201
|
Chen Y, Gao R, Ji S, Li H, Tang K, Jiang P, Hu H, Zhang Z, Hao H, Qu Q, Liang X, Chen W, Dong J, Wang D, Li Y. Atomic‐Level Modulation of Electronic Density at Cobalt Single‐Atom Sites Derived from Metal–Organic Frameworks: Enhanced Oxygen Reduction Performance. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202012798] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Yuanjun Chen
- Department of Chemistry Tsinghua University Beijing 100084 China
| | - Rui Gao
- College of Chemistry and Chemical Engineering Inner Mongolia University Hohhot 010021 China
| | - Shufang Ji
- Department of Chemistry Tsinghua University Beijing 100084 China
| | - Haijing Li
- Beijing Synchrotron Radiation Facility Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Kun Tang
- School of Physics and Materials Science Anhui University Hefei 230601 China
| | - Peng Jiang
- Department of Chemistry Tsinghua University Beijing 100084 China
| | - Haibo Hu
- School of Physics and Materials Science Anhui University Hefei 230601 China
| | - Zedong Zhang
- Department of Chemistry Tsinghua University Beijing 100084 China
| | - Haigang Hao
- College of Chemistry and Chemical Engineering Inner Mongolia University Hohhot 010021 China
| | - Qingyun Qu
- Department of Chemistry Tsinghua University Beijing 100084 China
| | - Xiao Liang
- Department of Chemistry Tsinghua University Beijing 100084 China
| | - Wenxing Chen
- Materials and Green Applications School of Materials Science and Engineering Beijing Institute of Technology Beijing 100081 China
| | - Juncai Dong
- Beijing Synchrotron Radiation Facility Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Dingsheng Wang
- Department of Chemistry Tsinghua University Beijing 100084 China
| | - Yadong Li
- Department of Chemistry Tsinghua University Beijing 100084 China
| |
Collapse
|
202
|
Chen Y, Gao R, Ji S, Li H, Tang K, Jiang P, Hu H, Zhang Z, Hao H, Qu Q, Liang X, Chen W, Dong J, Wang D, Li Y. Atomic‐Level Modulation of Electronic Density at Cobalt Single‐Atom Sites Derived from Metal–Organic Frameworks: Enhanced Oxygen Reduction Performance. Angew Chem Int Ed Engl 2020; 60:3212-3221. [DOI: 10.1002/anie.202012798] [Citation(s) in RCA: 232] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/20/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Yuanjun Chen
- Department of Chemistry Tsinghua University Beijing 100084 China
| | - Rui Gao
- College of Chemistry and Chemical Engineering Inner Mongolia University Hohhot 010021 China
| | - Shufang Ji
- Department of Chemistry Tsinghua University Beijing 100084 China
| | - Haijing Li
- Beijing Synchrotron Radiation Facility Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Kun Tang
- School of Physics and Materials Science Anhui University Hefei 230601 China
| | - Peng Jiang
- Department of Chemistry Tsinghua University Beijing 100084 China
| | - Haibo Hu
- School of Physics and Materials Science Anhui University Hefei 230601 China
| | - Zedong Zhang
- Department of Chemistry Tsinghua University Beijing 100084 China
| | - Haigang Hao
- College of Chemistry and Chemical Engineering Inner Mongolia University Hohhot 010021 China
| | - Qingyun Qu
- Department of Chemistry Tsinghua University Beijing 100084 China
| | - Xiao Liang
- Department of Chemistry Tsinghua University Beijing 100084 China
| | - Wenxing Chen
- Materials and Green Applications School of Materials Science and Engineering Beijing Institute of Technology Beijing 100081 China
| | - Juncai Dong
- Beijing Synchrotron Radiation Facility Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Dingsheng Wang
- Department of Chemistry Tsinghua University Beijing 100084 China
| | - Yadong Li
- Department of Chemistry Tsinghua University Beijing 100084 China
| |
Collapse
|
203
|
Haase F, Hirschle P, Freund R, Furukawa S, Ji Z, Wuttke S. Beyond Frameworks: Structuring Reticular Materials across Nano-, Meso-, and Bulk Regimes. Angew Chem Int Ed Engl 2020; 59:22350-22370. [PMID: 32449245 PMCID: PMC7756821 DOI: 10.1002/anie.201914461] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 05/08/2020] [Indexed: 12/14/2022]
Abstract
Reticular materials are of high interest for diverse applications, ranging from catalysis and separation to gas storage and drug delivery. These open, extended frameworks can be tailored to the intended application through crystal-structure design. Implementing these materials in application settings, however, requires structuring beyond their lattices, to interface the functionality at the molecular level effectively with the macroscopic world. To overcome this barrier, efforts in expressing structural control across molecular, nano-, meso-, and bulk regimes is the essential next step. In this Review, we give an overview of recent advances in using self-assembly as well as externally controlled tools to manufacture reticular materials over all the length scales. We predict that major research advances in deploying these two approaches will facilitate the use of reticular materials in addressing major needs of society.
Collapse
Affiliation(s)
- Frederik Haase
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS)Kyoto University, Yoshida, Sakyo-kuKyoto606-8501Japan
| | - Patrick Hirschle
- Department of Chemistry and Center for NanoScience (CeNS)Ludwig-Maximilians-Universität MünchenButenandtstrasse 1181377MunichGermany
| | - Ralph Freund
- Department of Chemistry and Center for NanoScience (CeNS)Ludwig-Maximilians-Universität MünchenButenandtstrasse 1181377MunichGermany
| | - Shuhei Furukawa
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS)Kyoto University, Yoshida, Sakyo-kuKyoto606-8501Japan
- Department of Synthetic Chemistry and Biological ChemistryGraduate School of EngineeringKyoto University, Katsura, Nishikyo-kuKyoto615-8510Japan
| | - Zhe Ji
- Department of ChemistryStanford UniversityStanfordCalifornia94305-5012USA
| | - Stefan Wuttke
- Department of Chemistry and Center for NanoScience (CeNS)Ludwig-Maximilians-Universität MünchenButenandtstrasse 1181377MunichGermany
- BCMaterialsBasque Center for MaterialsUPV/EHU Science Park48940LeioaSpain
- IkerbasqueBasque Foundation for Science48013BilbaoSpain
| |
Collapse
|
204
|
Sours T, Patel A, Nørskov J, Siahrostami S, Kulkarni A. Circumventing Scaling Relations in Oxygen Electrochemistry Using Metal-Organic Frameworks. J Phys Chem Lett 2020; 11:10029-10036. [PMID: 33179928 DOI: 10.1021/acs.jpclett.0c02889] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
It has been well-established that unfavorable scaling relationships between *OOH, *OH, and *O are responsible for the high overpotentials associated with oxygen electrochemistry. A number of strategies have been proposed for breaking these linear constraints for traditional electrocatalysts (e.g., metals, alloys, metal-doped carbons); such approaches have not yet been validated experimentally for heterogeneous catalysts. Development of a new class of catalysts capable of circumventing such scaling relations remains an ongoing challenge in the field. In this work, we use density functional theory (DFT) calculations to demonstrate that bimetallic porphyrin-based MOFs (PMOFs) are an ideal materials platform for rationally designing the 3-D active site environments for oxygen reduction reaction (ORR). Specifically, we show that the *OOH binding energy and the theoretical limiting potential can be optimized by appropriately tuning the transition metal active site, the oxophilic spectator, and the MOF topology. Our calculations predict theoretical limiting potentials as high as 1.07 V for Fe/Cr-PMOF-Al, which exceeds the Pt/C benchmark for 4e ORR. More broadly, by highlighting their unique characteristics, this work aims to establish bimetallic porphyrin-based MOFs as a viable materials platform for future experimental and theoretical ORR studies.
