201
|
Type II diabetes mellitus and obesity: Common links, existing therapeutics and future developments. J Biosci 2019. [DOI: 10.1007/s12038-019-9962-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
202
|
Transcriptional Regulation of Autophagy Genes via Stage-Specific Activation of CEBPB and PPARG during Adipogenesis: A Systematic Study Using Public Gene Expression and Transcription Factor Binding Datasets. Cells 2019; 8:cells8111321. [PMID: 31731552 PMCID: PMC6912425 DOI: 10.3390/cells8111321] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 10/20/2019] [Accepted: 10/22/2019] [Indexed: 12/20/2022] Open
Abstract
Autophagy is the cell self-eating mechanism to maintain cell homeostasis by removing damaged intracellular proteins or organelles. It has also been implicated in the development and differentiation of various cell types including the adipocyte. Several links between adipogenic transcription factors and key autophagy genes has been suggested. In this study, we tried to model the gene expression and their transcriptional regulation during the adipocyte differentiation using high-throughput sequencing datasets of the 3T3-L1 cell model. We applied the gene expression and co-expression analysis to all and the subset of autophagy genes to study the binding, and occupancy patterns of adipogenic factors, co-factors and histone modifications on key autophagy genes. We also analyzed the gene expression of key autophagy genes under different transcription factor knockdown adipocyte cells. We found that a significant percent of the variance in the autophagy gene expression is explained by the differentiation stage of the cell. Adipogenic master regulators, such as CEBPB and PPARG target key autophagy genes directly. In addition, the same factor may also control autophagy gene expression indirectly through autophagy transcription factors such as FOXO1, TFEB or XBP1. Finally, the binding of adipogenic factors is associated with certain patterns of co-factors binding that might modulate the functions. Some of the findings were further confirmed under the knockdown of the adipogenic factors in the differentiating adipocytes. In conclusion, autophagy genes are regulated as part of the transcriptional programs through adipogenic factors either directly or indirectly through autophagy transcription factors during adipogenesis.
Collapse
|
203
|
The Expression/Methylation Profile of Adipogenic and Inflammatory Transcription Factors in Adipose Tissue Are Linked to Obesity-Related Colorectal Cancer. Cancers (Basel) 2019; 11:cancers11111629. [PMID: 31652933 PMCID: PMC6893417 DOI: 10.3390/cancers11111629] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/04/2019] [Accepted: 10/21/2019] [Indexed: 02/07/2023] Open
Abstract
Obesity is well accepted as crucial risk factor that plays a critical role in the initiation and progression of colorectal cancer (CRC). More specifically, visceral adipose tissue (VAT) in people with obesity could produce chronic inflammation and an altered profile expression of key transcription factors that promote a favorable microenvironment to colorectal carcinogenesis. For this, the aim of this study was to explore the relationship between adipogenic and inflammatory transcription factors in VAT from nonobese, obese, and/or CRC patients. To test this idea, we studied the expression and methylation of CCAAT-enhancer binding protein type alpha (C/EBP-α), peroxisome proliferator-activated receptor gamma (PPAR-γ), peroxisome proliferator-activated receptor gamma coactivator 1-α (PGC-1α) and nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) in VAT from non-obese control, non-obese CRC subjects, overweight/obese control, and overweight/obese CRC patients and their correlation with anthropometric and biochemical variables. We found decreased expression of C/EBP-α in overweight/obese CRC patients in comparison with overweight/obese control subjects. PGC-1α and NF-κB were overexpressed in CRC patients independently of the BMI. NF-κB promoter was hypomethylated in overweight/obese CRC patients when compared to overweight/obese control individuals. In addition, multiple significant correlations between expression, methylation, and biochemical parameters were found. Finally, linear regression analysis showed that the expression of C/EBP-α and NF-κB and that NF-κB methylation were associated with CRC and able to explain up to 55% of CRC variability. Our results suggest that visceral adipose tissue may be a key factor in tumor development and inflammatory state. We propose C/EBP-α, PGC-1α and NF-κB to be interesting candidates as potential biomarkers in adipose tissue for CRC patients.
Collapse
|
204
|
Shrestha M, Ando T, Chea C, Sakamoto S, Nishisaka T, Ogawa I, Miyauchi M, Takata T. The transition of tissue inhibitor of metalloproteinases from -4 to -1 induces aggressive behavior and poor patient survival in dedifferentiated liposarcoma via YAP/TAZ activation. Carcinogenesis 2019; 40:1288-1297. [PMID: 31074490 DOI: 10.1093/carcin/bgz023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 01/09/2019] [Accepted: 02/25/2019] [Indexed: 12/17/2022] Open
Abstract
Liposarcoma (LS) is the most common soft-tissue sarcoma. Dedifferentiated liposarcoma (DDLS) shows more aggressive biological behavior than that of well-differentiated liposarcoma (WDLS), so advanced therapeutic agents based on molecular mechanism are urgently needed. Here we show that tissue inhibitors of metalloproteinases (TIMPs) from TIMP-1 to TIMP-4 are differently expressed and regulate yes-associated protein (YAP)/transcriptional co-activator with PDZ binding motif (TAZ) in LS. Database analysis showed high TIMP-1 expression in DDLS patients correlating with poor prognosis, but high TIMP-4 expression in WDLS patients with better prognosis. Stable TIMP-1 knockdown inactivated YAP/TAZ and inhibited proliferation, colony formation and migration in DDLS cells, which was rescued by a constitutive active YAP. However, stable overexpression of TIMP-1 showed the opposite in WDLS cells. Stable TIMP-4 knockdown activated YAP/TAZ and promoted proliferation and migration in WDLS cells, which was suppressed by YAP/TAZ inhibitor (verteporfin) or knockdown of YAP/TAZ. Recombinant TIMP-4 showed opposite results in DDLS cells. These results indicate that dedifferentiation in LS shifts the expression of TIMPs from type 4 to type 1, inducing more aggressive behavior and poor prognosis through YAP/TAZ activation, which can be prognostic markers and therapeutic targets for LS patients.
Collapse
Affiliation(s)
- Madhu Shrestha
- Department of Oral and Maxillofacial Pathobiology, Basic Life Science, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Toshinori Ando
- Department of Oral and Maxillofacial Pathobiology, Basic Life Science, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Chanbora Chea
- Department of Oral and Maxillofacial Pathobiology, Basic Life Science, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shinnichi Sakamoto
- Department of Oral and Maxillofacial Pathobiology, Basic Life Science, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takashi Nishisaka
- Department of Pathology Clinical Laboratory, Hiroshima Prefectural Hospital, Hiroshima, Japan
| | - Ikuko Ogawa
- Center of Oral Clinical Examination, Hiroshima University Hospital, Hiroshima, Japan
| | - Mutsumi Miyauchi
- Department of Oral and Maxillofacial Pathobiology, Basic Life Science, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takashi Takata
- Department of Oral and Maxillofacial Pathobiology, Basic Life Science, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
205
|
Chen N, Schill RL, O'Donnell M, Xu K, Bagchi DP, MacDougald OA, Koenig RJ, Xu B. The transcription factor NKX1-2 promotes adipogenesis and may contribute to a balance between adipocyte and osteoblast differentiation. J Biol Chem 2019; 294:18408-18420. [PMID: 31615896 DOI: 10.1074/jbc.ra119.007967] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 10/04/2019] [Indexed: 11/06/2022] Open
Abstract
Although adipogenesis is mainly controlled by a small number of master transcription factors, including CCAAT/enhancer-binding protein family members and peroxisome proliferator-activated receptor γ (PPARγ), other transcription factors also are involved in this process. Thyroid cancer cells expressing a paired box 8 (PAX8)-PPARγ fusion oncogene trans-differentiate into adipocyte-like cells in the presence of the PPARγ ligand pioglitazone, but this trans-differentiation is inhibited by the transcription factor NK2 homeobox 1 (NKX2-1). Here, we tested whether NKX family members may play a role also in normal adipogenesis. Using quantitative RT-PCR (RT-qPCR), we examined the expression of all 14 NKX family members during 3T3-L1 adipocyte differentiation. We found that most NKX members, including NKX2-1, are expressed at very low levels throughout differentiation. However, mRNA and protein expression of a related family member, NKX1-2, was induced during adipocyte differentiation. NKX1-2 also was up-regulated in cultured murine ear mesenchymal stem cells (EMSCs) during adipogenesis. Importantly, shRNA-mediated NKX1-2 knockdown in 3T3-L1 preadipocytes or EMSCs almost completely blocked adipocyte differentiation. Furthermore, NKX1-2 overexpression promoted differentiation of the ST2 bone marrow-derived mesenchymal precursor cell line into adipocytes. Additional findings suggested that NKX1-2 promotes adipogenesis by inhibiting expression of the antiadipogenic protein COUP transcription factor II. Bone marrow mesenchymal precursor cells can differentiate into adipocytes or osteoblasts, and we found that NKX1-2 both promotes ST2 cell adipogenesis and inhibits their osteoblastogenic differentiation. These results support a role for NKX1-2 in promoting adipogenesis and possibly in regulating the balance between adipocyte and osteoblast differentiation of bone marrow mesenchymal precursor cells.
Collapse
Affiliation(s)
- Noah Chen
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Rebecca L Schill
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Michael O'Donnell
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Kevin Xu
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Devika P Bagchi
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Ormond A MacDougald
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109; Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Ronald J Koenig
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Bin Xu
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109.
| |
Collapse
|
206
|
The Power of LC-MS Based Multiomics: Exploring Adipogenic Differentiation of Human Mesenchymal Stem/Stromal Cells. Molecules 2019; 24:molecules24193615. [PMID: 31597247 PMCID: PMC6804244 DOI: 10.3390/molecules24193615] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/26/2019] [Accepted: 10/04/2019] [Indexed: 12/12/2022] Open
Abstract
The molecular study of fat cell development in the human body is essential for our understanding of obesity and related diseases. Mesenchymal stem/stromal cells (MSC) are the ideal source to study fat formation as they are the progenitors of adipocytes. In this work, we used human MSCs, received from surgery waste, and differentiated them into fat adipocytes. The combination of several layers of information coming from lipidomics, metabolomics and proteomics enabled network analysis of the biochemical pathways in adipogenesis. Simultaneous analysis of metabolites, lipids, and proteins in cell culture is challenging due to the compound’s chemical difference, so most studies involve separate analysis with unimolecular strategies. In this study, we employed a multimolecular approach using a two–phase extraction to monitor the crosstalk between lipid metabolism and protein-based signaling in a single sample (~105 cells). We developed an innovative analytical workflow including standardization with in-house produced 13C isotopically labeled compounds, hyphenated high-end mass spectrometry (high-resolution Orbitrap MS), and chromatography (HILIC, RP) for simultaneous untargeted screening and targeted quantification. Metabolite and lipid concentrations ranged over three to four orders of magnitude and were detected down to the low fmol (absolute on column) level. Biological validation and data interpretation of the multiomics workflow was performed based on proteomics network reconstruction, metabolic modelling (MetaboAnalyst 4.0), and pathway analysis (OmicsNet). Comparing MSCs and adipocytes, we observed significant regulation of different metabolites and lipids such as triglycerides, gangliosides, and carnitine with 113 fully reprogrammed pathways. The observed changes are in accordance with literature findings dealing with adipogenic differentiation of MSC. These results are a proof of principle for the power of multimolecular extraction combined with orthogonal LC-MS assays and network construction. Considering the analytical and biological validation performed in this study, we conclude that the proposed multiomics workflow is ideally suited for comprehensive follow-up studies on adipogenesis and is fit for purpose for different applications with a high potential to understand the complex pathophysiology of diseases.
Collapse
|
207
|
Boughanem H, Cabrera-Mulero A, Millán-Gómez M, Garrido-Sánchez L, Cardona F, Tinahones FJ, Moreno-Santos I, Macías-González M. Transcriptional Analysis of FOXO1, C/EBP-α and PPAR-γ2 Genes and Their Association with Obesity-Related Insulin Resistance. Genes (Basel) 2019; 10:genes10090706. [PMID: 31547433 PMCID: PMC6770962 DOI: 10.3390/genes10090706] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/28/2019] [Accepted: 09/10/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Obesity is associated with several comorbid disorders, ranging from cardiovascular diseases to insulin resistance. In this context, visceral adipose tissue (VAT) seems to have a close connection with insulin resistance. In our study, we hypothesized that the expression profile of key adipogenic genes, such as proliferator-activated receptor γ type 2 (PPAR-γ2), CCAAT/enhancer-binding protein type α (C/EBP-α), and forkhead box protein class O type 1 (FOXO1) in VAT should shed light on their association with obesity-related insulin resistance. METHODS To test this idea, we studied the expression profile of C/EBP-α, FOXO1 and PPAR-γ2 in VAT from non-obese individuals, and low insulin (LIR-MO) and high insulin morbidly obese (HIR-MO) subjects, through a combination of RT-qPCR, co-immunoprecipitation, ELISA, Western blot analysis and EMSA assays. RESULTS Our results show that C/EBP-α and PPAR-γ2 were down-expressed in HIR-MO individuals, while FOXO1 was overexpressed. In addition, the PPAR-γ2-RXR-α heterodimer showed weak activity and bound weakly to the putative IGFBP-2-PPRE promoter sequence in VAT from HIR-MO subjects when compared with LIR-MO individuals. CONCLUSIONS These results show that PPAR-γ2, C/EBP-α, FOXO1 and IGFBP-2 have a close relationship with insulin resistance in VAT of morbidly obese individuals.
Collapse
Affiliation(s)
- Hatim Boughanem
- Biomedical Research Institute of Malaga (IBIMA), Faculty of Science, University of Malaga, 29010 Málaga, Spain.
| | - Amanda Cabrera-Mulero
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, University of Malaga (IBIMA), 29010 Málaga, Spain.
