community α or β diversity were observed when comparing nut consumption to the placebo arm. However, an unclassified Lachnospiraceae amplicon sequence variant (ASV) was significantly enriched in participants when supplemented with nuts (P = 0.015). No correlations were observed between the changes to picture recognition and the changes to the unclassified Lachnospiraceae ASV. There were no significant changes to the urinary metabolome. CONCLUSIONS These findings indicate a positive effect of nut on cognition following only 4 wk of consumption in a healthy nonelderly sample, as well as upregulation of a microbial taxa associated with gut health. The effects appear to be independent of one another, but further exploration is required in those experiencing cognitive decline and/or gut dysbiosis.
Collapse
Affiliation(s)
| | - Fiona L Dodd
- Brain, Performance and Nutrition Research Centre, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Darren Smith
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Lewis Cuthbertson
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Andrew Nelson
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - John K Lodge
- School of Human Sciences, London Metropolitan University, London, United Kingdom
| | - Philippa A Jackson
- Brain, Performance and Nutrition Research Centre, Northumbria University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
215
|
LeMonda BC, MacAllister W, Morrison C, Vaurio L, Blackmon K, Maiman M, Liu A, Liberta T, Bar WB. Is formal scoring better than just looking? A comparison of subjective and objective scoring methods of the Rey Complex Figure Test for lateralizing temporal lobe epilepsy. Clin Neuropsychol 2022; 36:1637-1652. [PMID: 33356888 PMCID: PMC8236070 DOI: 10.1080/13854046.2020.1865461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
ObjectiveNeuropsychologists labor over scoring the Rey Complex Figure Test (RCFT), a measure of visuospatial functioning and nonverbal memory. Compelling arguments suggest that pathognomonic signs of the RCFT are observable to the "naked eye." Standard scoring systems are insensitive to lateralizing temporal lobe epilepsy (TLE) and alternative "qualitative" scoring systems are ineffective and time-consuming. Method: We examined accuracy of TLE lateralization using subjective classifications and standard scoring. Participants were 84 TLE patients (53 female; mean age=36yrs) and 46 controls (27 female; mean age = 27.5). The former were classified as right (n = 41) or left (n = 43) TLE by neurologists using EEG and MRI studies. RCFT were scored using standard scoring with cut-offs of z ≤ -2 classified as impaired and were rated as "characteristic" of RTLE (Ugly) or LTLE (Not Ugly) performance by neuropsychologists. Accuracy of seizure lateralization for both methods was examined. Results: Neuropsychologists' ratings accuracy were at or below chance. Standard scoring criteria showed chance or slightly better lateralization prediction. Standard scoring predicted RTLE laterality more accurately than subjective ratings for copy trials; standard scoring was no better at lateralizing RTLE with delays. Subjective ratings were better at distinguishing TLE patients from controls. Conclusion: Findings highlight concerns regarding the usefulness of the RCFT in TLE lateralization, regardless of scoring approach.
Collapse
Affiliation(s)
| | | | | | - Linnea Vaurio
- New York University Medical Center, New York, NY, USA
| | | | - Moshe Maiman
- University of Chicago Hospital, Chicago, IL, USA
| | - Anli Liu
- New York University Medical Center, New York, NY, USA
| | | | | |
Collapse
|
216
|
Abstract
Growing evidence indicates that a suboptimal intrauterine environment confers risk for schizophrenia. The developmental model of schizophrenia posits that aberrant brain growth during early brain development and adolescence may interact to contribute to this psychiatric disease in adulthood. Although a variety of factors may perturb the environment of the developing fetus and predispose for schizophrenia later, a common mechanism has yet to be elucidated. Micronutrient deficiencies during the perinatal period are known to induce potent effects on brain development by altering neurodevelopmental processes. Iron is an important candidate nutrient to consider because of its role in energy metabolism, monoamine synthesis, synaptogenesis, myelination, and the high prevalence of iron deficiency (ID) in the mother-infant dyad. Understanding the current state of science regarding perinatal ID as an early risk factor for schizophrenia is imperative to inform empirical work investigating the etiology of schizophrenia and develop prevention and intervention programs. In this narrative review, we focus on perinatal ID as a common mechanism underlying the fetal programming of schizophrenia. First, we review the neural aberrations associated with perinatal ID that indicate risk for schizophrenia in adulthood, including disruptions in dopaminergic neurotransmission, hippocampal-dependent learning and memory, and sensorimotor gating. Second, we review the pathophysiology of perinatal ID as a function of maternal ID during pregnancy and use epidemiological and cohort studies to link perinatal ID with risk of schizophrenia. Finally, we review potential confounding phenotypes, including nonanemic causes of perinatal brain ID and future risk of schizophrenia.
Collapse
Affiliation(s)
- Andrea M. Maxwell
- Medical Scientist Training Program, University of Minnesota, Minneapolis, MN 55455 (USA)
| | - Raghavendra B. Rao
- Department of Pediatrics, Division of Neonatology, University of Minnesota Medical School, Minneapolis, MN 55455 (USA)
- Center for Neurobehavioral Development, University of Minnesota, Minneapolis, MN 55455 (USA)
| |
Collapse
|
217
|
Patoori S, Barnada SM, Large C, Murray JI, Trizzino M. Young transposable elements rewired gene regulatory networks in human and chimpanzee hippocampal intermediate progenitors. Development 2022; 149:dev200413. [PMID: 36052683 PMCID: PMC9641669 DOI: 10.1242/dev.200413] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 08/21/2022] [Indexed: 01/19/2023]
Abstract
The hippocampus is associated with essential brain functions, such as learning and memory. Human hippocampal volume is significantly greater than expected compared with that of non-human apes, suggesting a recent expansion. Intermediate progenitors, which are able to undergo multiple rounds of proliferative division before a final neurogenic division, may have played a role in evolutionary hippocampal expansion. To investigate the evolution of gene regulatory networks underpinning hippocampal neurogenesis in apes, we leveraged the differentiation of human and chimpanzee induced pluripotent stem cells into TBR2 (or EOMES)-positive hippocampal intermediate progenitor cells (hpIPCs). We found that the gene networks active in hpIPCs are significantly different between humans and chimpanzees, with ∼2500 genes being differentially expressed. We demonstrate that species-specific transposon-derived enhancers contribute to these transcriptomic differences. Young transposons, predominantly endogenous retroviruses and SINE-Vntr-Alus (SVAs), were co-opted as enhancers in a species-specific manner. Human-specific SVAs provided substrates for thousands of novel TBR2-binding sites, and CRISPR-mediated repression of these SVAs attenuated the expression of ∼25% of the genes that are upregulated in human intermediate progenitors relative to the same cell population in the chimpanzee.
Collapse
Affiliation(s)
- Sruti Patoori
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Samantha M. Barnada
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Christopher Large
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John I. Murray
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marco Trizzino
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
218
|
Roberts G, Wen W, Ridgway K, Ho C, Gooch P, Leung V, Williams T, Breakspear M, Mitchell PB. Hippocampal cingulum white matter increases over time in young people at high genetic risk for bipolar disorder. J Affect Disord 2022; 314:325-332. [PMID: 35878837 DOI: 10.1016/j.jad.2022.07.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 06/23/2022] [Accepted: 07/17/2022] [Indexed: 10/17/2022]
Abstract
BACKGROUND Bipolar disorder (BD) is a strongly familial psychiatric disorder associated with white matter (WM) brain abnormalities. It is unclear whether such abnormalities are present in relatives without BD, and little is known about WM trajectories in those at increased genetic risk. METHODS Diffusion magnetic resonance imaging (dMRI) data were acquired at baseline and after two years in 91 unaffected individuals with a first-degree relative with bipolar disorder (HR), and 85 individuals with no family history of mental illness (CON). All participants were aged between 12 and 30 years at baseline. We examined longitudinal change in Fractional Anisotropy (FA) using tract-based spatial statistics (TBSS). RESULTS Compared to the CON group, HR participants showed a significant increase in FA in the right cingulum (hippocampus) (CGH) over a two-year period (p < .05, FDR corrected). This effect was more pronounced in HR individuals without a lifetime diagnosis of a mood disorder than those with a mood disorder. LIMITATIONS While our study is well powered to achieve the primary objectives, our sub-group analyses were under powered. CONCLUSIONS In one of the very few longitudinal neuroimaging studies of young people at high risk for BD, this study reports novel evidence of atypical white matter development in HR individuals in a key cortico-limbic tract involved in emotion regulation. Our findings also suggest that this different white matter developmental trajectory may be stronger in HR individuals without affective psychopathology. As such, increases in FA in the right CGH of HR participants may be a biomarker of resilience to mood disorders.
