201
|
Zhu N, Zhang Y, Cheng J, Mao Y, Kang K, Li G, Yi Q, Wu Y. Immuno-affinitive supramolecular magnetic nanoparticles incorporating cucurbit[8]uril-mediated ternary host-guest complexation structures for high-efficient small extracellular vesicle enrichment. J Colloid Interface Sci 2021; 611:462-471. [PMID: 34968965 DOI: 10.1016/j.jcis.2021.12.109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/27/2021] [Accepted: 12/16/2021] [Indexed: 12/30/2022]
Abstract
Enriching small extracellular vesicles (sEVs) with undamaged structure and function is a pivotal step for further applications in biological and clinical fields. It has prompted researchers to explore a carrier material that can efficiently capture sEVs while also gently release the captured sEVs. Here, 1-adamantylamine (1-ADA) responsive immuno-affinitive supramolecular magnetic nanoparticles (ISM-NPs) incorporating ternary host-guest complexation structures mediated by CB[8] were proposed to achieved the goal. In particular, the ternary host-guest complexation was constructed by the host molecule (cucurbit[8]uril, CB[8]) mediated assembly of two guest molecules (naphthol and bipyridine), and served as a cleavable bridge to connect the magnetic core and peripheral antibody. These constructed ISM-NPs performed well in the applications of capturing sEVs with a high capture efficiency of 85.5%. Further, the CB[8]-mediated ternary host-guest complexation structures can be disassembled with addition of the 1-ADA. Thus, the sEVs recognized by the anti-CD63 were released competitively, with a decent release efficiency more than 82%. The released sEVs kept intact morphology and exhibited appropriate size distribution and concentration. This supramolecular magnetic system, with 1-ADA responsive ternary host-guest complexation structures, may contribute to efficient enrichment of any other biomarkers, likely cells, proteins, peptides, etc.
Collapse
Affiliation(s)
- Nanhang Zhu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, PR China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, PR China
| | - Yujia Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, PR China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, PR China
| | - Jia Cheng
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, PR China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, PR China
| | - Yanchao Mao
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, PR China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, PR China
| | - Ke Kang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, PR China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, PR China
| | - Guohao Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, PR China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, PR China
| | - Qiangying Yi
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, PR China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, PR China.
| | - Yao Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, PR China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, PR China.
| |
Collapse
|
202
|
Dai X, Zhang B, Yu Q, Liu Y. Multicharged Supramolecular Assembly Mediated by Polycationic Cyclodextrin for Efficiently Photodynamic Antibacteria. ACS APPLIED BIO MATERIALS 2021; 4:8536-8542. [PMID: 35005946 DOI: 10.1021/acsabm.1c01018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Supramolecular antimicrobial materials based on synthetic macrocycles have recently aroused enormous interests due to their controllable and effective antibacterial treatment. Herein, a multicharged supramolecular assembly was fabricated employing the moderate host-guest interaction between hexa-adamantane-appended ruthenium polypyridyl (Ru2) and polycationic cyclodextrin (CD-QAS) in water. The positively multicharged feature of supramolecular assembly could remarkably enhance the specific intercalation and accumulation in negatively charged bacteria membrane leading to the physical membrane damage. Subsequently, the assembly could efficiently initiate the significant generation of singlet oxygen (1O2) in situ when irradiated with white light thus exhibiting a highly efficient antibacterial capability. Significantly, antibacterial experiments indicated that Ru2/CD-QAS displayed less effect on suppressing the growth of E. coli only about 25% in the absence of light while they exhibited excellent killing efficiency more than 99% toward E. coli under light irradiation. This work provides a simple approach for constructing supramolecular antimicrobial materials for synergistic photodynamic antibacteria.
Collapse
Affiliation(s)
- Xianyin Dai
- Department College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Bing Zhang
- Department College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Qilin Yu
- Key Laboratory of Molecular Microbiology and Technology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yu Liu
- Department College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
203
|
Sojka M, Chyba J, Paul SS, Wawrocka K, Hönigová K, Cuyacot BJR, Castro AC, Vaculovič T, Marek J, Repisky M, Masařík M, Novotný J, Marek R. Supramolecular Coronation of Platinum(II) Complexes by Macrocycles: Structure, Relativistic DFT Calculations, and Biological Effects. Inorg Chem 2021; 60:17911-17925. [PMID: 34738800 DOI: 10.1021/acs.inorgchem.1c02467] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Platinum-based anticancer drugs are actively developed utilizing lipophilic ligands or drug carriers for the efficient penetration of biomembranes, reduction of side effects, and tumor targeting. We report the development of a supramolecular host-guest system built on cationic platinum(II) compounds bearing ligands anchored in the cavity of the macrocyclic host. The host-guest binding and hydrolysis process on the platinum core were investigated in detail by using NMR, MS, X-ray diffraction, and relativistic DFT calculations. The encapsulation process in cucurbit[7]uril unequivocally promotes the stability of hydrolyzed dicationic cis-[PtII(NH3)2(H2O)(NH2-R)]2+ compared to its trans isomer. Biological screening on the ovarian cancer lines A2780 and A2780/CP shows time-dependent toxicity. Notably, the reported complex and its β-cyclodextrin (β-CD) assembly achieve the same cellular uptake as cisplatin and cisplatin@β-CD, respectively, while maintaining a significantly lower toxicity profile.
Collapse
Affiliation(s)
- Martin Sojka
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia.,Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia
| | - Jan Chyba
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia.,Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia
| | - Shib Shankar Paul
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia.,Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia
| | - Karolina Wawrocka
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia.,Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia
| | - Kateřina Hönigová
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia
| | - Ben Joseph R Cuyacot
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia.,Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia
| | - Abril C Castro
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, 0315 Oslo, Norway
| | - Tomáš Vaculovič
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia
| | - Jaromír Marek
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia
| | - Michal Repisky
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, UiT - The Arctic University of Norway, 9037 Tromsø, Norway
| | - Michal Masařík
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia.,Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia
| | - Jan Novotný
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia.,Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia
| | - Radek Marek
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia.,Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia
| |
Collapse
|
204
|
Bojesomo RS, Saleh N. Photoinduced Electron Transfer in Encapsulated Heterocycles by Cavitands. Photochem Photobiol 2021; 98:754-762. [PMID: 34865222 DOI: 10.1111/php.13571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/31/2021] [Accepted: 11/30/2021] [Indexed: 11/26/2022]
Abstract
Host-guest complexation of small heterocyclic (guest) and macrocyclic cavitands (hosts) organic molecules is still to date a very popular, inexpensive approach that bypasses the burdens of conventional covalent synthesis. Understanding the selection criteria of these chemicals is crucial to the design and potential applications of their supramolecular assemblies. This review surveys examples within the last 15 years (2005-2020) of supramolecular complexes in which the interacting photoinduced electron transfer (PET)-based chromophore and quencher fragments are commonly used in the market with reported CAS numbers. It appears from this survey that the supramolecular effects can be directed to specifically disrupt PET when the nonemissive macrocycles separately encapsulate the fluorescent acceptor or donor molecules, among other specific factors, such as when inducing conformational changes or pKa shift of the donor. On the contrary, synergetic encapsulation of both donor and acceptor molecules, formation of ternary self-assembly at the rim or encapsulation of one component while grafting the other onto the macrocycle, among other specific factors such as the modulation of the excited-state structure of donor, will lead to the enhancement of PET process. In the event the donor or acceptor molecules have multitopic structures, the PET process can repeatedly be switched on and off. It is generally concluded that understanding the criteria for the combination of these available products for the purpose of manipulating their PET efficiency should pave the way for the facile alternative generation of new noncovalently bonded host-guest supramolecular assemblies with a more specific design tailored for more advanced, diverse and economic applications such as chemical sensing, molecular gates, drug delivery and biolabeling.
Collapse
Affiliation(s)
- Rukayat S Bojesomo
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
| | - Na'il Saleh
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain, 15551, United Arab Emirates.,National Water and Energy Center, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
| |
Collapse
|
205
|
Sayed M, Pal H. An overview from simple host-guest systems to progressively complex supramolecular assemblies. Phys Chem Chem Phys 2021; 23:26085-26107. [PMID: 34787121 DOI: 10.1039/d1cp03556h] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Supramolecular chemistry involving macrocyclic hosts is a highly interdisciplinary and fast-growing research field in chemistry, biochemistry, and materials science. Host-guest based supramolecular assemblies, as constructed through non-covalent interactions, are highly dynamic in nature, and can be tuned easily using their responses to various external stimuli, providing a convenient approach to achieve excellent functional materials. Macrocyclic hosts, particularly cyclodextrins, cucurbit[n]urils, and calix[n]arenes, which have unique features like possessing hydrophobic cavities of different sizes, along with hydrophilic external surfaces, which are also amenable towards easy derivatizations, are versatile cavitands or host molecules to encapsulate diverse guest molecules to form stable host-guest complexes with many unique structures and properties. Interestingly, host-guest complexes possessing amphiphilic properties can easily lead to the formation of various advanced supramolecular assemblies, like pseudorotaxanes, rotaxanes, polyrotaxanes, supramolecular polymers, micelles, vesicles, supramolecular nanostructures, and so on. Moreover, these supramolecular assemblies, with varied morphologies and responsiveness towards external stimuli, have immense potential for applications in nanotechnology, materials science, biosensors, drug delivery, analytical chemistry and biomedical sciences. In this perspective, we present a stimulating overview, discussing simple host-guest systems to complex supramolecular assemblies in a systematic manner, aiming to encourage future researchers in this fascinating area of supramolecular chemistry to develop advanced supramolecular materials with superior functionalities, for their deployment in diverse applied areas.
