201
|
Kreidieh FY, Tawbi HA. The introduction of LAG-3 checkpoint blockade in melanoma: immunotherapy landscape beyond PD-1 and CTLA-4 inhibition. Ther Adv Med Oncol 2023; 15:17588359231186027. [PMID: 37484526 PMCID: PMC10357068 DOI: 10.1177/17588359231186027] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 06/13/2023] [Indexed: 07/25/2023] Open
Abstract
Despite major advances with immunotherapy and targeted therapy in the past decade, metastatic melanoma continues to be a deadly disease for close to half of all patients. Over the past decade, advancement in immune profiling and a deeper understanding of the immune tumor microenvironment (TME) have enabled the development of novel approaches targeting and a multitude of targets being investigated for the immunotherapy of melanoma. However, to date, immune checkpoint blockade has remained the most successful with programmed cell death-1 (PD-1)/programmed cell death ligand-1 (PD-L1) and cytotoxic T-lymphocyte antigen-4 (CTLA-4) inhibitors, alone or in combination, yielding the most robust and durable clinical outcome in patients with metastatic melanoma. The highest rate of durable responses is achieved with the combination with PD-1 and CTLA-4 inhibition, and is effective in a variety of settings including brain metastases; however, it comes at the expense of a multitude of life-threatening toxicities occurring in up to 60% of patients. This has also established melanoma as the forefront of immuno-oncology (IO) drug development, and the search for novel checkpoints has been ongoing with multiple relevant targets including T-cell immunoglobulin and mucinodomain containing-3 (TIM-3), LAG-3, V-domain immunoglobulin suppressor T-cell activation (VISTA), T-cell immunoglobulin and immunoreceptor tyrosine-based inhibitory motif (ITIM) domain (TIGIT), among others. Lymphocyte activation gene-3 (LAG-3), which is a co-inhibitory receptor on T cells that suppress their activation, has revolutionized immunomodulation in melanoma. The 'game changing' results from the RELATIVITY-047 trial validated LAG-3 blockade as a relevant biological target and established it as the third clinically relevant immune checkpoint. Importantly, LAG-3 inhibition in combination with PD-1 inhibition offered impressive efficacy with modest increases in toxicity over single agent PD-1 inhibitor and has been U.S. Food and Drug Administration approved for the first-line therapy of patients with metastatic melanoma. The efficacy of this combination in patients with untreated brain or leptomeningeal metastases or with rare melanoma types, such as uveal melanoma, remains to be established. The challenge remains to elucidate specific mechanisms of response and resistance to LAG-3 blockade and to extend its benefits to other malignancies. Ongoing trials are studying the combination of LAG-3 antibodies with PD-1 inhibitors in multiple cancers and settings. The low toxicity of the combination may also allow for further layering of additional therapeutic approaches such as chemotherapy, oncolytic viruses, cellular therapies, and possibly novel cytokines, among others.
Collapse
Affiliation(s)
- Firas Y. Kreidieh
- Department of Melanoma Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | |
Collapse
|
202
|
Yadav S. Advanced therapeutics avenues in hepatocellular carcinoma: a novel paradigm. Med Oncol 2023; 40:239. [PMID: 37442842 DOI: 10.1007/s12032-023-02104-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most frequent type of primary liver cancer, and it poses a significant risk to patients health and longevity due to its high morbidity and fatality rates. Surgical ablation, radiotherapy, chemotherapy, and, most recently, immunotherapy have all been investigated for HCC, but none have yielded the desired outcomes. Several unique nanocarrier drug delivery techniques have been studied for their potential therapeutic implications in the treatment of HCC. Nanoparticle-based imaging could be effective for more accurate HCC diagnosis. Since its inception, nanomedicine has significantly transformed the approach to both the treatment and diagnostics of liver cancer. Nanoparticles (NPs) are being studied as a potential treatment for liver cancer because of their ability to carry small substances, such as treatment with chemotherapy, microRNA, and therapeutic genes. The primary focus of this study is on the most current discoveries and practical uses of nanomedicine-based diagnostic and therapeutic techniques for liver cancer. In this section, we had gone over what we know about metabolic dysfunction in HCC and the treatment options that attempt to fix it by targeting metabolic pathways. Furthermore, we propose a multi-target metabolic strategy as a viable HCC treatment option. Based on the findings given here, the scientists believe that smart nanomaterials have great promise for improving cancer theranostics and opening up new avenues for tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Shikha Yadav
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Plot No.2, Sector 17-A, Yamuna Expressway, Gautam Buddhnagar, Greater Noida, Uttar Pradesh, 201310, India.
| |
Collapse
|
203
|
Liu S, Wang H, Shao X, Chen H, Chao S, Zhang Y, Gao Z, Yao Q, Zhang P. Advances in PD-1 signaling inhibition-based nano-delivery systems for tumor therapy. J Nanobiotechnology 2023; 21:207. [PMID: 37403095 PMCID: PMC10318732 DOI: 10.1186/s12951-023-01966-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/22/2023] [Indexed: 07/06/2023] Open
Abstract
In recent years, cancer immunotherapy has emerged as an exciting cancer treatment. Immune checkpoint blockade brings new opportunities for more researchers and clinicians. Programmed cell death receptor-1 (PD-1) is a widely studied immune checkpoint, and PD-1 blockade therapy has shown promising results in a variety of tumors, including melanoma, non-small cell lung cancer and renal cell carcinoma, which greatly improves patient overall survival and becomes a promising tool for the eradication of metastatic or inoperable tumors. However, low responsiveness and immune-related adverse effects currently limit its clinical application. Overcoming these difficulties is a major challenge to improve PD-1 blockade therapies. Nanomaterials have unique properties that enable targeted drug delivery, combination therapy through multidrug co-delivery strategies, and controlled drug release through sensitive bonds construction. In recent years, combining nanomaterials with PD-1 blockade therapy to construct novel single-drug-based or combination therapy-based nano-delivery systems has become an effective mean to address the limitations of PD-1 blockade therapy. In this study, the application of nanomaterial carriers in individual delivery of PD-1 inhibitors, combined delivery of PD-1 inhibitors and other immunomodulators, chemotherapeutic drugs, photothermal reagents were reviewed, which provides effective references for designing new PD-1 blockade therapeutic strategies.
Collapse
Affiliation(s)
- Songlin Liu
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, National Key Laboratory of Advanced Drug Delivery System, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, 250117, Shandong, China
| | - Haiyang Wang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, National Key Laboratory of Advanced Drug Delivery System, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, 250117, Shandong, China
- Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Xinzhe Shao
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, National Key Laboratory of Advanced Drug Delivery System, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, 250117, Shandong, China
| | - Haonan Chen
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, National Key Laboratory of Advanced Drug Delivery System, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, 250117, Shandong, China
| | - Shushu Chao
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, National Key Laboratory of Advanced Drug Delivery System, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, 250117, Shandong, China
| | - Yanyan Zhang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, National Key Laboratory of Advanced Drug Delivery System, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, 250117, Shandong, China
| | - Zhaoju Gao
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, National Key Laboratory of Advanced Drug Delivery System, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, 250117, Shandong, China
| | - Qingqiang Yao
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, National Key Laboratory of Advanced Drug Delivery System, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, 250117, Shandong, China
| | - Pingping Zhang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, National Key Laboratory of Advanced Drug Delivery System, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, 250117, Shandong, China.
| |
Collapse
|
204
|
Ding X, Hua YJ, Zou X, Chen XZ, Zhang XM, Xu B, Ouyang YF, Tu ZW, Li HF, Duan CY, Zhang WJ, You R, Liu YP, Liu YL, Yang Q, Huang PY, Wang SN, Fan J, Chen MY. Camrelizumab plus famitinib in patients with recurrent or metastatic nasopharyngeal carcinoma treated with PD-1 blockade: data from a multicohort phase 2 study. EClinicalMedicine 2023; 61:102043. [PMID: 37415845 PMCID: PMC10319986 DOI: 10.1016/j.eclinm.2023.102043] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 07/08/2023] Open
Abstract
Background Treatment options for patients with recurrent/metastatic nasopharyngeal carcinoma (RM-NPC) are not clear after progression on previous treatment with PD-(L)1 inhibitor; critical gaps in evidence remain for such cases. Immunotherapy combined with antiangiogenic therapy has been reported to have synergistic antitumor activity. Therefore, we evaluated the efficacy and safety of camrelizumab plus famitinib in patients with RM-NPC who failed treatment with PD-1 inhibitor-containing regimens. Methods This multicenter, adaptive Simon minimax two-stage, phase II study enrolled patients with RM-NPC refractory to at least one line of systemic platinum-containing chemotherapy and anti-PD-(L)1 immunotherapy. The patient received camrelizumab 200 mg every 3 weeks and famitinib 20 mg once per day. The primary endpoint was objective response rate (ORR), and the study could be stopped early as criterion for efficacy was met (>5 responses). Key secondary endpoints included time to response (TTR), disease control rate (DCR), progression-free survival (PFS), duration of response (DoR), overall survival (OS), and safety. This trial was registered with ClinicalTrials.gov, NCT04346381. Findings Between October 12, 2020, and December 6, 2021, a total of 18 patients were enrolled since six responses were observed. The ORR was 33.3% (90% CI, 15.6-55.4) and the DCR was 77.8% (90% CI, 56.1-92.0). The median TTR was 2.1 months, the median DoR was 4.2 months (90% CI, 3.0-not reach), and the median PFS was 7.2 months (90% CI, 4.4-13.3), with a median follow-up duration of 16.7 months. Treatment-related adverse events (TRAEs) of grade ≥3 were reported in eight (44.4%) patients, with the most common being decreased platelet count and/or neutropenia (n = 4, 22.2%). Treatment-related serious AEs occurred in six (33.3%) patients, and no deaths occurred due to TRAEs. Four patients developed grade ≥3 nasopharyngeal necrosis; two of them developed grade 3-4 major epistaxis, and they were cured by nasal packing and vascular embolization. Interpretation Camrelizumab plus famitinib exhibited encouraging efficacy and tolerable safety profiles in patients with RM-NPC who failed frontline immunotherapy. Further studies are needed to confirm and expand these findings. Funding Jiangsu Hengrui Pharmaceutical Co., Ltd.
Collapse
Affiliation(s)
- Xi Ding
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Yi-Jun Hua
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Xiong Zou
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Xiao-Zhong Chen
- Department of Head and Neck Tumor Radiotherapy, Cancer Hospital of the University of Chinese Academy of Sciences Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Xi-Mei Zhang
- Department of Radiotherapy, Tianjin Medical University Cancer Institute & Hospital, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Bei Xu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yan-Feng Ouyang
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Zi-Wei Tu
- Department of Radiotherapy, Jiangxi Cancer Hospital, Nanchang 330029, China
| | - Hui-Feng Li
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Chong-Yang Duan
- Department of Biostatistics, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Wei-Jing Zhang
- Department of Medical Imaging, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Rui You
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - You-Ping Liu
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Yong-Long Liu
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Qi Yang
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Pei-Yu Huang
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Shu-Ni Wang
- Clinical Research & Development, Jiangsu Hengrui Medicine Co., Ltd, Shenyang 110016, China
| | - Jia Fan
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Ming-Yuan Chen
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| |
Collapse
|
205
|
Boutros A, Tanda ET, Croce E, Catalano F, Ceppi M, Bruzzone M, Cecchi F, Arecco L, Fraguglia M, Pronzato P, Genova C, Del Mastro L, Lambertini M, Spagnolo F. Activity and safety of first-line treatments for advanced melanoma: A network meta-analysis. Eur J Cancer 2023; 188:64-79. [PMID: 37196485 DOI: 10.1016/j.ejca.2023.04.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/27/2023] [Accepted: 04/11/2023] [Indexed: 05/19/2023]
Abstract
BACKGROUND Treatment options for advanced melanoma have increased with the US Food and Drug Administration approval of the anti-LAG3 plus anti-PD-1 relatlimab/nivolumab combination. To date, ipilimumab/nivolumab is the benchmark of overall survival, despite a high toxicity profile. Furthermore, in BRAF-mutant patients, BRAF/MEK inhibitors and the atezolizumab/vemurafenib/cobimetinib triplet are also available treatments, making the first-line therapy selection more complex. To address this issue, we conducted a systematic review and network meta-analysis of the available first-line treatment options in advanced melanoma. METHODS Randomised clinical trials of previously untreated, advanced melanoma were included if at least one intervention arm contained a BRAF/MEK or an immune-checkpoint inhibitor (ICI). The aim was to indirectly compare the ICIs combinations ipilimumab/nivolumab and relatlimab/nivolumab, and these combinations with all the other first-line treatment options for advanced melanoma (irrespective of BRAF status) in terms of activity and safety. The coprimary end-points were progression-free survival (PFS), overall response rate (ORR) and grade ≥3 treatment-related adverse events (≥ G3 TRAEs) rate, defined according to Common Terminology Criteria for Adverse Events. RESULTS A total of 9070 metastatic melanoma patients treated in 18 randomised clinical trials were included in the network meta-analysis. No difference in PFS and ORR was observed between ipilimumab/nivolumab and relatlimab/nivolumab (HR = 0.99 [95% CI 0.75-1.31] and RR = 0.99 [95% CI 0.78-1.27], respectively). The PD-(L)1/BRAF/MEK inhibitors triplet combinations were superior to ipilimumab/nivolumab in terms of both PFS (HR = 0.56 [95% CI 0.37-0.84]) and ORR (RR = 3.07 [95% CI 1.61-5.85]). Ipilimumab/nivolumab showed the highest risk of developing ≥ G3 TRAEs. Relatlimab/nivolumab trended to a lower risk of ≥ G3 TRAEs (RR = 0.71 [95% CI 0.30-1.67]) versus ipilimumab/nivolumab. CONCLUSION Relatlimab/nivolumab showed similar PFS and ORR compared to ipilimumab/nivolumab, with a trend for a better safety profile.
Collapse
Affiliation(s)
- Andrea Boutros
- Department of Medical Oncology, Oncologia Medica 2, IRCCS Ospedale Policlinico San Martino, Genoa, Italy; Department of Internal Medicine and Medical Specialties (DiMI), School of Medicine, University of Genova, Genoa, Italy.
| | - Enrica Teresa Tanda
- Department of Medical Oncology, Oncologia Medica 2, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Elena Croce
- Department of Medical Oncology, Oncologia Medica 2, IRCCS Ospedale Policlinico San Martino, Genoa, Italy; Department of Internal Medicine and Medical Specialties (DiMI), School of Medicine, University of Genova, Genoa, Italy
| | - Fabio Catalano
- Department of Medical Oncology, Oncologia Medica 2, IRCCS Ospedale Policlinico San Martino, Genoa, Italy; Department of Internal Medicine and Medical Specialties (DiMI), School of Medicine, University of Genova, Genoa, Italy
| | - Marcello Ceppi
- Clinical Epidemiology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Marco Bruzzone
- Clinical Epidemiology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Federica Cecchi
- Department of Medical Oncology, Oncologia Medica 2, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Luca Arecco
- Department of Internal Medicine and Medical Specialties (DiMI), School of Medicine, University of Genova, Genoa, Italy; Department of Medical Oncology, U.O.C. Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Matteo Fraguglia
- Department of Internal Medicine and Medical Specialties (DiMI), School of Medicine, University of Genova, Genoa, Italy
| | - Paolo Pronzato
- Department of Medical Oncology, Oncologia Medica 2, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Carlo Genova
- Department of Internal Medicine and Medical Specialties (DiMI), School of Medicine, University of Genova, Genoa, Italy; Department of Medical Oncology, U.O.C. Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Lucia Del Mastro
- Department of Internal Medicine and Medical Specialties (DiMI), School of Medicine, University of Genova, Genoa, Italy; Department of Medical Oncology, U.O.C. Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Matteo Lambertini
- Department of Internal Medicine and Medical Specialties (DiMI), School of Medicine, University of Genova, Genoa, Italy; Department of Medical Oncology, U.O.C. Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Francesco Spagnolo
- Department of Medical Oncology, Oncologia Medica 2, IRCCS Ospedale Policlinico San Martino, Genoa, Italy; Department of Surgical Sciences and Integrated Diagnostics (DISC), Plastic Surgery, University of Genova, Genoa, Italy
| |
Collapse
|
206
|
Lin E, Zwolinski R, Wu JTY, La J, Goryachev S, Huhmann L, Yildrim C, Tuck DP, Elbers DC, Brophy MT, Do NV, Fillmore NR. Machine learning-based natural language processing to extract PD-L1 expression levels from clinical notes. Health Informatics J 2023; 29:14604582231198021. [PMID: 37635280 DOI: 10.1177/14604582231198021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Introduction: PD-L1 expression is used to determine oncology patients' response to and eligibility for immunologic treatments; however, PD-L1 expression status often only exists in unstructured clinical notes, limiting ability to use it in population-level studies. Methods: We developed and evaluated a machine learning based natural language processing (NLP) tool to extract PD-L1 expression values from the nationwide Veterans Affairs electronic health record system. Results: The model demonstrated strong evaluation performance across multiple levels of label granularity. Mean precision of the overall PD-L1 positive label was 0.859 (sd, 0.039), recall 0.994 (sd, 0.013), and F1 0.921 (0.024). When a numeric PD-L1 value was identified, the mean absolute error of the value was 0.537 on a scale of 0 to 100. Conclusion: We presented an accurate NLP method for deriving PD-L1 status from clinical notes. By reducing the time and manual effort needed to review medical records, our work will enable future population-level studies in cancer immunotherapy.