Collapse
Affiliation(s)
- Tyler Sours
- Department of Chemical Engineering, University of California, Davis, Davis, California 95616, United States
| | - Anjli Patel
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Jens Nørskov
- Department of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Samira Siahrostami
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Ambarish Kulkarni
- Department of Chemical Engineering, University of California, Davis, Davis, California 95616, United States
| |
Collapse
|
205
|
Wu T, Prasetya N, Li K. Recent advances in aluminium-based metal-organic frameworks (MOF) and its membrane applications. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118493] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
206
|
Promoted H2O and alcohols adsorption performances by modifying the channel of MOF with uncoordinated N atom. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.108295] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
207
|
Sun SL, Sun XY, Sun Q, Gao EQ, Zhang JL, Li WJ. Europium metal-organic framework containing helical metal-carboxylate chains for fluorescence sensing of nitrobenzene and nitrofunans antibiotics. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121701] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
208
|
Gong Y, Qin C, Zhang Y, Sun C, Pan Q, Wang X, Su Z. Face‐Directed Assembly of Molecular Cubes: In Situ Substitution of a Predetermined Concave Cluster. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010824] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yaru Gong
- Key Lab of Polyoxometalate Science of Ministry of Education National & Local United Engineering Laboratory for Power Battery Institution Northeast Normal University Changchun Jilin 130024 China
- Key Laboratory of Advanced Materials of Tropical Island Resources Ministry of Education, Hainan University Haikou 570228 China
| | - Chao Qin
- Key Lab of Polyoxometalate Science of Ministry of Education National & Local United Engineering Laboratory for Power Battery Institution Northeast Normal University Changchun Jilin 130024 China
| | - Yuteng Zhang
- Key Lab of Polyoxometalate Science of Ministry of Education National & Local United Engineering Laboratory for Power Battery Institution Northeast Normal University Changchun Jilin 130024 China
| | - Chunyi Sun
- Key Lab of Polyoxometalate Science of Ministry of Education National & Local United Engineering Laboratory for Power Battery Institution Northeast Normal University Changchun Jilin 130024 China
| | - Qinhe Pan
- Key Laboratory of Advanced Materials of Tropical Island Resources Ministry of Education, Hainan University Haikou 570228 China
| | - Xinlong Wang
- Key Lab of Polyoxometalate Science of Ministry of Education National & Local United Engineering Laboratory for Power Battery Institution Northeast Normal University Changchun Jilin 130024 China
| | - Zhongmin Su
- Key Lab of Polyoxometalate Science of Ministry of Education National & Local United Engineering Laboratory for Power Battery Institution Northeast Normal University Changchun Jilin 130024 China
| |
Collapse
|
209
|
Rare-earth metal–organic frameworks as advanced catalytic platforms for organic synthesis. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213543] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
210
|
Paul A, Upadhyay KK, Backović G, Karmakar A, Vieira Ferreira LF, Šljukić B, Montemor MF, Guedes da Silva MFC, Pombeiro AJL. Versatility of Amide-Functionalized Co(II) and Ni(II) Coordination Polymers: From Thermochromic-Triggered Structural Transformations to Supercapacitors and Electrocatalysts for Water Splitting. Inorg Chem 2020; 59:16301-16318. [PMID: 33100004 DOI: 10.1021/acs.inorgchem.0c02084] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The new 2D coordination polymers (CPs) [M(L)2(H2O)2]n [M = CoII (1) and NiII (2); L = 4-(pyridin-3-ylcarbamoyl)benzoate] were synthesized from pyridyl amide-functionalized benzoic acid (HL). They were characterized by elemental, Fourier transform infrared, thermogravimetric, powder X-ray diffraction (PXRD), and single-crystal X-ray diffraction (XRD) structural analyses. Single-crystal XRD analysis revealed the presence of a 2D polymeric architecture, and topological analyses disclose a 2,4-connected binodal net. A thermochromic effect leads to the production of two new CPs, 1' and 2', by heating at ca. 220 °C, accompanied by a color change from orange to purple in the case of 1 and from blue to green in the case of 2. The transformation of 1 to 1' takes place through an intermediate (1a) with a different twist of the L- ligand, leading to the formation of a 1D polymeric architecture, as proven by single-crystal XRD analysis. The addition of water or keeping 1' or 2' in air for several days leads to regeneration of 1 or 2, respectively. The thermochromic-triggered structural transformations of 1 and 2 were further substantiated by PXRD and UV-vis ground-state diffuse-reflectance absorption studies. The supercapacitance ability of the CPs 1 and 2 and a Ni-Co composite (made from mixing the CPs 1 and 2) was investigated by electroanalytical techniques, such as cyclic voltammetry and electrochemical impedance spectroscopy. The CP 2 exhibits the highest specific capacity of 273.8 C g-1 at an applied current density of 1.5 A g-1. These newly developed CPs further act as electrocatalysts for the water-splitting reaction.
Collapse
Affiliation(s)
- Anup Paul
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa. Portugal
| | - Kush K Upadhyay
- Centro de Química Estrutural, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa,1049-001 Lisboa, Portugal
| | - Gordana Backović
- CeFEMA, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Anirban Karmakar
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa. Portugal
| | - Luís F Vieira Ferreira
- Centro de Química-Física Molecular, Institute for Nanosciences and Nanotechnologies, and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Biljana Šljukić
- CeFEMA, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Maria F Montemor
- Centro de Química Estrutural, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa,1049-001 Lisboa, Portugal
| | - M Fátima C Guedes da Silva
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa. Portugal
| | - Armando J L Pombeiro
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa. Portugal
| |
Collapse
|
211
|
Xue W, Deng W, Chen H, Liu R, Taylor JM, Li Y, Wang L, Deng Y, Li W, Wen Y, Wang G, Wan C, Xu G. MOF‐Directed Synthesis of Crystalline Ionic Liquids with Enhanced Proton Conduction. Angew Chem Int Ed Engl 2020; 60:1290-1297. [DOI: 10.1002/anie.202010783] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Wen‐Long Xue
- Beijing Key Laboratory for Optical Materials and Photonic Devices Department of Chemistry Capital Normal University Beijing 100048 China
| | - Wei‐Hua Deng
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100049 China
| | - Hui Chen
- Beijing Key Laboratory for Optical Materials and Photonic Devices Department of Chemistry Capital Normal University Beijing 100048 China
| | - Rui‐Heng Liu
- Beijing Key Laboratory for Optical Materials and Photonic Devices Department of Chemistry Capital Normal University Beijing 100048 China
| | - Jared M. Taylor
- Department of chemistry University of Calgary Calgary Alberta T2N1N4 Canada
| | - Yu‐kun Li
- Beijing Key Laboratory for Optical Materials and Photonic Devices Department of Chemistry Capital Normal University Beijing 100048 China
| | - Lu Wang
- Beijing Key Laboratory for Optical Materials and Photonic Devices Department of Chemistry Capital Normal University Beijing 100048 China
| | - Yu‐Heng Deng
- Beijing Key Laboratory for Optical Materials and Photonic Devices Department of Chemistry Capital Normal University Beijing 100048 China
| | - Wen‐Hua Li
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Ying‐Yi Wen
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Guan‐E Wang
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Chong‐Qing Wan
- Beijing Key Laboratory for Optical Materials and Photonic Devices Department of Chemistry Capital Normal University Beijing 100048 China
| | - Gang Xu
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100049 China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou Fujian 350108 China
| |
Collapse
|
212
|
Islam S, Das P, Maiti S, Khan S, Maity S, Ghosh P, Jana AD, Ray PP, Mir MH. Electrically conductive Cu(II)-based 1D coordination polymer with theoretical insight. Dalton Trans 2020; 49:15323-15331. [PMID: 33169741 DOI: 10.1039/d0dt03098h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A nitro-functionalized Cu(ii)-based one-dimensional coordination polymer (1D CP) [Cu(nip)(4-phpy)2]n (1) (H2nip = 5-nitroisophthalic acid and 4-phpy = 4-phenylpyridine) was synthesized and characterized by elemental analysis, powder X-ray diffraction (PXRD) and single crystal X-ray diffraction (SCXRD). In the solid-state self-assembly of 1, two sets of weak intermolecular forces, CHπ interaction among the axially bound 4-phpy ligands and ππ interaction among bridging nip ligands from adjacent 1D coordination polymeric chains led to 3D supramolecular packing. Interestingly compound 1 exhibited electrical conductivity in the semiconducting regime and behaved as a Schottky barrier diode.
Collapse
Affiliation(s)
- Sakhiul Islam
- Department of Chemistry, Aliah University, New Town, Kolkata 700 156, India.
| | - Pubali Das
- Department of Physics, Jadavpur University, Jadavpur, Kolkata 700 032, India.
| | - Saswati Maiti
- Department of Physics, Behala College, Parnasree, Kolkata, 700 060, India. and Department of Basic Sciences, JLD College of Engineering, Champahati, Kolkata, 700 060, India
| | - Samim Khan
- Department of Chemistry, Aliah University, New Town, Kolkata 700 156, India.
| | - Suvendu Maity
- Department of Chemistry, Jadavpur University, Jadavpur, Kolkata 700 032, India
| | - Prasanta Ghosh
- Department of Chemistry, R. K. M. Residential College, Narendrapur, Kolkata 700 103, India
| | | | - Partha Pratim Ray
- Department of Physics, Jadavpur University, Jadavpur, Kolkata 700 032, India.
