201
|
Ren X, Huo M, Wang M, Lin H, Zhang X, Yin J, Chen Y, Chen H. Highly Catalytic Niobium Carbide (MXene) Promotes Hematopoietic Recovery after Radiation by Free Radical Scavenging. ACS NANO 2019; 13:6438-6454. [PMID: 31180624 DOI: 10.1021/acsnano.8b09327] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Ionizing radiation (IR) has been extensively used in industry and radiotherapy, but IR exposure from nuclear or radiological accidents often causes serious health effects in an exposed individual, and its application in radiotherapy inevitably brings undesirable damage to normal tissues. In this work, we have developed ultrathin two-dimensional (2D) niobium carbide (Nb2C) MXene as a radioprotectant and explored its application in scavenging free radicals against IR. The 2D Nb2C MXene features intriguing antioxidant properties in effectively eliminating hydrogen peroxide (H2O2), hydroxyl radicals (•OH), and superoxide radicals (O2•-). Pretreatment with biocompatible polyvinylpyrrolidone (PVP)-functionalized Nb2C nanosheets (Nb2C-PVP NSs) significantly reduces IR-induced production of reactive oxygen species (ROS), resulting in enhanced cell viability in vitro. A single intravenous injection of Nb2C-PVP significantly enhances the survival rate of 5 and 6.5 Gy irradiated mice to 100% and 81.25%, respectively, and significantly increases bone marrow mononuclear cells after IR. Critically, Nb2C-PVP reverses the damage of the hematopoietic system in irradiated mice. Single administration of Nb2C-PVP significantly increases superoxide dismutase (SOD) activities, decreases malondialdehyde levels, and thereby reduces IR-induced pathological damage in the testis, small intestine, lung, and liver of 5 Gy irradiated mice. Importantly, Nb2C-PVP is almost completely eliminated from the mouse body on day 14 post treatment, and no obvious toxicities are observed during the 30-day post treatment period. Our study pioneers the application of 2D MXenes with intrinsic radioprotective nature in vivo.
Collapse
Affiliation(s)
- Xiangyi Ren
- Department of Radiation Biology, Institute of Radiation Medicine , Fudan University , Shanghai , 200032 , People's Republic of China
| | - Minfeng Huo
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure , Shanghai Institute of Ceramics, Chinese Academy of Sciences , Shanghai , 200050 , People's Republic of China
- University of Chinese Academy of Science , Beijing , 100049 , People's Republic of China
| | - Mengmeng Wang
- Department of Radiation Biology, Institute of Radiation Medicine , Fudan University , Shanghai , 200032 , People's Republic of China
| | - Han Lin
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure , Shanghai Institute of Ceramics, Chinese Academy of Sciences , Shanghai , 200050 , People's Republic of China
- University of Chinese Academy of Science , Beijing , 100049 , People's Republic of China
| | - Xuxia Zhang
- Department of Radiation Biology, Institute of Radiation Medicine , Fudan University , Shanghai , 200032 , People's Republic of China
| | - Jun Yin
- Department of Radiation Biology, Institute of Radiation Medicine , Fudan University , Shanghai , 200032 , People's Republic of China
| | - Yu Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure , Shanghai Institute of Ceramics, Chinese Academy of Sciences , Shanghai , 200050 , People's Republic of China
| | - Honghong Chen
- Department of Radiation Biology, Institute of Radiation Medicine , Fudan University , Shanghai , 200032 , People's Republic of China
| |
Collapse
|
202
|
Martín C, Kostarelos K, Prato M, Bianco A. Biocompatibility and biodegradability of 2D materials: graphene and beyond. Chem Commun (Camb) 2019; 55:5540-5546. [PMID: 31033990 DOI: 10.1039/c9cc01205b] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The potential risks associated with two-dimensional (2D) nanomaterials may cause serious concerns about their real applications and impact in biological systems. In addition, the demonstration of biodegradability of these flat nanomaterials is essential in living organisms. Here, we summarise the state-of-the-art in the field of biocompatibility and biodegradability of graphene-related materials (such as 2D materials like MoS2, BN or WS2). The impact of chemical functionalisation on the potential control of the biodegradability profile of these structures is also discussed.
Collapse
Affiliation(s)
- Cristina Martín
- University of Strasbourg, CNRS, Immunology, Immunopathology and Therapeutic Chemistry, 67000 Strasbourg, France.
| | | | | | | |
Collapse
|
203
|
Croitoru A, Oprea O, Nicoara A, Trusca R, Radu M, Neacsu I, Ficai D, Ficai A, Andronescu E. Multifunctional Platforms Based on Graphene Oxide and Natural Products. MEDICINA (KAUNAS, LITHUANIA) 2019; 55:E230. [PMID: 31151305 PMCID: PMC6631192 DOI: 10.3390/medicina55060230] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/25/2019] [Accepted: 05/27/2019] [Indexed: 01/10/2023]
Abstract
Background and objectives: In the last few years, graphene oxide has attracted much attention in biomedical applications due to its unique physico-chemical properties and can be used as a carrier for both hydrophilic and/or hydrophobic biomolecules. The purpose of this paper was to synthesize graphene oxide and to obtain multifunctional platforms based on graphene oxide as a nanocarrier loaded with few biologically active substances with anticancer, antimicrobial or anti-inflammatory properties such as gallic acid, caffeic acid, limonene and nutmeg and cembra pine essential oils. Materials and Methods: Graphene oxide was obtained according to the method developed by Hummers and further loaded with biologically active agents. The obtained platforms were characterized using FTIR, HPLC, TGA, SEM, TEM and Raman spectroscopy. Results: Gallic acid released 80% within 10 days but all the other biologically active agents did not release because their affinity for the graphene oxide support was higher than that of the phosphate buffer solution. SEM characterization showed the formation of nanosheets and a slight increase in the degree of agglomeration of the particles. The ratio I2D/IG for all samples was between 0.18 for GO-cembra pine and 0.27 for GO-limonene, indicating that the GO materials were in the form of multilayers. The individual GO sheets were found to have less than 20 µm, the thickness of GO was estimated to be ~4 nm and an interlayer spacing of about 2.12 Å. Raman spectroscopy indicated that the bioactive substances were adsorbed on the surface and no degradation occurred during loading. Conclusions: These findings encourage this research to further explore, both in vitro and in vivo, the biological activities of bioactive agents for their use in medicine.