Collapse
Affiliation(s)
- Eric Lin
- VA Boston Healthcare System, Boston, MA, USA
- McLean Hospital, Institute for Technology in Psychiatry, Belmont, MA, USA
| | | | - Julie Tsu-Yu Wu
- VA Palo Alto Healthcare System, Palo Alto, CA, USA
- Stanford University School of Medicine, Stanford, CA, USA
| | - Jennifer La
- VA Boston Healthcare System, Boston, MA, USA
| | | | | | | | - David P Tuck
- VA Boston Healthcare System, Boston, MA, USA
- Boston University School of Medicine, Boston, MA, USA
| | - Danne C Elbers
- VA Boston Healthcare System, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Mary T Brophy
- VA Boston Healthcare System, Boston, MA, USA
- Boston University School of Medicine, Boston, MA, USA
| | - Nhan V Do
- VA Boston Healthcare System, Boston, MA, USA
- Boston University School of Medicine, Boston, MA, USA
| | - Nathanael R Fillmore
- VA Boston Healthcare System, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| |
Collapse
|
207
|
Liu W, Ji Y, Wang F, Li C, Shi S, Liu R, Li Q, Guo L, Liu Y, Cui H. Morusin shows potent antitumor activity for melanoma through apoptosis induction and proliferation inhibition. BMC Cancer 2023; 23:602. [PMID: 37386395 DOI: 10.1186/s12885-023-11080-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 06/16/2023] [Indexed: 07/01/2023] Open
Abstract
BACKGROUND The discovery of new anti-melanoma drugs with low side effect is urgently required in the clinic. Recent studies showed that morusin, a flavonoid compound isolated from the root bark of Morus Alba, has the potential to treat multiple types of cancers, including breast cancer, gastric cancer, and prostate cancer. However, the anti-cancer effect of morusin on melanoma cells has not been investigated. METHODS We analyzed the effects of morusin on the proliferation, cell cycle, apoptosis, cell migration and invasion ability of melanoma cells A375 and MV3, and further explored the effects of morusin on tumor formation of melanoma cell. Finally, the effects of morusin on the proliferation, cycle, apoptosis, migration and invasion of A375 cells after knockdown of p53 were detected. RESULTS Morusin effectively inhibits the proliferation of melanoma cells and induces cell cycle arrest in the G2/M phase. Consistently, CyclinB1 and CDK1 that involved in the G2/M phase transition were down-regulated upon morusin treatment, which may be caused by the up-regulation of p53 and p21. In addition, morusin induces cell apoptosis and inhibits migration of melanoma cells, which correlated with the changes in the expression of the associated molecules including PARP, Caspase3, E-Cadherin and Vimentin. Moreover, morusin inhibits tumor growth in vivo with little side effect on the tumor-burden mice. Finally, p53 knockdown partially reversed morusin-mediated cell proliferation inhibition, cell cycle arrest, apoptosis, and metastasis. CONCLUSION Collectively, our study expanded the spectrum of the anti-cancer activity of morusin and guaranteed the clinical use of the drug for melanoma treatment.
Collapse
Affiliation(s)
- Wei Liu
- Department of Dermatology, The Third Hospital of Hebei Medical University, Zi qiang Road 139, 050000, Shijiazhuang, China
- State Key Laboratory of Silkworm Genome Biology, Southwest University, No. 2 Tiansheng Road, Beibei District, 400715, Chongqing, P.R. China
- Cancer Centre, Reproductive Medicine Centre, Medical Research Institute, Southwest University, Chongqing, China
| | - Yacong Ji
- Department of Dermatology, The Third Hospital of Hebei Medical University, Zi qiang Road 139, 050000, Shijiazhuang, China
- State Key Laboratory of Silkworm Genome Biology, Southwest University, No. 2 Tiansheng Road, Beibei District, 400715, Chongqing, P.R. China
| | - Feng Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, No. 2 Tiansheng Road, Beibei District, 400715, Chongqing, P.R. China
- Cancer Centre, Reproductive Medicine Centre, Medical Research Institute, Southwest University, Chongqing, China
| | - Chongyang Li
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Shaomin Shi
- Department of Dermatology, The Third Hospital of Hebei Medical University, Zi qiang Road 139, 050000, Shijiazhuang, China
- State Key Laboratory of Silkworm Genome Biology, Southwest University, No. 2 Tiansheng Road, Beibei District, 400715, Chongqing, P.R. China
- Cancer Centre, Reproductive Medicine Centre, Medical Research Institute, Southwest University, Chongqing, China
| | - Ruochen Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, No. 2 Tiansheng Road, Beibei District, 400715, Chongqing, P.R. China
| | - Qian Li
- Department of Dermatology, The Third Hospital of Hebei Medical University, Zi qiang Road 139, 050000, Shijiazhuang, China
- State Key Laboratory of Silkworm Genome Biology, Southwest University, No. 2 Tiansheng Road, Beibei District, 400715, Chongqing, P.R. China
- Cancer Centre, Reproductive Medicine Centre, Medical Research Institute, Southwest University, Chongqing, China
| | - Leiyang Guo
- Department of Dermatology, The Third Hospital of Hebei Medical University, Zi qiang Road 139, 050000, Shijiazhuang, China
- State Key Laboratory of Silkworm Genome Biology, Southwest University, No. 2 Tiansheng Road, Beibei District, 400715, Chongqing, P.R. China
| | - Yaling Liu
- Department of Dermatology, The Third Hospital of Hebei Medical University, Zi qiang Road 139, 050000, Shijiazhuang, China.
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Southwest University, No. 2 Tiansheng Road, Beibei District, 400715, Chongqing, P.R. China.
- Cancer Centre, Reproductive Medicine Centre, Medical Research Institute, Southwest University, Chongqing, China.
- The Ninth People's Hospital of Chongqing, Affiliated Hospital of Southwest University, Chongqing, China.
| |
Collapse
|
208
|
Rodriguez BL, Chen L, Li Y, Miao S, Peng DH, Fradette JJ, Diao L, Konen JM, Alvarez FRR, Solis LM, Yi X, Padhye A, Gibson LA, Ochieng JK, Zhou X, Wang J, Gibbons DL. Targeting immunosuppressive Ly6C+ classical monocytes reverses anti-PD-1/CTLA-4 immunotherapy resistance. Front Immunol 2023; 14:1161869. [PMID: 37449205 PMCID: PMC10336223 DOI: 10.3389/fimmu.2023.1161869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 06/08/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction Despite significant clinical advancement with the use of immune checkpoint blockade (ICB) in non-small cell lung cancer (NSCLC) there are still a major subset of patients that develop adaptive/acquired resistance. Understanding resistance mechanisms to ICB is critical to developing new therapeutic strategies and improving patient survival. The dynamic nature of the tumor microenvironment and the mutational load driving tumor immunogenicity limit the efficacy to ICB. Recent studies indicate that myeloid cells are drivers of ICB resistance. In this study we sought to understand which immune cells were contributing to resistance and if we could modify them in a way to improve response to ICB therapy. Results Our results show that combination anti-PD-1/CTLA-4 produces an initial antitumor effect with evidence of an activated immune response. Upon extended treatment with anti-PD-1/CTLA-4 acquired resistance developed with an increase of the immunosuppressive populations, including T-regulatory cells, neutrophils and monocytes. Addition of anti-Ly6C blocking antibody to anti-PD-1/CTLA-4 was capable of completely reversing treatment resistance and restoring CD8 T cell activity in multiple KP lung cancer models and in the autochthonous lung cancer KrasLSL-G12D/p53fl/fl model. We found that there were higher classical Ly6C+ monocytes in anti-PD-1/CTLA-4 combination resistant tumors. B7 blockade illustrated the importance of dendritic cells for treatment efficacy of anti-Ly6C/PD-1/CTLA-4. We further determined that classical Ly6C+ monocytes in anti-PD-1/CTLA-4 resistant tumors are trafficked into the tumor via IFN-γ and the CCL2-CCR2 axis. Mechanistically we found that classical monocytes from ICB resistant tumors were unable to differentiate into antigen presenting cells and instead differentiated into immunosuppressive M2 macrophages or myeloid-derived suppressor cells (MDSC). Classical Ly6C+ monocytes from ICB resistant tumors had a decrease in both Flt3 and PU.1 expression that prevented differentiation into dendritic cells/macrophages. Conclusions Therapeutically we found that addition of anti-Ly6C to the combination of anti-PD-1/CTLA-4 was capable of complete tumor eradication. Classical Ly6C+ monocytes differentiate into immunosuppressive cells, while blockade of classical monocytes drives dendritic cell differentiation/maturation to reinvigorate the anti-tumor T cell response. These findings support that immunotherapy resistance is associated with infiltrating monocytes and that controlling the differentiation process of monocytes can enhance the therapeutic potential of ICB.
Collapse
Affiliation(s)
- B. Leticia Rodriguez
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Limo Chen
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Yanli Li
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Shucheng Miao
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- United of Texas (UT) Health Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States
| | - David H. Peng
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jared J. Fradette
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Lixia Diao
- Department Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jessica M. Konen
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Frank R. Rojas Alvarez
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Luisa M. Solis
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Xiaohui Yi
- Bellicum Pharmaceuticals, Inc., Houston, TX, United States
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Aparna Padhye
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- United of Texas (UT) Health Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States
| | - Laura A. Gibson
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Joshua K. Ochieng
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Xiaofei Zhou
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jing Wang
- Department Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Don L. Gibbons
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
209
|
Eminizer M, Nagy M, Engle EL, Soto-Diaz S, Jorquera A, Roskes JS, Green BF, Wilton R, Taube JM, Szalay AS. Comparing and Correcting Spectral Sensitivities between Multispectral Microscopes: A Prerequisite to Clinical Implementation. Cancers (Basel) 2023; 15:3109. [PMID: 37370719 PMCID: PMC10296646 DOI: 10.3390/cancers15123109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Multispectral, multiplex immunofluorescence (mIF) microscopy has been used to great effect in research to identify cellular co-expression profiles and spatial relationships within tissue, providing a myriad of diagnostic advantages. As these technologies mature, it is essential that image data from mIF microscopes is reproducible and standardizable across devices. We sought to characterize and correct differences in illumination intensity and spectral sensitivity between three multispectral microscopes. We scanned eight melanoma tissue samples twice on each microscope and calculated their average tissue region flux intensities. We found a baseline average standard deviation of 29.9% across all microscopes, scans, and samples, which was reduced to 13.9% after applying sample-specific corrections accounting for differences in the tissue shown on each slide. We used a basic calibration model to correct sample- and microscope-specific effects on overall brightness and relative brightness as a function of the image layer. We tested the generalizability of the calibration procedure and found that applying corrections to independent validation subsets of the samples reduced the variation to 2.9 ± 0.03%. Variations in the unmixed marker expressions were reduced from 15.8% to 4.4% by correcting the raw images to a single reference microscope. Our findings show that mIF microscopes can be standardized for use in clinical pathology laboratories using a relatively simple correction model.
Collapse
Affiliation(s)
- Margaret Eminizer
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21210, USA; (M.N.); (J.S.R.); (R.W.); (A.S.S.)
- Institute for Data Intensive Engineering and Science, Johns Hopkins University, Baltimore, MD 21210, USA
| | - Melinda Nagy
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21210, USA; (M.N.); (J.S.R.); (R.W.); (A.S.S.)
- Institute for Data Intensive Engineering and Science, Johns Hopkins University, Baltimore, MD 21210, USA
| | - Elizabeth L. Engle
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (E.L.E.); (S.S.-D.); (A.J.); (B.F.G.); (J.M.T.)
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Mark Foundation Center for Advanced Genomics and Imaging, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Sigfredo Soto-Diaz
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (E.L.E.); (S.S.-D.); (A.J.); (B.F.G.); (J.M.T.)
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Mark Foundation Center for Advanced Genomics and Imaging, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Andrew Jorquera
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (E.L.E.); (S.S.-D.); (A.J.); (B.F.G.); (J.M.T.)
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Mark Foundation Center for Advanced Genomics and Imaging, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jeffrey S. Roskes
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21210, USA; (M.N.); (J.S.R.); (R.W.); (A.S.S.)
- Institute for Data Intensive Engineering and Science, Johns Hopkins University, Baltimore, MD 21210, USA
| | - Benjamin F. Green
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (E.L.E.); (S.S.-D.); (A.J.); (B.F.G.); (J.M.T.)
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Richard Wilton
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21210, USA; (M.N.); (J.S.R.); (R.W.); (A.S.S.)
- Institute for Data Intensive Engineering and Science, Johns Hopkins University, Baltimore, MD 21210, USA
| | - Janis M. Taube
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (E.L.E.); (S.S.-D.); (A.J.); (B.F.G.); (J.M.T.)
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Mark Foundation Center for Advanced Genomics and Imaging, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Alexander S. Szalay
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21210, USA; (M.N.); (J.S.R.); (R.W.); (A.S.S.)
- Institute for Data Intensive Engineering and Science, Johns Hopkins University, Baltimore, MD 21210, USA
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Mark Foundation Center for Advanced Genomics and Imaging, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Computer Science, Johns Hopkins University, Baltimore, MD 21210, USA
| |
Collapse
|
210
|
Arasanz H, Chocarro L, Fernández-Rubio L, Blanco E, Bocanegra A, Echaide M, Labiano I, Huerta AE, Alsina M, Vera R, Escors D, Kochan G. Current Indications and Future Landscape of Bispecific Antibodies for the Treatment of Lung Cancer. Int J Mol Sci 2023; 24:9855. [PMID: 37373003 DOI: 10.3390/ijms24129855] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Bispecific antibodies are a promising type of therapy for the treatment of cancer due to their ability to simultaneously inhibit different proteins playing a role in cancer progression. The development in lung cancer has been singularly intense because of the increasingly vast knowledge of the underlying molecular routes, in particular, in oncogene-driven tumors. In this review, we present the current landscape of bispecific antibodies for the treatment of lung cancer and discuss potential scenarios where the role of these therapeutics might expand in the near future.
Collapse
Affiliation(s)
- Hugo Arasanz
- Medical Oncology Department, Hospital Universitario de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
- Oncobiona Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Luisa Chocarro
- Oncoimmunology Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Leticia Fernández-Rubio
- Oncoimmunology Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Ester Blanco
- Oncoimmunology Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
- Division of Gene Therapy and Regulation of Gene Expression, Centro de Investigación Médica Aplicada (CIMA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Ana Bocanegra
- Oncoimmunology Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Miriam Echaide
- Oncoimmunology Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Ibone Labiano
- Oncobiona Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Ana Elsa Huerta
- Oncobiona Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Maria Alsina
- Medical Oncology Department, Hospital Universitario de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
- Oncobiona Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Ruth Vera
- Medical Oncology Department, Hospital Universitario de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
- Oncobiona Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - David Escors
- Oncoimmunology Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Grazyna Kochan
- Oncoimmunology Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| |
Collapse
|
211
|
Zhang Y, Cheng F, Ma J, Shi G, Deng H. Development of cancer-associated fibroblast-related gene signature for predicting the survival and immunotherapy response in lung adenocarcinoma. Aging (Albany NY) 2023; 15:204774. [PMID: 37280069 PMCID: PMC10292873 DOI: 10.18632/aging.204774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/16/2023] [Indexed: 06/08/2023]
Abstract
The present study aims to construct a predictive model for prognosis and immunotherapy response in lung adenocarcinoma (LUAD). Transcriptome data were extracted from the Cancer Genome Atlas (TCGA), GSE41271, and IMvigor210. The weighted gene correlation network analysis was utilized to identify the hub modules related to immune/stromal cells. Then, univariate, LASSO, and multivariate Cox regression analyses were employed to develop a predictive signature based on genes of the hub module. Moreover, the association between the predictive signature and immunotherapy response was also investigated. As a result, seven genes (FGF10, SERINE2, LSAMP, STXBP5, PDE5A, GLI2, FRMD6) were screened to develop the cancer associated fibroblasts (CAFs)-related risk signature (CAFRS). LUAD patients with high-risk score underwent shortened Overall survival (OS). A strong correlation was found between CAFRS and immune infiltrations/functions. The gene set variation analysis showed that G2/M checkpoint, epithelial-mesenchymal transition, hypoxia, glycolysis, and PI3K-Akt-mTOR pathways were greatly enriched in the high-risk subgroup. Moreover, patients with higher risk score were less likely to respond to immunotherapy. A nomogram based on CAFRS and Stage presented a stronger predictive performance for OS than the single indicator. In conclusion, the CAFRS exhibited a potent predictive value for OS and immunotherapy response in LUAD.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Fuyi Cheng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jinhu Ma
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Gang Shi
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Hongxin Deng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
212
|
Galluzzi L, Aryankalayil MJ, Coleman CN, Formenti SC. Emerging evidence for adapting radiotherapy to immunotherapy. Nat Rev Clin Oncol 2023:10.1038/s41571-023-00782-x. [PMID: 37280366 DOI: 10.1038/s41571-023-00782-x] [Citation(s) in RCA: 152] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2023] [Indexed: 06/08/2023]
Abstract
Immunotherapy has revolutionized the clinical management of many malignancies but is infrequently associated with durable objective responses when used as a standalone treatment approach, calling for the development of combinatorial regimens with superior efficacy and acceptable toxicity. Radiotherapy, the most commonly used oncological treatment, has attracted considerable attention as a combination partner for immunotherapy owing to its well-known and predictable safety profile, widespread clinical availability, and potential for immunostimulatory effects. However, numerous randomized clinical trials investigating radiotherapy-immunotherapy combinations have failed to demonstrate a therapeutic benefit compared with either modality alone. Such a lack of interaction might reflect suboptimal study design, choice of end points and/or administration of radiotherapy according to standard schedules and target volumes. Indeed, radiotherapy has empirically evolved towards radiation doses and fields that enable maximal cancer cell killing with manageable toxicity to healthy tissues, without much consideration of potential radiation-induced immunostimulatory effects. Herein, we propose the concept that successful radiotherapy-immunotherapy combinations might require modifications of standard radiotherapy regimens and target volumes to optimally sustain immune fitness and enhance the antitumour immune response in support of meaningful clinical benefits.
Collapse
Affiliation(s)
- Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA
| | - Molykutty J Aryankalayil
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - C Norman Coleman
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Silvia C Formenti
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, New York, NY, USA.
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
213
|
Yang L, Cao ZJ, Zhang Y, Zhou JK, Tian J. Disulfidptosis-related classification patterns and tumor microenvironment characterization in skin cutaneous melanoma. Melanoma Manag 2023; 10:MMT65. [PMID: 38230203 PMCID: PMC10789442 DOI: 10.2217/mmt-2023-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/28/2023] [Indexed: 01/18/2024] Open
Abstract
Aim To identify distinct disulfidptosis-molecular subtypes and develop a novel prognostic signature. Methods/materials We integrated into this study multiple SKCM transcriptomic datasets from the Cancer Genome Atlas database and Gene Expression Omnibus dataset. The consensus clustering algorithm was applied to categorize SKCM patients into different DRG subtypes. Results Three distinct DRG subtypes were identified, which were correlated to different clinical outcomes and signaling pathways. Then, a disulfidptosis-relaed signature and nomogram were constructed, which could accurately predict the individual OS of patients with SKCM. The high-risk group was less sensitive to immunotherapy than the low-risk group. Conclusion The signature can assist healthcare professionals in making more accurate and individualized treatment choices for patients with SKCM.