Collapse
Affiliation(s)
- G Roberts
- School of Psychiatry, University of New South Wales, Randwick, NSW, Australia.
| | - W Wen
- School of Psychiatry, University of New South Wales, Randwick, NSW, Australia
| | - K Ridgway
- School of Psychiatry, University of New South Wales, Randwick, NSW, Australia
| | - C Ho
- School of Psychiatry, University of New South Wales, Randwick, NSW, Australia
| | - P Gooch
- School of Psychiatry, University of New South Wales, Randwick, NSW, Australia
| | - V Leung
- School of Psychiatry, University of New South Wales, Randwick, NSW, Australia
| | - T Williams
- School of Psychiatry, University of New South Wales, Randwick, NSW, Australia
| | - M Breakspear
- School of Psychology, Faculty of Science, Discipline of Psychiatry, Faculty of Health and Medicine, University of Newcastle, NSW, Australia
| | - P B Mitchell
- School of Psychiatry, University of New South Wales, Randwick, NSW, Australia
| |
Collapse
|
219
|
Smith ET, Skolasinska P, Qin S, Sun A, Fishwick P, Park DC, Basak C. Cognitive and structural predictors of novel task learning, and contextual predictors of time series of daily task performance during the learning period. Front Aging Neurosci 2022; 14:936528. [PMID: 36212037 PMCID: PMC9540228 DOI: 10.3389/fnagi.2022.936528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/29/2022] [Indexed: 11/21/2022] Open
Abstract
Investigation into methods of addressing cognitive loss exhibited later in life is of paramount importance to the field of cognitive aging. The field continues to make significant strides in designing efficacious cognitive interventions to mitigate cognitive decline, and the very act of learning a demanding task has been implicated as a potential mechanism of augmenting cognition in both the field of cognitive intervention and studies of cognitive reserve. The present study examines individual-level predictors of complex skill learning and day-to-day performance on a gamified working memory updating task, the BirdWatch Game, intended for use as a cognitive intervention tool in older adults. A measure of verbal episodic memory and the volume of a brain region involved in verbal working memory and cognitive control (the left inferior frontal gyrus) were identified as predictors of learning rates on the BirdWatch Game. These two neuro-cognitive measures were more predictive of learning when considered in conjunction than when considered separately, indicating a complementary effect. Additionally, auto-regressive time series forecasting analyses were able to identify meaningful daily predictors (that is, mood, stress, busyness, and hours of sleep) of performance-over-time on the BirdWatch Game in 50% of cases, with the specific pattern of contextual influences on performance being highly idiosyncratic between participants. These results highlight the specific contribution of language processing and cognitive control abilities to the learning of the novel task examined in this study, as well as the variability of subject-level influences on task performance during task learning.
Collapse
Affiliation(s)
- Evan T. Smith
- Center for Vital Longevity, University of Texas at Dallas, Dallas, TX, United States
- Department of Psychology, University of Texas at Dallas, Richardson, TX, United States
| | - Paulina Skolasinska
- Center for Vital Longevity, University of Texas at Dallas, Dallas, TX, United States
- Department of Psychology, University of Texas at Dallas, Richardson, TX, United States
| | - Shuo Qin
- Center for Vital Longevity, University of Texas at Dallas, Dallas, TX, United States
| | - Andrew Sun
- Center for Vital Longevity, University of Texas at Dallas, Dallas, TX, United States
| | - Paul Fishwick
- School of Arts and Technology, University of Texas at Dallas, Richardson, TX, United States
| | - Denise C. Park
- Center for Vital Longevity, University of Texas at Dallas, Dallas, TX, United States
- Department of Psychology, University of Texas at Dallas, Richardson, TX, United States
| | - Chandramallika Basak
- Center for Vital Longevity, University of Texas at Dallas, Dallas, TX, United States
- Department of Psychology, University of Texas at Dallas, Richardson, TX, United States
- *Correspondence: Chandramallika Basak
| |
Collapse
|
220
|
Zhang Q, Wu J, Pei C, Ma M, Dong Y, Gao M, Zhang H. Altered functional connectivity in emotional subregions of the anterior cingulate cortex in young and middle-aged patients with major depressive disorder: A resting-state fMRI study. Biol Psychol 2022; 175:108426. [PMID: 36152733 DOI: 10.1016/j.biopsycho.2022.108426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 09/08/2022] [Accepted: 09/19/2022] [Indexed: 11/02/2022]
Abstract
BACKGROUND It has been demonstrated that the anterior cingulate cortex (ACC) has three subregions, involved in behavior, cognition, and emotion. However, the intrinsic connectivity of the ACC subregions in patients with major depressive disorder (MDD) is still unclear. In this study, functional magnetic resonance imaging (fMRI) data was used to detect the functional connectivity (FC) of ACC subregions and the correlation with the disease severity in young and middle-aged patients with MDD. METHODS A total of 36 young and middle-aged patients with first-episode MDD and 36 healthy controls (HCs) were enrolled in this study. FC was applied to investigate altered connectivity of the ACC subregion in MDD patients compared to HCs. Correlation analysis was then used to assess possible relationship between the neuroimaging findings and clinical symptoms in the patient group. RESULTS Compared to HCs, young and middle-aged patients had significantly decreased FC between the emotional subregion of the ACC and the hippocampus, thalamus, insula, angular gyrus, and posterior cingulate cortex. The FC between the ACC emotional subregion and the insula, the AG, the RPHG was negatively correlated with depression index. The FC between the ACC emotional subregion and the putamen was positively correlated with depression index. CONCLUSION The present findings indicate that abnormal ACC subregions-seeded FC may be implicated in the MDD-related abnormalities of emotion regulation and information processing. And there is a correlation between the above FC changes and the clinical symptoms of young and middle-aged MDD patients. This study may provide preliminary evidence for the ACC-related neural mechanism in young and middle-aged MDD patients and enhance the understanding of the pathophysiology of MDD.
Collapse
Affiliation(s)
- Qiaoying Zhang
- Department of Radiology, the Affiliated Xi'an Central Hospital of Xi'an Jiaotong University Health Science Center, Xi'an 710003, China
| | - Jiayu Wu
- Department of Radiology, the Affiliated Xi'an Central Hospital of Xi'an Jiaotong University Health Science Center, Xi'an 710003, China
| | - Caixia Pei
- Department of Radiology, the Affiliated Xi'an Central Hospital of Xi'an Jiaotong University Health Science Center, Xi'an 710003, China
| | - Mingyue Ma
- Department of Radiology, the Affiliated Xi'an Central Hospital of Xi'an Jiaotong University Health Science Center, Xi'an 710003, China
| | - Yan Dong
- Department of Radiology, the Affiliated Xi'an Central Hospital of Xi'an Jiaotong University Health Science Center, Xi'an 710003, China
| | - Ming Gao
- Department of Radiology, the Affiliated Xi'an Central Hospital of Xi'an Jiaotong University Health Science Center, Xi'an 710003, China
| | - Hong Zhang
- Department of Radiology, the Affiliated Xi'an Central Hospital of Xi'an Jiaotong University Health Science Center, Xi'an 710003, China.
| |
Collapse
|
221
|
Bo O'Connor B, Fowler Z. How Imagination and Memory Shape the Moral Mind. PERSONALITY AND SOCIAL PSYCHOLOGY REVIEW 2022; 27:226-249. [PMID: 36062349 DOI: 10.1177/10888683221114215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Interdisciplinary research has proposed a multifaceted view of human cognition and morality, establishing that inputs from multiple cognitive and affective processes guide moral decisions. However, extant work on moral cognition has largely overlooked the contributions of episodic representation. The ability to remember or imagine a specific moment in time plays a broadly influential role in cognition and behavior. Yet, existing research has only begun exploring the influence of episodic representation on moral cognition. Here, we evaluate the theoretical connections between episodic representation and moral cognition, review emerging empirical work revealing how episodic representation affects moral decision-making, and conclude by highlighting gaps in the literature and open questions. We argue that a comprehensive model of moral cognition will require including the episodic memory system, further delineating its direct influence on moral thought, and better understanding its interactions with other mental processes to fundamentally shape our sense of right and wrong.
Collapse
Affiliation(s)
| | - Zoë Fowler
- University at Albany, State University of New York, USA
| |
Collapse
|
222
|
Disruptions in white matter microstructure associated with impaired visual associative memory in schizophrenia-spectrum illness. Eur Arch Psychiatry Clin Neurosci 2022; 272:971-983. [PMID: 34557990 DOI: 10.1007/s00406-021-01333-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 09/09/2021] [Indexed: 12/13/2022]
Abstract
Episodic memory ability relies on hippocampal-prefrontal connectivity. However, few studies have examined relationships between memory performance and white matter (WM) microstructure in hippocampal-prefrontal pathways in schizophrenia-spectrum disorder (SSDs). Here, we investigated these relationships in individuals with first-episode psychosis (FEP) and chronic schizophrenia-spectrum disorders (SSDs) using tractography analysis designed to interrogate the microstructure of WM tracts in the hippocampal-prefrontal pathway. Measures of WM microstructure (fractional anisotropy [FA], radial diffusivity [RD], and axial diffusivity [AD]) were obtained for 47 individuals with chronic SSDs, 28 FEP individuals, 52 older healthy controls, and 27 younger healthy controls. Tractography analysis was performed between the hippocampus and three targets involved in hippocampal-prefrontal connectivity (thalamus, amygdala, nucleus accumbens). Measures of WM microstructure were then examined in relation to episodic memory performance separately across each group. Both those with FEP and chronic SSDs demonstrated impaired episodic memory performance. However, abnormal WM microstructure was only observed in individuals with chronic SSDs. Abnormal WM microstructure in the hippocampal-thalamic pathway in the right hemisphere was associated with poorer memory performance in individuals with chronic SSDs. These findings suggest that disruptions in WM microstructure in the hippocampal-prefrontal pathway may contribute to memory impairments in individuals with chronic SSDs but not FEP.