Collapse
Affiliation(s)
- Mhejabeen Sayed
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai, 400085, India. .,Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India
| | - Haridas Pal
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India.,Analytical Chemistry Division, Bhabha Atomic Research Centre, Mumbai, 400085, India.
| |
Collapse
|
206
|
Photoinstability in active pharmaceutical ingredients: Crystal engineering as a mitigating measure. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2021. [DOI: 10.1016/j.jphotochemrev.2021.100455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
207
|
Mohamed IO. Effects of processing and additives on starch physicochemical and digestibility properties. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100039] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
208
|
Wang Q, Wei KN, Huang SZ, Tang Q, Tao Z, Huang Y. "Turn-Off" Supramolecular Fluorescence Array Sensor for Heavy Metal Ion Identification. ACS OMEGA 2021; 6:31229-31235. [PMID: 34841166 PMCID: PMC8613849 DOI: 10.1021/acsomega.1c04956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/01/2021] [Indexed: 06/10/2023]
Abstract
A "turn-off" supramolecular fluorescence array sensor based on the host-guest complexes between fluorescence dyes and cucurbit[n]urils for sensing metal ions was developed. Three fluorescent probes (RhB@Q[7], H33342@2Q[7], and BRE@Q[7]) were used as the sensing units to construct a supramolecular fluorescence array sensor. The binding ability of the metal ions and cucurbituril-dye probes varied; therefore, the probes and metal ions produced different fluorescence responses. When combined with linear discriminant analysis (LDA), the qualitative and quantitative detection of seven metal ions was achieved. In analytical samples, the supramolecular fluorescence array sensor recognized and distinguish seven metal ions. These results provided new research ideas for the rapid analysis and real-time monitoring of different heavy metal ions.
Collapse
Affiliation(s)
- Qin Wang
- Key
Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou
Province, Guizhou University, Guiyang 550025, China
| | - Kai-Ni Wei
- Key
Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou
Province, Guizhou University, Guiyang 550025, China
| | - Shu-Zhen Huang
- Key
Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou
Province, Guizhou University, Guiyang 550025, China
| | - Qing Tang
- Department
College of Tobacco Science, Guizhou University, Guiyang 550025, China
| | - Zhu Tao
- Key
Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou
Province, Guizhou University, Guiyang 550025, China
| | - Ying Huang
- Key
Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou
Province, Guizhou University, Guiyang 550025, China
- The
Engineering and Research Center for Southwest Bio-Pharmaceutical Resources
of National Education Ministry of China, Guizhou University, Guiyang 550025, China
| |
Collapse
|
209
|
Chen J, Zhang Y, Zhao L, Zhang Y, Chen L, Ma M, Du X, Meng Z, Li C, Meng Q. Supramolecular Drug Delivery System from Macrocycle-Based Self-Assembled Amphiphiles for Effective Tumor Therapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:53564-53573. [PMID: 34726381 DOI: 10.1021/acsami.1c14385] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Intelligent drug delivery systems (DDSs) that can improve therapeutic outcomes of antitumor agents and decrease their side effects are urgently needed to satisfy special requirements of treatment of malignant tumors in clinics. Here, the fabrication of supramolecular self-assembled amphiphiles based on the host-guest recognition between a cationic water-soluble pillar[6]arene (WP6A) host and a sodium decanesulfonate guest (G) is reported. The chemotherapeutic agent doxorubicin hydrochloride (DOX) can be encapsulated into the formed vesicle (G/WP6A) to construct supramolecular DDS (DOX@G/WP6A). WP6A affords strong affinities to G to avoid undesirable off-target leakage during delivery. Nanoscaled DOX@G/WP6A is capable of preferentially accumulating in tumor tissue via enhanced permeability and retention (EPR) effect. After internalization by tumor cells, the abundant adenosine triphosphate (ATP) binds competitively with WP6A to trigger the disintegration of self-assembled vesicles with the ensuing release of DOX. In vitro and in vivo research confirmed that DOX@G/WP6A is not only able to promote antitumor efficacy but also reduce DOX-related systemic toxicity. The above favorable findings are ascribed to the formation of ternary self-assembly, which profits from the combination of the factors of the EPR effect and the ATP-triggered release.
Collapse
Affiliation(s)
- Junyi Chen
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P. R. China
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China
| | - Yadan Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P. R. China
| | - Liang Zhao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P. R. China
| | - Yahan Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P. R. China
| | - Longming Chen
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P. R. China
| | - Mengke Ma
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P. R. China
| | - Xinbei Du
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P. R. China
| | - Zhao Meng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P. R. China
| | - Chunju Li
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China
| | - Qingbin Meng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P. R. China
| |
Collapse
|
210
|
Supramolecular Assembly and Reversible Transition and of Chitosan Fluorescent Micelles by Noncovalent Modulation. ADVANCES IN POLYMER TECHNOLOGY 2021. [DOI: 10.1155/2021/5175473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Chitosan-based intelligent artificial systems have been of increasing interest for their biocompatibility, multifunctionality, biological activity, and low cost. Herein, we report the fabrication of supramolecular nanoparticles based on water-soluble chitosan (WCS) and 1,1
,1
,1
-(ethene-1,1,2,2-tetrayl)tetrakis(benzene-4,1-diyl) tetrakis(azanediyl)tetraacetic acid (TPE-(N-COOH)4), which is capable of reversible transition between polyion complexes (PICs) and hydrogen bonding complexes (HBCs) with tunable aggregation-induced emission driven by pH value. The PIC micelles could be formed via electrostatic interaction between ammonium cations and carboxylate anions under mild alkaline conditions. The formation of the micelles dramatically blocks the nonradiative pathway and enhances the fluorescence of TPE moieties, and the maximum fluorescence intensity was achieved near the isoelectric point due to the restriction of intramolecular motion. In addition, the fluorescence intensity and size of the PIC micelles exhibited a temperature response in the range from 20 to 80°C. Upon adjusting the solution pH to 2, the PIC micelles were reconstructed into hydrogen-bonding complexes while the hydrogen bonding interaction between the protonated carboxyl groups of TPE-(N-COOH)4 and chitosan. Moreover, the size of the micelles underwent a remarkable decrease, whereas the fluorescence emission was further enhanced by ~6.25-fold. The pH actuated micellar transition from PIC to HBC with tunable fluorescence performance is fully reversible. This study provides novel multifunctional materials that are of great importance for their potential application in the fields of optoelectronic devices and chemical and biomedical sensors.
Collapse
|
211
|
Pham TC, Nguyen VN, Choi Y, Lee S, Yoon J. Recent Strategies to Develop Innovative Photosensitizers for Enhanced Photodynamic Therapy. Chem Rev 2021; 121:13454-13619. [PMID: 34582186 DOI: 10.1021/acs.chemrev.1c00381] [Citation(s) in RCA: 626] [Impact Index Per Article: 208.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review presents a robust strategy to design photosensitizers (PSs) for various species. Photodynamic therapy (PDT) is a photochemical-based treatment approach that involves the use of light combined with a light-activated chemical, referred to as a PS. Attractively, PDT is one of the alternatives to conventional cancer treatment due to its noninvasive nature, high cure rates, and low side effects. PSs play an important factor in photoinduced reactive oxygen species (ROS) generation. Although the concept of photosensitizer-based photodynamic therapy has been widely adopted for clinical trials and bioimaging, until now, to our surprise, there has been no relevant review article on rational designs of organic PSs for PDT. Furthermore, most of published review articles in PDT focused on nanomaterials and nanotechnology based on traditional PSs. Therefore, this review aimed at reporting recent strategies to develop innovative organic photosensitizers for enhanced photodynamic therapy, with each example described in detail instead of providing only a general overview, as is typically done in previous reviews of PDT, to provide intuitive, vivid, and specific insights to the readers.
Collapse
Affiliation(s)
- Thanh Chung Pham
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
| | - Van-Nghia Nguyen
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| | - Yeonghwan Choi
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
| | - Songyi Lee
- Department of Chemistry, Pukyong National University, Busan 48513, Korea.,Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
212
|
Xue EY, Shi WJ, Fong WP, Ng DKP. Targeted Delivery and Site-Specific Activation of β-Cyclodextrin-Conjugated Photosensitizers for Photodynamic Therapy through a Supramolecular Bio-orthogonal Approach. J Med Chem 2021; 64:15461-15476. [PMID: 34662121 DOI: 10.1021/acs.jmedchem.1c01505] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Targeted delivery of photosensitizers using hydrophilic and tumor-directing carriers and site-specific activation of their photocytotoxicity are two common strategies to enhance the specificity of anticancer photodynamic therapy. We report herein a novel supramolecular bio-orthogonal approach to integrate these two functions. A β-cyclodextrin-substituted aza-boron-dipyrromethene-based photosensitizer was first complexed with a ferrocene-substituted black-hole quencher to inhibit its photosensitizing ability. Upon encountering the adamantane moieties that had been delivered to target cancer cells through specific binding of the conjugated peptide to the overexpressed epidermal growth factor receptor, the ferrocene-based guest species were displaced due to the stronger binding interactions between β-cyclodextrin and adamantane, thereby restoring the photodynamic activity of the photosensitizer. Hence, this two-step process enabled targeted delivery and site-specific activation of the photosensitizer, as demonstrated through a series of experiments in aqueous media, in a range of cancer cell lines and in tumor-bearing nude mice.
Collapse
Affiliation(s)
- Evelyn Y Xue
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Wen-Jing Shi
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Wing-Ping Fong
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Dennis K P Ng
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| |
Collapse
|
213
|
Bukhari SZ, Zeth K, Iftikhar M, Rehman M, Usman Munir M, Khan WS, Ihsan A. Supramolecular lipid nanoparticles as delivery carriers for non-invasive cancer theranostics. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100067. [PMID: 34909685 PMCID: PMC8663983 DOI: 10.1016/j.crphar.2021.100067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 12/12/2022] Open
Abstract
Nanotheranostics is an emerging frontier of personalized medicine research particularly for cancer, which is the second leading cause of death. Supramolecular aspects in theranostics are quite allured to achieve more regulation and controlled features. Supramolecular nanotheranostics architecture is focused on engineering of modular supramolecular assemblies benefitting from their mutable and stimuli-responsive properties which confer an ultimate potential for the fabrication of unified innovative nanomedicines with controlled features. Amalgamation of supramolecular approaches to nano-based features further equip the potential of designing novel approaches to overcome limitations seen by the conventional theranostic strategies, for curing even the lethal diseases and endowing personalized therapeutics with optimistic prognosis, endorsing their clinical translation. Among many potential nanocarriers for theranostics, lipid nanoparticles (LNPs) have shown various promising advances in theranostics and their formulation can be tailored for several applications. Despite the great advancement in cancer nanotheranostics, there are still many challenges that need to be highlighted to fill the literature gap. For this purpose, herein, we have presented a systematic overview on the subject and proposed LNPs as the potential material to manage cancer via non-invasive approaches by highlighting the use of supramolecular approaches to make them robust for cancer theranostics. We have concluded the review by entailing the future perspectives of lipid nanotheranostics towards clinical translation.