| | | |
Collapse
|
213
|
Yang L, Dou Y, Qin L, Chen L, Xu M, Kong C, Zhang D, Zhou Z, Wang S. A Lanthanide-Containing Coordination Polymer Using Tetraphenylethene-Based Linkers with Selective Fe3+ Sensing and Efficient Iodine Adsorption Activities. Inorg Chem 2020; 59:16644-16653. [DOI: 10.1021/acs.inorgchem.0c02604] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Lu Yang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, People’s Republic of China
| | - Yong Dou
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, People’s Republic of China
| | - Lan Qin
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, People’s Republic of China
| | - Lingling Chen
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, People’s Republic of China
| | - Mengzhen Xu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, People’s Republic of China
| | - Cong Kong
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, People’s Republic of China
| | - Daopeng Zhang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, People’s Republic of China
| | - Zhen Zhou
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, People’s Republic of China
| | - Suna Wang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, People’s Republic of China
| |
Collapse
|
214
|
Wang Y, Su H, He Y, Li L, Zhu S, Shen H, Xie P, Fu X, Zhou G, Feng C, Zhao D, Xiao F, Zhu X, Zeng Y, Shao M, Chen S, Wu G, Zeng J, Wang C. Advanced Electrocatalysts with Single-Metal-Atom Active Sites. Chem Rev 2020; 120:12217-12314. [DOI: 10.1021/acs.chemrev.0c00594] [Citation(s) in RCA: 292] [Impact Index Per Article: 58.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yuxuan Wang
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Hongyang Su
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Yanghua He
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Ligui Li
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510007, China
| | - Shangqian Zhu
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong P. R. China
| | - Hao Shen
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Pengfei Xie
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Xianbiao Fu
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Guangye Zhou
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Chen Feng
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Dengke Zhao
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510007, China
| | - Fei Xiao
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong P. R. China
| | - Xiaojing Zhu
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510007, China
| | - Yachao Zeng
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Minhua Shao
- Department of Chemical and Biological Engineering, Energy Institute, Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory, and Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Kowloon, Hong Kong P. R. China
| | - Shaowei Chen
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064, United States
| | - Gang Wu
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Jie Zeng
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Chao Wang
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
215
|
Çiftçi E, Kaya M, Arıcı M, Yeşilel OZ. Two Copper(II) coordination polymers constructed from 3,3-dimethylglutarate and citrate ligands. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
216
|
A new anionic metal–organic framework with suitable pore and PtS-type topology for selective adsorption and separation of cationic dyes. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01209-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
217
|
Huang J, Wu P. Controlled Assembly of Luminescent Lanthanide-Organic Frameworks via Post-Treatment of 3D-Printed Objects. NANO-MICRO LETTERS 2020; 13:15. [PMID: 34138212 PMCID: PMC8187549 DOI: 10.1007/s40820-020-00543-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/29/2020] [Indexed: 05/02/2023]
Abstract
Complex multiscale assemblies of metal-organic frameworks are essential in the construction of large-scale optical platforms but often restricted by their bulk nature and conventional techniques. The integration of nanomaterials and 3D printing technologies allows the fabrication of multiscale functional architectures. Our study reports a unique method of controlled 3D assembly purely relying on the post-printing treatment of printed constructs. By immersing a 3D-printed patterned construct consisting of organic ligand in a solution of lanthanide ions, in situ growth of lanthanide metal-organic frameworks (LnMOFs) can rapidly occur, resulting in macroscopic assemblies and tunable fluorescence properties. This phenomenon, caused by coordination and chelation of lanthanide ions, also renders a sub-millimeter resolution and high shape fidelity. As a proof of concept, a type of 3D assembled LnMOFs-based optical sensing platform has demonstrated the feasibility in response to small molecules such as acetone. It is anticipated that the facile printing and design approach developed in this work can be applied to fabricate bespoke multiscale architectures of functional materials with controlled assembly, bringing a realistic and economic prospect.
Collapse
Affiliation(s)
- Jiahui Huang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, People's Republic of China
| | - Peiyi Wu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, People's Republic of China.
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai, 201620, People's Republic of China.
| |
Collapse
|
218
|
Lv H, Chen H, Fan L, Zhang X. Heterometallic {ZnEu}-metal-organic framework for efficient chemical fixation of CO 2. Dalton Trans 2020; 49:14656-14664. [PMID: 33063080 DOI: 10.1039/d0dt02730h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Based on a ligand-directed synthetic strategy, the acidic solvothermal reaction of ZnO, Eu2O3, and 4,4',4''-(pyridine-2,4,6-triyl)tri(1,3-benzenedicarboxylic acid) (H6PTTBA) generated a targeted robust double-walled honeycomb material {[EuIIIZnII(HPTTBA)(H2O)]·4DMF·3H2O}n (simplified as NUC-9), which featured excellent characteristics such as dual tubular nanochannels, high porosity, specific surface area, abundant exposed active metal sites, etc. Although both types of nano-channels (I and II) alternately arranged in the lattice and shaped by six rows of [EuIIIZnII(CO2)6(H2O)] SBUs possessed an equal amount of exposed active metal sites, they could be differentiated according to the discrepant inner surface functionalized by free carboxyl oxygen atoms or coordinated aqueous molecules. Moreover, an activated sample of NUC-9 exhibited better catalytic performance than documented Zn- or Eu-based MOFs for the chemical transformation of various epoxides into the related carbonates under comparatively mild conditions of 1 atm CO2 flow and 70 °C, which should be ascribed to the unsaturated Zn2+ and Eu3+ ions acting as strong Lewis acid sites and free carboxyl oxygen atoms as basic sites synergistically polarizing and activating the substrates of epoxides and CO2 and consequently promoting the reaction. Furthermore, the water-resistant framework of NUC-9 could selectively and sensitively discriminate Fe3+ in aqueous solution according to the fluorescence quenching effect. In addition, it is worth mentioning that the successful self-assembly of NUC-9 provides an effective synthetic technique by employing the designed favorable organic ligand for achieving the targeted functional model of MOFs.
Collapse
Affiliation(s)
- Hongxiao Lv
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China.
| | - Hongtai Chen
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China.
| | - Liming Fan
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China.
| | - Xiutang Zhang
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China.
| |
Collapse
|
219
|
Dietzel PDC, Georgiev PA, Frøseth M, Johnsen RE, Fjellvåg H, Blom R. Effect of Larger Pore Size on the Sorption Properties of Isoreticular Metal-Organic Frameworks with High Number of Open Metal Sites. Chemistry 2020; 26:13523-13531. [PMID: 32428361 PMCID: PMC7702128 DOI: 10.1002/chem.202001825] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Indexed: 01/08/2023]
Abstract
Four isostructural CPO-54-M metal-organic frameworks based on the larger organic linker 1,5-dihydroxynaphthalene-2,6-dicarboxylic acid and divalent cations (M=Mn, Mg, Ni, Co) are shown to be isoreticular to the CPO-27 (MOF-74) materials. Desolvated CPO-54-Mn contains a very high concentration of open metal sites, which has a pronounced effect on the gas adsorption of N2 , H2 , CO2 and CO. Initial isosteric heats of adsorption are significantly higher than for MOFs without open metal sites and are slightly higher than for CPO-27. The plateau of high heat of adsorption decreases earlier in CPO-54-Mn as a function of loading per mole than in CPO-27-Mn. Cluster and periodic density functional theory based calculations of the adsorbate structures and energetics show that the larger adsorption energy at low loadings, when only open metal sites are occupied, is mainly due to larger contribution of dispersive interactions for the materials with the larger, more electron rich bridging ligand.
Collapse
Affiliation(s)
| | - Peter A. Georgiev
- Department of Condensed Matter Physics and MicroelecetronicsThe University of SofiaJ. Bourchier str. 51164SofiaBulgaria
| | | | - Rune E. Johnsen
- Department of Energy Conversion and StorageTechnical University of DenmarkFysikvej2800 Kgs.LyngbyDenmark
| | - Helmer Fjellvåg
- Department of ChemistryUniversity of Oslo, P.O.box 1033 Blindern0313OsloNorway
| | - Richard Blom
- SINTEF Industry, P.O.box 124 Blindern0314OsloNorway
| |
Collapse
|
220
|
Gong Y, Qin C, Zhang Y, Sun C, Pan Q, Wang X, Su Z. Face-Directed Assembly of Molecular Cubes: In Situ Substitution of a Predetermined Concave Cluster. Angew Chem Int Ed Engl 2020; 59:22034-22038. [PMID: 32896078 DOI: 10.1002/anie.202010824] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Indexed: 12/24/2022]
Abstract
Systematic design and self-assembly of metal-organic polyhedra with predictable configurations has been a long-standing challenge in crystal engineering. Herein a concave polyoxovanadate cluster, [V6 O6 (OCH3 )9 (SO4 )4 ]5- , which can be generated in situ under specific reaction conditions, is reported. Based on this cluster, a potential trivalent molecular building block, [V6 O6 (OCH3 )9 (SO4 )(CO2 )3 ]2- , can be obtained by the bridging-ligand-substitution strategy and it possesses appropriate angle information for the design of molecular cubes. Utilizing the face-directed assembly of the trivalent molecular building block and a diverse set of tetratopic carboxylate linkers, a series of metal-organic cubes (VMOC-1-VMOC-5) with the same topology but different functionalities and dimensions were designed and constructed. An inclusion study using VMOC-3 shows that they are potential molecular receptors for selective capture of size-matching polycyclic aromatic hydrocarbon guest molecules.