Collapse
|
223
|
Gómez A, Rodríguez-Expósito B, Ocaña FM, Salas C, Rodríguez F. Trace classical conditioning impairment after lesion of the lateral part of the goldfish telencephalic pallium suggests a long ancestry of the episodic memory function of the vertebrate hippocampus. Brain Struct Funct 2022; 227:2879-2890. [PMID: 36006500 DOI: 10.1007/s00429-022-02553-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 08/10/2022] [Indexed: 11/24/2022]
Abstract
There is an ongoing debate on the evolutionary origin of the episodic memory function of the hippocampus. A widely accepted hypothesis claims that the hippocampus first evolved as a dedicated system for spatial navigation in ancestral vertebrates, being transformed later in phylogeny to support a broader role in episodic memory with the emergence of mammals. On the contrary, an alternative hypothesis holds that the hippocampus of ancestral vertebrates originally encoded both the spatial and temporal dimensions of relational memories since its evolutionary appearance, thus suggesting that the episodic-like memory function of the hippocampus could be the primitive condition in vertebrate forebrain evolution. The present experiment was aimed at scrutinizing these opposing hypotheses by investigating whether the hippocampal pallium of teleost fish, a vertebrate group that shares with mammals a common ancestor that lived about 400 Mya, is, like the hippocampus of mammals, essential to associate time-discontiguous events. Thus, goldfish with lesions in the ventral part of the dorsolateral pallium (Dlv), a telencephalic region considered homologous to the hippocampal pallium of land vertebrates, were trained in trace versus delay eyeblink-like classical conditioning, two learning procedures that differ only in the temporal relationships between the stimuli to be associated in memory. The results showed that hippocampal pallium lesion in goldfish severely impairs trace conditioning, but spares delay conditioning. This finding challenges the idea that navigation preceded relational memory in evolutionary appearance and suggests the possibility that a relational memory function that associates the experienced events in both the spatial and temporal dimensions could be a primitive feature of the hippocampus that pre-existed in the common ancestor of vertebrates.
Collapse
Affiliation(s)
- A Gómez
- Laboratory of Psychobiology, Universidad de Sevilla, Seville, Spain
| | | | - F M Ocaña
- Laboratory of Psychobiology, Universidad de Sevilla, Seville, Spain
| | - C Salas
- Laboratory of Psychobiology, Universidad de Sevilla, Seville, Spain.
| | - F Rodríguez
- Laboratory of Psychobiology, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
224
|
Pranty AI, Shumka S, Adjaye J. Bilirubin-Induced Neurological Damage: Current and Emerging iPSC-Derived Brain Organoid Models. Cells 2022; 11:2647. [PMID: 36078055 PMCID: PMC9454749 DOI: 10.3390/cells11172647] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/04/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
Bilirubin-induced neurological damage (BIND) has been a subject of studies for decades, yet the molecular mechanisms at the core of this damage remain largely unknown. Throughout the years, many in vivo chronic bilirubin encephalopathy models, such as the Gunn rat and transgenic mice, have further elucidated the molecular basis of bilirubin neurotoxicity as well as the correlations between high levels of unconjugated bilirubin (UCB) and brain damage. Regardless of being invaluable, these models cannot accurately recapitulate the human brain and liver system; therefore, establishing a physiologically recapitulating in vitro model has become a prerequisite to unveil the breadth of complexities that accompany the detrimental effects of UCB on the liver and developing human brain. Stem-cell-derived 3D brain organoid models offer a promising platform as they bear more resemblance to the human brain system compared to existing models. This review provides an explicit picture of the current state of the art, advancements, and challenges faced by the various models as well as the possibilities of using stem-cell-derived 3D organoids as an efficient tool to be included in research, drug screening, and therapeutic strategies for future clinical applications.
Collapse
Affiliation(s)
| | | | - James Adjaye
- Institute for Stem Cell Research and Regenerative Medicine, Faculty of Medicine, Heinrich-Heine University, Moorenstrasse 5, 40225 Dusseldorf, Germany
| |
Collapse
|
225
|
Li Y, Qiu Z, Fan X, Liu X, Chang EIC, Xu Y. Integrated 3d flow-based multi-atlas brain structure segmentation. PLoS One 2022; 17:e0270339. [PMID: 35969596 PMCID: PMC9377636 DOI: 10.1371/journal.pone.0270339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/09/2022] [Indexed: 11/18/2022] Open
Abstract
MRI brain structure segmentation plays an important role in neuroimaging studies. Existing methods either spend much CPU time, require considerable annotated data, or fail in segmenting volumes with large deformation. In this paper, we develop a novel multi-atlas-based algorithm for 3D MRI brain structure segmentation. It consists of three modules: registration, atlas selection and label fusion. Both registration and label fusion leverage an integrated flow based on grayscale and SIFT features. We introduce an effective and efficient strategy for atlas selection by employing the accompanying energy generated in the registration step. A 3D sequential belief propagation method and a 3D coarse-to-fine flow matching approach are developed in both registration and label fusion modules. The proposed method is evaluated on five public datasets. The results show that it has the best performance in almost all the settings compared to competitive methods such as ANTs, Elastix, Learning to Rank and Joint Label Fusion. Moreover, our registration method is more than 7 times as efficient as that of ANTs SyN, while our label transfer method is 18 times faster than Joint Label Fusion in CPU time. The results on the ADNI dataset demonstrate that our method is applicable to image pairs that require a significant transformation in registration. The performance on a composite dataset suggests that our method succeeds in a cross-modality manner. The results of this study show that the integrated 3D flow-based method is effective and efficient for brain structure segmentation. It also demonstrates the power of SIFT features, multi-atlas segmentation and classical machine learning algorithms for a medical image analysis task. The experimental results on public datasets show the proposed method's potential for general applicability in various brain structures and settings.
Collapse
Affiliation(s)
- Yeshu Li
- School of Computer Science and Engineering, Beihang University, Beijing, China
| | - Ziming Qiu
- Electrical and Computer Engineering, Tandon School of Engineering, New York University, Brooklyn, NY, United States of America
| | - Xingyu Fan
- Bioengineering College, Chongqing University, Chongqing, China
| | - Xianglong Liu
- School of Computer Science and Engineering, Beihang University, Beijing, China
| | | | - Yan Xu
- School of Biological Science and Medical Engineering, State Key Laboratory of Software Development Environment, Key Laboratory of Biomechanics, Mechanobiology of Ministry of Education and Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, China
- Microsoft Research, Beijing, China
| |
Collapse
|
226
|
Multiple types of navigational information are independently encoded in the population activities of the dentate gyrus neurons. Proc Natl Acad Sci U S A 2022; 119:e2106830119. [PMID: 35930667 PMCID: PMC9371651 DOI: 10.1073/pnas.2106830119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
In this study, we found that multiple types of information (position, speed, and motion direction in an open field and current and future location in a T-maze) are independently encoded in the overlapping, but different, populations of dentate gyrus (DG) neurons. This computational nature of the independent distribution of information in neural circuits is newly found not only in the DG, but also in other hippocampal regions. The dentate gyrus (DG) plays critical roles in cognitive functions, such as learning, memory, and spatial coding, and its dysfunction is implicated in various neuropsychiatric disorders. However, it remains largely unknown how information is represented in this region. Here, we recorded neuronal activity in the DG using Ca2+ imaging in freely moving mice and analyzed this activity using machine learning. The activity patterns of populations of DG neurons enabled us to successfully decode position, speed, and motion direction in an open field, as well as current and future location in a T-maze, and each individual neuron was diversely and independently tuned to these multiple information types. Our data also showed that each type of information is unevenly distributed in groups of DG neurons, and different types of information are independently encoded in overlapping, but different, populations of neurons. In alpha-calcium/calmodulin-dependent kinase II (αCaMKII) heterozygous knockout mice, which present deficits in spatial remote and working memory, the decoding accuracy of position in the open field and future location in the T-maze were selectively reduced. These results suggest that multiple types of information are independently distributed in DG neurons.
Collapse
|
227
|
Sakon JJ, Kiani R. Differences in memory for what, where, and when components of recently formed episodes. J Neurophysiol 2022; 128:310-325. [PMID: 35792500 PMCID: PMC9342146 DOI: 10.1152/jn.00250.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
An integral feature of human memory is the ability to recall past events. What distinguishes such episodic memory from semantic or associative memory is the joint encoding and retrieval of "what," "where," and "when" (WWW) for such events. Surprisingly, little work has addressed whether all three components of WWW are retrieved with equal fidelity when remembering episodes. To study this question, we created a novel task where human participants identified matched or mismatched still images sampled from recently viewed synthetic movies. The mismatch images only probe one of the three WWW components at a time, allowing us to separately test accuracies for each component of the episodes. Crucially, each WWW component in the movies is easily distinguishable in isolation, thereby making any differences in accuracy between components due to how they are joined in memory. We find that memory for "when" has the lowest accuracy, with it being the component most influenced by primacy and recency. Furthermore, the memory of "when" is most susceptible to interference due to changes in task load. These findings suggest that episodes are not stored and retrieved as a coherent whole but instead their components are either stored or retrieved differentially as part of an active reconstruction process. NEW & NOTEWORTHY When we store and subsequently retrieve episodes, does the brain encode them holistically or in separate parts that are later reconstructed? Using a task where participants study abstract episodes and on any given trial are probed on the what, where, and when components, we find mnemonic differences between them. Accuracy for "when" memory is the lowest, as it is most influenced by primacy, recency, and interference, suggesting that episodes are not treated holistically by the brain.