Collapse
Affiliation(s)
- Syeda Zunaira Bukhari
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Pakistan
| | - Kornelius Zeth
- Department of Science and Environment, Roskilde University Center, DK-4000 Roskilde, Denmark
| | - Maryam Iftikhar
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Pakistan
| | - Mubashar Rehman
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Usman Munir
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Aljouf, 72388, Saudi Arabia
| | - Waheed S. Khan
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Pakistan
| | - Ayesha Ihsan
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Pakistan
| |
Collapse
|
214
|
Huang B, Mao L, Shi X, Yang HB. Recent advances and perspectives on supramolecular radical cages. Chem Sci 2021; 12:13648-13663. [PMID: 34760150 PMCID: PMC8549795 DOI: 10.1039/d1sc01618k] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/31/2021] [Indexed: 12/20/2022] Open
Abstract
Supramolecular radical chemistry has been emerging as a cutting-edge interdisciplinary field of traditional supramolecular chemistry and radical chemistry in recent years. The purpose of such a fundamental research field is to combine traditional supramolecular chemistry and radical chemistry together, and take the benefit of both to eventually create new molecules and materials. Recently, supramolecular radical cages have been becoming one of the most frontier and challenging research focuses in the field of supramolecular chemistry. In this Perspective, we give a brief introduction to organic radical chemistry, supramolecular chemistry, and the emerging supramolecular radical chemistry along with their history and application. Subsequently, we turn to the main part of this topic: supramolecular radical cages. The design and synthesis of supramolecular cages consisting of redox-active building blocks and radical centres are summarized. The host-guest interactions between supramolecular (radical) cages and organic radicals are also surveyed. Some interesting properties and applications of supramolecular radical cages such as their unique spin-spin interactions and intriguing confinement effects in radical-mediated/catalyzed reactions are comprehensively discussed and highlighted in the main text. The purpose of this Perspective is to help students and researchers understand the development of supramolecular radical cages, and potentially to stimulate innovation and creativity and infuse new energy into the fields of traditional supramolecular chemistry and radical chemistry as well as supramolecular radical chemistry.
Collapse
Affiliation(s)
- Bin Huang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University 3663 N. Zhongshan Road Shanghai 200062 P. R. China
| | - Lijun Mao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University 3663 N. Zhongshan Road Shanghai 200062 P. R. China
| | - Xueliang Shi
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University 3663 N. Zhongshan Road Shanghai 200062 P. R. China
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University 3663 N. Zhongshan Road Shanghai 200062 P. R. China
| |
Collapse
|
215
|
Borodin O, Shchukin Y, Robertson CC, Richter S, von Delius M. Self-Assembly of Stimuli-Responsive [2]Rotaxanes by Amidinium Exchange. J Am Chem Soc 2021; 143:16448-16457. [PMID: 34559523 PMCID: PMC8517971 DOI: 10.1021/jacs.1c05230] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Indexed: 01/29/2023]
Abstract
Advances in supramolecular chemistry are often underpinned by the development of fundamental building blocks and methods enabling their interconversion. In this work, we report the use of an underexplored dynamic covalent reaction for the synthesis of stimuli-responsive [2]rotaxanes. The formamidinium moiety lies at the heart of these mechanically interlocked architectures, because it enables both dynamic covalent exchange and the binding of simple crown ethers. We demonstrated that the rotaxane self-assembly follows a unique reaction pathway and that the complex interplay between crown ether and thread can be controlled in a transient fashion by addition of base and fuel acid. Dynamic combinatorial libraries, when exposed to diverse nucleophiles, revealed a profound stabilizing effect of the mechanical bond as well as intriguing reactivity differences between seemingly similar [2]rotaxanes.
Collapse
Affiliation(s)
- Oleg Borodin
- Institute
of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Yevhenii Shchukin
- Institute
of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Craig C. Robertson
- Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K.
| | - Stefan Richter
- Institute
of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Max von Delius
- Institute
of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
216
|
Cheng Q, Yue L, Li J, Gao C, Ding Y, Sun C, Xu M, Yuan Z, Wang R. Supramolecular Tropism Driven Aggregation of Nanoparticles In Situ for Tumor-Specific Bioimaging and Photothermal Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101332. [PMID: 34405525 DOI: 10.1002/smll.202101332] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/15/2021] [Indexed: 06/13/2023]
Abstract
Inorganic nanomedicine has attracted increasing attentions in biomedical sciences due to their excellent biocompatibility and tunable, versatile functionality. However, the relatively poor accumulation and retention of these nanomedicines in targeted tissues have often hindered their clinical translation. Herein, highly efficient, targeted delivery, and in situ aggregation of ferrocene (Fc)-capped Au nanoparticles (NPs) are reported to cucurbit[7]uril (CB[7])-capped Fe3 O4 NPs (as an artificial target) that are magnetically deposited into the tumor, driven by strong, multipoint CB[7]-Fc host-guest interactions (here defined as "supramolecular tropism" for the first time), leading to high tumor accumulation and retention of these NPs. The in vitro and in vivo studies demonstrate the precisely controlled, specific accumulation, and retention of Au NPs in the tumor cells and tissue via supramolecular tropism and in situ aggregation, which afford locally enhanced CT imaging of cancer and enable tumor-specific photothermal therapy attributed to the plasmonic coupling effects between adjacent Au NPs within the supramolecular aggregations. This work provides a novel concept of supramolecular tropism, which may drive targeted delivery and enable specific accumulation, retention, and activation of nanomedicine for improved bioimaging and therapy of cancer.
Collapse
Affiliation(s)
- Qian Cheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, 999078, China
| | - Ludan Yue
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, 999078, China
| | - Junyan Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, 999078, China
| | - Cheng Gao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, 999078, China
| | - Yuanfu Ding
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, 999078, China
| | - Chen Sun
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, 999078, China
| | - Mengze Xu
- Faculty of Health Sciences, University of Macau, Taipa, Macau, 999078, China
| | - Zhen Yuan
- Faculty of Health Sciences, University of Macau, Taipa, Macau, 999078, China
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, 999078, China
| |
Collapse
|
217
|
|
218
|
Pan YC, Yue YX, Hu XY, Li HB, Guo DS. A Supramolecular Antidote to Macromolecular Toxins Prepared through Coassembly of Macrocyclic Amphiphiles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2104310. [PMID: 34418189 DOI: 10.1002/adma.202104310] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/01/2021] [Indexed: 06/13/2023]
Abstract
Poisoning is a leading cause of admission to medical emergency departments and intensive care units. Supramolecular detoxification, which involves injecting supramolecular receptors that bind with toxins to suppress their biological activity, is an emerging strategy for poisoning treatment; it has few requirements and a broad application scope. However, it is still a formidable challenge to design supramolecular therapeutic materials as an antidote to macromolecular toxins, because the large size, flexible conformation, and presence of multiple and diverse binding sites of biomacromolecules hinder their recognition. Herein, a supramolecular antidote to macromolecular toxins is developed through the coassembly of macrocyclic amphiphiles, relying on heteromultivalent recognition between the coassembled components and toxic macromolecules. The coassembly of amphiphilic cyclodextrin and calixarene strongly and selectively captures melittin, a toxin studied herein; this imparts various therapeutic effects such as inhibiting the interactions of melittin with cell membranes, alleviating melittin cytotoxicity and hemolytic toxicity, reducing the mortality rate of melittin-poisoned mice, and mitigating damage to major organs. The use of the proposed antidote overcomes the limitation of supramolecular detoxification applicability to only small-molecular toxins. The antidote can also detoxify other macromolecular toxins as long as selective and strong binding is achieved because of the coassembling tunability.
Collapse
Affiliation(s)
- Yu-Chen Pan
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Yu-Xin Yue
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Xin-Yue Hu
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Hua-Bin Li
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Dong-Sheng Guo
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
219
|
Choi G, Fitriasari EI, Park C. Electro-Mechanochemical Gating of a Metal-Phenolic Nanocage for Controlled Guest-Release Self-Powered Patches and Injectable Gels. ACS NANO 2021; 15:14580-14586. [PMID: 34499481 DOI: 10.1021/acsnano.1c04276] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Recent advances have led to the development of intelligent drug-delivery systems such as microchips, micropumps, and soft devices with sensors; however, the facile preparation of transdermal and implantable systems modulable to various stimuli remains elusive. In addition, the use of a battery limits their wearable and implantable applications. Therefore, to overcome these disadvantages, we herein suggest a facile strategy to prepare electro-mechanochemically responsive soft gel composites with molecular gatekeeper-based nanocontainers. We found that a metal-phenolic coordination network can act as an efficient self-healable and adaptive gatekeeper in response to electrical and mechanical stimuli owing to the reversible dynamic bonds and adhesiveness to the silica surface. The porous channels of mesoporous silica nanoparticles are filled with guest molecules, and the exterior is wrapped with metal-tannic acid (TA) networks. Owing to the robustness of metal-phenolic network, the guest molecules are efficiently entrapped in the channels but released by electrical and ultrasound input. Voltage-dependent changes in the guest release rate provide control over the dosage on demand. The combination of hydrogel matrixes with the responsive nanocapsules enables the construction of a series of adaptive gel composites capable of successive guest release in response to electrical, ultrasound, electromechanical, and triboelectric stimuli. The Korsmeyer-Peppas model revealed that the release mechanism is non-Fickian, which indicates the presence of boundaries around the guest-loading channels (n = 0.739, R2 = 0.9574 when 2 V is applied). This study realized efficient platforms for active-type drug-delivery applications based on transdermal patches and implantable gels with remotely controllable release characteristics.