Collapse
Affiliation(s)
- Alexa Croitoru
- Academy of Romanian Scientists, Spl. Independenței 54, 50085 Bucharest, Romania.
- University Politehnica of Bucharest, Faculty of Applied Chemistry and Materials Science, Gh. Polizu St 1-7, 011061 Bucharest, Romania.
| | - Ovidiu Oprea
- University Politehnica of Bucharest, Faculty of Applied Chemistry and Materials Science, Gh. Polizu St 1-7, 011061 Bucharest, Romania.
| | - Adrian Nicoara
- Academy of Romanian Scientists, Spl. Independenței 54, 50085 Bucharest, Romania.
- University Politehnica of Bucharest, Faculty of Applied Chemistry and Materials Science, Gh. Polizu St 1-7, 011061 Bucharest, Romania.
| | - Roxana Trusca
- University Politehnica of Bucharest, Faculty of Applied Chemistry and Materials Science, Gh. Polizu St 1-7, 011061 Bucharest, Romania.
| | - Mihai Radu
- Academy of Romanian Scientists, Spl. Independenței 54, 50085 Bucharest, Romania.
- University Politehnica of Bucharest, Faculty of Applied Chemistry and Materials Science, Gh. Polizu St 1-7, 011061 Bucharest, Romania.
| | - Ionela Neacsu
- Academy of Romanian Scientists, Spl. Independenței 54, 50085 Bucharest, Romania.
- University Politehnica of Bucharest, Faculty of Applied Chemistry and Materials Science, Gh. Polizu St 1-7, 011061 Bucharest, Romania.
| | - Denisa Ficai
- University Politehnica of Bucharest, Faculty of Applied Chemistry and Materials Science, Gh. Polizu St 1-7, 011061 Bucharest, Romania.
| | - Anton Ficai
- Academy of Romanian Scientists, Spl. Independenței 54, 50085 Bucharest, Romania.
- University Politehnica of Bucharest, Faculty of Applied Chemistry and Materials Science, Gh. Polizu St 1-7, 011061 Bucharest, Romania.
| | - Ecaterina Andronescu
- Academy of Romanian Scientists, Spl. Independenței 54, 50085 Bucharest, Romania.
- University Politehnica of Bucharest, Faculty of Applied Chemistry and Materials Science, Gh. Polizu St 1-7, 011061 Bucharest, Romania.
| |
Collapse
|
204
|
Palai PK, Mondal A, Chakraborti CK, Banerjee I, Pal K, Rathnam VSS. Doxorubicin Loaded Green Synthesized Nanoceria Decorated Functionalized Graphene Nanocomposite for Cancer-Specific Drug Release. J CLUST SCI 2019. [DOI: 10.1007/s10876-019-01599-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
205
|
Mannosylated graphene oxide as macrophage-targeted delivery system for enhanced intracellular M.tuberculosis killing efficiency. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109777. [PMID: 31349400 DOI: 10.1016/j.msec.2019.109777] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 04/23/2019] [Accepted: 05/19/2019] [Indexed: 12/31/2022]
Abstract
Tuberculosis (TB), caused by M.tuberculosis (Mtb), has become a top killer among infectious diseases. Enhancing the ability of anti-TB drugs to kill intracellular Mtb in host cells remains a big challenge. Here, an innovative nano-system was developed to increase drug delivery and Mtb-killing efficacy in Mtb-infected macrophages. We employed mannose surface decoration to develop mannosylated and PEGylated graphene oxide (GO-PEG-MAN). Such nano-platform exhibited increased uptake by macrophages via mannose receptor-mediated endocytosis in vitro. Interestingly, drug-loaded GO-PEG-MAN was preferentially up-taken by mannose receptor-expressing mucosal CD14+ macrophages isolated from Mtb-infected rhesus macaques than drug-loaded GO-PEG. Consistently, the drug concentration was also significantly higher in macrophages than that in T and B cells expressing no or low mannose receptor, implicating a useful macrophage/mannose receptor-targeted drug-delivery system relevant to the in vivo settings. Concurrently, rifampicin-loaded GO-PEG-MAN (Rif@GO-PEG-MAN) significantly increased rifampicin uptake, inducing long-lasting higher concentration of rifampicin in macrophages. Such innovative Rif@GO-PEG-MAN could readily get into the lysosomes of the Mtb host cells, where rifampicin underwent an accelerated release in acidic lysosomic condition, leading to explosive rifampicin release after cell entry for more effective killing of intracellular Mtb. Most importantly, Rif@GO-PEG-MAN-enhanced intracellular rifampicin delivery and pharmacokinetics significantly increased the efficacy of rifampicin-driven killing of intracellular BCG and Mtb bacilli in infected macrophages both in vitro and ex vivo. Such innovative nanocarrier approach may potentially enhance anti-TB drug efficacy and reduce drug side effects.
