201
|
Yamazaki E, Lalwani D, Ruan Y, Taniyasu S, Hanari N, Kumar NJI, Lam PKS, Yamashita N. Nationwide distribution of per- and polyfluoroalkyl substances (PFAS) in road dust from India. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 892:164538. [PMID: 37271381 DOI: 10.1016/j.scitotenv.2023.164538] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/23/2023] [Accepted: 05/27/2023] [Indexed: 06/06/2023]
Abstract
In India, information on the occurrence and distribution of legacy and emerging per- and polyfluoroalkyl substances (PFAS) is deficient. In the present study, nationwide 79 road dust samples were collected from 12 states and 1 union territory for the analysis of 34 PFAS. Overall, total concentrations of 21 quantified PFAS (∑21PFAS) ranged 23-861 pg/g (median: 116 pg/g), with perfluorooctane sulfonic acid (PFOS) being predominant (median: 19.9 pg/g). Short to long chain perfluoroalkyl carboxylic acids (PFCAs; C4 - C18) were detected, where the concentrations of PFAS decreased with the increase in PFAS carbon chain length. ∑21PFAS was highest in road dust from urban area (n = 27; median: 230 pg/g), followed by suburban (n = 21; median: 126 pg/g) and rural areas (n = 31; median: 76 pg/g), suggesting environmental impacts of industriallization and urbanization on PFAS distribution. PFAS composition in rural road dust was significantly different from those in suburban and urban samples (p < 0.01). Regarding 4 geographical regions of India, PFAS in road dust showed spatial difference where higher concentrations were found in South India compared to other regions. ∑21PFAS were positively associated with city-wise population of India (rs = 0.40, p < 0.01). Strong to moderate positive correlation was observed between ∑21PFAS, fluorotelomer sulfonic acids, and PFCAs (rs = 0.23, 0.30, and 0.28, respectively; p < 0.05) and the total state-wise vehicles in India, suggesting that vehicles exhaust or non-exhaust (e.g., vehicle tire debris and polishing material) might contribute to the PFAS occurrence in Indian road dust. Toddlers (2-5 years) had the highest estimated daily intake of ∑PFAS via road dust ingestion under average-case and worst-case scenarios (0.55 and 1.16 pg/kg bw/day, respectively). This is the first time to evaluate PFAS in Indian road dust nationwide, aiding to provide first-hand data for human exposure to PFAS in India.
Collapse
Affiliation(s)
- Eriko Yamazaki
- National Metrology Institute of Japan, National Institute of Advanced Industrial Science and Technology (NMIJ/AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8563, Japan
| | - Dipa Lalwani
- Institute of Science & Technology for Advanced Studies & Research (ISTAR), Post Box No:13, Vallabh Vidhyanagar 388120, Dist: Anand, Gujarat, India; National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Yuefei Ruan
- State Key Laboratory of Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon 999077, Hong Kong, China
| | - Sachi Taniyasu
- National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Nobuyasu Hanari
- National Metrology Institute of Japan, National Institute of Advanced Industrial Science and Technology (NMIJ/AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8563, Japan
| | - Nirmal J I Kumar
- Institute of Science & Technology for Advanced Studies & Research (ISTAR), Post Box No:13, Vallabh Vidhyanagar 388120, Dist: Anand, Gujarat, India
| | - Paul K S Lam
- State Key Laboratory of Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon 999077, Hong Kong, China; Department of Science, School of Science and Technology, Hong Kong Metropolitan University, 30 Good Shepherd Street, Kowloon 999077, Hong Kong, China
| | - Nobuyoshi Yamashita
- National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan.
| |
Collapse
|
202
|
Mann MM, Berger BW. A genetically-encoded biosensor for direct detection of perfluorooctanoic acid. Sci Rep 2023; 13:15186. [PMID: 37704644 PMCID: PMC10499884 DOI: 10.1038/s41598-023-41953-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/04/2023] [Indexed: 09/15/2023] Open
Abstract
Determination of per- and polyfluoroalkyl substances (PFAS) in drinking water at the low levels set by regulatory officials has been a major focus for sensor developing researchers. However, it is becoming more apparent that detection of these contaminants in soils, foods and consumer products is relevant and necessary at part per billion and even part per million levels. Here, a fluorescent biosensor for the rapid detection of PFOA was engineered based on human liver fatty acid binding protein (hLFABP). By conjugating circularly permuted green fluorescent protein (cp.GFP) to a split hLFABP construct, the biosensor was able to detect perfluorooctanoic acid PFOA in PBS as well as environmental water samples with LODs of 236 and 330 ppb respectively. Furthermore, E. coli cells cytosolically expressing the protein-based sensor were demonstrated to quickly detect PFOA, demonstrating feasibility of whole-cell sensing. Overall, this work demonstrates a platform technology utilizing a circularly permuted GFP and split hLFABP conjugate as a label-free optical biosensor for PFOA.
Collapse
Affiliation(s)
- Madison M Mann
- Department of Chemical Engineering, University of Virginia, 102 Engineers Way, Charlottesville, VA, 22901, USA
| | - Bryan W Berger
- Department of Chemical Engineering, University of Virginia, 102 Engineers Way, Charlottesville, VA, 22901, USA.
- Department of Biomedical Engineering, University of Virginia, Charlottesville, USA.
| |
Collapse
|
203
|
Ruan T, Li P, Wang H, Li T, Jiang G. Identification and Prioritization of Environmental Organic Pollutants: From an Analytical and Toxicological Perspective. Chem Rev 2023; 123:10584-10640. [PMID: 37531601 DOI: 10.1021/acs.chemrev.3c00056] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Exposure to environmental organic pollutants has triggered significant ecological impacts and adverse health outcomes, which have been received substantial and increasing attention. The contribution of unidentified chemical components is considered as the most significant knowledge gap in understanding the combined effects of pollutant mixtures. To address this issue, remarkable analytical breakthroughs have recently been made. In this review, the basic principles on recognition of environmental organic pollutants are overviewed. Complementary analytical methodologies (i.e., quantitative structure-activity relationship prediction, mass spectrometric nontarget screening, and effect-directed analysis) and experimental platforms are briefly described. The stages of technique development and/or essential parts of the analytical workflow for each of the methodologies are then reviewed. Finally, plausible technique paths and applications of the future nontarget screening methods, interdisciplinary techniques for achieving toxicant identification, and burgeoning strategies on risk assessment of chemical cocktails are discussed.
Collapse
Affiliation(s)
- Ting Ruan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengyang Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haotian Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tingyu Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
204
|
Smith SJ, Keane C, Ahrens L, Wiberg K. Integrated Treatment of Per- and Polyfluoroalkyl Substances in Existing Wastewater Treatment Plants-Scoping the Potential of Foam Partitioning. ACS ES&T ENGINEERING 2023; 3:1276-1285. [PMID: 37705672 PMCID: PMC10496112 DOI: 10.1021/acsestengg.3c00091] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 09/15/2023]
Abstract
Foam fractionation is becoming increasingly popular as a treatment technology for water contaminated with per- and polyfluoroalkyl substances (PFAS). At many existing wastewater treatment facilities, particularly in aerated treatment steps, foam formation is frequently observed. This study aimed to investigate if foam fractionation for the removal of PFAS could be integrated with such existing treatment processes. Influent, effluent, water under the foam, and foam were sampled from ten different wastewater treatment facilities where foam formation was observed. These samples were analyzed for the concentration of 29 PFAS, also after the total oxidizable precursor (TOP) assay. Enrichment factors were defined as the PFAS concentration in the foam divided by the PFAS concentration in the influent. Although foam partitioning did not lead to decreased ∑PFAS concentrations from influent to effluent in any of the plants, certain long-chain PFAS were removed with efficiencies up to 76%. Moreover, ∑PFAS enrichment factors in the foam ranged up to 105, and enrichment factors of individual PFAS ranged even up to 106. Moving bed biofilm reactors (MBBRs) were more effective at enriching PFAS in the foam than activated sludge processes. Altogether, these high enrichment factors demonstrate that foam partitioning in existing wastewater treatment plants is a promising option for integrated removal. Promoting foam formation and removing foam from the water surface with skimming devices may improve the removal efficiencies further. These findings have important implications for PFAS removal and sampling strategies at wastewater treatment plants.
Collapse
Affiliation(s)
- Sanne J. Smith
- Department
of Aquatic Sciences and Assessment, Swedish
University of Agricultural Sciences (SLU), P.O. Box 7050, SE-750 07 Uppsala, Sweden
| | - Chantal Keane
- Queensland
Alliance for Environmental Health Sciences, University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Lutz Ahrens
- Department
of Aquatic Sciences and Assessment, Swedish
University of Agricultural Sciences (SLU), P.O. Box 7050, SE-750 07 Uppsala, Sweden
| | - Karin Wiberg
- Department
of Aquatic Sciences and Assessment, Swedish
University of Agricultural Sciences (SLU), P.O. Box 7050, SE-750 07 Uppsala, Sweden
| |
Collapse
|
205
|
Dai M, Yan N, Brusseau ML. Potential impact of bacteria on the transport of PFAS in porous media. WATER RESEARCH 2023; 243:120350. [PMID: 37499541 PMCID: PMC10530518 DOI: 10.1016/j.watres.2023.120350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 07/05/2023] [Accepted: 07/11/2023] [Indexed: 07/29/2023]
Abstract
The transport and fate of per- and poly-fluoroalkyl substances (PFAS) in soil and groundwater is a topic of critical concern. A number of factors and processes may influence the transport and fate of PFAS in porous media. One factor that has received minimal attention to date is the impact of bacteria on the retention and transport of PFAS, which is the focus of this current study. The first part of this work comprised a critical review of prior studies to delineate observed PFAS-bacteria interactions and to summarize the mechanisms of PFAS sorption and retention by bacteria. Retention of PFAS by bacteria can occur through sorption onto cell surfaces and/or by incorporation into the cell interior. Factors such as the molecular structure of PFAS, solution chemistry, and bacterial species can affect the magnitude of PFAS sorption. The influence of bacteria on the retention and transport of PFAS was investigated in the second part of the study with a series of batch and miscible-displacement experiments. Batch experiments were conducted using Gram-negative Pseudomonas aeruginosa and Gram-positive Bacillus subtilis to quantify the sorption of perfluorooctane sulfonic acid (PFOS). The results indicated that both bacteria showed strong adsorption of PFOS, with no significant difference in adsorption capacity. Miscible-displacement experiments were then conducted to examine the retention and transport of PFOS in both untreated sand and sand inoculated with Pseudomonas aeruginosa or Bacillus subtilis for 1 and 3 days. The transport of PFOS exhibited greater retardation for the experiments with inoculated sand. Furthermore, the enhanced sorption was greater for the 3-day inoculation compared to the 1-day, indicating that biomass is an important factor affecting PFOS transport. A mathematical model representing transport with nonlinear and rate-limited sorption successfully simulated the observed PFOS transport. This study highlights the need for future studies to evaluate the effect of bacteria on the transport of PFAS in soil and groundwater.
Collapse
Affiliation(s)
- Mengfan Dai
- Key Lab of Marine Environmental Science and Ecology, Ministry of Education, College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao 266100, China
| | - Ni Yan
- Key Lab of Marine Environmental Science and Ecology, Ministry of Education, College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao 266100, China.
| | - Mark L Brusseau
- Environmental Science Department, University of Arizona, Tucson, AZ 85721, United States; Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, AZ 85721, United States.
| |
Collapse
|
206
|
Zhang L, Zheng X, Liu X, Li J, Li Y, Wang Z, Zheng N, Wang X, Fan Z. Toxic effects of three perfluorinated or polyfluorinated compounds (PFCs) on two strains of freshwater algae: Implications for ecological risk assessments. J Environ Sci (China) 2023; 131:48-58. [PMID: 37225380 DOI: 10.1016/j.jes.2022.10.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/26/2022] [Accepted: 10/26/2022] [Indexed: 05/26/2023]
Abstract
Perfluorinated or polyfluorinated compounds (PFCs) continue entering to the environmental as individuals or mixtures, but their toxicological information remains largely unknown. Here, we investigated the toxic effects and ecological risks of Perfluorooctane sulfonic acid (PFOS) and its substitutes on prokaryotes (Chlorella vulgaris) and eukaryotes (Microcystis aeruginosa). Based on the calculated EC50 values, the results showed that PFOS was significantly more toxic to both algae than its alternatives including Perfluorobutane sulfonic acid (PFBS) and 6:2 Fluoromodulated sulfonates (6:2 FTS), and the PFOS-PFBS mixture was more toxic to both algae than the other two PFC mixtures. The action mode of binary PFC mixtures on Chlorella vulgaris was mainly shown as antagonistic and on Microcystis aeruginosa as synergistic, by using Combination index (CI) model coupled with Monte Carlo simulation. The mean risk quotient (RQ) value of three individual PFCs and their mixtures were all below the threshold of 10-1, but the risk of those binary mixtures were higher than that of PFCs individually because of their synergistic effect. Our findings contribute to enhance the understanding of the toxicological information and ecological risks of emerging PFCs and provide a scientific basis for their pollution control.
Collapse
Affiliation(s)
- Liangliang Zhang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Xiaowei Zheng
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Xianglin Liu
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Jue Li
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Yanyao Li
- Laboratory of Industrial Water and Ecotechnology, Department of Green Chemistry and Technology, Ghent University, Kortrijk 8500, Belgium
| | - Zeming Wang
- Jinan Environmental Research Academy, Jinan 250102, China
| | - Nan Zheng
- Jinan Environmental Research Academy, Jinan 250102, China
| | - Xiangrong Wang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China.
| | - Zhengqiu Fan
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China.
| |
Collapse
|
207
|
India-Aldana S, Yao M, Midya V, Colicino E, Chatzi L, Chu J, Gennings C, Jones DP, Loos RJF, Setiawan VW, Smith MR, Walker RW, Barupal D, Walker DI, Valvi D. PFAS Exposures and the Human Metabolome: A Systematic Review of Epidemiological Studies. CURRENT POLLUTION REPORTS 2023; 9:510-568. [PMID: 37753190 PMCID: PMC10520990 DOI: 10.1007/s40726-023-00269-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/03/2023] [Indexed: 09/28/2023]
Abstract
Purpose of Review There is a growing interest in understanding the health effects of exposure to per- and polyfluoroalkyl substances (PFAS) through the study of the human metabolome. In this systematic review, we aimed to identify consistent findings between PFAS and metabolomic signatures. We conducted a search matching specific keywords that was independently reviewed by two authors on two databases (EMBASE and PubMed) from their inception through July 19, 2022 following PRISMA guidelines. Recent Findings We identified a total of 28 eligible observational studies that evaluated the associations between 31 different PFAS exposures and metabolomics in humans. The most common exposure evaluated was legacy long-chain PFAS. Population sample sizes ranged from 40 to 1,105 participants at different stages across the lifespan. A total of 19 studies used a non-targeted metabolomics approach, 7 used targeted approaches, and 2 included both. The majority of studies were cross-sectional (n = 25), including four with prospective analyses of PFAS measured prior to metabolomics. Summary Most frequently reported associations across studies were observed between PFAS and amino acids, fatty acids, glycerophospholipids, glycerolipids, phosphosphingolipids, bile acids, ceramides, purines, and acylcarnitines. Corresponding metabolic pathways were also altered, including lipid, amino acid, carbohydrate, nucleotide, energy metabolism, glycan biosynthesis and metabolism, and metabolism of cofactors and vitamins. We found consistent evidence across studies indicating PFAS-induced alterations in lipid and amino acid metabolites, which may be involved in energy and cell membrane disruption.