- CIBEROBN (CIBER in Physiopathology of Obesity and Nutrition CB06/03/0018), "Instituto de Salud Carlos III", 28029 Madrid, Spain.
| | - Mercedes Millán-Gómez
- CIBERCV (CIBER in cardiovascular diseases), "Instituto de Salud Carlos III", 28029 Madrid, Spain.
- Unidad de Gestión Clínica Área del Corazón, Virgen de la Victoria University Hospital, University of Malaga (IBIMA), 29010 Málaga, Spain.
| | - Lourdes Garrido-Sánchez
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, University of Malaga (IBIMA), 29010 Málaga, Spain.
- CIBEROBN (CIBER in Physiopathology of Obesity and Nutrition CB06/03/0018), "Instituto de Salud Carlos III", 28029 Madrid, Spain.
| | - Fernando Cardona
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, University of Malaga (IBIMA), 29010 Málaga, Spain.
- CIBEROBN (CIBER in Physiopathology of Obesity and Nutrition CB06/03/0018), "Instituto de Salud Carlos III", 28029 Madrid, Spain.
| | - Francisco José Tinahones
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, University of Malaga (IBIMA), 29010 Málaga, Spain.
- CIBEROBN (CIBER in Physiopathology of Obesity and Nutrition CB06/03/0018), "Instituto de Salud Carlos III", 28029 Madrid, Spain.
| | - Inmaculada Moreno-Santos
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, University of Malaga (IBIMA), 29010 Málaga, Spain.
| | - Manuel Macías-González
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, University of Malaga (IBIMA), 29010 Málaga, Spain.
- CIBEROBN (CIBER in Physiopathology of Obesity and Nutrition CB06/03/0018), "Instituto de Salud Carlos III", 28029 Madrid, Spain.
| |
Collapse
|
208
|
Acharya A, Berry DC, Zhang H, Jiang Y, Jones BT, Hammer RE, Graff JM, Mendell JT. miR-26 suppresses adipocyte progenitor differentiation and fat production by targeting Fbxl19. Genes Dev 2019; 33:1367-1380. [PMID: 31488578 PMCID: PMC6771383 DOI: 10.1101/gad.328955.119] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 08/13/2019] [Indexed: 02/07/2023]
Abstract
Fat storage in adult mammals is a highly regulated process that involves the mobilization of adipocyte progenitor cells (APCs) that differentiate to produce new adipocytes. Here we report a role for the broadly conserved miR-26 family of microRNAs (miR-26a-1, miR-26a-2, and miR-26b) as major regulators of APC differentiation and adipose tissue mass. Deletion of all miR-26-encoding loci in mice resulted in a dramatic expansion of adipose tissue in adult animals fed normal chow. Conversely, transgenic overexpression of miR-26a protected mice from high-fat diet-induced obesity. These effects were attributable to a cell-autonomous function of miR-26 as a potent inhibitor of APC differentiation. miR-26 blocks adipogenesis, at least in part, by repressing expression of Fbxl19, a conserved miR-26 target without a previously known role in adipocyte biology that encodes a component of SCF-type E3 ubiquitin ligase complexes. These findings have therefore revealed a novel pathway that plays a critical role in regulating adipose tissue formation in vivo and suggest new potential therapeutic targets for obesity and related disorders.
Collapse
Affiliation(s)
- Asha Acharya
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Daniel C Berry
- Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853, USA
| | - He Zhang
- Quantitative Biomedical Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Yuwei Jiang
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | - Benjamin T Jones
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Robert E Hammer
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Jonathan M Graff
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Department of Internal Medicine, Division of Endocrinology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Joshua T Mendell
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
209
|
Identification and validation of four hub genes involved in the plaque deterioration of atherosclerosis. Aging (Albany NY) 2019; 11:6469-6489. [PMID: 31449494 PMCID: PMC6738408 DOI: 10.18632/aging.102200] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 08/12/2019] [Indexed: 01/17/2023]
Abstract
In recent years, intense research has been conducted to explore the diagnostic value of mRNA expression differences in atherosclerosis (AS). Nevertheless, because various technology platforms are applied and sample sizes are small, the results are inconsistent among the studies. We conducted a comprehensive analysis of a total of 161 tissue samples from 4 published studies after evaluating 230 datasets from the Gene Expression Omnibus and ArrayExpress. Adopting the newly published robust rank aggregation approach, combined with Kyoto Encyclopedia of Genes and Genomes pathway analysis, Gene Ontology functional enrichment analysis, and protein-protein interaction network construction, we identified four significantly upregulated genes (CCL4, CCL18, MMP9 and SPP1) for diagnosing AS, even in the advanced stage. Then, we performed gene set enrichment analysis to identify the pathways that were most affected by altered mRNA expression in atherosclerotic plaques. We found that four hub genes cooperatively targeted lipid metabolism and inflammatory immune-related pathways and validated their high expression levels in ruptured plaques by qRT-PCR, western blot analysis and immunohistochemical staining. In summary, our study showed that these genes can be used as interventional targets for plaque progression, and the results suggested we should focus on small changes in these key indicators in the clinical setting.
Collapse
|
210
|
Zhou JY, Poudel A, Welchko R, Mekala N, Chandramani-Shivalingappa P, Rosca MG, Li L. Liraglutide improves insulin sensitivity in high fat diet induced diabetic mice through multiple pathways. Eur J Pharmacol 2019; 861:172594. [PMID: 31412267 DOI: 10.1016/j.ejphar.2019.172594] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/01/2019] [Accepted: 08/07/2019] [Indexed: 02/07/2023]
Abstract
Glucagon like peptide-1 (GLP-1) promotes postprandial insulin secretion. Liraglutide, a full agonist of the GLP-1 receptor, reduces body weight, improve insulin sensitivity, and alleviate Non Alcoholic Fatty Liver Disease (NAFLD). However, the underlying mechanisms remain unclear. This study aims to explore the underlying mechanisms and cell signaling pathways involved in the anti-obesity and anti-inflammatory effects of liraglutide. Mice were fed a high fat high sucrose diet to induce diabetes, diabetic mice were divided into two groups and injected with liraglutide or vehicle for 14 days. Liraglutide treatment improved insulin sensitivity, accompanied with reduced expression of the phosphorylated Acetyl-CoA carboxylase-2 (ACC2) and upregulation of long chain acyl CoA dehydrogenase (LCAD) in insulin sensitive tissues. Furthermore, liraglutide induced adenosine monophosphate-activated protein kinase-α (AMPK-α) and Sirtuin-1(Sirt-1) protein expression in liver and perigonadal fat. Liraglutide induced elevation of fatty acid oxidation in these tissues may be mediated through the AMPK-Sirt-1 cell signaling pathway. In addition, liraglutide induced brown adipocyte differentiation in skeletal muscle, including induction of uncoupling protein-1 (UCP-1) and PR-domain-containing-16 (PRDM-16) protein in association with induction of SIRT-1. Importantly, liraglutide displayed anti-inflammation effect. Specifically, liraglutide led to a significant reduction in circulating interleukin-1 β (IL-1 β) and interleukin-6 (IL-6) as well as hepatic IL-1 β and IL-6 content. The expression of inducible nitric oxide synthase (iNOS-1) and cyclooxygenase-2 (COX-2) in insulin sensitive tissues was also reduced following liraglutide treatment. In conclusion, liraglutide improves insulin sensitivity through multiple pathways resulting in reduction of inflammation, elevation of fatty acid oxidation, and induction of adaptive thermogenesis.
Collapse
Affiliation(s)
- Joseph Yi Zhou
- College of Medicine, Central Michigan University, MI, 48859, USA
| | - Anil Poudel
- Department of Physician Assistant, College of Health Professions, Central Michigan University MI, 48859, USA
| | - Ryan Welchko
- Department of Physician Assistant, College of Health Professions, Central Michigan University MI, 48859, USA
| | - Naveen Mekala
- College of Medicine, Central Michigan University, MI, 48859, USA
| | | | | | - Lixin Li
- Department of Physician Assistant, College of Health Professions, Central Michigan University MI, 48859, USA.
| |
Collapse
|
211
|
Hyperglycemia Changes Expression of Key Adipogenesis Markers (C/EBPα and PPARᵞ)and Morphology of Differentiating Human Visceral Adipocytes. Nutrients 2019; 11:nu11081835. [PMID: 31398873 PMCID: PMC6723080 DOI: 10.3390/nu11081835] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 07/31/2019] [Accepted: 08/06/2019] [Indexed: 12/11/2022] Open
Abstract
Disturbances in adipose tissue significantly contribute to the development of metabolic disorders, which are connected with hyperglycemia (HG) and underlain by epigenetics-based mechanisms. Therefore, we aimed to evaluate the effect of hyperglycemia on proliferating, differentiating and maturating human visceral pre/adipocytes (HPA-v). Three stages of cell culture were conducted under constant or variable glycemic conditions. Adipogenesis progress was assessed using BODIPY 505/515 staining. Lipid content typical for normal and hyperglycemic conditions of adipocytes was analyzed using Raman spectroscopy and imaging. Expression of adipogenic markers, PPARγ and C/EBPα, was determined at the mRNA and protein levels. We also examined expression of miRNAs proven to target PPARγ (miR-34a-5p) and C/EBPα (miR-137-3p), employing TaqMan Low-Density Arrays (TLDA) cards. Hyperglycemia altered morphology of differentiating HPA-v in relation to normoglycemia by accelerating the formation of lipid droplets and making their numbers and volume increase. Raman results confirmed that the qualitative and quantitative lipid composition under normal and hyperglycemic conditions were different, and that the number of lipid droplets increased in (HG)-treated cells. Expression profiles of both examined genes markedly changed either during adipogenesis under physiological and hyperglycemic conditions, orat particular stages of adipogenesis upon chronic and/or variable glycemia. Expression levels of PPARγ seemed to correspond to some expression changes of miR-34a-5p. miR-137-3p, whose expression was rather stable throughout the culture, did not seem to affect C/EBPα. Our observations revealed that chronic and intermittent hyperglycemia change the morphology of visceral pre/adipocytes during adipogenesis. Moreover, hyperglycemia may utilize miR-34a-5p to induce some expression changes in PPARγ.
Collapse
|
212
|
Liang Q, Zheng Q, Zuo Y, Chen Y, Ma J, Ni P, Cheng J. SENP2 Suppresses Necdin Expression to Promote Brown Adipocyte Differentiation. Cell Rep 2019; 28:2004-2011.e4. [DOI: 10.1016/j.celrep.2019.07.083] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 06/15/2019] [Accepted: 07/23/2019] [Indexed: 11/28/2022] Open
|
213
|
Bai M, Han Y, Wu Y, Liao J, Li L, Wang L, Li Q, Xing W, Chen L, Zou W, Li J. Targeted genetic screening in mice through haploid embryonic stem cells identifies critical genes in bone development. PLoS Biol 2019; 17:e3000350. [PMID: 31265461 PMCID: PMC6629148 DOI: 10.1371/journal.pbio.3000350] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 07/15/2019] [Accepted: 06/18/2019] [Indexed: 01/23/2023] Open
Abstract
Mutagenic screening is powerful for identifying key genes involved in developmental processes. However, such screens are successful only in lower organisms. Here, we develop a targeted genetic screening approach in mice through combining androgenetic haploid embryonic stem cells (AG-haESCs) and clustered regularly interspaced palindromic repeats/CRISPR-associated protein 9 (CRISPR-Cas9) technology. We produced a mutant semi-cloned (SC) mice pool by oocyte injection of AG-haESCs carrying constitutively expressed Cas9 and an single guide RNA (sgRNA) library targeting 72 preselected genes in one step and screened for bone-development-related genes through skeletal analysis at birth. This yielded 4 genes: Zic1 and Clec11a, which are required for bone development, and Rln1 and Irx5, which had not been previously considered. Whereas Rln1-/- mice exhibited small skeletal size only at birth, Irx5-/- mice showed skeletal abnormalities both in postnatal and adult phases due to decreased bone mass and increased bone marrow adipogenesis. Mechanistically, iroquois homeobox 5 (IRX5) promotes osteoblastogenesis and inhibits adipogenesis by suppressing peroxisome proliferator activated receptor γ (PPARγ) activation. Thus, AG-haESC-mediated functional mutagenic screening opens new avenues for genetic interrogation of developmental processes in mice.
Collapse
Affiliation(s)
- Meizhu Bai
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yujiao Han
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yuxuan Wu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Jiaoyang Liao
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Lin Li
- Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lijun Wang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Qing Li
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Wenhui Xing
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Luonan Chen
- Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Weiguo Zou
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- * E-mail: (JL); (WZ)
| | - Jinsong Li
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
- * E-mail: (JL); (WZ)
| |
Collapse
|
214
|
Schaar A, Sun Y, Sukumaran P, Rosenberger TA, Krout D, Roemmich JN, Brinbaumer L, Claycombe-Larson K, Singh BB. Ca 2+ entry via TRPC1 is essential for cellular differentiation and modulates secretion via the SNARE complex. J Cell Sci 2019; 132:jcs.231878. [PMID: 31182642 PMCID: PMC6633397 DOI: 10.1242/jcs.231878] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/27/2019] [Indexed: 12/17/2022] Open
Abstract
Properties of adipocytes, including differentiation and adipokine secretion, are crucial factors in obesity-associated metabolic syndrome. Here, we provide evidence that Ca2+ influx in primary adipocytes, especially upon Ca2+ store depletion, plays an important role in adipocyte differentiation, functionality and subsequently metabolic regulation. The endogenous Ca2+ entry channel in both subcutaneous and visceral adipocytes was found to be dependent on TRPC1–STIM1, and blocking Ca2+ entry with SKF96365 or using TRPC1−/− knockdown adipocytes inhibited adipocyte differentiation. Additionally, TRPC1−/− mice have decreased organ weight, but increased adipose deposition and reduced serum adiponectin and leptin concentrations, without affecting total adipokine expression. Mechanistically, TRPC1-mediated Ca2+ entry regulated SNARE complex formation, and agonist-mediated secretion of adipokine-loaded vesicles was inhibited in TRPC1−/− adipose. These results suggest an unequivocal role of TRPC1 in adipocyte differentiation and adiponectin secretion, and that loss of TRPC1 disturbs metabolic homeostasis. This article has an associated First Person interview with the first author of the paper. Summary: TRPC1 modulates Ca2+ entry, which is essential in adipocyte differentiation and adiponectin secretion, through facilitating SNARE complex formation, thereby maintaining metabolic homeostasis.