Collapse
Affiliation(s)
- Yaru Gong
- Key Lab of Polyoxometalate Science of Ministry of Education, National & Local United Engineering Laboratory for Power Battery Institution, Northeast Normal University, Changchun, Jilin, 130024, China.,Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, Hainan University, Haikou, 570228, China
| | - Chao Qin
- Key Lab of Polyoxometalate Science of Ministry of Education, National & Local United Engineering Laboratory for Power Battery Institution, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Yuteng Zhang
- Key Lab of Polyoxometalate Science of Ministry of Education, National & Local United Engineering Laboratory for Power Battery Institution, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Chunyi Sun
- Key Lab of Polyoxometalate Science of Ministry of Education, National & Local United Engineering Laboratory for Power Battery Institution, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Qinhe Pan
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, Hainan University, Haikou, 570228, China
| | - Xinlong Wang
- Key Lab of Polyoxometalate Science of Ministry of Education, National & Local United Engineering Laboratory for Power Battery Institution, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Zhongmin Su
- Key Lab of Polyoxometalate Science of Ministry of Education, National & Local United Engineering Laboratory for Power Battery Institution, Northeast Normal University, Changchun, Jilin, 130024, China
| |
Collapse
|
221
|
A Stable Coordination Polymer Based on Rod-Like Silver(I) Nodes with Contiguous Ag-S Bonding. Molecules 2020; 25:molecules25194548. [PMID: 33020442 PMCID: PMC7583003 DOI: 10.3390/molecules25194548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/01/2020] [Accepted: 10/02/2020] [Indexed: 11/17/2022] Open
Abstract
Silver(I)-based coordination polymers or metal-organic frameworks (MOFs) display useful antibacterial properties, whereby distinct materials with different bonding can afford control over the release of silver(I) ions. Such silver(I) materials are comprised of discrete secondary building units (SBUs), and typically formed with ligands possessing only soft or borderline donors. We postulated that a linker with four potential donor groups, comprising carboxylate and soft thioether donors, 2,5-bis (allylsulfanyl) benzene dicarboxylic acid (ASBDC), could be used to form stable, highly connected coordination polymers with silver(I). Here, we describe the synthesis of a new material, (Ag2(ASBDC)), which possesses a rod-like metal node-based 3D honeycomb structure, strongly π-stacked linkers, and steric bulk to protect the node. Due to the rod-like metal node and the blocking afforded by the ordered allyl groups, the material displays notable thermal and moisture stability. An interesting structural feature of (Ag2(ASBDC)) is contiguous Ag–S bonding, essentially a helical silver chalcogenide wire, which extends through the structure. These interesting structural features, coupled with the relative ease by which MOFs made with linear dicarboxylate linkers can be reticulated, suggests this may be a structure type worthy of further investigation.
Collapse
|
222
|
Haase F, Hirschle P, Freund R, Furukawa S, Ji Z, Wuttke S. Mehr als nur ein Netzwerk: Strukturierung retikulärer Materialien im Nano‐, Meso‐ und Volumenbereich. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914461] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Frederik Haase
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS) Kyoto University, Yoshida, Sakyo-ku Kyoto 606-8501 Japan
| | - Patrick Hirschle
- Department of Chemistry and Center for NanoScience (CeNS) Ludwig-Maximilians-Universität München Butenandtstraße 11 81377 München Deutschland
| | - Ralph Freund
- Department of Chemistry and Center for NanoScience (CeNS) Ludwig-Maximilians-Universität München Butenandtstraße 11 81377 München Deutschland
| | - Shuhei Furukawa
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS) Kyoto University, Yoshida, Sakyo-ku Kyoto 606-8501 Japan
- Department of Synthetic Chemistry and Biological Chemistry Graduate School of Engineering Kyoto University, Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Zhe Ji
- Department of Chemistry Stanford University Stanford Kalifornien 94305-5012 USA
| | - Stefan Wuttke
- Department of Chemistry and Center for NanoScience (CeNS) Ludwig-Maximilians-Universität München Butenandtstraße 11 81377 München Deutschland
- BCMaterials Basque Center for Materials UPV/EHU Science Park 48940 Leioa Spanien
- Ikerbasque Basque Foundation for Science 48013 Bilbao Spanien
| |
Collapse
|
223
|
Li YZ, Wang GD, Lu YK, Hou L, Wang YY, Zhu Z. A Multi-Functional In(III)-Organic Framework for Acetylene Separation, Carbon Dioxide Utilization, and Antibiotic Detection in Water. Inorg Chem 2020; 59:15302-15311. [DOI: 10.1021/acs.inorgchem.0c02291] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Yong-Zhi Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, National Demonstration Center for Experimental Chemistry Education (Northwest University), College of Chemistry & Materials Science, Northwest University, Xi’an 710069, P. R. China
| | - Gang-Ding Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, National Demonstration Center for Experimental Chemistry Education (Northwest University), College of Chemistry & Materials Science, Northwest University, Xi’an 710069, P. R. China
| | - Yu-Ke Lu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, National Demonstration Center for Experimental Chemistry Education (Northwest University), College of Chemistry & Materials Science, Northwest University, Xi’an 710069, P. R. China
| | - Lei Hou
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, National Demonstration Center for Experimental Chemistry Education (Northwest University), College of Chemistry & Materials Science, Northwest University, Xi’an 710069, P. R. China
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, National Demonstration Center for Experimental Chemistry Education (Northwest University), College of Chemistry & Materials Science, Northwest University, Xi’an 710069, P. R. China
| | - Zhonghua Zhu
- School of Chemical Engineering, The University of Queensland, Brisbane 4072, Australia
| |
Collapse
|
224
|
Wöhlbrandt S, Meier C, Reinsch H, Svensson Grape E, Inge AK, Stock N. A Tetratopic Phosphonic Acid for the Synthesis of Permanently Porous MOFs: Reactor Size-Dependent Product Formation and Crystal Structure Elucidation via Three-Dimensional Electron Diffraction. Inorg Chem 2020; 59:13343-13352. [PMID: 32869998 DOI: 10.1021/acs.inorgchem.0c01703] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Following the strategy of installing porosity in coordination polymers predefined by linker geometry, we employed the new tetratopic linker molecule 1,1,2,2-tetrakis[4-phosphonophenyl]ethylene (H8TPPE) for the synthesis of new porous metal phosphonates. A high-throughput study was carried out using Ni2+ and Co2+ as metal ions, and a very strong influence of the reactor size on the product formation is observed while maintaining the same reaction parameters. Using small autoclaves (V = 250 μL), single crystals of isostructural mononuclear complexes of the composition [Ni(H3DPBP)2(H2O)4] (1) and [Co(H3DPBP)2(H2O)4] (2) are formed. They contain the linker molecule H4DPBP (4,4'-diphosphonobenzophenone), which is formed in situ by oxidation of H8TPPE. Using autoclaves with a volume of V = 2 mL, two new 3D metal-organic frameworks (MOFs) of composition [Ni2(H4TPPE)(H2O)6]·4H2O (CAU-46) and [Co2(H4TPPE)(H2O)4]·3H2O (CAU-47) were isolated in bulk quantities, and their crystal structures were determined from three-dimensional electron diffraction (3D ED) and powder X-ray diffraction data. Using even larger autoclaves (V = 30 mL), another 3D MOF of the composition [Co2(H4TPPE)]·6H2O (Co-CAU-48) was obtained, and a structure model was established via 3D ED measurements. Remarkably, the isostructural compound [Ni2(H4TPPE)]·9H2O (Ni-CAU-48) is only obtained indirectly, i.e., via thermal activation of CAU-46. As the chosen linker geometry leads to the formation of MOFs, topological analyses were carried out, highlighting the different connectivities observed in the three frameworks. Porosity of the compounds was proven via water sorption experiments, resulting in uptakes of 126 mg/g (CAU-46), 105 mg/g (CAU-47), 210 mg/g (Ni-CAU-48), and 109 mg/g (Co-CAU-48).
Collapse
Affiliation(s)
- Stephan Wöhlbrandt
- Institut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
| | - Christoph Meier
- Institut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
| | - Helge Reinsch
- Institut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
| | - Erik Svensson Grape
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm 10691, Sweden
| | - A Ken Inge
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm 10691, Sweden
| | - Norbert Stock
- Institut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
| |
Collapse
|
225
|
Chen H, Fan L, Lv H, Zhang X. Robust Anionic LnIII–Organic Frameworks: Chemical Fixation of CO2, Tunable Light Emission, and Fluorescence Recognition of Fe3+. Inorg Chem 2020; 59:13407-13415. [DOI: 10.1021/acs.inorgchem.0c01782] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Hongtai Chen
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People’s Republic of China
| | - Liming Fan
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People’s Republic of China
| | - Hongxiao Lv
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People’s Republic of China
| | - Xiutang Zhang
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People’s Republic of China
| |
Collapse
|
226
|
|
227
|
|
228
|
Zhang Z, Peh SB, Wang Y, Kang C, Fan W, Zhao D. Efficient Trapping of Trace Acetylene from Ethylene in an Ultramicroporous Metal–Organic Framework: Synergistic Effect of High‐Density Open Metal and Electronegative Sites. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009446] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Zhaoqiang Zhang
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Shing Bo Peh
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Yuxiang Wang
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Chengjun Kang
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Weidong Fan
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Dan Zhao
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| |
Collapse
|
229
|
Zhang Z, Peh SB, Wang Y, Kang C, Fan W, Zhao D. Efficient Trapping of Trace Acetylene from Ethylene in an Ultramicroporous Metal–Organic Framework: Synergistic Effect of High‐Density Open Metal and Electronegative Sites. Angew Chem Int Ed Engl 2020; 59:18927-18932. [DOI: 10.1002/anie.202009446] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Indexed: 11/10/2022]
Affiliation(s)
- Zhaoqiang Zhang
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Shing Bo Peh
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Yuxiang Wang
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Chengjun Kang
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Weidong Fan
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Dan Zhao
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| |
Collapse
|
230
|
Yan Y, Carrington EJ, Pétuya R, Whitehead GFS, Verma A, Hylton RK, Tang CC, Berry NG, Darling GR, Dyer MS, Antypov D, Katsoulidis AP, Rosseinsky MJ. Amino Acid Residues Determine the Response of Flexible Metal-Organic Frameworks to Guests. J Am Chem Soc 2020; 142:14903-14913. [PMID: 32786807 PMCID: PMC7472430 DOI: 10.1021/jacs.0c03853] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Flexible metal-organic frameworks (MOFs) undergo structural transformations in response to physical and chemical stimuli. This is hard to control because of feedback between guest uptake and host structure change. We report a family of flexible MOFs based on derivatized amino acid linkers. Their porosity consists of a one-dimensional channel connected to three peripheral pockets. This network structure amplifies small local changes in linker conformation, which are strongly coupled to the guest packing in and the shape of the peripheral pockets, to afford large changes in the global pore geometry that can, for example, segment the pore into four isolated components. The synergy among pore volume, guest packing, and linker conformation that characterizes this family of structures can be determined by the amino acid side chain, because it is repositioned by linker torsion. The resulting control optimizes noncovalent interactions to differentiate the uptake and structure response of host-guest pairs with similar chemistries.