Collapse
Affiliation(s)
- Sandra India-Aldana
- Department of Environmental Medicine and Public Health,
Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New
York, NY 10029, USA
| | - Meizhen Yao
- Department of Environmental Medicine and Public Health,
Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New
York, NY 10029, USA
| | - Vishal Midya
- Department of Environmental Medicine and Public Health,
Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New
York, NY 10029, USA
| | - Elena Colicino
- Department of Environmental Medicine and Public Health,
Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New
York, NY 10029, USA
| | - Leda Chatzi
- Department of Population and Public Health Sciences, Keck
School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jaime Chu
- Department of Pediatrics, Icahn School of Medicine at Mount
Sinai, New York, NY, USA
| | - Chris Gennings
- Department of Environmental Medicine and Public Health,
Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New
York, NY 10029, USA
| | - Dean P. Jones
- Clinical Biomarkers Laboratory, Division of Pulmonary,
Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, USA
| | - Ruth J. F. Loos
- Department of Environmental Medicine and Public Health,
Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New
York, NY 10029, USA
- Charles Bronfman Institute for Personalized Medicine, Icahn
School of Medicine at Mount Sinai, New York, NY, USA
- Faculty of Health and Medical Sciences, Novo Nordisk
Foundation Center for Basic Metabolic Research, University of Copenhagen,
Copenhagen, Denmark
| | - Veronica W. Setiawan
- Department of Population and Public Health Sciences, Keck
School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Mathew Ryan Smith
- Clinical Biomarkers Laboratory, Division of Pulmonary,
Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, USA
- Veterans Affairs Medical Center, Decatur, GA, USA
| | - Ryan W. Walker
- Department of Environmental Medicine and Public Health,
Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New
York, NY 10029, USA
| | - Dinesh Barupal
- Department of Environmental Medicine and Public Health,
Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New
York, NY 10029, USA
| | - Douglas I. Walker
- Department of Environmental Medicine and Public Health,
Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New
York, NY 10029, USA
| | - Damaskini Valvi
- Department of Environmental Medicine and Public Health,
Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New
York, NY 10029, USA
| |
Collapse
|
208
|
Johnson T, Obereiner J, Khire MV. Longer-term temporal trends in PFAS concentrations in Midwestern landfill leachate. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2023; 41:1445-1452. [PMID: 36964719 DOI: 10.1177/0734242x231160087] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
It is well documented that per- and polyfluoroalkyl substances (PFAS) are routinely detected in leachate from municipal solid waste (MSW) landfills. PFAS-containing products are ubiquitous in society and in end-of-life discarded materials. While considerable data have been generated in recent years for PFAS concentrations in landfill leachate, little published information exists concerning longer-term trends in leachate concentrations. In this study, we examine a ten-year dataset for three MSW landfills located in the upper Midwestern United States where leachate PFAS testing has been performed on a quarterly basis. The significance of these data are considered in light of phase-out initiatives implemented in the US manufacturing companies for longer-chain PFAS including perfluorooctanoic acid (PFOA), perfluorooctane sulphonate (PFOS) and perfluorononanoic acid (PFNA). Findings from this study indicate that the average concentration of longer-chain PFOA in the three landfills decreased from 2400 to 1900 ng/L and the average PFOS concentrations decreased from 1000 to 370 ng/L. This may be indicative of reduced domestic production and use of these compounds. The phase-out of long-chain PFAS has also led to the introduction of shorter-chain replacement compounds such as perfluorobutanoic acid, perfluorobutane sulphonate and perfluorohexanoic acid, and this paper also examines long-term trends in leachate concentrations of these compounds.
Collapse
Affiliation(s)
- Terry Johnson
- Senior Director of Groundwater and Technical Programs, Waste Management, Inc., Houston, TX, USA
| | | | - Milind V Khire
- Professor, Department of Civil and Environmental Engineering, University of North Carolina Charlotte, Charlotte, NC, USA
| |
Collapse
|
209
|
Jacob P, Helbling DE. Exploring the Evolution of Organofluorine-Containing Compounds during Simulated Photolithography Experiments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12819-12828. [PMID: 37590049 DOI: 10.1021/acs.est.3c03410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
One potential source of per- and polyfluoroalkyl substances (PFASs) in electronics fabrication wastewater are the organofluorine-containing compounds used in photolithography materials such as photoresists and top antireflective coatings (TARCs). However, the exact identities of these constituents are unknown and transformation reactions that may occur during photolithography may result in the formation of unknown or unexpected PFASs. To address this knowledge gap, we acquired five commercially relevant photolithography materials, characterized the occurrence of organofluorine-containing compounds in each material, and performed simulated photolithography experiments to stimulate any potential transformation reactions. We found that photoresists and TARCs have total fluorine (TF) concentrations in the g L-1 range, similar to the levels of other industrial and commercial products. However, the target and suspect PFASs present in these materials can only explain up to 20% of the TF in a material. We evaluated wastewater samples collected after simulated photolithography experiments and used a mass balance approach to assess the extent of transformations. Although a number of target, suspect, and nontarget PFASs were identified in the wastewater samples, the extent of transformation was limited and the fluorine contained in the PFASs could not explain more than an additional 1% of the TF in the photolithography materials.
Collapse
Affiliation(s)
- Paige Jacob
- School of Civil and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Damian E Helbling
- School of Civil and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
210
|
Zweigle J, Capitain C, Simon F, Roesch P, Bugsel B, Zwiener C. Non-extractable PFAS in functional textiles - characterization by complementary methods: oxidation, hydrolysis, and fluorine sum parameters. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:1298-1310. [PMID: 37503704 DOI: 10.1039/d3em00131h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are widely used for durable water-repellent finishing of different fabrics and textiles such as outdoor clothing, carpets, medical textiles and more. Existing PFAS extraction techniques followed by target analysis are often insufficient for detecting widely used side-chain fluorinated polymers (SFPs) that are barely or non-extractable. SFPs are typically copolymers consisting of a non-fluorinated backbone with perfluoroalkyl side-chains to obtain desired properties. We compared the accessible analytical information and performance of complementary techniques based on oxidation (dTOP and PhotoTOP assays), hydrolysis (THP assay), standard extraction, extractable organic fluorine (EOF), and total fluorine (TF) with five functional textiles and characterized 7 further textiles only by PhotoTOP oxidation. The results show that when applied directly to textile samples, dTOP and PhotoTOP oxidation and also hydrolysis (THP) are able to capture large fractions of TF in the form of perfluoroalkyl side-chains present in the textiles while methods relying on extracts (EOF, target and non-target analysis) yield much lower fractions of TF (e.g., factor ∼25-50 lower). The conversion of large fractions of the measured TF into PFCAs or FTOHs from fluorinated side chains is in contrast to previous studies. Concentrations ranged from
Collapse
Affiliation(s)
- Jonathan Zweigle
- Environmental Analytical Chemistry, Department of Geosciences, University of Tübingen, Schnarrenbergstraße 94-96, 72076 Tübingen, Germany.
| | - Catharina Capitain
- Environmental Analytical Chemistry, Department of Geosciences, University of Tübingen, Schnarrenbergstraße 94-96, 72076 Tübingen, Germany.
| | - Fabian Simon
- Federal Institute for Materials Research and Testing (BAM), Division 1.1 - Inorganic Trace Analysis, Richard-Willstätter-Straße 11, 12489 Berlin, Germany
| | - Philipp Roesch
- Federal Institute for Materials Research and Testing (BAM), Division 4.3 - Contaminant Transfer and Environmental Technologies, Unter den Eichen 87, 12205, Berlin, Germany
| | - Boris Bugsel
- Environmental Analytical Chemistry, Department of Geosciences, University of Tübingen, Schnarrenbergstraße 94-96, 72076 Tübingen, Germany.
| | - Christian Zwiener
- Environmental Analytical Chemistry, Department of Geosciences, University of Tübingen, Schnarrenbergstraße 94-96, 72076 Tübingen, Germany.
| |
Collapse
|
211
|
Jia Y, Shan C, Fu W, Wei S, Pan B. Occurrences and fates of per- and polyfluoralkyl substances in textile dyeing wastewater along full-scale treatment processes. WATER RESEARCH 2023; 242:120289. [PMID: 37413748 DOI: 10.1016/j.watres.2023.120289] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/22/2023] [Accepted: 06/28/2023] [Indexed: 07/08/2023]
Abstract
Industrial wastewater is a substantial source of per- and polyfluoroalkyl substances (PFASs) in the environment. However, very limited information is available on the occurrences and fates of PFASs along industrial wastewater treatment processes, particularly for the textile dyeing industry where PFASs occur extensively. Herein, the occurrences and fates of 27 legacy and emerging PFASs were investigated along the processes of three full-scale textile dyeing wastewater treatment plants (WWTPs) based on UHPLC-MS/MS in combination with self-developed solid extraction protocol featuring selective enrichment for ultrasensitive analysis. The total PFASs ranged at 630-4268 ng L-1 in influents, 436-755 ng L-1 in effluents, and 91.5-1182 μg kg-1 in the resultant sludge. PFAS species distribution varied among WWTPs, with one WWTP dominated by legacy perfluorocarboxylic acids while the other two dominated by emerging PFASs. Perfluorooctane sulfonate (PFOS) was trivial in the effluents from all the three WWTPs, indicating its diminished use in textile industry. Various emerging PFASs were detected at different abundances, demonstrating their use as alternatives to legacy PFASs. Most conventional processes of the WWTPs were inefficient in removing PFASs, especially for the legacy PFASs. The microbial processes could remove the emerging PFASs to different extents, whereas commonly elevated the concentrations of legacy PFASs. Over 90% of most PFASs could be removed by reverse osmosis (RO) and was enriched into the RO concentrate accordingly. The total oxidizable precursors (TOP) assay revealed that the total concentration of PFASs was increased by 2.3-4.1 times after oxidation, accompanied by formation of terminal perfluoroalkyl acids (PFAAs) and degradation of emerging alternatives to various extents. This study is believed to shed new light on the monitoring and management of PFASs in industries.
Collapse
Affiliation(s)
- Yuqian Jia
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Chao Shan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China; Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing, 210023, China
| | - Wanyi Fu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Si Wei
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Bingcai Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China; Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
212
|
Xin X, Kim J, Ashley DC, Huang CH. Degradation and Defluorination of Per- and Polyfluoroalkyl Substances by Direct Photolysis at 222 nm. ACS ES&T WATER 2023; 3:2776-2785. [PMID: 37588805 PMCID: PMC10425954 DOI: 10.1021/acsestwater.3c00274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 08/18/2023]
Abstract
The susceptibility of 19 representative per- and polyfluoroalkyl substances (PFAS) to direct photolysis and defluorination under far-UVC 222 nm irradiation was investigated. Enhanced photolysis occurred for perfluorocarboxylic acids (PFCAs), fluorotelomer unsaturated carboxylic acids (FTUCAs), and GenX, compared to that at conventional 254 nm irradiation on a similar fluence basis, while other PFAS showed minimal decay. For degradable PFAS, up to 81% of parent compound decay (photolysis rate constant (k222 nm) = 8.19-34.76 L·Einstein-1; quantum yield (Φ222 nm) = 0.031-0.158) and up to 31% of defluorination were achieved within 4 h, and the major transformation products were shorter-chain PFCAs. Solution pH, dissolved oxygen, carbonate, phosphate, chloride, and humic acids had mild impacts, while nitrate significantly affected PFAS photolysis/defluorination at 222 nm. Decarboxylation is a crucial step of photolytic decay. The slower degradation of short-chain PFCAs than long-chain ones is related to molar absorptivity and may also be influenced by chain-length dependent structural factors, such as differences in pKa, conformation, and perfluoroalkyl radical stability. Meanwhile, theoretical calculations indicated that the widely proposed HF elimination from the alcohol intermediate (CnF2n+1OH) of PFCA is an unlikely degradation pathway due to high activation barriers. These new findings are useful for further development of far-UVC technology for PFAS in water treatment.
Collapse
Affiliation(s)
- Xiaoyue Xin
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Juhee Kim
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Daniel C. Ashley
- Department
of Chemistry and Biochemistry, Spelman College, Atlanta, Georgia 30314, United States
| | - Ching-Hua Huang
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
213
|
Ateia M, Sigmund G, Bentel MJ, Washington JW, Lai A, Merrill NH, Wang Z. Integrated data-driven cross-disciplinary framework to prevent chemical water pollution. ONE EARTH (CAMBRIDGE, MASS.) 2023; 6:10.1016/j.oneear.2023.07.001. [PMID: 38264630 PMCID: PMC10802893 DOI: 10.1016/j.oneear.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Access to a clean and healthy environment is a human right and a prerequisite for maintaining a sustainable ecosystem. Experts across domains along the chemical life cycle have traditionally operated in isolation, leading to limited connectivity between upstream chemical innovation to downstream development of water-treatment technologies. This fragmented and historically reactive approach to managing emerging contaminants has resulted in significant externalized societal costs. Herein, we propose an integrated data-driven framework to foster proactive action across domains to effectively address chemical water pollution. By implementing this integrated framework, it will not only enhance the capabilities of experts in their respective fields but also create opportunities for novel approaches that yield co-benefits across multiple domains. To successfully operationalize the integrated framework, several concerted efforts are warranted, including adopting open and FAIR (findable, accessible, interoperable, and reusable) data practices, developing common knowledge bases/platforms, and staying vigilant against new substance "properties" of concern.
Collapse
Affiliation(s)
- Mohamed Ateia
- United States Environmental Protection Agency, Center for Environmental Solutions & Emergency Response, Cincinnati, OH 45220, USA
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA
| | - Gabriel Sigmund
- Environmental Geosciences, Centre for Microbiology and Environmental Systems Science, University of Vienna, Josef-Holaubeck-Platz 2, 1090 Vienna, Austria
- Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands
| | - Michael J. Bentel
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC 29634, USA
| | - John W. Washington
- United States Environmental Protection Agency, Center for Environmental Measurement and Modeling, Athens, GA 30605, USA
| | - Adelene Lai
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6 Avenue du Swing, 4367 Belvaux, Luxembourg
- Institute for Inorganic and Analytical Chemistry, Friedrich-Schiller-University, 07743 Jena, Germany
| | - Nathaniel H. Merrill
- United States Environmental Protection Agency, Center for Environmental Measurement and Modeling, Narragansett, RI, USA
| | - Zhanyun Wang
- Empa Swiss – Federal Laboratories for Materials Science and Technology, Technology and Society Laboratory, 9014 St. Gallen, Switzerland
| |
Collapse
|
214
|
Zhang F, Liu L, Hu J, Fu H, Li H, Chen J, Yang C, Guo Q, Liang X, Wang L, Guo Y, Dai J, Sheng N, Wang J. Accumulation and glucocorticoid signaling suppression by four emerging perfluoroethercarboxylic acids based on animal exposure and cell testing. ENVIRONMENT INTERNATIONAL 2023; 178:108092. [PMID: 37463541 DOI: 10.1016/j.envint.2023.108092] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/09/2023] [Accepted: 07/10/2023] [Indexed: 07/20/2023]
Abstract
Various perfluoroethercarboxylic acids (PFECA) have emerged as next-generation replacements of legacy per- and polyfluoroalkyl substances (PFAS). However, there is a paucity of information regarding their bioaccumulation ability and hazard characterization. Here, we explored the accumulation and hepatotoxicity of four PFECA compounds (HFPO-DA, HFPO-TA, PFO4DA, and PFO5DoDA) in comparison to perfluorooctanoic acid (PFOA) after chronic low-dose exposure in mice. Except for HFPO-DA, the levels of all tested PFAS in the liver exceeded that in serum. High molecular weight PFECA compounds (PFO5DoDA and HFPO-TA) showed stronger accumulation capacity and longer half-lives (t1/2) than low molecular weight PFECA compounds (HFPO-DA and PFO4DA) and even legacy PFOA. Although hepatomegaly is a common apical end point of PFAS exposure, the differentially expressed gene (DEG) profiles in the liver suggested significant differences between PFOA and the four PFECA compounds. Gene enrichment analysis supported a considerable inhibitory effect of PFECA, but not PFOA, on the glucocorticoid receptor (GR) signaling pathway. Both HFPO-TA and PFO5DoDA demonstrated a more pronounced ability to perturb RNA expression profiles in vivo and to suppress GR signaling in vitro compared to HFPO-DA and PFO4DA. Calculated reference doses (RfDs) emphasized the potential hazard of PFECA to human health. Overall, our findings indicate that PFECA alternatives do not ease the concerns raised from legacy PFAS pollution.