Collapse
Affiliation(s)
- Anne Schaar
- Department of Biomedical Science, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | - Yuyang Sun
- Department of Biomedical Science, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | - Pramod Sukumaran
- Department of Biomedical Science, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | - Thad A Rosenberger
- Department of Biomedical Science, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | - Danielle Krout
- US Department of Agriculture-Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND 58203, USA
| | - James N Roemmich
- US Department of Agriculture-Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND 58203, USA
| | - Lutz Brinbaumer
- Neurobiology Laboratory, NIHES, NIH, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA.,Institute of Biomedical Research, (BIOMED) Catholic University of Argentina, Av. Alicia Moreau de Justo 1300, Edificio San Jose Piso 3, Buenos Aires C1107AAZ, Argentina
| | - Kate Claycombe-Larson
- US Department of Agriculture-Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND 58203, USA
| | - Brij B Singh
- Department of Biomedical Science, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| |
Collapse
|
215
|
Platko K, Lebeau PF, Byun JH, Poon SV, Day EA, MacDonald ME, Holzapfel N, Mejia-Benitez A, Maclean KN, Krepinsky JC, Austin RC. GDF10 blocks hepatic PPARγ activation to protect against diet-induced liver injury. Mol Metab 2019; 27:62-74. [PMID: 31288993 PMCID: PMC6717799 DOI: 10.1016/j.molmet.2019.06.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/14/2019] [Accepted: 06/24/2019] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE Growth differentiation factors (GDFs) and bone-morphogenic proteins (BMPs) are members of the transforming growth factor β (TGFβ) superfamily and are known to play a central role in the growth and differentiation of developing tissues. Accumulating evidence, however, demonstrates that many of these factors, such as BMP-2 and -4, as well as GDF15, also regulate lipid metabolism. GDF10 is a divergent member of the TGFβ superfamily with a unique structure and is abundantly expressed in brain and adipose tissue; it is also secreted by the latter into the circulation. Although previous studies have demonstrated that overexpression of GDF10 reduces adiposity in mice, the role of circulating GDF10 on other tissues known to regulate lipid, like the liver, has not yet been examined. METHODS Accordingly, GDF10-/- mice and age-matched GDF10+/+ control mice were fed either normal control diet (NCD) or high-fat diet (HFD) for 12 weeks and examined for changes in liver lipid homeostasis. Additional studies were also carried out in primary and immortalized human hepatocytes treated with recombinant human (rh)GDF10. RESULTS Here, we show that circulating GDF10 levels are increased in conditions of diet-induced hepatic steatosis and, in turn, that secreted GDF10 can prevent excessive lipid accumulation in hepatocytes. We also report that GDF10-/- mice develop an obese phenotype as well as increased liver triglyceride accumulation when fed a NCD. Furthermore, HFD-fed GDF10-/- mice develop increased steatosis, endoplasmic reticulum (ER) stress, fibrosis, and injury of the liver compared to HFD-fed GDF10+/+ mice. To explain these observations, studies in cultured hepatocytes led to the observation that GDF10 attenuates nuclear peroxisome proliferator-activated receptor γ (PPARγ) activity; a transcription factor known to induce de novo lipogenesis. CONCLUSION Our work delineates a hepatoprotective role of GDF10 as an adipokine capable of regulating hepatic lipid levels by blocking de novo lipogenesis to protect against ER stress and liver injury.
Collapse
Affiliation(s)
- Khrystyna Platko
- Department of Medicine, McMaster University, The Research Institute of St. Joe's Hamilton, Hamilton Centre for Kidney Research, Hamilton, Ontario, L8N 4A6, Canada
| | - Paul F Lebeau
- Department of Medicine, McMaster University, The Research Institute of St. Joe's Hamilton, Hamilton Centre for Kidney Research, Hamilton, Ontario, L8N 4A6, Canada
| | - Jae Hyun Byun
- Department of Medicine, McMaster University, The Research Institute of St. Joe's Hamilton, Hamilton Centre for Kidney Research, Hamilton, Ontario, L8N 4A6, Canada
| | - Samantha V Poon
- Department of Medicine, McMaster University, The Research Institute of St. Joe's Hamilton, Hamilton Centre for Kidney Research, Hamilton, Ontario, L8N 4A6, Canada
| | - Emily A Day
- The Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8N 4A6, Canada
| | - Melissa E MacDonald
- Department of Medicine, McMaster University, The Research Institute of St. Joe's Hamilton, Hamilton Centre for Kidney Research, Hamilton, Ontario, L8N 4A6, Canada
| | - Nicholas Holzapfel
- Department of Medicine, McMaster University, The Research Institute of St. Joe's Hamilton, Hamilton Centre for Kidney Research, Hamilton, Ontario, L8N 4A6, Canada
| | - Aurora Mejia-Benitez
- Department of Medicine, McMaster University, The Research Institute of St. Joe's Hamilton, Hamilton Centre for Kidney Research, Hamilton, Ontario, L8N 4A6, Canada
| | - Kenneth N Maclean
- The Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Joan C Krepinsky
- Department of Medicine, McMaster University, The Research Institute of St. Joe's Hamilton, Hamilton Centre for Kidney Research, Hamilton, Ontario, L8N 4A6, Canada
| | - Richard C Austin
- Department of Medicine, McMaster University, The Research Institute of St. Joe's Hamilton, Hamilton Centre for Kidney Research, Hamilton, Ontario, L8N 4A6, Canada.
| |
Collapse
|
216
|
Fu X, Li C, Liu Q, McMillin KW. GROWTH AND DEVELOPMENT SYMPOSIUM: STEM AND PROGENITOR CELLS IN ANIMAL GROWTH: The regulation of beef quality by resident progenitor cells1. J Anim Sci 2019; 97:2658-2673. [PMID: 30982893 PMCID: PMC6541817 DOI: 10.1093/jas/skz111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 04/01/2019] [Indexed: 12/11/2022] Open
Abstract
The intramuscular adipose tissue deposition in the skeletal muscle of beef cattle is a highly desired trait essential for high-quality beef. In contrast, the excessive accumulation of crosslinked collagen in intramuscular connective tissue contributes to beef toughness. Recent studies revealed that adipose tissue and connective tissue share an embryonic origin in mice and may be derived from a common immediate bipotent precursor in mice and humans. Having the same linkages in the development of adipose tissue and connective tissue in beef, the lineage commitment and differentiation of progenitor cells giving rise to these tissues may directly affect beef quality. It has been shown that these processes are regulated by some key transcription regulators and are subjective to epigenetic modifications such as DNA methylation, histone modifications, and microRNAs. Continued exploration of relevant regulatory pathways is very important for the identification of mechanisms influencing meat quality and the development of proper management strategies for beef quality improvement.
Collapse
Affiliation(s)
- Xing Fu
- School of Animal Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA
| | - Chaoyang Li
- School of Animal Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA
| | - Qianglin Liu
- School of Animal Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA
| | - Kenneth W McMillin
- School of Animal Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA
| |
Collapse
|
217
|
Koo SY, Hwang JH, Yang SH, Um JI, Hong KW, Kang K, Pan CH, Hwang KT, Kim SM. Anti-Obesity Effect of Standardized Extract of Microalga Phaeodactylum tricornutum Containing Fucoxanthin. Mar Drugs 2019; 17:md17050311. [PMID: 31137922 PMCID: PMC6562887 DOI: 10.3390/md17050311] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/23/2019] [Accepted: 05/24/2019] [Indexed: 12/22/2022] Open
Abstract
Fucoxanthin (FX), a marine carotenoid found in macroalgae and microalgae, exhibits several beneficial effects to health. The anti-obesity activity of FX is well documented, but FX has not been mass-produced or applied extensively or commercially because of limited availability of raw materials and complex extraction techniques. In this study, we investigated the anti-obesity effect of standardized FX powder (Phaeodactylum extract (PE)) developed from microalga Phaeodactylum tricornutum as a commercial functional food. The effects of PE on adipogenesis inhibition in 3T3-L1 adipocytes and anti-obesity in high-fat diet (HFD)-fed C57BL/6J mice were evaluated. PE and FX dose-dependently decreased intracellular lipid contents in adipocytes without cytotoxicity. In HFD-fed obese mice, PE supplementation for six weeks decreased body weight, organ weight, and adipocyte size. In the serum parameter analysis, the PE-treated groups showed attenuation of lipid metabolism dysfunction and liver damage induced by HFD. In the liver, uncoupling protein-1 (UCP1) upregulation and peroxisome proliferator activated receptor γ (PPARγ) downregulation were detected in the PE-treated groups. Additionally, micro computed tomography revealed lower fat accumulation in PE-treated groups compared to that in the HFD group. These results indicate that PE exerts anti-obesity effects by inhibiting adipocytic lipogenesis, inducing fat mass reduction and decreasing intracellular lipid content, adipocyte size, and adipose weight.
Collapse
Affiliation(s)
- Song Yi Koo
- Natural Product Informatics Center, KIST Gangneung Institute of Natural Products, Gangneung 25451, Korea.
- Department of Food and Nutrition, and Research Institute of Human Ecology, Seoul National University, Seoul 08826, Korea.
| | - Ji-Hyun Hwang
- Natural Product Informatics Center, KIST Gangneung Institute of Natural Products, Gangneung 25451, Korea.
| | - Seung-Hoon Yang
- Department of Medical Biotechnology, College of Life Science and Biotechnology, Dongguk University, Seoul 04620, Korea.
| | - Jae-In Um
- R&D Department, AlgaeTech Co. Ltd., Gangneung 25457, Korea.
| | - Kwang Won Hong
- R&D Department, AlgaeTech Co. Ltd., Gangneung 25457, Korea.
| | - Kyungsu Kang
- Natural Product Informatics Center, KIST Gangneung Institute of Natural Products, Gangneung 25451, Korea.
- Division of Bio-Medical Science & Technology, University of Science & Technology, Daejeon 34113, Korea.
| | - Cheol-Ho Pan
- Natural Product Informatics Center, KIST Gangneung Institute of Natural Products, Gangneung 25451, Korea.
- Division of Bio-Medical Science & Technology, University of Science & Technology, Daejeon 34113, Korea.
| | - Keum Taek Hwang
- Department of Food and Nutrition, and Research Institute of Human Ecology, Seoul National University, Seoul 08826, Korea.
| | - Sang Min Kim
- Smart Farm Research Center, KIST Gangneung Institute of Natural Products, Gangneung 25451, Korea.
- Division of Bio-Medical Science & Technology, University of Science & Technology, Daejeon 34113, Korea.
| |
Collapse
|
218
|
Gentiopicroside isolated from Gentiana scabra Bge. inhibits adipogenesis in 3T3-L1 cells and reduces body weight in diet-induced obese mice. Bioorg Med Chem Lett 2019; 29:1699-1704. [PMID: 31130265 DOI: 10.1016/j.bmcl.2019.05.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 04/18/2019] [Accepted: 05/18/2019] [Indexed: 12/30/2022]
Abstract
Gentiopicroside is a major active component of the Gentiana scabra Bge., which is commonly used as herbal medicine for the treatment of inflammation in Asia. Gentiopicroside significantly down-regulated expression of key adipogenic transcription factors (PPARγ, C/EBPα, SREBP-1c) and dose-dependently inhibited the lipid uptake-related gene (LPL), fatty acid transport-related gene (FABP4) and triglyceride (TG) synthesis-related gene (DGAT2), as well as fatty acid synthesis-related genes (FAS, SCD1), which resulted in reduced intracellular lipid droplet accumulation and TG content in 3T3-L1 cells. Gentiopicroside also down-regulated expression of inflammatory cytokine genes (NFκB1, TNFα, IL6) compared with vehicle. Oral administration of gentiopicroside (50 mg/kg) in mice fed with high-fat diet for 12 weeks resulted in reduced body weight and visceral fat mass compared with the control group. Overall, the results of this study showed that gentiopicroside had positive anti-obesity effects by regulating the expression of adipogenesis/lipogenesis-related genes and inflammatory genes in 3T3-L1, and that it effectively reduced body weight and visceral fat mass in vivo.