Collapse
Affiliation(s)
- Gyeonghyeon Choi
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology, 333, Techno Jungang Daero, Hyeonpung-Eup, Dalseong-gun, Daegu 42988, Republic of Korea
| | - Eprillia Intan Fitriasari
- Department of Industrial Chemistry, Pukyong National University, 365, Sinseon Ro, Nam-Gu, Busan 48547 Republic of Korea
| | - Chiyoung Park
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology, 333, Techno Jungang Daero, Hyeonpung-Eup, Dalseong-gun, Daegu 42988, Republic of Korea
| |
Collapse
|
220
|
Song Q, Zhao K, Xue T, Zhao S, Pei D, Nie J, Chang Y. Nondiffusion-Controlled Photoelectron Transfer Induced by Host–Guest Complexes to Initiate Cationic Photopolymerization. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01457] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Qiuyan Song
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Changzhou Institute of Advanced Materials, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Kairong Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Changzhou Institute of Advanced Materials, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Tanlong Xue
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Changzhou Institute of Advanced Materials, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Shuai Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Changzhou Institute of Advanced Materials, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Di Pei
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Changzhou Institute of Advanced Materials, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Jun Nie
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Changzhou Institute of Advanced Materials, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Yincheng Chang
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Changzhou Institute of Advanced Materials, Beijing University of Chemical Technology, Beijing 100029, PR China
| |
Collapse
|
221
|
Preparation, Characterization, and In-Vitro Assessment of Calixarene Nanovesicles: A Supramolecular Based Nano-Carrier for Paclitaxel Drug Delivery. Pharm Chem J 2021. [DOI: 10.1007/s11094-021-02461-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
222
|
Ye Z, Wang Y, Liu S, Xu D, Wang W, Ma X. Construction of Nanomotors with Replaceable Engines by Supramolecular Machine-Based Host-Guest Assembly and Disassembly. J Am Chem Soc 2021; 143:15063-15072. [PMID: 34499495 DOI: 10.1021/jacs.1c04836] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Micro/nanomotors (MNMs) are miniaturized devices capable of performing self-propelled motion and on-demand tasks, which have brought revolutionary renovations in nanomedicine, environmental remediation, biochemical sensing, etc. Numerous methods of either chemical synthesis or physical fabrications have been extensively investigated to prepare MNMs of various shapes and functions. However, MNMs with replaceable engines that can be flexibly assembled and disassembled, resembling that of a macroscopic machine, have not been achieved. Here, for the first time, we report a demonstration of control over the engine replacement of self-propelled nanomotors based on hollow mesoporous silica nanoparticles (HMSNPs) via supramolecular machine-based host-guest assembly and disassembly between azobenzene (Azo) and β-cyclodextrin (β-CD). Nanomotors with different driving mechanisms can be rapidly constructed by selecting corresponding β-CD-modified nanoengines of urease, Pt, or Fe3O4, to assemble with the azobenzene-modified HMSNPs (HMSNPs-Azo). In virtue of photoresponsive cis/trans isomer conversion of azobenzene molecules, engine switching can be accomplished by remote light triggered host-guest assembly or disassembly between HMSNPs-Azo and β-CD-modified engines. Moreover, this method can quickly include multiple engines on the surface of the HMSNPs-Azo to prepare a hybrid MNM with enhanced motion capability. This strategy not only is cost-effective for the rapid and convenient preparation of nanomotors with different propulsion mechanism but also paves a new path to future multiple functionalization of MNMs for on-demand task assignment.
Collapse
Affiliation(s)
- Zihan Ye
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Guangdong, Shenzhen 518055, China.,Shenzhen Bay Laboratory, No. 9 Duxue Road, Shenzhen 518055, China
| | - Yong Wang
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Guangdong, Shenzhen 518055, China
| | - Sanhu Liu
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Guangdong, Shenzhen 518055, China
| | - Dandan Xu
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Guangdong, Shenzhen 518055, China
| | - Wei Wang
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Guangdong, Shenzhen 518055, China
| | - Xing Ma
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Guangdong, Shenzhen 518055, China.,Shenzhen Bay Laboratory, No. 9 Duxue Road, Shenzhen 518055, China
| |
Collapse
|
223
|
Harrison EE, Carpenter BA, St Louis LE, Mullins AG, Waters ML. Development of "Imprint-and-Report" Dynamic Combinatorial Libraries for Differential Sensing Applications. J Am Chem Soc 2021; 143:14845-14854. [PMID: 34463091 DOI: 10.1021/jacs.1c07068] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Sensor arrays using synthetic receptors have found great utility in analyte detection, resulting from their ability to distinguish analytes based on differential signals via indicator displacement. However, synthesis and characterization of receptors for an array remain a bottleneck in the field. Receptor discovery has been streamlined using dynamic combinatorial libraries (DCLs), but the resulting receptors have primarily been utilized in isolation rather than as part of the entire library, with only a few examples that make use of the complexity of a library of receptors. Herein, we demonstrate a unique sensor array approach using "imprint-and-report" DCLs that obviates the need for receptor synthesis and isolation. This strategy leverages information stored in DCLs in the form of differential library speciation to provide a high-throughput method for both developing a sensor array and analyzing data for analyte differentiation. First, each DCL is templated with analyte to give an imprinted library, followed by in situ fluorescent indicator displacement analysis. We further demonstrate that the reverse strategy, imprinting with the fluorescent reporter followed by displacement with each analyte, provides a more sensitive method for differentiating analytes. We describe the development of this differential sensing system using the methylated Arg and Lys post-translational modifications (PTMs). Altogether, 19 combinations of 3-5 DCL data sets that discriminate all 7 PTMs were identified. Thus, a comparable sensor array workflow results in a larger payoff due to the immense information stored within multiple noncovalent networks.
Collapse
Affiliation(s)
- Emily E Harrison
- Department of Chemistry, CB 3290, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Benjamin A Carpenter
- Department of Chemistry, CB 3290, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Lauren E St Louis
- Department of Chemistry, CB 3290, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Alexandria G Mullins
- Department of Chemistry, CB 3290, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Marcey L Waters
- Department of Chemistry, CB 3290, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
224
|
Paul R, Paul S. Exploration on the drug solubility enhancement in aqueous medium with the help of endo-functionalized molecular tubes: a computational approach. Phys Chem Chem Phys 2021; 23:18999-19010. [PMID: 34612438 DOI: 10.1039/d1cp01187a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
One major problem in the pharmaceutical industry is the aqueous solubility of newly developed orally administered drug candidates. More than 50% of newly developed drug molecules suffer from low aqueous solubility. The therapeutic effects of drug molecules are majorly dependent on the bioavailability and, in essence, on the solubility of the used drug molecules. Thus, enhancement of drug solubility of sparingly soluble drug molecules is a need of modern times. Considering the high importance of drug solubility, we have computationally shown the enhancement of drug solubility for seven class II (poorly water-soluble) drug molecules in a water medium. The uses of supramolecular macrocycles have immense importance in the same field. Thus, we have used two synthetic supramolecular receptors named host-1a and host-1b to enhance the water solubility of fluorouracil, albendazole, camptothecin, clopidogrel, indomethacin, melphalan, and tolfenamic acid drug molecules. Biomedical engagements of a supramolecular receptor commence with the formation of stable host-drug complexes. These complexations enhance the water solubility of drug molecules and sustain the release rate and bioavailability of drug molecules. Thus, in this work, we focus on the formation of stable host-drug complexes in water medium. Molecular dynamics simulation is applied to analyze the structural features and the energetics involved in the host-drug complexation process. The information obtained at the atomistic level helps us gain better insights into the key interactions that operate to produce such highly stable complexes. Thus, we can propose that these two supramolecular receptors may be used as drug solubilizing agents, and patients will benefit from this theragnostic application shortly.
Collapse
Affiliation(s)
- Rabindranath Paul
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam 781039, India.
| | | |
Collapse
|
225
|
Zhang Z, Tang W, Li Y, Cao Y, Shang Y. Bioinspired Conjugated Tri-Porphyrin-Based Intracellular pH-Sensitive Metallo-Supramolecular Nanoparticles for Near-Infrared Photoacoustic Imaging-Guided Chemo- and Photothermal Combined Therapy. ACS Biomater Sci Eng 2021; 7:4503-4508. [PMID: 34437801 DOI: 10.1021/acsbiomaterials.1c00597] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Porphyrins have been extensively used in clinical phototherapy. However, most of them exhibited absorption below 700 nm. We report conjugated tri-porphyrins showing absorption within a biological phototherapy window (700-850 nm). On this basis, bioinspired intracellular pH-sensitive metallo-supramolecular nanoparticles (NPs) are designed. They provide the simultaneous photothermal therapy and chemotherapy. After treatment by tail vein injection, the tumor was completely relieved without recurrence in a course of 27 days. These bioinspired intracellular pH-sensitive metallo-supramolecular NPs show excellent potential application in near-infrared photoacoustic imaging-guided chemo-photothermal combined therapy.