Collapse
Affiliation(s)
- Fenghong Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Lei Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Jianglin Hu
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Sciences and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huayu Fu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Hongyuan Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiamiao Chen
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Sciences and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chunyu Yang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Qingrong Guo
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Xiaotian Liang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Lin Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Yong Guo
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jiayin Dai
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Sciences and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Nan Sheng
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Sciences and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Jianshe Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China.
| |
Collapse
|
215
|
Monnot AD, Massarsky A, Garnick L, Bandara SB, Unice KM. Can oral toxicity data for PFAS inform on toxicity via inhalation? RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2023; 43:1533-1538. [PMID: 36201616 DOI: 10.1111/risa.14039] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/01/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
Per- and poly-fluoroalkyl substances (PFAS) are ubiquitous in the environment and are detected in wildlife and humans. With respect to human exposure, studies have shown that ingestion is the primary route of exposure; however, in certain settings, exposure via inhalation could also be a significant source of exposure. While many studies examined toxicity of PFAS via ingestion, limited information is available for PFAS toxicity via the inhalation route, translating into a lack of exposure guidelines. Consequently, this article examined whether route-to-route extrapolation to derive guidelines for inhalation exposure is appropriate for PFAS. Perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) were used as exemplary PFAS given the abundance of toxicity data for these two compounds. Our evaluation determined that available toxicity and toxicokinetic data support route-to-route extrapolation for PFAS in order to derive inhalation-based standards. Results from this analysis suggest that an air concentration of 7.0 × 10-5 mg/m3 (or 0.07 μg/m3 ) would be an appropriate RfC for PFOA and PFOS assuming the 2016 EPA RfD of 0.00002 mg/kg-day, whereas use of the interim RfDs proposed in 2022 of 1.5 × 10-9 and 7.9 × 10-9 mg/kg would yield much lower RfCs of 5.25 × 10-9 and 2.77 × 10-8 mg/m3 (or 5.25 × 10-6 and 2.77 × 10-5 μg/m3 ) for PFOA and PFOS, respectively.
Collapse
Affiliation(s)
- Andrew D Monnot
- Stantec (ChemRisk), San Francisco, California, USA
- Present address: Andrew D. Monnot, Amazon Lab126, Sunnyvale, CA, USA
| | | | | | - Suren B Bandara
- Stantec (ChemRisk), San Francisco, California, USA
- Present address: Suren B. Bandara, Amgen Inc., Thousand Oaks, CA, USA
| | | |
Collapse
|
216
|
Karamat A, Tehrani R, Foster GD, Van Aken B. Plant responses to per- and polyfluoroalkyl substances (PFAS): a molecular perspective. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 26:219-227. [PMID: 37462666 DOI: 10.1080/15226514.2023.2232874] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) constitute a large class of toxic manmade compounds that have been used in many industrial and household products. Dispersion of PFAS in the environment has raised concerns because of their persistence and toxicity for living organisms. Both terrestrial and aquatic plants have been shown to take up PFAS from contaminated soil and groundwater, and to accumulate these compounds inside their tissues. Although PFAS generally exert a low toxicity on plants at environmentally relevant concentrations, they frequently impact biomass growth and photosynthetic activity at higher levels. Uptake, translocation, and toxicity of PFAS in plants have been well covered in literature. Although less attention has been given to the molecular mechanisms underlying the plant response to PFAS, recent studies based on -omics approaches indicate that PFAS affects the plant metabolism even a low concentration. The objective of this review is to summarize the current knowledge about the effects of PFAS on plants at the molecular level. Results from recent transcriptomics, proteomics, and metabolomics studies show that low levels of PFAS induce oxidative stress and affect multiple plant functions and processes, including photosynthesis and energy metabolism. These potentially harmful effects trigger activation of defense mechanisms.
Collapse
Affiliation(s)
- Ayesha Karamat
- Environmental Science & Policies, George Mason University, Fairfax, United States
| | - Rouzbeh Tehrani
- Civil & Environmental Engineering, Temple University, Philadelphia, United States
| | - Gregory D Foster
- Chemistry & Biochemistry, George Mason University, Fairfax, United States
| | - Benoit Van Aken
- Chemistry & Biochemistry, George Mason University, Fairfax, United States
| |
Collapse
|
217
|
Liu C, Shen Y, Zhao X, Chen Z, Gao R, Zuo Q, He Q, Ma J, Zhi Y. Removal of per- and polyfluoroalkyl substances by nanofiltration: Effect of molecular structure and coexisting natural organic matter. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131438. [PMID: 37099911 DOI: 10.1016/j.jhazmat.2023.131438] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/20/2023] [Accepted: 04/16/2023] [Indexed: 05/19/2023]
Abstract
This study investigates the removal efficiency of anionic, cationic, and zwitterionic per- and polyfluoroalkyl substances (PFAS) by nanofiltration (NF) in the presence of three representative natural organic matter (NOM) types: bovine serum albumin (BSA), humic acid (HA), and sodium alginate (SA). In particular, effects of PFAS molecular structure and coexisting NOM on the transmission and adsorption efficiency of PFAS during NF treatment were analyzed. The results indicate that NOM types dominate membrane fouling behavior despite the coexistence of PFAS. SA exhibits the most significant fouling propensity, resulting in maximum water flux decline. NF effectively removed both ether and precursor PFAS. The effects of the three typical NOM on the membrane-passing behavior of PFAS were consistent for all PFAS investigated. Generally, PFAS transmission decreased in the order of SA-fouled > pristine > HA-fouled > BSA-fouled, indicating that the presence of HA and BSA enhanced PFAS removal while SA declined. Furthermore, reduced PFAS transmission was observed with increased perfluorocarbon chain length or molecular weight (MW), regardless of the presence or type of the NOM. The impacts of NOM on PFAS filtration diminished when the PFAS van der Waals radius was > 4.0 Å, MW > 500 Da, polarization > 20 Å, or LogKow > 3. These findings suggest that both steric repulsion and hydrophobic interactions, especially the former, play important roles in PFAS rejection by NF. This study provides insights into the specific applicability and performance of membrane-based processes for eliminating PFAS during drinking and wastewater treatments, and highlighting the importance of coexisting NOM.
Collapse
Affiliation(s)
- Caihong Liu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, PR China
| | - Ye Shen
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, PR China
| | - Xiaoqing Zhao
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, PR China
| | - Ziwei Chen
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, PR China
| | - Rui Gao
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, PR China
| | - Qingyang Zuo
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, PR China
| | - Qiang He
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, PR China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Yue Zhi
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, PR China.
| |
Collapse
|
218
|
He Q, Yan Z, Qian S, Xiong T, Grieger KD, Wang X, Liu C, Zhi Y. Phytoextraction of per- and polyfluoroalkyl substances (PFAS) by weeds: Effect of PFAS physicochemical properties and plant physiological traits. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131492. [PMID: 37121031 DOI: 10.1016/j.jhazmat.2023.131492] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/31/2023] [Accepted: 04/23/2023] [Indexed: 05/19/2023]
Abstract
Phytoextraction is a promising technology that uses plants to remediate contaminated soil. However, its feasibility for per- and polyfluoroalkyl substances (PFAS) and the impact of PFAS properties and plant traits on phytoextraction efficacy remains unknown. In this study, we conducted greenhouse experiment and evaluated the potential of weeds for phytoextraction of PFAS from soil and assessed the effects of PFAS properties and plant traits on PFAS uptake via systematic correlation analyses and electron probe microanalyzer with energy dispersive spectroscopy (FE-EPMA-EDS) imaging. The results showed that 1) phytoextraction can remove 0.04%- 41.4%wt of PFAS from soil, with extracted PFAS primarily stored in plant shoots; 2) Weeds preferentially extracted short-chain PFAS over long-chain homologues from soil. 3) PFAS molecular size and hydrophilicity determined plant uptake behavior, while plant morphological traits, particularly root protein and lipid content, influenced PFAS accumulation and translocation. Although plants with thin roots and small leaf areas exhibited greater PFAS uptake and storage ability, the impact of PFAS physicochemical properties was more significant. 4) Finally, short-chain PFAS were transported quickly upwards in the plant, while uptake of long-chain PFOS was restricted.
Collapse
Affiliation(s)
- Qiang He
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Zheng Yan
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Shenhua Qian
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Tiantian Xiong
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Khara D Grieger
- Department of Applied Ecology, North Carolina State University, Raleigh, NC 27695, USA; North Carolina Plant Sciences Initiative, North Carolina State University, Raleigh, NC 27606, USA
| | - Xiaoming Wang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Caihong Liu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Yue Zhi
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
219
|
Bouteh E, Bentel MJ, Cates EL. Semiconductor-hydrophobic material interfaces as a new active site paradigm for photocatalytic degradation of perfluorocarboxylic acids. JOURNAL OF HAZARDOUS MATERIALS 2023; 453:131437. [PMID: 37086670 DOI: 10.1016/j.jhazmat.2023.131437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/04/2023] [Accepted: 04/15/2023] [Indexed: 05/03/2023]
Abstract
Photocatalytic degradation of long-chain perfluorocarboxylic acid (PFCA) water contaminants has been reported for numerous of semiconductors, including composite TiO2 particles decorated with graphitic carbon co-catalysts. While pristine TiO2 degrades PFCAs inefficiently, the carbon components purportedly enhance activity due to their conductive nature and resultant charge separation enhancement. Yet herein, we present evidence that the catalytic activity of a graphene oxide (GO)-TiO2 composite from the literature arose not due to from charge separation, but to a unique mode of PFCA adsorption occurring at the interface of TiO2 and hydrophobic GO. Photocatalytic degradation rates by GO-TiO2 were compared to those of composites containing nonconductive polymer microparticles (polyethylene, polytetrafluoroethylene). Results showed that polymer-TiO2 composites performed as well as GO-TiO2 in degrading both perfluorooctanoic acid and oxalate, a common hole scavenger. Thus, the enhanced activity may occur for any TiO2-hydrophobic interface, regardless of co-catalyst conductivity. Furthermore, compared to an unmodified reference catalyst, chain length dependence of PFCA degradation by a polymer-TiO2 composite was found to be less severe, with greater activity toward short-chain species indicating enhanced adsorption behavior. Potential adsorption mechanisms are presented, along with broader implications toward improving the applicability of heterogeneous processes toward a wider range of perfluoroalkyl contaminants.
Collapse
Affiliation(s)
- Ehsan Bouteh
- School of Civil and Environmental Engineering and Earth Sciences, Clemson University, Anderson, SC 29625, United States
| | - Michael J Bentel
- School of Civil and Environmental Engineering and Earth Sciences, Clemson University, Anderson, SC 29625, United States
| | - Ezra L Cates
- School of Civil and Environmental Engineering and Earth Sciences, Clemson University, Anderson, SC 29625, United States.
| |
Collapse
|
220
|
Hedgespeth ML, Taylor DL, Balint S, Schwartz M, Cantwell MG. Ecological characteristics impact PFAS concentrations in a U.S. North Atlantic food web. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:163302. [PMID: 37031936 PMCID: PMC10451026 DOI: 10.1016/j.scitotenv.2023.163302] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/30/2023] [Accepted: 04/01/2023] [Indexed: 05/27/2023]
Abstract
This is the first comprehensive study of per- and polyfluoroalkyl substances (PFAS) in a coastal food web of the U.S. North Atlantic, in which we characterize the presence and concentrations of 24 targeted PFAS across 18 marine species from Narragansett Bay, Rhode Island, and surrounding waters. These species reflect the diversity of a typical North Atlantic Ocean food web with organisms from a variety of taxa, habitat types, and feeding guilds. Many of these organisms have no previously reported information on PFAS tissue concentrations. We found significant relationships of PFAS concentrations with respect to various ecological characteristics including species, body size, habitat, feeding guild, and location of collection. Based upon the 19 PFAS detected in the study (5 were not detected in samples), benthic omnivores (American lobsters = 10.5 ng/g ww, winter skates = 5.77 ng/g ww, Cancer crabs = 4.59 ng/g ww) and pelagic piscivores (striped bass = 8.50 ng/g ww, bluefish = 4.30 ng/g ww) demonstrated the greatest average ∑PFAS concentrations across all species sampled. Further, American lobsters had the highest concentrations detected in individuals (∑PFAS up to 21.1 ng/g ww, which consisted primarily of long-chain PFCAs). The calculation of field-based trophic magnification factors (TMFs) for the top 8 detected PFAS determined that perfluorodecanoic acid (PFDA), perfluorooctane sulfonic acid (PFOS), and perfluorooctane sulfonamide (FOSA) associated with the pelagic habitat biomagnified, whereas perfluorotetradecanoic acid (PFTeDA) associated with the benthic habitat demonstrated trophic dilution in this food web (calculated trophic levels ranged from 1.65 to 4.97). While PFAS exposure to these organisms may have adverse implications for ecological impacts via toxicological effects, many of these species are also key recreational and commercial fisheries resulting in potential for human exposure via dietary consumption.
Collapse
Affiliation(s)
- Melanie L Hedgespeth
- US Environmental Protection Agency, Center for Environmental Measurement and Modeling, Atlantic Coastal Environmental Sciences Division, Narragansett, RI 02882, USA.
| | - David L Taylor
- Department of Marine Biology, Roger Williams University, One Old Ferry Road, Bristol, RI 02809, USA
| | - Sawyer Balint
- ORISE Research Participant at the US Environmental Protection Agency, Center for Environmental Measurement and Modeling, Atlantic Coastal Environmental Sciences Division, Narragansett, RI 02882, USA
| | - Morgan Schwartz
- US Environmental Protection Agency, Center for Environmental Measurement and Modeling, Atlantic Coastal Environmental Sciences Division, Narragansett, RI 02882, USA
| | - Mark G Cantwell
- US Environmental Protection Agency, Center for Environmental Measurement and Modeling, Atlantic Coastal Environmental Sciences Division, Narragansett, RI 02882, USA
| |
Collapse
|
221
|
Brown AS, Yun X, McKenzie ER, Heron CG, Field JA, Salice CJ. Spatial and temporal variability of per- and polyfluoroalkyl substances (PFAS) in environmental media of a small pond: Toward an improved understanding of PFAS bioaccumulation in fish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:163149. [PMID: 37011692 DOI: 10.1016/j.scitotenv.2023.163149] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/23/2023] [Accepted: 03/25/2023] [Indexed: 05/27/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are highly fluorinated compounds with many industrial applications, for instance as ingredients in fire-suppressing aqueous film-forming foams (AFFF). Several PFAS have been demonstrated to be persistent, bioaccumulative and toxic. This study better characterizes the bioaccumulation of PFAS in freshwater fish through a spatial and temporal analysis of surface water and sediment from a stormwater pond in a former Naval air station (NAS) with historic AFFF use. We sampled environmental media from four locations twice per week for five weeks and sampled fish at the end of the sampling effort. The primary PFAS identified in surface water, sediment, and biota were perfluorooctane sulfonate (PFOS) and perfluorohexane sulfonate (PFHxS) followed by perfluorooctanoic acid (PFOA) in environmental media and perfluoroheptane sulfonate (PFHpS) in biota. We observed significant temporal variability in surface water concentrations at the pond headwaters following stochastic events such as heavy rainfall for many compounds, particularly PFHxS. Sediment concentrations varied most across sampling locations. In fish, liver tissue presented the highest concentrations for all compounds except PFHxS, which was highest in muscle tissue, suggesting the influence of fine-scale aqueous PFAS fluctuations on tissue distribution. Calculated log bioaccumulation factors (BAFs) ranged from 0.13 to 2.30 for perfluoroalkyl carboxylates (PFCA) and 0.29-4.05 for perfluoroalkane sulfonates (PFSA) and fluctuated greatly with aqueous concentrations. The variability of PFAS concentrations in environmental media necessitates more frequent sampling efforts in field-based studies to better characterize PFAS contamination in aquatic ecosystems as well as exercising caution when considering single time-point BAFs due to uncertainty of system dynamics.