Collapse
Affiliation(s)
- Li Yang
- Department of Dermatology, Shaanxi Provincial People's Hospital, Xi'an 710068, China
| | - Zi-jian Cao
- Department of Dermatology, The 63600 Hospital of PLA, Lanzhou, 732750, China
| | - Yuan Zhang
- Department of Oncology, Shaanxi Provincial People's Hospital, Xi'an 710068, China
| | - Jin-ke Zhou
- Department of Dermatology, The 63600 Hospital of PLA, Lanzhou, 732750, China
| | - Jun Tian
- Department of Dermatology, Shaanxi Provincial People's Hospital, Xi'an 710068, China
| |
Collapse
|
214
|
Gaißler A, Bochem J, Spreuer J, Ottmann S, Martens A, Amaral T, Wagner NB, Claassen M, Meier F, Terheyden P, Garbe C, Eigentler T, Weide B, Pawelec G, Wistuba-Hamprecht K. Early decrease of blood myeloid-derived suppressor cells during checkpoint inhibition is a favorable biomarker in metastatic melanoma. J Immunother Cancer 2023; 11:e006802. [PMID: 37286306 PMCID: PMC10254874 DOI: 10.1136/jitc-2023-006802] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2023] [Indexed: 06/09/2023] Open
Abstract
BACKGROUND The need for reliable clinical biomarkers to predict which patients with melanoma will benefit from immune checkpoint blockade (ICB) remains unmet. Several different parameters have been considered in the past, including routine differential blood counts, T cell subset distribution patterns and quantification of peripheral myeloid-derived suppressor cells (MDSC), but none has yet achieved sufficient accuracy for clinical utility. METHODS Here, we investigated potential cellular biomarkers from clinical routine blood counts as well as several myeloid and T cell subsets, using flow cytometry, in two independent cohorts of a total of 141 patients with stage IV M1c melanoma before and during ICB. RESULTS Elevated baseline frequencies of monocytic MDSCs (M-MDSC) in the blood were confirmed to predict shorter overall survival (OS) (HR 2.086, p=0.030) and progression-free survival (HR 2.425, p=0.001) in the whole patient cohort. However, we identified a subgroup of patients with highly elevated baseline M-MDSC frequencies that fell below a defined cut-off during therapy and found that these patients had a longer OS that was similar to that of patients with low baseline M-MDSC frequencies. Importantly, patients with high M-MDSC frequencies exhibited a skewed baseline distribution of certain other immune cells but these did not influence patient survival, illustrating the paramount utility of MDSC assessment. CONCLUSION We confirmed that in general, highly elevated frequencies of peripheral M-MDSC are associated with poorer outcomes of ICB in metastatic melanoma. However, one reason for an imperfect correlation between high baseline MDSCs and outcome for individual patients may be the subgroup of patients identified here, with rapidly decreasing M-MDSCs on therapy, in whom the negative effect of high M-MDSC frequencies was lost. These findings might contribute to developing more reliable predictors of late-stage melanoma response to ICB at the individual patient level. A multifactorial model seeking such markers yielded only MDSC behavior and serum lactate dehydrogenase as predictors of treatment outcome.
Collapse
Affiliation(s)
- Andrea Gaißler
- Department of Dermatology, University Hospital Tübingen, Eberhard Karls University of Tübingen, Tübingen, Germany
- Internal Medicine I, University Hospital Tübingen, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Jonas Bochem
- Department of Dermatology, University Hospital Tübingen, Eberhard Karls University of Tübingen, Tübingen, Germany
- Internal Medicine I, University Hospital Tübingen, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Janine Spreuer
- Department of Dermatology, University Hospital Tübingen, Eberhard Karls University of Tübingen, Tübingen, Germany
- Internal Medicine I, University Hospital Tübingen, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Shannon Ottmann
- Department of Dermatology, University Hospital Tübingen, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Alexander Martens
- Department of Dermatology, University Hospital Tübingen, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Teresa Amaral
- Department of Dermatology, University Hospital Tübingen, Eberhard Karls University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", Tübingen, Germany
| | - Nikolaus Benjamin Wagner
- Department of Dermatology, University Hospital Tübingen, Eberhard Karls University of Tübingen, Tübingen, Germany
- Department of Dermatology, Venereology and Allergology, Kantonsspital St Gallen, Sankt Gallen, Switzerland
| | - Manfred Claassen
- Internal Medicine I, University Hospital Tübingen, Eberhard Karls University of Tübingen, Tübingen, Germany
- Department of Computer Science, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Friedegund Meier
- Skin Cancer Center at the University Cancer Centre and National Center for Tumor Diseases Dresden; Department of Dermatology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | | | - Claus Garbe
- Department of Dermatology, University Hospital Tübingen, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Thomas Eigentler
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Dermatology, Venereology and Allergology, Berlin, Germany
| | - Benjamin Weide
- Department of Dermatology, University Hospital Tübingen, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Graham Pawelec
- Department of Immunology, Interfaculty Institute for Cell Biology, Eberhard Karls University Tübingen, Tübingen, Germany
- Health Sciences North Research Institute, Sudbury, Ontario, Canada
| | - Kilian Wistuba-Hamprecht
- Department of Dermatology, University Hospital Tübingen, Eberhard Karls University of Tübingen, Tübingen, Germany
- Internal Medicine I, University Hospital Tübingen, Eberhard Karls University of Tübingen, Tübingen, Germany
- Department of Immunology, Interfaculty Institute for Cell Biology, Eberhard Karls University Tübingen, Tübingen, Germany
| |
Collapse
|
215
|
Kong X, Chen L, Su Z, Sullivan RJ, Blum SM, Qi Z, Liu Y, Huo Y, Fang Y, Zhang L, Gao J, Wang J. Toxicities associated with immune checkpoint inhibitors: a systematic study. Int J Surg 2023; 109:1753-1768. [PMID: 37132038 PMCID: PMC10389211 DOI: 10.1097/js9.0000000000000368] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/12/2023] [Indexed: 05/04/2023]
Abstract
BACKGROUND Available evidence shows that the incidence of toxicities associated with cancer immunotherapy, such as programmed cell death 1 (PD-1) and programmed cell death 1 ligand 1 (PD-L1)-related toxicities, is estimated to be between 0.3 and 1.3%. OBJECTIVE This systematic review aimed to investigate cancer patients' susceptibility to toxicities associated with PD-1/PD-L1 inhibitors and establish a clinically relevant landscape of side effects of PD-1/PD-L1 inhibitors. DATA SOURCES Relevant publications from PubMed, Embase, Cochrane Library, Web of Science, and China National Knowledge Infrastructure (CNKI) between 2014 and 2019. STUDY ELIGIBILITY CRITERIA, PARTICIPANTS, AND INTERVENTIONS We searched randomized controlled trials (RCTs) reporting treatment-related toxicities associated with PD-1 and PD-L1 inhibitors in the treatment of cancers. The primary endpoint was to assess the difference in the incidences of toxicities between cancer patients who did and did not receive PD-1/PD-L1 inhibitors. A total of 29 RCTs, incorporating 8576 patients, met the eligibility criteria. STUDY APPRAISAL AND SYNTHESIS METHODS We calculated the pooled relative risks and corresponding 95% CIs using a random-effects model and assessed the heterogeneity between different groups. The subgroup analyses were conducted based on cancer type, toxicity grade (severity), system and organ, treatment regimens in the intervention arm and the control arm, PD-1/PD-L1 inhibitor drug type, and cancer type. RESULTS A total of 11 categories (e.g. endocrine toxicity), and 39 toxicity types (e.g. hyperthyroidism) were identified. For toxicities at any grade, those treated with PD-1/PD-L1 inhibitors were at lower risks for gastrointestinal toxicity, hematologic toxicity, and treatment event leading to discontinuation; and were at higher risks for respiratory toxicity (all P <0.05). Those treated with PD-1/PD-L1 inhibitors were at lower risks for fatigue, asthenia, and peripheral edema and were at higher risks for pyrexia, cough, dyspnea, pneumonitis, and pruritus. LIMITATIONS The present research is a meta-analysis at the study level rather than at the patient level; insights on risk factors associated with the development of toxicities cannot be found in our study. There was a possible overlap in Common Terminology Criteria for Adverse Events (CTCAE) definitions which prevents understanding the true rates of specific toxicities. CONCLUSIONS AND IMPLICATIONS OF KEY FINDINGS For most toxicity types based on system and organ, the incidence proportions for patients in the intervention arm were lower than those in the control arm, which suggested the general safety of PD-1/PD-L1 inhibitors against conventional chemotherapy and cytotoxic t-lymphocyte-associated protein 4 (CTLA-4) inhibitors. Future research should focus on taking effective targeted measures to decrease the risks of different toxicities for different patient populations. SYSTEMATIC REVIEW REGISTRATION NUMBER We registered the research protocol with PROSPERO (registration number CRD42019135113).
Collapse
Affiliation(s)
- Xiangyi Kong
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Li Chen
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhaohui Su
- Center on Smart and Connected Health Technologies, Mays Cancer Center, School of Nursing, UT Health San Antonio, San Antonio,Texas, United States of America
| | - Ryan J. Sullivan
- Center for Melanoma, Massachusetts General Hospital Cancer Center, Harvard Medical School, Harvard University, Boston, Massachusetts, United States of America
| | - Steven M. Blum
- Department of Medicine-Oncology, Dana-Farber Cancer Institute, Harvard Medical School,Harvard University, Boston, Massachusetts, United States of America
| | - Zhihong Qi
- Clinical Laboratory, Peking Union Medical College Hospital, China
| | - Yulu Liu
- Fintech Lab, Department of Computer Science, Chow Yei Ching Building, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Yujia Huo
- Suzhou Industrial Park Monash Research Institute of Science and Technology, Suzhou, China
| | - Yi Fang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lin Zhang
- Suzhou Industrial Park Monash Research Institute of Science and Technology, Suzhou, China
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- The School of Public Health and Preventive Medicine, Monash University, Victoria, Australia
| | - Jidong Gao
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Jing Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
216
|
Kaufman B, Abramov O, Ievko A, Apple D, Shlapobersky M, Allon I, Greenshpan Y, Bhattachrya B, Cohen O, Charkovsky T, Gayster A, Shaco-Levy R, Rouvinov K, Livoff A, Elkabets M, Porgador A. Functional binding of PD1 ligands predicts response to anti-PD1 treatment in patients with cancer. SCIENCE ADVANCES 2023; 9:eadg2809. [PMID: 37235664 PMCID: PMC10219596 DOI: 10.1126/sciadv.adg2809] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/20/2023] [Indexed: 05/28/2023]
Abstract
Accurate predictive biomarkers of response to immune checkpoint inhibitors (ICIs) are required for better stratifying patients with cancer to ICI treatments. Here, we present a new concept for a bioassay to predict the response to anti-PD1 therapies, which is based on measuring the binding functionality of PDL1 and PDL2 to their receptor, PD1. In detail, we developed a cell-based reporting system, called the immuno-checkpoint artificial reporter with overexpression of PD1 (IcAR-PD1) and evaluated the functionality of PDL1 and PDL2 binding in tumor cell lines, patient-derived xenografts, and fixed-tissue tumor samples obtained from patients with cancer. In a retrospective clinical study, we found that the functionality of PDL1 and PDL2 predicts response to anti-PD1 and that the functionality of PDL1 binding is a more effective predictor than PDL1 protein expression alone. Our findings suggest that assessing the functionality of ligand binding is superior to staining of protein expression for predicting response to ICIs.
Collapse
Affiliation(s)
- Bar Kaufman
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Orli Abramov
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Anna Ievko
- Department of Oncology, Soroka University Medical Center, Beer-Sheva, Israel
| | - Daria Apple
- Department of Pathology, Soroka University Medical Center, Beer-Sheva, Israel
| | - Mark Shlapobersky
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Department of Pathology, Barzilai Medical Center, Ashkelon, Israel
| | - Irit Allon
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Department of Pathology, Barzilai Medical Center, Ashkelon, Israel
| | - Yariv Greenshpan
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Baisali Bhattachrya
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ofir Cohen
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | - Alexandra Gayster
- Department of Oncology, Soroka University Medical Center, Beer-Sheva, Israel
| | - Ruthy Shaco-Levy
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Department of Pathology, Soroka University Medical Center, Beer-Sheva, Israel
| | - Keren Rouvinov
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Department of Oncology, Soroka University Medical Center, Beer-Sheva, Israel
| | - Alejandro Livoff
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Department of Pathology, Barzilai Medical Center, Ashkelon, Israel
| | - Moshe Elkabets
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Angel Porgador
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
217
|
Mannucci M, Fontana V, Campanella D, Filiberti RA, Pronzato P, Rosa A. A Descriptive Study of Repeated Hospitalizations and Survival of Patients with Metastatic Melanoma in the Northern Italian Region during 2004-2019. Curr Oncol 2023; 30:5266-5278. [PMID: 37366883 DOI: 10.3390/curroncol30060400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/17/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND Survival rates for metastatic melanoma (MM) patients have improved in recent years, leading to major expenses and health resource use. We conducted a non-concurrent prospective study to describe the burden of hospitalization in a real-world setting for patients with MM. METHODS Patients were tracked throughout all hospital stays in 2004-2019 by means of hospital discharges. The number of hospitalizations, the rehospitalization rate, the average time spent in the hospital and the time span between consecutive admissions were evaluated. Relative survival was also calculated. RESULTS Overall, 1570 patients were identified at the first stay (56.5% in 2004-2011 and 43.7% in 2012-2019). A total of 8583 admissions were retrieved. The overall rehospitalization rate was 1.78 per patient/year (95%CI = 1.68-1.89); it increased significantly with the period of first stay (1.51, 95%CI = 1.40-1.64 in 2004-2011 and 2.11, 95%CI = 1.94-2.29 thereafter). The median time span between hospitalizations was lower for patients hospitalized after 2011 (16 vs. 26 months). An improvement in survival for males was highlighted. CONCLUSIONS The hospitalization rate of patients with MM was higher in the last years of the study. Compared with a shorter length of stay, patients were admitted to hospitals with a higher frequency. Knowledge of the burden of MM is essential for planning the allocation of healthcare resources.
Collapse
Affiliation(s)
- Matilde Mannucci
- Clinical Epidemiology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Vincenzo Fontana
- Clinical Epidemiology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Dalila Campanella
- Clinical Epidemiology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Rosa Angela Filiberti
- Clinical Epidemiology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Paolo Pronzato
- Medical Oncology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Alessandra Rosa
- Clinical Epidemiology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| |
Collapse
|
218
|
Cellini A, Scarmozzino F, Angotzi F, Ruggeri E, Dei Tos AP, Trentin L, Pizzi M, Visentin A. Tackling the dysregulated immune-checkpoints in classical Hodgkin lymphoma: bidirectional regulations between the microenvironment and Hodgkin/Reed-Sternberg cells. Front Oncol 2023; 13:1203470. [PMID: 37293587 PMCID: PMC10244642 DOI: 10.3389/fonc.2023.1203470] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/12/2023] [Indexed: 06/10/2023] Open
Abstract
Immune evasion is considered one of the modern hallmarks of cancer and is a key element in the pathogenesis of classical Hodgkin Lymphoma (cHL). This haematological cancer achieves effective avoidance of the host's immune system by overexpressing the PD-L1 and PD-L2 proteins on the surface of the neoplastic cells. Subversion of the PD-1/PD-L axis, however, is not the sole contributor to immune evasion in cHL, as the microenvironment nurtured by the Hodgkin/Reed-Sternberg cells is a major player in the creation of a biological niche that sustains their survival and hinders immune recognition. In this review, we will discuss the physiology of the PD-1/PD-L axis and how cHL is able to exploit a plethora of different molecular mechanisms to build an immunosuppressive microenvironment and achieve optimal immune evasion. We will then discuss the success obtained by checkpoint inhibitors (CPI) in treating cHL, both as single agents and as part of combination strategies, analysing the rationale for their combination with traditional chemotherapeutic compounds and the proposed mechanisms of resistance to CPI immunotherapy.
Collapse
Affiliation(s)
- Alessandro Cellini
- Hematology and Clinical Immunology Unit, Department of Medicine, University of Padua, Padua, Italy
| | - Federico Scarmozzino
- Surgical Pathology and Cytopathology Unit, Department of Medicine, University of Padua, Padua, Italy
| | - Francesco Angotzi
- Hematology and Clinical Immunology Unit, Department of Medicine, University of Padua, Padua, Italy
| | - Edoardo Ruggeri
- Hematology and Clinical Immunology Unit, Department of Medicine, University of Padua, Padua, Italy
| | - Angelo Paolo Dei Tos
- Surgical Pathology and Cytopathology Unit, Department of Medicine, University of Padua, Padua, Italy
| | - Livio Trentin
- Hematology and Clinical Immunology Unit, Department of Medicine, University of Padua, Padua, Italy
| | - Marco Pizzi
- Surgical Pathology and Cytopathology Unit, Department of Medicine, University of Padua, Padua, Italy
| | - Andrea Visentin
- Hematology and Clinical Immunology Unit, Department of Medicine, University of Padua, Padua, Italy
| |
Collapse
|
219
|
Losurdo G, Angelillo D, Favia N, Sergi MC, Di Leo A, Triggiano G, Tucci M. Checkpoint Inhibitor-Induced Colitis: An Update. Biomedicines 2023; 11:biomedicines11051496. [PMID: 37239166 DOI: 10.3390/biomedicines11051496] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
Immunotherapy with immune checkpoint inhibitors (ICIs) nowadays has indications for several solid tumors. The current targets for ICIs are CTLA-4, PD-1, and PD-L1 receptors. Despite the clinical advantages derived from ICIs, a variety of side effects are linked to overstimulation of the immune system. Among these, ICI-related colitis is one of the most common, with a disabling impact on the patient. Diarrhea, abdominal pain, abdominal distension, cramping, and hematochezia are the most common ICI enterocolitis presenting symptoms. The most frequently used grading system for assessment of the severity of ICI enterocolitis is called the Common Terminology Criteria for Adverse Events (CTCAE) grading. With regard to the histological picture, there is no specific feature; however, microscopic damage can be classified into five types: (1) acute active colitis, (2) chronic active colitis, (3) microscopic colitis-like, (4) graft-versus-host disease-like, and (5) other types. Supportive therapy (oral hydration, a bland diet without lactose or caffeine, and anti-diarrheal agents) is indicated in mild colitis. Symptomatic treatment alone or with loperamide, a low-fiber diet, and spasmolytics are recommended for low-grade diarrhea. In more severe cases, corticosteroid treatment is mandatory. In refractory cases, off-label use of biological therapies (infliximab or vedolizumab) was proposed.
Collapse
Affiliation(s)
- Giuseppe Losurdo
- Section of Gastroenterology, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Daniele Angelillo
- Section of Gastroenterology, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Nicolas Favia
- Section of Gastroenterology, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Maria Chiara Sergi
- Medical Oncology Unit, Azienda Ospedaliero Universitaria Policlinico di Bari, 70124 Bari, Italy
| | - Alfredo Di Leo
- Section of Gastroenterology, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Giacomo Triggiano
- Medical Oncology Unit, Azienda Ospedaliero Universitaria Policlinico di Bari, 70124 Bari, Italy
| | - Marco Tucci
- Medical Oncology Unit, Azienda Ospedaliero Universitaria Policlinico di Bari, 70124 Bari, Italy
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| |
Collapse
|
220
|
Yuile A, Wei JQ, Mohan AA, Hotchkiss KM, Khasraw M. Interdependencies of the Neuronal, Immune and Tumor Microenvironment in Gliomas. Cancers (Basel) 2023; 15:2856. [PMID: 37345193 PMCID: PMC10216320 DOI: 10.3390/cancers15102856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/15/2023] [Accepted: 05/15/2023] [Indexed: 06/23/2023] Open
Abstract
Gliomas are the most common primary brain malignancy and are universally fatal. Despite significant breakthrough in understanding tumor biology, treatment breakthroughs have been limited. There is a growing appreciation that major limitations on effective treatment are related to the unique and highly complex glioma tumor microenvironment (TME). The TME consists of multiple different cell types, broadly categorized into tumoral, immune and non-tumoral, non-immune cells. Each group provides significant influence on the others, generating a pro-tumor dynamic with significant immunosuppression. In addition, glioma cells are highly heterogenous with various molecular distinctions on the cellular level. These variations, in turn, lead to their own unique influence on the TME. To develop future treatments, an understanding of this complex TME interplay is needed. To this end, we describe the TME in adult gliomas through interactions between its various components and through various glioma molecular phenotypes.