Collapse
Affiliation(s)
- Yong Yan
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, U.K
| | | | - Rémi Pétuya
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, U.K
| | | | - Ajay Verma
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, U.K
| | - Rebecca K Hylton
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, U.K
| | - Chiu C Tang
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, U.K
| | - Neil G Berry
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, U.K
| | - George R Darling
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, U.K
| | - Matthew S Dyer
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, U.K
| | - Dmytro Antypov
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, U.K
| | | | | |
Collapse
|
231
|
Zhu ZH, Wang HF, Yu S, Zou HH, Wang HL, Yin B, Liang FP. Substitution Effects Regulate the Formation of Butterfly-Shaped Tetranuclear Dy(III) Cluster and Dy-Based Hydrogen-Bonded Helix Frameworks: Structure and Magnetic Properties. Inorg Chem 2020; 59:11640-11650. [PMID: 32799502 DOI: 10.1021/acs.inorgchem.0c01496] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The generation of two types of complexes with different topological connections and completely different structural types merely via the substitution effect is extremely rare, especially for -CH3 and -C2H5 substituents with similar physical and chemical properties. Herein, we used 3-methoxysalicylaldehyde, 1,2-cyclohexanediamine, and Dy(NO3)3·6H2O to react under solvothermal conditions (CH3OH:CH3CN = 1:1) at 80 °C to obtain the butterfly-shaped tetranuclear DyIII cluster [Dy4(L1)4(μ3-O)2(NO3)2] (Dy4, H2L1 = 6,6'-((1E,1'E)-(cyclohexane-1,3-diylbis(azanylylidene))bis(methanylylidene))bis(2-methoxyphenol)). The ligand H2L1 was obtained by the Schiff base in situ reaction of 3-methoxysalicylaldehyde and 1,2-cyclohexanediamine. In the Dy4 structure, (L1)2- has two different coordination modes: μ2-η1:η2:η1:η1 and μ4-η1:η2:η1:η1:η2:η1. The four DyIII ions are in two coordination environments: N2O6 (Dy1) and O9 (Dy2). The magnetic testing of cluster Dy4 without the addition of an external field revealed that it exhibited a clear frequency-dependent behavior. We changed 3-methoxysalicylaldehyde to 3-ethoxysalicylaldehyde and obtained one case of a hydrogen-bonded helix framework, [DyL2(NO3)3]n·2CH3CN (Dy-HHFs, H2L2 = 6,6'-((1E,1'E)-(cyclohexane-1,3-diylbis(azanylylidene))bis(methanylylidene))bis(2-ethoxyphenol)), under the same reaction conditions. The ligand H2L2 was formed by the Schiff base in situ reaction of 3-ethoxysalicylaldehyde and 1,2-cyclohexanediamine. All DyIII ions in the Dy-HHFs structure are in the same coordination environment (O9). The twisted S-shaped (L2)2- ligand is linked by a Dy(III) ion to form a spiral chain. The spiral chain is one of the independent units that is interconnected to form Dy-HHFs through three strong hydrogen-bonding interactions. Magnetic studies show that Dy-HHFs exhibits single-ion-magnet behavior (Ueff = 68.59 K and τ0 = 1.10 × 10-7 s, 0 Oe DC field; Ueff = 131.5 K and τ0 = 1.22 × 10-7 s, 800 Oe DC field). Ab initio calculations were performed to interpret the dynamic magnetic performance of Dy-HHFs, and a satisfactory consistency between theory and experiment exists.
Collapse
Affiliation(s)
- Zhong-Hong Zhu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Hui-Feng Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Shui Yu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Hua-Hong Zou
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Hai-Ling Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Bing Yin
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xian 710069 People's Republic of China
| | - Fu-Pei Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, People's Republic of China.,Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People's Republic of China
| |
Collapse
|
232
|
Zhu ZH, Wang HL, Zou HH, Liang FP. Metal hydrogen-bonded organic frameworks: structure and performance. Dalton Trans 2020; 49:10708-10723. [PMID: 32672293 DOI: 10.1039/d0dt01998d] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Although great progress has been made in the design, synthesis, and performance expansion of porous materials, new porous materials with stable structures still need to be explored further. In recent years, porous molecular crystals formed by intermolecular interactions have attracted wide attention from chemists, especially metal hydrogen-bonded organic frameworks (M-HOFs) formed by connecting metal complexes through hydrogen bonds. Metal complexes with specific properties (e.g., magnetism, luminescence, sensing, and catalysis) can expand and develop the application of M-HOFs further. However, the huge volume, irregular shape, complex coordination modes, and interference of coordination bonds pose certain challenges in the synthesis and performance expansion of M-HOFs. In this frontier, we summarize the latest progress in the use of 3d, 4d, and 4f metal complexes for the synthesis of M-HOFs, and briefly introduce the performance expansion of these M-HOFs, which is expected to help expand new porous materials with stable structures and specific functions.
Collapse
Affiliation(s)
- Zhong-Hong Zhu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy of Guangxi Normal University, Guilin 541004, P. R. China.
| | - Hai-Ling Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy of Guangxi Normal University, Guilin 541004, P. R. China.
| | - Hua-Hong Zou
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy of Guangxi Normal University, Guilin 541004, P. R. China.
| | - Fu-Pei Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy of Guangxi Normal University, Guilin 541004, P. R. China. and Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P. R. China
| |
Collapse
|
233
|
Liu M, Liang J, Xu X, Liu Z. An unusual high-frequency ferroelectric obtained via the post-synthetic modification of a metal-organic framework. Dalton Trans 2020; 49:10895-10900. [PMID: 32720661 DOI: 10.1039/d0dt02066d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Ferroelectrics as crucial functional materials have attracted much interest since ferroelectricity was discovered in 1920. Herein, an unusual high-frequency ferroelectric, (CH3)2NH·HCl@Cd-MOF, was successfully obtained through a dual-step synthetic methodology. A chiral porous Cd-MOF with a channel size of 6.8 × 6.8 Å was synthesized via self-assembly of chiral Schiff-base ligands and Cd2+ ions. Subsequently, polarizable (CH3)2NH·HCl was introduced into the channels of the Cd-MOF and hence the host-guest system (CH3)2NH·HCl@Cd-MOF was formed. The as-synthesized (CH3)2NH·HCl@Cd-MOF displays obvious ferroelectricity at a high frequency of 1 kHz. Such a high-frequency ferroelectric is extremely rare among MOF-based ferroelectric materials, and the high-frequency ferroelectricity means that (CH3)2NH·HCl@Cd-MOF has potential for use in ferroelectric memories. The results again demonstrate that post-synthetic modification is a promising approach for achieving rational and precise design of ferroelectric materials.
Collapse
Affiliation(s)
- Meiying Liu
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P.R. China.
| | - Jingjing Liang
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P.R. China.
| | - Xuebin Xu
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P.R. China.
| | - Zhiliang Liu
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P.R. China.
| |
Collapse
|
234
|
Yang XL, Xie MH, Cai W, Shao R, Zang RB, Guan RF, Feng Y. Postmodified Dual Functional UiO Sensor for Selective Detection of Ozone and Tandemly Derived Sensing of Al 3. Anal Chem 2020; 92:11600-11606. [PMID: 32693574 DOI: 10.1021/acs.analchem.0c01082] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Development of highly sensitive and selective fluorescent sensors toward hazardous analytes represents great progress in fabricating sensing devices for practical applications. In this work, a highly selective sensor with dual functions has been fabricated via facile postmodification of the UiO-MOF. Butene modified salicylaldehyde is covalently linked to the UiO-66 scaffold via an efficient Schiff-base reaction, resulting in a highly fluorescent ozone sensor of UiO-66-butene. Ozonolysis of the terminal olefin followed by β-elimination could significantly quench the bright blue fluorescence of UiO-66-butene, and linear turn-off detection of ozone in the range of 0-100 μM is well established. The detection is highly sensitive and selective, and a detection limit of 73 nM was calculated. Remarkably, the ozonolysis afforded product could further act as a selective sensor for Al3+ via turn-on fluorescence with a detection limit of 142 nM, representing a second potential sensing function. The chemically selective sequential ozonolysis/β-elimination and remarkable dual functions offer the exclusive detection of ozone over other oxidative species as well as Al3+ over other cations following a tandem process, representing the first example of a direct MOF sensor for dual sensing of ozone and Al3+. This work demonstrates the potential of employing combinatorial principles for fabricating highly selective sensors, and postmodification of MOFs represents a promising facile strategy for developing various functional sensors.