Collapse
Affiliation(s)
- Abbi S Brown
- Environmental Science and Studies Program, Towson University, Towson, MD, USA
| | - Xiaoyan Yun
- Civil and Environmental Engineering Department, Temple University, Philadelphia, PA, USA
| | - Erica R McKenzie
- Civil and Environmental Engineering Department, Temple University, Philadelphia, PA, USA
| | - Christopher G Heron
- Department of Environmental and Molecular Toxicology, College of Agricultural Sciences, Oregon State University, Corvallis, OR, USA
| | - Jennifer A Field
- Department of Environmental and Molecular Toxicology, College of Agricultural Sciences, Oregon State University, Corvallis, OR, USA
| | | |
Collapse
|
222
|
Kim JI, Kim BN, Lee YA, Shin CH, Hong YC, Døssing LD, Hildebrandt G, Lim YH. Association between early-childhood exposure to perfluoroalkyl substances and ADHD symptoms: A prospective cohort study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163081. [PMID: 36972880 DOI: 10.1016/j.scitotenv.2023.163081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/01/2023] [Accepted: 03/22/2023] [Indexed: 05/17/2023]
Abstract
There is evidence that exposure to perfluoroalkyl substances (PFAS) is associated with attention-deficit/hyperactivity disorder (ADHD) symptoms. Previous studies have focused on prenatal exposure to PFAS, and only few studies have examined the associations of early-childhood exposure, especially at low exposure levels. This study explored the association between early-childhood exposure to PFAS and ADHD symptoms later in childhood. In 521 children, we measured the serum levels of six PFAS in peripheral blood at the ages of 2 and 4 years, including perfluorooctanoate (PFOA), perfluornonanoicacid (PFNA), perfluorodecanoic acid (PFDA), perfluoroundecanoic acid (PFUnDA), perfluorohexane sulfonic acid (PFHxS), and perfluorooctane sulfonate (PFOS). The ADHD Rating Scale IV (ARS) was utilized to measure ADHD traits at 8 years of age. We explored the relationship between PFAS and ARS scores using Poisson regression models after adjusting for potential confounders. Levels of exposure to individual PFAS and the summed value were divided into quartiles to examine possible nonlinear relationships. All six PFAS exhibited inverted U-shaped curves. Children in the 2nd and 3rd quartile levels of each PFAS showed higher ARS scores than those in the1st quartile level. Below the 3rd quartile of the summed levels of six PFAS (ΣPFAS), a doubling of the ΣPFAS was associated with an 20.0 % (95 % CI: 9.5 %, 31.5 %) increase in ADHD scores. However, at the age of 4 years, none of the evaluated PFAS exhibited linear or nonlinear associations with the ARS scores. Thus, school-aged children may be vulnerable to the neurotoxic effects of exposure to PFAS at age 2 that contribute to ADHD, particularly at low to mid-levels.
Collapse
Affiliation(s)
- Johanna Inhyang Kim
- Department of Psychiatry, Hanyang University Medical Center, 222 Wangsimni-ro, Seondong-gu, Seoul 04763, Republic of Korea
| | - Bung-Nyun Kim
- Division of Children and Adolescent Psychiatry, Department of Psychiatry, Seoul National University College of Medicine, 103 Daehangno, Jongno-gu, Seoul 03080, Republic of Korea
| | - Young Ah Lee
- Department of Pediatrics, Seoul National University College of Medicine, 103 Daehangno, Jongno-gu, Seoul 03080, Republic of Korea
| | - Choong Ho Shin
- Department of Pediatrics, Seoul National University College of Medicine, 103 Daehangno, Jongno-gu, Seoul 03080, Republic of Korea
| | - Yun-Chul Hong
- Department of Preventive Medicine, Seoul National University College of Medicine, 103 Daehangno, Jongno-gu, Seoul 03080, Republic of Korea; Environmental Health Center, Seoul National University College of Medicine, 103 Daehangno, Jongno-gu, Seoul 03080, Republic of Korea; Institute of Environmental Medicine, Seoul National University Medical Research Center, 103 Daehangno, Jongno-gu, Seoul 03080, Republic of Korea
| | - Lise Dalgaard Døssing
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Oster Farmagsgade 5, 1014 Kobenhavn, Denmark
| | - Gustav Hildebrandt
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Oster Farmagsgade 5, 1014 Kobenhavn, Denmark
| | - Youn-Hee Lim
- Environmental Health Center, Seoul National University College of Medicine, 103 Daehangno, Jongno-gu, Seoul 03080, Republic of Korea; Institute of Environmental Medicine, Seoul National University Medical Research Center, 103 Daehangno, Jongno-gu, Seoul 03080, Republic of Korea; Section of Environmental Health, Department of Public Health, University of Copenhagen, Oster Farmagsgade 5, 1014 Kobenhavn, Denmark.
| |
Collapse
|
223
|
Draghi S, Pavlovic R, Pellegrini A, Fidani M, Riva F, Brecchia G, Agradi S, Arioli F, Vigo D, Di Cesare F, Curone G. First Investigation of the Physiological Distribution of Legacy and Emerging Perfluoroalkyl Substances in Raw Bovine Milk According to the Component Fraction. Foods 2023; 12:2449. [PMID: 37444187 DOI: 10.3390/foods12132449] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Bovine milk is a pillar of the human diet and plays a key role in the nutrition of infants. Perfluoroalkyl substances (PFASs) are well-recognized highly stable organic compounds that are able to pollute ecosystems persistently and threaten both human and animal health. The study aimed to analyze the distribution of 14 PFASs within the milk matrix by comparing their content in whole milk, and its skimmed and creamed fractions. Raw milk samples were individually collected from 23 healthy cows (10 primiparous and 13 multiparous) reared on a farm in Northern Italy not surrounded by known point sources of PFASs. Each sample was fractioned in whole, skim, and cream components to undergo PFAS analysis using liquid chromatography-high-resolution mass spectrometry. All samples contained at least one PFAS, with perfluorobutanoic acid (PFBA) being the primary contaminant in all three fractions, followed by perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA). PFOS was shown to be significantly (p < 0.001) more concentrated in cream than in raw and skimmed milk. Multiparous cows showed a higher frequency of positive samples in all analyzed fractions. Further research is necessary to assess the risk of dairy diets and high-fat dairy products and to investigate the toxicological effects of PFASs on cattle, even in environments without known PFAS sources.
Collapse
Affiliation(s)
- Susanna Draghi
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell'Università 6, 26900 Lodi, Italy
| | - Radmila Pavlovic
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell'Università 6, 26900 Lodi, Italy
- Proteomics and Metabolomics Facility (ProMeFa), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | | | - Marco Fidani
- UNIRELAB Srl, Via Gramsci 70, 20019 Settimo Milanese, Italy
| | - Federica Riva
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell'Università 6, 26900 Lodi, Italy
| | - Gabriele Brecchia
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell'Università 6, 26900 Lodi, Italy
| | - Stella Agradi
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell'Università 6, 26900 Lodi, Italy
| | - Francesco Arioli
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell'Università 6, 26900 Lodi, Italy
| | - Daniele Vigo
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell'Università 6, 26900 Lodi, Italy
| | - Federica Di Cesare
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell'Università 6, 26900 Lodi, Italy
| | - Giulio Curone
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell'Università 6, 26900 Lodi, Italy
| |
Collapse
|
224
|
Ehsan MN, Riza M, Pervez MN, Khyum MMO, Liang Y, Naddeo V. Environmental and health impacts of PFAS: Sources, distribution and sustainable management in North Carolina (USA). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:163123. [PMID: 37001657 DOI: 10.1016/j.scitotenv.2023.163123] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 05/13/2023]
Abstract
Poly- and perfluoroalkyl substances (PFAS) are a class of manufactured chemicals that have recently attracted a great deal of attention from environmental regulators and the general public because of their high prevalence, resistance to degradation, and potential toxicity. This review summarizes the current state of PFAS and its effects on the environment of North Carolina, USA. Specific emphasis has been placed to identify i) the sources of PFAS in North Carolina ii) distribution of PFAS in different environmental segments of North Carolina, including surface water, groundwater, air, and sediment iii) drinking water contamination iv) impact of PFAS on human health v) PFAS accumulation in fish and other biota vi) status of PFAS removal from drinking water and finally vi) socioeconomic impact of PFAS uncertainties. Continuous discharges of PFAS occur in the North Carolina environment from direct and indirect sources, including manufacturing sites, firefighting foam, waste disposal and treatment plants, landfill leachate, and industrial emissions. PFAS are widespread in many environmental segments of North Carolina. They are more likely to be detected in surface and groundwater sediments and can enter aquatic bodies through direct discharge and wet and dry deposition of emissions. Eventually, some adverse effects of PFAS have already been reported in North Carolina residents who could have been exposed to the chemicals through contaminated drinking water. Furthermore, PFAS were also found in blood samples from fish and alligators. PFAS were confirmed to be present in water, sediment, organic compounds, and aquatic species at all levels of the food web. However, there is still a substantial amount of work to be done to understand the actual contamination by PFAS in North Carolina comprehensively.
Collapse
Affiliation(s)
| | - Mumtahina Riza
- Department of Applied Ecology, North Carolina State University, Campus Box 7617, Raleigh, NC 27695-7617, USA.
| | - Md Nahid Pervez
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, 66 University of Salerno, Fisciano 84084, Italy; Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, Albany, NY 12222, USA
| | | | - Yanna Liang
- Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Vincenzo Naddeo
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, 66 University of Salerno, Fisciano 84084, Italy.
| |
Collapse
|
225
|
Smeltz M, Wambaugh JF, Wetmore BA. Plasma Protein Binding Evaluations of Per- and Polyfluoroalkyl Substances for Category-Based Toxicokinetic Assessment. Chem Res Toxicol 2023; 36:870-881. [PMID: 37184865 PMCID: PMC10506455 DOI: 10.1021/acs.chemrestox.3c00003] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
New approach methodologies (NAMs) that make use of in vitro screening and in silico approaches to inform chemical evaluations rely on in vitro toxicokinetic (TK) data to translate in vitro bioactive concentrations to exposure metrics reflective of administered dose. With 1364 per- and polyfluoroalkyl substances (PFAS) identified as of interest under Section 8 of the U.S. Toxic Substances Control Act (TSCA) and concern over the lack of knowledge regarding environmental persistence, human health, and ecological effects, the utility of NAMs to understand potential toxicities and toxicokinetics across these data-poor compounds is being evaluated. To address the TK data deficiency, 71 PFAS selected to span a wide range of functional groups and physico-chemical properties were evaluated for in vitro human plasma protein binding (PPB) by ultracentrifugation with liquid chromatography-mass spectrometry analysis. For the 67 PFAS successfully evaluated by ultracentrifugation, fraction unbound in plasma (fup) ranged from less than 0.0001 (pentadecafluorooctanoyl chloride) to 0.7302 (tetrafluorosuccinic acid), with over half of the PFAS showing PPB exceeding 99.5% (fup < 0.005). Category-based evaluations revealed that perfluoroalkanoyl chlorides and perfluorinated carboxylates (PFCAs) with 6-10 carbons were the highest bound, with similar median values for alkyl, ether, and polyether PFCAs. Interestingly, binding was lower for the PFCAs with a carbon chain length of ≥11. Lower binding also was noted for fluorotelomer carboxylic acids when compared to their carbon-equivalent perfluoroalkyl acids. Comparisons of the fup value derived using two PPB methods, ultracentrifugation or rapid equilibrium dialysis (RED), revealed RED failure for a subset of PFAS of high mass and/or predicted octanol-water partition coefficients exceeding 4 due to failure to achieve equilibrium. Bayesian modeling was used to provide uncertainty bounds around fup point estimates for incorporation into TK modeling. This PFAS PPB evaluation and grouping exercise across 67 structures greatly expand our current knowledge and will aid in PFAS NAM development.
Collapse
Affiliation(s)
- Marci Smeltz
- Center for Computational Toxicology and Exposure, US EPA Office of Research and Development, Research Triangle Park, NC 27711, USA
- Current Affiliation: Center for Environmental Measurement and Modeling; Research Triangle Park, NC, 27711, USA
| | - John F. Wambaugh
- Center for Computational Toxicology and Exposure, US EPA Office of Research and Development, Research Triangle Park, NC 27711, USA
| | - Barbara A. Wetmore
- Center for Computational Toxicology and Exposure, US EPA Office of Research and Development, Research Triangle Park, NC 27711, USA
| |
Collapse
|
226
|
Yu L, Hua Z, Liu X, Chen L, Zhang Y, Ma Y, Dong Y, Xue H. The addition of iron-carbon enhances the removal of perfluoroalkyl acids (PFAAs) in constructed wetlands. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121534. [PMID: 37001598 DOI: 10.1016/j.envpol.2023.121534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/26/2023] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
Hazardous perfluoroalkyl acids (PFAAs), particularly perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA), have become ubiquitous environmental persistent organic contaminants, posing serious threats to environmental health, which has led to the development of PFAA treatment methods. Wetland construction in combination with iron-carbon (CW-I), a low-maintenance and high-efficiency technology, may be capable of removing PFAAs through physico-biochemical processes. In this study, we aim to investigate the removal efficiency of PFAAs by CW-I as well as the critical functions of all components within the wetlands. Pairwise comparisons of iron-carbon and control groups revealed that iron-carbon significantly enhanced 15.9% for PFOA and 17.9% for PFOS absorption through phytouptake and substrate adsorption, with respective removal efficiencies of 71.8% ± 1.03% and 85.8% ± 1.56%. The generated iron ions stimulated plant growth and further enhanced phytouptake of PFAAs, with PFAAs accumulated primarily in root tissues with limited translocation. Observations of batch adsorption suggest that chemical and electrostatic interactions are involved in the iron-carbon adsorption process, with film and intraparticle diffusions being the rate-limiting events. Fourier transform infrared spectrometer and X-ray photoelectron spectroscopy revealed that PFAA adsorption by substrates occurs at the molecular level, as well as the occurrence of hydrophobic force effects and ligand exchanges during the iron-carbon adsorption process. Additionally, iron-carbon significantly altered the genera, phyla, and community structure of microorganisms, and some microorganisms and their extracellular polymers may possess ability to bind PFAAs. The information provided in this study contributes to our understanding of the PFAA removal processes in CW-I and enriched the classical cases of PFAA removal by CWs.
