201
|
Scholes GD. The Kuramoto–Lohe model and collective absorption of a photon. Proc Math Phys Eng Sci 2022. [DOI: 10.1098/rspa.2022.0377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Light absorption by molecular exciton states in disordered networks is studied. The main purpose of this paper is to look at how phases of the intermediate ground–excited state superposition interfere during the absorption process. How does this phase average enable, or suppress, absorption to a delocalized state? To address this question, a theory for phase oscillators is used to predict the purity of the collective excited state of the network. The results of the study suggest that collective absorption by molecular exciton states requires a sufficiently large electronic coupling between molecules in the network compared to the random distribution of transition energies at the sites, even when the molecular network is completely isolated from the environment degrees of freedom. The ‘dividing line’ between absorption to a mixture of, essentially, localized excited states and coherent excitation of a pure delocalized exciton state is suggested to be predicted by the threshold of phase synchronization.
Collapse
|
202
|
Capacity and kinetics of light-induced cytochrome oxidation in intact cells of photosynthetic bacteria. Sci Rep 2022; 12:14298. [PMID: 35995915 PMCID: PMC9395421 DOI: 10.1038/s41598-022-18399-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/10/2022] [Indexed: 11/08/2022] Open
Abstract
Light-induced oxidation of the reaction center dimer and periplasmic cytochromes was detected by fast kinetic difference absorption changes in intact cells of wild type and cytochrome mutants (cycA, cytC4 and pufC) of Rubrivivax gelatinosus and Rhodobacter sphaeroides. Constant illumination from a laser diode or trains of saturating flashes enabled the kinetic separation of acceptor and donor redox processes, and the electron contribution from the cyt bc1 complex via periplasmic cytochromes. Under continuous excitation, concentrations of oxidized cytochromes increased in three phases where light intensity, electron transfer rate and the number of reduced cytochromes were the rate liming steps, respectively. By choosing suitable flash timing, gradual steps of cytochrome oxidation in whole cells were observed; each successive flash resulted in a smaller, damped oxidation. We attribute this damping to lowered availability of reduced cytochromes resulting from both exchange (unbinding/binding) of the cytochromes and electron transfer at the reaction center interface since a similar effect is observed upon deletion of genes encoding periplasmic cytochromes. In addition, we present a simple model to calculate the damping effect; application of this method may contribute to understanding the function of the diverse range of c-type cytochromes in the electron transport chains of anaerobic phototrophic bacteria.
Collapse
|
203
|
Roy A, Diers JR, Niedzwiedzki DM, Meares A, Yu Z, Bhagavathy GV, Satraitis A, Kirmaier C, Ptaszek M, Bocian DF, Holten D. Photophysical Properties and Electronic Structure of Hydroporphyrin Dyads Exhibiting Strong Through-Space and Through-Bond Electronic Interactions. J Phys Chem A 2022; 126:5107-5125. [PMID: 35901315 DOI: 10.1021/acs.jpca.2c03114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Electronic interactions between tetrapyrroles are utilized in natural photosynthetic systems to tune the light-harvesting and energy-/charge-transfer processes in these assemblies. Such interactions also can be employed to tailor the electronic properties of tetrapyrrolic dyads and larger arrays for use in materials science and biomedical research. Here, we have utilized static and time-resolved optical spectroscopy to characterize the optical absorption and emission properties of a set of chlorin and bacteriochlorin dyads with varying degrees of through-bond (TB) and through-space (TS) interactions between the constituent macrocycles. The dyads consist of two chlorins or two bacteriochlorins joined by a linker that utilizes a triple-double-triple-bond (enediyne) motif in which the double-bond portion is an ester-substituted ethylene or o-phenylene unit. The photophysical studies are coupled with density functional theory (DFT) calculations to probe the ground-state molecular orbital (MO) characteristics of the dyads and time-dependent DFT calculations (TDDFT) to elucidate excited-state properties. The latter include electronic characteristics of the singlet excited-state manifold and the absorption transitions to these states from the electronic ground state. A comparison of the MO and calculated spectral properties of each dyad with the linker present versus disrupted (by eliminating the double-bond portion) gives insight into the relative contributions of TB versus TS interactions to the electronic properties of the dyads. The results show that the TB and TS contributions are additive (constructively interfere), which is not always the case for molecular dyads. Most of the dyads have shorter lifetimes of the lowest singlet excited state compared to the parent monomer, which derives from increased S1 → S0 internal conversion. The enhancement is greater for the dyads in benzonitrile than in toluene. The studies provide insights into the nature of the electronic interactions between the constituents in the tetrapyrrole arrays and how these interactions dictate the spectral properties and excited-state decay characteristics.
Collapse
Affiliation(s)
- Arpita Roy
- Department of Chemistry, Washington University, St. Louis, Missouri 63130-4889, United States
| | - James R Diers
- Department of Chemistry, University of California, Riverside, California 92521-0403, United States
| | - Dariusz M Niedzwiedzki
- Center for Solar Energy and Energy Storage, and Department of Energy, Environmental & Chemical Engineering, Washington University, St. Louis, Missouri 63130-4889, United States
| | - Adam Meares
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250-0001, United States
| | - Zhanqian Yu
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250-0001, United States
| | - Ganga Viswanathan Bhagavathy
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250-0001, United States
| | - Andrius Satraitis
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250-0001, United States
| | - Christine Kirmaier
- Department of Chemistry, Washington University, St. Louis, Missouri 63130-4889, United States
| | - Marcin Ptaszek
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250-0001, United States
| | - David F Bocian
- Department of Chemistry, University of California, Riverside, California 92521-0403, United States
| | - Dewey Holten
- Department of Chemistry, Washington University, St. Louis, Missouri 63130-4889, United States
| |
Collapse
|
204
|
Cervantes-Salguero K, Biaggne A, Youngsman JM, Ward BM, Kim YC, Li L, Hall JA, Knowlton WB, Graugnard E, Kuang W. Strategies for Controlling the Spatial Orientation of Single Molecules Tethered on DNA Origami Templates Physisorbed on Glass Substrates: Intercalation and Stretching. Int J Mol Sci 2022; 23:7690. [PMID: 35887059 PMCID: PMC9323263 DOI: 10.3390/ijms23147690] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/08/2022] [Accepted: 07/10/2022] [Indexed: 11/18/2022] Open
Abstract
Nanoarchitectural control of matter is crucial for next-generation technologies. DNA origami templates are harnessed to accurately position single molecules; however, direct single molecule evidence is lacking regarding how well DNA origami can control the orientation of such molecules in three-dimensional space, as well as the factors affecting control. Here, we present two strategies for controlling the polar (θ) and in-plane azimuthal (ϕ) angular orientations of cyanine Cy5 single molecules tethered on rationally-designed DNA origami templates that are physically adsorbed (physisorbed) on glass substrates. By using dipolar imaging to evaluate Cy5's orientation and super-resolution microscopy, the absolute spatial orientation of Cy5 is calculated relative to the DNA template. The sequence-dependent partial intercalation of Cy5 is discovered and supported theoretically using density functional theory and molecular dynamics simulations, and it is harnessed as our first strategy to achieve θ control for a full revolution with dispersion as small as ±4.5°. In our second strategy, ϕ control is achieved by mechanically stretching the Cy5 from its two tethers, being the dispersion ±10.3° for full stretching. These results can in principle be applied to any single molecule, expanding in this way the capabilities of DNA as a functional templating material for single-molecule orientation control. The experimental and modeling insights provided herein will help engineer similar self-assembling molecular systems based on polymers, such as RNA and proteins.
Collapse
Affiliation(s)
- Keitel Cervantes-Salguero
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID 83725, USA; (A.B.); (J.M.Y.); (B.M.W.); (L.L.); (W.B.K.); (E.G.)
| | - Austin Biaggne
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID 83725, USA; (A.B.); (J.M.Y.); (B.M.W.); (L.L.); (W.B.K.); (E.G.)
| | - John M. Youngsman
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID 83725, USA; (A.B.); (J.M.Y.); (B.M.W.); (L.L.); (W.B.K.); (E.G.)
| | - Brett M. Ward
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID 83725, USA; (A.B.); (J.M.Y.); (B.M.W.); (L.L.); (W.B.K.); (E.G.)
| | - Young C. Kim
- Materials Science and Technology Division, U.S. Naval Research Laboratory, Code 6300, Washington, DC 20375, USA;
| | - Lan Li
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID 83725, USA; (A.B.); (J.M.Y.); (B.M.W.); (L.L.); (W.B.K.); (E.G.)
- Center for Advanced Energy Studies, Idaho Falls, ID 83401, USA
| | - John A. Hall
- Division of Research and Economic Development, Boise State University, Boise, ID 83725, USA;
| | - William B. Knowlton
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID 83725, USA; (A.B.); (J.M.Y.); (B.M.W.); (L.L.); (W.B.K.); (E.G.)
- Department of Electrical and Computer Engineering, Boise State University, Boise, ID 83725, USA
| | - Elton Graugnard
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID 83725, USA; (A.B.); (J.M.Y.); (B.M.W.); (L.L.); (W.B.K.); (E.G.)
- Center for Advanced Energy Studies, Idaho Falls, ID 83401, USA
| | - Wan Kuang
- Department of Electrical and Computer Engineering, Boise State University, Boise, ID 83725, USA
| |
Collapse
|
205
|
Li P, Zhou L, Zhao C, Ju H, Gao Q, Si W, Cheng L, Hao J, Li M, Chen Y, Jia C, Guo X. Single-molecule nano-optoelectronics: insights from physics. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2022; 85:086401. [PMID: 35623319 DOI: 10.1088/1361-6633/ac7401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Single-molecule optoelectronic devices promise a potential solution for miniaturization and functionalization of silicon-based microelectronic circuits in the future. For decades of its fast development, this field has made significant progress in the synthesis of optoelectronic materials, the fabrication of single-molecule devices and the realization of optoelectronic functions. On the other hand, single-molecule optoelectronic devices offer a reliable platform to investigate the intrinsic physical phenomena and regulation rules of matters at the single-molecule level. To further realize and regulate the optoelectronic functions toward practical applications, it is necessary to clarify the intrinsic physical mechanisms of single-molecule optoelectronic nanodevices. Here, we provide a timely review to survey the physical phenomena and laws involved in single-molecule optoelectronic materials and devices, including charge effects, spin effects, exciton effects, vibronic effects, structural and orbital effects. In particular, we will systematically summarize the basics of molecular optoelectronic materials, and the physical effects and manipulations of single-molecule optoelectronic nanodevices. In addition, fundamentals of single-molecule electronics, which are basic of single-molecule optoelectronics, can also be found in this review. At last, we tend to focus the discussion on the opportunities and challenges arising in the field of single-molecule optoelectronics, and propose further potential breakthroughs.