Collapse
Affiliation(s)
- Xiu-Li Yang
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Ming-Hua Xie
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Wei Cai
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Rong Shao
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Rong-Bin Zang
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Rong-Feng Guan
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Yan Feng
- School of Chemistry and Chemical Engineering & Center for Atomic Engineering of Advanced Materials & AnHui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, PR China
| |
Collapse
|
235
|
Wen Q, Tenenholtz S, Shimon LJW, Bar-Elli O, Beck LM, Houben L, Cohen SR, Feldman Y, Oron D, Lahav M, van der Boom ME. Chiral and SHG-Active Metal-Organic Frameworks Formed in Solution and on Surfaces: Uniformity, Morphology Control, Oriented Growth, and Postassembly Functionalization. J Am Chem Soc 2020; 142:14210-14221. [PMID: 32650634 PMCID: PMC7497644 DOI: 10.1021/jacs.0c05384] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
![]()
We
demonstrate the formation of uniform and oriented metal–organic
frameworks using a combination of anion effects and surface chemistry.
Subtle but significant morphological changes result from the nature
of the coordinative counteranion of the following metal salts: NiX2 with X = Br–, Cl–, NO3–, and OAc–. Crystals
could be obtained in solution or by template surface growth. The latter
results in truncated crystals that resemble a half structure of the
solution-grown ones. The oriented surface-bound metal–organic
frameworks (sMOFs) are obtained via a one-step solvothermal approach
rather than in a layer-by-layer approach. The MOFs are grown on Si/SiOx
substrates modified with an organic monolayer or on glass substrates
covered with a transparent conductive oxide (TCO). Regardless of the
different morphologies, the crystallographic packing is nearly identical
and is not affected by the type of anion or by solution versus the
surface chemistry. A propeller-type arrangement of the nonchiral ligands
around the metal center affords a chiral structure with two geometrically
different helical channels in a 2:1 ratio with the same handedness.
To demonstrate the accessibility and porosity of the macroscopically
oriented channels, a chromophore (resorufin sodium salt) was successfully
embedded into the channels of the crystals by diffusion from solution,
resulting in fluorescent crystals. These “colored” crystals displayed polarized emission (red) with a high
polarization ratio because of the alignment of these dyes imposed
by the crystallographic structure. A second-harmonic generation (SHG)
study revealed Kleinman symmetry-forbidden nonlinear optical properties.
These surface-bound and oriented SHG-active MOFs have the potential
for use as single nonlinear optical (NLO) devices.
Collapse
|
236
|
Ji Z, Li T, Yaghi OM. Sequencing of metals in multivariate
metal-organic frameworks. Science 2020; 369:674-680. [DOI: 10.1126/science.aaz4304] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 03/09/2020] [Accepted: 06/17/2020] [Indexed: 11/02/2022]
Abstract
We mapped the metal sequences within
crystals of metal-oxide rods in multivariate
metal-organic framework–74 containing mixed
combinations of cobalt (Co), cadmium (Cd), lead
(Pb), and manganese (Mn). Atom probe tomography of
these crystals revealed the presence of
heterogeneous spatial sequences of metal ions that
we describe, depending on the metal and synthesis
temperature used, as random (Co, Cd, 120°C), short
duplicates (Co, Cd, 85°C), long duplicates (Co,
Pb, 85°C), and insertions (Co, Mn, 85°C). Three
crystals were examined for each sequence type, and
the molar fraction of Co among all 12 samples was
observed to vary from 0.4 to 0.9, without changing
the sequence type. Compared with metal oxides,
metal-organic frameworks have high tolerance for
coexistence of different metal sizes in their rods
and therefore assume various metal
sequences.
Collapse
Affiliation(s)
- Zhe Ji
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Kavli Energy NanoSciences Institute at Berkeley, Berkeley, CA 94720, USA
- Berkeley Global Science Institute, Berkeley, CA 94720, USA
| | - Tong Li
- Institute for Materials, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Omar M. Yaghi
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Kavli Energy NanoSciences Institute at Berkeley, Berkeley, CA 94720, USA
- Berkeley Global Science Institute, Berkeley, CA 94720, USA
- University of California, Berkeley–King Abdulaziz City for Science and Technology (KACST) Joint Center of Excellence for Nanomaterials for Clean Energy Applications, KACST, Riyadh 11442, Saudi Arabia
| |
Collapse
|
237
|
Yang Z, Wang Y, Liu X, Vanderlinden RT, Ni R, Li X, Stang PJ. Hierarchical Self-Assembly of a Pyrene-Based Discrete Organoplatinum(II) Double-Metallacycle with Triflate Anions via Hydrogen Bonding and Its Tunable Fluorescence Emission. J Am Chem Soc 2020; 142:13689-13694. [DOI: 10.1021/jacs.0c06666] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Zaiwen Yang
- College of Chemistry and Chemical Engineering, Xi’an University of Science and Technology, Xi’an 710054, P. R. China
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| | - Yiliang Wang
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| | - Xiangrong Liu
- College of Chemistry and Chemical Engineering, Xi’an University of Science and Technology, Xi’an 710054, P. R. China
| | - Ryan T. Vanderlinden
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| | - Ruidong Ni
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, Florida 33620, United States
| | - Xiaopeng Li
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, Florida 33620, United States
| | - Peter J. Stang
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| |
Collapse
|
238
|
Luo MB, Huang SL, Lai HD, Zhang J, Lin Q. Tin-oxychalcogenide supertetrahedral clusters maintained in a MTN zeolite-analog arrangement by coulombic interactions. Chem Commun (Camb) 2020; 56:8388-8391. [PMID: 32573642 DOI: 10.1039/d0cc02909b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Two crystalline salts, T3-SnOX-MTN (X = S/Se, MTN denotes a defined zeotype), both spatially assembled in an MTN net, have been fabricated. This was achieved by interlinking the isolated tin-oxychalcogenide tetrahedrally shaped clusters of T3-[Sn10O8X16]8- (X = S/Se) through coulombic interactions with protonated organic amine templates. T3-SnOX-MTN (X = S/Se), with 74.1/76.5 Å cubic unit-cell axial-lengths, have a proton-conductivity of over 10-3 S cm-1 under 98% relative humidity at 50 °C.
Collapse
Affiliation(s)
- Ming-Bu Luo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shan-Lin Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Heng-Dong Lai
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
| | - Qipu Lin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
| |
Collapse
|
239
|
Modibane KD, Waleng NJ, Ramohlola KE, Maponya TC, Monama GR, Makgopa K, Hato MJ. Poly(3-aminobenzoic acid) Decorated with Cobalt Zeolitic Benzimidazolate Framework for Electrochemical Production of Clean Hydrogen. Polymers (Basel) 2020; 12:polym12071581. [PMID: 32708650 PMCID: PMC7408260 DOI: 10.3390/polym12071581] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/08/2020] [Accepted: 07/10/2020] [Indexed: 12/02/2022] Open
Abstract
A novel composite of poly(3-aminobenzoic acid) (PABA) and a cobalt zeolitic benzimidazolate framework (CoZIF) has been studied for the production of hydrogen through the hydrogen evolution reaction (HER). The structural characteristics and successful synthesis of PABA, CoZIF and the PABA/CoZIF composite were confirmed and investigated using different techniques. Probing-ray diffraction for phase analysis revealed that the composite showed a decrease and shift in peak intensities, confirming the incorporation of CoZIF on the PABA backbone via in situ polymerization, with an improvement in the crystalline phase of the polymer. The thermal stability of PABA was enhanced upon composite formation. Both scanning electron microscopy and transmission electron microscopy showed that the composite had a rough surface, owing to an interaction between the CoZIF and the external surface of the PABA. The electrochemical hydrogen evolution reaction (HER) performance of the synthesized samples was evaluated using cyclic voltammetry and Tafel analysis. The composite possessed a Tafel slope value of 156 mV/dec and an α of 0.38, suggesting that the Volmer reaction coupled with either the Heyrovsky or Tafel reaction as the rate determining step. The fabricated composite showed high thermal stability and excellent tolerance as well as high electroactivity towards the HER, showing it to be a promising non-noble electrocatalyst to replace Pt-based catalysts for hydrogen generation.
Collapse
Affiliation(s)
- Kwena Desmond Modibane
- Nanotechnology Research Lab, Department of Chemistry, School of Physical and Mineral Sciences, University of Limpopo (Turfloop), Sovenga 0727, Polokwane, South Africa; (N.J.W.); (K.E.R.); (T.C.M.); (G.R.M.)