Collapse
Affiliation(s)
- Liang Yu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Zulin Hua
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Xiaodong Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
| | - Luying Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Yuan Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Yixin Ma
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Yueyang Dong
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Hongqin Xue
- School of Civil Engineering, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|
227
|
Guo M, Wu F, Geng Q, Wu H, Song Z, Zheng G, Peng J, Zhao X, Tan Z. Perfluoroalkyl substances (PFASs) in aquatic products from the Yellow-Bohai Sea coasts, China: Concentrations and profiles across species and regions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121514. [PMID: 36990342 DOI: 10.1016/j.envpol.2023.121514] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/03/2023] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
Perfluoroalkyl substances (PFASs) are emerging contaminants capable of harming human health, primarily via ingesting aquatic products. The current study monitored a survey of 23 PFASs in 1049 aquatic products from the coasts of the Yellow-Bohai Sea in China to comprehensively investigate the concentrations and distributions of PFASs. PFOA, PFOS, PFNA, PFOSA, and PFUdA were more predominantly and frequently detected than other PFASs in all samples, dominating PFAS patterns in aquatic products. The mean levels of ∑PFASs in different species followed the order: marine shellfish > marine crustaceans > fish > cephalopods > sea cucumber. Profiles of PFASs differ between species, suggesting species-specific accumulation plays a role. Various aquatic species are potential environmental bioindicators that signal individual PFAS contamination. For instance, clams can act as a potential PFOA bioindicator. High ∑PFAS levels in some sites (such as Binzhou, Dongying, Cangzhou, and Weifang) could be attributed to industrial activities involving fluoropolymer manufacture. The differences between PFAS concentrations and profiles in aquatic products across the study regions have been proposed as PFAS fingerprints of the Yellow-Bohai Sea coasts. Analyses of principal components and Spearman correlations indicated that the precursor biodegradation possibly contribute to C8-C10 PFCAs in the study samples. This study reported a wide presence of PFASs in different species of aquatic products across the Yellow-Bohai Sea coasts. The potential health risks that PFASs pose in certain species (such as marine shellfish and marine crustaceans) should not be neglected.
Collapse
Affiliation(s)
- Mengmeng Guo
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Feng Wu
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Qianqian Geng
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Haiyan Wu
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Zhiling Song
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Guanchao Zheng
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Jixing Peng
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Xinnan Zhao
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Zhijun Tan
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266071, China.
| |
Collapse
|
228
|
Ekperusi AO, Bely N, Pollono C, Mahé K, Munschy C, Aminot Y. Prevalence of per- and polyfluoroalkyl substances (PFASs) in marine seafood from the Gulf of Guinea. CHEMOSPHERE 2023:139110. [PMID: 37270038 DOI: 10.1016/j.chemosphere.2023.139110] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/05/2023]
Abstract
PFASs are ubiquitous in the global environment due to their wide use, persistence and bioaccumulation, and are of concern for human health. This study investigated the levels of PFASs in seafood with a view to provide knowledge on the occurrence of PFASs in marine resources and to evaluate seafood safety and human health risk via dietary exposure to coastal communities in the Gulf of Guinea, where there is currently very little data. The sum of targeted PFASs was between 91 and 1510 pg g-l ww (mean 465 ± 313 pg g-l ww), with PFOS and long-chain PFCAs prevailing. The concentrations of PFASs in the three species of croakers were species- and location-dependent, with habitat and anthropogenic pressure as likely drivers of the differences. Significantly higher contamination levels were found in male croakers. The trophic transfer and biomagnification of PFASs from shrimps to croakers was evidenced for PFOS and long-chain PFCAs (with a significant increase of contaminants from the prey to the predator). The calculated estimated daily intakes (EDIs) and hazard ratio (HR) for PFOS in croakers (whole fish and muscles) and shrimp were lower than the European Food and Safety Agency's recommended level for PFOS (1.8 ng kg-1 day-1) and below the HR safety threshold value of 1. From the results, based on present safety limits, PFOS levels in croakers and shrimps from the Gulf of Guinea do not pose immediate health risks to the human population. This study provides the first insight regarding the distribution of PFASs in seafood from the tropical NE Atlantic region of the Gulf of Guinea and highlights the need for further monitoring across the Gulf.
Collapse
|
229
|
Guckert M, Rupp J, Nürenberg G, Nödler K, Koschorreck J, Berger U, Drost W, Siebert U, Wibbelt G, Reemtsma T. Differences in the internal PFAS patterns of herbivores, omnivores and carnivores - lessons learned from target screening and the total oxidizable precursor assay. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162361. [PMID: 36842595 DOI: 10.1016/j.scitotenv.2023.162361] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/16/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Per- and polyfluorinated alkyl substances (PFAS) are a group of anthropogenic chemicals, which are not (fully) biodegradable and accumulate in different environmental compartments worldwide. A comprehensive, quantitative analysis - consisting of target analysis (66 different analytes, including e. g. ultrashort-chain perfluorinated carboxylic acids (PFCAs), precursor compounds and novel substitutes) and the Total Oxidisable Precursor (TOP) assay (including trifluoroacetic acid (TFA)) - were conducted to analyse the PFAS concentrations and patterns in 12 mammalian and two bird species from different areas of Germany and Denmark. The PFAS contamination was investigated in dependance of the trophic class (herbivores, omnivores, carnivores), ecological habitat (terrestrial, (semi-) aquatic) and body tissue (liver, musculature). PFAS concentrations were highest in carnivores, followed by omnivores and herbivores, with ∑PFAS concentration ranging from 1274 μg/kg (Eurasian otter liver) to 22 μg/kg (roe deer liver). TFA dominated in the herbivorous species, whereas perfluorooctanesulfonic acid (PFOS) and the long-chain PFCAs covered the majority of the PFAS contamination in carnivorous species. Besides trophic class, ecological habitat also affected the PFAS levels in the different species, with terrestrial herbivores and omnivores showing higher PFAS concentration than their aquatic counterparts, whereas for carnivores this relationship was reversed. The TOP assay analysis indicated similar trends, with the PFCA formation pattern differing significantly between the trophic classes. TFA was formed predominantly in herbivorous and omnivorous species, whereas in carnivorous species a broad spectrum of PFCAs (chain-length C2-C14) was formed. Musculature tissue of six species exhibited significantly lower PFAS concentrations than the respective liver tissue, but with similar PFAS patterns. The comprehensive approach applied in the present study showed, that primarily the trophic class is decisive for the PFAS concentration, as herbivores, omnivores and carnivores clearly differed in their PFAS concentrations and patterns. Additionally, the TOP assay gave novel insights in the PFCA formation potential in biota samples.
Collapse
Affiliation(s)
- Marc Guckert
- TZW: DVGW Water Technology Center, Karlsruher Str. 84, 76139 Karlsruhe, Germany
| | - Jana Rupp
- Helmholtz Centre for Environmental Research - UFZ, Department of Analytical Chemistry, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Gudrun Nürenberg
- TZW: DVGW Water Technology Center, Karlsruher Str. 84, 76139 Karlsruhe, Germany
| | - Karsten Nödler
- TZW: DVGW Water Technology Center, Karlsruher Str. 84, 76139 Karlsruhe, Germany.
| | - Jan Koschorreck
- German Environment Agency (Umweltbundesamt), Wörlitzer Platz 1, 06813 Dessau-Rosslau, Germany
| | - Urs Berger
- Helmholtz Centre for Environmental Research - UFZ, Department of Analytical Chemistry, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Wiebke Drost
- German Environment Agency (Umweltbundesamt), Wörlitzer Platz 1, 06813 Dessau-Rosslau, Germany
| | - Ursula Siebert
- Institute for Terrestrial and Aquatic Wildlife Research (ITAW), University of Veterinary Medicine Hannover, Werftstr. 6, 25761 Buesum, Germany
| | - Gudrun Wibbelt
- Leibniz Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke-Str. 17, 10315 Berlin, Germany
| | - Thorsten Reemtsma
- Helmholtz Centre for Environmental Research - UFZ, Department of Analytical Chemistry, Permoserstrasse 15, 04318 Leipzig, Germany; Institute of Analytical Chemistry, University of Leipzig, Linnéstrasse 3, 04301 Leipzig, Germany
| |
Collapse
|
230
|
Tang Y, Lei S, Wang S, Lu H, Li H, Lv J, Ge RS, Ying Y. Leydig cell development in pubertal male rats is blocked by perfluorotetradecanoic acid through decreasing AMPK-mTOR-autophagy pathway. Toxicol Lett 2023:S0378-4274(23)00194-7. [PMID: 37269911 DOI: 10.1016/j.toxlet.2023.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 05/28/2023] [Accepted: 05/31/2023] [Indexed: 06/05/2023]
Abstract
Perfluorotetradecanoic acid (PFTeDA) is a type of perfluoroalkyl acid that has been linked to various health effects in animals and humans. The study aimed to investigate the potential impact of PFTeDA exposure on Leydig cell development in rats during puberty. Understanding the effects of PFTeDA on Leydig cells is crucial as these cells play a significant role in male reproductive function. Male Sprague-Dawley rats were gavaged with PFTeDA at doses of 0, 1, 5, and 10mg/kg/day from postnatal day 35 to 56. The serum hormone levels were measured and testicular transcriptome changes were analyzed by RNA-seq and verified by qPCR, and the levels of steroidogenesis-related proteins and energy regulators were measured. PFTeDA significantly reduced serum testosterone levels while slightly increasing LH levels. RNA-seq and qPCR analysis showed that genes responsive to oxidative phosphorylation (Naufa1 and Ndufs6) and steroidogenesis (Ldlr, Star, Cyp11a1) were markedly downregulated at ≥5mg/kg, while those related to ferroptosis (Alox15) and cell senescence (Map2k3 and RT1-CE3) were significantly upregulated. PFTeDA markedly reduced SIRT1 (silent information regulator 1) /PGC-1α (peroxisome proliferator-activated receptor gamma coactivator-1α) and AMPKA (AMP activated kinase A), LC3B and Beclin1 (biomarkers for autophagy) levels while increasing phosphorylated mTOR. In vitro treatment of PFTeDA at 5 μM significantly reduced androgen output of Leydig cells from 35-day-old male rats while ferrostatin 1 (10 μM) reversed PFTeDA-mediated inhibition. In conclusion, the inhibitory effects of PFTeDA on pubertal rat Leydig cell development are possibly regulated by inducing ferroptosis thereby downregulating SIRT1/AMPKA/ autophagy pathways, eventually resulting in reduced steroidogenesis.
Collapse
Affiliation(s)
- Yunbing Tang
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shi Lei
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shaowei Wang
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Han Lu
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Huitao Li
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University; Key Laboratory of Pediatric Anesthesiology, Ministry of Education,Wenzhou Medical University; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University
| | - Jieqiang Lv
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ren-Shan Ge
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Yingfen Ying
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
231
|
Sigmund G, Ågerstrand M, Antonelli A, Backhaus T, Brodin T, Diamond ML, Erdelen WR, Evers DC, Hofmann T, Hueffer T, Lai A, Torres JPM, Mueller L, Perrigo AL, Rillig MC, Schaeffer A, Scheringer M, Schirmer K, Tlili A, Soehl A, Triebskorn R, Vlahos P, Vom Berg C, Wang Z, Groh KJ. Addressing chemical pollution in biodiversity research. GLOBAL CHANGE BIOLOGY 2023; 29:3240-3255. [PMID: 36943240 DOI: 10.1111/gcb.16689] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/12/2023] [Indexed: 05/16/2023]
Abstract
Climate change, biodiversity loss, and chemical pollution are planetary-scale emergencies requiring urgent mitigation actions. As these "triple crises" are deeply interlinked, they need to be tackled in an integrative manner. However, while climate change and biodiversity are often studied together, chemical pollution as a global change factor contributing to worldwide biodiversity loss has received much less attention in biodiversity research so far. Here, we review evidence showing that the multifaceted effects of anthropogenic chemicals in the environment are posing a growing threat to biodiversity and ecosystems. Therefore, failure to account for pollution effects may significantly undermine the success of biodiversity protection efforts. We argue that progress in understanding and counteracting the negative impact of chemical pollution on biodiversity requires collective efforts of scientists from different disciplines, including but not limited to ecology, ecotoxicology, and environmental chemistry. Importantly, recent developments in these fields have now enabled comprehensive studies that could efficiently address the manifold interactions between chemicals and ecosystems. Based on their experience with intricate studies of biodiversity, ecologists are well equipped to embrace the additional challenge of chemical complexity through interdisciplinary collaborations. This offers a unique opportunity to jointly advance a seminal frontier in pollution ecology and facilitate the development of innovative solutions for environmental protection.
Collapse
Affiliation(s)
- Gabriel Sigmund
- Department of Environmental Geosciences, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, 1090, Austria
| | - Marlene Ågerstrand
- Department of Environmental Science, Stockholm University, Stockholm, Sweden
| | - Alexandre Antonelli
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
- Department of Biological and Environmental Sciences, University of Gothenburg, 40530, Gothenburg, Sweden
- Department of Biology, University of Oxford, South Parks Road, OX1 3RB, Oxford, UK
- Gothenburg Global Biodiversity Centre, 40530, Gothenburg, Sweden
| | - Thomas Backhaus
- Department of Biological and Environmental Sciences, University of Gothenburg, 40530, Gothenburg, Sweden
| | - Tomas Brodin
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, 90187, Umeå, Sweden
| | - Miriam L Diamond
- Department of Earth Sciences and School of the Environment, University of Toronto, Toronto, Ontario, M5S 3B1, Canada
| | | | - David C Evers
- Biodiversity Research Institute, Portland, Maine, 04103, USA
| | - Thilo Hofmann
- Department of Environmental Geosciences, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, 1090, Austria
| | - Thorsten Hueffer
- Department of Environmental Geosciences, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, 1090, Austria
| | - Adelene Lai
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6 avenue du Swing, 4367, Belvaux, Luxembourg
- Institute for Inorganic and Analytical Chemistry, Friedrich-Schiller University, Lessing Strasse 8, 07743, Jena, Germany
| | - Joao P M Torres
- Laboratório de Micropoluentes Jan Japenga, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leonie Mueller
- Institute for Environmental Research, RWTH Aachen University, 52074, Aachen, Germany
| | - Allison L Perrigo
- Department of Biological and Environmental Sciences, University of Gothenburg, 40530, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, 40530, Gothenburg, Sweden
- Lund University Botanical Garden, Lund, Sweden
| | - Matthias C Rillig
- Freie Universität Berlin, Institut für Biologie, Altensteinstr. 6, 14195, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), 14195, Berlin, Germany
| | - Andreas Schaeffer
- Institute for Environmental Research, RWTH Aachen University, 52074, Aachen, Germany
- School of the Environment, State Key Laboratory of Pollution Control and Resource Reuse, 210023, Nanjing, China
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Chongqing University, 400045, Chongqing, China
| | - Martin Scheringer
- RECETOX, Masaryk University, 62500, Brno, Czech Republic
- ETH Zürich, Institute of Biogeochemistry and Pollutant Dynamics, 8092, Zürich, Switzerland
| | - Kristin Schirmer
- ETH Zürich, Institute of Biogeochemistry and Pollutant Dynamics, 8092, Zürich, Switzerland
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland
- School of Architecture, Civil and Environmental Engineering, EPF Lausanne, 1015, Lausanne, Switzerland
| | - Ahmed Tlili
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland
| | - Anna Soehl
- International Panel on Chemical Pollution, 8092, Zürich, Switzerland
| | - Rita Triebskorn
- Animal Physiological Ecology, University of Tübingen, Auf der Morgenstelle 5, D-72076, Tübingen, Germany
- Transfer Center Ecotoxicology and Ecophysiology, Blumenstr. 13, D-72108, Rottenburg, Germany
| | - Penny Vlahos
- Department of Marine Sciences, University of Connecticut, Groton, Connecticut, USA
| | - Colette Vom Berg
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland
| | - Zhanyun Wang
- Empa - Swiss Federal Laboratories for Materials Science and Technology, Technology and Society Laboratory, CH-9014, St. Gallen, Switzerland
| | - Ksenia J Groh
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland
| |
Collapse
|
232
|
Bellia GRM, Bilott RA, Sun N, Thompson D, Vasiliou V. Use of clinical chemistry health outcomes and PFAS chain length to predict 28-day rodent oral toxicity. Toxicol Mech Methods 2023; 33:378-387. [PMID: 36446747 PMCID: PMC10625160 DOI: 10.1080/15376516.2022.2150591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 12/02/2022]
Abstract
Current literature suggests PFAS carbon chain length may be a predictive variable of toxicity. If so, statistical modeling may be used to help predict toxicity, thus improving the efficiency of PFAS regulation development. Data were analyzed using one-way ANOVAs, Tukey's HSD post hoc tests, and simple linear regressions. A dataset was predicted using modeling from this data. Analysis indicated that 11 of 15 health outcomes showed significant differences in mean values. Two of 15 health outcomes were analyzed using simple linear regressions, with statistically significant results. After predictive modeling generated a theoretical dataset, unpaired t-tests comparing the results of an actual dataset indicated no significant differences among the mean values of the two health outcomes. Therefore, predictive statistical modeling may be used to predict health outcomes for PFAS exposure.