Collapse
Affiliation(s)
- Alexander Yuile
- Department of Medical Oncology, Royal North Shore Hospital, Reserve Road, St Leonards, NSW 2065, Australia
- The Brain Cancer Group, North Shore Private Hospital, 3 Westbourne Street, St Leonards, NSW 2065, Australia
- Sydney Medical School, Faculty of Medicine and Health Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Joe Q. Wei
- Department of Medical Oncology, Royal North Shore Hospital, Reserve Road, St Leonards, NSW 2065, Australia
- Sydney Medical School, Faculty of Medicine and Health Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Aditya A. Mohan
- The Preston Robert Tisch Brain Tumor Center, Duke University, Durham, NC 27710, USA
| | - Kelly M. Hotchkiss
- The Preston Robert Tisch Brain Tumor Center, Duke University, Durham, NC 27710, USA
| | - Mustafa Khasraw
- The Preston Robert Tisch Brain Tumor Center, Duke University, Durham, NC 27710, USA
| |
Collapse
|
221
|
Karna R, S Deliwala S, Ramgopal B, Asawa P, Mishra R, P Mohan B, Jayakrishnan T, Grover D, Kalra T, Bhalla J, Saraswati U, K Gangwani M, Dhawan M, G Adler D. Gastrointestinal treatment-related adverse events of combined immune checkpoint inhibitors: a meta-analysis. Immunotherapy 2023. [PMID: 37190949 DOI: 10.2217/imt-2023-0001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
Introduction: Combined immune checkpoint inhibitors can cause gastrointestinal adverse events. Methods: We performed a meta-analysis of pooled colonic, hepatic and pancreatic treatment-related adverse events of combined ICI. Results: 53 trials reporting treatment-related adverse events in 6581 patients. All grade diarrhea was the most common adverse event seen in 25.4% patients, followed by all grade hepatitis in nearly 13% patients and pancreatitis in nearly 7.5% patients. Conclusion: Our study provides pooled data of treatment-related adverse events from different combination immune checkpoint inhibitors use in solid tumors and demonstrates a high incidence of all grades and ≥3 grade gastrointestinal adverse events. Further studies are required to characterize these adverse events and assess their overall impact on treatment course and outcomes.
Collapse
Affiliation(s)
- Rahul Karna
- Internal Medicine, Allegheny Health Network, Pittsburgh, PA, USA
| | - Smit S Deliwala
- Division of Digestive Diseases, Emory University School of Medicine, Atlanta, GA, USA
| | - Balasubramanian Ramgopal
- Foundation Fellowship Doctor, University Hospital, Southampton NHS Foundation Trust, Southampton, Hampshire, UK
| | - Palash Asawa
- Internal Medicine, Allegheny Health Network, Pittsburgh, PA, USA
| | - Rahul Mishra
- Postdoctoral research fellow, Cleveland Clinic, OH, USA
| | - Babu P Mohan
- Gastroenterology & Hepatology, University of Utah Health School of Medicine, Salt Lake City, UT, USA
| | | | - Dheera Grover
- Internal Medicine, University of Connecticut, Hartford, CT, USA
| | - Tanisha Kalra
- Internal Medicine, SUNY Downstate Health Science University, NY, USA
| | | | | | - Manesh K Gangwani
- Internal Medicine, University of Toledo Medical Center, Toledo, OH, USA
| | - Manish Dhawan
- Gastroenterology & Hepatology, Allegheny Health Network, Pittsburgh, PA, USA
| | - Douglas G Adler
- Center for Advanced Therapeutic Endoscopy, Centura Health, Denver, CO, USA
| |
Collapse
|
222
|
Song SH, Ghosh T, You DG, Joo H, Lee J, Lee J, Kim CH, Jeon J, Shin S, Park JH. Functionally Masked Antibody to Uncouple Immune-Related Toxicities in Checkpoint Blockade Cancer Therapy. ACS NANO 2023. [PMID: 37184643 DOI: 10.1021/acsnano.2c12532] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Of the existing immunotherapy drugs in oncology, monoclonal antibodies targeting the immune checkpoint axis are preferred because of the durable responses observed in selected patients. However, the associated immune-related adverse events (irAEs), causing uncommon fatal events, often require specialized management and medication discontinuation. The study aim was to investigate our hypothesis that masking checkpoint antibodies with tumor microenvironment (TME)-responsive polymer chains can mitigate irAEs and selectively target tumors by limiting systemic exposure to patients. We devised a broadly applicable strategy that functionalizes immune checkpoint-blocking antibodies with a mildly acidic pH-cleavable poly(ethylene glycol) (PEG) shell to prevent inflammatory side effects in normal tissues. Conjugation of pH-sensitive PEG to anti-CD47 antibodies (αCD47) minimized antibody-cell interactions by inhibiting their binding ability and functionality at physiological pH, leading to prevention of αCD47-induced anemia in tumor-bearing mice. When conjugated to anti-CTLA-4 and anti-PD-1 antibodies, double checkpoint blockade-induced colitis was also ameliorated. Notably, removal of the protective shell in response to an acidic TME restored the checkpoint antibody activities, accompanied by effective tumor regression and long-term survival in the mouse model. Our results support a feasible strategy for antibody-based therapies to uncouple toxicity from efficacy and show the translational potential for cancer immunotherapy.
Collapse
Affiliation(s)
- Seok Ho Song
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Torsha Ghosh
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Dong Gil You
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hyeyeon Joo
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jeongjin Lee
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Republic of Korea
| | - Jaeah Lee
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Chan Ho Kim
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jueun Jeon
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sol Shin
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Republic of Korea
| | - Jae Hyung Park
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
223
|
Carlson E, Savardekar H, Hu X, Lapurga G, Johnson C, Sun SH, Carson WE, Peterson BR. Fluorescent Detection of Peroxynitrite Produced by Myeloid-Derived Suppressor Cells in Cancer and Inhibition by Dasatinib. ACS Pharmacol Transl Sci 2023; 6:738-747. [PMID: 37200815 PMCID: PMC10186365 DOI: 10.1021/acsptsci.3c00014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Indexed: 05/20/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) are immature myeloid cells that expand dramatically in many cancer patients. This expansion contributes to immunosuppression in cancer and reduces the efficacy of immune-based cancer therapies. One mechanism of immunosuppression mediated by MDSCs involves production of the reactive nitrogen species peroxynitrite (PNT), where this strong oxidant inactivates immune effector cells through destructive nitration of tyrosine residues in immune signal transduction pathways. As an alternative to analysis of nitrotyrosines indirectly generated by PNT, we used an endoplasmic reticulum (ER)-targeted fluorescent sensor termed PS3 that allows direct detection of PNT produced by MDSCs. When the MDSC-like cell line MSC2 and primary MDSCs from mice and humans were treated with PS3 and antibody-opsonized TentaGel microspheres, phagocytosis of these beads led to production of PNT and generation of a highly fluorescent product. Using this method, we show that splenocytes from a EMT6 mouse model of cancer, but not normal control mice, produce high levels of PNT due to elevated numbers of granulocytic (PMN) MDSCs. Similarly, peripheral blood mononuclear cells (PBMCs) isolated from blood of human melanoma patients produced substantially higher levels of PNT than healthy human volunteers, coincident with higher peripheral MDSC levels. The kinase inhibitor dasatinib was found to potently block the production of PNT both by inhibiting phagocytosis in vitro and by reducing the number of granulocytic MDSCs in mice in vivo, providing a chemical tool to modulate the production of this reactive nitrogen species (RNS) in the tumor microenvironment.
Collapse
Affiliation(s)
- Erick
J. Carlson
- Division
of Medicinal Chemistry and Pharmacognosy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Himanshu Savardekar
- Division
of Surgical Oncology, Department of Surgery, The Ohio State University, Columbus, Ohio 43210, United States
| | - Xiaojun Hu
- Division
of Medicinal Chemistry and Pharmacognosy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Gabriella Lapurga
- Division
of Surgical Oncology, Department of Surgery, The Ohio State University, Columbus, Ohio 43210, United States
| | - Courtney Johnson
- Division
of Surgical Oncology, Department of Surgery, The Ohio State University, Columbus, Ohio 43210, United States
| | - Steven H. Sun
- Division
of Surgical Oncology, Department of Surgery, The Ohio State University, Columbus, Ohio 43210, United States
| | - William E. Carson
- Division
of Surgical Oncology, Department of Surgery, The Ohio State University, Columbus, Ohio 43210, United States
| | - Blake R. Peterson
- Division
of Medicinal Chemistry and Pharmacognosy, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
224
|
Galati D, Zanotta S, Capone M, Madonna G, Mallardo D, Romanelli M, Simeone E, Festino L, Sparano F, Azzaro R, De Filippi R, Pinto A, Paulos CM, Ascierto PA. Potential clinical implications of CD4 +CD26 high T cells for nivolumab treated melanoma patients. J Transl Med 2023; 21:318. [PMID: 37170241 PMCID: PMC10176780 DOI: 10.1186/s12967-023-04184-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND Nivolumab is an anti-PD1 antibody that has dramatically improved metastatic melanoma patients' outcomes. Nevertheless, many patients are resistant to PD-1 inhibition, occasionally experiencing severe off-target immune toxicity. In addition, no robust and reproducible biomarkers have yet been validated to identify the correct selection of patients who will benefit from anti-PD-1 treatment avoiding unwanted side effects. However, the strength of CD26 expression on CD4+ T lymphocytes permits the characterization of three subtypes with variable degrees of responsiveness to tumors, suggesting that the presence of CD26-expressing T cells in patients might be a marker of responsiveness to PD-1-based therapies. METHODS The frequency distribution of peripheral blood CD26-expressing cells was investigated employing multi-parametric flow cytometry in 69 metastatic melanoma patients along with clinical characteristics and blood count parameters at baseline (W0) and compared to 20 age- and sex-matched healthy controls. Percentages of baseline CD4+CD26high T cells were correlated with the outcome after nivolumab treatment. In addition, the frequency of CD4+CD26high T cells at W0 was compared with those obtained after 12 weeks (W1) of therapy in a sub-cohort of 33 patients. RESULTS Circulating CD4+CD26high T cells were significantly reduced in melanoma patients compared to healthy subjects (p = 0.001). In addition, a significant association was observed between a low baseline percentage of CD4+CD26high T cells (< 7.3%) and clinical outcomes, measured as overall survival (p = 0.010) and progression-free survival (p = 0.014). Moreover, patients with clinical benefit from nivolumab therapy had significantly higher frequencies of circulating CD4+CD26high T cells than patients with non-clinical benefit (p = 0.004) at 12 months. Also, a higher pre-treatment proportion of circulating CD4+CD26high T cells was correlated with Disease Control Rate (p = 0.014) and best Overall Response Rate (p = 0.009) at 12 months. Interestingly, after 12 weeks (W1) of nivolumab treatment, percentages of CD4+CD26high T cells were significantly higher in comparison with the frequencies measured at W0 (p < 0.0001), aligning the cell counts with the ranges seen in the blood of healthy subjects. CONCLUSIONS Our study firstly demonstrates that peripheral blood circulating CD4+CD26high T lymphocytes represent potential biomarkers whose perturbations are associated with reduced survival and worse clinical outcomes in melanoma patients.
Collapse
Affiliation(s)
- Domenico Galati
- Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale”, Naples, Italy
- Hematology-Oncology and Stem Cell Transplantation Unit, Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale”, Naples, Italy
| | - Serena Zanotta
- Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale”, Naples, Italy
- Hematology-Oncology and Stem Cell Transplantation Unit, Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale”, Naples, Italy
| | - Mariaelena Capone
- Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale”, Naples, Italy
- Melanoma Cancer Immunotherapy and Innovative Therapy Unit, Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale”, Naples, Italy
| | - Gabriele Madonna
- Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale”, Naples, Italy
- Melanoma Cancer Immunotherapy and Innovative Therapy Unit, Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale”, Naples, Italy
| | - Domenico Mallardo
- Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale”, Naples, Italy
- Melanoma Cancer Immunotherapy and Innovative Therapy Unit, Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale”, Naples, Italy
| | - Marilena Romanelli
- Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale”, Naples, Italy
- Melanoma Cancer Immunotherapy and Innovative Therapy Unit, Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale”, Naples, Italy
| | - Ester Simeone
- Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale”, Naples, Italy
- Melanoma Cancer Immunotherapy and Innovative Therapy Unit, Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale”, Naples, Italy
| | - Lucia Festino
- Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale”, Naples, Italy
- Melanoma Cancer Immunotherapy and Innovative Therapy Unit, Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale”, Naples, Italy
| | - Francesca Sparano
- Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale”, Naples, Italy
- Melanoma Cancer Immunotherapy and Innovative Therapy Unit, Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale”, Naples, Italy
| | - Rosa Azzaro
- Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale”, Naples, Italy
| | - Rosaria De Filippi
- Dipartimento di Medicina Clinica e Chirurgia, Università Degli Studi Federico II, Naples, Italy
| | - Antonio Pinto
- Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale”, Naples, Italy
- Hematology-Oncology and Stem Cell Transplantation Unit, Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale”, Naples, Italy
| | - Chrystal M. Paulos
- Division of Surgical Oncology, Department of Surgery, Emory University, Atlanta, GA USA
- Department of Microbiology and Immunology, Winship Cancer Institute, Emory University, Atlanta, GA USA
| | - Paolo A. Ascierto
- Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale”, Naples, Italy
- Melanoma Cancer Immunotherapy and Innovative Therapy Unit, Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale”, Naples, Italy
| |
Collapse
|
225
|
Carter JA, Matta B, Battaglia J, Somerville C, Harris BD, LaPan M, Atwal GS, Barnes BJ. Identification of pan-cancer/testis genes and validation of therapeutic targeting in triple-negative breast cancer: Lin28a- and Siglece-based vaccination induces anti-tumor immunity and inhibits metastasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.09.539617. [PMID: 37214884 PMCID: PMC10197572 DOI: 10.1101/2023.05.09.539617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Background Cancer-testis (CT) genes are targets for tumor antigen-specific immunotherapy given that their expression is normally restricted to the immune-privileged testis in healthy individuals with aberrant expression in tumor tissues. While they represent targetable germ-tissue antigens and play important functional roles in tumorigenesis, there is currently no standardized approach for identifying clinically relevant CT genes. Optimized algorithms and validated methods for accurate prediction of reliable CT antigens with high immunogenicity are also lacking. Methods Sequencing data from the Genotype-Tissue Expression (GTEx) and The Genomic Data Commons (GDC) databases was utilized for the development of a bioinformatic pipeline to identify CT exclusive genes. A CT germness score was calculated based on the number of CT genes expressed within a tumor type and their degree of expression. The impact of tumor germness with clinical outcome was evaluated using healthy GTEx and GDC tumor samples. We then used a triple-negative breast cancer mouse model to develop and test an algorithm that predicts epitope immunogenicity based on the identification of germline sequences with strong MHCI and MHCII binding affinities. Germline sequences for CT genes were synthesized as long synthetic peptide vaccines and tested in the 4T1 triple-negative model of invasive breast cancer with Poly(I:C) adjuvant. Vaccine immunogenicity was determined by flow cytometric analysis of in vitro and in vivo T cell responses. Primary tumor growth and lung metastasis was evaluated by histopathology, flow cytometry and colony formation assay. Results We developed a new bioinformatic pipeline to reliably identify CT exclusive genes as immunogenic targets for immunotherapy. We identified CT genes that are exclusively expressed within the testis, lack detectable thymic expression, and are significantly expressed in multiple tumor types. High tumor germness correlated with tumor progression but not with tumor mutation burden, supporting CT antigens as appealing targets in low mutation burden tumors. Importantly, tumor germness also correlated with markers of anti-tumor immunity. Vaccination of 4T1 tumor bearing mice with Siglece and Lin28a antigens resulted in increased T cell anti-tumor immunity and reduced primary tumor growth and lung metastases. Conclusion Our results present a novel strategy for the identification of highly immunogenic CT antigens for the development of targeted vaccines that induce anti-tumor immunity and inhibit metastasis.
Collapse
|
226
|
Gilbert D, Hu J, Medina T, Kessler ER, Lam ET. Safety of COVID-19 vaccines in subjects with solid tumor cancers receiving immune checkpoint inhibitors. Hum Vaccin Immunother 2023:2207438. [PMID: 37157982 PMCID: PMC10294768 DOI: 10.1080/21645515.2023.2207438] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
The incidence of severe immune-related adverse events (irAEs) in cancer subjects receiving immune checkpoint inhibitors (ICIs) following COVID-19 vaccination and the relationship between the incidence of severe irAE and the interval between COVID-19 vaccination and ICI dose have not been established. We performed a retrospective study evaluating the incidence of irAEs in solid tumor subjects receiving ICI therapy who received any COVID-19 vaccinations since FDA authorization. irAEs were defined as severe with one or more grade 3 or above events (CTCAE v5.0), multiple organ involvement, or requiring hospitalization for management. Two hundred and eighty-four subjects who received COVID vaccinations from December 2020 and February 2022 were included in this analysis [median age at vaccination 67 years (IQR 59.0-75.0); 67.3% male]. Twenty-nine subjects (10.2%) developed severe irAEs, of which 12 subjects (41.4%) received ICI monotherapy, 10 subjects (34.5%) received combination ICI therapy with nivolumab and ipilimumab, and 7 subjects (24.1%) received ICI plus VEGFR-TKI therapy. Hospitalization occurred in 62% of subjects with severe irAEs, with a median duration of 3 days (IQR: 3.0-7.5 days). Immunosuppressive therapy was required in 79.3%, with a median duration of 103 days (IQR: 42.0-179.0). ICI therapy was discontinued in 51.7% of subjects with severe irAE; dosing was held or interrupted in 34.5%. Among severe irAEs, the median interval between vaccination and ICI treatment closest to the occurrence of severe irAE was 15.5 days (IQR: 10.0-23.0). In solid tumor cancer subjects receiving ICIs, COVID-19 vaccination is not associated with an increased incidence of severe irAEs compared to historical data and may be safely administered during ICI cancer therapy in subjects who lack contraindications.