Collapse
|
219
|
Thr55 phosphorylation of p21 by MPK38/MELK ameliorates defects in glucose, lipid, and energy metabolism in diet-induced obese mice. Cell Death Dis 2019; 10:380. [PMID: 31097688 PMCID: PMC6522503 DOI: 10.1038/s41419-019-1616-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/22/2019] [Accepted: 04/29/2019] [Indexed: 01/15/2023]
Abstract
Murine protein serine-threonine kinase 38 (MPK38)/maternal embryonic leucine zipper kinase (MELK), an AMP-activated protein kinase (AMPK)-related kinase, has previously been shown to interact with p53 and to stimulate downstream signaling. p21, a downstream target of p53, is also known to be involved in adipocyte and obesity metabolism. However, little is known about the mechanism by which p21 mediates obesity-associated metabolic adaptation. Here, we identify MPK38 as an interacting partner of p21. p21 and MPK38 interacted through the cyclin-dependent kinase (CDK) binding region of p21 and the C-terminal domain of MPK38. MPK38 potentiated p21-mediated apoptosis and cell cycle arrest in a kinase-dependent manner by inhibiting assembly of CDK2-cyclin E and CDK4-cyclin D complexes via induction of CDK2-p21 and CDK4-p21 complex formation and reductions in complex formation between p21 and its negative regulator mouse double minute 2 (MDM2), leading to p21 stabilization. MPK38 phosphorylated p21 at Thr55, stimulating its nuclear translocation, which resulted in greater association of p21 with peroxisome proliferator-activated receptor γ (PPARγ), preventing the PPARγ transactivation required for adipogenesis. Furthermore, restoration of p21 expression by adenoviral delivery in diet-induced obese mice ameliorated obesity-induced metabolic abnormalities in a MPK38 phosphorylation-dependent manner. These results suggest that MPK38 functions as a positive regulator of p21, regulating apoptosis, cell cycle arrest, and metabolism during obesity.
Collapse
|
220
|
Abstract
Understanding adipogenesis, the process of adipocyte development, may provide new ways to treat obesity and related metabolic diseases. Adipogenesis is controlled by coordinated actions of lineage-determining transcription factors and epigenomic regulators. Peroxisome proliferator-activated receptor gamma (PPARγ) and C/EBPα are master "adipogenic" transcription factors. In recent years, a growing number of studies have reported the identification of novel transcriptional and epigenomic regulators of adipogenesis. However, many of these novel regulators have not been validated in adipocyte development in vivo and their working mechanisms are often far from clear. In this minireview, we discuss recent advances in transcriptional and epigenomic regulation of adipogenesis, with a focus on factors and mechanisms shared by both white adipogenesis and brown adipogenesis. Studies on the transcriptional regulation of adipogenesis highlight the importance of investigating adipocyte differentiation in vivo rather than drawing conclusions based on knockdown experiments in cell culture. Advances in understanding of epigenomic regulation of adipogenesis have revealed critical roles of histone methylation/demethylation, histone acetylation/deacetylation, chromatin remodeling, DNA methylation, and microRNAs in adipocyte differentiation. We also discuss future research directions that may help identify novel factors and mechanisms regulating adipogenesis.
Collapse
|
221
|
Guo L, Guo YY, Li BY, Peng WQ, Tang QQ. Histone demethylase KDM5A is transactivated by the transcription factor C/EBPβ and promotes preadipocyte differentiation by inhibiting Wnt/β-catenin signaling. J Biol Chem 2019; 294:9642-9654. [PMID: 31061100 DOI: 10.1074/jbc.ra119.008419] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/03/2019] [Indexed: 12/30/2022] Open
Abstract
β-Catenin signaling is triggered by WNT proteins and is an important pathway that negatively regulates adipogenesis. However, the mechanisms controlling the expression of WNT proteins during adipogenesis remain incompletely understood. Lysine demethylase 5A (KDM5A) is a histone demethylase that removes trimethyl (me3) marks from lysine 4 of histone 3 (H3K4) and serves as a general transcriptional corepressor. Here, using the murine 3T3-L1 preadipocyte differentiation model and an array of biochemical approaches, including ChIP, immunoprecipitation, RT-qPCR, and immunoblotting assays, we show that Kdm5a is a target gene of CCAAT/enhancer-binding protein β (C/EBPβ), an important early transcription factor required for adipogenesis. We found that C/EBPβ binds to the Kdm5a gene promoter and transactivates its expression. We also found that siRNA-mediated KDM5A down-regulation inhibits 3T3-L1 preadipocyte differentiation. The KDM5A knockdown significantly up-regulates the negative regulator of adipogenesis Wnt6, having increased levels of the H3K4me3 mark on its promoter. We further observed that WNT6 knockdown significantly rescues adipogenesis inhibited by the KDM5A knockdown. Moreover, we noted that C/EBPβ negatively regulates Wnt6 expression by binding to the Wnt6 gene promoter and repressing Wnt6 transcription. Further experiments indicated that KDM5A interacts with C/EBPβ and that their interaction cooperatively inhibits Wnt6 transcription. Of note, C/EBPβ knockdown impaired the recruitment of KDM5A to the Wnt6 promoter, which had higher H3K4me3 levels. Our results suggest a mechanism involving C/EBPβ and KDM5A activities that down-regulates the Wnt/β-catenin pathway during 3T3-L1 preadipocyte differentiation.
Collapse
Affiliation(s)
- Liang Guo
- From the Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Ying-Ying Guo
- From the Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Bai-Yu Li
- From the Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Wan-Qiu Peng
- From the Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Qi-Qun Tang
- From the Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
222
|
Broekema M, Savage D, Monajemi H, Kalkhoven E. Gene-gene and gene-environment interactions in lipodystrophy: Lessons learned from natural PPARγ mutants. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:715-732. [PMID: 30742913 DOI: 10.1016/j.bbalip.2019.02.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 01/13/2019] [Accepted: 02/02/2019] [Indexed: 12/13/2022]
|
223
|
Hou X, Wang Z, Ding F, He Y, Wang P, Liu X, Xu F, Wang J, Yang Y. Taurine Transporter Regulates Adipogenic Differentiation of Human Adipose-Derived Stem Cells through Affecting Wnt/β-catenin Signaling Pathway. Int J Biol Sci 2019; 15:1104-1112. [PMID: 31182929 PMCID: PMC6535786 DOI: 10.7150/ijbs.31794] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 02/16/2019] [Indexed: 11/26/2022] Open
Abstract
Increased adipocytes are associated with obesity and many human disorders including cancers. To further understand the molecular mechanisms of adipogenesis, transcriptome sequencing was performed to find genes involved in the adipogenic differentiation of human adipose-derived stem cells (hASCs). The mRNA of taurine transporter (TauT, also known as SLC6A6) was found significantly upregulated in hASCs undergoing differentiation. TauT expression was also markedly increased in fat tissues from obese mice induced by high fat diet or genetic mutations (ob/ob and db/db mice). In vitro, downregulation of TauT attenuated effectively the adipogenic differentiation of hASCs, and TauT overexpression promoted the formation of adipocytes. Among the molecules transported by TauT, hypotaurine and β-alanine promoted adipocyte formation, whereas taurine inhibited the process. Moreover, the inhibitory effect of TauT knockdown on hASCs differentiation was largely reversed by hypotaurine and β-alanine through promoting the downregulation of β-catenin. These results indicated that TauT regulate adipocyte formation through transported amino acids and may serve as a target for therapeutic intervention of obesity.
Collapse
Affiliation(s)
- Xiaodan Hou
- Suzhou Institute of Systems Medicine, Center of Systems Medicine, Chinese Academy of Medical Sciences, Suzhou215123, Jiangsu, China
| | - Zhixue Wang
- Department of Burn and Plastic Surgery, North District of Suzhou Municipal Hospital, Suzhou 215008, Jiangsu, China
| | - Fang Ding
- Suzhou Institute of Systems Medicine, Center of Systems Medicine, Chinese Academy of Medical Sciences, Suzhou215123, Jiangsu, China
| | - Yang He
- Suzhou Institute of Systems Medicine, Center of Systems Medicine, Chinese Academy of Medical Sciences, Suzhou215123, Jiangsu, China
| | - Pengyuan Wang
- Department of Pharmacology, College of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Xia Liu
- Department of Pharmacology, College of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Feng Xu
- Department of Emergency, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu Province, China
| | - Jun Wang
- Department of Emergency, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu Province, China
| | - Yili Yang
- Suzhou Institute of Systems Medicine, Center of Systems Medicine, Chinese Academy of Medical Sciences, Suzhou215123, Jiangsu, China
| |
Collapse
|
224
|
Jia D, Li ZW, Zhou X, Gao Y, Feng Y, Ma M, Wu Z, Li W. A novel berberine-metformin hybrid compound exerts therapeutic effects on obese type 2 diabetic rats. Clin Exp Pharmacol Physiol 2019; 46:533-544. [PMID: 30883863 DOI: 10.1111/1440-1681.13085] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/19/2019] [Accepted: 03/12/2019] [Indexed: 12/11/2022]
Abstract
In this study, we investigated the biological activities of a novel berberine-metformin hybrid compound (BMH473) as an anti-diabetic agent. BMH473 exhibited significant anti-hyperglycaemic and anti-hyperlipidaemic effects on T2DM rats. In white adipose tissue, BMH473 reduced the perirenal and epididymal adipose tissue mass and modulated the lesions in perirenal adipose tissue, by inhibiting the protein expressions of PPAR-Ɣ, C/EBP-α and SREBP-1c as well as the mRNA expressions of lipogenic genes. Moreover, BMH473 downregulated the levels of pro-inflammatory cytokines in perirenal adipose tissue through the suppression of p-NF-κB. In liver, BMH473 reduced liver ectopic fat accumulation, by regulating the protein expression levels of SREBP-1c and PPAR-α as well as the mRNA expression levels of lipogenic genes. In addition, BMH473 inhibited hepatic gluconeogenesis by promoting the phosphorylation levels of AMPK α and ACC, and down-regulating the mRNA expression levels of FBPase, G6Pase and PEPCK. Furthermore, BMH473 exhibited significant inhibitory effects on lipogenesis and lipid accumulation in 3T3-L1 adipocytes by modulating the protein expression levels of PPAR-Ɣ, C/EBP-α and SREBP-1 c as well as the mRNA expression levels of lipogenic genes. In conclusion, our results suggest that the newly synthesized BMH473 is beneficial for maintaining glucose and lipid homeostasis in type 2 diabetic rats, and exhibits better anti-hyperlipidaemic effects compared to metformin and berberine.
Collapse
Affiliation(s)
- Dan Jia
- Integrated Chinese and Western Medicine Post-doctoral Research Station, Jinan University, Guangzhou, China.,The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China.,Shenzhen Institute of Geriatrics, Shenzhen, China
| | - Zi Wen Li
- Shenzhen Institute of Geriatrics, Shenzhen, China
| | - Xinxin Zhou
- Academy of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ying Gao
- Academy of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yifan Feng
- Central Laboratory of Guangdong Pharmaceutical University, GuangZhou, China
| | - Min Ma
- Integrated Chinese and Western Medicine Post-doctoral Research Station, Jinan University, Guangzhou, China
| | - Zhengzhi Wu
- The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China.,Shenzhen Institute of Geriatrics, Shenzhen, China
| | - Weimin Li
- Academy of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
225
|
Sikkeland J, Lindstad T, Nenseth HZ, Dezitter X, Qu S, Muhumed RM, Ertunc ME, Gregor MF, Saatcioglu F. Inflammation and ER stress differentially regulate STAMP2 expression and localization in adipocytes. Metabolism 2019; 93:75-85. [PMID: 30710574 PMCID: PMC6460919 DOI: 10.1016/j.metabol.2019.01.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/11/2019] [Accepted: 01/24/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Chronic ER stress and dysfunction is a hallmark of obesity and a critical contributor to metaflammation, abnormal hormone action and altered substrate metabolism in metabolic tissues, such as liver and adipocytes. Lack of STAMP2 in lean mice induces inflammation and insulin resistance on a regular diet, and it is dysregulated in the adipose tissue of obese mice and humans. We hypothesized that the regulation of STAMP2 is disrupted by ER stress. METHODS 3T3-L1 and MEF adipocytes were treated with ER stress inducers thapsigargin and tunicamycin, and inflammation inducer TNFα. The treatments effect on STAMP2 expression and enzymatic function was assessed. In addition, 3T3-L1 adipocytes and HEK cells were utilized for Stamp2 promoter activity investigation performed with luciferase and ChIP assays. RESULTS ER stress significantly reduced both STAMP2 mRNA and protein expression in cultured adipocytes whereas TNFα had the opposite effect. Concomitant with loss of STAMP2 expression during ER stress, intracellular localization of STAMP2 was altered and total iron reductase activity was reduced. Stamp2 promoter analysis by reporter assays and chromatin immunoprecipitation, showed that induction of ER stress disrupts C/EBPα-mediated STAMP2 expression. CONCLUSION These data suggest a clear link between ER stress and quantitative and functional STAMP2-deficiency.