Collapse
Affiliation(s)
- Giselle R M Bellia
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Robert A Bilott
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Ning Sun
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - David Thompson
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| |
Collapse
|
233
|
Zang L, Liu X, Xie X, Zhou X, Pan Y, Dai J. Exposure to per- and polyfluoroalkyl substances in early pregnancy, risk of gestational diabetes mellitus, potential pathways, and influencing factors in pregnant women: A nested case-control study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 326:121504. [PMID: 36965679 DOI: 10.1016/j.envpol.2023.121504] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/27/2023] [Accepted: 03/22/2023] [Indexed: 06/18/2023]
Abstract
Although previous studies have reported an association between maternal serum perfluoroalkyl substance (PFAS) exposure and gestational diabetes mellitus (GDM) risk, results have been inconsistent. Few studies have focused on the combined effects of emerging and legacy PFASs on glucose homeostasis while humans are always exposed to multiple PFASs simultaneously. Moreover, the potential pathways by which PFAS exposure induces GDM are unclear. A total of 295 GDM cases and 295 controls were enrolled from a prospective cohort of 2700 pregnant women in Shanghai, China. In total, 16 PFASs were determined in maternal spot serum samples in early pregnancy. We used conditional logistic regression, multiple linear regression, and Bayesian kernel machine regression (BKMR) to examine individual and joint effects of PFAS exposure on GDM risk and oral glucose tolerance test outcomes. The mediating effects of maternal serum biochemical parameters, including thyroid and liver function were further assessed. Maternal perfluorooctanoic acid (PFOA) exposure was associated with an increased risk of GDM (odds ratio (OR) = 1.68; 95% confidence interval (95% CI): 1.10, 2.57), consistent with higher concentrations in GDM cases than controls. Based on mediation analysis, an increase in the free triiodothyronine to free thyroxine ratio partially explained the effect of this association. For continuous glycemic outcomes, positive associations were observed between several PFASs and 1-h and 2-h glucose levels. In BKMR, PFAS mixture exposure showed a positive trend with GDM incidence, although the CIs were wide. These associations were more pronounced among women with normal pre-pregnancy body mass index (BMI). Mixed PFAS congeners may affect glucose homeostasis by increasing 1-h glucose levels, with perfluorononanoic acid found to be a main contributor. Exposure to PFASs was associated with increased risk of GDM and disturbance in glucose homeostasis, especially in normal weight women. The PFAS-associated disruption of maternal thyroid function may alter glucose homeostasis.
Collapse
Affiliation(s)
- Lu Zang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China; State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Xiaorui Liu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Xianjing Xie
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Xuming Zhou
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yitao Pan
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Jiayin Dai
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
234
|
Yuan S, Wang X, Jiang Z, Zhang H, Yuan S. Contribution of air-water interface in removing PFAS from drinking water: Adsorption, stability, interaction and machine learning studies. WATER RESEARCH 2023; 236:119947. [PMID: 37084575 DOI: 10.1016/j.watres.2023.119947] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/08/2023] [Accepted: 04/05/2023] [Indexed: 05/03/2023]
Abstract
As a class of synthetic persistent organic pollutants, contamination of Per-and poly-fluoroalkyl substances (PFAS) in drinking water has attracted widespread concern. Aeration has been confirmed to enhance the removal of PFAS in drinking water by activated carbon (AC). However, the contribution of the air-water interface in removing PFAS is not yet to be fully understood at the molecular level. In this work, molecular dynamics (MD) simulations were employed to investigate the role of nanobubble in removing PFAS in the aqueous environment. The result suggests that the free energies of the air-water interface are about 3-7 kcal mol-1 lower than that of the bulk water region, indicating that the transformation of PFAS from the water phase into the air-water interface is favorable from the viewpoint of thermodynamics. The interface-water partition coefficients (Psur/wat) of PFAS are in the order of PFOS > PFOA > PFHxS > PFBS. On the air-water-AC three-phase interface, PFBS can not only move along the interface region but also leave the interface region into water phase, while PFOS tended to move along the interface region until it was captured by AC. Finally, the ΔGwater-interface quantitative structure-activity relationships (QSAR) models were developed to predict the removal efficiencies of PFAS enhanced by aeration in aquatic systems. The proposed mechanism promotes the understanding of the contribution of air-water interface in removing PFAS from drinking water by activated carbon.
Collapse
Affiliation(s)
- Shideng Yuan
- Key Lab of Colloid and Interface Chemistry, Shandong University, Jinan, Shandong 250100 PR China
| | - Xueyu Wang
- Key Lab of Colloid and Interface Chemistry, Shandong University, Jinan, Shandong 250100 PR China
| | - Zhaoli Jiang
- Key Lab of Colloid and Interface Chemistry, Shandong University, Jinan, Shandong 250100 PR China
| | - Heng Zhang
- Key Lab of Colloid and Interface Chemistry, Shandong University, Jinan, Shandong 250100 PR China
| | - Shiling Yuan
- Key Lab of Colloid and Interface Chemistry, Shandong University, Jinan, Shandong 250100 PR China.
| |
Collapse
|
235
|
Cheng H, Jin H, Lu B, Lv C, Ji Y, Zhang H, Fan R, Zhao N. Emerging poly- and perfluoroalkyl substances in water and sediment from Qiantang River-Hangzhou Bay. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162687. [PMID: 36906013 DOI: 10.1016/j.scitotenv.2023.162687] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Many emerging poly- and perfluoroalkyl substances (PFASs) are being used in China, due to the gradual phase out of legacy PFASs. Occurrence and environmental behaviors of emerging PFASs in Chinese fresh water environment are still not well known. In this study, 31 PFASs, including 14 emerging PFASs, were measured in 29 pairs of water and sediment samples from Qiantang River-Hangzhou Bay, an important drinking water resource for cities in Yangtze River basin. Perfluorooctanoate was consistently the predominant legacy PFAS in water (8.8-130 ng/L) and sediment (3.7-49 ng/g dw). Twelve emerging PFASs were detected in water, with the dominance of 6:2 chlorinated polyfluoroalkyl ether sulfonates (6:2 Cl-PFAES; mean 11 ng/L, 0.79-57 ng/L) and 6:2 fluorotelomer sulfonate (6:2 FTS; 5.6 ng/L, < LOD-29 ng/L). Eleven emerging PFASs were found in sediment, and were also dominated by 6:2 Cl-PFAES (mean 4.3 ng/g dw, 0.19-16 ng/g dw) and 6:2 FTS (2.6 ng/g dw, < LOD-9.4 ng/g dw). Spatially, sampling sites closed to the surrounding cities had comparatively higher water concentrations of PFASs. Among emerging PFASs, 8:2 Cl-PFAES (3.0 ± 0.34) had the highest mean field-based log-transformed organic‑carbon normalized sediment-water partition coefficient (log Koc), followed by 6:2 Cl-PFAES (2.9 ± 0.35) and hexafluoropropylene oxide trimer acid (2.8 ± 0.32). p-perfluorous nonenoxybenzene sulfonate (2.3 ± 0.60) and 6:2 FTS (1.9 ± 0.54) had relatively lower mean log Koc values. To our knowledge, this is the most comprehensive study investigating the occurrence and partitioning behaviors of emerging PFASs in Qiantang River.
Collapse
Affiliation(s)
- Haixiang Cheng
- College of Chemical and Material Engineering, Quzhou University, Quzhou, Zhejiang 324000, PR China.
| | - Hangbiao Jin
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Bin Lu
- Zhejiang Yilong Environmental Protection Technology Co., Taiyue Digital Port, Xiaoshan District, Hangzhou 311202, PR China
| | - Chenhan Lv
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China
| | - Yinghui Ji
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China
| | - Hui Zhang
- Zhongyuan Energy Company Limited, Beijing 100084, PR China
| | - Rui Fan
- College of Chemical and Material Engineering, Quzhou University, Quzhou, Zhejiang 324000, PR China
| | - Nan Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| |
Collapse
|
236
|
Ghorbani Gorji S, Hawker DW, Mackie R, Higgins CP, Bowles K, Li Y, Kaserzon S. Sorption affinity and mechanisms of per-and polyfluoroalkyl substances (PFASs) with commercial sorbents: Implications for passive sampling. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131688. [PMID: 37257384 DOI: 10.1016/j.jhazmat.2023.131688] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/17/2023] [Accepted: 05/22/2023] [Indexed: 06/02/2023]
Abstract
Effective monitoring tools, including passive samplers, are essential for the wide range of per- and polyfluoroalkyl substances (PFASs) in aquatic matrices. However, knowledge of the extent and mechanisms of PFASs sorption with sorbents in a passive sampling context is limited. To address this, sorption behavior of 45 anionic, neutral and zwitterionic PFASs ranging in perfluorocarbon chain length (C3-C16) and functional groups with 11 different commercial sorbents (cross-linked β-cyclodextrin polymers, activated carbon, anion exchange (AE), cation exchange, hydrophilic-lipophilic balanced (HLB) and non-polar) was investigated. A broad range of equilibrium sorbent-MilliQ water (MQ) distribution coefficients (Kd) were observed (10-1.95 to 108.30 mL g-1). Similar sorbent types (e.g., various AE and HLB sorbents) exhibited very different sorption behavior, likely due to their different polymeric structures and relative importance of sorbate/sorbent interactions other than coulombic interactions. HLB and AE with hydroxyl functionalities are most effective for sampling of the full suite of PFASs. Reduced sorptive affinity was observed in the presence of matrix co-constituents in wastewater influent for most PFASs. HLB had the smallest reduction in log Kd in wastewater suggesting that these sorbents are appropriate for applications in complex matrices. Sufficient sorbent capacity was observed for linear uptake of many target analytes which facilitates passive sampling.
Collapse
Affiliation(s)
- Sara Ghorbani Gorji
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Brisbane, Australia.
| | - Darryl W Hawker
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Brisbane, Australia; School of Environment and Science, Griffith University, Brisbane, Australia
| | - Rachel Mackie
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Brisbane, Australia
| | - Christopher P Higgins
- Department of Civil and Environmental Engineering, Colorado School of Mines, CO, United States
| | - Karl Bowles
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Brisbane, Australia; Jacobs, North Sydney, Australia
| | - Yan Li
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Brisbane, Australia
| | - Sarit Kaserzon
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Brisbane, Australia
| |
Collapse
|
237
|
Macorps N, Labadie P, Lestremau F, Assoumani A, Budzinski H. Per- and polyfluoroalkyl substances (PFAS) in surface sediments: Occurrence, patterns, spatial distribution and contribution of unattributed precursors in French aquatic environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162493. [PMID: 36863581 DOI: 10.1016/j.scitotenv.2023.162493] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/13/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
While perfluoroalkyl sulfonic acids (PFSAs) and perfluoroalkyl carboxylic acids (PFCAs) are ubiquitous in aquatic environments, non-targeted methods have recently revealed the presence of numerous unidentified per- and polyfluoroalkyl substances (PFAS). Besides those methods, the total oxidizable precursor (TOP) assay has proved useful to estimate the contribution of unattributed perfluoroalkyl acids precursors (pre-PFAAs). In this study, an optimized extraction method was developed to examine the spatial distribution of 36 targeted PFAS in surface sediments collected at French nationwide scale (n = 43), including neutral, anionic and zwitterionic molecules. In addition, a TOP assay procedure was implemented to estimate the contribution of unattributed pre-PFAAs in these samples. Conversion yields of targeted pre-PFAAs were determined for the first time under realistic conditions and led to differences in oxidation profiles compared to the common spiked ultra-pure water method. PFAS were detected in 86 % of samples and ∑PFAStargeted was in the range < Limit of Detection - 23 ng g-1 dry weight (dw) (median: 1.3 ng g-1 dw), with ∑pre-PFAAstargeted representing on average 29 ± 26 % of ∑PFAS. Among pre-PFAAs, compounds of emerging interest such as the fluorotelomer sulfonamidoalkyl betaines 6:2 FTAB and 8:2 FTAB were respectively detected in 38 % and 24 % of samples, with levels similar to those of L-PFOS (<0.36-2.2, <0.50-6.8 and < 0.08-5.1 ng g-1 dw, respectively). A hierarchical cluster analysis coupled with a geographic information system-based approach revealed similarities between groups of sampling sites. For instance, elevated contribution of FTABs were associated with the proximity to airport activities where betaine-based aqueous film-forming foam (AFFFs) might have been used. In addition, unattributed pre-PFAAs were strongly correlated with ∑PFAStargeted and they accounted for 58 % of ∑PFAS (median value); they were generally found in larger quantity near industrial and urban areas where the highest ∑PFAStargeted were also observed.
Collapse
Affiliation(s)
| | - Pierre Labadie
- CNRS/Université de Bordeaux, UMR 5805 EPOC, Talence, France.
| | - François Lestremau
- INERIS, Unité Méthodes et développements en Analyses pour l'Environnement, 60550 Verneuil-en-Halatte, France; Hydrosciences Montpellier, Univ. Montpellier, IMT Mines Ales, IRD, CNRS, Ales, France
| | - Azziz Assoumani
- INERIS, Unité Méthodes et développements en Analyses pour l'Environnement, 60550 Verneuil-en-Halatte, France
| | | |
Collapse
|
238
|
An Z, Yang J, Xiao F, Lv J, Xing X, Liu H, Wang L, Liu Y, Zhang Z, Guo H. Hippocampal Proteomics Reveals the Role of Glutamatergic Synapse Activation in the Depression Induced by Perfluorooctane Sulfonate. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7866-7877. [PMID: 37191230 DOI: 10.1021/acs.jafc.3c01344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Perfluorooctane sulfonate (PFOS), a new type of persistent organic pollutant in the environment of water, has drawn significant attention in recent years due to its widespread prevalence and high toxicity. Neurotoxicity is regarded as one of the major toxic effects of PFOS, while research studies on PFOS-induced depression and the underlying mechanisms remain scarce. In this study, behavioral tests revealed the depressive-like behaviors in PFOS-exposed male mice. Neuron damages including pyknosis and staining deepening were identified through hematoxylin and eosin staining. Then, we noticed the elevation of glutamate and proline levels as well as the decline of glutamine and tryptophan levels. Proteomics analysis identified 105 differentially expressed proteins that change in a dose-dependent manner and revealed that PFOS exposure activated the glutamatergic synapse signaling pathway, which were further confirmed by Western blot, and the data were consistent with the findings of the proteomics analysis. Additionally, the downstream signaling cyclic AMP-responsive element-binding protein (CREB)/brain-derived neurotrophic factor (BDNF) and synaptic plasticity-related postsynaptic density protein 95, synaptophysin, were downregulated. Our results highlight that PFOS exposure may inhibit the synaptic plasticity of the hippocampus via glutamatergic synapse and the CREB/BDNF signaling pathway to cause depressive-like behaviors in male mice.