Collapse
Affiliation(s)
- Zhe Zhang
- Deep-Processing of Fine Flake Graphite Sichuan Province Key Laboratory of Colleges and Universities, Panzhihua University, No. 10, Jichang Road, Panzhihua 617000, Sichuan, P. R. China
| | - Weiwei Tang
- Deep-Processing of Fine Flake Graphite Sichuan Province Key Laboratory of Colleges and Universities, Panzhihua University, No. 10, Jichang Road, Panzhihua 617000, Sichuan, P. R. China
| | - Yufeng Li
- Deep-Processing of Fine Flake Graphite Sichuan Province Key Laboratory of Colleges and Universities, Panzhihua University, No. 10, Jichang Road, Panzhihua 617000, Sichuan, P. R. China
| | - Yue Cao
- Institute of Biomass Functional Materials Interdisciplinary Studies Jilin Engineering Normal University, No.3050, Kaixuan Road, Changchun 130052, P.R. China
| | - Yuanhong Shang
- Deep-Processing of Fine Flake Graphite Sichuan Province Key Laboratory of Colleges and Universities, Panzhihua University, No. 10, Jichang Road, Panzhihua 617000, Sichuan, P. R. China
| |
Collapse
|
226
|
Antipin IS, Alfimov MV, Arslanov VV, Burilov VA, Vatsadze SZ, Voloshin YZ, Volcho KP, Gorbatchuk VV, Gorbunova YG, Gromov SP, Dudkin SV, Zaitsev SY, Zakharova LY, Ziganshin MA, Zolotukhina AV, Kalinina MA, Karakhanov EA, Kashapov RR, Koifman OI, Konovalov AI, Korenev VS, Maksimov AL, Mamardashvili NZ, Mamardashvili GM, Martynov AG, Mustafina AR, Nugmanov RI, Ovsyannikov AS, Padnya PL, Potapov AS, Selektor SL, Sokolov MN, Solovieva SE, Stoikov II, Stuzhin PA, Suslov EV, Ushakov EN, Fedin VP, Fedorenko SV, Fedorova OA, Fedorov YV, Chvalun SN, Tsivadze AY, Shtykov SN, Shurpik DN, Shcherbina MA, Yakimova LS. Functional supramolecular systems: design and applications. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr5011] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
227
|
Pottanam Chali S, Hüwel S, Rentmeister A, Ravoo BJ. Self-Assembled Cationic Polypeptide Supramolecular Nanogels for Intracellular DNA Delivery. Chemistry 2021; 27:12198-12206. [PMID: 34125454 PMCID: PMC8457085 DOI: 10.1002/chem.202101924] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Indexed: 12/14/2022]
Abstract
Supramolecular nanogels are an emerging class of polymer nanocarriers for intracellular delivery, due to their straightforward preparation, biocompatibility, and capability to spontaneously encapsulate biologically active components such as DNA. A completely biodegradable three-component cationic supramolecular nanogel was designed exploiting the multivalent host-guest interaction of cyclodextrin and adamantane attached to a polypeptide backbone. While cyclodextrin was conjugated to linear poly-L-lysine, adamantane was grafted to linear as well as star shaped poly-L-lysine. Size control of nanogels was obtained with the increase in the length of the host and guest polymer. Moreover, smaller nanogels were obtained using the star shaped polymers because of the compact nature of star polymers compared to linear polymers. Nanogels were loaded with anionic model cargoes, pyranine and carboxyfluorescein, and their enzyme responsive release was studied using protease trypsin. Confocal microscopy revealed successful transfection of mammalian HeLa cells and intracellular release of pyranine and plasmid DNA, as quantified using a luciferase assay, showing that supramolecular polypeptide nanogels have significant potential in gene therapy applications.
Collapse
Affiliation(s)
- Sharafudheen Pottanam Chali
- Organic Chemistry Institute and Centre for Soft NanoscienceWestfälische Wilhelms-Universität MünsterCorrensstrasse 3648149MünsterGermany
| | - Sabine Hüwel
- Institute of BiochemistryWestfälische Wilhelms-Universität MünsterCorrensstrasse 3648149MünsterGermany
| | - Andrea Rentmeister
- Institute of BiochemistryWestfälische Wilhelms-Universität MünsterCorrensstrasse 3648149MünsterGermany
| | - Bart Jan Ravoo
- Organic Chemistry Institute and Centre for Soft NanoscienceWestfälische Wilhelms-Universität MünsterCorrensstrasse 3648149MünsterGermany
| |
Collapse
|
228
|
Fluorescent Bis-Calix[4]arene-Carbazole Conjugates: Synthesis and Inclusion Complexation Studies with Fullerenes C 60 and C 70. Molecules 2021; 26:molecules26165000. [PMID: 34443597 PMCID: PMC8399125 DOI: 10.3390/molecules26165000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 11/22/2022] Open
Abstract
Supramolecular chemistry has become a central theme in chemical and biological sciences over the last decades. Supramolecular structures are being increasingly used in biomedical applications, particularly in devices requiring specific stimuli-responsiveness. Fullerenes, and supramolecular assemblies thereof, have gained great visibility in biomedical sciences and engineering. Sensitive and selective methods are required for the study of their inclusion in complexes in various application fields. With this in mind, two new fluorescent bis-calix[4]arene-carbazole conjugates (4 and 5) have been designed. Herein, their synthesis and ability to behave as specific hosts for fullerenes C60 and C70 is described. The optical properties of the novel compounds and their complexes with C60 and C70 were thoroughly studied by UV-Vis and steady-state and time-resolved fluorescence spectroscopies. The association constants (Ka) for the complexation of C60 and C70 by 4 and 5 were determined by fluorescence techniques. A higher stability was found for the C70@4 supramolecule (Ka = 5.6 × 104 M−1; ΔG = −6.48 kcal/mol). Evidence for the formation of true inclusion complexes between the host 4 and C60/C70 was obtained from NMR spectroscopy performed at low temperatures. The experimental findings were fully corroborated by density functional theory (DFT) models performed on the host–guest assemblies (C60@4 and C70@4).
Collapse
|
229
|
Sanchez Perez E, Toor R, Bruyat P, Cepeda C, Degardin M, Dejeu J, Boturyn D, Coche-Guérente L. Impact of Multimeric Ferrocene-containing Cyclodecapeptide Scaffold on Host-Guest Interactions at a β-Cyclodextrin Covered Surface. Chemphyschem 2021; 22:2231-2239. [PMID: 34397150 DOI: 10.1002/cphc.202100469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/05/2021] [Indexed: 11/07/2022]
Abstract
Among non-covalent bonds, the host-guest interaction is an attractive way to attach biomolecules to solid surfaces since the binding strength can be tuned by the nature of host and guest partners or through the valency of the interaction. For that purpose, we synthesized cyclodecapeptide scaffolds exhibiting in a spatially controlled manner two independent domains enabling the multimeric presentation of guest molecules on one face and the other face enabling the potential grafting of a biomolecule of interest. In this work, we were interested in the β-cyclodextrin/ferrocene inclusion complex formed on β-CD monolayers functionalized surfaces. By using surface sensitive techniques such as quartz crystal microbalance and surface plasmon resonance, we quantified the influence of the guest valency on the stability of the inclusion complexes. The results show a drastic enhancement of the affinity with the gradual increase of guest valency. Considering that the sequential binding events are equal and independent, we applied the multivalent model developed by the Huskens group to extract intrinsic binding constants and an effective concentration of host.
Collapse
Affiliation(s)
- Enrique Sanchez Perez
- Department of Molecular Chemistry, Univ. Grenoble-Alpes, CNRS, DCM UMR 5250, CS 40700, 38058, Grenoble Cedex 9, France
| | - Ritu Toor
- Department of Molecular Chemistry, Univ. Grenoble-Alpes, CNRS, DCM UMR 5250, CS 40700, 38058, Grenoble Cedex 9, France
| | - Pierrick Bruyat
- Department of Molecular Chemistry, Univ. Grenoble-Alpes, CNRS, DCM UMR 5250, CS 40700, 38058, Grenoble Cedex 9, France
| | - Céline Cepeda
- Department of Molecular Chemistry, Univ. Grenoble-Alpes, CNRS, DCM UMR 5250, CS 40700, 38058, Grenoble Cedex 9, France
| | - Mélissa Degardin
- Department of Molecular Chemistry, Univ. Grenoble-Alpes, CNRS, DCM UMR 5250, CS 40700, 38058, Grenoble Cedex 9, France
| | - Jérôme Dejeu
- Department of Molecular Chemistry, Univ. Grenoble-Alpes, CNRS, DCM UMR 5250, CS 40700, 38058, Grenoble Cedex 9, France
| | - Didier Boturyn
- Department of Molecular Chemistry, Univ. Grenoble-Alpes, CNRS, DCM UMR 5250, CS 40700, 38058, Grenoble Cedex 9, France
| | - Liliane Coche-Guérente
- Department of Molecular Chemistry, Univ. Grenoble-Alpes, CNRS, DCM UMR 5250, CS 40700, 38058, Grenoble Cedex 9, France
| |
Collapse
|
230
|
Wu X, Liu Z, Guo H, Hong YL, Xu B, Zhang K, Nishiyama Y, Jiang W, Horike S, Kitagawa S, Zhang G. Host-Guest Assembly of H-Bonding Networks in Covalent Organic Frameworks for Ultrafast and Anhydrous Proton Transfer. ACS APPLIED MATERIALS & INTERFACES 2021; 13:37172-37178. [PMID: 34323069 DOI: 10.1021/acsami.1c09157] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
An anhydrous proton conductor represents a key material for the manufacture of high-energy electrical devices. Incorporation of proton carriers into the vacancies of the porous solid provides an effective method for their preparation, but the weak or even no interactions between the ion carriers and the porous solids causing a serious leaking of ion carriers result in trade-off of long-term conductivity. In this term, we developed a host-guest supramolecular chemistry-induced strategy to assemble hydrogen bond networks along the 1D nanochannels of covalent organic frameworks (COFs) for ultrafast and anhydrous proton transfer (1.33 × 10-2 S cm-1 at 140 °C). Solid-state NMR was applied to explore guest interaction between protic ionic liquids (PILs) and the COFs to investigate the proton transport mechanism. This work presents an excellent example of accumulation of PILs into the nanochannels of COFs for anhydrous proton conduction at high temperature, demonstrating great advantages of COFs to serve as a supramolecular host for holding/transiting ions in the solid state.