Collapse
Affiliation(s)
- Jørgen Sikkeland
- Department of Biosciences, University of Oslo, Postboks 1066 Blindern, 0316 Oslo, Norway; Institute for Cancer Genetics and Informatics, Oslo University Hospital, 0310 Oslo, Norway
| | - Torstein Lindstad
- Department of Biosciences, University of Oslo, Postboks 1066 Blindern, 0316 Oslo, Norway
| | - Hatice Zeynep Nenseth
- Department of Biosciences, University of Oslo, Postboks 1066 Blindern, 0316 Oslo, Norway
| | - Xavier Dezitter
- Plateforme de Binding et de Biologie Moléculaire, Institut de Chimie Pharmaceutique Albert Lespagnol, Faculté des Sciences Pharmaceutiques et Biologiques - Université de Lille, F-59006 Lille, France
| | - Su Qu
- Department of Biosciences, University of Oslo, Postboks 1066 Blindern, 0316 Oslo, Norway
| | - Ridhwan M Muhumed
- Department of Biosciences, University of Oslo, Postboks 1066 Blindern, 0316 Oslo, Norway
| | - Meric Erikci Ertunc
- Department of Biosciences, University of Oslo, Postboks 1066 Blindern, 0316 Oslo, Norway; Department of Genetics and Complex Diseases and Sabri Ülker Center, Harvard TH Chan School of Public Health, Boston, MA 02115, USA
| | - Margaret F Gregor
- Department of Genetics and Complex Diseases and Sabri Ülker Center, Harvard TH Chan School of Public Health, Boston, MA 02115, USA
| | - Fahri Saatcioglu
- Department of Biosciences, University of Oslo, Postboks 1066 Blindern, 0316 Oslo, Norway; Institute for Cancer Genetics and Informatics, Oslo University Hospital, 0310 Oslo, Norway.
| |
Collapse
|
226
|
Singh A, Borah AK, Deka K, Gogoi AP, Verma K, Barah P, Saha S. Arginylation regulates adipogenesis by regulating expression of PPARγ at transcript and protein level. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:596-607. [DOI: 10.1016/j.bbalip.2018.12.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 11/28/2022]
|
227
|
Abdik EA, Abdik H, Taşlı PN, Deniz AAH, Şahin F. Suppressive Role of Boron on Adipogenic Differentiation and Fat Deposition in Human Mesenchymal Stem Cells. Biol Trace Elem Res 2019; 188:384-392. [PMID: 29980949 DOI: 10.1007/s12011-018-1428-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 06/28/2018] [Indexed: 12/20/2022]
Abstract
Over the past years, adipose tissue has become an invaluable source of mesenchymal stem cells (MSCs) due to development of improved isolation methodologies. In a recent work, our group established a primary culture of human adipose-derived stem cells (hADSCs), which were characterized for their stem cell characteristics in detail and studied their myogenic differentiation potential in presence of boron. In the current study, we focused on the effects of a boron-containing compound, sodium pentaborate pentahydrate (NaB), on the adipogenic differentiation of hADSCs. Incorporation of boron in various chemical derivates has been a novel interest in drug-discovery attempts due to increasing number of reports on their anticancer, antibacterial, antiviral, and antifungal activities. In this report, a striking suppressive activity of boron on adipogenic differentiation of hADSCs is observed in a dose-dependent manner. Higher concentrations of NaB (20, 50, and 100 μg/mL (68, 170 and 340 μM)) resulted in a progressive decrease of lipid deposition, suppressed master regulators of adipogenesis transcriptional programming at the mRNA and protein levels, while having no evident cytotoxicity on the cells. The findings of this study are encouraging to undertake further investigations on potential beneficial effects boron in terms of its impact on normal and dysfunctional adipose biology. In that respect, these results pave the path to evaluate boron-based compounds in prevention and treatment of obesity which is a modern age pandemic that is predominant worldwide and found in strong association with comorbidities, including type 2 diabetes, hypertension, cardiovascular disease, cancers, and others."
Collapse
Affiliation(s)
- Ezgi Avşar Abdik
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul, Turkey
| | - Hüseyin Abdik
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul, Turkey
| | - Pakize Neslihan Taşlı
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul, Turkey
| | | | - Fikrettin Şahin
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul, Turkey.
| |
Collapse
|
228
|
Lipid Accumulation and Chronic Kidney Disease. Nutrients 2019; 11:nu11040722. [PMID: 30925738 PMCID: PMC6520701 DOI: 10.3390/nu11040722] [Citation(s) in RCA: 232] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 12/12/2022] Open
Abstract
Obesity and hyperlipidemia are the most prevalent independent risk factors of chronic kidney disease (CKD), suggesting that lipid accumulation in the renal parenchyma is detrimental to renal function. Non-esterified fatty acids (also known as free fatty acids, FFA) are especially harmful to the kidneys. A concerted, increased FFA uptake due to high fat diets, overexpression of fatty acid uptake systems such as the CD36 scavenger receptor and the fatty acid transport proteins, and a reduced β-oxidation rate underlie the intracellular lipid accumulation in non-adipose tissues. FFAs in excess can damage podocytes, proximal tubular epithelial cells and the tubulointerstitial tissue through various mechanisms, in particular by boosting the production of reactive oxygen species (ROS) and lipid peroxidation, promoting mitochondrial damage and tissue inflammation, which result in glomerular and tubular lesions. Not all lipids are bad for the kidneys: polyunsaturated fatty acids (PUFA) such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) seem to help lag the progression of chronic kidney disease (CKD). Lifestyle interventions, especially dietary adjustments, and lipid-lowering drugs can contribute to improve the clinical outcome of patients with CKD.
Collapse
|
229
|
Chang E, Kim CY. Natural Products and Obesity: A Focus on the Regulation of Mitotic Clonal Expansion during Adipogenesis. Molecules 2019; 24:molecules24061157. [PMID: 30909556 PMCID: PMC6471203 DOI: 10.3390/molecules24061157] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/18/2019] [Accepted: 03/18/2019] [Indexed: 01/07/2023] Open
Abstract
Obesity is recognized as a worldwide health crisis. Obesity and its associated health complications such as diabetes, dyslipidemia, hypertension, and cardiovascular diseases impose a big social and economic burden. In an effort to identify safe, efficient, and long-term effective methods to treat obesity, various natural products with potential for inhibiting adipogenesis were revealed. This review aimed to discuss the molecular mechanisms underlying adipogenesis and the inhibitory effects of various phytochemicals, including those from natural sources, on the early stage of adipogenesis. We discuss key steps (proliferation and cell cycle) and their regulators (cell-cycle regulator, transcription factors, and intracellular signaling pathways) at the early stage of adipocyte differentiation as the mechanisms responsible for obesity.
Collapse
Affiliation(s)
- Eugene Chang
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea.
| | - Choon Young Kim
- Department of Food and Nutrition, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Korea.
| |
Collapse
|
230
|
Nutritional Regulation of Gene Expression: Carbohydrate-, Fat- and Amino Acid-Dependent Modulation of Transcriptional Activity. Int J Mol Sci 2019; 20:ijms20061386. [PMID: 30893897 PMCID: PMC6470599 DOI: 10.3390/ijms20061386] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 12/21/2022] Open
Abstract
The ability to detect changes in nutrient levels and generate an adequate response to these changes is essential for the proper functioning of living organisms. Adaptation to the high degree of variability in nutrient intake requires precise control of metabolic pathways. Mammals have developed different mechanisms to detect the abundance of nutrients such as sugars, lipids and amino acids and provide an integrated response. These mechanisms include the control of gene expression (from transcription to translation). This review reports the main molecular mechanisms that connect nutrients’ levels, gene expression and metabolism in health. The manuscript is focused on sugars’ signaling through the carbohydrate-responsive element binding protein (ChREBP), the role of peroxisome proliferator-activated receptors (PPARs) in the response to fat and GCN2/activating transcription factor 4 (ATF4) and mTORC1 pathways that sense amino acid concentrations. Frequently, alterations in these pathways underlie the onset of several metabolic pathologies such as obesity, insulin resistance, type 2 diabetes, cardiovascular diseases or cancer. In this context, the complete understanding of these mechanisms may improve our knowledge of metabolic diseases and may offer new therapeutic approaches based on nutritional interventions and individual genetic makeup.
Collapse
|
231
|
Gunasinghe MA, Kim AT, Kim SM. Inhibitory Effects of Vanadium-Binding Proteins Purified from the Sea Squirt Halocynthia roretzi on Adipogenesis in 3T3-L1 Adipocytes. Appl Biochem Biotechnol 2019; 189:49-64. [PMID: 30863985 DOI: 10.1007/s12010-019-02982-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 03/01/2019] [Indexed: 12/13/2022]
Abstract
The inhibitory effects of vanadium-binding proteins (VBPs) from the blood plasma and the intestine of sea squirt on adipogenesis in 3T3-L1 adipocytes were examined. 3T3L-1 cells treated with VBP blood plasma decreased markedly the lipid content in maturing pre-adipocytes in a dose-dependent manner, whereas VBP intestine did not show significant effects on lipid accumulation. Both VBPs did not have significant effect on cell viability. In order to demonstrate the anti-adipogenic effects of VBP blood plasma, the expressions of several adipogenic transcription factors and enzymes were investigated by Reverse Transcriptase-Polymerase Chain Reaction. VBP blood plasma down-regulated the expressions of transcription factors; PPAR-γ, C/EBP-α, SREBP1, and FAS, but did not have significant effects on the expressions of lipolytic enzymes; HSL and LPL. Both the crude and purified VBPs significantly increased the mRNA levels of Wnt10b, FZ1, LRP6, and β-catenin, while decreased the expression of GSK-3β. Hence, VBP blood plasma inhibited adipogenesis by activating WNT/β-catenin pathway via the activation of Wnt10b. Based on the findings, VBP blood plasma decreased lipid accumulation which was mediated by decreasing adipogenesis, not by lipolysis. Therefore, VBP blood plasma could be used to treat obesity.
Collapse
Affiliation(s)
- Minoli Anuththara Gunasinghe
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung, 25457, Republic of Korea
| | - Aaron Taehwan Kim
- Department of Food Science and Biotechnology, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Sang Moo Kim
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung, 25457, Republic of Korea.
| |
Collapse
|
232
|
Jiao Y, Ahmed U, Sim MFM, Bejar A, Zhang X, Talukder MMU, Rice R, Flannick J, Podgornaia AI, Reilly DF, Engreitz JM, Kost-Alimova M, Hartland K, Mercader JM, Georges S, Wagh V, Tadin-Strapps M, Doench JG, Edwardson JM, Rochford JJ, Rosen ED, Majithia AR. Discovering metabolic disease gene interactions by correlated effects on cellular morphology. Mol Metab 2019; 24:108-119. [PMID: 30940487 PMCID: PMC6531784 DOI: 10.1016/j.molmet.2019.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/06/2019] [Accepted: 03/07/2019] [Indexed: 12/26/2022] Open
Abstract
Objective Impaired expansion of peripheral fat contributes to the pathogenesis of insulin resistance and Type 2 Diabetes (T2D). We aimed to identify novel disease–gene interactions during adipocyte differentiation. Methods Genes in disease-associated loci for T2D, adiposity and insulin resistance were ranked according to expression in human adipocytes. The top 125 genes were ablated in human pre-adipocytes via CRISPR/CAS9 and the resulting cellular phenotypes quantified during adipocyte differentiation with high-content microscopy and automated image analysis. Morphometric measurements were extracted from all images and used to construct morphologic profiles for each gene. Results Over 107 morphometric measurements were obtained. Clustering of the morphologic profiles accross all genes revealed a group of 14 genes characterized by decreased lipid accumulation, and enriched for known lipodystrophy genes. For two lipodystrophy genes, BSCL2 and AGPAT2, sub-clusters with PLIN1 and CEBPA identifed by morphological similarity were validated by independent experiments as novel protein–protein and gene regulatory interactions. Conclusions A morphometric approach in adipocytes can resolve multiple cellular mechanisms for metabolic disease loci; this approach enables mechanistic interrogation of the hundreds of metabolic disease loci whose function still remains unknown. Loss-of-function genetic screen in human adipocytes for 125 genes selected from metabolic disease-associated loci. Genetic screen read out by cellular morphometry— 77,000 images taken with 400 morphological features extracted per image. Pairwise mechanistic interactions between genes identified by correlations of cellular morphometry—two interactions validated. Novel interaction between BSCL2 and PLIN1 from biophysical association of proteins at lipid droplet surface. Novel interaction between CEBPA and AGPAT2 from CEBPA dependent transcription of AGPAT2.
Collapse
Affiliation(s)
- Yang Jiao
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Umer Ahmed
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - M F Michelle Sim
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Andrea Bejar
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Xiaolan Zhang
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Robert Rice
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jason Flannick
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Anna I Podgornaia
- Genetics and Pharmacogenomics, Merck & Co., Inc., Boston, MA 02115, USA
| | - Dermot F Reilly
- Genetics and Pharmacogenomics, Merck & Co., Inc., Boston, MA 02115, USA
| | | | | | - Kate Hartland
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Sara Georges
- Genetics and Pharmacogenomics, Merck & Co., Inc., Boston, MA 02115, USA
| | - Vilas Wagh
- Genetics and Pharmacogenomics, Merck & Co., Inc., Boston, MA 02115, USA
| | | | - John G Doench
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Justin J Rochford
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK; Rowett Institute and the Aberdeen Cardiovascular and Diabetes Centre, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Evan D Rosen
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Division of Endocrinology, Diabetes and Obesity, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; Harvard Medical School, Department of Genetics, Boston, MA 02215, USA
| | - Amit R Majithia
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Division of Endocrinology, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
233
|
Moreno-Santos I, Garcia-Serrano S, Boughanem H, Garrido-Sanchez L, Tinahones FJ, Garcia-Fuentes E, Macias-Gonzalez M. The Antagonist Effect of Arachidonic Acid on GLUT4 Gene Expression by Nuclear Receptor Type II Regulation. Int J Mol Sci 2019; 20:ijms20040963. [PMID: 30813326 PMCID: PMC6412497 DOI: 10.3390/ijms20040963] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/15/2019] [Accepted: 02/20/2019] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES Obesity is a complex disease that has a strong association with diet and lifestyle. Dietary factors can influence the expression of key genes connected to insulin resistance, lipid metabolism, and adipose tissue composition. In this study, our objective was to determine gene expression and fatty acid (FA) profiles in visceral adipose tissue (VAT) from lean and morbidly obese individuals. We also aimed to study the agonist effect of dietary factors on glucose metabolism. DESIGN AND METHODS Lean and low and high insulin resistance morbidly obese subjects (LIR-MO and HIR-MO) were included in this study. The gene expression of liver X receptor type alpha (LXR-α) and glucose transporter type 4 (GLUT4) and the FA profiles in VAT were determined. Additionally, the in vivo and in vitro agonist effects of oleic acid (OA), linoleic acid (LA), and arachidonic acid (AA) by peroxisome proliferator-activated receptor type gamma 2 (PPAR-γ2) on the activity of GLUT4 were studied. RESULTS Our results showed a dysregulation of GLUT4 and LXR-α in VAT of morbidly obese subjects. In addition, a specific FA profile for morbidly obese individuals was found. Finally, AA was an PPAR-γ2 agonist that activates the expression of GLUT4. CONCLUSIONS Our study suggests a dysregulation of LXR-α and GLUT4 expression in VAT of morbidly obese individuals. FA profiles in VAT could elucidate their possible role in lipolysis and adipogenesis. Finally, AA binds to PPAR-γ2 to activate the expression of GLUT4 in the HepG2 cell line, showing an alternative insulin-independent activation of GLUT4.