- Correspondence: (K.D.M.); or (M.J.H.)
| | - Ngwako Joseas Waleng
- Nanotechnology Research Lab, Department of Chemistry, School of Physical and Mineral Sciences, University of Limpopo (Turfloop), Sovenga 0727, Polokwane, South Africa; (N.J.W.); (K.E.R.); (T.C.M.); (G.R.M.)
| | - Kabelo Edmond Ramohlola
- Nanotechnology Research Lab, Department of Chemistry, School of Physical and Mineral Sciences, University of Limpopo (Turfloop), Sovenga 0727, Polokwane, South Africa; (N.J.W.); (K.E.R.); (T.C.M.); (G.R.M.)
| | - Thabiso Carol Maponya
- Nanotechnology Research Lab, Department of Chemistry, School of Physical and Mineral Sciences, University of Limpopo (Turfloop), Sovenga 0727, Polokwane, South Africa; (N.J.W.); (K.E.R.); (T.C.M.); (G.R.M.)
| | - Gobeng Release Monama
- Nanotechnology Research Lab, Department of Chemistry, School of Physical and Mineral Sciences, University of Limpopo (Turfloop), Sovenga 0727, Polokwane, South Africa; (N.J.W.); (K.E.R.); (T.C.M.); (G.R.M.)
| | - Katlego Makgopa
- Department of Chemistry, Faculty of Science, Tshwane University of Technology (Acardia Campus), Pretoria 0001, South Africa;
| | - Mpitloane Joseph Hato
- Nanotechnology Research Lab, Department of Chemistry, School of Physical and Mineral Sciences, University of Limpopo (Turfloop), Sovenga 0727, Polokwane, South Africa; (N.J.W.); (K.E.R.); (T.C.M.); (G.R.M.)
- Correspondence: (K.D.M.); or (M.J.H.)
| |
Collapse
|
240
|
Mancuso JL, Mroz AM, Le KN, Hendon CH. Electronic Structure Modeling of Metal-Organic Frameworks. Chem Rev 2020; 120:8641-8715. [PMID: 32672939 DOI: 10.1021/acs.chemrev.0c00148] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Owing to their molecular building blocks, yet highly crystalline nature, metal-organic frameworks (MOFs) sit at the interface between molecule and material. Their diverse structures and compositions enable them to be useful materials as catalysts in heterogeneous reactions, electrical conductors in energy storage and transfer applications, chromophores in photoenabled chemical transformations, and beyond. In all cases, density functional theory (DFT) and higher-level methods for electronic structure determination provide valuable quantitative information about the electronic properties that underpin the functions of these frameworks. However, there are only two general modeling approaches in conventional electronic structure software packages: those that treat materials as extended, periodic solids, and those that treat materials as discrete molecules. Each approach has features and benefits; both have been widely employed to understand the emergent chemistry that arises from the formation of the metal-organic interface. This Review canvases these approaches to date, with emphasis placed on the application of electronic structure theory to explore reactivity and electron transfer using periodic, molecular, and embedded models. This includes (i) computational chemistry considerations such as how functional, k-grid, and other model variables are selected to enable insights into MOF properties, (ii) extended solid models that treat MOFs as materials rather than molecules, (iii) the mechanics of cluster extraction and subsequent chemistry enabled by these molecular models, (iv) catalytic studies using both solids and clusters thereof, and (v) embedded, mixed-method approaches, which simulate a fraction of the material using one level of theory and the remainder of the material using another dissimilar theoretical implementation.
Collapse
Affiliation(s)
- Jenna L Mancuso
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97405, United States
| | - Austin M Mroz
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97405, United States
| | - Khoa N Le
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97405, United States
| | - Christopher H Hendon
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97405, United States
| |
Collapse
|
241
|
|
242
|
Metal-Organic Framework (MOF)/Epoxy Coatings: A Review. MATERIALS 2020; 13:ma13122881. [PMID: 32604965 PMCID: PMC7345547 DOI: 10.3390/ma13122881] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/17/2020] [Accepted: 06/22/2020] [Indexed: 01/16/2023]
Abstract
Epoxy coatings are developing fast in order to meet the requirements of advanced materials and systems. Progress in nanomaterial science and technology has opened a new era of engineering for tailoring the bulk and surface properties of organic coatings, e.g., adhesion to the substrate, anti-corrosion, mechanical, flame-retardant, and self-healing characteristics. Metal-organic frameworks (MOFs), a subclass of coordinative polymers with porous microstructures, have been widely synthesized in recent years and applied in gas and energy storage, separation, sensing, environmental science and technology, and medicine. Nevertheless, less attention has been paid to their performance in coatings. Well-known as micro- and nanoporous materials, with a tailorable structure consisting of metal ions and organic linkers, MOFs have a huge loading capacity, which is essential for the delivery of corrosion inhibitors. This review paper attempts to highlight the importance of epoxy/MOF composites for coating applications. A particular emphasis was explicitly placed on the anti-corrosion, flame-retardant, mechanical, and dielectric properties of epoxy/MOF coatings.
Collapse
|
243
|
Tholen P, Peeples CA, Schaper R, Bayraktar C, Erkal TS, Ayhan MM, Çoşut B, Beckmann J, Yazaydin AO, Wark M, Hanna G, Zorlu Y, Yücesan G. Semiconductive microporous hydrogen-bonded organophosphonic acid frameworks. Nat Commun 2020; 11:3180. [PMID: 32576877 PMCID: PMC7311548 DOI: 10.1038/s41467-020-16977-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 06/04/2020] [Indexed: 12/31/2022] Open
Abstract
Herein, we report a semiconductive, proton-conductive, microporous hydrogen-bonded organic framework (HOF) derived from phenylphosphonic acid and 5,10,15,20-tetrakis[p-phenylphosphonic acid] porphyrin (GTUB5). The structure of GTUB5 was characterized using single crystal X-ray diffraction. A narrow band gap of 1.56 eV was extracted from a UV-Vis spectrum of pure GTUB5 crystals, in excellent agreement with the 1.65 eV band gap obtained from DFT calculations. The same band gap was also measured for GTUB5 in DMSO. The proton conductivity of GTUB5 was measured to be 3.00 × 10-6 S cm-1 at 75 °C and 75% relative humidity. The surface area was estimated to be 422 m2 g-1 from grand canonical Monte Carlo simulations. XRD showed that GTUB5 is thermally stable under relative humidities of up to 90% at 90 °C. These findings pave the way for a new family of organic, microporous, and semiconducting materials with high surface areas and high thermal stabilities.
Collapse
Affiliation(s)
- Patrik Tholen
- Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355, Berlin, Germany
| | - Craig A Peeples
- University of Alberta, 116 St. and 85 Ave., Edmonton, AB, T6G 2R3, Canada
| | - Raoul Schaper
- Carl von Ossietzky Universität Oldenburg, Carl-von-Ossietzky Str. 9-11, 26129, Oldenburg, Germany
| | - Ceyda Bayraktar
- Gebze Technical University, Kimya Bölümü, 41400, Gebze-Kocaeli, Turkey
| | | | | | - Bünyemin Çoşut
- Gebze Technical University, Kimya Bölümü, 41400, Gebze-Kocaeli, Turkey
| | - Jens Beckmann
- Universität Bremen, Leobener Str. 7, 28359, Bremen, Germany
| | - A Ozgur Yazaydin
- University College London, Torrington Place, London, WC1E 7JE, UK
| | - Michael Wark
- Carl von Ossietzky Universität Oldenburg, Carl-von-Ossietzky Str. 9-11, 26129, Oldenburg, Germany
| | - Gabriel Hanna
- University of Alberta, 116 St. and 85 Ave., Edmonton, AB, T6G 2R3, Canada
| | - Yunus Zorlu
- Gebze Technical University, Kimya Bölümü, 41400, Gebze-Kocaeli, Turkey.
| | - Gündoğ Yücesan
- Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355, Berlin, Germany.