Collapse
|
206
|
Zhang W, Yin B, Xin Y, Li L, Ye G, Wang J, Shen J, Cui X, Yang Q. Preparation, Mechanical Properties, and Biocompatibility of Graphene Oxide-Reinforced Chitin Monofilament Absorbable Surgical Sutures. Mar Drugs 2019; 17:E210. [PMID: 30987286 PMCID: PMC6520968 DOI: 10.3390/md17040210] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 03/21/2019] [Accepted: 03/27/2019] [Indexed: 12/16/2022] Open
Abstract
Chitin (CT) is a good material to prepare surgical sutures due to its conspicuous biological characteristics. However, the poor mechanical strength of pure CT sutures limits its application. In order to improve its strength, a composite monofilament absorbable suture was prepared in this study using graphene oxide and chitin (GO-CT) using a green method. FT-IR spectra showed that GO-CT contained the characteristic functional groups of GO and CT, indicating that a GO-CT suture was successfully obtained. With the addition of a small amount of GO (1.6wt% solution) in chitin, the breaking tensile strength, knot strength, and knot-pull strength of the GO-CT suture were significantly improved compared to the CT suture. The biocompatibility of the GO-CT suture in vitro was checked by tetrazolium-based colorimetric assays and no cytotoxicity to L929 cells was found. In vivo, the subcutaneous implantation of GO-CT sutures in the dorsal skin of rats found no abnormalities by hematoxylin-eosin staining. Furthermore, there were no significant changes in the gene expression of the inflammatory mediators, interleukin 1β (IL-1β), tumor necrosis factor-α, IL-6, IL-17A, interferon-γ, or IL-10; however, the expression of transforming growth factor β was significantly increased in the first week. In summary, GO-CT sutures may have potential as a suture material in the clinic.
Collapse
Affiliation(s)
- Wei Zhang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong 524025, China.
| | - Bin Yin
- College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong 524025, China.
| | - Yu Xin
- College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong 524025, China.
| | - Lei Li
- Life Science and Technology School, Lingnan Normal University, Zhanjiang 524048, China.
| | - Guanlin Ye
- College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong 524025, China.
| | - Junxian Wang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong 524025, China.
| | - Jianfei Shen
- College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong 524025, China.
| | - Xiao Cui
- College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong 524025, China.
| | - Qihui Yang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong 524025, China.
| |
Collapse
|
207
|
Yang X, Yang Q, Zheng G, Han S, Zhao F, Hu Q, Fu Z. Developmental neurotoxicity and immunotoxicity induced by graphene oxide in zebrafish embryos. ENVIRONMENTAL TOXICOLOGY 2019; 34:415-423. [PMID: 30549182 DOI: 10.1002/tox.22695] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/25/2018] [Accepted: 11/30/2018] [Indexed: 06/09/2023]
Abstract
Graphene oxide (GO) has emerged as the worldwide promising candidate for biomedical application, such as for drug delivery, bio-sensing and anti-cancer therapy. This study was focused on the zebrafish and RAW264.7 cell line as in vivo and in vitro models to assess the potential developmental neurotoxicity and immunotoxicity of GO. No obvious acute developmental toxicity was observed upon treatments with 0.01, 0.1, and 1 μg/mL GO for five consecutive days. However, decreased hatching rate, increased malformation rate, heart beat rate and hypoactivity of locomotor behavior were detected when exposed to 10 μg/mL GO. Also, RT-PCR analysis revealed that expressions of genes related to the nervous system were up-regulated. The potential risk of GO for developmental neurotoxicity may be ascribed to the high level of oxidative stress induced by high concentration of GO. Most importantly, the mRNA levels of immune response associated genes, such as interleukin-6 (IL-6), interleukin-8 (IL-8), tumor necrosis factor-α (TNFα), interferon-γ (IFN-γ) were significantly increased under environmental concentration exposure. The activation of pro-inflammatory immune response was also observed in macrophage cell line. Taken together, our results demonstrated that immunotoxicity is a sensitive indicator for assessment of bio-compatibility of GO.
Collapse
Affiliation(s)
- Xiaole Yang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Qiaolei Yang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Guiwen Zheng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Shuhong Han
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Fenghui Zhao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Qinglian Hu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
208
|
Ashtari K, Nazari H, Ko H, Tebon P, Akhshik M, Akbari M, Alhosseini SN, Mozafari M, Mehravi B, Soleimani M, Ardehali R, Ebrahimi Warkiani M, Ahadian S, Khademhosseini A. Electrically conductive nanomaterials for cardiac tissue engineering. Adv Drug Deliv Rev 2019; 144:162-179. [PMID: 31176755 PMCID: PMC6784829 DOI: 10.1016/j.addr.2019.06.001] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 06/02/2019] [Accepted: 06/04/2019] [Indexed: 01/26/2023]
Abstract
Patient deaths resulting from cardiovascular diseases are increasing across the globe, posing the greatest risk to patients in developed countries. Myocardial infarction, as a result of inadequate blood flow to the myocardium, results in irreversible loss of cardiomyocytes which can lead to heart failure. A sequela of myocardial infarction is scar formation that can alter the normal myocardial architecture and result in arrhythmias. Over the past decade, a myriad of tissue engineering approaches has been developed to fabricate engineered scaffolds for repairing cardiac tissue. This paper highlights the recent application of electrically conductive nanomaterials (carbon and gold-based nanomaterials, and electroactive polymers) to the development of scaffolds for cardiac tissue engineering. Moreover, this work summarizes the effects of these nanomaterials on cardiac cell behavior such as proliferation and migration, as well as cardiomyogenic differentiation in stem cells.