Collapse
Affiliation(s)
- Inmaculada Moreno-Santos
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, University of Malaga (IBIMA), 29010 Malaga, Spain.
| | - Sara Garcia-Serrano
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Unidad de Gestión Clínica de Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario, 29010 Málaga, Spain.
| | - Hatim Boughanem
- Instituto de Investigación Biomédica de Málaga (IBIMA), Facultad de Ciencias, Universidad de Málaga, 29010 Málaga, Spain.
| | - Lourdes Garrido-Sanchez
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, University of Malaga (IBIMA), 29010 Malaga, Spain.
- CIBEROBN (CIBER in Physiopathology of Obesity and Nutrition CB06/03/0018), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - Francisco José Tinahones
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, University of Malaga (IBIMA), 29010 Malaga, Spain.
- CIBEROBN (CIBER in Physiopathology of Obesity and Nutrition CB06/03/0018), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - Eduardo Garcia-Fuentes
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Unidad de Gestión Clínica de Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario, 29010 Málaga, Spain.
- Department of Gastroenterology, Virgen de la Victoria University Hospital, Instituto de Investigación Biomédica de Málaga (IBIMA), University of Malaga, 29010 Malaga, Spain.
| | - Manuel Macias-Gonzalez
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, University of Malaga (IBIMA), 29010 Malaga, Spain.
- CIBEROBN (CIBER in Physiopathology of Obesity and Nutrition CB06/03/0018), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| |
Collapse
|
234
|
Yuan H, Xu X, Feng X, Zhu E, Zhou J, Wang G, Tian L, Wang B. A novel long noncoding RNA PGC1β-OT1 regulates adipocyte and osteoblast differentiation through antagonizing miR-148a-3p. Cell Death Differ 2019; 26:2029-2045. [PMID: 30728459 DOI: 10.1038/s41418-019-0296-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 01/09/2019] [Accepted: 01/14/2019] [Indexed: 12/17/2022] Open
Abstract
Long noncoding RNAs (LncRNAs) have been implicated in the regulation of adipocyte and osteoblast differentiation. However, the functional contributions of LncRNAs to adipocyte or osteoblast differentiation remain largely unexplored. In the current study we have identified a novel LncRNA named peroxisome proliferator-activated receptor γ coactivator-1β-OT1 (PGC1β-OT1). The expression levels of PGC1β-OT1 were altered during adipogenic and osteogenic differentiation from progenitor cells. 5'- and 3'-rapid amplification of cDNA ends (RACE) revealed that PGC1β-OT1 is 1759 nt in full length. Overexpression of PGC1β-OT1 in progenitor cells inhibited adipogenic differentiation, whereas silencing of endogenous PGC1β-OT1 induced adipogenic differentiation. By contrast, overexpression of PGC1β-OT1 in progenitor cells stimulated, whereas silencing of PGC1β-OT1 inhibited osteogenic differentiation. In vivo experiment showed that silencing of endogenous PGC1β-OT1 in marrow stimulated fat accumulation and decreased osteoblast differentiation in mice. Mechanism investigations revealed that PGC1β-OT1 contains a functional miR-148a-3p binding site. Overexpression of the mutant PGC1β-OT1 with mutation at the binding site failed to regulate either adipogenic or osteogenic differentiation. In vivo crosslinking combined with affinity purification studies demonstrated that PGC1β-OT1 physically associated with miR-148a-3p through the functional miR-148a-3p binding site. Furthermore, PGC1β-OT1 affected the expression of endogenous miR-148a-3p and its target gene lysine-specific demethylase 6b (KDM6B). Supplementation of miR-148a-3p in progenitor cells blocked the inhibitory effect of PGC1β-OT1 on adipocyte formation. Moreover, overexpression of Kdm6b restored the osteoblast differentiation which was inhibited by silencing of endogenous PGC1β-OT. Our studies provide evidences that the novel LncRNA PGC1β-OT1 reciprocally regulates adipogenic and osteogenic differentiation through antagonizing miR-148a-3p and enhancing KDM6B effect.
Collapse
Affiliation(s)
- Hairui Yuan
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Metabolic Diseases Hospital & Institute of Endocrinology, Tianjin Medical University, 300070, Tianjin, China
| | - Xiaowei Xu
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Metabolic Diseases Hospital & Institute of Endocrinology, Tianjin Medical University, 300070, Tianjin, China
| | - Xue Feng
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Metabolic Diseases Hospital & Institute of Endocrinology, Tianjin Medical University, 300070, Tianjin, China
| | - Endong Zhu
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Metabolic Diseases Hospital & Institute of Endocrinology, Tianjin Medical University, 300070, Tianjin, China
| | - Jie Zhou
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Metabolic Diseases Hospital & Institute of Endocrinology, Tianjin Medical University, 300070, Tianjin, China
| | - Guannan Wang
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Metabolic Diseases Hospital & Institute of Endocrinology, Tianjin Medical University, 300070, Tianjin, China
| | - Lijie Tian
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Metabolic Diseases Hospital & Institute of Endocrinology, Tianjin Medical University, 300070, Tianjin, China
| | - Baoli Wang
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Metabolic Diseases Hospital & Institute of Endocrinology, Tianjin Medical University, 300070, Tianjin, China.
| |
Collapse
|
235
|
Adhikari R, Chen C, Waters E, West FD, Kim WK. Isolation and Differentiation of Mesenchymal Stem Cells From Broiler Chicken Compact Bones. Front Physiol 2019; 9:1892. [PMID: 30723419 PMCID: PMC6350342 DOI: 10.3389/fphys.2018.01892] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 12/14/2018] [Indexed: 12/17/2022] Open
Abstract
Chicken mesenchymal stem cells (MSCs) can be used as an avian culture model to better understand osteogenic, adipogenic, and myogenic pathways and to identify unique bioactive nutrients and molecules which can promote or inhibit these pathways. MSCs could also be used as a model to study various developmental, physiological, and therapeutic processes in avian and other species. MSCs are multipotent stem cells that are capable of differentiation into bone, muscle, fat, and closely related lineages and express unique and specific cell surface markers. MSCs have been isolated from numerous sources including human, mouse, rabbit, and chicken with potential clinical and agricultural applications. MSCs from chicken compact bones have not been isolated and characterized yet. In this study, MSCs were isolated from compact bones of the femur and tibia of day-old male broiler chicks to investigate the biological characteristics of the isolated cells. Isolated cells took 8–10 days to expand, demonstrated a monolayer growth pattern and were plastic adherent. Putative MSCs were spindle-shaped with elongated ends and showed rapid proliferation. MSCs demonstrated osteoblastic, adipocytic, and myogenic differentiation when induced with specific differentiation media. Cell surface markers for MSCs such as CD90, CD105, CD73, CD44 were detected positive and CD31, CD34, and CD45 cells were detected negative by PCR assay. The results suggest that MSCs isolated from broiler compact bones (cBMSCs) possess similar biological characteristics as MSCs isolated from other chicken tissue sources.
Collapse
Affiliation(s)
- Roshan Adhikari
- Department of Poultry Science, University of Georgia, Athens, GA, United States.,Regenerative Bioscience Center, University of Georgia, Athens, GA, United States
| | - Chongxiao Chen
- Department of Poultry Science, University of Georgia, Athens, GA, United States.,Regenerative Bioscience Center, University of Georgia, Athens, GA, United States
| | - Elizabeth Waters
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States.,Department of Animal and Dairy Science, University of Georgia, Athens, GA, United States
| | - Franklin D West
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States.,Department of Animal and Dairy Science, University of Georgia, Athens, GA, United States
| | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA, United States.,Regenerative Bioscience Center, University of Georgia, Athens, GA, United States
| |
Collapse
|
236
|
D'Aniello E, Fellous T, Iannotti FA, Gentile A, Allarà M, Balestrieri F, Gray R, Amodeo P, Vitale RM, Di Marzo V. Identification and characterization of phytocannabinoids as novel dual PPARα/γ agonists by a computational and in vitro experimental approach. Biochim Biophys Acta Gen Subj 2019; 1863:586-597. [PMID: 30611848 DOI: 10.1016/j.bbagen.2019.01.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 12/07/2018] [Accepted: 01/02/2019] [Indexed: 12/30/2022]
Abstract
BACKGROUND The nuclear Peroxisome Proliferator Activated Receptors (PPARs) are ligand-activated transcription factors playing a fundamental role in energy homeostasis and metabolism. Consequently, functional impairment or dysregulation of these receptors lead to a variety of metabolic diseases. While some phytocannabinoids (pCBs) are known to activate PPARγ, no data have been reported so far on their possible activity at PPARα. METHODS The putative binding modes of pCBs into PPARα/γ Ligand Binding Domains were found and assessed by molecular docking and molecular dynamics. Luciferase assays validated in silico predictions whereas the biological effects of such PPARα/γ ligands were assessed in HepG2 and 3T3L1 cell cultures. RESULTS The in silico study identified cannabigerolic acid (CBGA), cannabidiolic acid (CBDA) and cannabigerol (CBG) from C. sativa as PPARα/γ dual agonists, suggesting their binding modes toward PPARα/γ isoforms and predicting their activity as full or partial agonists. These predictions were confirmed by luciferase functional assays. The resulting effects on downstream gene transcription in adipocytes and hepatocytes were also observed, establishing their actions as functional dual agonists. CONCLUSIONS Our work broadens the activity spectrum of CBDA, CBGA and CBG by providing evidence that these pCBs act as dual PPARα/γ agonists with the ability to modulate the lipid metabolism. GENERAL SIGNIFICANCE Dual PPARα/γ agonists have emerged as an attractive alternative to selective PPAR agonists to treat metabolic disorders. We identified some pCBs as dual PPARα/γ agonists, potentially useful for the treatment of dyslipidemia and type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Enrico D'Aniello
- Endocannabinoid Research Group (ERG), Institute of Biomolecular Chemistry, National Research Council (ICB-CNR), Via Campi Flegrei 34, 80078, Pozzuoli (NA), Italy; Department of Biology and Evolution of Marine Organisms, Stazione Zoologica "Anton Dohrn", 80121 Naples, Italy
| | - Tariq Fellous
- Endocannabinoid Research Group (ERG), Institute of Biomolecular Chemistry, National Research Council (ICB-CNR), Via Campi Flegrei 34, 80078, Pozzuoli (NA), Italy
| | - Fabio Arturo Iannotti
- Endocannabinoid Research Group (ERG), Institute of Biomolecular Chemistry, National Research Council (ICB-CNR), Via Campi Flegrei 34, 80078, Pozzuoli (NA), Italy; Institute of Biomolecular Chemistry, National Research Council (ICB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy
| | - Alessandra Gentile
- Endocannabinoid Research Group (ERG), Institute of Biomolecular Chemistry, National Research Council (ICB-CNR), Via Campi Flegrei 34, 80078, Pozzuoli (NA), Italy; Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Marco Allarà
- Institute of Biomolecular Chemistry, National Research Council (ICB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy; Epitech Group SpA, Saccolongo, Padova, Italy
| | - Francesca Balestrieri
- Endocannabinoid Research Group (ERG), Institute of Biomolecular Chemistry, National Research Council (ICB-CNR), Via Campi Flegrei 34, 80078, Pozzuoli (NA), Italy
| | - Roy Gray
- GW Pharmaceuticals, Sovereign House, Vision Park, Histon, Cambridge CB24 9BZ, UK
| | - Pietro Amodeo
- Institute of Biomolecular Chemistry, National Research Council (ICB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy
| | - Rosa Maria Vitale
- Institute of Biomolecular Chemistry, National Research Council (ICB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy.
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group (ERG), Institute of Biomolecular Chemistry, National Research Council (ICB-CNR), Via Campi Flegrei 34, 80078, Pozzuoli (NA), Italy; Institute of Biomolecular Chemistry, National Research Council (ICB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy; Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Quebec City, Canada.
| |
Collapse
|
237
|
Gao W, Gao Z, Pu S, Dong Y, Xu X, Yang X, Zhang Y, Fang K, Li J, Yu W, Sun N, Hu L, Xu Q, Cheng Z, Gao Y. The Underlying Regulated Mechanisms of Adipose Differentiation and Apoptosis of Breast Cells after Weaning. Curr Protein Pept Sci 2019; 20:696-704. [PMID: 30678617 DOI: 10.2174/1389203720666190124161652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 12/30/2018] [Accepted: 01/14/2019] [Indexed: 11/22/2022]
Abstract
Numerous experimental studies have demonstrated that a series of remodeling processes occurred in the adipose tissue during the weaning, such as differentiation. Fibroblasts in the breast at weaning stage could re-differentiate into mature adipocytes. Many transcriptional factors were involved in these processes, especially the PPARγ, C/EBP, and SREBP1. There is cell apoptosis participating in the breast tissue degeneration and secretory epithelial cells loss during weaning. In addition, hormones, especially the estrogen and pituitary hormone, play a vital role in the whole reproductive processes. In this review, we mainly focus on the underlying regulated mechanisms of differentiation of adipose tissue and apoptosis of breast cell to provide a specific insight into the physiological changes during weaning.