Collapse
Affiliation(s)
- Danielle Gilbert
- Department of Internal Medicine, Division of Medical Oncology, University of Colorado Cancer Center, University of Anschutz Medical Campus, Aurora, CO, USA
| | - Junxiao Hu
- Department of Biostatistics, University of Colorado Cancer Center Biostatistics Core, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Theresa Medina
- Department of Internal Medicine, Division of Medical Oncology, University of Colorado Cancer Center, University of Anschutz Medical Campus, Aurora, CO, USA
| | - Elizabeth R Kessler
- Department of Internal Medicine, Division of Medical Oncology, University of Colorado Cancer Center, University of Anschutz Medical Campus, Aurora, CO, USA
| | - Elaine T Lam
- Department of Internal Medicine, Division of Medical Oncology, University of Colorado Cancer Center, University of Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
227
|
Zhao Y, Ma Y, Zang A, Cheng Y, Zhang Y, Wang X, Chen Z, Qu S, He J, Chen C, Jin C, Zhu D, Li Q, Liu X, Su W, Ba Y, Hao Y, Chen J, Zhang G, Qu S, Li Y, Feng W, Yang M, Liu B, Ouyang W, Liang J, Yu Z, Kang X, Xue S, Yang G, Yan W, Yang Y, Liu Z, Peng Y, Fanslow B, Huang X, Zhang L, Zhao H. First-in-human phase I/Ib study of QL1706 (PSB205), a bifunctional PD1/CTLA4 dual blocker, in patients with advanced solid tumors. J Hematol Oncol 2023; 16:50. [PMID: 37158938 PMCID: PMC10169367 DOI: 10.1186/s13045-023-01445-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 04/26/2023] [Indexed: 05/10/2023] Open
Abstract
BACKGROUND QL1706 (PSB205) is a single bifunctional MabPair (a novel technical platform) product consisting of two engineered monoclonal antibodies (anti-PD-1 IgG4 and anti-CTLA-4 IgG1), with a shorter elimination half-life (t1/2) for CTLA-4. We report results from a phase I/Ib study of QL1706 in patients with advanced solid tumors who failed standard therapies. METHODS In the phase I study, QL1706 was administered intravenously once every 3 weeks at one of five doses ranging from 0.3 to 10 mg/kg, and the maximum tolerated dose, recommended phase 2 dose (RP2D), safety, pharmacokinetics (PK), and pharmacodynamics (PD) of QL1706 were investigated. In the phase Ib study, QL1706 was administered at the RP2D intravenously every 3 weeks, and the preliminary efficacies in non-small cell lung cancer (NSCLC), nasopharyngeal carcinoma (NPC), cervical cancer (CC), and other solid tumors were evaluated. RESULTS Between March 2020 and July 2021, 518 patients with advanced solid tumors were enrolled (phase I, n = 99; phase Ib, n = 419). For all patients, the three most common treatment-related adverse events (TRAEs) were rash (19.7%), hypothyroidism (13.5%), and pruritus (13.3%). The TRAEs and immune-related adverse events (irAEs) of grade ≥ 3 occurred in 16.0% and 8.1% of patients, respectively. In phase I, 2 of 6 patients in the 10mg/kg group experienced dose-limiting toxicities (DLTs) (grade 3 thrombocytopenia and grade 4 immune-mediated nephritis), so the maximum tolerated dose (MTD) was reached at 10 mg/kg. The RP2D was determined to be 5 mg/kg based on comprehensive analysis of tolerability, PK/PD, and efficacy. For all patients who received QL1706 at the RP2D, the objective response rate (ORR) and median duration of response were 16.9% (79/468) and 11.7 months (8.3-not reached [NR]), respectively; and the ORRs were 14.0% (17/121) in NSCLC, 24.5% (27/110) in NPC, 27.3% (15/55) in CC, 7.4% (2/27) in colorectal cancer, 23.1% (6/26) in small cell lung cancer. For immunotherapy-naive patients, QL1706 exhibited promising antitumor activities, especially in NSCLC, NPC, and CC, with ORRs of 24.2%, 38.7%, and 28.3%, respectively. CONCLUSIONS QL1706 was well tolerated and demonstrated promising antitumor activity in solid tumors, especially in NSCLC, NPC, and CC patients. It is currently being evaluated in randomized phase II (NCT05576272, NCT05179317) and phase III (NCT05446883, NCT05487391) trials. Trial Registration ClinicalTrials.gov Identifier: NCT04296994 and NCT05171790.
Collapse
Affiliation(s)
- Yuanyuan Zhao
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, No. 651 Dongfeng East Road, Guangzhou, 510060, China
| | - Yuxiang Ma
- Department of Clinical Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, No. 651 Dongfeng East Road, Guangzhou, 510060, China
| | - Aimin Zang
- Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding, 071000, China
| | - Ying Cheng
- Department of Thoracic Oncology, Jilin Cancer Hospital, Changchun, 130012, China
| | - Yiping Zhang
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Xiangcai Wang
- Department of Oncology, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341001, China
| | - Zhendong Chen
- Department of Medical Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230093, China
| | - Song Qu
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Cancer Institute of Guangxi, Nanning, 530021, Guangxi, China
| | - Jianbo He
- Department of Medical Oncology of Respiratory, Guangxi Medical University Cancer Hospital, Cancer Institute of Guangxi, Nanning, 530021, Guangxi, China
| | - Chuanben Chen
- Department of Head and Neck Radiation Oncology, Fujian Cancer Hospital, Fuzhou, 350000, China
| | - Chuan Jin
- Department of Medical Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, 510095, China
| | - Dongyuan Zhu
- Rare Tumors Department, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Qingshan Li
- Department of Oncology, Affiliated Hospital of Chengde Medical University, Chengde, 067000, China
| | - Xianling Liu
- Department of Oncology, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Wuyun Su
- Department of Medical Oncology, Affiliated Hospital of Inner Mongolia Medical University, Huhhot, 010050, Inner Mongolia, China
| | - Yi Ba
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Yanrong Hao
- Department of Oncology, Clinical Oncology Center, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, 530021, China
| | - Junmin Chen
- Department of Medical Oncology, Hainan General Hospital, Haikou, 570100, China
| | - Guoping Zhang
- Department of Medical Oncology, Yuebei People's Hospital, Shaoguan, 512025, China
| | - Shenhong Qu
- Department of Otolaryngology & Head and Neck, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, 530021, China
| | - Yong Li
- Department of Medical Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, 330000, China
| | - Weineng Feng
- Department of Head and Neck/Thoracic Medical Oncology, The First People's Hospital of Foshan, Foshan City, 528010, China
| | - Mengxiang Yang
- Oncology Department, Liaocheng People's Hospital, Liaocheng, 252004, China
| | - Baorui Liu
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, 210008, China
| | - Weiwei Ouyang
- Department of Oncology, The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, 550001, China
| | - Jin Liang
- Department of Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Zhuang Yu
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Xiaoyan Kang
- Clinical Research Center, Qilu Pharmaceutical Co., Ltd., Jinan, 250000, China
| | - Shilin Xue
- Clinical Research Center, Qilu Pharmaceutical Co., Ltd., Jinan, 250000, China
| | - Guihong Yang
- Department of Clinical Pharmacology, Qilu Pharmaceutical Co., Ltd., Jinan, 250000, China
| | - Wei Yan
- Sound Biologics, 21720 23rd Drive SE, Suite200, Bothell, WA, 98021, USA
| | - Yingying Yang
- Department of Non-Clinical, Qilu Pharmaceutical Co., Ltd., Jinan, 250001, China
| | - Zhi Liu
- Sound Biologics, 21720 23rd Drive SE, Suite200, Bothell, WA, 98021, USA
| | - Yufeng Peng
- Sound Biologics, 21720 23rd Drive SE, Suite200, Bothell, WA, 98021, USA
| | - Bill Fanslow
- Sound Biologics, 21720 23rd Drive SE, Suite200, Bothell, WA, 98021, USA
| | - Xian Huang
- Sound Biologics, 21720 23rd Drive SE, Suite200, Bothell, WA, 98021, USA
| | - Li Zhang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, No. 651 Dongfeng East Road, Guangzhou, 510060, China.
| | - Hongyun Zhao
- Department of Clinical Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, No. 651 Dongfeng East Road, Guangzhou, 510060, China.
| |
Collapse
|
228
|
Lucas MW, Versluis JM, Rozeman EA, Blank CU. Personalizing neoadjuvant immune-checkpoint inhibition in patients with melanoma. Nat Rev Clin Oncol 2023; 20:408-422. [PMID: 37147419 DOI: 10.1038/s41571-023-00760-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2023] [Indexed: 05/07/2023]
Abstract
Neoadjuvant immune-checkpoint inhibition is a promising emerging treatment approach for patients with surgically resectable macroscopic stage III melanoma. The neoadjuvant setting provides an ideal platform for personalized therapy owing to the very homogeneous nature of the patient population and the opportunity for pathological response assessments within several weeks of starting treatment, thereby facilitating the efficient identification of novel biomarkers. A pathological response to immune-checkpoint inhibitors has been shown to be a strong surrogate marker of both recurrence-free survival and overall survival, enabling timely analyses of the efficacy of novel therapies in patients with early stage disease. Patients with a major pathological response (defined as the presence of ≤10% viable tumour cells) have a very low risk of recurrence, which offers an opportunity to adjust the extent of surgery and any subsequent adjuvant therapy and follow-up monitoring. Conversely, patients who have only a partial pathological response or who do not respond to neoadjuvant therapy still might benefit from therapy escalation and/or class switch during adjuvant therapy. In this Review, we outline the concept of a fully personalized neoadjuvant treatment approach exemplified by the current developments in neoadjuvant therapy for patients with resectable melanoma, which could provide a template for the development of similar approaches for patients with other immune-responsive cancers in the near future.
Collapse
Affiliation(s)
- Minke W Lucas
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Judith M Versluis
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Elisa A Rozeman
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Christian U Blank
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, Netherlands.
- Department of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, Netherlands.
- Department of Internal Medicine, Leiden University Medical Center, Leiden, Netherlands.
| |
Collapse
|
229
|
Jamal R, Messaoudene M, de Figuieredo M, Routy B. Future indications and clinical management for fecal microbiota transplantation (FMT) in immuno-oncology. Semin Immunol 2023; 67:101754. [PMID: 37003055 DOI: 10.1016/j.smim.2023.101754] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/26/2023] [Accepted: 02/26/2023] [Indexed: 04/01/2023]
Abstract
The gut microbiota has rapidly emerged as one of the "hallmarks of cancers" and a key contributor to cancer immunotherapy. Metagenomics profiling has established the link between microbiota compositions and immune checkpoint inhibitors response and toxicity, while murine experiments demonstrating the synergistic benefits of microbiota modification with immune checkpoint inhibitors (ICIs) pave a clear path for translation. Fecal microbiota transplantation (FMT) is one of the most effective treatments for patients with Clostridioides difficile, but its utility in other disease contexts has been limited. Nonetheless, promising data from the first trials combining FMT with ICIs have provided strong clinical rationale to pursue this strategy as a novel therapeutic avenue. In addition to the safety considerations surrounding new and emerging pathogens potentially transmissible by FMT, several other challenges must be overcome in order to validate the use of FMT as a therapeutic option in oncology. In this review, we will explore how the lessons learned from FMT in other specialties will help shape the design and development of FMT in the immuno-oncology arena.
Collapse
|
230
|
Koseła-Paterczyk H, Rutkowski P. Nivolumab + relatlimab for the treatment of unresectable or metastatic melanoma. Expert Opin Biol Ther 2023; 23:383-388. [PMID: 37200112 DOI: 10.1080/14712598.2023.2215922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 05/11/2023] [Accepted: 05/16/2023] [Indexed: 05/20/2023]
Abstract
INTRODUCTION Though melanoma is one of the less common skin malignancies, it accounts for the majority of deaths due to cutaneous cancers. The recent progress and drug approvals in targeted treatment and immunotherapy revolutionized the outcome of patients with metastatic disease, and now is also changing the landscape of adjuvant treatment in melanoma. AREA COVERED A combination of anti-PD-1 and anti-CTLA-4 (nivolumab with ipilimumab) has demonstrated superior outcomes in terms of progression-free survival (PFS) and overall survival with recent data confirming median survival exceeding six years. However, the use of this immunotherapy combination is limited in routine practice to approximately half of the patients due to high toxicity with the majority of patients at risk of severe adverse events. The current efforts are to determine how best to integrate combination immunotherapy in different clinical scenarios and limit these drugs' toxicity. That is why novel strategies in immunotherapy are needed and one of the examples of such novelty are anti-LAG-3 antibodies (lymphocyte-activation gene 3). LAG-3 inhibitor (relatlimab) in combination with nivolumab significantly improved PFS as compared to anti-PD-1 monotherapy in patients with previously untreated metastatic or unresectable melanoma. We describe the current status of combination of nivolumab+ relatlimab in the treatment of advanced melanoma patients based on the available data coming from pivotal clinical trials. EXPERT OPINION The most important question to be answered is what would be the place of this novel combination in the treatment planning strategy.
Collapse
MESH Headings
- Humans
- Nivolumab/adverse effects
- Nivolumab/pharmacokinetics
- Nivolumab/therapeutic use
- Antibodies, Monoclonal, Humanized/adverse effects
- Antibodies, Monoclonal, Humanized/pharmacokinetics
- Antibodies, Monoclonal, Humanized/therapeutic use
- Melanoma/drug therapy
- Antineoplastic Agents, Immunological/adverse effects
- Antineoplastic Agents, Immunological/pharmacokinetics
- Antineoplastic Agents, Immunological/therapeutic use
- Randomized Controlled Trials as Topic
- Product Surveillance, Postmarketing
Collapse
Affiliation(s)
- Hanna Koseła-Paterczyk
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Piotr Rutkowski
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| |
Collapse
|
231
|
Eljilany I, Noor A, Paravathaneni M, Yassine I, Lee SJ, Othus M, Moon J, Kirkwood JM, Sondak VK, Ribas A, Grossmann KF, Tarhini AA. Granulomatous and Sarcoid-like Immune-Related Adverse Events following CTLA4 and PD1 Blockade Adjuvant Therapy of Melanoma: A Combined Analysis of ECOG-ACRIN E1609 and SWOG S1404 Phase III Trials and a Literature Review. Cancers (Basel) 2023; 15:2561. [PMID: 37174027 PMCID: PMC10177189 DOI: 10.3390/cancers15092561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Treatment with immune checkpoint inhibitors (ICIs) has been linked to granulomatous and sarcoid-like lesions (GSLs) affecting different organs. This study sought to evaluate GSL incidence in patients with high-risk melanoma treated with cytotoxic T-lymphocyte antigen 4 (CTLA4) or programmed cell death 1 (PD1) blockade adjuvant therapy in two clinical trials: ECOG-ACRIN E1609 and SWOG S1404. Descriptions and GSL severity ratings were recorded. METHODS Data were collected from ECOG-ACRIN E1609 and SWOG S1404. Descriptive statistics along with GSL severity grades were reported. Additionally, a literature review for such cases was summarized. RESULTS A total of 11 GSL cases were reported among 2878 patients treated with either ICI or with High-Dose Interferon Alfa-2b (HDI) in ECOG-ACRIN E1609 and SWOG S1404 trials. Cases were numerically more commonly reported with ipi10, followed by pembrolizumab, ipi3, and HDI, respectively. Most of the cases were grade III. Further, organs involved included lung, mediastinal lymph nodes, skin and subcutaneous tissue, and eye. Furthermore, a summary of 62 reports in the literature was described. CONCLUSIONS GSLs following anti-CTLA4 and anti-PD1 antibody therapy in patients with melanoma were reported unusually. Reported cases ranged in grade from I to III and appeared manageable. Careful attention to these events and their reporting will be essential to better guide practice and management guidelines.
Collapse
Affiliation(s)
- Islam Eljilany
- Houston Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Arish Noor
- Houston Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | | | - Ibrahim Yassine
- Houston Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
- Department of Psychology, College of Life Sciences, University of California, Los Angeles, CA 90095, USA
| | - Sandra J. Lee
- Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Megan Othus
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - James Moon
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - John M. Kirkwood
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Vernon K. Sondak
- Houston Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Antoni Ribas
- Department of Psychology, College of Life Sciences, University of California, Los Angeles, CA 90095, USA
| | | | - Ahmad A. Tarhini
- Houston Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| |
Collapse
|
232
|
Yang TT, Yu S, Ke CLK, Cheng ST. The Genomic Landscape of Melanoma and Its Therapeutic Implications. Genes (Basel) 2023; 14:genes14051021. [PMID: 37239381 DOI: 10.3390/genes14051021] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/25/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Melanoma is one of the most aggressive malignancies of the skin. The genetic composition of melanoma is complex and varies among different subtypes. With the aid of recent technologies such as next generation sequencing and single-cell sequencing, our understanding of the genomic landscape of melanoma and its tumor microenvironment has become increasingly clear. These advances may provide explanation to the heterogenic treatment outcomes of melanoma patients under current therapeutic guidelines and provide further insights to the development of potential new therapeutic targets. Here, we provide a comprehensive review on the genetics related to melanoma tumorigenesis, metastasis, and prognosis. We also review the genetics affecting the melanoma tumor microenvironment and its relation to tumor progression and treatment.