Collapse
Affiliation(s)
- Peihui Li
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Li Zhou
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Cong Zhao
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Hongyu Ju
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, People's Republic of China
| | - Qinghua Gao
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Wei Si
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Li Cheng
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Jie Hao
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Mengmeng Li
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Yijian Chen
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Chuancheng Jia
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, People's Republic of China
| | - Xuefeng Guo
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, People's Republic of China
| |
Collapse
|
206
|
Zhang Y, Lou H, Zhang W, Wang M. Mussel-Inspired Surface Coating to Stabilize and Functionalize Supramolecular J-Aggregate Nanotubes Composed of Amphiphilic Cyanine Dyes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:8160-8168. [PMID: 35732001 DOI: 10.1021/acs.langmuir.2c01136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We report a mussel-inspired strategy of polydopamine (PDA) coating to stabilize and functionalize J-aggregate nanotubes (NTs) formed by supramolecular self-assembly of an amphiphilic cyanine dye called C8S3 in aqueous media. Optimization of the coating condition by changing the incubation time in a slightly basic media of dopamine with different concentrations leads to conformal wrapping of the PDA layer with controllable thickness on the surface of the NTs. Compared to noncoated pristine C8S3 NTs, these PDA-coated NTs show enhanced stability against dilution, heating, and photobleaching. Moreover, the PDA layer wrapping around the NTs serves as an adhesive for the adsorption of a variety of metal ions and electroless deposition of the metal nanoparticles. Such stabilized and functionalized NT composites may offer a robust synthetic J-aggregate system to mimic the structure and function of light-harvesting complexes and reaction centers in photosynthetic systems.
Collapse
Affiliation(s)
- Yipeng Zhang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Avenue, Shenzhen 518172 Guangdong, China
| | - He Lou
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Avenue, Shenzhen 518172 Guangdong, China
| | - Wei Zhang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Avenue, Shenzhen 518172 Guangdong, China
| | - Mingfeng Wang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Avenue, Shenzhen 518172 Guangdong, China
| |
Collapse
|
207
|
Ma J, Han N, Yu H, Li J, Shi J, Wang S, Zhang H, Wang M. Multi-Decker Emissive Supramolecular Architectures Based on Shape-Complementary Ligands Pair. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202167. [PMID: 35638477 DOI: 10.1002/smll.202202167] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Dye aggregates have attracted a great deal of attention due to their widespread applications in organic light-emitting devices, light-harvesting systems, etc. However, the strategies to precisely control chromophores with specific spatial arrangements still remain a great challenge. In this work, a series of double- and triple-decker supramolecular complexes are successfully constructed by coordination-driven self-assembly of carefully designed shape-complementary ligands, one claw-like tetraphenylethylene (TPE)-based host ligand and three tetratopic or ditopic guest ligands. The spatial configurations of these assemblies (one double-decker and three "S-shaped" or "X-shaped" triple-decker structures) depend on the angles of these TPE-derived ligands. Notably, the three triple-decker structures are geometric isomers. Furthermore, photophysical studies show that these complexes exhibit different ratios of radiative (kr ) and non-radiative (knr ) rate constant due to the different spatial arrangements of TPE moieties. This study provides not only a unique strategy for the construction of multi-stacks with specific spatial arrangement, but also a promising platform for investigating the aggregation behavior of fluorescent chromophores.
Collapse
Affiliation(s)
- Jianjun Ma
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Ningxu Han
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Hao Yu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Jiaqi Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Junjuan Shi
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Shaozhi Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Houyu Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Ming Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| |
Collapse
|
208
|
Mikalčiūtė A, Gelzinis A, Mačernis M, Büchel C, Robert B, Valkunas L, Chmeliov J. Structure-based model of fucoxanthin-chlorophyll protein complex: Calculations of chlorophyll electronic couplings. J Chem Phys 2022; 156:234101. [PMID: 35732526 DOI: 10.1063/5.0092154] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Diatoms are a group of marine algae that are responsible for a significant part of global oxygen production. Adapted to life in an aqueous environment dominated by the blue-green light, their major light-harvesting antennae-fucoxanthin-chlorophyll protein complexes (FCPs)-exhibit different pigment compositions than of plants. Despite extensive experimental studies, until recently the theoretical description of excitation energy dynamics in these complexes was limited by the lack of high-resolution structural data. In this work, we use the recently resolved crystallographic information of the FCP complex from Phaeodactylum tricornutum diatom [Wang et al., Science 363, 6427 (2019)] and quantum chemistry-based calculations to evaluate the chlorophyll transition dipole moments, atomic transition charges from electrostatic potential, and the inter-chlorophyll couplings in this complex. The obtained structure-based excitonic couplings form the foundation for any modeling of stationary or time-resolved spectroscopic data. We also calculate the inter-pigment Förster energy transfer rates and identify two quickly equilibrating chlorophyll clusters.
Collapse
Affiliation(s)
- Austėja Mikalčiūtė
- Institute of Chemical Physics, Faculty of Physics, Vilnius University, Saulėtekio Avenue 9, LT-10222 Vilnius, Lithuania
| | - Andrius Gelzinis
- Institute of Chemical Physics, Faculty of Physics, Vilnius University, Saulėtekio Avenue 9, LT-10222 Vilnius, Lithuania
| | - Mindaugas Mačernis
- Institute of Chemical Physics, Faculty of Physics, Vilnius University, Saulėtekio Avenue 9, LT-10222 Vilnius, Lithuania
| | - Claudia Büchel
- Institute of Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue Straße 9, 60438 Frankfurt, Germany
| | - Bruno Robert
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Leonas Valkunas
- Institute of Chemical Physics, Faculty of Physics, Vilnius University, Saulėtekio Avenue 9, LT-10222 Vilnius, Lithuania
| | - Jevgenij Chmeliov
- Institute of Chemical Physics, Faculty of Physics, Vilnius University, Saulėtekio Avenue 9, LT-10222 Vilnius, Lithuania
| |
Collapse
|
209
|
Han Y, Zhang X, Ge Z, Gao Z, Liao R, Wang F. A bioinspired sequential energy transfer system constructed via supramolecular copolymerization. Nat Commun 2022; 13:3546. [PMID: 35729110 PMCID: PMC9213434 DOI: 10.1038/s41467-022-31094-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 05/31/2022] [Indexed: 11/10/2022] Open
Abstract
Sequential energy transfer is ubiquitous in natural light harvesting systems to make full use of solar energy. Although various artificial systems have been developed with the biomimetic sequential energy transfer character, most of them exhibit the overall energy transfer efficiency lower than 70% due to the disordered organization of donor/acceptor chromophores. Herein a sequential energy transfer system is constructed via supramolecular copolymerization of σ-platinated (hetero)acenes, by taking inspiration from the natural light harvesting of green photosynthetic bacteria. The absorption and emission transitions of the three designed σ-platinated (hetero)acenes range from visible to NIR region through structural variation. Structural similarity of these monomers faciliates supramolecular copolymerization in apolar media via the nucleation-elongation mechanism. The resulting supramolecular copolymers display long diffusion length of excitation energy (> 200 donor units) and high exciton migration rates (~1014 L mol−1 s−1), leading to an overall sequential energy transfer efficiency of 87.4% for the ternary copolymers. The superior properties originate from the dense packing of σ-platinated (hetero)acene monomers in supramolecular copolymers, mimicking the aggregation mode of bacteriochlorophyll pigments in green photosynthetic bacteria. Overall, directional supramolecular copolymerization of donor/acceptor chromophores with high energy transfer efficiency would provide new avenues toward artificial photosynthesis applications. Sequential energy transfer is ubiquitous in natural light harvesting systems, but most artificial mimics have unsatisfactory energy transfer efficiency. Here, authors synthesize a sequential energy transfer system with overall efficiency of 87.4% via supramolecular copolymerization mimicking the aggregation mode of bacteriochlorophyll pigments in green photosynthetic bacteria.
Collapse
Affiliation(s)
- Yifei Han
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xiaolong Zhang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Zhiqing Ge
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Zhao Gao
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Rui Liao
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.
| | - Feng Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.
| |
Collapse
|
210
|
Higgins JS, Dardia AR, Ndife CJ, Lloyd LT, Bain EM, Engel GS. Leveraging Dynamical Symmetries in Two-Dimensional Electronic Spectra to Extract Population Transfer Pathways. J Phys Chem A 2022; 126:3594-3603. [PMID: 35621698 DOI: 10.1021/acs.jpca.2c01993] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We present a method to deterministically isolate population transfer kinetics from two-dimensional electronic spectroscopic signals. Central to this analysis is the characterization of how all possible subensembles of excited state systems evolve through the population time. When these dynamics are diagrammatically mapped by using double-sided Feynman pathways where population time dynamics are included, a useful symmetry emerges between excited state absorption and ground state bleach recovery dynamics of diagonal and below diagonal cross-peak signals. This symmetry allows removal of pathways from the spectra to isolate signals that evolve according to energy transfer kinetics. We describe a regression procedure to fit to energy transfer time constants and characterize the accuracy of the method in a variety of complex excited state systems using simulated two-dimensional spectra. Our results show that the method is robust for extracting ultrafast energy transfer in multistate excitonic systems, systems containing dark states that affect the signal kinetics, and systems with interfering vibrational relaxation pathways. This procedure can be used to accurately extract energy transfer kinetics from a wide variety of condensed phase systems.
Collapse
Affiliation(s)
- Jacob S Higgins
- Department of Chemistry, The Institute for Biophysical Dynamics, The James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
| | - Anna R Dardia
- Department of Chemistry, The Institute for Biophysical Dynamics, The James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
| | - Chidera J Ndife
- Department of Chemistry, The Institute for Biophysical Dynamics, The James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
| | - Lawson T Lloyd
- Department of Chemistry, The Institute for Biophysical Dynamics, The James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
| | - Elizabeth M Bain
- Department of Chemistry, The Institute for Biophysical Dynamics, The James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
| | - Gregory S Engel
- Department of Chemistry, The Institute for Biophysical Dynamics, The James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
211
|
Sarngadharan P, Maity S, Kleinekathöfer U. Spectral densities and absorption spectra of the core antenna complex CP43 from photosystem II. J Chem Phys 2022; 156:215101. [DOI: 10.1063/5.0091005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Besides absorbing light, the core antenna complex CP43 of photosystem II is of great importance in transferring excitation energy from the antenna complexes to the reaction center. Excitation energies, spectral densities, and linear absorption spectra of the complex have been evaluated by a multiscale approach. In this scheme, quantum mechanics/molecular mechanics molecular dynamics simulations are performed employing the parameterized density functional tight binding (DFTB) while the time-dependent long-range-corrected DFTB scheme is applied for the excited state calculations. The obtained average spectral density of the CP43 complex shows a very good agreement with experimental results. Moreover, the excitonic Hamiltonian of the system along with the computed site-dependent spectral densities was used to determine the linear absorption. While a Redfield-like approximation has severe shortcomings in dealing with the CP43 complex due to quasi-degenerate states, the non-Markovian full second-order cumulant expansion formalism is able to overcome the drawbacks. Linear absorption spectra were obtained, which show a good agreement with the experimental counterparts at different temperatures. This study once more emphasizes that by combining diverse techniques from the areas of molecular dynamics simulations, quantum chemistry, and open quantum systems, it is possible to obtain first-principle results for photosynthetic complexes, which are in accord with experimental findings.