Collapse
Affiliation(s)
- Weihang Gao
- College of PIWEI institute, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Zhao Gao
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Administration of Sports of Guangdong Province, Guangzhou, Guangdong, 510105, China
| | - Shuqi Pu
- College of PIWEI institute, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Yanbin Dong
- College of PIWEI institute, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Xiaowen Xu
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510405, China
| | - Xingping Yang
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China
| | - Yuan Zhang
- Administration of Sports of Guangdong Province, Guangzhou, Guangdong, 510105, China
| | - Kui Fang
- Administration of Sports of Guangdong Province, Guangzhou, Guangdong, 510105, China
| | - Jie Li
- Administration of Sports of Guangdong Province, Guangzhou, Guangdong, 510105, China
| | - Weijian Yu
- Administration of Sports of Guangdong Province, Guangzhou, Guangdong, 510105, China
| | - Nannan Sun
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510405, China
| | - Ling Hu
- College of PIWEI institute, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Qin Xu
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Zhibin Cheng
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunan, 650201, China
| | - Yong Gao
- College of PIWEI institute, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| |
Collapse
|
238
|
Saha S, Borah A, Kuri P, Singh A. Anti-adipogenic effect of Terminalia chebula fruit aqueous extract in 3T3-L1 preadipocytes. Pharmacogn Mag 2019. [DOI: 10.4103/pm.pm_108_19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
239
|
Smatlikova P, Juhas S, Juhasova J, Suchy T, Hubalek Kalbacova M, Ellederova Z, Motlik J, Klima J. Adipogenic Differentiation of Bone Marrow-Derived Mesenchymal Stem Cells in Pig Transgenic Model Expressing Human Mutant Huntingtin. J Huntingtons Dis 2018; 8:33-51. [PMID: 30584151 DOI: 10.3233/jhd-180303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Although the highest expression of mutant huntingtin (mtHtt) was observed in the brain, its negative effects were also apparent in other tissues. Specifically, mtHtt impairs metabolic homeostasis and causes transcriptional dysregulation in adipose tissue. Adipogenic differentiation can be induced by the activation of two transcription factors: CCAAT/enhancer-binding protein alpha (CEBPα) and peroxisome proliferator-activated receptor gamma (PPARγ). These same transcription factors were found to be compromised in some tissues of Huntington's disease (HD) mouse models and in lymphocytes of HD patients. OBJECTIVE This study investigated the adipogenic potential of mesenchymal stem cells (MSCs) derived from transgenic Huntington's disease (TgHD) minipigs expressing human mtHtt (1-548aa) containing 124 glutamines. Two differentiation conditions were used, employing PPARγ agonist rosiglitazone or indomethacin. METHODS Bone marrow MSCs were isolated from TgHD and WT minipig siblings and compared by their cluster of differentiation using flow cytometry. Their adipogenic potential in vitro was analyzed using quantitative immunofluorescence and western blot analysis of transcription factors and adipogenic markers. RESULTS Flow cytometry analysis did not reveal any significant difference between WT and TgHD MSCs. Nevertheless, following differentiation into adipocytes, the expression of CEBPα nuclear, PPARγ and adipogenic marker FABP4/AP2 were significantly lower in TgHD cells compared to WT cells. In addition, we proved both rosiglitazone and indomethacin to be efficient for adipogenic differentiation of porcine MSCs, with rosiglitazone showing a better adipogenic profile. CONCLUSIONS We demonstrated a negative influence of mtHtt on adipogenic differentiation of porcine MSCs in vitro associated with compromised expression of adipogenic transcription factors.
Collapse
Affiliation(s)
- Petra Smatlikova
- PIGMOD Centre, Laboratory of Cell Regeneration and Plasticity, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Libechov, Czech Republic.,Department of Cell Biology, Faculty of Science, Charles University in Prague, Czech Republic
| | - Stefan Juhas
- PIGMOD Centre, Laboratory of Cell Regeneration and Plasticity, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Libechov, Czech Republic
| | - Jana Juhasova
- PIGMOD Centre, Laboratory of Cell Regeneration and Plasticity, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Libechov, Czech Republic
| | - Tomas Suchy
- Department of Composites and Carbon Materials, Institute of Rock Structure and Mechanics, Czech Academy of Sciences, Prague, Czech Republic; Faculty of Mechanical Engineering, Czech Technical University in Prague, Prague, Czech Republic
| | - Marie Hubalek Kalbacova
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University in Prague, Pilsen, Czech Republic; Institute of Pathological Physiology, 1st Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Zdenka Ellederova
- PIGMOD Centre, Laboratory of Cell Regeneration and Plasticity, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Libechov, Czech Republic
| | - Jan Motlik
- PIGMOD Centre, Laboratory of Cell Regeneration and Plasticity, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Libechov, Czech Republic
| | - Jiri Klima
- PIGMOD Centre, Laboratory of Cell Regeneration and Plasticity, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Libechov, Czech Republic
| |
Collapse
|
240
|
Chappell VA, Janesick A, Blumberg B, Fenton SE. Tetrabromobisphenol-A Promotes Early Adipogenesis and Lipogenesis in 3T3-L1 Cells. Toxicol Sci 2018; 166:332-344. [PMID: 30496566 PMCID: PMC6260163 DOI: 10.1093/toxsci/kfy209] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Tetrabromobisphenol A (TBBPA) is the most common flame retardant used in electrical housings, circuit boards, and automobiles. High-throughput screening and binding assays have identified TBBPA as an agonist for human peroxisome proliferator-activated receptor gamma (PPARγ), the master regulator of adipogenesis. TBBPA has been suggested to be an obesogen based on in vitro cellular assays and zebrafish data. We hypothesized that exposing preadipocytes to TBBPA could influence adipogenesis via genes other than those in the PPARγ pathway due to its structural similarity to bisphenol A, which demonstrates varied endocrine disrupting activities. Mouse-derived 3T3-L1 preadipocytes were induced to differentiate and continually treated with TBBPA for 8 days. High-content imaging of adipocytes displayed increased adipocyte number and lipid accumulation when treated with TBBPA. TBBPA exhibited weak induction of mPPARγ, with an AC50 of 397 µM. Quantitative PCR revealed that TBBPA exposure increased early expression of genes involved in glucocorticoid receptor (GR) signaling and PPARγ transcriptional activation, as well as upregulating downstream genes needed for adipocyte maintenance and nontraditional ER signaling, such as Gpr30. Additionally, Pref1 and Thy1, inhibitors of differentiation, were downregulated by some concentrations of TBBPA. Furthermore, proliferating preadipocytes treated with TBBPA, only prior to differentiation, exhibited increased adipocyte number and lipid accumulation after 8 days in normal culture conditions. In conclusion, TBBPA influenced gene expression changes in GR, nontraditional ER, and known adipogenic regulatory genes, prior to PPARγ expression; effects suggesting early programming of adipogenic pathways.
Collapse
Affiliation(s)
- Vesna A Chappell
- National Toxicology Program Laboratory (NTPL), Division of the National Toxicology Program, National Institutes of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Amanda Janesick
- Department of Developmental and Cell Biology, University of California, Irvine, California 92697
| | - Bruce Blumberg
- Department of Developmental and Cell Biology, University of California, Irvine, California 92697
| | - Suzanne E Fenton
- National Toxicology Program Laboratory (NTPL), Division of the National Toxicology Program, National Institutes of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709
| |
Collapse
|
241
|
Kim NH, Jegal J, Kim YN, Heo JD, Rho JR, Yang MH, Jeong EJ. Chokeberry Extract and Its Active Polyphenols Suppress Adipogenesis in 3T3-L1 Adipocytes and Modulates Fat Accumulation and Insulin Resistance in Diet-Induced Obese Mice. Nutrients 2018; 10:E1734. [PMID: 30424495 PMCID: PMC6266992 DOI: 10.3390/nu10111734] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 10/30/2018] [Accepted: 11/06/2018] [Indexed: 12/13/2022] Open
Abstract
Berries of Aronia melanocarpa (chokeberry) are known to be a rich source of biologically active polyphenols. In the present study, the effects of seven anti-adipogenic polyphenolic phytochemicals isolated from A. melanocarpa methanol extract on adipogenic transcription factors were investigated. Amygdalin and prunasin were found to inhibit 3T3-L1 adipocyte differentiation by suppressing the expressions of PPARγ (peroxisome proliferator-activated receptor γ), C/EBPα (CCAAT/enhancer binding protein α), SREBP1c (sterol regulatory element binding protein 1c), FAS (fatty acid synthase), and aP2 (adipocyte fatty-acid⁻binding protein). A. melanocarpa extract-treated (100 or 200 mg/kg/day on body weight) high fat diet (HFD)-induced obese mice showed significant decreases in body weight, serum triglyceride (TG), and low-density lipoprotein cholesterol (LDLC) levels and improved insulin sensitivity as compared with HFD controls. This research shows A. melanocarpa extract is potentially beneficial for the suppression of HFD-induced obesity.
Collapse
Affiliation(s)
- Na-Hyun Kim
- Gyeongnam Department of Environment & Toxicology, Korea Institute of Toxicology, 17 Jegok-gil, Munsan-eup 52834, Korea.
| | - Jonghwan Jegal
- College of Pharmacy, Pusan National University, Busan 46241, Korea.
| | - Yun Na Kim
- Department of Agronomy and Medicinal Plant Resources, Gyeongnam National University of Science and Technology, Jinju 52725, Korea.
| | - Jeong-Doo Heo
- Gyeongnam Department of Environment & Toxicology, Korea Institute of Toxicology, 17 Jegok-gil, Munsan-eup 52834, Korea.
| | - Jung-Rae Rho
- Department of Oceanography, Kunsan National University, Kunsan 54150, Korea.
| | - Min Hye Yang
- College of Pharmacy, Pusan National University, Busan 46241, Korea.
| | - Eun Ju Jeong
- Department of Agronomy and Medicinal Plant Resources, Gyeongnam National University of Science and Technology, Jinju 52725, Korea.
| |
Collapse
|
242
|
The E3 ubiquitin ligase TRIM25 regulates adipocyte differentiation via proteasome-mediated degradation of PPARγ. Exp Mol Med 2018; 50:1-11. [PMID: 30323259 PMCID: PMC6189217 DOI: 10.1038/s12276-018-0162-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/29/2018] [Accepted: 07/04/2018] [Indexed: 01/04/2023] Open
Abstract
Peroxisome proliferator-activated receptor gamma (PPARγ) is a ligand-dependent transcription factor that regulates adipocyte differentiation and glucose homeostasis. The transcriptional activity of PPARγ is regulated not only by ligands but also by post-translational modifications (PTMs). In this study, we demonstrate that a novel E3 ligase of PPARγ, tripartite motif-containing 25 (TRIM25), directly induced the ubiquitination of PPARγ, leading to its proteasome-dependent degradation. During adipocyte differentiation, both TRIM25 mRNA and protein expression significantly decreased and negatively correlated with the expression of PPARγ. The stable expression of TRIM25 reduced PPARγ protein levels and suppressed adipocyte differentiation in 3T3-L1 cells. In contrast, the specific knockdown of TRIM25 increased PPARγ protein levels and stimulated adipocyte differentiation. Furthermore, TRIM25-knockout mouse embryonic fibroblasts (MEFs) exhibited an increased adipocyte differentiation capability compared with wild-type MEFs. Taken together, these data indicate that TRIM25 is a novel E3 ubiquitin ligase of PPARγ and that TRIM25 is a novel target for PPARγ-associated metabolic diseases.
Collapse
|
243
|
Choi SM, Park JW. Multifunctional effects of a modification of SLA titanium implant surface with strontium-containing nanostructures on immunoinflammatory and osteogenic cell function. J Biomed Mater Res A 2018; 106:3009-3020. [PMID: 30192064 DOI: 10.1002/jbm.a.36490] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/10/2018] [Accepted: 06/18/2018] [Indexed: 01/07/2023]
Abstract
This study investigated the effects of surface modification of clinically available sandblasted/acid-etched (SLA) titanium oral implants with strontium (Sr)-containing nanostructures on both early immunoinflammatory macrophage cell functions and osteogenic stem cell functions. The goal was to provide insight for future surface engineering of titanium implants with multifunctional effects, that is, tissue healing capacity at both the nonosteogenic cell centered initial stage and the subsequent osteogenic cell-governed later stage-osseointegration process. The Sr-containing nanostructure was prepared in on the SLA-type implant surface by wet chemical treatment. The results showed that Sr modification is favorable for early macrophage cell functions and increases osteogenic capacity of the SLA surface. Surface Sr modification notably upregulated regenerative macrophage phenotype expression and anti-inflammatory cytokine IL10 production while suppressing inflammatory cytokine TNFα. Sr incorporation enhanced certain early cellular events of ST2 stem cells such as early cellular spreading and critical integrin gene expression, which in turn notably increased osteogenic differentiation (osteogenesis-related phenotype gene expression and osteocalcin production) when combined with the microstructured SLA implant surface. Surface modification of SLA-type implants with Sr-containing nanostructures demonstrated the ability to favorably influence early immunoinflammatory macrophage cell functions and the functionality of osteogenesis cells, resulting in an enhanced osseointegration outcome. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 3009-3020, 2018.