Collapse
Affiliation(s)
- Ziwen An
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, China
| | - Jing Yang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, China
| | - Fang Xiao
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, China
| | - Junli Lv
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, China
| | - Xiaoqing Xing
- Department of Pharmacy, Hebei General Hospital, Shijiazhuang 050017, China
| | - Heqiong Liu
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, China
| | - Lei Wang
- Department of Medicinal Chemistry, Hebei Medical University, Shijiazhuang 050017, China
| | - Yi Liu
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, China
| | - Zhanchi Zhang
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang 050017, China
- Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Hebei Medical University, Shijiazhuang 050017, China
| | - Huicai Guo
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, China
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, China
| |
Collapse
|
239
|
Forster ALB, Zhang Y, Westerman DC, Richardson SD. Improved total organic fluorine methods for more comprehensive measurement of PFAS in industrial wastewater, river water, and air. WATER RESEARCH 2023; 235:119859. [PMID: 36958221 DOI: 10.1016/j.watres.2023.119859] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 03/04/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are high-profile environmental contaminants, many having long persistence in the environment and widespread presence in humans and wildlife. Following phase-out of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) in North America and restrictions in Europe, PFAS replacements are now widely found in the environment. While liquid chromatography (LC)-mass spectrometry (MS) is typically used for measurement, much of the PFAS is missed. To more comprehensively capture organic fluorine, we developed sensitive and robust methods using activated carbon adsorption, solid phase extraction, and combustion ion chromatography (CIC) to measure total organic fluorine (TOF) in industrial wastewaters, river water, and air. Two extraction techniques, adsorbable organic fluorine (AOF) and extractable organic fluorine (EOF), were optimized and compared using 39 different PFAS, including replacements, such as GenX and perfluorobutanesulfonate. Our AOF method achieves 46-112% and 87% recovery for individual PFAS and PFAS mixtures, respectively, with 0.5 µg/L limit of detection (LOD) for a 50 mL sample volume and a 0.3 μg/L LOD for a 500 mL sample volume . Our EOF method achieves 72-99% and 91% recovery for individual PFAS and PFAS mixtures, respectively, with 0.2 µg/L LOD for a 500 mL sample volume and 0.1 μg/L LOD for 1200 mL. In addition to 39 anionic PFAS, two zwitterionic PFAS and two neutral PFAS were evaluated using the optimized TOF methods. Substantially higher TOF values were measured in industrial wastewater, river water, and air samples compared to LC-MS/MS, demonstrating how TOF methods provided a more comprehensive measurement of the total PFAS present, capturing known and unknown organic fluorine.
Collapse
Affiliation(s)
- Alexandria L B Forster
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Ying Zhang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA; Department of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Danielle C Westerman
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Susan D Richardson
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| |
Collapse
|
240
|
Ruyle BJ, Thackray CP, Butt CM, LeBlanc DR, Tokranov AK, Vecitis CD, Sunderland EM. Centurial Persistence of Forever Chemicals at Military Fire Training Sites. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:8096-8106. [PMID: 37184088 DOI: 10.1021/acs.est.3c00675] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Drinking water contamination by per- and polyfluoroalkyl substances (PFAS) is widespread near more than 300 United States (U.S.) military bases that used aqueous film-forming foams (AFFF) for fire training and firefighting activities. Much of the PFAS at these sites consist of precursors that can transform into terminal compounds of known health concern but are omitted from standard analytical methods. Here, we estimate the expected duration and contribution of precursor biotransformation to groundwater PFAS contamination at an AFFF-contaminated military base on Cape Cod, Massachusetts, United States, by optimizing a geochemical box model using measured PFAS concentrations from a multidecadal time series of groundwater and a soil survey in the source zone. A toolbox of analytical techniques used to reconstruct the mass budget of PFAS showed that precursors accounted for 46 ± 8% of the extractable organofluorine (a proxy for total PFAS) across years. Terminal PFAS still exceed regulatory limits by 2000-fold decades after AFFF use ceased. Measurements and numerical modeling show that sulfonamido precursors are retained in the vadose zone and their slow biotransformation into perfluoroalkyl sulfonates (half-life > 66 yr) sustains groundwater concentrations of perfluorobutane sulfonate (PFBS) and perfluorohexane sulfonate (PFHxS). The estimated PFAS reservoir in the vadose zone and modeled flux into groundwater suggest PFAS contamination above regulatory guidelines will persist for centuries without remediation.
Collapse
Affiliation(s)
- Bridger J Ruyle
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Colin P Thackray
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Craig M Butt
- SCIEX, Framingham, Massachusetts 01701, United States
| | - Denis R LeBlanc
- U.S. Geological Survey, New England Water Science Center, Northborough, Massachusetts 01532, United States
| | - Andrea K Tokranov
- U.S. Geological Survey, New England Water Science Center, Northborough, Massachusetts 01532, United States
| | - Chad D Vecitis
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Elsie M Sunderland
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
241
|
Oró-Nolla B, Dulsat-Masvidal M, Bertolero A, Lopez-Antia A, Lacorte S. Target and untargeted screening of perfluoroalkyl substances in biota using liquid chromatography coupled to quadrupole time of flight mass spectrometry. J Chromatogr A 2023; 1701:464066. [PMID: 37207413 DOI: 10.1016/j.chroma.2023.464066] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/21/2023]
Abstract
Perfluoroalkyl substances (PFAS) are known to bioaccumulate and trigger adverse effects in marine birds. This study develops an extraction and analytical methodology for the target/untargeted analysis of PFAS in eggs of Yellow-legged gull (Larus michahellis) and Audouin's gull (Larus audouinii) and blood of Greater flamingo (Phoenicopterus roseus), which are used as bioindicators of organic chemical pollution. Samples were extracted by ultrasonication with acetonitrile and cleaned-up with activated carbon, and analysis was performed by ultra-high-performance liquid chromatography coupled to a quadrupole-time of flight mass spectrometer (UHPLC-Q-TOF) with negative electrospray ionization. Data-independent acquisition (DIA) was performed through full-scan acquisition to obtain MS1 at 6 eV and MS2 at 30 eV. In a first step, quantitative analysis of 25 PFAS was performed using 9 mass-labelled internal standard PFAS and quality parameters of the method developed are provided. Then, an untargeted screening workflow is proposed using the high-resolution PFAS library database from NORMAN to identify new chemicals through accurate mass measurement of MS1 and MS2 signals. The method permitted to detect several PFAS at concentrations ranging from 0.45 to 55.2 ng/g wet weight in gull eggs and from 0.75 to 125 ng/mL wet weight in flamingos' blood, with PFOS, PFOA, PFNA, PFUdA, PFTrDA, PFDoA, PFHxS and PFHpA the main compounds detected. In addition, perfluoro-p-ethylcyclohexylsulfonic acid (PFECHS, CAS number 646-83-3) and 2-(perfluorohexyl)ethanol (6:2 FTOH, CAS number 647-42-7) were tentatively identified. The developed UHPLC-Q-TOF target/untargeted analytical approach increases the scope of PFAS analysis, enabling a better assessment on contaminant exposure and promoting the use of bird species as bioindicators of chemical pollution.
Collapse
Affiliation(s)
- B Oró-Nolla
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, Barcelona 08034, Spain
| | - M Dulsat-Masvidal
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, Barcelona 08034, Spain
| | - A Bertolero
- Associació Ornitològica Picampall de les Terres de l'Ebre, La Galera 53, Amposta 43870, Spain
| | - A Lopez-Antia
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, Barcelona 08034, Spain
| | - S Lacorte
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, Barcelona 08034, Spain.
| |
Collapse
|
242
|
McAdam J, Bell EM. Determinants of maternal and neonatal PFAS concentrations: a review. Environ Health 2023; 22:41. [PMID: 37161484 PMCID: PMC10170754 DOI: 10.1186/s12940-023-00992-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/19/2023] [Indexed: 05/11/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are used for their properties such as stain and water resistance. The substances have been associated with adverse health outcomes in both pregnant mothers and infants, including pre-eclampsia and low birthweight. A growing body of research suggests that PFAS are transferred from mother to fetus through the placenta, leading to in utero exposure. A systematic review was performed using the PubMed database to search for studies evaluating determinants of PFAS concentrations in blood matrices of pregnant mothers and neonates shortly after birth. Studies were included in this review if an observational study design was utilized, exposure to at least one PFAS analyte was measured, PFAS were measured in maternal or neonatal matrices, at least one determinant of PFAS concentrations was assessed, and results such as beta estimates were provided. We identified 35 studies for inclusion in the review and evaluated the PFAS and determinant relationships among the factors collected in these studies. Parity, breastfeeding history, maternal race and country of origin, and household income had the strongest and most consistent evidence to support their roles as determinants of certain PFAS concentrations in pregnant mothers. Reported study findings on smoking status, alcohol consumption, and pre-pregnancy body mass index (BMI) suggest that these factors are not important determinants of PFAS concentrations in pregnant mothers or neonates. Further study into informative factors such as consumer product use, detailed dietary information, and consumed water sources as potential determinants of maternal or neonatal PFAS concentrations is needed. Research on determinants of maternal or neonatal PFAS concentrations is critical to estimate past PFAS exposure, build improved exposure models, and further our understanding on dose-response relationships, which can influence epidemiological studies and risk assessment evaluations. Given the potential for adverse outcomes in pregnant mothers and neonates exposed to PFAS, it is important to identify and understand determinants of maternal and neonatal PFAS concentrations to better implement public health interventions in these populations.
Collapse
Affiliation(s)
- Jordan McAdam
- Department of Environmental Health Sciences, University at Albany, Rensselaer, NY, USA
| | - Erin M Bell
- Department of Environmental Health Sciences, University at Albany, Rensselaer, NY, USA.
- Department of Epidemiology and Biostatistics, University at Albany, Rensselaer, NY, USA.
| |
Collapse
|
243
|
Huang YR, Liu SS, Zi JX, Cheng SM, Li J, Ying GG, Chen CE. In Situ Insight into the Availability and Desorption Kinetics of Per- and Polyfluoroalkyl Substances in Soils with Diffusive Gradients in Thin Films. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7809-7817. [PMID: 37155686 DOI: 10.1021/acs.est.2c09348] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The physicochemical exchange dynamics between the solid and solution phases of per- and polyfluoroalkyl substances (PFAS) in soils needs to be better understood. This study employed an in situ tool, diffusive gradients in thin films (DGT), to understand the distribution and exchange kinetics of five typical PFAS in four soils. Results show a nonlinear relationship between the PFAS masses in DGT and time, implying that PFAS were partially supplied by the solid phase in all of the soils. A dynamic model DGT-induced fluxes in soils/sediments (DIFS) was used to interpret the results and derive the distribution coefficients for the labile fraction (Kdl), response time (tc), and adsorption/desorption rates (k1 and k-1). The larger labile pool size (indicated by Kdl) for the longer chain PFAS implies their higher potential availability. The shorter chain PFAS tend to have a larger tc and relatively smaller k-1, implying that the release of these PFAS in soils might be kinetically limited but not for more hydrophobic compounds, such as perfluorooctanesulfonic acid (PFOS), although soil properties might play an important role. Kdl ultimately controls the PFAS availability in soils, while the PFAS release from soils might be kinetically constrained (which may also hold for biota uptake), particularly for more hydrophilic PFAS.
Collapse
Affiliation(s)
- Yue-Rui Huang
- Environmental Research Institute/School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Si-Si Liu
- Environmental Research Institute/School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Jin-Xin Zi
- Environmental Research Institute/School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Sheng-Ming Cheng
- Environmental Research Institute/School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Jun Li
- State Key Laboratory of Organic Geochemistry and Guangdong Province Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, Guangdong 510640, People's Republic of China
| | - Guang-Guo Ying
- Environmental Research Institute/School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Chang-Er Chen
- Environmental Research Institute/School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, Guangdong 510006, People's Republic of China
| |
Collapse
|
244
|
Min X, Wang Y. Enhanced adsorption of short-chain perfluorobutanoic acid by functionalized periodic mesoporous organosilica: Performance and mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2023; 449:131047. [PMID: 36827723 DOI: 10.1016/j.jhazmat.2023.131047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/03/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
Removal of short-chain per- and polyfluoroalkyl substances (PFAS) represents a unique challenge in comparison to the long-chain homologs. In this study, a series of functionalized periodic mesoporous organosilica (PMO) materials with tunable molar ratio of fluoroalkyl to amine functional groups were developed and used as platform adsorbents to investigate the adsorption behavior of short-chain PFAS, with a focus on perfluorobutanoic acid (PFBA). Modification with fluoroalkyl group substantially enhanced the adsorption affinity of PFBA with the functionalized PMO materials. Adsorption free energy analysis suggested that although electrostatic interactions were more predominant in PFBA adsorption, modification of PMOs with increased fluoroalkyl group loadings increased the non-electrostatic interactions with PFBA, resulting in more favorable PFBA adsorption. The optimal functionalized PMO showed fast PFBA adsorption kinetics, excellent PFBA removal efficiency in various water chemistry conditions, and can be regenerated and reused for numerous cycles with methanol/water mixture containing 500-mM NH3·H2O as regenerant. Furthermore, the optimal functionalized PMO showed robust performance for the removal of PFAS mixtures under complex natural water matrix. Results of this study suggested the important role of non-electrostatic interactions in enhancing the removal of short-chain PFAS and can provide mechanistic insights into guiding the design of improved adsorbents for PFAS removal.
Collapse
Affiliation(s)
- Xiaopeng Min
- Department of Civil and Environmental Engineering, University of Wisconsin - Milwaukee, Milwaukee, WI 53201, United States
| | - Yin Wang
- Department of Civil and Environmental Engineering, University of Wisconsin - Milwaukee, Milwaukee, WI 53201, United States.
| |
Collapse
|
245
|
Rupp J, Guckert M, Berger U, Drost W, Mader A, Nödler K, Nürenberg G, Schulze J, Söhlmann R, Reemtsma T. Comprehensive target analysis and TOP assay of per- and polyfluoroalkyl substances (PFAS) in wild boar livers indicate contamination hot-spots in the environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:162028. [PMID: 36740073 DOI: 10.1016/j.scitotenv.2023.162028] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
The suitability of wild boar liver as a bioindicator of per- and polyfluoroalkyl substances (PFAS) in the terrestrial environment was investigated. Samples from 50 animals in three different areas associated with (1) contaminated paper sludges distributed on arable land (PS), (2) industrial emissions of PFAS (IE) and (3) background contamination (BC) were analyzed for 66 PFAS, including legacy PFAS, novel substitutes and precursors of perfluoroalkyl acids (PFAAs). Additionally, the Total Oxidizable Precursor (TOP) assay was performed to determine the formation potential of PFAAs from precursors. In total, 31 PFAS were detected with site-specific contamination profiles. PFAS concentrations in livers from area PS and IE (567 and 944 μg kg-1 wet weight, respectively) were multiple times higher than from area BC (120 μg kg-1). The dominating PFAS were the legacy compounds perfluorooctane sulfonic acid (PFOS) in areas PS and BC (426 and 82 μg kg-1, respectively) and perfluorooctanoic acid (PFOA) in area IE (650 μg kg-1). In area IE, the compounds 4,8-dioxa-3H-perfluorononanoic acid (DONA) and hexafluoropropylene oxide dimer acid (HFPO-DA) - which are used as substitutes for PFOA - were determined at 15 and 0.29 μg kg-1, respectively. The formation potential of PFAAs was highest in area PS, but generally lower than the contamination with PFAAs. The pattern of perfluoroalkyl carboxylic acids (PFCAs) in wild boar liver reflects the contamination of the local soil at the two hot-spot areas IE and PS. This first comparison of PFAS contamination between wild boars and soil suggests that wild boar livers are suitable bioindicators for PFAS contamination in the terrestrial environment. Moreover, in terrestrial samples from area IE, legacy PFAS were found to be retained for a longer period as compared to riverine samples (suspended particulate matter and chub filet).