Collapse
Affiliation(s)
- Xiaowei Wu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Ziya Liu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Hu Guo
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - You-Lee Hong
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Kyoto 606-8501, Japan
- RIKEN CLST-JEOL Collaboration Center, Kanagawa 230-0045, Japan
| | - Bingqing Xu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Kun Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Yusuke Nishiyama
- RIKEN CLST-JEOL Collaboration Center, Kanagawa 230-0045, Japan
- JEOL RESONANCE Inc., Tokyo 196-8558, Japan
| | - Wei Jiang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Satoshi Horike
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Kyoto 606-8501, Japan
| | - Susumu Kitagawa
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Kyoto 606-8501, Japan
| | - Gen Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| |
Collapse
|
231
|
Gao W, Wei H, Wang CL, Liu JP, Zhang XM. Multifunctional Zn-Ln (Ln = Eu and Tb) heterometallic metal-organic frameworks with highly efficient I 2 capture, dye adsorption, luminescence sensing and white-light emission. Dalton Trans 2021; 50:11619-11630. [PMID: 34355718 DOI: 10.1039/d1dt01968f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A new family of isostructural 3d-4f heterometallic metal-organic frameworks (HMOFs), [Zn3EuxTb2-x(TZI)4(DMA)5(H2O)3]·4DMA [x = 0 (1), 0.3 (2), 0.6 (3), 0.9 (4), 1 (5), 1.2 (6), 1.5 (7), 1.8 (8), 2 (9)], has been synthesized using the 5-(4-(tetrazol-5-yl) phenyl)isophthalic acid (H3TZI) ligand, LnIII ions and ZnII ions under solvothermal conditions. All HMOFs exhibit a (3,3,4,5,5)-connected 63·63(42·62·82)(4·65·8)(4·66·83) topology, which features three different types of motifs: one is a mononuclear ZnII ion and the other two motifs are binuclear [Zn(COO)3Ln] clusters. The adsorption experiments indicate that Zn3Tb2 (1) could efficiently remove almost all I2 from cyclohexane solution after 12 h and also showed better adsorption towards neutral red (NR) dye (adsorption: only the Zn3Tb2 (1) was taken as one representative). Simultaneously, the luminescence sensing showed that Zn3Tb2 (1) and Zn3Eu2 (9) have excellent response and sensitivity towards pollutants such as Fe3+ ions and 2,4,6-trinitrophenol (TNP) with high selectivity and a fairly low limit of detection through luminescence quenching effect. Moreover, seven trimetallic-doped HMOFs 2-8 analogues of Zn3Ln2 (single) HMOFs were designed and prepared, showing different changes of luminescent color. More interestingly, Zn3Eu1.5Tb0.5 (7) with white-light emission was fabricated by doping relative concentrations of Eu3+ and Tb3+ ions. To the best of our knowledge, Zn3Eu1.5Tb0.5 (7) represents a novel kind of heterometallic Zn3Ln2 HMOFs with white-light emission. It could be deduced that the excellent characteristics, namely strong typical luminescence emission of ZnII and LnIII ions, microporous channels, active open metal sites (tetra-coordinated ZnII-metal sites), and uncoordinated carboxylate O atoms and uncoordinated tetrazolate N atoms, made the above HMOFs an ideal platform for adsorption, luminescence sensing, and white-light emission. More significantly, these HMOFs are the first reported Zn-Ln heterometallic materials with the H3TZI ligand.
Collapse
Affiliation(s)
- Wei Gao
- College of Chemistry and Materials Science, Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education Huaibei Normal University, Anhui 235000, China.
| | | | | | | | | |
Collapse
|
232
|
Advanced thin-film nanocomposite membranes embedded with organic-based nanomaterials for water and organic solvent purification: A review. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118719] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
233
|
Confinement fluorescence effect (CFE): Lighting up life by enhancing the absorbed photon energy utilization efficiency of fluorophores. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213979] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
234
|
Wheate NJ. Comparative host–guest complex formation of the Alzheimer’s drug memantine with para-sulfonatocalix[n]arenes (n = 4 or 8). J INCL PHENOM MACRO 2021. [DOI: 10.1007/s10847-021-01096-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
235
|
|
236
|
Hughes A, Liu M, Paul S, Cooper AI, Blanc F. Dynamics in Flexible Pillar[ n]arenes Probed by Solid-State NMR. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2021; 125:13370-13381. [PMID: 34239656 PMCID: PMC8237263 DOI: 10.1021/acs.jpcc.1c02046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/07/2021] [Indexed: 06/13/2023]
Abstract
Pillar[n]arenes are supramolecular assemblies that can perform a range of technologically important molecular separations which are enabled by their molecular flexibility. Here, we probe dynamical behavior by performing a range of variable-temperature solid-state NMR experiments on microcrystalline perethylated pillar[n]arene (n = 5, 6) and the corresponding three pillar[6]arene xylene adducts in the 100-350 K range. This was achieved either by measuring site-selective motional averaged 13C 1H heteronuclear dipolar couplings and subsequently accessing order parameters or by determining 1H and 13C spin-lattice relaxation times and extracting correlation times based on dipolar and/or chemical shift anisotropy relaxation mechanisms. We demonstrate fast motional regimes at room temperature and highlight a significant difference in dynamics between the core of the pillar[n]arenes, the protruding flexible ethoxy groups, and the adsorbed xylene guest. Additionally, unexpected and sizable 13C 1H heteronuclear dipolar couplings for a quaternary carbon were observed for p-xylene adsorbed in pillar[6]arene only, indicating a strong host-guest interaction and establishing the p-xylene location inside the host, confirming structural refinements.
Collapse
Affiliation(s)
- Ashlea
R. Hughes
- Department
of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, United
Kingdom
| | - Ming Liu
- Department
of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, United
Kingdom
- Materials
Innovation Factory, University of Liverpool, 51 Oxford Street, Liverpool, L7 3NY, United Kingdom
| | - Subhradip Paul
- Nottingham
DNP MAS NMR Facility, Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Andrew I. Cooper
- Department
of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, United
Kingdom
- Materials
Innovation Factory, University of Liverpool, 51 Oxford Street, Liverpool, L7 3NY, United Kingdom
| | - Frédéric Blanc
- Department
of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, United
Kingdom
- Stephenson
Institute for Renewable Energy, University
of Liverpool, Crown Street, Liverpool L69 7ZD, United Kingdom
| |
Collapse
|
237
|
Tran NM, Yoo H. Recent advances in heteroleptic multiple-stranded metallosupramolecules. Dalton Trans 2021; 49:11819-11827. [PMID: 32797124 DOI: 10.1039/d0dt02243h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Well-ordered combination of defined coordination spheres and multiple types of ligands (heteroleptic) in a given structure can expand the structural complexity and functional diversity of the resulting metallosupramolecules. Such heteroleptic metallosupramolecular architectures are expected to afford advanced utility in a variety of applications. In this concise review article, recent advances in the development of multi-nuclear-cluster-based heteroleptic multiple-stranded (HLMS) metallosupramolecules are summarized and demonstrated. To construct HLMS metallosupramolecules, one type of multitopic ligands can be employed for building up multiple strands, while another type of ligands can be utilized to construct multi-nuclear clusters. Most HLMS metallosupramolecules adopt helical geometries and have high molecular symmetry, which can be key factors for the structural completion. HLMS metallosupramolecules can be used as basic building blocks for the fabrication of higher-order polymeric or discrete assembly architectures with well-defined geometries.
Collapse
Affiliation(s)
- Ngoc Minh Tran
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea.
| | - Hyojong Yoo
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea.
| |
Collapse
|
238
|
Brady KG, Liu B, Li X, Isaacs L. Self Assembled Cages with Mechanically Interlocked Cucurbiturils. Supramol Chem 2021; 33:8-32. [PMID: 34366642 PMCID: PMC8340875 DOI: 10.1080/10610278.2021.1908546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/22/2021] [Indexed: 10/21/2022]
Abstract
We report preparation of (bis)aniline ligand 4 which contains a central viologen binding domain and its subcomponent self-assembly with aldehyde 5 and Fe(OTf)2 in CH3CN to yield tetrahedral assembly 6. Complexation of ligand 4 with CB[7] in the form of CB[7]•4•2PF6 allows the preparation of assembly 7 which contains an average of 1.95 (range 1-3) mechanically interlocked CB[7] units. Assemblies 6 and 7 are hydrolytically unstable in water due to their imine linkages. Redesign of our system with water stable 2,2'-bipyridine end groups was realized in the form of ligands 11 and 16 which also contain a central viologen binding domain. Self-assembly of 11 with Fe(NTf2)2 gave tetrahedral MOP 12 as evidenced by 1H NMR, DOSY, and mass spectrometric analysis. In contrast, isomeric ligand 16 underwent self-assembly with Fe(OTf)2 to give cubic assembly 17. Precomplexation of ligands 11 and 16 with CB[7] gave the acetonitrile soluble CB[7]•11•2PF6 and CB[7]•16•2PF6 complexes. Self-assembly of CB[7]•11•2PF6 with Fe(OTf)2 gave tetrahedron 13 which contains on average 1.8 mechanically interlocked CB[7] units as determined by 1H NMR, DOSY, and ESI-MS analysis. Self-assembly of CB[7]•16•2PF6 with Fe(OTf)2 gave cube 13 which contains 6.59 mechanically interlocked CB[7] units as determined by 1H NMR and DOSY measurements.
Collapse
Affiliation(s)
- Kimberly G. Brady
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Bingqing Liu
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Xiaopeng Li
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Lyle Isaacs
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
239
|
Enzyme-responsive polysaccharide supramolecular nanoassembly for enhanced DNA encapsulation and controlled release. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.01.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
240
|
Rodin M, Li J, Kuckling D. Dually cross-linked single networks: structures and applications. Chem Soc Rev 2021; 50:8147-8177. [PMID: 34059857 DOI: 10.1039/d0cs01585g] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cross-linked polymers have attracted an immense attention over the years, however, there are many flaws of these systems, e.g. softness and brittleness; such materials possess non-adjustable properties and cannot recover from damage and thus are limited in their practical applications. Supramolecular chemistry offers a variety of dynamic interactions that when integrated into polymeric gels endow the systems with reversibility and responsiveness to external stimuli. A combination of different cross-links in a single gel could be the key to tackle these drawbacks, since covalent or chemical cross-linking serve to maintain the permanent shape of the material and to improve overall mechanical performance, whereas non-covalent cross-links impart dynamicity, reversibility, stimuli-responsiveness and often toughness to the material. In the present review we sought to give a comprehensive overview of the progress in design strategies of different types of dually cross-linked single gels made by researchers over the past decade as well as the successful implementations of these advances in many demanding fields where versatile multifunctional materials are required, such as tissue engineering, drug delivery, self-healing and adhesive systems, sensors as well as shape memory materials and actuators.
Collapse
Affiliation(s)
- Maksim Rodin
- Department of Chemistry, Paderborn University, Warburger Str. 100, 33098 Paderborn, Germany.
| | | | | |
Collapse
|
241
|
Li YJ, Lin Q, Zhang ZH, Wei TB, Shi B, Yao H, Zhang YM. In situ formation of Hg 2+-coordinated fluorescent nanoparticles through a supramolecular polymer network used for efficient Hg 2+ sensing and separation. NANOSCALE 2021; 13:9172-9176. [PMID: 33982740 DOI: 10.1039/d1nr01599k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
There have been many new methods for synthesizing novel nanomaterials with unique functions. Herein, a novel strategy to form fluorescent nanoparticles in situ has been developed, and it can be applied to efficiently sense Hg2+ in living cells and also separate Hg2+ from water.