Collapse
Affiliation(s)
- Khadijeh Ashtari
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran; Faculty of Advanced Technologies in Medicine, Department of Medical Nanotechnology, Iran University of Medical Sciences, Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hojjatollah Nazari
- Faculty of Advanced Technologies in Medicine, Department of Medical Nanotechnology, Iran University of Medical Sciences, Tehran, Iran; Stem Cell Technology Research Center, Tehran, Iran
| | - Hyojin Ko
- Center for Minimally Invasive Therapeutics (C-MIT), University of California - Los Angeles, Los Angeles, USA; Department of Bioengineering, University of California - Los Angeles, Los Angeles, USA
| | - Peyton Tebon
- Center for Minimally Invasive Therapeutics (C-MIT), University of California - Los Angeles, Los Angeles, USA; Department of Bioengineering, University of California - Los Angeles, Los Angeles, USA
| | - Masoud Akhshik
- Faculty of Forestry, University of Toronto, Toronto, Canada; Center for Biocomposites and Biomaterials Processing (CBBP), University of Toronto, Toronto, Canada; Shahdad Ronak Commercialization Company, Tehran, Iran
| | - Mohsen Akbari
- Laboratory for Innovations in MicroEngineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, Canada; Center for Biomedical Research, University of Victoria, Victoria, Canada; Center for Advanced Materials and Related Technologies, University of Victoria, Victoria, Canada
| | - Sanaz Naghavi Alhosseini
- Biomaterials Group, Department of Biomaterial Engineering, Amirkabir University of Technology, Tehran, Iran; Stem Cell Technology Research Center, Tehran, Iran
| | - Masoud Mozafari
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Bita Mehravi
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran; Faculty of Advanced Technologies in Medicine, Department of Medical Nanotechnology, Iran University of Medical Sciences, Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Masoud Soleimani
- Faculty of Medical Sciences, Department of Hematology and Cell Therapy, Tarbiat Modares University, Tehran, Iran
| | - Reza Ardehali
- Division of Cardiology, Department of Internal Medicine, David Geffen School of Medicine, University of California - Los Angeles, USA
| | - Majid Ebrahimi Warkiani
- School of Biomedical Engineering, University of Technology Sydney, Sydney, Australia; Institute of Molecular Medicine, Sechenov University, Moscow, Russia
| | - Samad Ahadian
- Center for Minimally Invasive Therapeutics (C-MIT), University of California - Los Angeles, Los Angeles, USA; Department of Bioengineering, University of California - Los Angeles, Los Angeles, USA
| | - Ali Khademhosseini
- Center for Minimally Invasive Therapeutics (C-MIT), University of California - Los Angeles, Los Angeles, USA; Department of Bioengineering, University of California - Los Angeles, Los Angeles, USA; Department of Chemical and Biomolecular Engineering, University of California - Los Angeles, Los Angeles, USA; Department of Radiology, David Geffen School of Medicine, University of California - Los Angeles, Los Angeles, USA.
| |
Collapse
|
209
|
Research on Functional Nanomaterials, Interfaces, and Applications at Soochow University. ACS NANO 2019; 13:2667-2671. [PMID: 30913577 DOI: 10.1021/acsnano.9b01960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
|
210
|
Gu Z, Zhu S, Yan L, Zhao F, Zhao Y. Graphene-Based Smart Platforms for Combined Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1800662. [PMID: 30039878 DOI: 10.1002/adma.201800662] [Citation(s) in RCA: 195] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/25/2018] [Indexed: 06/08/2023]
Abstract
The extensive research of graphene and its derivatives in biomedical applications during the past few years has witnessed its significance in the field of nanomedicine. Starting from simple drug delivery systems, the application of graphene and its derivatives has been extended to a versatile platform of multiple therapeutic modalities, including photothermal therapy, photodynamic therapy, magnetic hyperthermia therapy, and sonodynamic therapy. In addition to monotherapy, graphene-based materials are widely applied in combined therapies for enhanced anticancer activity and reduced side effects. In particular, graphene-based materials are often designed and fabricated as "smart" platforms for stimuli-responsive nanocarriers, whose therapeutic effects can be activated by the tumor microenvironment, such as acidic pH and elevated glutathione (termed as "endogenous stimuli"), or light, magnetic, or ultrasonic stimuli (termed as "exogenous stimuli"). Herein, the recent advances of smart graphene platforms for combined therapy applications are presented, starting with the principle for the design of graphene-based smart platforms in combined therapy applications. Next, recent advances of combined therapies contributed by graphene-based materials, including chemotherapy-based, photothermal-therapy-based, and ultrasound-therapy-based synergistic therapy, are outlined. In addition, current challenges and future prospects regarding this promising field are discussed.
Collapse
Affiliation(s)
- Zhanjun Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuang Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Liang Yan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Feng Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
211
|
Palmieri V, Perini G, De Spirito M, Papi M. Graphene oxide touches blood: in vivo interactions of bio-coronated 2D materials. NANOSCALE HORIZONS 2019; 4:273-290. [PMID: 32254085 DOI: 10.1039/c8nh00318a] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Graphene oxide is the hot topic in biomedical and pharmaceutical research of the current decade. However, its complex interactions with human blood components complicate the transition from the promising in vitro results to clinical settings. Even though graphene oxide is made with the same atoms as our organs, tissues and cells, its bi-dimensional nature causes unique interactions with blood proteins and biological membranes and can lead to severe effects like thrombogenicity and immune cell activation. In this review, we will describe the journey of graphene oxide after injection into the bloodstream, from the initial interactions with plasma proteins to the formation of the "biomolecular corona", and biodistribution. We will consider the link between the chemical properties of graphene oxide (and its functionalized/reduced derivatives), protein binding and in vivo response. We will also summarize data on biodistribution and toxicity in view of the current knowledge of the influence of the biomolecular corona on these processes. Our aim is to shed light on the unsolved problems regarding the graphene oxide corona to build the groundwork for the future development of drug delivery technology.