Collapse
Affiliation(s)
- Pooja Sarngadharan
- Department of Physics and Earth Sciences, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Sayan Maity
- Department of Physics and Earth Sciences, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Ulrich Kleinekathöfer
- Department of Physics and Earth Sciences, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| |
Collapse
|
212
|
Liang W, Pei Z, Mao Y, Shao Y. Evaluation of molecular photophysical and photochemical properties using linear response time-dependent density functional theory with classical embedding: Successes and challenges. J Chem Phys 2022; 156:210901. [PMID: 35676148 PMCID: PMC9162785 DOI: 10.1063/5.0088271] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/15/2022] [Indexed: 01/04/2023] Open
Abstract
Time-dependent density functional theory (TDDFT) based approaches have been developed in recent years to model the excited-state properties and transition processes of the molecules in the gas-phase and in a condensed medium, such as in a solution and protein microenvironment or near semiconductor and metal surfaces. In the latter case, usually, classical embedding models have been adopted to account for the molecular environmental effects, leading to the multi-scale approaches of TDDFT/polarizable continuum model (PCM) and TDDFT/molecular mechanics (MM), where a molecular system of interest is designated as the quantum mechanical region and treated with TDDFT, while the environment is usually described using either a PCM or (non-polarizable or polarizable) MM force fields. In this Perspective, we briefly review these TDDFT-related multi-scale models with a specific emphasis on the implementation of analytical energy derivatives, such as the energy gradient and Hessian, the nonadiabatic coupling, the spin-orbit coupling, and the transition dipole moment as well as their nuclear derivatives for various radiative and radiativeless transition processes among electronic states. Three variations of the TDDFT method, the Tamm-Dancoff approximation to TDDFT, spin-flip DFT, and spin-adiabatic TDDFT, are discussed. Moreover, using a model system (pyridine-Ag20 complex), we emphasize that caution is needed to properly account for system-environment interactions within the TDDFT/MM models. Specifically, one should appropriately damp the electrostatic embedding potential from MM atoms and carefully tune the van der Waals interaction potential between the system and the environment. We also highlight the lack of proper treatment of charge transfer between the quantum mechanics and MM regions as well as the need for accelerated TDDFT modelings and interpretability, which calls for new method developments.
Collapse
Affiliation(s)
- WanZhen Liang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| | - Zheng Pei
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| | - Yuezhi Mao
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | - Yihan Shao
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, USA
| |
Collapse
|
213
|
Zhou X, Lin S, Yan H. Interfacing DNA nanotechnology and biomimetic photonic complexes: advances and prospects in energy and biomedicine. J Nanobiotechnology 2022; 20:257. [PMID: 35658974 PMCID: PMC9164479 DOI: 10.1186/s12951-022-01449-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/05/2022] [Indexed: 11/16/2022] Open
Abstract
Self-assembled photonic systems with well-organized spatial arrangement and engineered optical properties can be used as efficient energy materials and as effective biomedical agents. The lessons learned from natural light-harvesting antennas have inspired the design and synthesis of a series of biomimetic photonic complexes, including those containing strongly coupled dye aggregates with dense molecular packing and unique spectroscopic features. These photoactive components provide excellent features that could be coupled to multiple applications including light-harvesting, energy transfer, biosensing, bioimaging, and cancer therapy. Meanwhile, nanoscale DNA assemblies have been employed as programmable and addressable templates to guide the formation of DNA-directed multi-pigment complexes, which can be used to enhance the complexity and precision of artificial photonic systems and show the potential for energy and biomedical applications. This review focuses on the interface of DNA nanotechnology and biomimetic photonic systems. We summarized the recent progress in the design, synthesis, and applications of bioinspired photonic systems, highlighted the advantages of the utilization of DNA nanostructures, and discussed the challenges and opportunities they provide.
Collapse
Affiliation(s)
- Xu Zhou
- Center for Molecular Design and Biomimetics at the Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Su Lin
- Center for Molecular Design and Biomimetics at the Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA.,School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Hao Yan
- Center for Molecular Design and Biomimetics at the Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA. .,School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA.
| |
Collapse
|
214
|
Zhou X, Liu H, Djutanta F, Satyabola D, Jiang S, Qi X, Yu L, Lin S, Hariadi RF, Liu Y, Woodbury NW, Yan H. DNA-templated programmable excitonic wires for micron-scale exciton transport. Chem 2022. [DOI: 10.1016/j.chempr.2022.05.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
215
|
Kim JH, Schembri T, Bialas D, Stolte M, Würthner F. Slip-Stacked J-Aggregate Materials for Organic Solar Cells and Photodetectors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2104678. [PMID: 34668248 DOI: 10.1002/adma.202104678] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Dye-dye interactions affect the optical and electronic properties in organic semiconductor films of light harvesting and detecting optoelectronic applications. This review elaborates how to tailor these properties of organic semiconductors for organic solar cells (OSCs) and organic photodiodes (OPDs). While these devices rely on similar materials, the demands for their optical properties are rather different, the former requiring a broad absorption spectrum spanning from the UV over visible up to the near-infrared region and the latter an ultra-narrow absorption spectrum at a specific, targeted wavelength. In order to design organic semiconductors satisfying these demands, fundamental insights on the relationship of optical properties are provided depending on molecular packing arrangement and the resultant electronic coupling thereof. Based on recent advancements in the theoretical understanding of intermolecular interactions between slip-stacked dyes, distinguishing classical J-aggregates with predominant long-range Coulomb coupling from charge transfer (CT)-mediated or -coupled J-aggregates, whose red-shifts are primarily governed by short-range orbital interactions, is suggested. Within this framework, the relationship between aggregate structure and functional properties of representative classes of dye aggregates is analyzed for the most advanced OSCs and wavelength-selective OPDs, providing important insights into the rational design of thin-film optoelectronic materials.
Collapse
Affiliation(s)
- Jin Hong Kim
- Center for Nanosystems Chemistry (CNC) and Bavarian Polymer Institute (BPI), Universität Würzburg, Theodor-Boveri-Weg, 97074, Würzburg, Germany
| | - Tim Schembri
- Center for Nanosystems Chemistry (CNC) and Bavarian Polymer Institute (BPI), Universität Würzburg, Theodor-Boveri-Weg, 97074, Würzburg, Germany
| | - David Bialas
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Matthias Stolte
- Center for Nanosystems Chemistry (CNC) and Bavarian Polymer Institute (BPI), Universität Würzburg, Theodor-Boveri-Weg, 97074, Würzburg, Germany
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Frank Würthner
- Center for Nanosystems Chemistry (CNC) and Bavarian Polymer Institute (BPI), Universität Würzburg, Theodor-Boveri-Weg, 97074, Würzburg, Germany
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| |
Collapse
|
216
|
Hernández-Pacheco CE, Almaraz-Abarca N, Rojas-López M, Torres-Ricario R, Ávila-Reyes JA, González-Valdez LS, Delgado-Alvarado EA, Moreno-Anguiano O, Uribe-Soto JN. Salinity generates variable chemical and biochemical responses in Physalis ixocarpa (Solanaceae) during different times of exposure. ELECTRON J BIOTECHN 2022. [DOI: 10.1016/j.ejbt.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
217
|
Sardar S, Caferri R, Camargo FVA, Pamos Serrano J, Ghezzi A, Capaldi S, Dall’Osto L, Bassi R, D’Andrea C, Cerullo G. Molecular mechanisms of light harvesting in the minor antenna CP29 in near-native membrane lipidic environment. J Chem Phys 2022; 156:205101. [DOI: 10.1063/5.0087898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
CP29, a chlorophyll a/ b-xanthophyll binding protein, bridges energy transfer between the major LHCII antenna complexes and photosystem II reaction centers. It hosts one of the two identified quenching sites, making it crucial for regulated photoprotection mechanisms. Until now, the photophysics of CP29 has been studied on the purified protein in detergent solutions since spectrally overlapping signals affect in vivo measurements. However, the protein in detergent assumes non-native conformations compared to its physiological state in the thylakoid membrane. Here, we report a detailed photophysical study on CP29 inserted in discoidal lipid bilayers, known as nanodiscs, which mimic the native membrane environment. Using picosecond time-resolved fluorescence and femtosecond transient absorption (TA), we observed shortening of the Chl fluorescence lifetime with a decrease of the carotenoid triplet formation yield for CP29 in nanodiscs as compared to the protein in detergent. Global analysis of TA data suggests a 1Chl* quenching mechanism dependent on excitation energy transfer to a carotenoid dark state, likely the proposed S*, which is believed to be formed due to a carotenoid conformational change affecting the S1 state. We suggest that the accessibility of the S* state in different local environments plays a key role in determining the quenching of Chl excited states. In vivo, non-photochemical quenching is activated by de-epoxidation of violaxanthin into zeaxanthin. CP29-zeaxanthin in nanodiscs further shortens the Chl lifetime, which underlines the critical role of zeaxanthin in modulating photoprotection activity.
Collapse
Affiliation(s)
- Samim Sardar
- Center for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, 20133 Milan, Italy
| | - Roberto Caferri
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Franco V. A. Camargo
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Piazza L. da Vinci 32, 20133 Milano, Italy
| | - Javier Pamos Serrano
- Dipartimento di Fisica, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy
| | - Alberto Ghezzi
- Dipartimento di Fisica, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy
| | - Stefano Capaldi
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Luca Dall’Osto
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Roberto Bassi
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Cosimo D’Andrea
- Center for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, 20133 Milan, Italy
- Dipartimento di Fisica, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy
| | - Giulio Cerullo
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Piazza L. da Vinci 32, 20133 Milano, Italy
- Dipartimento di Fisica, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy
| |
Collapse
|
218
|
Biaggne A, Spear L, Barcenas G, Ketteridge M, Kim YC, Melinger JS, Knowlton WB, Yurke B, Li L. Data-Driven and Multiscale Modeling of DNA-Templated Dye Aggregates. Molecules 2022; 27:3456. [PMID: 35684394 PMCID: PMC9182218 DOI: 10.3390/molecules27113456] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/21/2022] [Accepted: 05/23/2022] [Indexed: 02/04/2023] Open
Abstract
Dye aggregates are of interest for excitonic applications, including biomedical imaging, organic photovoltaics, and quantum information systems. Dyes with large transition dipole moments (μ) are necessary to optimize coupling within dye aggregates. Extinction coefficients (ε) can be used to determine the μ of dyes, and so dyes with a large ε (>150,000 M−1cm−1) should be engineered or identified. However, dye properties leading to a large ε are not fully understood, and low-throughput methods of dye screening, such as experimental measurements or density functional theory (DFT) calculations, can be time-consuming. In order to screen large datasets of molecules for desirable properties (i.e., large ε and μ), a computational workflow was established using machine learning (ML), DFT, time-dependent (TD-) DFT, and molecular dynamics (MD). ML models were developed through training and validation on a dataset of 8802 dyes using structural features. A Classifier was developed with an accuracy of 97% and a Regressor was constructed with an R2 of above 0.9, comparing between experiment and ML prediction. Using the Regressor, the ε values of over 18,000 dyes were predicted. The top 100 dyes were further screened using DFT and TD-DFT to identify 15 dyes with a μ relative to a reference dye, pentamethine indocyanine dye Cy5. Two benchmark MD simulations were performed on Cy5 and Cy5.5 dimers, and it was found that MD could accurately capture experimental results. The results of this study exhibit that our computational workflow for identifying dyes with a large μ for excitonic applications is effective and can be used as a tool to develop new dyes for excitonic applications.