| |
Collapse
|
244
|
Tumor Microenvironment-Activated Degradable Multifunctional Nanoreactor for Synergistic Cancer Therapy and Glucose SERS Feedback. iScience 2020; 23:101274. [PMID: 32615471 PMCID: PMC7330608 DOI: 10.1016/j.isci.2020.101274] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/26/2020] [Accepted: 06/11/2020] [Indexed: 12/15/2022] Open
Abstract
Integration of disease diagnosis and therapy in vivo by nanotechnology is a challenge in the design of multifunctional nanocarriers. Herein, we report an intelligent and degradable nanoreactor, an assembly of the 4-mercaptobenzonitrile-decorated silver nanoparticles (AgNPs@MBN) and the glucose oxidase (GOx)-loaded metal-organic-framework (ZIF-8@GOx), which can be activated by tumor microenvironment to start the catalytic cascade-enhanced chemo-starvation synergistic therapy and simultaneous self-sense of cellular glucose level. Under the mild acidic microenvironment of tumor, the nanoreactor will collapse to release GOx that triggers a catalytic cascade reaction in vivo, depleting glucose, etching AgNPs@MBN, and producing toxic H2O2, Ag+, and Zn2+ ions, all of which work together to inhibit tumor growth. The AgNPs@MBN as SERS nanoprobe reads out glucose concentration noninvasively in tumor to achieve instant feedback of therapeutic progression. This work proposes a promising example of using enzyme-encapsulated biomineralized MOFs as an effective anticarcinogen for clinical applications. This nanoreactor integrates in vivo sensing and synergistic therapy capabilities The ZIF-8 nanocarrier protects GOx from deactivation and immune clearance The nanoreactor is biodegradable, avoiding the side effects on tumor-bearing mice Instant non-invasive glucose feedback capability realized by in vivo SERS
Collapse
|
245
|
Guo H, Wu N, Xue R, Liu H, Wang M, Yao W, Wang X, Yang W. An Eu(III)-functionalized Sr-based metal-organic framework for fluorometric determination of Cr(III) and Cr(VI) ions. Mikrochim Acta 2020; 187:374. [PMID: 32506282 DOI: 10.1007/s00604-020-04292-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 04/22/2020] [Indexed: 02/02/2023]
Abstract
An Eu(III)-functionalized strontium-organic framework (Eu3+@Sr-MOF) was synthesized by encapsulating Eu3+ ions into the pores of Sr-MOF via postsynthetic modification (PSM) and fully characterized by XRD, SEM, EDS, FTIR, and TGA. The luminescent properties of Eu3+@Sr-MOF were measured and investigated in detail, which demonstrated that Eu3+@Sr-MOF not only possessed excellent water and chemical stabilities in a wide pH range (5-10) but also displayed red luminescence with excitation/emission maxima at 332/617 nm. The Eu3+@Sr-MOF can be considered as a highly selective and sensitive recyclable luminescence probe for sensing Cr(III) and Cr(VI) based on strong luminescence quenching effects; it can be recycled at least five times. The luminescence probe for Cr3+, CrO42-, and Cr2O72- shows low detection limits (0.15 μM, 0.17 μM, and 0.13 μM, respectively), relatively broad linear ranges (0.6-150 μM, 0.1-200 μM and 0.4-180 μM, respectively), and high quenching constants KSV. The signals can be observed by the naked eye under UV light of 365 nm. The method was applied to the determination of total Cr in environmental water samples. Graphical abstract.
Collapse
Affiliation(s)
- Hao Guo
- Key Lab of Eco-Environments Related Polymer Materials of MOE; Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, People's Republic of China.
| | - Ning Wu
- Key Lab of Eco-Environments Related Polymer Materials of MOE; Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, People's Republic of China
| | - Rui Xue
- College of Chemistry and Chemical Engineering, Provincial Key Laboratory of Gansu Higher Education for City Environmental Pollution Control, Lanzhou City University, Lanzhou, 730070, People's Republic of China
| | - Hui Liu
- Key Lab of Eco-Environments Related Polymer Materials of MOE; Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, People's Republic of China
| | - Mingyue Wang
- Key Lab of Eco-Environments Related Polymer Materials of MOE; Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, People's Republic of China
| | - Wenqin Yao
- Key Lab of Eco-Environments Related Polymer Materials of MOE; Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, People's Republic of China
| | - Xiaoqiong Wang
- Key Lab of Eco-Environments Related Polymer Materials of MOE; Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, People's Republic of China
| | - Wu Yang
- Key Lab of Eco-Environments Related Polymer Materials of MOE; Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, People's Republic of China
| |
Collapse
|
246
|
Siemensmeyer K, Peeples CA, Tholen P, Schmitt FJ, Çoşut B, Hanna G, Yücesan G. Phosphonate Metal-Organic Frameworks: A Novel Family of Semiconductors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2000474. [PMID: 32374449 DOI: 10.1002/adma.202000474] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/21/2020] [Accepted: 04/06/2020] [Indexed: 06/11/2023]
Abstract
Herein, the first semiconducting and magnetic phosphonate metal-organic framework (MOF), TUB75, is reported, which contains a 1D inorganic building unit composed of a zigzag chain of corner-sharing copper dimers. The solid-state UV-vis spectrum of TUB75 reveals the existence of a narrow bandgap of 1.4 eV, which agrees well with the density functional theory (DFT)-calculated bandgap of 1.77 eV. Single-crystal conductivity measurements for different orientations of the individual crystals yield a range of conductances from 10-3 to 103 S m-1 at room temperature, pointing to the directional nature of the electrical conductivity in TUB75. Magnetization measurements show that TUB75 is composed of antiferromagnetically coupled copper dimer chains. Due to their rich structural chemistry and exceptionally high thermal/chemical stabilities, phosphonate MOFs like TUB75 may open new vistas in engineerable electrodes for supercapacitors.
Collapse
|
247
|
Aperiodic chemical sequence in a rod-spacer metal-organic framework from linear tetrazole-benzene-carboxylate linker. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.107925] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
248
|
Zhu Z, Wang H, Yu S, Fu X, Zou H, Chen Z, Liang F. Temperature‐induced formation of two dinuclear dysprosium complexes with different magnetic properties. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5622] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Zhong‐Hong Zhu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal ResourcesSchool of Chemistry and Pharmacy of Guangxi Normal University Guilin 541004 P. R. China
| | - Hai‐Ling Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal ResourcesSchool of Chemistry and Pharmacy of Guangxi Normal University Guilin 541004 P. R. China
| | - Shui Yu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal ResourcesSchool of Chemistry and Pharmacy of Guangxi Normal University Guilin 541004 P. R. China
| | - Xiao‐Xiao Fu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal ResourcesSchool of Chemistry and Pharmacy of Guangxi Normal University Guilin 541004 P. R. China
| | - Hua‐Hong Zou
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal ResourcesSchool of Chemistry and Pharmacy of Guangxi Normal University Guilin 541004 P. R. China
| | - Zilu Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal ResourcesSchool of Chemistry and Pharmacy of Guangxi Normal University Guilin 541004 P. R. China
| | - Fu‐Pei Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal ResourcesSchool of Chemistry and Pharmacy of Guangxi Normal University Guilin 541004 P. R. China
| |
Collapse
|
249
|
Zhang G, Gadot E, Gan-Or G, Baranov M, Tubul T, Neyman A, Li M, Clotet A, Poblet JM, Yin P, Weinstock IA. Self-Assembly and Ionic-Lattice-like Secondary Structure of a Flexible Linear Polymer of Highly Charged Inorganic Building Blocks. J Am Chem Soc 2020; 142:7295-7300. [PMID: 32233364 PMCID: PMC7467673 DOI: 10.1021/jacs.0c01486] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Among molecular building blocks, metal oxide cluster anions and their countercations provide multiple options for the self-assembly of functional materials. Currently, however, rational design concepts are limited to electrostatic interactions with metal or organic countercations or to the attachment and subsequent reactions of functionalized organic ligands. We now demonstrate that bridging μ-oxo linkages can be used to string together a bifunctional Keggin anion building block, [PNb2Mo10O40]5- (1), the diniobium(V) analogue of [PV2Mo10O40]5- (2). Induction of μ-oxo ligation between the NbV═O moieties of 1 in acetonitrile via step-growth polymerization gives linear polymers with entirely inorganic backbones, some comprising over 140 000 repeating units, each with a 3- charge, exceeding that of previously reported organic or inorganic polyelectrolytes. As the chain grows, its flexible μ-oxo-linked backbone, with associated countercations, coils into a compact 270 nm diameter spherical secondary structure as a result of electrostatic interactions not unlike those within ionic lattices. More generally, the findings point to new options for the rational design of multidimensional structures based on μ-oxo linkages between NbV═O-functionalized building blocks.
Collapse
Affiliation(s)
- Guanyun Zhang
- Department of Chemistry and the Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Eyal Gadot
- Department of Chemistry and the Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Gal Gan-Or
- Department of Chemistry and the Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Mark Baranov
- Department of Chemistry and the Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Tal Tubul
- Department of Chemistry and the Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Alevtina Neyman
- Department of Chemistry and the Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Mu Li
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Anna Clotet
- Departament de Quı́mica Fı́sica i Inorgànica, Universitat Rovira i Virgili, Marcel·lí Domingo 1, E-43007 Tarragona, Spain
| | - Josep M Poblet
- Departament de Quı́mica Fı́sica i Inorgànica, Universitat Rovira i Virgili, Marcel·lí Domingo 1, E-43007 Tarragona, Spain
| | - Panchao Yin
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Ira A Weinstock
- Department of Chemistry and the Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| |
Collapse
|
250
|
Liang L, Pan CD, Wang J. Synthese, structure and photocatalytic properties of a new two-dimensional polymer based on 4,4′-bis(2-methylimidazol-1-yl)diphenyl ether and 5-tert-butyl isophthalic acid. INORG NANO-MET CHEM 2020. [DOI: 10.1080/24701556.2019.1711403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Liang Liang
- School of Chemistry and Chemical Engineering, Yancheng Teachers University, Yancheng, Jiangsu, P.R. China
| | - Chen-Dong Pan
- School of Chemistry and Chemical Engineering, Yancheng Teachers University, Yancheng, Jiangsu, P.R. China
| | - Jun Wang
- School of Chemistry and Chemical Engineering, Yancheng Teachers University, Yancheng, Jiangsu, P.R. China
| |
Collapse
|