Collapse
Affiliation(s)
- V Palmieri
- Fondazione Policlinico A. Gemelli IRCSS-Università Cattolica Sacro Cuore, Largo Francesco Vito 1, 00168, Roma, Italy.
| | | | | | | |
Collapse
|
212
|
Palai PK, Mondal A, Chakraborti CK, Banerjee I, Pal K. Green synthesized amino-PEGylated silver decorated graphene nanoplatform as a tumor-targeted controlled drug delivery system. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-0287-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
213
|
Moore C, Jokerst JV. Strategies for Image-Guided Therapy, Surgery, and Drug Delivery Using Photoacoustic Imaging. Theranostics 2019; 9:1550-1571. [PMID: 31037123 PMCID: PMC6485201 DOI: 10.7150/thno.32362] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 01/26/2019] [Indexed: 12/17/2022] Open
Abstract
Photoacoustic imaging is a rapidly maturing imaging modality in biological research and medicine. This modality uses the photoacoustic effect ("light in, sound out") to combine the contrast and specificity of optical imaging with the high temporal resolution of ultrasound. The primary goal of image-guided therapy, and theranostics in general, is to transition from conventional medicine to precision strategies that combine diagnosis with therapy. Photoacoustic imaging is well-suited for noninvasive guidance of many therapies and applications currently being pursued in three broad areas. These include the image-guided resection of diseased tissue, monitoring of disease states, and drug delivery. In this review, we examine the progress and strategies for development of photoacoustics in these three key areas with an emphasis on the value photoacoustics has for image-guided therapy.
Collapse
Affiliation(s)
| | - Jesse V. Jokerst
- Department of NanoEngineering
- Materials Science and Engineering Program
- Department of Radiology, University of California, San Diego, La Jolla, CA 92093. United States
| |
Collapse
|
214
|
A Hybrid Nanoplatform of Graphene Oxide/Nanogold for Plasmonic Sensing and Cellular Applications at the Nanobiointerface. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9040676] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In this study, nanocomposites of spherical gold nanoparticles (AuNPs) and graphene oxide (GO) nanosheets were fabricated by a simple one-step reduction method. The characterisation by UV-visible spectroscopy of the plasmonic sensing properties pointed out to a strong interaction between graphene and metal nanoparticles in the hybrid GO-AuNP, as confirmed by nuclear magnetic resonance. Moreover, atomic force microscopy analyses demonstrated that the gold nanoparticles were mostly confined to the basal planes of the GO sheets. The response of the nanoassemblies at the biointerface with human neuroblastoma SH-SY5Y cell line was investigated in terms of nanotoxicity as well as of total and mitochondrial reactive oxygen species production. Confocal microscopy imaging of cellular internalization highlighted the promising potentialities of GO-AuNP nanoplatforms for theranostic (i.e., sensing/imaging + therapy) applications.
Collapse
|
215
|
Mousavi SM, Hashemi SA, Ghasemi Y, Amani AM, Babapoor A, Arjmand O. Applications of graphene oxide in case of nanomedicines and nanocarriers for biomolecules: review study. Drug Metab Rev 2019; 51:12-41. [PMID: 30741033 DOI: 10.1080/03602532.2018.1522328] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In this Review article, recent progress in matter of graphene oxide (GO) synthesis and its functionalization via a vast range of materials, including small molecules, polymers, and biomolecules, were reported and systematically summarized in order to overcome the inherent drawbacks of GO nanocarriers and thereby make these nanocarriers suitable for delivering chemotherapeutic agents, genes, and short interfering RNAs. Briefly, this work describes current strategies for the large scale production of GO and modification of graphene-based nanocarriers surfaces through practical chemical approaches, improving their biocompatibility and declining their toxicity. It also describes the most relevant cases of study suitable to demonstrate the role of graphene and graphene derivatives (GD) as nanocarrier for anti-cancer drugs and genes (e.g. miRNAs). Moreover, the controlled release mechanisms within the cell compartments and blood pH for targeted therapeutics release in the acidic environment of tumor cells or in intracellular compartments are mentioned and explored.