Collapse
Affiliation(s)
- John J Sakon
- Center for Neural Science, New York University, New York, New York
| | - Roozbeh Kiani
- Center for Neural Science, New York University, New York, New York.,Neuroscience Institute, NYU Langone Medical Center, New York, New York.,Department of Psychology, New York University, New York, New York
| |
Collapse
|
228
|
Hazarika RA, Maji AK, Syiem R, Sur SN, Kandar D. Hippocampus Segmentation Using U-Net Convolutional Network from Brain Magnetic Resonance Imaging (MRI). J Digit Imaging 2022; 35:893-909. [PMID: 35304675 PMCID: PMC9485390 DOI: 10.1007/s10278-022-00613-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 01/04/2022] [Accepted: 01/14/2022] [Indexed: 12/21/2022] Open
Abstract
Hippocampus is a part of the limbic system in human brain that plays an important role in forming memories and dealing with intellectual abilities. In most of the neurological disorders related to dementia, such as, Alzheimer's disease, hippocampus is one of the earliest affected regions. Because there are no effective dementia drugs, an ambient assisted living approach may help to prevent or slow the progression of dementia. By segmenting and analyzing the size/shape of hippocampus, it may be possible to classify the early dementia stages. Because of complex structure, traditional image segmentation techniques can't segment hippocampus accurately. Machine learning (ML) is a well known tool in medical image processing that can predict and deliver the outcomes accurately by learning from it's previous results. Convolutional Neural Networks (CNN) is one of the most popular ML algorithms. In this work, a U-Net Convolutional Network based approach is used for hippocampus segmentation from 2D brain images. It is observed that, the original U-Net architecture can segment hippocampus with an average performance rate of 93.6%, which outperforms all other discussed state-of-arts. By using a filter size of [Formula: see text], the original U-Net architecture performs a sequence of convolutional processes. We tweaked the architecture further to extract more relevant features by replacing all [Formula: see text] kernels with three alternative kernels of sizes [Formula: see text], [Formula: see text], and [Formula: see text]. It is observed that, the modified architecture achieved an average performance rate of 96.5%, which outperforms the original U-Net model convincingly.
Collapse
Affiliation(s)
- Ruhul Amin Hazarika
- Department of Information Technology, North Eastern Hill University, Shillong, Meghalaya 793022 India
| | - Arnab Kumar Maji
- Department of Information Technology, North Eastern Hill University, Shillong, Meghalaya 793022 India
| | - Raplang Syiem
- Department of Information Technology, North Eastern Hill University, Shillong, Meghalaya 793022 India
| | - Samarendra Nath Sur
- Department of Electronics and Communication Engineering, Sikkim Manipal Institute of Technology, Sikkim Manipal University, Majitar, Sikkim 737136 India
| | - Debdatta Kandar
- Department of Information Technology, North Eastern Hill University, Shillong, Meghalaya 793022 India
| |
Collapse
|
229
|
Eggert T, Nguyen PV, Ernst K, Loosli SV, Straube A. A new test to detect impairments of sequential visuospatial memory due to lesions of the temporal lobe. PLoS One 2022; 17:e0272365. [PMID: 35905135 PMCID: PMC9337684 DOI: 10.1371/journal.pone.0272365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/18/2022] [Indexed: 12/01/2022] Open
Abstract
This study investigates visuospatial memory in patients with unilateral lesions of the temporal lobe and the hippocampus resulting from surgery to treat drug-resistant epilepsy. To detect impairments of visuospatial memory in these individuals, a memory test should be specific to episodic memory, the type of memory in which the hippocampus is crucially involved. However, most known visuospatial memory tests do not focus on episodic memory. We hypothesized that a new sequential visuospatial memory test, which has been previously developed and applied only in healthy subjects, might be suitable to fill this gap. The test requires the subject to reproduce a memorized sequence of target locations in ordered recall by typing on a blank graphics tablet. The length of the memorized sequence extended successively after repeated presentation of a sequence of 20 target positions. The test was done twice on day one and again after one week. Visual working memory was tested with the Corsi block-tapping task. The performance in the new test was also related to the performance of the patients in the standard test battery of the neuropsychological examination in the clinical context. Thirteen patients and 14 controls participated. Patients showed reduced learning speed in the new sequential visuospatial memory task. Right-sided lesions induced stronger impairments than left-sided lesions. After one week, retention was reduced in the patients with left-sided lesions. The performance of the patients in commonly used tests of the neuropsychological standard battery did not differ compared to healthy subjects, whereas the new test allowed discrimination between patients and controls at a high correct-decision rate of 0.89. The Corsi block-span of the patients was slightly shorter than that of the controls. The results suggest that the new test provides a specific investigation of episodic visuospatial memory. Hemispheric asymmetries were consistent with the general hypothesis of right hemispheric dominance in visuospatial processing.
Collapse
Affiliation(s)
- Thomas Eggert
- Department of Neurology, University Hospital, LMU Munich, Munich, Germany
- * E-mail:
| | - Phuong Van Nguyen
- Department of Neurology, University Hospital, LMU Munich, Munich, Germany
| | - Katharina Ernst
- Department of Neurology, University Hospital, LMU Munich, Munich, Germany
| | - Sandra V. Loosli
- Department of Neurology, University Hospital, LMU Munich, Munich, Germany
| | - Andreas Straube
- Department of Neurology, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
230
|
Zhang Y, Du X, Fu Y, Zhao Q, Wang Z, Qin W, Zhang Q. Effects of polygenic risk score of type 2 diabetes on the hippocampal topological property and episodic memory. Brain Imaging Behav 2022; 16:2506-2516. [PMID: 35904672 DOI: 10.1007/s11682-022-00706-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2022] [Indexed: 11/02/2022]
Abstract
Type 2 diabetes is associated with a higher risk of dementia. The pathogenesis is complex and partly influenced by genetic factors. The hippocampus is the most vulnerable brain region in individuals with type 2 diabetes. However, whether the genetic risk of type 2 diabetes is associated with the hippocampus and episodic memory remains unclear. This study explored the influence of polygenic risk score (PRS) of type 2 diabetes on the white matter topological properties of the hippocampus among individuals with and without type 2 diabetes and its associations with episodic memory. This study included 103 individuals with type 2 diabetes and 114 well-matched individuals without type 2 diabetes. All the participants were genotyped, and a diffusion tensor imaging-based structural network was constructed. PRS was calculated based on a genome-wide association study of type 2 diabetes. The PRS-by-disease interactions on the bilateral hippocampal topological network properties were evaluated by analysis of covariance (ANCOVA). There were significant PRS-by-disease interaction effects on the nodal topological properties of the right hippocampus node. In the individuals with type 2 diabetes, the PRS was correlated with the right hippocampal nodal properties, and the nodal properties were correlated with the episodic memory. In addition, the right hippocampal nodal properties mediated the effect of PRS on episodic memory in individuals with type 2 diabetes. Our results suggested a gene-brain-cognition biological pathway, which might help understand the neural mechanism of the genetic risk of type 2 diabetes affects episodic memory in type 2 diabetes.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Medical Imaging and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, 300052, Tianjin, China
| | - Xin Du
- Department of Medical Imaging and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, 300052, Tianjin, China
| | - Yumeng Fu
- Department of Medical Imaging and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, 300052, Tianjin, China
| | - Qiuyue Zhao
- Department of Medical Imaging and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, 300052, Tianjin, China
| | - Zirui Wang
- Department of Medical Imaging and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, 300052, Tianjin, China
| | - Wen Qin
- Department of Medical Imaging and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, 300052, Tianjin, China
| | - Quan Zhang
- Department of Medical Imaging and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, 300052, Tianjin, China. .,Department of Medical Imaging, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, 300052, Tianjin, China.
| |
Collapse
|
231
|
Tsui KC, Roy J, Chau SC, Wong KH, Shi L, Poon CH, Wang Y, Strekalova T, Aquili L, Chang RCC, Fung ML, Song YQ, Lim LW. Distribution and inter-regional relationship of amyloid-beta plaque deposition in a 5xFAD mouse model of Alzheimer’s disease. Front Aging Neurosci 2022; 14:964336. [PMID: 35966777 PMCID: PMC9371463 DOI: 10.3389/fnagi.2022.964336] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common form of dementia. Although previous studies have selectively investigated the localization of amyloid-beta (Aβ) deposition in certain brain regions, a comprehensive characterization of the rostro-caudal distribution of Aβ plaques in the brain and their inter-regional correlation remain unexplored. Our results demonstrated remarkable working and spatial memory deficits in 9-month-old 5xFAD mice compared to wildtype mice. High Aβ plaque load was detected in the somatosensory cortex, piriform cortex, thalamus, and dorsal/ventral hippocampus; moderate levels of Aβ plaques were observed in the motor cortex, orbital cortex, visual cortex, and retrosplenial dysgranular cortex; and low levels of Aβ plaques were located in the amygdala, and the cerebellum; but no Aβ plaques were found in the hypothalamus, raphe nuclei, vestibular nucleus, and cuneate nucleus. Interestingly, the deposition of Aβ plaques was positively associated with brain inter-regions including the prefrontal cortex, somatosensory cortex, medial amygdala, thalamus, and the hippocampus. In conclusion, this study provides a comprehensive morphological profile of Aβ deposition in the brain and its inter-regional correlation. This suggests an association between Aβ plaque deposition and specific brain regions in AD pathogenesis.