Collapse
Affiliation(s)
- Jana Rupp
- Helmholtz Centre for Environmental Research - UFZ, Department of Analytical Chemistry, Permoserstrasse 15, 04318 Leipzig, Germany.
| | - Marc Guckert
- TZW: DVGW Water Technology Center, Karlsruher Str. 84, 76139 Karlsruhe, Germany
| | - Urs Berger
- Helmholtz Centre for Environmental Research - UFZ, Department of Analytical Chemistry, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Wiebke Drost
- German Environment Agency (Umweltbundesamt), Wörlitzer Platz 1, 06813 Dessau-Rosslau, Germany
| | - Anneluise Mader
- Department Safety in the Food Chain, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Karsten Nödler
- TZW: DVGW Water Technology Center, Karlsruher Str. 84, 76139 Karlsruhe, Germany.
| | - Gudrun Nürenberg
- TZW: DVGW Water Technology Center, Karlsruher Str. 84, 76139 Karlsruhe, Germany
| | - Jona Schulze
- German Environment Agency (Umweltbundesamt), Wörlitzer Platz 1, 06813 Dessau-Rosslau, Germany
| | - Reiner Söhlmann
- District Office Rastatt, Office for Environment and Commercial Operator Inspection, Am Schlossplatz 5, 76437 Rastatt, Germany
| | - Thorsten Reemtsma
- Helmholtz Centre for Environmental Research - UFZ, Department of Analytical Chemistry, Permoserstrasse 15, 04318 Leipzig, Germany; Institute of Analytical Chemistry, University of Leipzig, Linnéstrasse 3, 04301 Leipzig, Germany.
| |
Collapse
|
246
|
Ames JL, Burjak M, Avalos LA, Braun JM, Bulka CM, Croen LA, Dunlop AL, Ferrara A, Fry RC, Hedderson MM, Karagas MR, Liang D, Lin PID, Lyall K, Moore B, Morello-Frosch R, O’Connor TG, Oh J, Padula AM, Woodruff TJ, Zhu Y, Hamra GB. Prenatal Exposure to Per- and Polyfluoroalkyl Substances and Childhood Autism-related Outcomes. Epidemiology 2023; 34:450-459. [PMID: 36630444 PMCID: PMC10074577 DOI: 10.1097/ede.0000000000001587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Epidemiologic evidence linking prenatal exposure to per- and polyfluoroalkyl substances (PFAS) with altered neurodevelopment is inconclusive, and few large studies have focused on autism-related outcomes. We investigated whether blood concentrations of PFAS in pregnancy are associated with child autism-related outcomes. METHODS We included 10 cohorts from the National Institutes of Health (NIH)-funded Environmental influences on Child Health Outcomes (ECHO) program (n = 1,429). We measured 14 PFAS analytes in maternal blood collected during pregnancy; eight analytes met detection criteria for analysis. We assessed quantitative autism-related traits in children via parent report on the Social Responsiveness Scale (SRS). In multivariable linear models, we examined relationships of each PFAS (natural log-transformed) with SRS scores. We further modeled PFAS as a complex mixture using Bayesian methods and examined modification of these relationships by child sex. RESULTS Most PFAS in maternal blood were not associated with child SRS T-scores. Perfluorononanoic acid (PFNA) showed the strongest and most consistent association: each 1-unit increase in ln-transformed PFNA was associated with greater autism-related traits (adjusted β [95% confidence interval (CI)] = 1.5 [-0.1, 3.0]). The summed mixture, which included six PFAS detected in >70% of participants, was not associated with SRS T-scores (adjusted β [95% highest posterior density interval] = 0.7 [-1.4, 3.0]). We did not observe consistent evidence of sex differences. CONCLUSIONS Prenatal blood concentrations of PFNA may be associated with modest increases in child autism-related traits. Future work should continue to examine the relationship between exposures to both legacy and emerging PFAS and additional dimensional, quantitative measures of childhood autism-related outcomes.
Collapse
Affiliation(s)
- Jennifer L. Ames
- Division of Research, Kaiser Permanente Northern California, Oakland, CA USA
| | | | - Lyndsay A. Avalos
- Division of Research, Kaiser Permanente Northern California, Oakland, CA USA
| | - Joseph M. Braun
- Department of Epidemiology, Brown University, Providence, RI USA
| | | | - Lisa A. Croen
- Division of Research, Kaiser Permanente Northern California, Oakland, CA USA
| | - Anne L. Dunlop
- Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Assiamira Ferrara
- Division of Research, Kaiser Permanente Northern California, Oakland, CA USA
| | - Rebecca C. Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC USA
| | | | | | - Donghai Liang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA USA
| | - Pi-I D. Lin
- Division of Chronic Disease Research Across the Lifecourse (CoRAL), Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA USA
| | - Kristen Lyall
- A.J. Drexel Autism Institute, Drexel University, Philadelphia, PA USA
| | - Brianna Moore
- Department of Epidemiology, Colorado School of Public Health, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | | | | | - Jiwon Oh
- Department of Public Health Sciences, University of California, Davis, Davis CA, USA
| | - Amy M. Padula
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA USA
| | - Tracey J. Woodruff
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA USA
| | - Yeyi Zhu
- Division of Research, Kaiser Permanente Northern California, Oakland, CA USA
| | | |
Collapse
|
247
|
Ojemaye CY, Ojemaye MO, Okoh AI, Okoh OO. Evaluation of the research trends on perfluorinated compounds using bibliometric analysis: knowledge gap and future perspectives. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2023; 58:570-595. [PMID: 37128712 DOI: 10.1080/10934529.2023.2203639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Detection of perfluorinated compounds (PFCs) in the environment has been a global concern because of the risk they pose due to their endocrine-disruptive properties. This study analyzed the global trends and research productivity of PFCs from 1990 to 2021. A total number of 3256 articles on PFCs were retrieved from the Web of Science focusing on different environmental and biological matrices. An increase in the productivity of research on PFCs was observed during the survey period which indicates that more research and publications on this class of contaminants are expected in the future. Evaluating the most productive countries and the number of citations per country on PFCs research shows that China and the United States of America were ranked in first and second places. It was also observed that research on PFCs received the most attention from scientists in developed countries, with little research emerging from Africa. Hence, research on PFCs in developing countries, especially low-income countries should be promoted. Consequently, more research programs should be implemented to investigate PFCs in countries and regions where research on these contaminants is low. The study will help researchers, government agencies and policymakers to tailor future research, allocation of funds to PFCs research and countries' collaboration.
Collapse
Affiliation(s)
- Cecilia Y Ojemaye
- Department of Pure and Applied Chemistry, University of Fort Hare, Alice, South Africa
| | - Mike O Ojemaye
- Department of Pure and Applied Chemistry, University of Fort Hare, Alice, South Africa
- SAMRC, Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
| | - Anthony I Okoh
- SAMRC, Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
- Department of Environmental health Sciences, College of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Omobola O Okoh
- Department of Pure and Applied Chemistry, University of Fort Hare, Alice, South Africa
- SAMRC, Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
| |
Collapse
|
248
|
Khan B, Burgess RM, Cantwell MG. Occurrence and Bioaccumulation Patterns of Per- and Polyfluoroalkyl Substances (PFAS) in the Marine Environment. ACS ES&T WATER 2023; 3:1243-1259. [PMID: 37261084 PMCID: PMC10228145 DOI: 10.1021/acsestwater.2c00296] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a group of synthetic compounds used in commercial applications, household products, and industrial processes. The concern around the environmental persistence, bioaccumulation and toxicity of this vast contaminant class continues to rise. We conducted a review of the scientific literature to compare patterns of PFAS bioaccumulation in marine organisms and identify compounds of potential concern. PFAS occurrence data in seawater, sediments, and several marine taxa was analyzed from studies published between the years 2000 and 2020. Taxonomic and tissue-specific differences indicated elevated levels in protein-rich tissues and in air-breathing organisms compared to those that respire in water. Long-chain perfluoroalkyl carboxylic acids, particularly perfluoroundecanoic acid, were detected at high concentrations across several taxa and across temporal studies indicating their persistence and bioaccumulative potential. Perfluorooctanesulfonic acid was elevated in various tissue types across taxa. Precursors and replacement PFAS were detected in several marine organisms. Identification of these trends across habitats and taxa can be applied towards biomonitoring efforts, determination of high-risk taxa, and criteria development. This review also highlights challenges related to PFAS biomonitoring including (i) effects of environmental and biological variables, (ii) evaluation of protein binding sites and affinities, and (iii) biotransformation of precursors.
Collapse
Affiliation(s)
- Bushra Khan
- ORISE Research Participant at the US Environmental Protection Agency, ORD-CEMM, Atlantic Coastal Environmental Sciences Division, 27 Tarzwell Drive, Narragansett, RI 02882, USA
| | - Robert M. Burgess
- US Environmental Protection Agency, ORD-CEMM, Atlantic Coastal Environmental Sciences Division, 27 Tarzwell Drive, Narragansett, RI 02882, USA
| | - Mark G. Cantwell
- US Environmental Protection Agency, ORD-CEMM, Atlantic Coastal Environmental Sciences Division, 27 Tarzwell Drive, Narragansett, RI 02882, USA
| |
Collapse
|
249
|
Zhou Z, Guo R, Chen B, Wang L, Cao H, Wei C, Hu M, Zhan Y, Li S, Wang Y, Liang Y. Development of a Completely New PFOS Alternative with Lower Surface Tension for Minimizing the Environmental Burden. Chem Res Chin Univ 2023; 39:408-414. [PMID: 37303471 PMCID: PMC10115474 DOI: 10.1007/s40242-023-3030-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/30/2023] [Indexed: 06/13/2023]
Abstract
Improving the technical performance of related industrial products is an efficient strategy to reducing the application quantities and environmental burden for toxic chemicals. A novel polyfluoroalkyl surfactant potassium 1,1,2,2,3,3,4,4-octafluoro-4-(perfluorobutoxy)butane-1-sulfonate(F404) was synthesized by a commercializable route. It had a surface tension(γ) of 18.2 mN/m at the critical micelle concentration(CMC, 1.04 g/L), significantly lower than that of perfluorooctane sulfonate(PFOS, ca. 33.0 mN/m, 0.72 g/L), and exhibited remarkable suppression of chromium-fog at a dose half that of PFOS. The half maximal inhibitory concentration(IC50) values in HepG2 cells and the lethal concentration of 50%(LC50) in zebrafish embryos after 72 hpf indicated a lower toxicity for F404 in comparison to PFOS. In a UV/sulphite system, 89.3% of F404 were decomposed after 3 h, representing a defluorination efficiency of 43%. The cleavage of the ether C-O bond during the decomposition would be expected to form a short chain·C4F9 as the position of the ether C-O in the F404 fluorocarbon chains is C4-O5. The ether unit is introduced in the perfluoroalkyl chain to improve water solubility, biocompatibility and degradation, thereby minimizing the environmental burden. Electronic Supplementary Material Supplementary material is available in the online version of this article at 10.1007/s40242-023-3030-4.
Collapse
Affiliation(s)
- Zhen Zhou
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056 P. R. China
| | - Rui Guo
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056 P. R. China
| | - Bolei Chen
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056 P. R. China
| | - Ling Wang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056 P. R. China
| | - Huiming Cao
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056 P. R. China
| | - Cuiyun Wei
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056 P. R. China
| | - Ming Hu
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056 P. R. China
| | - Yuhang Zhan
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056 P. R. China
| | - Shutao Li
- Hubei Hengxin Chemical Co., Ltd., Yingcheng, 432400 P. R. China
| | - Yawei Wang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056 P. R. China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 P. R. China
| | - Yong Liang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056 P. R. China
| |
Collapse
|
250
|
Tang L, Qiu W, Zhang S, Wang J, Yang X, Xu B, Magnuson JT, Xu EG, Wu M, Zheng C. Poly- and Perfluoroalkyl Substances Induce Immunotoxicity via the TLR Pathway in Zebrafish: Links to Carbon Chain Length. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6139-6149. [PMID: 37017313 DOI: 10.1021/acs.est.2c09716] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Previous studies have reported the immunotoxicity of per- and polyfluoroalkyl substances (PFASs), but it remains a significant challenge to assess over 10,000 distinct PFASs registered in the distributed structure-searchable toxicity (DSSTox) database. We aim to reveal the mechanisms of immunotoxicity of different PFASs and hypothesize that PFAS immunotoxicity is dependent on the carbon chain length. Perfluorobutanesulfonic acid (PFBA), perfluorooctanoic acid (PFOA), and perfluorononanoic acid (PFNA) representing different carbon chain lengths (4-9) at environmentally relevant levels strongly reduced the host's antibacterial ability during the zebrafish's early-life stage. Innate and adaptive immunities were both suppressed after PFAS exposures, exhibiting a significant induction of macrophages and neutrophils and expression of immune-related genes and indicators. Interestingly, the PFAS-induced immunotoxic responses were positively correlated to the carbon chain length. Moreover, PFASs activated downstream genes of the toll-like receptor (TLR), uncovering a seminal role of TLR in PFAS immunomodulatory effects. Myeloid differentiation factor 88 (MyD88) morpholino knock-down experiments and MyD88 inhibitors alleviated the immunotoxicity of PFASs. Overall, the comparative results demonstrate differences in the immunotoxic responses of PFASs due to carbon chain length in zebrafish, providing new insights into the prediction and classification of PFASs mode of toxic action based on carbon chain length.
Collapse
Affiliation(s)
- Liang Tang
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Wenhui Qiu
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Nanshan District, Shenzhen 518055, China
| | - Shuwen Zhang
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Nanshan District, Shenzhen 518055, China
| | - Jiazhen Wang
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Nanshan District, Shenzhen 518055, China
| | - Xin Yang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Nanshan District, Shenzhen 518055, China
| | - Bentuo Xu
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, School of Life and Environmental Science, Wenzhou University, Chashan University Town, Wenzhou 325035, China
| | - Jason T Magnuson
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Måltidets Hus - Richard Johnsens gate 4, Stavanger 4021, Norway
| | - Elvis Genbo Xu
- Department of Biology, University of Southern Denmark, Campusvej 55, Odense 5230, Denmark
| | - Minghong Wu
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Chunmiao Zheng
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Nanshan District, Shenzhen 518055, China
- EIT Institute for Advanced Study, 568 Tongxin Road, Zhenhai District, Ningbo 315410, China
| |
Collapse
|