Collapse
Affiliation(s)
- Seyyed Mojtaba Mousavi
- a Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies , Shiraz University of Medical Sciences , Shiraz , Iran.,b Pharmaceutical Sciences Research Center , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Seyyed Alireza Hashemi
- a Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies , Shiraz University of Medical Sciences , Shiraz , Iran.,b Pharmaceutical Sciences Research Center , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Younes Ghasemi
- a Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies , Shiraz University of Medical Sciences , Shiraz , Iran.,b Pharmaceutical Sciences Research Center , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Ali Mohammad Amani
- a Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies , Shiraz University of Medical Sciences , Shiraz , Iran.,b Pharmaceutical Sciences Research Center , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Aziz Babapoor
- b Pharmaceutical Sciences Research Center , Shiraz University of Medical Sciences , Shiraz , Iran.,c Department of Chemical Engineering , University of Mohaghegh Ardabili (UMA) , Ardabil , Iran
| | - Omid Arjmand
- d Department of Chemical Engineering, South Tehran Branch , Islamic Azad University , Tehran , Iran
| |
Collapse
|
216
|
|
217
|
Wu J, Zheng A, Liu Y, Jiao D, Zeng D, Wang X, Cao L, Jiang X. Enhanced bone regeneration of the silk fibroin electrospun scaffolds through the modification of the graphene oxide functionalized by BMP-2 peptide. Int J Nanomedicine 2019; 14:733-751. [PMID: 30705589 PMCID: PMC6342216 DOI: 10.2147/ijn.s187664] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Introduction Bone tissue engineering has become one of the most effective methods to treat bone defects. Silk fibroin (SF) is a natural protein with no physiological activities, which has features such as good biocompatibility and easy processing and causes minimal inflammatory reactions in the body. Scaffolds prepared by electrospinning SF can be used in bone tissue regeneration and repair. Graphene oxide (GO) is rich in functional groups, has good biocompatibility, and promotes osteogenic differentiation of stem cells, while bone morphogenetic protein-2 (BMP-2) polypeptide has an advantage in promoting osteogenesis induction. In this study, we attempted to graft BMP-2 polypeptide onto GO and then bonded the functionalized GO onto SF electrospun scaffolds through electrostatic interactions. The main purpose of this study was to further improve the biocompatibility of SF electrospun scaffolds, which could promote the osteogenic differentiation of bone marrow mesenchymal stem cells and the repair of bone tissue defects. Materials and methods The successful synthesis of GO and functionalized GO was confirmed by transmission electron microscope, X-ray photoelectron spectroscopy, and thermogravimetric analysis. Scanning electron microscopy, atomic force microscopy, mechanical test, and degradation experiment confirmed the preparation of SF electrospun scaffolds and the immobilization of GO on the fibers. In vitro experiment was used to verify the biocompatibility of the composite scaffolds, and in vivo experiment was used to prove the repairing ability of the composite scaffolds for bone defects. Results We successfully fabricated the composite scaffolds, which enhanced biocompatibility, not only promoting cell adhesion and proliferation but also greatly enhancing in vitro osteogenic differentiation of bone marrow stromal cells using either an osteogenic or non-osteogenic medium. Furthermore, transplantation of the composite scaffolds significantly promoted in vivo bone formation in critical-sized calvarial bone defects. Conclusion These findings suggested that the incorporation of BMP-2 polypeptide-functionalized GO into chitosan-coated SF electrospun scaffolds was a viable strategy for fabricating excellent scaffolds that enhance the regeneration of bone defects.
Collapse
Affiliation(s)
- Jiannan Wu
- Department of Prosthodontics, Oral Bioengineering and Regenerative Medicine Lab, Shanghai Key Laboratory of Stomatology, Ninth People's Hospital Affiliated to Shanghai JiaoTong University, School of Medicine, Shanghai 200011, China, ; .,Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200011, China, ;
| | - Ao Zheng
- Department of Prosthodontics, Oral Bioengineering and Regenerative Medicine Lab, Shanghai Key Laboratory of Stomatology, Ninth People's Hospital Affiliated to Shanghai JiaoTong University, School of Medicine, Shanghai 200011, China, ; .,Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200011, China, ;
| | - Yang Liu
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Delong Jiao
- Department of Prosthodontics, Oral Bioengineering and Regenerative Medicine Lab, Shanghai Key Laboratory of Stomatology, Ninth People's Hospital Affiliated to Shanghai JiaoTong University, School of Medicine, Shanghai 200011, China, ; .,Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200011, China, ;
| | - Deliang Zeng
- Department of Prosthodontics, Oral Bioengineering and Regenerative Medicine Lab, Shanghai Key Laboratory of Stomatology, Ninth People's Hospital Affiliated to Shanghai JiaoTong University, School of Medicine, Shanghai 200011, China, ; .,Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200011, China, ;
| | - Xiao Wang
- Department of Prosthodontics, Oral Bioengineering and Regenerative Medicine Lab, Shanghai Key Laboratory of Stomatology, Ninth People's Hospital Affiliated to Shanghai JiaoTong University, School of Medicine, Shanghai 200011, China, ; .,Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200011, China, ;
| | - Lingyan Cao
- Department of Prosthodontics, Oral Bioengineering and Regenerative Medicine Lab, Shanghai Key Laboratory of Stomatology, Ninth People's Hospital Affiliated to Shanghai JiaoTong University, School of Medicine, Shanghai 200011, China, ; .,Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200011, China, ;
| | - Xinquan Jiang
- Department of Prosthodontics, Oral Bioengineering and Regenerative Medicine Lab, Shanghai Key Laboratory of Stomatology, Ninth People's Hospital Affiliated to Shanghai JiaoTong University, School of Medicine, Shanghai 200011, China, ; .,Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200011, China, ;
| |
Collapse
|
218
|
Gupta TK, Budarapu PR, Chappidi SR, Y.B. SS, Paggi M, Bordas SP. Advances in Carbon Based Nanomaterials for Bio-Medical Applications. Curr Med Chem 2019; 26:6851-6877. [DOI: 10.2174/0929867326666181126113605] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 09/17/2018] [Accepted: 09/17/2018] [Indexed: 01/19/2023]
Abstract
:
The unique mechanical, electrical, thermal, chemical and optical properties of carbon
based nanomaterials (CBNs) like: Fullerenes, Graphene, Carbon nanotubes, and their derivatives
made them widely used materials for various applications including biomedicine.
Few recent applications of the CBNs in biomedicine include: cancer therapy, targeted drug
delivery, bio-sensing, cell and tissue imaging and regenerative medicine. However, functionalization
renders the toxicity of CBNs and makes them soluble in several solvents including
water, which is required for biomedical applications. Hence, this review represents the complete
study of development in nanomaterials of carbon for biomedical uses. Especially, CBNs
as the vehicles for delivering the drug in carbon nanomaterials is described in particular. The
computational modeling approaches of various CBNs are also addressed. Furthermore, prospectus,
issues and possible challenges of this rapidly developing field are highlighted.