Collapse
Affiliation(s)
- Sung-Min Choi
- Department of Periodontology, School of Dentistry, Kyungpook National University, 2177 Dalgubeol-daero, Jung-Gu, Daegu, 41940, Republic of Korea
| | - Jin-Woo Park
- Department of Periodontology, School of Dentistry, Kyungpook National University, 2177 Dalgubeol-daero, Jung-Gu, Daegu, 41940, Republic of Korea
| |
Collapse
|
244
|
Liang Y, Sasaki I, Takeda Y, Zhu B, Munemasa S, Nakamura T, Murata Y, Nakamura Y. Benzyl isothiocyanate ameliorates lipid accumulation in 3T3-L1 preadipocytes during adipocyte differentiation. Biosci Biotechnol Biochem 2018; 82:2130-2139. [PMID: 30185113 DOI: 10.1080/09168451.2018.1514247] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Benzyl isothiocyanate (BITC) is an organosulfur compound derived from cruciferous vegetables and papaya seeds. In this study, we investigated the effect of BITC on the lipid accumulation in 3T3-L1 preadipocytes during adipocyte differentiation. The treatment of BITC during the differentiation-inducing stage significantly ameliorated the lipid accumulation, whereas it had no inhibitory effect during the differentiation-maintaining stage. BITC also significantly suppressed the mRNA expression of the adipocyte-specific markers, such as CCAAT/enhancer-binding protein α (C/EBPα), C/EBPβ, C/EBPδ and peroxisome proliferator-activated receptor γ. BITC significantly inhibited the phosphorylation of extracellular signal-regulated kinase phosphorylation, whereas it enhanced that of AMP-activated protein kinase. Furthermore, BITC significantly suppressed the intracellular 2-deoxyglucose uptake as well as glucose transporter 4 expression. These results suggest that inhibition of the adipocyte differentiation and glucose uptake may mainly contribute to the inhibitory effect of BITC on the lipid accumulation in 3T3-L1 preadipocytes. Abbreviations: PPARγ: peroxisome proliferator-activated receptor γ; CEBP: CCAAT/enhancer-binding protein; GLUT4: glucose transporter 4; AMPK: AMP-activated protein kinase; ERK1/2: extracellular signal-regulated kinase 1/2; MAPK: a mitogen-activated protein kinase; ITCs: isothiocyanates; BITC: benzyl isothiocyanate; FBS: fetal bovine serum; CS: calf serum; AITC: allyl ITC; IBMX: 3-isobutyl-1-methylxanthine; LDH: lactate dehydrogenase; KRH: Krebs-Ringer-Hepes-bicarbonate; 2-DG: 2-deoxy-d-glucose.
Collapse
Affiliation(s)
- Ying Liang
- a Graduate School of Environmental and Life Science , Okayama University , Okayama Japan.,b School of Food Science and Technology , Dalian Polytechnic University , Dalian China
| | - Ikumi Sasaki
- a Graduate School of Environmental and Life Science , Okayama University , Okayama Japan
| | - Yuki Takeda
- a Graduate School of Environmental and Life Science , Okayama University , Okayama Japan
| | - Beiwei Zhu
- b School of Food Science and Technology , Dalian Polytechnic University , Dalian China
| | - Shintaro Munemasa
- a Graduate School of Environmental and Life Science , Okayama University , Okayama Japan
| | - Toshiyuki Nakamura
- a Graduate School of Environmental and Life Science , Okayama University , Okayama Japan
| | - Yoshiyuki Murata
- a Graduate School of Environmental and Life Science , Okayama University , Okayama Japan
| | - Yoshimasa Nakamura
- a Graduate School of Environmental and Life Science , Okayama University , Okayama Japan
| |
Collapse
|
245
|
Zhang Y, Li L, Wang Q, Zhan S, Wang L, Zhong T, Guo J, Zhang H. Fibroblast growth factor 21 induces lipolysis more efficiently than it suppresses lipogenesis in goat adipocytes. Cytotechnology 2018; 70:1423-1433. [PMID: 30051280 DOI: 10.1007/s10616-018-0237-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 07/17/2018] [Indexed: 12/18/2022] Open
Abstract
Fibroblast growth factor 21 (FGF21) potentially regulates glucose and lipid metabolism in energy homeostasis. We investigated dynamic changes in goat adipocytes treated with 75 nM FGF21 for 24, 36 and 48 h. Compared to controls, FGF21-treated adipocytes displayed smaller lipid droplets and altered levels of the mRNA transcripts encoding several lipolysis genes. The genes with elevated mRNA levels included: ATGL, HSL, CPT-1, and UCP1, and this was observed mainly at 24 and 36 h (P < 0.05). Some gene expression was attenuated including lipogenesis genes, such as SREBP1, PPARγ, C/EBPα, and ACC. This attenuation was observed mainly at 24 h (P < 0.05). Among the genes that were significantly induced or inhibited, ATGL, PGC1α, and C/EBPα were observed a significant effect at 48 h (P < 0.05). In addition, FGF21 treatment greatly increased number of mitochondria and the expression of genes implicated in mitochondrial biogenesis, such as PGC1α, NRF1, and TFAM. These results suggest that FGF21 treatment induced lipolysis more effectively than it suppressed lipogenesis in goat adipocytes, and that mitochondrial biogenesis plays an important role in these cells.
Collapse
Affiliation(s)
- Yongfeng Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China
| | - Li Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China
| | - Qin Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China
| | - Siyuan Zhan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China
| | - Linjie Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China
| | - Tao Zhong
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China
| | - Jiazhong Guo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China
| | - Hongping Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China.
| |
Collapse
|
246
|
Liu Y, Peng WQ, Guo YY, Liu Y, Tang QQ, Guo L. Krüppel-like factor 10 (KLF10) is transactivated by the transcription factor C/EBPβ and involved in early 3T3-L1 preadipocyte differentiation. J Biol Chem 2018; 293:14012-14021. [PMID: 30026232 DOI: 10.1074/jbc.ra118.004401] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 07/16/2018] [Indexed: 12/16/2022] Open
Abstract
Adipose tissue stores energy and plays an important role in energy homeostasis. CCAAT/enhancer-binding protein β (C/EBPβ) is an important early transcription factor for 3T3-L1 preadipocyte differentiation, facilitating mitotic clonal expansion (MCE) and transactivating C/EBPα and peroxisome proliferator-activated receptor-γ (PPARγ) to promote adipogenesis. C/EBPβ is induced early, but the expression of antimitotic C/EBPα and PPARγ is not induced until ∼48 h. The delayed expression of C/EBPα and PPARγ is thought to ensure MCE progression, but the molecular mechanism for this delay remains elusive. Here, we show that the zinc-finger transcription factor Krüppel-like factor 10 (KLF10) is induced after adipogenic induction and that its expression positively correlates with that of C/EBPβ but inversely correlates with expression of C/EBPα and PPARγ. C/EBPβ bound to the KLF10 promoter and transactivated its expression during MCE. KLF10 overexpression in 3T3-L1 preadipocyte repressed adipogenesis and decreased C/EBPα and PPARγ expression, whereas siRNA-mediated down-regulation of KLF10 enhanced adipogenesis and increased C/EBPα and PPARγ expression. Luciferase assays revealed an inhibitory effect of KLF10 on C/EBPα promoter activity. Using promoter deletion and mutation analysis, we identified a KLF10-binding site within the proximal promoter region of C/EBPα. Furthermore, KLF10 interacted with and recruited histone deacetylase 1 (HDAC1) to the C/EBPα promoter, decreasing acetylated histone H4 on the C/EBPα promoter and inactivating C/EBPα transcription. Because C/EBPα can transactivate PPARγ, our results suggest a mechanism by which expression of C/EBPα and PPARγ is delayed via KLF10 expression and shed light on the negative feedback loop for C/EBPβ-regulated adipogenesis in 3T3-L1 preadipocyte.
Collapse
Affiliation(s)
- Yuan Liu
- From the Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Institute of Stem Cell Research and Regenerative Medicine of Institutes of Biomedical Sciences, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Wan-Qiu Peng
- From the Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Institute of Stem Cell Research and Regenerative Medicine of Institutes of Biomedical Sciences, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Ying-Ying Guo
- From the Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Institute of Stem Cell Research and Regenerative Medicine of Institutes of Biomedical Sciences, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yang Liu
- From the Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Institute of Stem Cell Research and Regenerative Medicine of Institutes of Biomedical Sciences, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Qi-Qun Tang
- From the Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Institute of Stem Cell Research and Regenerative Medicine of Institutes of Biomedical Sciences, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Liang Guo
- From the Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Institute of Stem Cell Research and Regenerative Medicine of Institutes of Biomedical Sciences, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
247
|
Jia D, Li Z, Gao Y, Feng Y, Li W. A novel triazine ring compound (MD568) exerts in vivo and in vitro effects on lipid metabolism. Biomed Pharmacother 2018; 103:790-799. [DOI: 10.1016/j.biopha.2018.04.065] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/07/2018] [Accepted: 04/09/2018] [Indexed: 12/30/2022] Open
|
248
|
Abe KT, Rizzo IMPO, Coelho ALV, Sakai N, Carvalho DR, Speck‐Martins CE. 19q13.11 microdeletion: Clinical features overlapping ectrodactyly ectodermal dysplasia-clefting syndrome phenotype. Clin Case Rep 2018; 6:1300-1307. [PMID: 29988626 PMCID: PMC6028370 DOI: 10.1002/ccr3.1600] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/20/2018] [Accepted: 04/26/2018] [Indexed: 11/08/2022] Open
Abstract
We report a patient who was followed for a long time under an ectrodactyly ectodermal dysplasia-clefting (EEC) syndrome and was subsequently diagnosed with a 19q13.11 microdeletion. After a review of the related literature, we suggest testing patients with EEC for 19q13.11 microdeletion and include WTIP and UBA2 to a minimal overlapping region.
Collapse
Affiliation(s)
- Kikue Terada Abe
- Cytogenetic LaboratoryMolecular PathologySARAH Network of Rehabilitation HospitalsBrasíliaBrazil
| | | | - Ana L. V. Coelho
- Department of Clinical GeneticsSARAH Network of Rehabilitation HospitalsBrasíliaBrazil
| | - Nilo Sakai
- Cytogenetic LaboratoryMolecular PathologySARAH Network of Rehabilitation HospitalsBrasíliaBrazil
| | - Daniel R. Carvalho
- Department of Clinical GeneticsSARAH Network of Rehabilitation HospitalsBrasíliaBrazil
| | | |
Collapse
|
249
|
Patel B, Mann GE, Chapple SJ. Concerted redox modulation by sulforaphane alleviates diabetes and cardiometabolic syndrome. Free Radic Biol Med 2018; 122:150-160. [PMID: 29427794 DOI: 10.1016/j.freeradbiomed.2018.02.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 02/01/2018] [Accepted: 02/03/2018] [Indexed: 02/07/2023]
Abstract
Diabetes and cardiometabolic disorders such as hypertension and obesity are major risk factors for the development of cardiovascular disease, with a wealth of evidence suggesting that oxidative stress is linked to the initiation and pathogenesis of these disease processes. With yearly increases in the global incidence of cardiovascular diseases (CVD) and diabetes, numerous studies have focused on characterizing whether upregulating antioxidant defenses through exogenous antioxidants (e.g. vitamin E, vitamin C) or activation of endogenous defenses (e.g. the Nuclear factor erythroid 2-related factor 2 (Nrf2) antioxidant defense pathway) may be of benefit. The dietary isothiocyanate sulforaphane (SFN) is currently the subject of several clinical trials for a variety of disease states, including the evaluation of its therapeutic potential to ameliorate diabetic and cardiometabolic complications. SFN is a well characterized and potent Nrf2 inducer, however recent studies suggest its protective actions may be in part mediated by its modulation of various pro-inflammatory (e.g. Nuclear factor-kappa B (NFκB)) and metabolic (e.g. Peroxisome Proliferator-Activator Receptor Gamma (PPARγ)) signaling pathways. The focus of this review is to provide a detailed analysis of the known mechanisms by which SFN modulates Nrf2, NFκB and PPARγ signaling and crosstalk and to provide a critical evaluation of the evidence linking these transcriptional pathways with diabetic and cardiometabolic complications and SFN mediated cytoprotection. To allow comparison between rodent and human studies, we discuss the published bioavailability of SFN metabolites achieved in rodents and man in the context of Nrf2, NFκB and PPARγ signaling. Furthermore, we provide an update on the functional outcomes and implicated signaling pathways reported in recent clinical trials with SFN in Type 2 diabetic patients.
Collapse
Affiliation(s)
- Bijal Patel
- King's BHF Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Giovanni E Mann
- King's BHF Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Sarah J Chapple
- King's BHF Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London SE1 9NH, United Kingdom.
| |
Collapse
|
250
|
HMGB2 is a novel adipogenic factor that regulates ectopic fat infiltration in skeletal muscles. Sci Rep 2018; 8:9601. [PMID: 29942000 PMCID: PMC6018498 DOI: 10.1038/s41598-018-28023-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 06/05/2018] [Indexed: 01/22/2023] Open
Abstract
Although various surgical procedures have been developed for chronic rotator cuff tear repair, the re-tear rate remains high with severe fat infiltration. However, little is known about the molecular regulation of this process. Mesenchymal stem cells (MSCs) in the intra-muscular space are origin of ectopic fat cells in skeletal muscle. We have previously shown that high-mobility group box 2 (HMGB2), which is a nuclear protein commonly associated with mesenchymal differentiation, is involved in the early articular cartilage degeneration. In this study, we addressed the role of HMGB2 in adipogenesis of MSCs and fat infiltration into skeletal muscles. HMGB2 was highly expressed in undifferentiated MSCs and co-localized with platelet-derived growth factor receptor α (PDGFRA) known as an MSC-specific marker, while their expressions were decreased during adipocytic differentiation. Under the deficiency of HMGB2, the expressions of adipogenesis-related molecules were reduced, and adipogenic differentiation is substantially impaired in MSCs. Moreover, HMGB2+ cells were generated in the muscle belly of rat supraspinatus muscles after rotator cuff transection, and some of these cells expressed PDGFRA in intra-muscular spaces. Thus, our findings suggest that the enhance expression of HMGB2 induces the adipogenesis of MSCs and the fat infiltration into skeletal muscles through the cascade of HMGB2-PDGFRA.
Collapse
|