Collapse
Affiliation(s)
- Austin Biaggne
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID 83725, USA; (A.B.); (L.S.); (G.B.); (M.K.); (W.B.K.); (B.Y.)
| | - Lawrence Spear
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID 83725, USA; (A.B.); (L.S.); (G.B.); (M.K.); (W.B.K.); (B.Y.)
| | - German Barcenas
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID 83725, USA; (A.B.); (L.S.); (G.B.); (M.K.); (W.B.K.); (B.Y.)
| | - Maia Ketteridge
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID 83725, USA; (A.B.); (L.S.); (G.B.); (M.K.); (W.B.K.); (B.Y.)
| | - Young C. Kim
- Materials Science and Technology Division, U.S. Naval Research Laboratory, Washington, DC 20375, USA;
| | - Joseph S. Melinger
- Electronics Science and Technology Division, U.S. Naval Research Laboratory, Washington, DC 20375, USA;
| | - William B. Knowlton
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID 83725, USA; (A.B.); (L.S.); (G.B.); (M.K.); (W.B.K.); (B.Y.)
- Department of Electrical and Computer Engineering, Boise State University, Boise, ID 83725, USA
| | - Bernard Yurke
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID 83725, USA; (A.B.); (L.S.); (G.B.); (M.K.); (W.B.K.); (B.Y.)
- Department of Electrical and Computer Engineering, Boise State University, Boise, ID 83725, USA
| | - Lan Li
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID 83725, USA; (A.B.); (L.S.); (G.B.); (M.K.); (W.B.K.); (B.Y.)
- Center for Advanced Energy Studies, Idaho Falls, ID 83401, USA
| |
Collapse
|
219
|
Cignoni E, Cupellini L, Mennucci B. A fast method for electronic couplings in embedded multichromophoric systems. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:304004. [PMID: 35552268 DOI: 10.1088/1361-648x/ac6f3c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Electronic couplings are key to understanding exciton delocalization and transport in natural and artificial light harvesting processes. We develop a method to compute couplings in multichromophoric aggregates embedded in complex environments without running expensive quantum chemical calculations. We use a transition charge approximation to represent the quantum mechanical transition densities of the chromophores and an atomistic and polarizable classical model to describe the environment atoms. We extend our framework to estimate transition charges directly from the chromophore geometry, i.e., bypassing completely the quantum mechanical calculations using a regression approach. The method allows to rapidly compute accurate couplings for a large number of geometries along molecular dynamics trajectories.
Collapse
Affiliation(s)
- Edoardo Cignoni
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, via G. Moruzzi 13, 56124, Pisa, Italy
| | - Lorenzo Cupellini
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, via G. Moruzzi 13, 56124, Pisa, Italy
| | - Benedetta Mennucci
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, via G. Moruzzi 13, 56124, Pisa, Italy
| |
Collapse
|
220
|
Li Y, Xia C, Tian R, Zhao L, Hou J, Wang J, Luo Q, Xu J, Wang L, Hou C, Yang B, Sun H, Liu J. "On/Off" Switchable Sequential Light-Harvesting Systems Based on Controllable Protein Nanosheets for Regulation of Photocatalysis. ACS NANO 2022; 16:8012-8021. [PMID: 35510764 DOI: 10.1021/acsnano.2c00960] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A controllable protein nanostructures-based "On/Off" switchable artificial light-harvesting system (LHS) with sequential multistep energy transfer and photocatalysis was reported herein for mimicking the natural LHS in both structure and function. Single-layered protein nanosheets were first constructed via a reversible covalent self-assembly strategy using cricoid stable protein one (SP1) as building blocks to realize an ordered arrangement of pigments. Fluorescent chromophores like carbon dots (CDs) can be precisely distributed on the protein nanosheets superficially via electrostatic interactions and make the ratio between donors and acceptors adjustable. After being anchored with a photocatalysis center (eosin-5-isothiocyanate, EY), the constructed LHS could sequentially transfer energy between two kinds of chromophores (CD1 and CD2), and further transfer to EY center with a high efficiency of 84%. Interestingly, the Förster resonance energy transfer (FRET) process of our LHS could be reversibly "On/Off" switched by the redox regulated assembly and disassembly of SP1 building blocks. Moreover, the LHS has been further proved to promote the yield of a model cross-coupling hydrogen evolution reaction and regulate the process of the reaction with the FRET process "On/Off" state.
Collapse
Affiliation(s)
- Yijia Li
- State Key laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Chunlei Xia
- State Key laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Ruizhen Tian
- State Key laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Linlu Zhao
- State Key laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Jinxing Hou
- State Key laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Jieqiong Wang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Quan Luo
- State Key laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Jiayun Xu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Liang Wang
- State Key laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Chunxi Hou
- State Key laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Bai Yang
- State Key laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Hongcheng Sun
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Junqiu Liu
- State Key laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
221
|
Millet A, Cesana PT, Sedillo K, Bird MJ, Schlau-Cohen GS, Doyle AG, MacMillan DWC, Scholes GD. Bioinspired Supercharging of Photoredox Catalysis for Applications in Energy and Chemical Manufacturing. Acc Chem Res 2022; 55:1423-1434. [PMID: 35471814 DOI: 10.1021/acs.accounts.2c00083] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
ConspectusFor more than a decade, photoredox catalysis has been demonstrating that when photoactive catalysts are irradiated with visible light, reactions occur under milder, cheaper, and environmentally friendlier conditions. Furthermore, this methodology allows for the activation of abundant chemicals into valuable products through novel mechanisms that are otherwise inaccessible. The photoredox approach, however, has been primarily used for pharmaceutical applications, where its implementation has been highly effective, but typically with a more rudimentary understanding of the mechanisms involved in these transformations. From a global perspective, the manufacture of everyday chemicals by the chemical industry as a whole currently accounts for 10% of total global energy consumption and generates 7% of the world's greenhouse gases annually. In this context, the Bio-Inspired Light-Escalated Chemistry (BioLEC) Energy Frontier Research Center (EFRC) was founded to supercharge the photoredox approach for applications in chemical manufacturing aimed at reducing its energy consumption and emissions burden, by using bioinspired schemes to harvest multiple electrons to drive endothermically uphill chemical reactions. The Center comprises a diverse group of researchers with expertise that includes synthetic chemistry, biophysics, physical chemistry, and engineering. The team works together to gain a deeper understanding of the mechanistic details of photoredox reactions while amplifying the applications of these light-driven methodologies.In this Account, we review some of the major advances in understanding, approach, and applicability made possible by this collaborative Center. Combining sophisticated spectroscopic tools and photophysics tactics with enhanced photoredox reactions has led to the development of novel techniques and reactivities that greatly expand the field and its capabilities. The Account is intended to highlight how the interplay between disciplines can have a major impact and facilitate the advance of the field. For example, techniques such as time-resolved dielectric loss (TRDL) and pulse radiolysis are providing mechanistic insights not previously available. Hypothesis-driven photocatalyst design thus led to broadening of the scope of several existing transformations. Moreover, bioconjugation approaches and the implementation of triplet-triplet annihilation mechanisms created new avenues for the exploration of reactivities. Lastly, our multidisciplinary approach to tackling real-world problems has inspired the development of efficient methods for the depolymerization of lignin and artificial polymers.
Collapse
Affiliation(s)
- Agustin Millet
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Paul T. Cesana
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Kassandra Sedillo
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Matthew J. Bird
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Gabriela S. Schlau-Cohen
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Abigail G. Doyle
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - David W. C. MacMillan
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Gregory D. Scholes
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
222
|
Han M, Karatum O, Nizamoglu S. Optoelectronic Neural Interfaces Based on Quantum Dots. ACS APPLIED MATERIALS & INTERFACES 2022; 14:20468-20490. [PMID: 35482955 PMCID: PMC9100496 DOI: 10.1021/acsami.1c25009] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 04/15/2022] [Indexed: 05/26/2023]
Abstract
Optoelectronic modulation of neural activity is an emerging field for the investigation of neural circuits and the development of neural therapeutics. Among a wide variety of nanomaterials, colloidal quantum dots provide unique optoelectronic features for neural interfaces such as sensitive tuning of electron and hole energy levels via the quantum confinement effect, controlling the carrier localization via band alignment, and engineering the surface by shell growth and ligand engineering. Even though colloidal quantum dots have been frontier nanomaterials for solar energy harvesting and lighting, their application to optoelectronic neural interfaces has remained below their significant potential. However, this potential has recently gained attention with the rise of bioelectronic medicine. In this review, we unravel the fundamentals of quantum-dot-based optoelectronic biointerfaces and discuss their neuromodulation mechanisms starting from the quantum dot level up to electrode-electrolyte interactions and stimulation of neurons with their physiological pathways. We conclude the review by proposing new strategies and possible perspectives toward nanodevices for the optoelectronic stimulation of neural tissue by utilizing the exceptional nanoscale properties of colloidal quantum dots.
Collapse
Affiliation(s)
- Mertcan Han
- Department
of Electrical and Electronics Engineering, Koç University, Istanbul 34450, Turkey
| | - Onuralp Karatum
- Department
of Electrical and Electronics Engineering, Koç University, Istanbul 34450, Turkey
| | - Sedat Nizamoglu
- Department
of Electrical and Electronics Engineering, Koç University, Istanbul 34450, Turkey
- Graduate
School of Biomedical Science and Engineering, Koç University, Istanbul 34450, Turkey
| |
Collapse
|
223
|
Runeson JE, Lawrence JE, Mannouch JR, Richardson JO. Explaining the Efficiency of Photosynthesis: Quantum Uncertainty or Classical Vibrations? J Phys Chem Lett 2022; 13:3392-3399. [PMID: 35404611 PMCID: PMC9036581 DOI: 10.1021/acs.jpclett.2c00538] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
Photosynthetic organisms are known to use a mechanism of vibrationally assisted exciton energy transfer to efficiently harvest energy from light. The importance of quantum effects in this mechanism is a long-standing topic of debate, which has traditionally focused on the role of excitonic coherences. Here, we address another recent claim: that the efficient energy transfer in the Fenna-Matthews-Olson complex relies on nuclear quantum uncertainty and would not function if the vibrations were classical. We present a counter-example to this claim, showing by trajectory-based simulations that a description in terms of quantum electrons and classical nuclei is indeed sufficient to describe the funneling of energy to the reaction center. We analyze and compare these findings to previous classical-nuclear approximations that predicted the absence of an energy funnel and conclude that the key difference and the reason for the discrepancy is the ability of the trajectories to properly account for Newton's third law.