Collapse
Affiliation(s)
- Tejendra Kumar Gupta
- Amity Institute of Applied Sciences, Amity University, Sector-125, Noida 201313, India
| | - Pattabhi Ramaiah Budarapu
- School of Mechanical Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar 752050, India
| | | | - Sudhir Sastry Y.B.
- Department of Aeronautical Engineering, Institute of Aeronautical Engineering, Dundigal, Hyderabad 500043, India
| | - Marco Paggi
- Multi-scale Analysis of Materials Research Unit, IMT School for Advanced Studies Lucca, Piazza San Francesco 19, 55100 Lucca, Italy
| | - Stephane P. Bordas
- Universit´e du Luxembourg, Maison du Nombre, 6, Avenue de la Fonte, L-4364 Esch-sur- Alzette, Luxembourg
| |
Collapse
|
219
|
Ansari MO, Gauthaman K, Essa A, Bencherif SA, Memic A. Graphene and Graphene-Based Materials in Biomedical Applications. Curr Med Chem 2019; 26:6834-6850. [DOI: 10.2174/0929867326666190705155854] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 10/06/2018] [Accepted: 10/26/2018] [Indexed: 12/27/2022]
Abstract
:
Nanobiotechnology has huge potential in the field of regenerative medicine. One of the main
drivers has been the development of novel nanomaterials. One developing class of materials is graphene
and its derivatives recognized for their novel properties present on the nanoscale. In particular,
graphene and graphene-based nanomaterials have been shown to have excellent electrical, mechanical,
optical and thermal properties. Due to these unique properties coupled with the ability to tune their
biocompatibility, these nanomaterials have been propelled for various applications. Most recently, these
two-dimensional nanomaterials have been widely recognized for their utility in biomedical research. In
this review, a brief overview of the strategies to synthesize graphene and its derivatives are discussed.
Next, the biocompatibility profile of these nanomaterials as a precursor to their biomedical application
is reviewed. Finally, recent applications of graphene-based nanomaterials in various biomedical fields
including tissue engineering, drug and gene delivery, biosensing and bioimaging as well as other biorelated
studies are highlighted.
Collapse
Affiliation(s)
| | - Kalamegam Gauthaman
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Sidi A. Bencherif
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, United States
| | - Adnan Memic
- Center of Nanotechnology, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
220
|
Ma L, Zhou M, He C, Li S, Fan X, Nie C, Luo H, Qiu L, Cheng C. Graphene-based advanced nanoplatforms and biocomposites from environmentally friendly and biomimetic approaches. GREEN CHEMISTRY 2019. [DOI: 10.1039/c9gc02266j] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Environmentally friendly and biomimetic approaches to fabricate graphene-based advanced nanoplatforms and biocomposites for biomedical applications are summarized in this review.
Collapse
Affiliation(s)
- Lang Ma
- Department of Ultrasound
- West China Hospital
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
| | - Mi Zhou
- College of Biomass Science and Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Chao He
- Department of Ultrasound
- West China Hospital
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
| | - Shuang Li
- Functional Materials
- Department of Chemistry
- Technische Universität Berlin
- 10623 Berlin
- Germany
| | - Xin Fan
- Department of Ultrasound
- West China Hospital
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
| | - Chuanxiong Nie
- Department of Chemistry and Biochemistry
- Freie Universitat Berlin
- Berlin 14195
- Germany
| | - Hongrong Luo
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Li Qiu
- Department of Ultrasound
- West China Hospital
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
| | - Chong Cheng
- Department of Ultrasound
- West China Hospital
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
| |
Collapse
|
221
|
Ain QT, Haq SH, Alshammari A, Al-Mutlaq MA, Anjum MN. The systemic effect of PEG-nGO-induced oxidative stress in vivo in a rodent model. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2019; 10:901-911. [PMID: 31165017 PMCID: PMC6541342 DOI: 10.3762/bjnano.10.91] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 03/28/2019] [Indexed: 05/05/2023]
Abstract
Oxidative stress (OS) plays an important role in the pathology of certain human diseases. Scientists have developed great interest regarding the determination of oxidative stress caused after the administration of nano-graphene composites (PEG-nGO). Graphene oxide sheets (GOS) were synthesized via a modified Hummer's method and were characterized by X-ray diffraction (XRD), ultraviolet-visible spectroscopy (UV), and transmission electron microscopy (TEM). The method of Zhang was adopted for cracking of GOS. Then nano-graphene oxide was PEGylated with polyethylene glycol (PEG). PEGylation of nGO was confirmed by Fourier-transform infrared spectroscopy (FTIR), UV spectroscopy and TEM. The average size distribution of nGO and PEG-nGO was determined by using dynamic light scattering (DLS). Subsequently, an in vivo study measuring a marker for oxidative stress, namely lipid peroxides, as well as antioxidant agents, including catalase, superoxide dismutase, glutathione, and glutathione S-transferase was conducted. A comparison at different intervals of time after the administration of a dose (5 mg/kg) of PEG-nGO was carried out. An increase in free radicals and a decrease in free radical scavenging enzymes in organs were observed. Our results indicated that the treatment with PEG-nGO caused an increased OS to the organs in the first few hours of treatment. However, the liver completely recovered from the OS after 4 h. Brain, heart and kidneys showed an increased OS even after 4 h. In conclusion increased OS induced by PEG-nGO could be detrimental to brain, heart and kidneys.