Collapse
Affiliation(s)
- Ting-Ting Yang
- Department of Dermatology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Dermatology, Pingtung Hospital, Ministry of Health and Welfare, Pingtung 900, Taiwan
| | - Sebastian Yu
- Department of Dermatology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Dermatology, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Neuroscience Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chiao-Li Khale Ke
- Department of Psychiatry, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Department of Psychiatry, Kaohsiung Municipal SiaoGang Hospital, Kaohsiung Medical University, Kaohsiung 812, Taiwan
| | - Shih-Tsung Cheng
- Department of Dermatology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Dermatology, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
233
|
Meacci E, Nachira D, Congedo MT, Ibrahim M, Pariscenti G, Petrella F, Casiraghi M, De Stefani A, Del Regno L, Peris K, Triumbari EKA, Schinzari G, Rossi E, Petracca-Ciavarella L, Vita ML, Chiappetta M, Siciliani A, Peritore V, Manitto M, Morelli L, Zanfrini E, Tabacco D, Calabrese G, Bardoni C, Evangelista J, Spaggiari L, Margaritora S. Surgical Resection of Pulmonary Metastases from Melanoma in Oligometastatic Patients: Results from a Multicentric Study in the Era of Immunoncology and Targeted Therapy. Cancers (Basel) 2023; 15:cancers15092462. [PMID: 37173927 PMCID: PMC10177250 DOI: 10.3390/cancers15092462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/06/2023] [Accepted: 04/12/2023] [Indexed: 05/15/2023] Open
Abstract
In the last decade, the emergence of effective systemic therapies (ESTs) in the form of both targeted and immuno-based therapies has revolutionized the treatment of patients with advanced stage III and stage IV melanoma. Even though lungs represent the most frequent site of melanoma metastases, only limited data are available on the role of surgery in isolated pulmonary metastases from malignant melanoma (PmMM) in the era of ESTs. The aim of this study is to describe the outcomes of patients who underwent metastasectomy of PmMM in the era of ESTs, in order to identify prognostic factors affecting survival and to provide a framework for more informed patient selection of treatmeant with lung surgery in the future. Clinical data of 183 patients who underwent metastasectomy of PmMM between June 2008 and June 2021 were collected among four Italian Thoracic Centers. The main clinical, surgical and oncological variables reviewed were: sex, comorbidities, previous oncological history, melanoma histotypes and primary site, date of primary cancer surgical treatment, melanoma growth phase, Breslow thickness, mutation pattern disease, stage at diagnosis, metastatic sites, DFI (Disease Free Interval), characteristics of lung metastases (number, side, dimension, type of resection), adjuvant therapy after lung metastasectomy, site of recurrence, disease-free survival (DFS) and cancer-specific survival (CSS; defined as the time interval between the first melanoma resection or lung metastasectomy and death from cancer). All patients underwent surgical resection of the primary melanoma before lung metastasectomy. Twenty-six (14.2%) patients already had a synchronous lung metastasis at the time of primary melanoma diagnosis. A wedge resection was performed in 95.6% of cases to radically remove the pulmonary localizations, while an anatomical resection was necessary in the remaining cases. The incidence of major post-operative complications was null, while only 21 patients (11.5%) developed minor complications (mainly air leakage followed by atrial fibrillation). The mean in-hospital stay was 4.46 ± 2.8 days. Thirty- and sixty-day mortality were null. After lung surgery, 89.6% of the population underwent adjuvant treatments (47.0% immunotherapy, 42.6% targeted therapy). During a mean FUP of 107.2 ± 82.3 months, 69 (37.7%) patients died from melanoma disease, 11 (6.0%) from other causes. Seventy-three patients (39.9%) developed a recurrence of disease. Twenty-four (13.1%) patients developed extrapulmonary metastases after pulmonary metastasectomy. The CSS from melanoma resection was: 85% at 5 years, 71% at 10 years, 54% at 15 years, 42% at 20 years and 2% at 25 years. The 5- and 10-year CSS from lung metastasectomy were 71% and 26%, respectively. Prognostic factors negatively affecting CSS from lung metastasectomy at multivariable analysis were: melanoma vertical growth (p = 0.018), previous metastatic sites other than lung (p < 0.001) and DFI < 24 months (p = 0.007). Our results support the evidence that surgical indication confirms its important role in stage IV melanoma with resectable pulmonary metastases, and selected patients can still benefit from pulmonary metastasectomy in terms of overall cancer specific survival. Furthermore, the novel systemic therapies may contribute to prolonged survival after systemic recurrence following pulmonary metastasectomy. Patients with long DFI, radial growth melanoma phase and no site of metastatization other than lung seem to be the best candidate cases for lung metastasectomy; however, to drive stronger conclusions, further studies evaluating the role of metastasectomy in patients with iPmMM are needed.
Collapse
Affiliation(s)
- Elisa Meacci
- Department of General Thoracic Surgery, Fondazione Policlinico Universitario "A. Gemelli", Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Dania Nachira
- Department of General Thoracic Surgery, Fondazione Policlinico Universitario "A. Gemelli", Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Maria Teresa Congedo
- Department of General Thoracic Surgery, Fondazione Policlinico Universitario "A. Gemelli", Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Mohsen Ibrahim
- Thoracic Surgery Unit, Sant'Andrea Hospital, University of Rome La Sapienza, 00185 Rome, Italy
| | | | - Francesco Petrella
- Department of Thoracic Surgery, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Monica Casiraghi
- Department of Thoracic Surgery, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Alessandro De Stefani
- Dermatology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Laura Del Regno
- Dermatology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Ketty Peris
- Dermatology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Elizabeth Katherine Anna Triumbari
- Nuclear Medicine Unit, G-STeP Radiopharmacy Research Core Facility, Department of Radiology, Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Giovanni Schinzari
- Medical Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Ernesto Rossi
- Medical Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Leonardo Petracca-Ciavarella
- Department of General Thoracic Surgery, Fondazione Policlinico Universitario "A. Gemelli", Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Maria Letizia Vita
- Department of General Thoracic Surgery, Fondazione Policlinico Universitario "A. Gemelli", Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Marco Chiappetta
- Department of General Thoracic Surgery, Fondazione Policlinico Universitario "A. Gemelli", Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Alessandra Siciliani
- Thoracic Surgery Unit, Sant'Andrea Hospital, University of Rome La Sapienza, 00185 Rome, Italy
| | - Valentina Peritore
- Thoracic Surgery Unit, Sant'Andrea Hospital, University of Rome La Sapienza, 00185 Rome, Italy
| | - Mattia Manitto
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Lucia Morelli
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Edoardo Zanfrini
- Service de Chirurgie Thoracique et de Trasplantation Pulmonaire, Hôpital Européen Georges Pompidou, 75015 Paris, France
| | - Diomira Tabacco
- Department of General Thoracic Surgery, Fondazione Policlinico Universitario "A. Gemelli", Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Giuseppe Calabrese
- Department of General Thoracic Surgery, Fondazione Policlinico Universitario "A. Gemelli", Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Claudia Bardoni
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Jessica Evangelista
- Department of General Thoracic Surgery, Fondazione Policlinico Universitario "A. Gemelli", Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Lorenzo Spaggiari
- Department of Thoracic Surgery, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Stefano Margaritora
- Department of General Thoracic Surgery, Fondazione Policlinico Universitario "A. Gemelli", Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
234
|
Pilavaki P, Gahanbani Ardakani A, Gikas P, Constantinidou A. Osteosarcoma: Current Concepts and Evolutions in Management Principles. J Clin Med 2023; 12:jcm12082785. [PMID: 37109122 PMCID: PMC10143544 DOI: 10.3390/jcm12082785] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 03/08/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Osteosarcoma is a rare malignancy arising from mesenchymal tissue, and represents the most common bone sarcoma. The management of osteosarcoma is challenging, and requires a multidisciplinary approach. In daily clinical practice, surgery, radiotherapy, and conventional chemotherapy constitute the therapeutic armamentarium against the disease. However, a significant number of patients with initially localized osteosarcoma will experience local or distant recurrence, and the prognosis for metastatic disease remains dismal. There is a pressing need to identify novel therapeutic strategies to better manage osteosarcoma and improve survival outcomes. In this study, we present recent advances in the therapeutic management of osteosarcoma, including surgical and medical advances. The role of immunotherapy (immune checkpoint inhibitors, adoptive cellular therapy, cancer vaccines) and other targeted therapies including tyrosine kinase inhibitors is discussed; however, additional studies are required to delineate their roles in clinical practice.
Collapse
Affiliation(s)
- Pampina Pilavaki
- Medical School, University of Cyprus, Nicosia 1678, Cyprus
- Medical Oncology, Bank of Cyprus Oncology Center, Nicosia 2006, Cyprus
| | | | - Panagiotis Gikas
- Department of Orthopaedics, Cleveland Clinic London, London SW1X 7HY, UK
| | - Anastasia Constantinidou
- Medical School, University of Cyprus, Nicosia 1678, Cyprus
- Medical Oncology, Bank of Cyprus Oncology Center, Nicosia 2006, Cyprus
- Cyprus Cancer Research Institute, Nicosia 2109, Cyprus
| |
Collapse
|
235
|
Cybulska-Stopa B, Piejko K, Ostaszewski K, Dziura R, Galus Ł, Ziółkowska B, Kempa-Kamińska N, Ziętek M, Bal W, Kamycka A, Dudzisz-Śledź M, Kubiatowski T, Kamińska-Winciorek G, Suwiński R, Mackiewicz J, Czarnecka AM, Rutkowski P. Long-term clinical evidence of comparable efficacy and toxicity of nivolumab and pembrolizumab in advanced melanoma treatment. Melanoma Res 2023; 33:208-217. [PMID: 37015054 DOI: 10.1097/cmr.0000000000000885] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2023]
Abstract
Pembrolizumab and nivolumab (anty-PD-1 antibody) are commonly used for the treatment of melanoma patients. However, their efficacy and safety have never been directly compared, leaving little guidance for clinicians to select the best therapy. The study included patients with inoperable or metastatic melanoma treated in first line with anti-PD-1 immunotherapy (nivolumab or pembrolizumab). In total 1037 patients were enrolled in the study, 455 (44%) patients were treated with pembrolizumab and 582 (56%) with nivolumab. The estimated median overall survival (OS) in the pembrolizumab and nivolumab groups was 17.4 and 20.0 months [P = 0.2323; hazard ratio (HR), 1.1; 95% confidence interval (CI), 0.94-1.28], respectively, whereas the median progression-free survival (PFS) was 5.6 and 7.5 months (P = 0.0941; HR, 1.13; 95% CI, 0.98-1.29), respectively. The estimated 2- and 3-year OS in the pembrolizumab and nivolumab groups were 42/34% and 47/37%, respectively, and the PFS was 25/21% and 29/23%, respectively. There were 391 (49%) immune-related adverse events (irAEs) of any grade during treatment, including 133 (42%) related to pembrolizumab treatment and 258 (53%) to nivolumab treatment. A total of 72 (9.6%) irAEs were in G3 or G4, including during pembrolizumab 29 (9%) and nivolumab 48 (11%). There were no differences in OS, PFS and overall response rates between nivolumab and pembrolizumab therapy in previously untreated patients with advanced/metastatic melanoma. There were no differences in the frequency of G1/G2 or G3/G4 irAEs. The choice of treatment should be based on the preferences of the patient and the clinician.
Collapse
Affiliation(s)
- Bożena Cybulska-Stopa
- Department of Clinical Oncology, Lower Silesian Oncology, Pulmonology and Hematology Center, Wroclaw
- Department of Clinical Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Cracow Branch, Cracow
| | - Karolina Piejko
- Department of Clinical Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Cracow Branch, Cracow
| | - Krzysztof Ostaszewski
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw
| | - Robert Dziura
- Department of Clinical Oncology, Holy Cross Cancer Center, Kielce
| | - Łukasz Galus
- Department of Medical and Experimental Oncology, Institute of Oncology, Poznan University of Medical Sciences, Poznan
| | - Barbara Ziółkowska
- 2 Radiotherapy and Chemotherapy Clinic and Teaching Hospital, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Gliwice
| | - Natasza Kempa-Kamińska
- Department of Clinical Oncology, Lower Silesian Oncology, Pulmonology and Hematology Center, Wroclaw
| | - Marcin Ziętek
- Department of Surgical Oncology, Lower Silesian Oncology, Pulmonology and Hematology Center, Wroclaw
- Department of Oncology, Wroclaw Medical University, Wroclaw
| | - Wiesław Bal
- Department of Chemotherapy, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Gliwice
| | | | - Monika Dudzisz-Śledź
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw
| | | | - Grażyna Kamińska-Winciorek
- Department of Bone Marrow Transplantation and Hematology-Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Gliwice
| | - Rafał Suwiński
- 2 Radiotherapy and Chemotherapy Clinic and Teaching Hospital, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Gliwice
| | - Jacek Mackiewicz
- Department of Medical and Experimental Oncology, Institute of Oncology, Poznan University of Medical Sciences, Poznan
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, Poznan
| | - Anna Małgorzata Czarnecka
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw
- Department of Experimental Pharmacology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Piotr Rutkowski
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw
| |
Collapse
|
236
|
Franklin C, Mohr P, Bluhm L, Meier F, Garzarolli M, Weichenthal M, Kähler K, Grimmelmann I, Gutzmer R, Utikal J, Terheyden P, Herbst R, Haferkamp S, Pfoehler C, Forschner A, Leiter U, Ziller F, Meiss F, Ulrich J, Kreuter A, Gebhardt C, Welzel J, Schilling B, Kaatz M, Scharfetter-Kochanek K, Dippel E, Nashan D, Sachse M, Weishaupt C, Löffler H, Gambichler T, Loquai C, Heinzerling L, Grabbe S, Debus D, Schley G, Hassel JC, Weyandt G, Trommer M, Lodde G, Placke JM, Zimmer L, Livingstone E, Becker JC, Horn S, Schadendorf D, Ugurel S. Brain metastasis and survival outcomes after first-line therapy in metastatic melanoma: a multicenter DeCOG study on 1704 patients from the prospective skin cancer registry ADOREG. J Immunother Cancer 2023; 11:e005828. [PMID: 37028819 PMCID: PMC10083858 DOI: 10.1136/jitc-2022-005828] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2023] [Indexed: 04/09/2023] Open
Abstract
BACKGROUND Despite the availability of effective systemic therapies, a significant number of advanced melanoma patients develops brain metastases. This study investigated differences in incidence and time to diagnosis of brain metastasis and survival outcomes dependent on the type of first-line therapy. METHODS Patients with metastatic, non-resectable melanoma (AJCCv8 stage IIIC-V) without brain metastasis at start of first-line therapy (1L-therapy) were identified from the prospective multicenter real-world skin cancer registry ADOREG. Study endpoints were incidence of brain metastasis, brain metastasis-free survival (BMFS), progression-free survival (PFS), and overall survival (OS). RESULTS Of 1704 patients, 916 were BRAF wild-type (BRAFwt) and 788 were BRAF V600 mutant (BRAFmut). Median follow-up time after start of 1L-therapy was 40.4 months. BRAFwt patients received 1L-therapy with immune checkpoint inhibitors (ICI) against CTLA-4+PD-1 (n=281) or PD-1 (n=544). In BRAFmut patients, 1L-therapy was ICI in 415 patients (CTLA-4+PD-1, n=108; PD-1, n=264), and BRAF+MEK targeted therapy (TT) in 373 patients. After 24 months, 1L-therapy with BRAF+MEK resulted in a higher incidence of brain metastasis compared with PD-1±CTLA-4 (BRAF+MEK, 30.3%; CTLA-4+PD-1, 22.2%; PD-1, 14.0%). In multivariate analysis, BRAFmut patients developed brain metastases earlier on 1L-therapy with BRAF+MEK than with PD-1±CTLA-4 (CTLA-4+PD-1: HR 0.560, 95% CI 0.332 to 0.945, p=0.030; PD-1: HR 0.575, 95% CI 0.372 to 0.888, p=0.013). Type of 1L-therapy, tumor stage, and age were independent prognostic factors for BMFS in BRAFmut patients. In BRAFwt patients, tumor stage was independently associated with longer BMFS; ECOG Performance status (ECOG-PS), lactate dehydrogenase (LDH), and tumor stage with OS. CTLA-4+PD-1 did not result in better BMFS, PFS, or OS than PD-1 in BRAFwt patients. For BRAFmut patients, multivariate Cox regression revealed ECOG-PS, type of 1L-therapy, tumor stage, and LDH as independent prognostic factors for PFS and OS. 1L-therapy with CTLA-4+PD-1 led to longer OS than PD-1 (HR 1.97, 95% CI 1.122 to 3.455, p=0.018) or BRAF+MEK (HR 2.41, 95% CI 1.432 to 4.054, p=0.001), without PD-1 being superior to BRAF+MEK. CONCLUSIONS In BRAFmut patients 1L-therapy with PD-1±CTLA-4 ICI resulted in a delayed and less frequent development of brain metastasis compared with BRAF+MEK TT. 1L-therapy with CTLA-4+PD-1 showed superior OS compared with PD-1 and BRAF+MEK. In BRAFwt patients, no differences in brain metastasis and survival outcomes were detected for CTLA-4+PD-1 compared with PD-1.