Collapse
Affiliation(s)
- Johan E. Runeson
- Laboratory of Physical Chemistry, ETH Zürich, 8093 Zürich, Switzerland
| | | | | | | |
Collapse
|
224
|
Barclay MS, Wilson CK, Roy SK, Mass OA, Obukhova OM, Svoiakov RP, Tatarets AL, Chowdhury AU, Huff JS, Turner DB, Davis PH, Terpetschnig EA, Yurke B, Knowlton WB, Lee J, Pensack RD. Oblique Packing and Tunable Excitonic Coupling in DNA‐Templated Squaraine Rotaxane Dimer Aggregates. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202200039] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Matthew S. Barclay
- Boise State University Micron School of Materials Science & Engineering UNITED STATES
| | - Christopher K. Wilson
- Boise State University Micron School of Materials Science & Engineering UNITED STATES
| | - Simon K. Roy
- Boise State University Micron School of Materials Science & Engineering UNITED STATES
| | - Olga A. Mass
- Boise State University Micron School of Materials Science & Engineering UNITED STATES
| | - Olena M. Obukhova
- SSI Institute for Single Crystals NAS of Ukraine: Naukovo-tehnologicnij kompleks Institut monokristaliv Nacional'na akademia nauk Ukraini Department of Luminescent Materials and Dyes UKRAINE
| | - Rostyslav P. Svoiakov
- SSI Institute for Single Crystals NAS of Ukraine: Naukovo-tehnologicnij kompleks Institut monokristaliv Nacional'na akademia nauk Ukraini Department of Luminescent Materials and Dyes UKRAINE
| | - Anatoliy L. Tatarets
- SSI Institute for Single Crystals NAS of Ukraine: Naukovo-tehnologicnij kompleks Institut monokristaliv Nacional'na akademia nauk Ukraini Department of Luminescent Materials and Dyes UKRAINE
| | - Azhad U. Chowdhury
- Boise State University Micron School of Materials Science & Engineering UNITED STATES
| | - Jonathan S. Huff
- Boise State University Micron School of Materials Science & Engineering UNITED STATES
| | - Daniel B. Turner
- Boise State University Micron School of Materials Science & Engineering UNITED STATES
| | - Paul H. Davis
- Boise State University Micron School of Materials Science & Engineering UNITED STATES
| | | | - Bernard Yurke
- Boise State University Micron School of Materials Science & Engineering; Department of Electrical & Computer Engineering UNITED STATES
| | - William B. Knowlton
- Boise State University Micron School of Materials Science & Engineering; Department of Electrical & Computer Engineering UNITED STATES
| | - Jeunghoon Lee
- Boise State University Micron School of Materials Science & Engineering; Department of Chemistry & Biochemistry UNITED STATES
| | - Ryan D. Pensack
- Boise State University Micron School of Materials Science & Engineering 1435 W University Dr 83706 Boise UNITED STATES
| |
Collapse
|
225
|
Yu Z, Bisoyi HK, Chen XM, Nie ZZ, Wang M, Yang H, Li Q. An Artificial Light-Harvesting System with Controllable Efficiency Enabled by an Annulene-Based Anisotropic Fluid. Angew Chem Int Ed Engl 2022; 61:e202200466. [PMID: 35100478 DOI: 10.1002/anie.202200466] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Indexed: 12/17/2022]
Abstract
The development of controllable artificial light-harvesting systems based on liquid crystal (LC) materials, i.e., anisotropic fluids, remains a challenge. Herein, an annulene-based discotic LC compound 6 with a saddle-shaped cyclooctatetrathiophene core has been synthesized to construct a tunable light-harvesting platform. The LC material shows a typical aggregation-induced emission, which can act as a suitable light-harvesting donor. By loading Nile red (NiR) as an acceptor, an artificial light-harvesting system is achieved. Relying on the thermal-responsive self-assembling ability of 6 with variable molecular order, the efficiency of such 6-NiR system can be controlled by temperature. This light-harvesting system works sensitively at a high donor/acceptor ratio as 1000 : 1, and exhibits a high antenna effect (39.1) at a 100 : 1 donor/acceptor ratio. This thermochromic artificial light-harvesting LC system could find potential applications in smart devices employing soft materials.
Collapse
Affiliation(s)
- Zhen Yu
- Institute of Advanced Materials, School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, China
| | - Hari Krishna Bisoyi
- Advanced Materials and Liquid Crystal Institute, Chemical Physics Interdisciplinary Program, Kent State University, Kent, OH 44242, USA
| | - Xu-Man Chen
- Institute of Advanced Materials, School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, China
| | - Zhen-Zhou Nie
- Institute of Advanced Materials, School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, China
| | - Meng Wang
- Institute of Advanced Materials, School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, China
| | - Hong Yang
- Institute of Advanced Materials, School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, China
| | - Quan Li
- Institute of Advanced Materials, School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, China.,Advanced Materials and Liquid Crystal Institute, Chemical Physics Interdisciplinary Program, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
226
|
Cryogenic TEM imaging of artificial light harvesting complexes outside equilibrium. Sci Rep 2022; 12:5552. [PMID: 35365716 PMCID: PMC8975939 DOI: 10.1038/s41598-022-09496-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/24/2022] [Indexed: 11/19/2022] Open
Abstract
The energy transport in natural light-harvesting complexes can be explored in laboratory conditions via self-assembled supramolecular structures. One such structure arises from the amphiphilic dye C8S3 molecules, which self-assemble in an aqueous medium to a double-wall cylindrical nanotube reminiscent of natural light-harvesting complexes found in green sulphur bacteria. In this paper, we report a way to investigate the structure of inner nanotubes (NTs) alone by dissolving the outer NTs in a microfluidic setting. The resulting thermodynamically unstable system was rapidly frozen, preventing the reassembly of the outer NT from the dissolved molecules, and imaged using cryogenic transmission electron microscopy (cryo-TEM). The experimental cryo-TEM images and the molecular structure were compared by simulating high-resolution TEM images, which were based on the molecular modelling of C8S3 NTs. We found that the inner NT with outer walls removed during the flash-dilution process had a similar size to the parent double-walled NTs. Moreover, no structural inhomogeneity was observed in the inner NT after flash-dilution. This opens up exciting possibilities for functionalisation of inner NTs before the reassembly of the outer NT occurs, which can be broadly extended to modify the intra-architecture of other self-assembled nanostructures.
Collapse
|
227
|
Simkin AJ, Kapoor L, Doss CGP, Hofmann TA, Lawson T, Ramamoorthy S. The role of photosynthesis related pigments in light harvesting, photoprotection and enhancement of photosynthetic yield in planta. PHOTOSYNTHESIS RESEARCH 2022; 152:23-42. [PMID: 35064531 DOI: 10.1007/s11120-021-00892-6] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 12/13/2021] [Indexed: 05/06/2023]
Abstract
Photosynthetic pigments are an integral and vital part of all photosynthetic machinery and are present in different types and abundances throughout the photosynthetic apparatus. Chlorophyll, carotenoids and phycobilins are the prime photosynthetic pigments which facilitate efficient light absorption in plants, algae, and cyanobacteria. The chlorophyll family plays a vital role in light harvesting by absorbing light at different wavelengths and allowing photosynthetic organisms to adapt to different environments, either in the long-term or during transient changes in light. Carotenoids play diverse roles in photosynthesis, including light capture and as crucial antioxidants to reduce photodamage and photoinhibition. In the marine habitat, phycobilins capture a wide spectrum of light and have allowed cyanobacteria and red algae to colonise deep waters where other frequencies of light are attenuated by the water column. In this review, we discuss the potential strategies that photosynthetic pigments provide, coupled with development of molecular biological techniques, to improve crop yields through enhanced light harvesting, increased photoprotection and improved photosynthetic efficiency.
Collapse
Affiliation(s)
- Andrew J Simkin
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, United Kingdom
| | - Leepica Kapoor
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - C George Priya Doss
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Tanja A Hofmann
- OSFC, Scrivener Drive, Pinewood, Ipswich, IP8 3SU, United Kingdom
| | - Tracy Lawson
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, United Kingdom
| | - Siva Ramamoorthy
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
228
|
Chowdhury A, Díaz S, Huff JS, Barclay MS, Chiriboga M, Ellis GA, Mathur D, Patten LK, Sup A, Hallstrom N, Cunningham PD, Lee J, Davis PH, Turner DB, Yurke B, Knowlton WB, Medintz IL, Melinger JS, Pensack RD. Tuning between Quenching and Energy Transfer in DNA-Templated Heterodimer Aggregates. J Phys Chem Lett 2022; 13:2782-2791. [PMID: 35319215 PMCID: PMC8978177 DOI: 10.1021/acs.jpclett.2c00017] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/15/2022] [Indexed: 05/07/2023]
Abstract
Molecular excitons, which propagate spatially via electronic energy transfer, are central to numerous applications including light harvesting, organic optoelectronics, and nanoscale computing; they may also benefit applications such as photothermal therapy and photoacoustic imaging through the local generation of heat via rapid excited-state quenching. Here we show how to tune between energy transfer and quenching for heterodimers of the same pair of cyanine dyes by altering their spatial configuration on a DNA template. We assemble "transverse" and "adjacent" heterodimers of Cy5 and Cy5.5 using DNA Holliday junctions. We find that the transverse heterodimers exhibit optical properties consistent with excitonically interacting dyes and fluorescence quenching, while the adjacent heterodimers exhibit optical properties consistent with nonexcitonically interacting dyes and disproportionately large Cy5.5 emission, suggestive of energy transfer between dyes. We use transient absorption spectroscopy to show that quenching in the transverse heterodimer occurs via rapid nonradiative decay to the ground state (∼31 ps) and that in the adjacent heterodimer rapid energy transfer from Cy5 to Cy5.5 (∼420 fs) is followed by Cy5.5 excited-state relaxation (∼700 ps). Accessing such drastically different photophysics, which may be tuned on demand for different target applications, highlights the utility of DNA as a template for dye aggregation.
Collapse
Affiliation(s)
- Azhad
U. Chowdhury
- Micron
School of Materials Science & Engineering, Department of Physics, Department of Chemistry
& Biochemistry, and Department of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Sebastián
A. Díaz
- Center for Bio/Molecular
Science and Engineering Code 6900 and Electronics Science
and Technology Division Code 6800, U.S.
Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Jonathan S. Huff
- Micron
School of Materials Science & Engineering, Department of Physics, Department of Chemistry
& Biochemistry, and Department of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Matthew S. Barclay
- Micron
School of Materials Science & Engineering, Department of Physics, Department of Chemistry
& Biochemistry, and Department of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Matthew Chiriboga
- Center for Bio/Molecular
Science and Engineering Code 6900 and Electronics Science
and Technology Division Code 6800, U.S.
Naval Research Laboratory, Washington, D.C. 20375, United States
- Volgenau
School of Engineering, George Mason University, Fairfax, Virginia 22030, United States
| | - Gregory A. Ellis
- Center for Bio/Molecular
Science and Engineering Code 6900 and Electronics Science
and Technology Division Code 6800, U.S.
Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Divita Mathur
- Center for Bio/Molecular
Science and Engineering Code 6900 and Electronics Science
and Technology Division Code 6800, U.S.
Naval Research Laboratory, Washington, D.C. 20375, United States
- College
of
Science, George Mason University, Fairfax, Virginia 22030, United States
| | - Lance K. Patten
- Micron
School of Materials Science & Engineering, Department of Physics, Department of Chemistry
& Biochemistry, and Department of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Aaron Sup
- Micron
School of Materials Science & Engineering, Department of Physics, Department of Chemistry
& Biochemistry, and Department of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Natalya Hallstrom
- Micron
School of Materials Science & Engineering, Department of Physics, Department of Chemistry
& Biochemistry, and Department of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Paul D. Cunningham
- Center for Bio/Molecular
Science and Engineering Code 6900 and Electronics Science
and Technology Division Code 6800, U.S.
Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Jeunghoon Lee
- Micron
School of Materials Science & Engineering, Department of Physics, Department of Chemistry
& Biochemistry, and Department of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Paul H. Davis
- Micron
School of Materials Science & Engineering, Department of Physics, Department of Chemistry
& Biochemistry, and Department of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Daniel B. Turner
- Micron
School of Materials Science & Engineering, Department of Physics, Department of Chemistry
& Biochemistry, and Department of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Bernard Yurke
- Micron
School of Materials Science & Engineering, Department of Physics, Department of Chemistry
& Biochemistry, and Department of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, United States
| | - William B. Knowlton
- Micron
School of Materials Science & Engineering, Department of Physics, Department of Chemistry
& Biochemistry, and Department of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Igor L. Medintz
- Center for Bio/Molecular
Science and Engineering Code 6900 and Electronics Science
and Technology Division Code 6800, U.S.
Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Joseph S. Melinger
- Center for Bio/Molecular
Science and Engineering Code 6900 and Electronics Science
and Technology Division Code 6800, U.S.
Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Ryan D. Pensack
- Micron
School of Materials Science & Engineering, Department of Physics, Department of Chemistry
& Biochemistry, and Department of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, United States
| |
Collapse
|
229
|
Cignoni E, Slama V, Cupellini L, Mennucci B. The atomistic modeling of light-harvesting complexes from the physical models to the computational protocol. J Chem Phys 2022; 156:120901. [DOI: 10.1063/5.0086275] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The function of light-harvesting complexes is determined by a complex network of dynamic interactions among all the different components: the aggregate of pigments, the protein, and the surrounding environment. Complete and reliable predictions on these types of composite systems can be only achieved with an atomistic description. In the last few decades, there have been important advances in the atomistic modeling of light-harvesting complexes. These advances have involved both the completeness of the physical models and the accuracy and effectiveness of the computational protocols. In this Perspective, we present an overview of the main theoretical and computational breakthroughs attained so far in the field, with particular focus on the important role played by the protein and its dynamics. We then discuss the open problems in their accurate modeling that still need to be addressed. To illustrate an effective computational workflow for the modeling of light harvesting complexes, we take as an example the plant antenna complex CP29 and its H111N mutant.
Collapse
Affiliation(s)
- Edoardo Cignoni
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, via G. Moruzzi 13, 56124 Pisa, Italy
| | - Vladislav Slama
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, via G. Moruzzi 13, 56124 Pisa, Italy
| | - Lorenzo Cupellini
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, via G. Moruzzi 13, 56124 Pisa, Italy
| | - Benedetta Mennucci
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, via G. Moruzzi 13, 56124 Pisa, Italy
| |
Collapse
|
230
|
Moreno-Cardoner M, Holzinger R, Ritsch H. Efficient nano-photonic antennas based on dark states in quantum emitter rings. OPTICS EXPRESS 2022; 30:10779-10791. [PMID: 35473037 DOI: 10.1364/oe.437396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Nanoscopic arrays of quantum emitters can feature highly sub-radiant collective excitations with a lifetime exponentially growing with emitter number. Adding an absorptive impurity as an energy dump in the center of a ring shaped polygon allows to exploit this feature to create highly efficient single photon antennas. Here among regular polygons with an identical center absorbing emitter, a nonagon exhibits a distinct optimum of the absorption efficiency. This special enhancement originates from the unique emergence of a subradiant eigenstate with dominant center occupation. Only for nine emitters the sum of coupling strengths of each emitter to all others matches the center to the ring coupling. Analogous to a parabolic mirror the antenna ring then concentrates incoming radiation at its center without being significantly excited itself. Similar large efficiency enhancements, which even prevail for broadband excitation, can also be engineered for other antenna sizes by tailoring the frequency and magnitude of the central absorber. Interestingly, for very small structures a quantum treatment predicts an even stronger enhancement for the single photon absorption enhancement than a classical dipole model. As natural light harvesting structures are often based on ring shaped structures, the underlying principle might be exploited there as well.
Collapse
|
231
|
Ren J, Li W, Jiang T, Wang Y, Shuai Z. Time‐dependent density matrix renormalization group method for quantum dynamics in complex systems. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Jiajun Ren
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry Tsinghua University Beijing People's Republic of China
| | - Weitang Li
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry Tsinghua University Beijing People's Republic of China
| | - Tong Jiang
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry Tsinghua University Beijing People's Republic of China
| | - Yuanheng Wang
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry Tsinghua University Beijing People's Republic of China
| | - Zhigang Shuai
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry Tsinghua University Beijing People's Republic of China
| |
Collapse
|
232
|
Li B, Wu D, Li Y, Shi Y, Wang C, Sun J, Song C. Metabolic Mechanism of Sulfadimethoxine Biodegradation by Chlorella sp. L38 and Phaeodactylum tricornutum MASCC-0025. Front Microbiol 2022; 13:840562. [PMID: 35369425 PMCID: PMC8971708 DOI: 10.3389/fmicb.2022.840562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/26/2022] [Indexed: 11/25/2022] Open
Abstract
Antibiotic resistance is one of the most important environmental challenges. Microalgae has been considered as a promising green media for environmental purification. In this work, sulfadimethoxine (SDM) biodegradation potential of Chlorella sp. L38 and Phaeodactylum tricornutum MASCC-0025 is investigated. Experimental results indicated that the tested freshwater and marine microalgae strains presented stress response to SDM addition. For Chlorella sp. L38, it has a good adaptability to SDM condition via antioxidant enzyme secretion (SOD, MDA, and CAT up to 23.27 U/mg, 21.99 μmol/g, and 0.31 nmol/min/mg) with removal rate around 88%. P. tricornutum MASCC-0025 exhibited 100% removal of 0.5 mg/L SDM. With increasing salinity (adding a certain amount of NaCl) of cultivation media, the removal rate of SDM by microalgae increased. Although its adaptive process was slower than Chlorella sp. L38, the salinity advantage would facilitate enzyme accumulation. It indicated that microalgae could be used to remove SDM from freshwater and marine environment via suitable microalgae strain screening.
Collapse
Affiliation(s)
- Bing Li
- Tianjin Academy of Agricultural Sciences, The Institute of Agriculture Resources and Environmental Sciences, Tianjin, China
| | - Di Wu
- Tianjin Academy of Agricultural Sciences, The Institute of Agriculture Resources and Environmental Sciences, Tianjin, China
| | - Yan Li
- Tianjin Academy of Agricultural Sciences, The Institute of Agriculture Resources and Environmental Sciences, Tianjin, China
| | - Yan Shi
- Tianjin Academy of Agricultural Sciences, The Institute of Agriculture Resources and Environmental Sciences, Tianjin, China
| | - Chenlin Wang
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Jiasi Sun
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Chunfeng Song
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| |
Collapse
|
233
|
Searching for a Unique Exciton Model of Photosynthetic Pigment–Protein Complexes: Photosystem II Reaction Center Study by Differential Evolution. MATHEMATICS 2022. [DOI: 10.3390/math10060959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Studying the optical properties of photosynthetic pigment–protein complexes (PPCs) in the visible light range, both experimentally and theoretically, is one of the ways of gaining knowledge about the function of the photosynthetic machinery of living species. To simulate the PPC optical response, it is necessary to use semiclassical theories describing the effect of external fields–matter interaction, energy migration in molecular crystals, and electron–phonon coupling. In this paper, we report the results of photosystem II reaction center (PSIIRC) linear optical response simulations. Applying the multimode Brownian oscillator model and the theory of molecular excitons, we have demonstrated that the absorption, circular and linear dichroism, and steady-state fluorescence of PSIIRC can be accurately fitted with the help of differential evolution (DE), the multiparametric evolutionary optimization algorithm. To explore the effectiveness of DE, we used the simulated experimental data as the target functions instead of those actually measured. Only 2 of 10 DE strategies have shown the best performance of the optimization algorithm. With the best tuning parameters of DE/rand-to-best/1/exp strategy determined from the strategy tests, we found the exact solution for the PSIIRC exciton model and fitted the spectra with a reasonable convergence rate.
Collapse
|
234
|
Wang JX, Yin J, Shekhah O, Bakr OM, Eddaoudi M, Mohammed OF. Energy Transfer in Metal-Organic Frameworks for Fluorescence Sensing. ACS APPLIED MATERIALS & INTERFACES 2022; 14:9970-9986. [PMID: 35175725 PMCID: PMC8895374 DOI: 10.1021/acsami.1c24759] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The development of materials with outstanding performance for sensitive and selective detection of multiple analytes is essential for the development of human health and society. Luminescent metal-organic frameworks (LMOFs) have controllable surface and pore sizes and excellent optical properties. Therefore, a variety of LMOF-based sensors with diverse detection functions can be easily designed and applied. Furthermore, the introduction of energy transfer (ET) into LMOFs (ET-LMOFs) could provide a richer design concept and a much more sensitive and accurate sensing performance. In this review, we focus on the recent five years of advances in ET-LMOF-based sensing materials, with an emphasis on photochemical and photophysical mechanisms. We discuss in detail possible energy transfer processes within a MOF structure or between MOFs and guest materials. Finally, the possible sensing applications of the ET-LMOF-based sensors are highlighted.