Collapse
Affiliation(s)
- Ka Chun Tsui
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Jaydeep Roy
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Sze Chun Chau
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Kah Hui Wong
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Department of Anatomy, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Lei Shi
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Chi Him Poon
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Yingyi Wang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Tatyana Strekalova
- Department of Neuroscience, Maastricht University, Maastricht, Netherlands
- Department of Normal Physiology and Laboratory of Psychiatric Neurobiology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Luca Aquili
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Discipline of Psychology, College of Science, Health, Engineering, and Education, Murdoch University, Perth, WA, Australia
| | - Raymond Chuen-Chung Chang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Man-Lung Fung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- *Correspondence: Man-Lung Fung,
| | - You-qiang Song
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- You-qiang Song,
| | - Lee Wei Lim
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Lee Wei Lim,
| |
Collapse
|
232
|
Ottink L, Buimer H, van Raalte B, Doeller CF, van der Geest TM, van Wezel RJA. Cognitive map formation supported by auditory, haptic, and multimodal information in persons with blindness. Neurosci Biobehav Rev 2022; 140:104797. [PMID: 35902045 DOI: 10.1016/j.neubiorev.2022.104797] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/23/2022] [Accepted: 07/24/2022] [Indexed: 10/16/2022]
Abstract
For efficient navigation, the brain needs to adequately represent the environment in a cognitive map. In this review, we sought to give an overview of literature about cognitive map formation based on non-visual modalities in persons with blindness (PWBs) and sighted persons. The review is focused on the auditory and haptic modalities, including research that combines multiple modalities and real-world navigation. Furthermore, we addressed implications of route and survey representations. Taking together, PWBs as well as sighted persons can build up cognitive maps based on non-visual modalities, although the accuracy sometime somewhat differs between PWBs and sighted persons. We provide some speculations on how to deploy information from different modalities to support cognitive map formation. Furthermore, PWBs and sighted persons seem to be able to construct route as well as survey representations. PWBs can experience difficulties building up a survey representation, but this is not always the case, and research suggests that they can acquire this ability with sufficient spatial information or training. We discuss possible explanations of these inconsistencies.
Collapse
Affiliation(s)
- Loes Ottink
- Donders Institute, Radboud University, Nijmegen, the Netherlands.
| | - Hendrik Buimer
- Donders Institute, Radboud University, Nijmegen, the Netherlands
| | - Bram van Raalte
- Donders Institute, Radboud University, Nijmegen, the Netherlands
| | - Christian F Doeller
- Psychology Department, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Kavli Insitute for Systems Neuroscience, NTNU, Trondheim, Norway
| | - Thea M van der Geest
- Lectorate Media Design, HAN University of Applied Sciences, Arnhem, the Netherlands
| | - Richard J A van Wezel
- Donders Institute, Radboud University, Nijmegen, the Netherlands; Techmed Centre, Biomedical Signals and System, University of Twente, Enschede, the Netherlands
| |
Collapse
|
233
|
Descloux V, Ruffieux N, Gasser AI, Maurer R. Severe developmental topographical disorientation associated with ADHD and dyscalculia: A case report. Neuropsychologia 2022; 174:108331. [PMID: 35842020 DOI: 10.1016/j.neuropsychologia.2022.108331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/01/2022] [Accepted: 07/08/2022] [Indexed: 10/17/2022]
Abstract
We report the clinical case of AB, a right-handed 19-year-old woman who presents severe developmental topographical disorientation, a relatively rare syndrome, leading to difficulties in navigating in familiar (and novel) environments. This symptomatology appears without acquired cerebral damage (MRI described as normal) nor more global cognitive disability (high degree of education achieved). An extensive assessment of spatial cognition with different aspects of underlying cognitive processes is first presented. Second, the patient's preserved cognitive abilities and her major difficulties in calculation, as well as her attention deficit, as seen in a detailed neuropsychological assessment, are reported. For the first time to our knowledge, we show that developmental topographical disorientation can be associated with other developmental cognitive disorders affecting number processing (dyscalculia) and attention (Attention Deficit-Hyperactivity Disorder (ADHD)). We discuss the links between these different cognitive processes in relation to visuo-spatial working memory and magnitude representation, which could represent common denominators for all these syndromes. This case report highlights the importance of thoroughly assessing potentially associated neurocognitive disorders in developmental topographical disorientation. In addition, it highlights the necessity to keep in mind the prevalence of spatial difficulties in the assessment of children and adolescents with other neurodevelopmental syndromes. Finally, this case study raises a new question about the nosology of developmental disorders affecting the visuo-spatial and spatial domains.
Collapse
Affiliation(s)
- Virginie Descloux
- Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland; Neuropsychology Unit, Hopital Fribourgeois, Fribourg, Switzerland.
| | - Nicolas Ruffieux
- Neuropsychology Unit, Hopital Fribourgeois, Fribourg, Switzerland; Department of Special Education, University of Fribourg, Fribourg, Switzerland
| | - Anne-Isabelle Gasser
- Neuropsychology Unit, Hopital Fribourgeois, Fribourg, Switzerland; Mental Health Network Fribourg (FNPG), Marsens, Switzerland
| | - Roland Maurer
- Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland
| |
Collapse
|
234
|
Cognitive map formation through tactile map navigation in visually impaired and sighted persons. Sci Rep 2022; 12:11567. [PMID: 35798929 PMCID: PMC9262941 DOI: 10.1038/s41598-022-15858-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 06/30/2022] [Indexed: 11/09/2022] Open
Abstract
The human brain can form cognitive maps of a spatial environment, which can support wayfinding. In this study, we investigated cognitive map formation of an environment presented in the tactile modality, in visually impaired and sighted persons. In addition, we assessed the acquisition of route and survey knowledge. Ten persons with a visual impairment (PVIs) and ten sighted control participants learned a tactile map of a city-like environment. The map included five marked locations associated with different items. Participants subsequently estimated distances between item pairs, performed a direction pointing task, reproduced routes between items and recalled item locations. In addition, we conducted questionnaires to assess general navigational abilities and the use of route or survey strategies. Overall, participants in both groups performed well on the spatial tasks. Our results did not show differences in performance between PVIs and sighted persons, indicating that both groups formed an equally accurate cognitive map. Furthermore, we found that the groups generally used similar navigational strategies, which correlated with performance on some of the tasks, and acquired similar and accurate route and survey knowledge. We therefore suggest that PVIs are able to employ a route as well as survey strategy if they have the opportunity to access route-like as well as map-like information such as on a tactile map.
Collapse
|
235
|
Folloso MC, Torres M, Ciocon SL, Ong JN, Flores JA, Catindig JA. Therapeutic role of memantine for the prevention of cognitive decline in cancer patients with brain metastasis receiving whole-brain radiotherapy: a narrative review. Dement Neuropsychol 2022; 16:270-275. [PMID: 36619840 PMCID: PMC9762383 DOI: 10.1590/1980-5764-dn-2021-0102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/12/2021] [Accepted: 01/05/2022] [Indexed: 02/01/2023] Open
Abstract
Brain metastases are the most common central nervous system tumors. The mainstay treatment for this tumor in low to middle income countries is whole brain radiation therapy. Irreversible cognitive decline is associated with the use of whole brain radiotherapy. Several pharmacologic and nonpharmacologic options have been employed in studies focusing on the prevention of cognitive decline following whole-brain radiation therapy. Memantine use has been shown to provide some benefit in reducing the rate of decline in cognitive function and time to cognitive failure. The objective of this review article is to provide a summary on available primary literature on the therapeutic role of memantine for the prevention of cognitive decline in cancer patients with brain metastasis receiving whole brain radiotherapy.
Collapse
Affiliation(s)
| | - Mazelle Torres
- Jose R. Reyes Memorial Medical Center, Department of Neurology,
Manila, Philippines
| | - Stephen Lowell Ciocon
- Jose R. Reyes Memorial Medical Center, Department of Radiotherapy,
Manila, Philippines
| | - Jed Noel Ong
- Jose R. Reyes Memorial Medical Center, Department of Neurology,
Manila, Philippines
| | | | - Joseree-Ann Catindig
- Jose R. Reyes Memorial Medical Center, Department of Neurology,
Manila, Philippines
| |
Collapse
|
236
|
Schultz J, Frith CD. Animacy and the prediction of behaviour. Neurosci Biobehav Rev 2022; 140:104766. [DOI: 10.1016/j.neubiorev.2022.104766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 06/24/2022] [Accepted: 07/01/2022] [Indexed: 10/17/2022]
|
237
|
Sandamirskaya Y, Kaboli M, Conradt J, Celikel T. Neuromorphic computing hardware and neural architectures for robotics. Sci Robot 2022; 7:eabl8419. [PMID: 35767646 DOI: 10.1126/scirobotics.abl8419] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Neuromorphic hardware enables fast and power-efficient neural network-based artificial intelligence that is well suited to solving robotic tasks. Neuromorphic algorithms can be further developed following neural computing principles and neural network architectures inspired by biological neural systems. In this Viewpoint, we provide an overview of recent insights from neuroscience that could enhance signal processing in artificial neural networks on chip and unlock innovative applications in robotics and autonomous intelligent systems. These insights uncover computing principles, primitives, and algorithms on different levels of abstraction and call for more research into the basis of neural computation and neuronally inspired computing hardware.