Collapse
Affiliation(s)
- Ying-Jie Li
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China.
| | - Qi Lin
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China.
| | - Zheng-Hua Zhang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China.
| | - Tai-Bao Wei
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China.
| | - Bingbing Shi
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China.
| | - Hong Yao
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China.
| | - You-Ming Zhang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China.
| |
Collapse
|
242
|
Torchio A, Cassino C, Lavella M, Gallina A, Stefani A, Boffito M, Ciardelli G. Injectable supramolecular hydrogels based on custom-made poly(ether urethane)s and α-cyclodextrins as efficient delivery vehicles of curcumin. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 127:112194. [PMID: 34225848 DOI: 10.1016/j.msec.2021.112194] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/07/2021] [Accepted: 05/15/2021] [Indexed: 10/21/2022]
Abstract
A strategy to enhance drug effectiveness while minimizing controversial effects consists in exploiting host-guest interactions. Moreover, these phenomena can induce the self-assembly of physical hydrogels as effective tools to treat various pathologies (e.g., chronic wounds or cancer). Here, two Poloxamers®/Pluronics® (P407/F127 and P188/F68) were utilized to synthesize various LEGO-like poly(ether urethane)s (PEUs) to develop a library of tunable and injectable supramolecular hydrogels for drug delivery. Three PEUs were synthesized by chain extending Poloxamer/Pluronic with 1,6-cyclohexanedimethanol or N-Boc serinol. Other two amino-functionalized and highly responsive polymers were obtained thorough Boc-group cleavage. For hydrogel design, the spontaneous self-assembly of the poly(ethylene oxide) domains of PEUs with α-cyclodextrins was exploited to form poly(pseudo)rotaxanes (PPRs). PPR-derived channel-like crystals were characterized by X-Ray powder diffraction, Infra-Red and Proton Nuclear Magnetic Resonance spectroscopies. Cytocompatible hydrogel formulations were designed at PEU concentrations between 1% and 5% w/v and α-cyclodextrin at 10% w/v. Supramolecular gels showed good mechanical performances (storage modulus up to 20 kPa) coupled with marked thixotropic and self-healing properties (mechanical recovery over 80% within 30 s after cyclic rupture) as assessed through rheology. Hydrogels exhibited stability and high responsiveness in watery environment up to 5 days: the release of less stable components as suitable drug carriers was coupled with high swelling (doubling the content of fluids with respect to their dry mass) and shape retention. Curcumin was encapsulated into the hydrogels at high concentration (80 μg ml-1) through its complexation with α-cyclodextrins and delivery tests showed controllable and progressive release profiles up to four days.
Collapse
Affiliation(s)
- Alessandro Torchio
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; Department of Surgical Sciences, Università degli Studi di Torino, Corso Dogliotti, 14, 10126 Torino, Italy
| | - Claudio Cassino
- Department of Science and Technological Innovation, Università del Piemonte Orientale "A. Avogadro", Viale Teresa Michel 11, 15121 Alessandria, Italy
| | - Mario Lavella
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; Department of Management, Information and Production Engineering (DIGIP), Università degli Studi di Bergamo, Viale G. Marconi, 5, 24044 Dalmine, BG, Italy
| | - Andrea Gallina
- Department of Science and Technological Innovation, Università del Piemonte Orientale "A. Avogadro", Viale Teresa Michel 11, 15121 Alessandria, Italy
| | - Alice Stefani
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; Chemical and Biological Laboratory Safe S.r.l., Via di Mezzo 48, 41037 Mirandola, MO, Italy
| | - Monica Boffito
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
| | - Gianluca Ciardelli
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| |
Collapse
|
243
|
Cheng J, Wang S, Zhao H, Liu Y, Yang X. Exploring the self-assembly mechanism and effective synergistic antitumor chemophototherapy of a biodegradable and glutathione responsive ursolic acid prodrug mediated photosensitive nanodrug. Biomater Sci 2021; 9:3762-3775. [PMID: 33871500 DOI: 10.1039/d1bm00369k] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Supermolecularly assembled photochemotherapeutic nanocomposites composed of pure drug small molecules are promising for synergistically improved tumor therapy, yet potential multiple challenges remain to be addressed. Herein, we rationally designed a novel multifunctional small molecule disulfide modified natural pentacyclic triterpene of ursolic acid (UASS) that simultaneously possesses self-assembly ability, glutathione (GSH) responsivity, anticancer activity, biocompatibility and biodegradability and further constructed carrier-free GSH-sensitive photosensitive nanocomposite UASS-Ce6 NPs for safe and synergistically improved chemophototherapy. Specifically, UASS-Ce6 NPs exhibit improved 1O2 generation by reducing the energy gap (ΔEST) of Ce6 as determined by density functional theory. Meanwhile, molecular dynamics simulation revealed the possible reasons why free UASS self-assembles and UASS-Ce6 NPs with different assembled morphologies may be primarily attributed to the coplanar arrangement of UASS dimer units. Importantly, via noncovalent π-stacking and hydrophobic interactions, the resulting co-assemblies showed improved water solubility, increased intercellular ROS generation, desirable GSH sensibility, excellent biocompatibility, and enhanced tumor accumulation accompanied by rapid biodegradation, thus leading to significant in vitro and in vivo synergistic antitumor efficacy with favorable biosafety. This study provides a promising insight into the development of a self-assembled active single component platform with desirable stimuli responsiveness and biosafety toward synergistic antitumor therapy based on terpenoid natural small molecules.
Collapse
Affiliation(s)
- Jianjun Cheng
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No. 92 West Dazhi Street, Nan Gang District, Harbin, Heilongjiang, China.
| | - Shu Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No. 92 West Dazhi Street, Nan Gang District, Harbin, Heilongjiang, China.
| | - Haitian Zhao
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No. 92 West Dazhi Street, Nan Gang District, Harbin, Heilongjiang, China.
| | - Yan Liu
- Department of Oncology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Xin Yang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No. 92 West Dazhi Street, Nan Gang District, Harbin, Heilongjiang, China.
| |
Collapse
|
244
|
Sellaoui L, Badawi M, Monari A, Tatarchuk T, Jemli S, Luiz Dotto G, Bonilla-Petriciolet A, Chen Z. Make it clean, make it safe: A review on virus elimination via adsorption. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2021; 412:128682. [PMID: 33776550 PMCID: PMC7983426 DOI: 10.1016/j.cej.2021.128682] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/21/2020] [Accepted: 01/13/2021] [Indexed: 05/09/2023]
Abstract
Recently, the potential dangers of viral infection transmission through water and air have become the focus of worldwide attention, via the spread of COVID-19 pandemic. The occurrence of large-scale outbreaks of dangerous infections caused by unknown pathogens and the isolation of new pandemic strains require the development of improved methods of viruses' inactivation. Viruses are not stable self-sustaining living organisms and are rapidly inactivated on isolated surfaces. However, water resources and air can participate in the pathogens' diffusion, stabilization, and transmission. Viruses inactivation and elimination by adsorption are relevant since they can represent an effective and low-cost method to treat fluids, and hence limit the spread of pathogen agents. This review analyzed the interaction between viruses and carbon-based, oxide-based, porous materials and biological materials (e.g., sulfated polysaccharides and cyclodextrins). It will be shown that these adsorbents can play a relevant role in the viruses removal where water and air purification mostly occurring via electrostatic interactions. However, a clear systematic vision of the correlation between the surface potential and the adsorption capacity of the different filters is still lacking and should be provided to achieve a better comprehension of the global phenomenon. The rationalization of the adsorption capacity may be achieved through a proper physico-chemical characterization of new adsorbents, including molecular modeling and simulations, also considering the adsorption of virus-like particles on their surface. As a most timely perspective, the results on this review present potential solutions to investigate coronaviruses and specifically SARS-CoV-2, responsible of the COVID-19 pandemic, whose spread can be limited by the efficient disinfection and purification of closed-spaces air and urban waters.
Collapse
Affiliation(s)
- Lotfi Sellaoui
- Department of Environmental Engineering, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Michael Badawi
- Laboratoire de Physique et Chimie Théoriques LPCT UMR CNRS 7019, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Antonio Monari
- Laboratoire de Physique et Chimie Théoriques LPCT UMR CNRS 7019, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Tetiana Tatarchuk
- Educational and Scientific Center of Materials Science and Nanotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk 76018, Ukraine
| | - Sonia Jemli
- Laboratory of Microbial Biotechnology, Enzymatic and Biomolecules (LMBEB), Centre of Biotechnology of Sfax, University of Sfax, Tunisia
- Faculty of Sciences of Sfax, Biology Department, University of Sfax, Tunisia
| | - Guilherme Luiz Dotto
- Chemical Engineering Department, Federal University of Santa Maria-UFSM, 1000, Roraima Avenue, 97105-900 Santa Maria, RS, Brazil
| | | | - Zhuqi Chen
- Department of Environmental Engineering, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| |
Collapse
|
245
|
Sun C, Wang Z, Wang Z, Yue L, Cheng Q, Ye Z, Zhang QW, Wang R. Supramolecular nanomedicine for selective cancer therapy via sequential responsiveness to reactive oxygen species and glutathione. Biomater Sci 2021; 9:1355-1362. [PMID: 33367390 DOI: 10.1039/d0bm01802c] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cancer cells are generally immersed in an oxidative stress environment with a high intracellular reduction level. Thus, nanocarriers with sequential responsiveness to oxidative and reductive species, matching the traits of high oxidation in the tumor tissue microenvironment and high reduction potential inside cancer cells, are highly desired for specific cancer therapy. Herein, we report a supramolecular nanomedicine comprised of a reduction-responsive nanoparticle (NP) core whose surface was modified by an oxidation-responsive polyethylene glycol (PEG) derivative via strong host-guest interactions. In this delicate design, the PEGylation of NPs not only reduced their immunogenicity and extended systemic circulation, but also enabled oxidation-responsive de-PEGylation in the tumor tissues and subsequent intracellular payload release in response to glutathione (GSH) inside tumor cells. As a proof of concept, this supramolecular nanomedicine exhibited specific chemotherapeutic effects against cancer in vitro and in vivo with a decent safety profile.