Collapse
Affiliation(s)
- Jian-Xin Wang
- Advanced
Membranes and Porous Materials Center, Division of Physical Science
and Engineering, King Abdullah University
of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Jun Yin
- Advanced
Membranes and Porous Materials Center, Division of Physical Science
and Engineering, King Abdullah University
of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
- KAUST
Catalysis Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Osama Shekhah
- Advanced
Membranes and Porous Materials Center, Division of Physical Science
and Engineering, King Abdullah University
of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Osman M. Bakr
- KAUST
Catalysis Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Mohamed Eddaoudi
- Advanced
Membranes and Porous Materials Center, Division of Physical Science
and Engineering, King Abdullah University
of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Omar F. Mohammed
- Advanced
Membranes and Porous Materials Center, Division of Physical Science
and Engineering, King Abdullah University
of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
- KAUST
Catalysis Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
235
|
Quantifying the long-term interplay between photoprotection and repair mechanisms sustaining photosystem II activity. Biochem J 2022; 479:701-717. [PMID: 35234841 DOI: 10.1042/bcj20220031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 11/17/2022]
Abstract
The photosystem II reaction centre (RCII) protein subunit D1 is the main target of light-induced damage in the thylakoid membrane. As such, it is constantly replaced with newly synthesised proteins, in a process dubbed the 'D1 repair cycle'. The mechanism of relief of excitation energy pressure on RCII, non-photochemical quenching (NPQ), is activated to prevent damage. The contribution of the D1 repair cycle and NPQ in preserving the photochemical efficiency of RCII is currently unclear. In this work, we seek to (1) quantify the relative long-term effectiveness of photoprotection offered by NPQ and the D1 repair cycle, and (2) determine the fraction of sustained decrease in RCII activity that is due to long-term protective processes. We found that while under short-term, sunfleck-mimicking illumination, NPQ is substantially more effective in preserving RCII activity than the D1 repair cycle (Plant. Cell Environ. 41, 1098-1112, 2018). Under prolonged constant illumination, its contribution is less pronounced, accounting only for up to 30% of RCII protection, while D1 repair assumes a predominant role. Exposure to a wide range of light intensities yields comparable results, highlighting the crucial role of a constant and rapid D1 turnover for the maintenance of RCII efficiency. The interplay between NPQ and D1 repair cycle is crucial to grant complete phototolerance to plants under low and moderate light intensities, and limit damage to photosystem II under high light. Additionally, we disentangled and quantified the contribution of a slowly-reversible NPQ component that does not impair RCII activity, and is therefore protective.
Collapse
|
236
|
Ma F, Romero E, Jones MR, Novoderezhkin VI, Yu LJ, van Grondelle R. Dynamics of diverse coherences in primary charge separation of bacterial reaction center at 77 K revealed by wavelet analysis. PHOTOSYNTHESIS RESEARCH 2022; 151:225-234. [PMID: 34709567 DOI: 10.1007/s11120-021-00881-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
To uncover the mechanism behind the high photo-electronic conversion efficiency in natural photosynthetic complexes it is essential to trace the dynamics of electronic and vibrational quantum coherences. Here we apply wavelet analysis to two-dimensional electronic spectroscopy data for three purple bacterial reaction centers with mutations that produce drastically different rates of primary charge separation. From the frequency distribution and dynamic evolution features of the quantum beating, electronic coherence with a dephasing lifetime of ~50 fs, vibronic coherence with a lifetime of ~150 fs and vibrational/vibronic coherences with a lifetime of 450 fs are distinguished. We find that they are responsible for, or couple to, different specific steps during the primary charge separation process, i.e., intradimer charge transfer inside the special bacteriochlorophyll pair followed by its relaxation and stabilization of the charge-transfer state. The results enlighten our understanding of how quantum coherences participate in, and contribute to, a biological electron transfer reaction.
Collapse
Affiliation(s)
- Fei Ma
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing, 100093, China.
- Department of Biophysics, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands.
| | - Elisabet Romero
- Department of Biophysics, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
- Institute of Chemical Research of Catalonia, Barcelona Institute of Science and Technology, E-43007, Tarragona, Spain
| | - Michael R Jones
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Vladimir I Novoderezhkin
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Leninskie Gory, Moscow, Russia, 119992
| | - Long-Jiang Yu
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing, 100093, China.
| | - Rienk van Grondelle
- Department of Biophysics, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
237
|
Kondo T, Mutoh R, Arai S, kurisu G, Oh-oka H, Fujiyoshi S, Matsushita M. Energy transfer fluctuation observed by single-molecule spectroscopy of red-shifted bacteriochlorophyll in the homodimeric photosynthetic reaction center. J Chem Phys 2022; 156:105102. [DOI: 10.1063/5.0077290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Toru Kondo
- Department of Life Science and Technology, Tokyo Institute of Technology, Japan
| | | | - Shun Arai
- Tokyo Institute of Technology, Japan
| | | | | | | | | |
Collapse
|
238
|
Yu Z, Bisoyi HK, Chen X, Nie Z, Wang M, Yang H, Li Q. An Artificial Light‐Harvesting System with Controllable Efficiency Enabled by an Annulene‐Based Anisotropic Fluid. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Zhen Yu
- Institute of Advanced Materials School of Chemistry and Chemical Engineering Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research Southeast University Nanjing 211189 China
| | - Hari Krishna Bisoyi
- Advanced Materials and Liquid Crystal Institute Chemical Physics Interdisciplinary Program Kent State University Kent OH 44242 USA
| | - Xu‐Man Chen
- Institute of Advanced Materials School of Chemistry and Chemical Engineering Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research Southeast University Nanjing 211189 China
| | - Zhen‐Zhou Nie
- Institute of Advanced Materials School of Chemistry and Chemical Engineering Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research Southeast University Nanjing 211189 China
| | - Meng Wang
- Institute of Advanced Materials School of Chemistry and Chemical Engineering Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research Southeast University Nanjing 211189 China
| | - Hong Yang
- Institute of Advanced Materials School of Chemistry and Chemical Engineering Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research Southeast University Nanjing 211189 China
| | - Quan Li
- Institute of Advanced Materials School of Chemistry and Chemical Engineering Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research Southeast University Nanjing 211189 China
- Advanced Materials and Liquid Crystal Institute Chemical Physics Interdisciplinary Program Kent State University Kent OH 44242 USA
| |
Collapse
|
239
|
Yoneda Y, Kito M, Mori D, Goto A, Kondo M, Miyasaka H, Nagasawa Y, Dewa T. Ultrafast Energy Transfer between Self-Assembled Fluorophore and Photosynthetic Light-Harvesting Complex 2 (LH2) in Lipid Bilayer. J Chem Phys 2022; 156:095101. [DOI: 10.1063/5.0077910] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
| | | | | | | | - Masaharu Kondo
- Life Science and Applied Chemistry, Nagoya Institute of Technology, Japan
| | - Hiroshi Miyasaka
- Frontier Materials Science, Osaka University Graduate School of Engineering Science School of Engineering Science, Japan
| | - Yutaka Nagasawa
- College of Lifesciences, Ritsumeikan University College of Life Sciences Graduate School of Life Sciences, Japan
| | - Takehisa Dewa
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Japan
| |
Collapse
|
240
|
Golub M, Lokstein H, Soloviov D, Kuklin A, Wieland DCF, Pieper J. Light-Harvesting Complex II Adopts Different Quaternary Structures in Solution as Observed Using Small-Angle Scattering. J Phys Chem Lett 2022; 13:1258-1265. [PMID: 35089716 DOI: 10.1021/acs.jpclett.1c03614] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The high-resolution crystal structure of the trimeric major light-harvesting complex of photosystem II (LHCII) is often perceived as the basis for understanding its light-harvesting and photoprotective functions. However, the LHCII solution structure and its oligomerization or aggregation state may generally differ from the crystal structure and, moreover, also depend on its functional state. In this regard, small-angle scattering experiments provide the missing link by offering structural information in aqueous solution at physiological temperatures. Herein, we use small-angle scattering to investigate the solution structures of two different preparations of solubilized LHCII employing the nonionic detergents n-octyl-β-d-glucoside (OG) and n-dodecyl-β-D-maltoside (β-DM). The data reveal that the LHCII-OG complex is equivalent to the trimeric crystal structure. Remarkably, however, we observe─for the first time─a stable oligomer composed of three LHCII trimers in the case of the LHCII-β-DM preparation, implying additional pigment-pigment interactions. The latter complex is assumed to mimic trimer-trimer interactions which play an important role in the context of photoprotective nonphotochemical quenching.
Collapse
Affiliation(s)
- Maksym Golub
- Institute of Physics, University of Tartu, Wilhelm Ostwald str. 1, 50411 Tartu, Estonia
| | - Heiko Lokstein
- Department of Chemical Physics and Optics, Charles University, Ke Karlovu 3, 121 16 Prague, Czech Republic
| | - Dmytro Soloviov
- Joint Institute for Nuclear Research, Joliot-Curie str. 6, 141980 Dubna, Russia
- Moscow Institute of Physics and Technology, Institutskiy per. 9, 141701 Dolgoprudny, Russia
- Institute for Safety Problems of Nuclear Power Plants NAS of Ukraine, Lysogirska str. 12, 03028 Kyiv, Ukraine
| | - Alexander Kuklin
- Joint Institute for Nuclear Research, Joliot-Curie str. 6, 141980 Dubna, Russia
- Moscow Institute of Physics and Technology, Institutskiy per. 9, 141701 Dolgoprudny, Russia
| | - D C Florian Wieland
- Helmholtz Zentrum Geesthacht, Institute for Materials Research, Department for Metallic Biomaterials, 21502 Geesthacht, Germany
| | - Jörg Pieper
- Institute of Physics, University of Tartu, Wilhelm Ostwald str. 1, 50411 Tartu, Estonia
| |
Collapse
|
241
|
Tölle J, Neugebauer J. The Seamless Connection of Local and Collective Excited States in Subsystem Time-Dependent Density Functional Theory. J Phys Chem Lett 2022; 13:1003-1018. [PMID: 35061387 DOI: 10.1021/acs.jpclett.1c04023] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The theoretical understanding of photoinduced processes in multichromophoric systems requires, as an essential ingredient, the possibility of accurately describing their electronically excited states. However, the size of these systems often prohibits the usage of conventional electronic-structure methods, so that often multiscale approaches based on phenomenologically motivated models are employed. In contrast, subsystem time-dependent density functional theory (sTDDFT) allows for a subsystem-based ab initio description of multichromophoric systems and therefore allows for, in principle, an exact description of photoinduced processes. This Perspective aims to outline the theoretical foundations and commonly used practical realizations as well as to illustrate benefits of recent developments and open issues in the field of sTDDFT. Prospective, potential future applications and possible methodological developments are discussed.
Collapse
Affiliation(s)
- Johannes Tölle
- Theoretische Organische Chemie, Organisch-Chemisches Institut and Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Johannes Neugebauer
- Theoretische Organische Chemie, Organisch-Chemisches Institut and Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| |
Collapse
|
242
|
Kim J, Nguyen-Phan TC, Gardiner AT, Yoon TH, Cogdell RJ, Cho M, Scholes GD. Vibrational Modes Promoting Exciton Relaxation in the B850 Band of LH2. J Phys Chem Lett 2022; 13:1099-1106. [PMID: 35080414 DOI: 10.1021/acs.jpclett.1c03868] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Exciton relaxation dynamics in multichromophore systems are often modeled using Redfield theory, where bath fluctuations mediate the relaxation among the exciton eigenstates. Identifying the vibrational or phonon modes that are implicated in exciton relaxation allows more detailed understanding of exciton dynamics. Here we focus on a well-studied light-harvesting II complex (LH2) isolated from the photosynthetic purple bacterium Rhodoblastus acidophilus strain 10050. Using two synchronized mode-locked lasers, we carried out a polarization-dependent two-dimensional electronic spectroscopy (2DES) study of an ultrafast exciton relaxation in the B850 band of LH2. 2DES data with different polarization configurations enable us to investigate the exciton relaxation between the k = ±1 exciton states. Then, we identify vibrational modes coupled to the exciton relaxation by analyzing the coherent wavepackets in the 2DES signals. Focusing on the coherent vibrational wavepackets, the data suggest that certain symmetry-breaking modes of monomeric units play a key role in exciton relaxation.