Collapse
Affiliation(s)
| | - Mohsen Kaboli
- BMW Group, Department of Research, New Technologies and Innovation, Munich, Germany.,Donders Institute for Brain, Cognition, and Behavior, Radboud University, Nijmegen, Netherlands
| | - Jorg Conradt
- Kungliga Tekniska Högskolan (KTH), School of Electrical Engineering and Computer Science, Stockholm, Sweden
| | | |
Collapse
|
238
|
Brown BM, de Frutos Lucas J, Porter T, Frost N, Vacher M, Peiffer JJ, Laws SM. Non-Modifiable Factors as Moderators of the Relationship Between Physical Activity and Brain Volume: A Cross-Sectional UK Biobank Study. J Alzheimers Dis 2022; 88:1091-1101. [PMID: 35754269 DOI: 10.3233/jad-220114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Previous research suggests physical activity attenuates grey and white matter loss; however, there appears to be individual variability in this effect. Understanding factors that can influence the relationship between physical activity and brain volume may enable prediction of individual response. OBJECTIVE The current study examined the relationship between objectively-measured physical activity and brain volume; and whether this relationship is moderated by age, sex, or a priori candidate genetic factors, brain-derived neurotrophic factor (BDNF) Val66Met, or apolipoprotein (APOE) ɛ4 allele carriage. METHODS Data from 10,083 men and women (50 years and over) of the UK Biobank were used to examine the study objectives. All participants underwent a magnetic resonance imaging scan to quantify grey and white matter volumes, physical activity monitoring via actigraphy, and genotyping. RESULTS Physical activity was associated with total grey matter volume, total white matter volume, and right hippocampal volume. Only males had an association between higher physical activity levels and greater cortical grey matter volume, total grey matter volume, and right hippocampal volume. Age moderated the relationship between physical activity and white matter volume. CONCLUSION Our results indicate that in males, but not females, an association exists between objectively-measured physical activity and grey matter volume. Age may also play a role in impacting the relationship between physical activity and brain volume. Future research should evaluate longitudinal brain volumetrics to better understand the nature of age and sex-effects on the physical activity and brain volume relationship.
Collapse
Affiliation(s)
- Belinda M Brown
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, Western Australia, Australia.,Australian Alzheimer's Research Foundation, Sarich Neuroscience Research Institute, Nedlands, Western Australia, Australia.,Centre for Precision Health, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Jaisalmer de Frutos Lucas
- Centre for Precision Health, Edith Cowan University, Joondalup, Western Australia, Australia.,Laboratory of Cognitive and Computational Neuroscience, Center for Biomedical Technology, UPM-UCM, Pozuelo de Alarcón, Spain
| | - Tenielle Porter
- Centre for Precision Health, Edith Cowan University, Joondalup, Western Australia, Australia.,Collaborative Genomics and Translation Group, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia.,School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, Australia
| | - Natalie Frost
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Michael Vacher
- Australian e-Health Research Centre, CSIRO, Floreat, Western Australia, Australia
| | - Jeremiah J Peiffer
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Simon M Laws
- Centre for Precision Health, Edith Cowan University, Joondalup, Western Australia, Australia.,Collaborative Genomics and Translation Group, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia.,School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, Australia
| |
Collapse
|
239
|
Camarillo-Rodriguez L, Leenen I, Waldman Z, Serruya M, Wanda PA, Herweg NA, Kahana MJ, Rubinstein D, Orosz I, Lega B, Podkorytova I, Gross RE, Worrell G, Davis KA, Jobst BC, Sheth SA, Weiss SA, Sperling MR. Temporal lobe interictal spikes disrupt encoding and retrieval of verbal memory: A subregion analysis. Epilepsia 2022; 63:2325-2337. [PMID: 35708911 DOI: 10.1111/epi.17334] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVE The medial temporal lobe (MTL) encodes and recalls memories and can be a predominant site for interictal spikes (IS) in patients with focal epilepsy. It is unclear whether memory deficits are due to IS in the MTL producing a transient decline. Here, we investigated whether IS in the MTL subregions and lateral temporal cortex impact episodic memory encoding and recall. METHODS Seventy-eight participants undergoing presurgical evaluation for medically refractory focal epilepsy with depth electrodes placed in the temporal lobe participated in a verbal free recall task. IS were manually annotated during the pre-encoding, encoding, and recall epochs. We examined the effect of IS on word recall using mixed-effects logistic regression. RESULTS IS in the left hippocampus (odds ratio [OR] = .73, 95% confidence interval [CI] = .63-.84, p < .001) and left middle temporal gyrus (OR = .46, 95% CI = .27-.78, p < .05) during word encoding decreased subsequent recall performance. Within the left hippocampus, this effect was specific for area CA1 (OR = .76, 95% CI = .66-.88, p < .01) and dentate gyrus (OR = .74, 95% CI = .62-.89, p < .05). IS in other MTL subregions or inferior and superior temporal gyrus and IS occurring during the prestimulus window did not affect word encoding (p > .05). IS during retrieval in right hippocampal (OR = .22, 95% CI = .08-.63, p = .01) and parahippocampal regions (OR = .24, 95% CI = .07-.8, p < .05) reduced the probability of recalling a word. SIGNIFICANCE IS in medial and lateral temporal cortex contribute to transient memory decline during verbal episodic memory.
Collapse
Affiliation(s)
| | - Iwin Leenen
- Faculty of Psychology, National Autonomous University of Mexico, Mexico City, Mexico
| | - Zachary Waldman
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Mijail Serruya
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Paul A Wanda
- Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Nora A Herweg
- Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michael J Kahana
- Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Daniel Rubinstein
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Iren Orosz
- Department of Neurology, University of California, Los Angeles, Los Angeles, California, USA
| | | | | | - Robert E Gross
- Department of Neurosurgery, Emory University, Atlanta, Georgia, USA
| | | | - Kathryn A Davis
- Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Barbara C Jobst
- Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Sameer A Sheth
- Department of Neurological Surgery, Baylor College of Medicine, Houston, Texas, USA
| | - Shennan A Weiss
- Department of Neurology, State University of New York Downstate Medical Center, Brooklyn, New York, USA.,Department of Physiology and Pharmacology, State University of New York Downstate Medical Center, Brooklyn, New York, USA.,Departments of Neurology, New York City Health + Hospitals/Kings County, Brooklyn, New York, USA
| | - Michael R Sperling
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
240
|
Bahrami S, Nordengen K, Shadrin AA, Frei O, van der Meer D, Dale AM, Westlye LT, Andreassen OA, Kaufmann T. Distributed genetic architecture across the hippocampal formation implies common neuropathology across brain disorders. Nat Commun 2022; 13:3436. [PMID: 35705537 PMCID: PMC9200849 DOI: 10.1038/s41467-022-31086-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 06/01/2022] [Indexed: 12/13/2022] Open
Abstract
Despite its major role in complex human functions across the lifespan, most notably navigation, learning and memory, much of the genetic architecture of the hippocampal formation is currently unexplored. Here, through multivariate genome-wide association analysis in volumetric data from 35,411 white British individuals, we reveal 177 unique genetic loci with distributed associations across the hippocampal formation. We identify genetic overlap with eight brain disorders with typical onset at different stages of life, where common genes suggest partly age- and disorder-independent mechanisms underlying hippocampal pathology.
Collapse
Affiliation(s)
- Shahram Bahrami
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Kaja Nordengen
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Alexey A Shadrin
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Oleksandr Frei
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Informatics, University of Oslo, Oslo, Norway
| | - Dennis van der Meer
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Anders M Dale
- Department of Radiology, School of Medicine, University of California, San Diego, CA, USA
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Center for Multimodal Imaging and Genetics, University of California at San Diego, La Jolla, CA, USA
| | - Lars T Westlye
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Ole A Andreassen
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Tobias Kaufmann
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
241
|
Hørlyck LD, Jespersen AE, King JA, Ullum H, Miskowiak KW. Impaired allocentric spatial memory in patients with affective disorders. J Psychiatr Res 2022; 150:153-159. [PMID: 35378488 DOI: 10.1016/j.jpsychires.2022.01.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 01/18/2022] [Accepted: 01/21/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND Memory disturbances are frequent in unipolar depression (UD) and bipolar disorder (BD) and may comprise important predisposing and maintaining factors. Previous studies have demonstrated hippocampal abnormalities in UD and BD but there is a lack of studies specifically assessing hippocampus-dependent memory. METHODS We used a virtual task to assess hippocampus-dependent (allocentric) vs non-hipppocampal (egocentric) spatial memory in remitted and partially remitted patients with UD or BD (N = 22) and a healthy control group (N = 32). Participants also completed a range of standard neuropsychological and functional assessments. RESULTS Participants in the UD/BD group showed selective impairments on high-load hippocampal (allocentric) memory compared to egocentric memory and this effect was independent of residual mood symptoms. Across both samples, both allocentric and egocentric spatial memory correlated with more general measures of memory and other aspects of cognition measured on standard neuropsychological tests but only high-load allocentric memory showed a significant relationship with functional capacity. CONCLUSION Results show a selective impairment in high-load allocentric spatial memory compared to egocentric memory in the patient group, suggesting impaired hippocampal functioning in patients with remitted UD/BD.