Collapse
Affiliation(s)
- Cindy Franklin
- Department of Dermatology and Venereology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Center for Integrated Oncology Aachen-Bonn-Cologne-Düsseldorf (CIO ABCD), Cologne, Germany
| | - Peter Mohr
- Department of Dermatology, Elbe-Kliniken Buxtehude, Buxtehude, Germany
| | - Leonie Bluhm
- Department of Dermatology, Elbe-Kliniken Buxtehude, Buxtehude, Germany
| | - Friedegund Meier
- Department of Dermatology, University Hospital Carl Gustav Carus, TU Dresden and, Skin Cancer Center at the University Cancer Center Dresden and National Center for Tumor Diseases (NCT), Dresden, Germany
| | - Marlene Garzarolli
- Department of Dermatology, University Hospital Carl Gustav Carus, TU Dresden and, Skin Cancer Center at the University Cancer Center Dresden and National Center for Tumor Diseases (NCT), Dresden, Germany
| | - Michael Weichenthal
- Department of Dermatology, Skin Cancer Center, Schleswig-Holstein University Hospital, Campus Kiel, Kiel, Germany
| | - Katharina Kähler
- Department of Dermatology, Skin Cancer Center, Schleswig-Holstein University Hospital, Campus Kiel, Kiel, Germany
| | - Imke Grimmelmann
- Skin Cancer Center Hannover, Department of Dermatology, Hannover Medical School, Hanover, Germany
| | - Ralf Gutzmer
- Department of Dermatology, Muehlenkreiskliniken Minden and Ruhr University Bochum, Minden, Germany
| | - Jochen Utikal
- Skin Cancer Unit, German Cancer Research Center (DKFZ) and Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany
| | - Patrick Terheyden
- Department of Dermatology, University of Lübeck and Schleswig-Holstein University Hospital, Campus Lübeck, Lübeck, Germany
| | - Rudolf Herbst
- Department of Dermatology, HELIOS Klinikum Erfurt, Erfurt, Germany
| | - Sebastian Haferkamp
- Department of Dermatology, University Hospital Regensburg, Regensburg, Germany
| | - Claudia Pfoehler
- Department of Dermatology, Saarland University Medical School, Homburg, Homburg/Saar, Germany
| | - Andrea Forschner
- Department of Dermatology, University Hospital Tübingen, Tübingen, Germany
| | - Ulrike Leiter
- Department of Dermatology, University Hospital Tübingen, Tübingen, Germany
| | - Fabian Ziller
- Department of Dermatology, DRK Hospital Chemnitz-Rabenstein, Chemnitz, Germany
| | - Frank Meiss
- Department of Dermatology and Venereology, Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
| | - Jens Ulrich
- Department of Dermatology and Skin Cancer Center, Harzklinikum Dorothea Christiane Erxleben, Quedlinburg, Germany
| | - Alexander Kreuter
- Department of Dermatology, Venereology and Allergology, Helios St. Elisabeth Klinik Oberhausen, University Witten-Herdecke, Oberhausen, Germany
| | - Christoffer Gebhardt
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julia Welzel
- Department of Dermatology and Allergology, University Hospital Augsburg, Augsburg, Germany
| | - Bastian Schilling
- Department of Dermatology and Venereology, University Hospital Würzburg, Würzburg, Germany
| | - Martin Kaatz
- Department of Dermatology, SRH Wald-Klinikum Gera, Gera, Germany
| | | | - Edgar Dippel
- Department of Dermatology, Ludwigshafen Medical Center, Ludwigshafen, Germany
| | - Dorothee Nashan
- Department of Dermatology, Hospital of Dortmund, Dortmund, Germany
| | - Michael Sachse
- Skin Cancer Center, Department of Dermatology, Klinikum Bremerhaven Reinkenheide, Bremerhaven, Germany
| | - Carsten Weishaupt
- Department of Dermatology, University Hospital of Muenster, Muenster, Germany
| | - Harald Löffler
- Department of Dermatology, SLK-Kliniken Heilbronn, Heilbronn, Germany
| | - Thilo Gambichler
- Department of Dermatology, Ruhr-University Bochum, Bochum, Germany
| | - Carmen Loquai
- Department of Dermatology, Klinikum Bremen-Ost, Gesundheit Nord gGmbH, Bremen, Germany
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Lucie Heinzerling
- Department of Dermatology and Allergology, Ludwig-Maximilian University, Munich, Germany
| | - Stephan Grabbe
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Dirk Debus
- Department of Dermatology, Nuremberg General Hospital, Paracelsus Medical University, Nuremberg, Germany
| | - Gaston Schley
- Department of Dermatology and Venereology, Helios Klinikum Schwerin, Schwerin, Germany
| | - Jessica C Hassel
- National Center for Tumor Diseases (NCT), Department of Dermatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Gerhard Weyandt
- Department of Dermatology and Allergology, Hospital Bayreuth, Bayreuth, Germany
| | - Maike Trommer
- Department of Radiation Oncology and Cyberknife Center, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Georg Lodde
- Department of Dermatology, Venereology and Allergology, University Hospital Essen and German Cancer Consortium (DKTK) Partner Site Essen, Essen, Germany
| | - Jan-Malte Placke
- Department of Dermatology, Venereology and Allergology, University Hospital Essen and German Cancer Consortium (DKTK) Partner Site Essen, Essen, Germany
| | - Lisa Zimmer
- Department of Dermatology, Venereology and Allergology, University Hospital Essen and German Cancer Consortium (DKTK) Partner Site Essen, Essen, Germany
| | - Elisabeth Livingstone
- Department of Dermatology, Venereology and Allergology, University Hospital Essen and German Cancer Consortium (DKTK) Partner Site Essen, Essen, Germany
| | - Jürgen Christian Becker
- Department of Dermatology, Venereology and Allergology, University Hospital Essen and German Cancer Consortium (DKTK) Partner Site Essen, Essen, Germany
- Translational Skin Cancer Research, German Cancer Consortium (DKTK), Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Susanne Horn
- Department of Dermatology, Venereology and Allergology, University Hospital Essen and German Cancer Consortium (DKTK) Partner Site Essen, Essen, Germany
- Rudolf-Schönheimer-Institute of Biochemistry, Medical Faculty of the University Leipzig, Leipzig, Germany
| | - Dirk Schadendorf
- Department of Dermatology, Venereology and Allergology, University Hospital Essen and German Cancer Consortium (DKTK) Partner Site Essen, Essen, Germany
| | - Selma Ugurel
- Department of Dermatology, Venereology and Allergology, University Hospital Essen and German Cancer Consortium (DKTK) Partner Site Essen, Essen, Germany
| |
Collapse
|
237
|
Nikoo M, Rabiee F, Mohebbi H, Eghbalifard N, Rajabi H, Yazdani Y, Sakhaei D, Khosravifarsani M, Akhavan-Sigari R. Nivolumab plus ipilimumab combination therapy in cancer: Current evidence to date. Int Immunopharmacol 2023; 117:109881. [PMID: 37012882 DOI: 10.1016/j.intimp.2023.109881] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/29/2023] [Accepted: 02/06/2023] [Indexed: 03/06/2023]
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized cancer immunotherapy, yielding significant antitumor responses across multiple cancer types. Combination ICI therapy with anti-CTLA-4 and anti-PD-1 antibodies outperforms either antibody alone in terms of clinical efficacy. As a consequence, the U.S. Food and Drug Administration (FDA) approved ipilimumab (anti-CTLA-4) plus nivolumab (anti-PD-1) as the first-ever approved therapies for combined ICI in patients with metastatic melanoma. Despite the success of ICIs, treatment with checkpoint inhibitor combinations poses significant clinical challenges, such as increased rates of immune-related adverse events (irAEs) and drug resistance. Thus, identifying optimal prognostic biomarkers could help to monitor the safety and efficacy of ICIs and identify patients who may benefit the most from these treatments. In this review, we will first go over the fundamentals of the CTLA-4 and PD-1 pathways, as well as the mechanisms of ICI resistance. The results of clinical findings that evaluated the combination of ipilimumab and nivolumab are then summarized to support future research in the field of combination therapy. Finally, the irAEs associated with combined ICI therapy, as well as the underlying biomarkers involved in their management, are discussed.
Collapse
|
238
|
Trojaniello C, Sparano F, Cioli E, Ascierto PA. Sequencing Targeted and Immune Therapy in BRAF-Mutant Melanoma: Lessons Learned. Curr Oncol Rep 2023; 25:623-634. [PMID: 36995534 PMCID: PMC10164000 DOI: 10.1007/s11912-023-01402-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2023] [Indexed: 03/31/2023]
Abstract
PURPOSE OF REVIEW The treatment strategy for BRAF-mutated melanoma remains unsatisfactory, although the advent of immune checkpoint inhibition has improved the prognosis of advanced melanoma. This article reports current evidence on the efficacy and safety of sequential immunotherapy with targeted therapy in patients with BRAF-mutated melanoma. It discusses criteria for the use of available options in clinical practice. RECENT FINDINGS Targeted therapy provides rapid disease control in a relatively high proportion of patients, although the development of secondary resistance limits the duration of responses; in contrast, immunotherapy may induce slow but more durable responses in a subset of patients. Therefore, the identification of a combination strategy for the use of these therapies seems a promising perspective. Currently, inconsistent data have been obtained, but most studies indicate that the administration of BRAFi/MEKi prior to immune checkpoint inhibitors appears to reduce the efficacy of immunotherapy. On the contrary, several clinical and real-life studies suggest that frontline immunotherapy with subsequent targeted therapy may be associated with better tumor control than immunotherapy alone. Larger clinical studies are ongoing to confirm the efficacy and safety of this sequencing strategy for treating BRAF-mutated melanoma with immunotherapy followed by targeted therapy.
Collapse
Affiliation(s)
- Claudia Trojaniello
- Melanoma, Cancer Immunotherapy, and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS Fondazione "G. Pascale", Naples, Italy
| | - Francesca Sparano
- Melanoma, Cancer Immunotherapy, and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS Fondazione "G. Pascale", Naples, Italy
| | - Eleonora Cioli
- Melanoma, Cancer Immunotherapy, and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS Fondazione "G. Pascale", Naples, Italy
| | - Paolo Antonio Ascierto
- Melanoma, Cancer Immunotherapy, and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS Fondazione "G. Pascale", Naples, Italy.
| |
Collapse
|
239
|
Pilmis B, Kherabi Y, Huriez P, Zahar JR, Mokart D. Infectious Complications of Targeted Therapies for Solid Cancers or Leukemias/Lymphomas. Cancers (Basel) 2023; 15:cancers15071989. [PMID: 37046650 PMCID: PMC10093532 DOI: 10.3390/cancers15071989] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Background: Infections are well known complications of some targeted drugs used to treat solid organ cancer and hematological malignancies. Furthermore, Individual patient risk factors are associated with underlying pathologies, concomitant immunosuppressive treatment, prior treatment and use of anti-infective prophylaxis. Immune-related adverse events (irAEs) are frequent among patients treated with new targeted drugs. Objectives: In this narrative review, we present the current state of knowledge concerning the infectious complications occurring in patients treated with immune checkpoint inhibitors (ICIs), Bruton’s tyrosine kinase (BTK) inhibitors, phosphatidylinositol 3-kinase (PI3K) inhibitors, antiapoptotic protein BCL-2 inhibitors, Janus kinase inhibitors or CAR-T cell infusion. Sources: We searched for studies treating infectious complications of ICIs, BTK inhibitors, PI3K inhibitors, antiapoptotic protein BCL-2 inhibitors and CAR-T cell therapy. We included randomized, observational studies and case reports. Content: Immune-related adverse events (irAEs) are frequent among patients treated with new targeted drugs. Treatment of irAEs with corticosteroids and other immunosuppressive agents can lead to opportunistic infections. Bruton’s tyrosine kinase (BTK) inhibitors are associated with higher rate of infections, including invasive fungal infections. Implications: Infections, particularly fungal ones, are common in patients treated with BTK inhibitors even though most of the complications occurring among patients treated by ICIs or CART-cells infusion are associated with the treatment of side effects related to the use of these new treatments. The diagnosis of these infectious complications can be difficult and may require extensive investigations.
Collapse
Affiliation(s)
- Benoît Pilmis
- Equipe Mobile de Microbiologie Clinique, Groupe Hospitalier Paris Saint-Joseph, 75014 Paris, France
- UMR 1319, Institut Micalis, Université Paris-Saclay, INRAeChâtenay Malabry, AgroParisTech, 92290 Chatenay Malabry, France
- Correspondence: ; Tel.: +33-1-44-12-78-20; Fax: +33-1-44-12-35-13
| | - Yousra Kherabi
- Equipe Mobile de Microbiologie Clinique, Groupe Hospitalier Paris Saint-Joseph, 75014 Paris, France
| | - Pauline Huriez
- Equipe Mobile de Microbiologie Clinique, Groupe Hospitalier Paris Saint-Joseph, 75014 Paris, France
| | - Jean-Ralph Zahar
- Infection Control Unit, AP-HP Hôpital Avicenne, Université Sorbonne Paris Nord, 93000 Bobigny, France
| | - Djamel Mokart
- Medical Surgical Intensive Care Unit, Institut Paoli Calmettes, 13009 Marseille, France
| |
Collapse
|
240
|
Santamaria-Barria JA, Matsuba C, Khader A, Scholar AJ, Garland-Kledzik M, Fischer TD, Essner R, Salomon MP, Mammen JMV, Goldfarb M. Age-related next-generation sequencing mutational analysis in 1196 melanomas. J Surg Oncol 2023; 127:1187-1195. [PMID: 36938777 DOI: 10.1002/jso.27239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/11/2023] [Accepted: 03/07/2023] [Indexed: 03/21/2023]
Abstract
BACKGROUND AND OBJECTIVES Melanoma mutational burden is high and approximately 50% have oncogenic mutations in BRAF. We sought to evaluate age-related mutational differences in melanoma. METHODS We analyzed melanoma samples in the Genomics Evidence Neoplasia Information Exchange database. Targetable mutations were identified using the Precision Oncology Knowledge Base (OncoKB). RESULTS We found 1194 patients with a common set of 30 genes. The top mutated genes in patients <40 years old (y/o) (n = 98) were BRAF (59%), TP53 (31%), NRAS (17%), and PTEN (14%); in 40-59 y/o (n = 354) were BRAF (51%), NRAS (30%), TP53 (26%), and APC (13%); and in ≥60 y/o (n = 742) were BRAF (38%), NRAS (33%), TP53 (26%), and KDR (19%). BRAF mutations were almost mutually exclusive from NRAS mutations in <40 y/o (58/59). Mutational burden increased with age, with means of 2.39, 2.92, and 3.67 mutations per sample in patients <40, 40-59, and ≥60 y/o, respectively (p < 0.0001). There were 10 targetable mutations meeting OncoKB criteria for melanoma: BRAF (level 1), RET (level 1), KIT (level 2), NRAS (level 3A), TP53 (level 3A), and FGFR2, MET, PTEN, PIK3CA, and KRAS (level 4). CONCLUSIONS Mutations in melanoma have age-related differences and demonstrates potential targetable mutations for personalized therapies.
Collapse
Affiliation(s)
- Juan A Santamaria-Barria
- Division of Surgical Oncology, Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Chikako Matsuba
- Computational Biology Division, Saint John's Cancer Institute at Providence St. John's Health Center, Santa Monica, California, USA
| | - Adam Khader
- Division of Surgical Oncology, Department of Surgery, Hunter Holmes McGuire Veterans Affair Medical Center, Richmond, Virginia, USA
| | - Anthony J Scholar
- Division of Surgical Oncology, University of South Carolina School of Medicine, Greenville, South Carolina, USA
| | - Mary Garland-Kledzik
- Division of Surgical Oncology, West Virginia University, Morgantown, West Virginia, USA
| | - Trevan D Fischer
- Department of Surgery, Saint John's Cancer Institute at Providence St. John's Health Center, Santa Monica, California, USA
| | - Richard Essner
- Department of Surgery, Saint John's Cancer Institute at Providence St. John's Health Center, Santa Monica, California, USA
| | - Matthew P Salomon
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Joshua M V Mammen
- Division of Surgical Oncology, Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Melanie Goldfarb
- Department of Surgery, Saint John's Cancer Institute at Providence St. John's Health Center, Santa Monica, California, USA
| |
Collapse
|
241
|
Clinical response under MEK inhibitor alone in metastatic melanoma with a novel fusion involving the RAF1 gene. Melanoma Res 2023; 33:247-251. [PMID: 36866640 DOI: 10.1097/cmr.0000000000000882] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Currently, in the absence of BRAFV600 mutation, the management of advanced melanomas is based on immunotherapies, but only half of the patients are responders. RAF1 (also named CRAF) fusions occur in 1-2.1% of wild-type melanomas. Preclinical data suggest that the presence of RAF fusion may be sensitive to MEK inhibitors. We report the case of a patient with an advanced melanoma harboring an EFCC1-RAF1 fusion who showed a clinical benefit from and a partial response to a MEK inhibitor.
Collapse
|
242
|
DePalo DK, Zager JS. Advances in Intralesional Therapy for Locoregionally Advanced and Metastatic Melanoma: Five Years of Progress. Cancers (Basel) 2023; 15:cancers15051404. [PMID: 36900196 PMCID: PMC10000422 DOI: 10.3390/cancers15051404] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Locoregionally advanced and metastatic melanoma are complex diagnoses with a variety of available treatment options. Intralesional therapy for melanoma has been under investigation for decades; however, it has advanced precipitously in recent years. In 2015, the Food and Drug Administration (FDA) approved talimogene laherparepvec (T-VEC), the only FDA-approved intralesional therapy for advanced melanoma. There has been significant progress since that time with other oncolytic viruses, toll-like receptor agonists, cytokines, xanthene dyes, and immune checkpoint inhibitors all under investigation as intralesional agents. Further to this, there has been exploration of numerous combinations of intralesional therapies and systemic therapies as various lines of therapy. Several of these combinations have been abandoned due to their lack of efficacy or safety concerns. This manuscript presents the various types of intralesional therapies that have reached phase 2 or later clinical trials in the past 5 years, including their mechanism of action, therapeutic combinations under investigation, and published results. The intention is to provide an overview of the progress that has been made, discuss ongoing trials worth following, and share our opinions on opportunities for further advancement.
Collapse
Affiliation(s)
- Danielle K. DePalo
- Department of Cutaneous Oncology, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Jonathan S. Zager
- Department of Cutaneous Oncology, Moffitt Cancer Center, Tampa, FL 33612, USA
- Department of Oncologic Sciences, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA
- Correspondence: ; Tel.: +1-(813)-745-1085; Fax: +1-(813)-745-5725
| |
Collapse
|
243
|
Current Trends in Mucosal Melanomas: An Overview. Cancers (Basel) 2023; 15:cancers15051356. [PMID: 36900152 PMCID: PMC10000120 DOI: 10.3390/cancers15051356] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/14/2023] [Accepted: 02/18/2023] [Indexed: 02/25/2023] Open
Abstract
Primary mucosal melanomas (MMs) are uncommon tumors originating from melanocytes located in the mucous membranes at various anatomic sites within the body. MM significantly differs from cutaneous melanoma (CM) regarding epidemiology, genetic profile, clinical presentation, and response to therapies. Despite these differences, that have important implications for both disease diagnosis and prognosis, MMs are usually treated in the same way as CM but exhibit a lower response rate to immunotherapy leading to a poorer survival rate. Furthermore, a high inter-patient variability can be observed in relation to therapeutic response. Recently, novel "omics" techniques have evidenced that MM lesions have different genomic, molecular, and metabolic landscapes as compared with CM lesions, thus explaining the heterogeneity of the response. Such specific molecular aspects might be useful to identify new biomarkers aimed at improving the diagnosis and selection of MM patients who could benefit from immunotherapy or targeted therapy. In this review, we have focused on relevant molecular and clinical advancements for the different MM subtypes in order to describe the updated knowledge relating to main diagnostic, clinical, and therapeutic implications as well as to provide hints on likely future directions.
Collapse
|
244
|
Rubatto M, Sciamarrelli N, Borriello S, Pala V, Mastorino L, Tonella L, Ribero S, Quaglino P. Classic and new strategies for the treatment of advanced melanoma and non-melanoma skin cancer. Front Med (Lausanne) 2023; 9:959289. [PMID: 36844955 PMCID: PMC9947410 DOI: 10.3389/fmed.2022.959289] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 12/23/2022] [Indexed: 02/11/2023] Open
Abstract
Advanced melanoma and non-melanoma skin cancers (NMSCs) are burdened with a dismal prognosis. To improve the survival of these patients, studies on immunotherapy and target therapies in melanoma and NMSCs are rapidly increasing. BRAF and MEK inhibitors improve clinical outcomes, and anti-PD1 therapy demonstrates better results than chemotherapy or anti-CTLA4 therapy in terms of the survival of patients with advanced melanoma. In recent years, the combination therapy of nivolumab plus ipilimumab has gained ground in studies for its survival and response rate benefits in patients with advanced melanoma. In addition, neoadjuvant treatment for stages III and IV melanoma, either as monotherapy or combination therapy, has recently been discussed. Another promising strategy evaluated in recent studies is the triple combination of anti-PD-1/PD-L1 immunotherapy and anti-BRAF plus anti-MEK targeted therapy. On the contrary, in advanced and metastatic BCC, successful therapeutic strategies, such as vismodegib and sonidegib, are based on the inhibition of aberrant activation of the Hedgehog signaling pathway. In these patients, anti-PD-1 therapy with cemiplimab should be reserved as the second-line therapy in case of disease progression or poor response. In patients with locally advanced or metastatic SCC, who are not candidates for surgery or radiotherapy, anti-PD1 agents such as cemiplimab, pembrolizumab, and cosibelimab (CK-301) have shown significant results in terms of response rate. PD-1/PD-L1 inhibitors, such as avelumab, have also been used in Merkel carcinoma, achieving responses in half of the patients with advanced disease. The latest prospect emerging for MCC is the locoregional approach involving the injection of drugs that can stimulate the immune system. Two of the most promising molecules used in combination with immunotherapy are cavrotolimod (a Toll-like receptor 9 agonist) and a Toll-like receptor 7/8 agonist. Another area of study is cellular immunotherapy with natural killer cells stimulated with an IL-15 analog or CD4/CD8 cells stimulated with tumor neoantigens. Neoadjuvant treatment with cemiplimab in CSCCs and nivolumab in MCCs has shown promising results. Despite the successes of these new drugs, the new challenges ahead will be to select patients who will benefit from these treatments based on biomarkers and parameters of the tumor microenvironment.