Collapse
Affiliation(s)
- JunWoo Kim
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Tu C Nguyen-Phan
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, United Kingdom
| | - Alastair T Gardiner
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, United Kingdom
| | - Tai Hyun Yoon
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Seoul 02841, Republic of Korea
- Department of Physics, Korea University, Seoul 02841, Republic of Korea
| | - Richard J Cogdell
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, United Kingdom
| | - Minhaeng Cho
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Seoul 02841, Republic of Korea
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Gregory D Scholes
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
243
|
β-Pyrrole functionalized porphyrins: Synthesis, electronic properties, and applications in sensing and DSSC. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214312] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
244
|
Facing the fluctuations. Nat Chem 2022; 14:121-123. [DOI: 10.1038/s41557-021-00881-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
245
|
Srivishnu K, Naresh M, Laxmikanth Rao J, Giribabu L. Photo-induced intramolecular electron transfer in phenoxazine-phthalocyanine donor-acceptor systems. J PORPHYR PHTHALOCYA 2022. [DOI: 10.1142/s1088424622500080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Donor-Acceptor (D-A) systems based on phenoxazine – phthalocyanine (PXZ-Pc) and phenoxazine – zinc phthalocyanine (PXZ-ZnPc) have been designed and synthesized. Both D-A systems are characterized using various spectroscopic and electrochemical techniques including in-situ methods. Optical absorption studies suggest that both Soret and Q bands of these D-A systems are hypsochromically and bathochromically shifted, when compared to its individual constituents. The study supported by theoretical calculations shows clearly that there exists a negligible electronic communication in the ground state between donor phenoxazine and acceptor phthalocyanine. However, attractively, both D-A systems exhibit noteworthy fluorescence emission quenching (90–99%) of the phthalocyanine emission compared to its reference compounds. The fluorescence emission quenching featured at the excited-state intramolecular photoinduced electron transfer from ground state of phenoxazine to the excited state of phthalocyaine/zinc phthalocyanine. The rates of electron-transfer ([Formula: see text] of these D-A systems are found in the range of 5.7 × 108 to 2.8 × 109 s[Formula: see text] and are according to solvent polarity.
Collapse
Affiliation(s)
- K.S. Srivishnu
- Polymer and Functional Materials Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, Telangana, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, New Delhi 201002, India
| | - Madarapu Naresh
- Polymer and Functional Materials Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, Telangana, India
| | - J. Laxmikanth Rao
- Catalysis & Fine Chemical Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, Telangana, India
| | - Lingamallu Giribabu
- Polymer and Functional Materials Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, Telangana, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, New Delhi 201002, India
| |
Collapse
|
246
|
Biswas S, Kim J, Zhang X, Scholes GD. Coherent Two-Dimensional and Broadband Electronic Spectroscopies. Chem Rev 2022; 122:4257-4321. [PMID: 35037757 DOI: 10.1021/acs.chemrev.1c00623] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Over the past few decades, coherent broadband spectroscopy has been widely used to improve our understanding of ultrafast processes (e.g., photoinduced electron transfer, proton transfer, and proton-coupled electron transfer reactions) at femtosecond resolution. The advances in femtosecond laser technology along with the development of nonlinear multidimensional spectroscopy enabled further insights into ultrafast energy transfer and carrier relaxation processes in complex biological and material systems. New discoveries and interpretations have led to improved design principles for optimizing the photophysical properties of various artificial systems. In this review, we first provide a detailed theoretical framework of both coherent broadband and two-dimensional electronic spectroscopy (2DES). We then discuss a selection of experimental approaches and considerations of 2DES along with best practices for data processing and analysis. Finally, we review several examples where coherent broadband and 2DES were employed to reveal mechanisms of photoinitiated ultrafast processes in molecular, biological, and material systems. We end the review with a brief perspective on the future of the experimental techniques themselves and their potential to answer an even greater range of scientific questions.
Collapse
Affiliation(s)
- Somnath Biswas
- Department of Chemistry, Princeton University, Princeton, New Jersey 08 544, United States
| | - JunWoo Kim
- Department of Chemistry, Princeton University, Princeton, New Jersey 08 544, United States
| | - Xinzi Zhang
- Department of Chemistry, Princeton University, Princeton, New Jersey 08 544, United States
| | - Gregory D Scholes
- Department of Chemistry, Princeton University, Princeton, New Jersey 08 544, United States
| |
Collapse
|
247
|
Li M, Gebremedhin KH, Ma D, Pu Z, Xiong T, Xu Y, Kim JS, Peng X. Conditionally Activatable Photoredox Catalysis in Living Systems. J Am Chem Soc 2022; 144:163-173. [PMID: 34963281 DOI: 10.1021/jacs.1c07372] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The transformational effect of photoredox catalytic chemistries has inspired new opportunities, enabling us to interrogate nature in ways that are not possible otherwise and to unveil new biotechnologies in therapy and diagnosis. However, the deployment of artificial photoredox catalysis in living systems remains challenging, mired by the off-target risk and safety concerns of photocatalyst toxicity. Here, we present an appealing approach, namely conditionally activatable photoredox catalysis (ConAPC), and as a proof of concept design the first ConAPC architecture (Se-NO2) based upon classic self-immolative chemistry, in which the inherent photocatalytic properties can be temporarily caged while the species becomes active only at the tumor sites via sensing to specific biomarkers. Such a masking strategy allows a spatial-temporal control of photoresponsivity in vitro and in vivo. In particular, for ConAPC design, a new biologically benign metal-free photocatalyst (Se-NH2), which is able to initiate NIR photoredox catalysis to manipulate the cellular electron pool in an O2-independent mechanism of action, is identified. With this unique strategy, potent tumor-specific targeting photocatalytic eradication (TGI: 95%) is obtained in a mouse model. Impressively, favorable features such as high-resolution tumor recognition (SBR: 33.6) and excellent biocompatibility and safety are also achieved. This work therefore offers a new possibility for chemists to leverage artificial photocatalytic reactions toward the development of facile and intelligent photocatalytic theranostics.
Collapse
Affiliation(s)
- Mingle Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, People's Republic of China
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Kalayou Hiluf Gebremedhin
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, People's Republic of China
- Department of Chemistry, CNCS, Mekelle University, 231 Mekelle, Ethiopia
| | - Dandan Ma
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Zhongji Pu
- School of Bioengineering, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Tao Xiong
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Yunjie Xu
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, People's Republic of China
- Research Institute of Dalian University of Technology in Shenzhen, Shenzhen 518057, People's Republic of China
| |
Collapse
|
248
|
Lazar D, Stirbet A, Björn L, Govindjee G. Light quality, oxygenic photosynthesis and more. PHOTOSYNTHETICA 2022; 60:25-28. [PMID: 39648998 PMCID: PMC11559484 DOI: 10.32615/ps.2021.055] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/15/2021] [Indexed: 12/10/2024]
Abstract
Oxygenic photosynthesis takes place in thylakoid membranes (TM) of cyanobacteria, algae, and higher plants. It begins with light absorption by pigments in large (modular) assemblies of pigment-binding proteins, which then transfer excitation energy to the photosynthetic reaction centers of photosystem (PS) I and PSII. In green algae and plants, these light-harvesting protein complexes contain chlorophylls (Chls) and carotenoids (Cars). However, cyanobacteria, red algae, and glaucophytes contain, in addition, phycobiliproteins in phycobilisomes that are attached to the stromal surface of TM, and transfer excitation energy to the reaction centers via the Chl a molecules in the inner antennas of PSI and PSII. The color and the intensity of the light to which these photosynthetic organisms are exposed in their environment have a great influence on the composition and the structure of the light-harvesting complexes (the antenna) as well as the rest of the photosynthetic apparatus, thus affecting the photosynthetic process and even the entire organism. We present here a perspective on 'Light Quality and Oxygenic Photosynthesis', in memory of George Christos Papageorgiou (9 May 1933-21 November 2020; see notes a and b). Our review includes (1) the influence of the solar spectrum on the antenna composition, and the special significance of Chl a; (2) the effects of light quality on photosynthesis, measured using Chl a fluorescence; and (3) the importance of light quality, intensity, and its duration for the optimal growth of photosynthetic organisms.
Collapse
Affiliation(s)
- D. Lazar
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 11, 783 71 Olomouc, Czech Republic
| | - A. Stirbet
- Anne Burras Lane, Newport News, 23606 Virginia, USA
| | - L.O. Björn
- Department of Biology, Molecular Cell Biology, Lund University, Sölvegatan 35, SE-22462 Lund, Sweden
| | - G. Govindjee
- Department of Plant Biology, Department of Biochemistry, and Center of Biophysics & Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
249
|
Zhang Y, Zheng DW, Li CX, Pan P, Zeng SM, Pan T, Zhang XZ. Temulence Therapy to Orthotopic Colorectal Tumor via Oral Administration of Fungi-Based Acetaldehyde Generator. SMALL METHODS 2022; 6:e2100951. [PMID: 35041291 DOI: 10.1002/smtd.202100951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/05/2021] [Indexed: 06/14/2023]
Abstract
Taking inspiration from percutaneous ethanol injection (PEI) for tumor ablation, an acetaldehyde generator (SC@ZIF@ADH) is constructed for tumor treatment by modifying a metal-organic framework nanocarrier (ZIF), which is loaded with alcohol dehydrogenase (ADH), onto the surface of Saccharomyces cerevisiae (SC). Oral administration of SC@ZIF@ADH can target tumor via mannose-mediated targeting to tumor associated macrophages (TAMs) and generate ethanol at the hypoxic tumor areas. Ethanol is subsequently catalyzed to toxic acetaldehyde by ADH, inducing tumor cells apoptosis and polarizing TAMs toward the anti-tumor phenotype. In vivo animal results show that this acetaldehyde generator can cause a temulence-like reaction in the tumor, significantly inhibiting tumor progression, and might provide an intelligent and nonsurgical substitute for PEI therapy.
Collapse
Affiliation(s)
- Yu Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education, & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Di-Wei Zheng
- Key Laboratory of Biomedical Polymers of Ministry of Education, & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Chu-Xin Li
- Key Laboratory of Biomedical Polymers of Ministry of Education, & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Pei Pan
- Key Laboratory of Biomedical Polymers of Ministry of Education, & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Si-Min Zeng
- Key Laboratory of Biomedical Polymers of Ministry of Education, & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Ting Pan
- Key Laboratory of Biomedical Polymers of Ministry of Education, & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education, & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
250
|
Cesana PT, Li BX, Shepard SG, Ting SI, Hart SM, Olson CM, Martinez Alvarado JI, Son M, Steiman TJ, Castellano FN, Doyle AG, MacMillan DW, Schlau-Cohen GS. A biohybrid strategy for enabling photoredox catalysis with low-energy light. Chem 2022. [DOI: 10.1016/j.chempr.2021.10.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|