Collapse
Affiliation(s)
- Lone D Hørlyck
- Neurocognition and Emotion in Affective Disorder (NEAD) Group, Copenhagen Affective Disorder Research Centre (CADIC), Copenhagen Psychiatric Centre, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, DK-2100, Copenhagen, Denmark; Department of Psychology, University of Copenhagen, Øster Farimagsgade 2A, DK-1353, Copenhagen, Denmark
| | - Andreas E Jespersen
- Neurocognition and Emotion in Affective Disorder (NEAD) Group, Copenhagen Affective Disorder Research Centre (CADIC), Copenhagen Psychiatric Centre, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, DK-2100, Copenhagen, Denmark; Department of Psychology, University of Copenhagen, Øster Farimagsgade 2A, DK-1353, Copenhagen, Denmark
| | - John A King
- Department of Clinical and Health Psychology, University College London, 1-19 Torrington Place, London, WC1E 7HB, United Kingdom
| | - Henrik Ullum
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Kamilla W Miskowiak
- Neurocognition and Emotion in Affective Disorder (NEAD) Group, Copenhagen Affective Disorder Research Centre (CADIC), Copenhagen Psychiatric Centre, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, DK-2100, Copenhagen, Denmark; Department of Psychology, University of Copenhagen, Øster Farimagsgade 2A, DK-1353, Copenhagen, Denmark.
| |
Collapse
|
242
|
Altered hippocampus and amygdala subregion connectome hierarchy in major depressive disorder. Transl Psychiatry 2022; 12:209. [PMID: 35589678 PMCID: PMC9120054 DOI: 10.1038/s41398-022-01976-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/04/2022] [Accepted: 05/10/2022] [Indexed: 01/04/2023] Open
Abstract
The hippocampus and amygdala limbic structures are critical to the etiology of major depressive disorder (MDD). However, there are no high-resolution characterizations of the role of their subregions in the whole brain network (connectome). Connectomic examination of these subregions can uncover disorder-related patterns that are otherwise missed when treated as single structures. 38 MDD patients and 40 healthy controls (HC) underwent anatomical and diffusion imaging using 7-Tesla MRI. Whole-brain segmentation was performed along with hippocampus and amygdala subregion segmentation, each representing a node in the connectome. Graph theory analysis was applied to examine the importance of the limbic subregions within the brain network using centrality features measured by node strength (sum of weights of the node's connections), Betweenness (number of shortest paths that traverse the node), and clustering coefficient (how connected the node's neighbors are to one another and forming a cluster). Compared to HC, MDD patients showed decreased node strength of the right hippocampus cornu ammonis (CA) 3/4, indicating decreased connectivity to the rest of the brain, and decreased clustering coefficient of the right dentate gyrus, implying it is less embedded in a cluster. Additionally, within the MDD group, the greater the embedding of the right amygdala central nucleus (CeA) in a cluster, the greater the severity of depressive symptoms. The altered role of these limbic subregions in the whole-brain connectome is related to diagnosis and depression severity, contributing to our understanding of the limbic system involvement in MDD and may elucidate the underlying mechanisms of depression.
Collapse
|
243
|
Patt VM, Palombo DJ, Esterman M, Verfaellie M. Hippocampal Contribution to Probabilistic Feedback Learning: Modeling Observation- and Reinforcement-based Processes. J Cogn Neurosci 2022; 34:1429-1446. [PMID: 35604353 DOI: 10.1162/jocn_a_01873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Simple probabilistic reinforcement learning is recognized as a striatum-based learning system, but in recent years, has also been associated with hippocampal involvement. This study examined whether such involvement may be attributed to observation-based learning (OL) processes, running in parallel to striatum-based reinforcement learning. A computational model of OL, mirroring classic models of reinforcement-based learning (RL), was constructed and applied to the neuroimaging data set of Palombo, Hayes, Reid, and Verfaellie (2019). Hippocampal contributions to value-based learning: Converging evidence from fMRI and amnesia. Cognitive, Affective & Behavioral Neuroscience, 19(3), 523-536. Results suggested that OL processes may indeed take place concomitantly to reinforcement learning and involve activation of the hippocampus and central orbitofrontal cortex. However, rather than independent mechanisms running in parallel, the brain correlates of the OL and RL prediction errors indicated collaboration between systems, with direct implication of the hippocampus in computations of the discrepancy between the expected and actual reinforcing values of actions. These findings are consistent with previous accounts of a role for the hippocampus in encoding the strength of observed stimulus-outcome associations, with updating of such associations through striatal reinforcement-based computations. In addition, enhanced negative RL prediction error signaling was found in the anterior insula with greater use of OL over RL processes. This result may suggest an additional mode of collaboration between the OL and RL systems, implicating the error monitoring network.
Collapse
Affiliation(s)
- Virginie M Patt
- VA Boston Healthcare System, MA.,Boston University School of Medicine, MA
| | | | - Michael Esterman
- VA Boston Healthcare System, MA.,Boston University School of Medicine, MA
| | - Mieke Verfaellie
- VA Boston Healthcare System, MA.,Boston University School of Medicine, MA
| |
Collapse
|
244
|
Solar KG, Treit S, Beaulieu C. High-resolution diffusion tensor imaging identifies hippocampal volume loss without diffusion changes in individuals with prenatal alcohol exposure. Alcohol Clin Exp Res 2022; 46:1204-1219. [PMID: 35567310 DOI: 10.1111/acer.14857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 04/27/2022] [Accepted: 05/05/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Magnetic resonance imaging (MRI) studies of prenatal alcohol exposure (PAE) commonly report reduced hippocampal volumes, which animal models suggest may result from microstructural changes that include cell loss and altered myelination. Diffusion tensor imaging (DTI) is sensitive to microstructural changes but has not yet been used to study the hippocampus in PAE. METHODS Thirty-six healthy controls (19 females; 8 to 24 years) and 19 participants with PAE (8 females; 8 to 23 years) underwent high-resolution (1 mm isotropic) DTI, anatomical T1-weighted imaging, and cognitive testing. Whole-hippocampus, head, body, and tail subregions were manually segmented to yield DTI metrics (mean, axial, and radial diffusivities-MD, AD, and RD; fractional anisotropy-FA), volumes, and qualitative assessments of hippocampal morphology and digitations. Automated segmentation of T1-weighted images was used to corroborate manual whole-hippocampus volumes. RESULTS Gross morphology and digitation counts were similar in both groups. Whole-hippocampus volumes were 18% smaller in the PAE than the control group on manually traced diffusion images, but automated T1-weighted image segmentations were not significantly different. Subregion segmentation on DTI revealed reduced volumes of the body and tail, but not the head. There were no significant differences in diffusion metrics between groups for any hippocampal region. Correlations between age and volume were not significant in either group, whereas negative correlations between age and whole-hippocampus MD/AD/RD, and head/body (but not tail) MD/AD/RD were significant in both groups. There were no significant effects of sex, group by age, or group by sex for any hippocampal metric. In controls, seven positive linear correlations were found between hippocampal volume and cognition; five of these were left lateralized and included episodic and working memory, and two were right lateralized and included working memory and processing speed. In PAE, left tail MD positively correlated with executive functioning, and right head MD negatively correlated with episodic memory. CONCLUSIONS Reductions of hippocampal volumes and altered relationships with memory suggest disrupted hippocampal development in PAE.
Collapse
Affiliation(s)
- Kevin Grant Solar
- Department of Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Sarah Treit
- Department of Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Christian Beaulieu
- Department of Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
245
|
Guimond S, Mothi SS, Makowski C, Chakravarty MM, Keshavan MS. Altered amygdala shape trajectories and emotion recognition in youth at familial high risk of schizophrenia who develop psychosis. Transl Psychiatry 2022; 12:202. [PMID: 35562339 PMCID: PMC9106712 DOI: 10.1038/s41398-022-01957-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/12/2022] [Accepted: 04/25/2022] [Indexed: 01/04/2023] Open
Abstract
Relatives of individuals with schizophrenia have a higher risk of developing the illness compared to the general population. Thus, youth at familial high risk (FHR) offer a unique opportunity to identify neuroimaging-based endophenotypes of psychosis. Previous studies have identified lower amygdalo-hippocampal volume in FHR, as well as lower verbal memory and emotion recognition. However, whether these phenotypes increase the risk of transition to psychosis remains unclear. To determine if individuals who develop psychosis have abnormal neurodevelopmental trajectories of the amygdala and hippocampus, we investigated longitudinal changes of these structures in a unique cohort of 82 youth FHR and 56 healthy controls during a 3-year period. Ten individuals from the FHR group converted to psychosis. Longitudinal changes were compared using linear mixed-effects models. Group differences in verbal memory and emotion recognition performance at baseline were also analyzed. Surface-based morphometry measures revealed variation in amygdalar shape (concave shape of the right dorsomedial region) in those who converted to psychosis. Significantly lower emotion recognition performance at baseline was observed in converters. Percent trial-to-trial transfer on the verbal learning task was also significantly impaired in FHR, independently of the conversion status. Our results identify abnormal shape development trajectories in the dorsomedial amygdala and lower emotion recognition abilities as phenotypes of transition to psychosis. Our findings illustrate potential markers for early identification of psychosis, aiding prevention efforts in youth at risk of schizophrenia.