Collapse
Affiliation(s)
- Chen Sun
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China.
| | - Zeyu Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China.
| | - Ziyi Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China.
| | - Ludan Yue
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China.
| | - Qian Cheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China.
| | - Zhan Ye
- UltraSpec Lab, Victoria, BC V8P 2N1, Canada
| | - Qing-Wen Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China.
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China.
| |
Collapse
|
246
|
Kim Cuc TT, Nhien PQ, Khang TM, Chen HY, Wu CH, Hue BTB, Li YK, Wu JI, Lin HC. Controllable FRET Behaviors of Supramolecular Host-Guest Systems as Ratiometric Aluminum Ion Sensors Manipulated by Tetraphenylethylene-Functionalized Macrocyclic Host Donor and Multistimuli-Responsive Fluorescein-Based Guest Acceptor. ACS APPLIED MATERIALS & INTERFACES 2021; 13:20662-20680. [PMID: 33896168 DOI: 10.1021/acsami.1c02994] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The novel multistimuli-responsive monofluorophoric supramolecular polymer Poly(TPE-DBC)/FL-DBA and pseudo[3]rotaxane TPE-DBC/FL-DBA consisted of the closed form of nonemissive fluorescein guest FL-DBA along with TPE-based main-chain macrocyclic polymer Poly(TPE-DBC) and TPE-functionalized macrocycle TPE-DBC hosts, respectively. By the combination of various external stimuli, these fluorescent supramolecular host-guest systems could reveal interesting photoluminescence (PL) properties in DMF/H2O (1:1, v/v) solutions, including bifluorophoric host-guest systems after the complexation of Al3+ ion, i.e., TPE-DBC/FL-DBA-Al3+ and Poly(TPE-DBC)/FL-DBA-Al3+ with their corresponding open form of fluorescein guest FL-DBA-Al3+. Importantly, the Förster resonance energy transfer (FRET) processes occurred in both bifluorophoric host-guest systems between blue-emissive TPE donors (λem = 470 nm) and green-emissive fluorescein acceptors (λem = 527 nm) after aluminum detection, which were further verified by time-resolved photoluminescence (TRPL) measurements to acquire their FRET efficiencies of 40.4 and 31.1%, respectively. Both supramolecular host-guest systems exhibited stronger green fluorescein emissions as well as appealing ratiometric PL behaviors within the desirable donor-acceptor distances of FRET processes in comparison with their detached analogous mixtures. Regarding the pH effects, the optimum green fluorescein emissions with effective FRET processes of all compounds and host-guest systems were sustained in the range pH = 7-10. Interestingly, both host-guest systems TPE-DBC/FL-DBA and Poly(TPE-DBC)/FL-DBA possessed high sensitivities and selectivities toward aluminum ion to display their strong green emissions via FRET-ON behaviors due to the chelation-induced ring opening of spirolactam moieties to become green-emissive guest acceptor FL-DBA-Al3+, which offered excellent limit of detection (LOD) values of 50.61 and 38.59 nM, respectively, to be further applied for the fabrication of facile test strips toward aluminum detection. Accordingly, the inventive ratiometric PL and FRET sensor approaches of supramolecular host-guest systems toward aluminum ion with prominent sensitivities and selectivities were well-established in this study.
Collapse
Affiliation(s)
- Tu Thi Kim Cuc
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Pham Quoc Nhien
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
- Department of Chemistry, College of Natural Sciences, Can Tho University, Can Tho City 94000, Vietnam
| | - Trang Manh Khang
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Hao-Yu Chen
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Chia-Hua Wu
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Bui-Thi Buu Hue
- Department of Chemistry, College of Natural Sciences, Can Tho University, Can Tho City 94000, Vietnam
| | - Yaw-Kuen Li
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Judy I Wu
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Hong-Cheu Lin
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| |
Collapse
|
247
|
Pappalardo A, Gangemi CM, Testa C, Sfrazzetto GT. Supramolecular Assemblies for Photodynamic Therapy. CURR ORG CHEM 2021. [DOI: 10.2174/1385272825666210122094010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In recent years, supramolecular systems for nano-medicine, and in particular for
photodynamic therapy, have gained great attention for their uses as smart and engineered
therapeutic agents. We proposed a collection of very recent articles on supramolecular complexes
for photodynamic therapy based on different photosensitizers assembled with cyclodextrins,
cucurbiturils, calixarenes, pillararenes, or involved in nanobox and tweezer structures,
nanoparticles, aggregates and micelles, that are dynamic assemblies inspired to biological
systems. Despite the advantages of traditional Photodynamic therapy (PDT), which is a
non-invasive, reliable and highly selective clinical treatment for several pathological conditions,
different drawbacks are still smothering the applicability of this clinical treatment. In
this contest, a new supramolecular approach is emerging, in fact, the reversible formation of
these supramolecular assemblies, combined with the possibility to modify their dimensions and shapes in the presence
of a guest make them similar to biological macromolecules, such as proteins and enzymes. Furthermore, due to
the relatively weak and dynamic nature of supramolecular assemblies, they can undergo assembly and disassembly
very fast as well as responses to external stimuli, such as biological (e.g. enzyme activation), chemical (e.g. redox
potential or pH), and physical (e.g. temperature, light or magnetic fields). Therefore, the responsiveness of these supramolecular
assemblies represents a highly promising approach to obtain potentially personalized PDT.
Collapse
Affiliation(s)
- Andrea Pappalardo
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125 Catania,Italy
| | - Chiara M.A. Gangemi
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125 Catania,Italy
| | - Caterina Testa
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125 Catania,Italy
| | | |
Collapse
|
248
|
Hossen T, Sahu K. Contrasting pKa shift and fluorescence modulation of 6-cyano-2-naphthol within α- and β-cyclodextrin. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
249
|
Heilmann M, Knezevic M, Piccini G, Tiefenbacher K. Understanding the binding properties of phosphorylated glycoluril-derived molecular tweezers and selective nanomolar binding of natural polyamines in aqueous solution. Org Biomol Chem 2021; 19:3628-3633. [PMID: 33908553 DOI: 10.1039/d1ob00379h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A modular synthetic platform for the construction of flexible glycoluril-derived molecular tweezers was developed. The binding properties of four exemplary supramolecular hosts obtained via this approach towards 16 organic amines were investigated by means of 1H NMR titration. In this work, we compare the Ka values obtained this way with those of three structurally related molecular tweezers and provide a computational approach towards an explanation of the observed behavior of those novel hosts. The results showcase that certain structural modifications lead to very potent and selective binders of natural polyamines, with observed binding of spermine below 10 nM.
Collapse
Affiliation(s)
- Michael Heilmann
- University of Basel, Department of Chemistry, Mattenstrasse 24a, 4058 Basel, Switzerland.
| | - Melina Knezevic
- University of Basel, Department of Chemistry, Mattenstrasse 24a, 4058 Basel, Switzerland.
| | - GiovanniMaria Piccini
- ETH Zurich, Department of Chemistry and Applied Biosciences, c/o USI campus, Via Guiseppe Buffi 13, 6900 Lugano, Switzerland
| | - Konrad Tiefenbacher
- University of Basel, Department of Chemistry, Mattenstrasse 24a, 4058 Basel, Switzerland. and ETH Zurich, Department of Biosystems Science and Engineering, Mattenstrasse 26, 4058 Basel, Switzerland
| |
Collapse
|
250
|
Chen GY, Sun YB, Shi PC, Liu T, Li ZH, Luo SH, Wang XC, Cao XY, Ren B, Liu GK, Yang LL, Tian ZQ. Revealing unconventional host-guest complexation at nanostructured interface by surface-enhanced Raman spectroscopy. LIGHT, SCIENCE & APPLICATIONS 2021; 10:85. [PMID: 33875636 PMCID: PMC8055983 DOI: 10.1038/s41377-021-00526-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 03/20/2021] [Accepted: 03/31/2021] [Indexed: 06/12/2023]
Abstract
Interfacial host-guest complexation offers a versatile way to functionalize nanomaterials. However, the complicated interfacial environment and trace amounts of components present at the interface make the study of interfacial complexation very difficult. Herein, taking the advantages of near-single-molecule level sensitivity and molecular fingerprint of surface-enhanced Raman spectroscopy (SERS), we reveal that a cooperative effect between cucurbit[7]uril (CB[7]) and methyl viologen (MV2+2I-) in aggregating Au NPs originates from the cooperative adsorption of halide counter anions I-, MV2+, and CB[7] on Au NPs surface. Moreover, similar SERS peak shifts in the control experiments using CB[n]s but with smaller cavity sizes suggested the occurrence of the same guest complexations among CB[5], CB[6], and CB[7] with MV2+. Hence, an unconventional exclusive complexation model is proposed between CB[7] and MV2+ on the surface of Au NPs, distinct from the well-known 1:1 inclusion complexation model in aqueous solutions. In summary, new insights into the fundamental understanding of host-guest interactions at nanostructured interfaces were obtained by SERS, which might be useful for applications related to host-guest chemistry in engineered nanomaterials.
Collapse
Affiliation(s)
- Gan-Yu Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yi-Bin Sun
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Pei-Chen Shi
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Tao Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- State Key Laboratory of Marine Environmental Science, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Center for Marine Environmental Chemistry & Toxicology, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
| | - Zhi-Hao Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Si-Heng Luo
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- State Key Laboratory of Marine Environmental Science, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Center for Marine Environmental Chemistry & Toxicology, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
| | - Xin-Chang Wang
- School of Electronic Science and Engineering (National Model Microelectronics College), Xiamen University, Xiamen, 361005, China
| | - Xiao-Yu Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Key Laboratory of Chemical Biology of Fujian Province, Xiamen University, Xiamen, 361005, China
| | - Bin Ren
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Guo-Kun Liu
- State Key Laboratory of Marine Environmental Science, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Center for Marine Environmental Chemistry & Toxicology, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China.
| | - Liu-Lin Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Zhong-Qun Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| |
Collapse
|