Collapse
Affiliation(s)
| | | | - Silvia Borriello
- Department of Medical Sciences, Dermatologic Clinic, University of Turin, Torino, Italy
| | - Valentina Pala
- Department of Medical Sciences, Dermatologic Clinic, University of Turin, Torino, Italy
| | - Luca Mastorino
- Department of Medical Sciences, Dermatologic Clinic, University of Turin, Torino, Italy
| | - Luca Tonella
- Department of Medical Sciences, Dermatologic Clinic, University of Turin, Torino, Italy
| | - Simone Ribero
- Department of Medical Sciences, Dermatologic Clinic, University of Turin, Torino, Italy
| | - Pietro Quaglino
- Department of Medical Sciences, Dermatologic Clinic, University of Turin, Torino, Italy
| |
Collapse
|
245
|
Musi A, Bongiovanni L. Extracellular Vesicles in Cancer Drug Resistance: Implications on Melanoma Therapy. Cancers (Basel) 2023; 15:1074. [PMID: 36831417 PMCID: PMC9954626 DOI: 10.3390/cancers15041074] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/29/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Extracellular vesicles (EVs) are involved in the pathogenesis of neoplastic diseases. Their role in mediating drug resistance has been widely described in several types of cancers, including melanoma. EVs can mediate drug resistance through several different mechanisms, such as drug-sequestration, transfer of pro-survival proteins and RNA, induction of cancer stem cell-like features and interaction with cells of the tumor microenvironment and immune-system. Melanoma is a highly immunogenic tumor originating from the malignant transformation of melanocytes. Several therapeutic strategies currently used in the treatment of melanoma and the combination of BRAF and MEK-inhibitors, as well as immune check-point inhibitors (ICI), have consistently improved the overall survival time of melanoma patients. However, the development of resistance is one of the biggest problems leading to a poor clinical outcome, and EVs can contribute to this. EVs isolated from melanoma cells can contain "sequestered" chemotherapeutic drugs in order to eliminate them, or bioactive molecules (such as miRNA or proteins) that have been proven to play a crucial role in the transmission of resistance to sensitive neoplastic cells. This leads to the hypothesis that EVs could be considered as resistance-mediators in sensitive melanoma cells. These findings are a pivotal starting point for further investigations to better understand EVs' role in drug resistance mechanisms and how to target them. The purpose of this review is to summarize knowledge about EVs in order to develop a deeper understanding of their underlying mechanisms. This could lead to the development of new therapeutic strategies able to bypass EV-mediated drug-resistance in melanoma, such as by the use of combination therapy, including EV release inhibitors.
Collapse
Affiliation(s)
- Alice Musi
- Department of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy
| | - Laura Bongiovanni
- Department of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584CT Utrecht, The Netherlands
| |
Collapse
|
246
|
Zhou Y, Medik YB, Patel B, Zamler DB, Chen S, Chapman T, Schneider S, Park EM, Babcock RL, Chrisikos TT, Kahn LM, Dyevoich AM, Pineda JE, Wong MC, Mishra AK, Cass SH, Cogdill AP, Johnson DH, Johnson SB, Wani K, Ledesma DA, Hudgens CW, Wang J, Wadud Khan MA, Peterson CB, Joon AY, Peng W, Li HS, Arora R, Tang X, Raso MG, Zhang X, Foo WC, Tetzlaff MT, Diehl GE, Clise-Dwyer K, Whitley EM, Gubin MM, Allison JP, Hwu P, Ajami NJ, Diab A, Wargo JA, Watowich SS. Intestinal toxicity to CTLA-4 blockade driven by IL-6 and myeloid infiltration. J Exp Med 2023; 220:e20221333. [PMID: 36367776 PMCID: PMC9664499 DOI: 10.1084/jem.20221333] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/15/2022] [Accepted: 10/19/2022] [Indexed: 11/13/2022] Open
Abstract
Immune checkpoint blockade (ICB) has revolutionized cancer treatment, yet quality of life and continuation of therapy can be constrained by immune-related adverse events (irAEs). Limited understanding of irAE mechanisms hampers development of approaches to mitigate their damage. To address this, we examined whether mice gained sensitivity to anti-CTLA-4 (αCTLA-4)-mediated toxicity upon disruption of gut homeostatic immunity. We found αCTLA-4 drove increased inflammation and colonic tissue damage in mice with genetic predisposition to intestinal inflammation, acute gastrointestinal infection, transplantation with a dysbiotic fecal microbiome, or dextran sodium sulfate administration. We identified an immune signature of αCTLA-4-mediated irAEs, including colonic neutrophil accumulation and systemic interleukin-6 (IL-6) release. IL-6 blockade combined with antibiotic treatment reduced intestinal damage and improved αCTLA-4 therapeutic efficacy in inflammation-prone mice. Intestinal immune signatures were validated in biopsies from patients with ICB colitis. Our work provides new preclinical models of αCTLA-4 intestinal irAEs, mechanistic insights into irAE development, and potential approaches to enhance ICB efficacy while mitigating irAEs.
Collapse
Affiliation(s)
- Yifan Zhou
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Yusra B. Medik
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Bhakti Patel
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Daniel B. Zamler
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
- The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX
| | - Sijie Chen
- Ministry of Education Key Lab of Bioinformatics and Bioinformatics Division, Beijing National Research Center for Information Science and Technology; Department of Automation, Tsinghua University, Beijing, China
| | - Thomas Chapman
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Sarah Schneider
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX
- The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX
- Department of Hematopoietic Biology and Malignancy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Elizabeth M. Park
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Rachel L. Babcock
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX
- The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX
| | - Taylor T. Chrisikos
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX
- The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX
| | - Laura M. Kahn
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX
- The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX
| | - Allison M. Dyevoich
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Josue E. Pineda
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX
- The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX
| | - Matthew C. Wong
- Platform for Innovative Microbiome and Translational Research, MD Anderson Cancer Center, Houston, TX
| | - Aditya K. Mishra
- Platform for Innovative Microbiome and Translational Research, MD Anderson Cancer Center, Houston, TX
| | - Samuel H. Cass
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Alexandria P. Cogdill
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
- The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX
| | - Daniel H. Johnson
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Sarah B. Johnson
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Khalida Wani
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Debora A. Ledesma
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Courtney W. Hudgens
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jingjing Wang
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Md Abdul Wadud Khan
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Christine B. Peterson
- The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Aron Y. Joon
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Weiyi Peng
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Haiyan S. Li
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Reetakshi Arora
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Ximing Tang
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Maria Gabriela Raso
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Xuegong Zhang
- Ministry of Education Key Lab of Bioinformatics and Bioinformatics Division, Beijing National Research Center for Information Science and Technology; Department of Automation, Tsinghua University, Beijing, China
| | - Wai Chin Foo
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Michael T. Tetzlaff
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Gretchen E. Diehl
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Karen Clise-Dwyer
- Department of Hematopoietic Biology and Malignancy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Elizabeth M. Whitley
- Department of Veterinary Medicine and Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Matthew M. Gubin
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX
- The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX
- Parker Institute for Cancer Immunotherapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - James P. Allison
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX
- The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX
- Parker Institute for Cancer Immunotherapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Patrick Hwu
- The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Nadim J. Ajami
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
- Platform for Innovative Microbiome and Translational Research, MD Anderson Cancer Center, Houston, TX
| | - Adi Diab
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jennifer A. Wargo
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
- The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
- Platform for Innovative Microbiome and Translational Research, MD Anderson Cancer Center, Houston, TX
- Parker Institute for Cancer Immunotherapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Stephanie S. Watowich
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX
- The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX
- Platform for Innovative Microbiome and Translational Research, MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
247
|
Huo G, Liu W, Zhang S, Chen P. Efficacy of PD-1/PD-L1 plus CTLA-4 inhibitors in solid tumors based on clinical characteristics: a meta-analysis. Immunotherapy 2023; 15:189-207. [PMID: 36683533 DOI: 10.2217/imt-2022-0140] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Aims: To clarify the relationship between the potency of dual blockade of PD-1 or its ligand (PD-L1) plus CTLA-4 and patients with different clinical characteristics with solid tumors, the authors performed this meta-analysis. Patients & methods: 12 randomized clinical trials containing 7056 patients were included after the literature was filtered. Results: Dual blockade substantially enhanced overall survival and progression-free survival compared with standard of care, especially in patients aged <65 years old, those 65-74 years old, those with a smoking history, members of the White population and those with a high tumor mutation burden. Conclusion: Dual blockade therapy significantly improved patient survival outcomes. Age, smoking history, race and tumor mutation burden might be used to predict the potency of dual blockade therapy in solid tumors.
Collapse
Affiliation(s)
- Gengwei Huo
- Department of Thoracic Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention & Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.,Department of Oncology, Jining No.1 People's Hospital, Jining, Shandong, 272000, China
| | - Wenjie Liu
- Department of Thoracic Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention & Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Sipei Zhang
- Department of Pharmacy, Tianjin Chest Hospital, Tianjin, 300222, China
| | - Peng Chen
- Department of Thoracic Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention & Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| |
Collapse
|
248
|
Li Y, Liang X, Li H, Chen X. Comparative efficacy and safety of immune checkpoint inhibitors for unresectable advanced melanoma: A systematic review and network meta-analysis. Int Immunopharmacol 2023; 115:109657. [PMID: 36608446 DOI: 10.1016/j.intimp.2022.109657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/14/2022] [Accepted: 12/27/2022] [Indexed: 01/06/2023]
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) have entered the treatment paradigm for unresectable advanced melanoma, but there is a lack of evidence regarding its relative efficacy and safety. This study aim to compare the efficacy and safety of ICIs in patients with advanced unresectable melanoma. METHODS Studies included randomized clinical trials (RCTs) that compared ICIs, or combination therapy of ICIs, or with chemotherapy drugs, different ICIs, or one of the ICIs at different dosing schedules. Random-effects models of Bayesian network meta-analysis were performed following the PRISMA reporting guideline. Primary outcomes were overall survival (OS) and progression-free survival (PFS). Secondary outcomes included objective response rate (ORR), disease control rate (DCR), and adverse events. PROSPERO CRD42021229086. RESULTS Twenty-four RCTs with 18 different treatment regimens for advanced melanoma involving 10,090 patients were included. Overall, nivolumab 1 mg/kg plus ipilimumab 3 mg/kg treatment regimen were associated with the highest beneficial effect on OS, PFS, and DCR. Closely followed by nivolumab 3 mg/kg plus ipilimumab 1 mg/kg, and nivolumab plus relatlimab treatment regimens. However, three regimens had less favorable safety profiles. Although ipilimumab 0.3 mg/kg was ranked as the best options with the lowest risk of grade ≥ 3 treatment or immune-related adverse events, less therapeutic benefit was performed. The pembrolizumab 10 mg/kg regimen may be the preferred treatment with relative higher efficiency and safety among the ICIs regimens reported, as well as the nivolumab 3 mg/kg regimen. Head-to-head trials showed similar results. CONCLUSIONS This study shown the preferred treatment regimens with relatively higher efficiency and safety among the reported ICI regimens. Our results may complement the current standard of care, while its direct drug comparisons will aid future trials.
Collapse
Affiliation(s)
- Yan Li
- Department of Pharmacy, Guangxi Academy of Medical Sciences and the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, People's Republic of China
| | - Xueyan Liang
- Phase 1 Clinical Trial Laboratory, Guangxi Academy of Medical Sciences and the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, People's Republic of China
| | - Huijuan Li
- Phase 1 Clinical Trial Laboratory, Guangxi Academy of Medical Sciences and the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, People's Republic of China
| | - Xiaoyu Chen
- Department of Pharmacy, Guangxi Academy of Medical Sciences and the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, People's Republic of China; Phase 1 Clinical Trial Laboratory, Guangxi Academy of Medical Sciences and the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, People's Republic of China.
| |
Collapse
|
249
|
Eckardt J, Schroeder C, Martus P, Armeanu-Ebinger S, Kelemen O, Gschwind A, Bonzheim I, Eigentler T, Amaral T, Ossowski S, Rieß O, Flatz L, Garbe C, Forschner A. TMB and BRAF mutation status are independent predictive factors in high-risk melanoma patients with adjuvant anti-PD-1 therapy. J Cancer Res Clin Oncol 2023; 149:833-840. [PMID: 35192052 PMCID: PMC9931777 DOI: 10.1007/s00432-022-03939-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/31/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND High tumor mutational burden (TMB) is associated with a favorable outcome in metastatic melanoma patients treated with immune checkpoint inhibitors. However, data are limited in the adjuvant setting. As BRAF mutated patients have an alternative with targeted adjuvant therapy, it is important to identify predictive factors for relapse and recurrence-free survival (RFS) in patients receiving adjuvant anti-PD-1 antibodies. METHODS We evaluated 165 melanoma patients who started adjuvant anti-PD-1 antibody therapy at our center between March 2018 and September 2019. The initial tumor stage was assessed at the beginning of therapy according to the 8th edition of the AJCC Cancer Staging Manual. Tumor and normal tissue of the high-risk stages IIIC/D/IV were sequenced using a 700 gene NGS panel. RESULTS The tumor stages at the beginning of adjuvant anti-PD-1 therapy were as follows: N = 80 stage IIIA/B (48%), N = 85 stage IIIC/D/IV (52%). 72/165 patients (44%) suffered a relapse, 44/72 (61%) with only loco regional and 28/72 (39%) with distant metastases. Sequencing results were available from 83 to 85 patients with stage IIIC/D/IV. BRAF mutation status (HR 2.12, 95% CI 1.12-4.08; p = 0.022) and TMB (HR 7.11, 95% CI 2.19-23.11; p = 0.001) were significant and independent predictive factors for relapse-free survival (RFS). CONCLUSION BRAF mutation status and TMB were independent predictive factors for RFS. Patients with BRAF V600E/K mutation and TMB high had the best outcome. A classification based on BRAF mutation status and TMB is proposed to predict RFS in melanoma patients with adjuvant anti-PD-1 therapy.
Collapse
Affiliation(s)
- Julia Eckardt
- Department of Dermatology, University Hospital of Tübingen, Liebermeisterstr. 25, 72076, Tübingen, Germany.
- Department of Dermatology, Charité Berlin, Luisenstr. 2, 10117 , Berlin, Germany.
| | - Christopher Schroeder
- Institute of Medical Genetics and Applied Genomics, University Hospital Tübingen, Calwerstr. 7, 72076, Tübingen, Germany
| | - Peter Martus
- Institute for Clinical Epidemiology and Applied Biometrics, University Hospital Tübingen, Silcherstr. 5, 72076, Tübingen, Germany
| | - Sorin Armeanu-Ebinger
- Institute of Medical Genetics and Applied Genomics, University Hospital Tübingen, Calwerstr. 7, 72076, Tübingen, Germany
| | - Olga Kelemen
- Institute of Medical Genetics and Applied Genomics, University Hospital Tübingen, Calwerstr. 7, 72076, Tübingen, Germany
| | - Axel Gschwind
- Institute of Medical Genetics and Applied Genomics, University Hospital Tübingen, Calwerstr. 7, 72076, Tübingen, Germany
| | - Irina Bonzheim
- Institute of Pathology and Neuropathology, University Hospital Tübingen, Liebermeisterstr. 8, 72076, Tübingen, Germany
| | - Thomas Eigentler
- Department of Dermatology, Charité Berlin, Luisenstr. 2, 10117 , Berlin, Germany
| | - Teresa Amaral
- Department of Dermatology, University Hospital of Tübingen, Liebermeisterstr. 25, 72076, Tübingen, Germany
| | - Stephan Ossowski
- Institute of Medical Genetics and Applied Genomics, University Hospital Tübingen, Calwerstr. 7, 72076, Tübingen, Germany
| | - Olaf Rieß
- Institute of Medical Genetics and Applied Genomics, University Hospital Tübingen, Calwerstr. 7, 72076, Tübingen, Germany
| | - Lukas Flatz
- Department of Dermatology, University Hospital of Tübingen, Liebermeisterstr. 25, 72076, Tübingen, Germany
| | - Claus Garbe
- Department of Dermatology, University Hospital of Tübingen, Liebermeisterstr. 25, 72076, Tübingen, Germany
| | - Andrea Forschner
- Department of Dermatology, University Hospital of Tübingen, Liebermeisterstr. 25, 72076, Tübingen, Germany
| |
Collapse
|
250
|
Williams KC, Gault A, Anderson AE, Stewart CJ, Lamb CA, Speight RA, Rajan N, Plummer R, Pratt AG. Immune-related adverse events in checkpoint blockade: Observations from human tissue and therapeutic considerations. Front Immunol 2023; 14:1122430. [PMID: 36776862 PMCID: PMC9909476 DOI: 10.3389/fimmu.2023.1122430] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/16/2023] [Indexed: 01/27/2023] Open
Abstract
Checkpoint inhibitors (CPIs) are monoclonal antibodies which, by disrupting interactions of immune checkpoint molecules with their ligands, block regulatory immune signals otherwise exploited by cancers. Despite revolutionary clinical benefits, CPI use is associated with an array of immune-related adverse events (irAEs) that mirror spontaneous autoreactivity. Severe irAEs necessitate pausing or stopping of CPI therapy and use of corticosteroids and/or other immunomodulatory interventions. Despite increasingly widespread CPI use, irAE pathobiology remains poorly understood; its elucidation may point to targeted mitigation strategies and uncover predictive biomarkers for irAE onset in patients, whilst casting new light on mechanisms of spontaneous immune-mediated disease. This review focuses on common CPI-induced irAEs of the gut, skin and synovial joints, and how these compare to immune-mediated diseases such as ulcerative colitis, vitiligo and inflammatory arthritis. We review current understanding of the immunological changes reported following CPI therapy at the level of peripheral blood and tissue. Many studies highlight dysregulation of cytokines in irAE-affected tissue, particularly IFNγ and TNF. IrAE-affected tissues are also predominantly infiltrated by T-cells, with low B-cell infiltration. Whilst there is variability between studies, patients treated with anti-programmed cell death-1 (PD-1)/PDL-1 therapies seem to exhibit CD8+ T-cell dominance, with CD4+ T-cells dominating in those treated with anti-cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) monotherapy. Interestingly, CD8+CXCR3+ T-cells have been reported to be elevated in gastrointestinal, dermatological and musculoskeletal -irAE affected tissues. These findings may highlight potential opportunities for therapeutic development or re-deployment of existing therapies to prevent and/or improve the outcome of irAEs.
Collapse
Affiliation(s)
- Kristian C. Williams
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Abigail Gault
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Northern Centre for Cancer Care, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Amy E. Anderson
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Christopher J. Stewart
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Christopher A. Lamb
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Department of Gastroenterology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - R. Ally Speight
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Department of Gastroenterology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Neil Rajan
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Department of Dermatology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Ruth Plummer
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Northern Centre for Cancer Care, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Arthur G. Pratt
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Directorate of Musculoskeletal Services, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| |
Collapse
|