Collapse
Affiliation(s)
- Synthia Guimond
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, The Royal's Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada
- Department of Psychoeducation and Psychology, University of Quebec in Outaouais, Gatineau, QC, Canada
| | - Suraj S Mothi
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Carolina Makowski
- Cerebral Imaging Centre, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
- McGill Centre for Integrative Neuroscience, Montreal Neurological Institute, Montreal, QC, Canada
- Center for Multimodal Imaging and Genetics, Department of Radiology, University of California San Diego, San Diego, United States
| | - M Mallar Chakravarty
- Cerebral Imaging Centre, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
- Departments of Psychiatry and Biological and Biomedical Engineering, McGill University, Montreal, QC, Canada
| | - Matcheri S Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
246
|
Upchurch CM, Combe CL, Knowlton CJ, Rousseau VG, Gasparini S, Canavier CC. Long-Term Inactivation of Sodium Channels as a Mechanism of Adaptation in CA1 Pyramidal Neurons. J Neurosci 2022; 42:3768-3782. [PMID: 35332085 PMCID: PMC9087813 DOI: 10.1523/jneurosci.1914-21.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/28/2022] [Accepted: 03/09/2022] [Indexed: 11/21/2022] Open
Abstract
Many hippocampal CA1 pyramidal cells function as place cells, increasing their firing rate when a specific place field is traversed. The dependence of CA1 place cell firing on position within the place field is asymmetric. We investigated the source of this asymmetry by injecting triangular depolarizing current ramps to approximate the spatially tuned, temporally diffuse depolarizing synaptic input received by these neurons while traversing a place field. Ramps were applied to CA1 pyramidal neurons from male rats in vitro (slice electrophysiology) and in silico (multicompartmental NEURON model). Under control conditions, CA1 neurons fired more action potentials at higher frequencies on the up-ramp versus the down-ramp. This effect was more pronounced for dendritic compared with somatic ramps. We incorporated a four-state Markov scheme for NaV1.6 channels into our model and calibrated the spatial dependence of long-term inactivation according to the literature; this spatial dependence was sufficient to explain the difference in dendritic versus somatic ramps. Long-term inactivation reduced the firing frequency by decreasing open-state occupancy, and reduced spike amplitude during trains by decreasing occupancy in the closed state, which comprises the available pool. PKC activator phorbol-dibutyrate, known to reduce NaV long-term inactivation, removed spike amplitude attenuation in vitro more visibly in dendrites and greatly reduced adaptation, consistent with our hypothesized mechanism. Intracellular application of a peptide inducing long-term NaV inactivation elicited spike amplitude attenuation during spike trains in the soma and greatly enhanced adaptation. Our synergistic experimental/computational approach shows that long-term inactivation of NaV1.6 is a key mechanism of adaptation in CA1 pyramidal cells.SIGNIFICANCE STATEMENT The hippocampus plays an important role in certain types of memory, in part through context-specific firing of "place cells"; these cells were first identified in rodents as being particularly active when an animal is in a specific location in an environment, called the place field of that neuron. In this in vitro/in silico study, we found that long-term inactivation of sodium channels causes adaptation in the firing rate that could potentially skew the firing of CA1 hippocampal pyramidal neurons earlier within a place field. A computational model of the sodium channel revealed differential regulation of spike frequency and amplitude by long-term inactivation, which may be a general mechanism for spike frequency adaptation in the CNS.
Collapse
Affiliation(s)
- Carol M Upchurch
- Department of Cell Biology & Anatomy, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112
| | - Crescent L Combe
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112
| | - Christopher J Knowlton
- Department of Cell Biology & Anatomy, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112
| | - Valery G Rousseau
- Department of Cell Biology & Anatomy, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112
| | - Sonia Gasparini
- Department of Cell Biology & Anatomy, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112
| | - Carmen C Canavier
- Department of Cell Biology & Anatomy, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112
| |
Collapse
|
247
|
Gentsch A, Kuehn E. Clinical Manifestations of Body Memories: The Impact of Past Bodily Experiences on Mental Health. Brain Sci 2022; 12:594. [PMID: 35624981 PMCID: PMC9138975 DOI: 10.3390/brainsci12050594] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/29/2022] [Accepted: 04/30/2022] [Indexed: 12/04/2022] Open
Abstract
Bodily experiences such as the feeling of touch, pain or inner signals of the body are deeply emotional and activate brain networks that mediate their perception and higher-order processing. While the ad hoc perception of bodily signals and their influence on behavior is empirically well studied, there is a knowledge gap on how we store and retrieve bodily experiences that we perceived in the past, and how this influences our everyday life. Here, we explore the hypothesis that negative body memories, that is, negative bodily experiences of the past that are stored in memory and influence behavior, contribute to the development of somatic manifestations of mental health problems including somatic symptoms, traumatic re-experiences or dissociative symptoms. By combining knowledge from the areas of cognitive neuroscience and clinical neuroscience with insights from psychotherapy, we identify Clinical Body Memory (CBM) mechanisms that specify how mental health problems could be driven by corporeal experiences stored in memory. The major argument is that the investigation of the neuronal mechanisms that underlie the storage and retrieval of body memories provides us with empirical access to reduce the negative impact of body memories on mental health.
Collapse
Affiliation(s)
- Antje Gentsch
- Department of Psychology, General and Experimental Psychology, LMU Munich, 80802 Munich, Germany;
- Institute for Psychoanalysis, Psychotherapy and Psychosomatics (IPB), 10557 Berlin, Germany
| | - Esther Kuehn
- Institute for Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), 39120 Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), 39106 Magdeburg, Germany
- Hertie Institute for Clinical Brain Research (HIH), 72076 Tübingen, Germany
| |
Collapse
|
248
|
Zhang L, Zhang R, Han S, Womer FY, Wei Y, Duan J, Chang M, Li C, Feng R, Liu J, Zhao P, Jiang X, Wei S, Yin Z, Zhang Y, Zhang Y, Zhang X, Tang Y, Wang F. Three major psychiatric disorders share specific dynamic alterations of intrinsic brain activity. Schizophr Res 2022; 243:322-329. [PMID: 34244046 DOI: 10.1016/j.schres.2021.06.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 05/21/2021] [Accepted: 06/18/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Increasing evidence suggests that major psychiatric disorders, including major depressive disorder (MDD), bipolar disorder (BD) and schizophrenia (SZ) share biological, neuropsychological and clinical features, despite the criteria for their respective diagnoses being different. Neuroimaging studies have shown disrupted 'static' neural connectivity in these disorders. However, the changes in brain dynamics across the three psychiatric disorders remain unknown. METHODS We aim to examine the connections and divergencies of the dynamic amplitude of low-frequency fluctuation (dALFF) in MDD, BD and SZ. In total, 901 participants [MDD, 229; BD, 146; SZ, 142; and healthy controls (HCs), 384] received resting-state functional magnetic resonance imaging. The dALFF was calculated using sliding-window analysis and compared across three psychiatric disorders. RESULTS We found significant increases of dALFF in the right fusiform, right hippocampus, right parahippocampal in participants with MDD, BD and SZ compared to HC. We also found specific increased dALFF changes in caudate and left thalamus for SZ and BD and decreased dALFF changes in calcarine and lingual for SZ and MDD. CONCLUSION Our study found significant intrinsic brain activity changes in the limbic system and primary visual area in MDD, BD, and SZ, which indicates these areas disruptions are core neurobiological features shared among three psychiatric disorders. Meanwhile, our findings also indicate that specific alterations in MDD, BD, and SZ provide neuroimaging evidence for the differential diagnosis of the three mental disorders.
Collapse
Affiliation(s)
- Luheng Zhang
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Ran Zhang
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Shaoqiang Han
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China
| | - Fay Y Womer
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Yange Wei
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Jia Duan
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Miao Chang
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Chao Li
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Ruiqi Feng
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Juan Liu
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Pengfei Zhao
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Xiaowei Jiang
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Shengnan Wei
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Zhiyang Yin
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Yifan Zhang
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Yanbo Zhang
- Department of Psychiatry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Canada
| | - Xizhe Zhang
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu, PR China; School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu, PR China.
| | - Yanqing Tang
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, PR China.
| | - Fei Wang
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, PR China; Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu, PR China.
| |
Collapse
|
249
|
Mock N, Balzer C, Gutbrod K, De Haan B, Jäncke L, Ettlin T, Trost W. Lesion-symptom mapping corroborates lateralization of verbal and nonverbal memory processes and identifies distributed brain networks responsible for memory dysfunction. Cortex 2022; 153:178-193. [DOI: 10.1016/j.cortex.2022.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 12/10/2021] [Accepted: 04/28/2022] [Indexed: 11/25/2022]
|
250
|
Moshir Estekhareh SS, Saghebdoust S, Zare R, Hakak MA, Hashemabadi BAG. Memory and executive functioning outcomes of selective amygdalohippocampectomy in patients with hippocampal sclerosis: A preliminary study in a developing country. Surg Neurol Int 2022; 13:161. [PMID: 35509560 PMCID: PMC9062935 DOI: 10.25259/sni_49_2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/05/2022] [Indexed: 11/24/2022] Open
Abstract
Background Selective amygdalohippocampectomy (SA) is an effective treatment for drug-resistant cases of epilepsy due to hippocampal sclerosis (HS). However, its neurocognitive outcomes are inconsistent across the previous studies, pointing to potential location-specific confounders. Here, we investigated the neurocognitive outcomes of SA in an Iranian center recently adopting this approach. Methods Thirty adults (53.3% of females, age 31.4 ± 6.2 years) with drug-resistant epilepsy due to HS were included in the study. Patients were stratified into surgical (n = 15) and medical (n = 15) treatment groups based on their preferences. Neurocognitive function was assessed before and 6 months after intervention using Wisconsin Card Sorting Test (WCST), Wechsler Adult Intelligence Scale-Revised, and Wechsler Memory Scale- Third Edition (WMS-III). Postintervention performance changes were compared between the two groups, and predictors of worse postoperative outcomes were investigated. Results Longitudinal changes of performance in WMS-III and WCST were significantly different between the surgically and medically treated patients. Postoperative WMS-III performance showed an average 25% decline (mean ∆T2-T1 = -25.1%, T = -6.6, P < 0.001), and WCST performance improved by an average of 49% (mean ∆T2-T1 = +49.1%, T = 4.6, P < 0.001). The decline in memory performance was more severe in the left-sided surgery and in patients with higher baseline education (mean ∆T2-T1 = -31.1%, T = -8.9, P < 0.001). Conclusion In our center, executive functioning improved or remained stable after SA, but memory functions declined moderately. The left-sided SA and higher education were associated with more severe decline in memory functions, highlighting the need for special considerations for these groups.
Collapse
Affiliation(s)
| | - Sajjad Saghebdoust
- Department of Neurosurgery, Epilepsy Center, Razavi Hospital, Mashhad, Iran
| | - Reza Zare
- Department of Neurosurgery, Epilepsy Center, Razavi Hospital, Mashhad, Iran
| | | | | |
Collapse
|