Collapse
Affiliation(s)
- Qura Tul Ain
- Department of Physics, The Islamia University of Bahawalpur, Pakistan
- Department of Physics and Astronomy, King Saud University, Kingdom of Saudi Arabia
| | - Samina Hyder Haq
- Department of Biochemistry, King Saud University, Kingdom of Saudi Arabia
| | - Abeer Alshammari
- Department of Physics and Astronomy, King Saud University, Kingdom of Saudi Arabia
| | | | | |
Collapse
|
222
|
|
223
|
Pradeep A, Satya Prasad S, Suryam L, Prasanna Kumari P. A review on 2D materials for bio-applications. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.matpr.2019.07.617] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
224
|
Xu Y, Zhao M, Zou L, Wu L, Xie M, Yang T, Liu S, Huang W, Zhao Q. Highly Stable and Multifunctional Aza-BODIPY-Based Phototherapeutic Agent for Anticancer Treatment. ACS APPLIED MATERIALS & INTERFACES 2018; 10:44324-44335. [PMID: 30508480 DOI: 10.1021/acsami.8b18669] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Phototherapy, as an important class of noninvasive tumor treatment methods, has attracted extensive research interest. Although a large amount of the near-infrared (NIR) phototherapeutic agents have been reported, the low efficiency, complicated structures, tedious synthetic procedures, and poor photostability limit their practical applications. To solve these problems, herein, a donor-acceptor-donor (D-A-D) type organic phototherapeutic agent (B-3) based on NIR aza-boron-dipyrromethene (aza-BODIPY) dye has been constructed, which shows the enhanced photothermal conversion efficiency and high singlet oxygen generation ability by simultaneously utilizing intramolecular photoinduced electron transfer (IPET) mechanism and heavy atom effects. After facile encapsulation of B-3 by amphiphilic DSPE-mPEG5000 and F108, the formed nanoparticles (B-3 NPs) exhibit the excellent photothermal stabilities and reactive oxygen and nitrogen species (RONS) resistance compared with indocyanine green (ICG) proved for theranostic application. Noteworthily, the B-3 NPs can remain outstanding photothermal conversion efficiency (η = 43.0%) as well as continuous singlet oxygen generation ability upon irradiation under a single-wavelength light. Importantly, B-3 NPs can effectively eliminate the tumors with no recurrence via synergistic photothermal/photodynamic therapy under mild condition. The exploration elaborates the photothermal conversion mechanism of small organic compounds and provides a guidance to develop excellent multifunctional NIR phototherapeutic agents for the promising clinical applications.
Collapse
Affiliation(s)
- Yunjian Xu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) , Nanjing University of Posts & Telecommunications , 9 Wen yuan Road , Nanjing 210023 , China
| | - Menglong Zhao
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) , Nanjing University of Posts & Telecommunications , 9 Wen yuan Road , Nanjing 210023 , China
| | - Liang Zou
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) , Nanjing University of Posts & Telecommunications , 9 Wen yuan Road , Nanjing 210023 , China
| | - Licai Wu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) , Nanjing University of Posts & Telecommunications , 9 Wen yuan Road , Nanjing 210023 , China
| | - Mingjuan Xie
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) , Nanjing University of Posts & Telecommunications , 9 Wen yuan Road , Nanjing 210023 , China
| | - Tianshe Yang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) , Nanjing University of Posts & Telecommunications , 9 Wen yuan Road , Nanjing 210023 , China
| | - Shujuan Liu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) , Nanjing University of Posts & Telecommunications , 9 Wen yuan Road , Nanjing 210023 , China
| | - Wei Huang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) , Nanjing University of Posts & Telecommunications , 9 Wen yuan Road , Nanjing 210023 , China
- Shaanxi Institute of Flexible Electronics (SIFE) , Northwestern Polytechnical University (NPU) , Xi'an 710072 , P.R. China
| | - Qiang Zhao
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) , Nanjing University of Posts & Telecommunications , 9 Wen yuan Road , Nanjing 210023 , China
| |
Collapse
|
225
|
Gooneh-Farahani S, Naimi-Jamal MR, Naghib SM. Stimuli-responsive graphene-incorporated multifunctional chitosan for drug delivery applications: a review. Expert Opin Drug Deliv 2018; 16:79-99. [PMID: 30514124 DOI: 10.1080/17425247.2019.1556257] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Recently, the use of chitosan (CS) in the drug delivery has reached an acceptable maturity. Graphene-based drug delivery is also increasing rapidly due to its unique physical, mechanical, chemical, and electrical properties. Therefore, the combination of CS and graphene can provide a promising carrier for the loading and controlled release of therapeutic agents. AREAS COVERED In this review, we will outline the advantages of this new drug delivery system (DDS) in association with CS and graphene alone and will list the various forms of these carriers, which have been studied in recent years as DDSs. Finally, we will discuss the application of this hybrid composite in other fields. EXPERT OPINION The introducing the GO amends the mechanical characteristics of CS, which is a major problem in the use of CS-based carriers in drug delivery due to burst release in a CS-based controlled release system through the poor mechanical strength of CS. Many related research on this area are still not fully unstated and occasionally they seem inconsistent in spite of the intent to be complementary. Therefore, a sensitive review may be needed to understand the role of graphene in CS/graphene carriers for future drug delivery applications.
Collapse
Affiliation(s)
- Sahar Gooneh-Farahani
- a Research Laboratory of Green Organic Synthesis and Polymers, Chemistry Department , Iran University of Science and Technology (IUST) , Tehran , Iran
| | - M Reza Naimi-Jamal
- a Research Laboratory of Green Organic Synthesis and Polymers, Chemistry Department , Iran University of Science and Technology (IUST) , Tehran , Iran
| | - Seyed Morteza Naghib
- b Nanotechnology Department, School of New Technologies , Iran University of Science and Technology (IUST) , Tehran , Iran
| |
Collapse
|
226
|
Hu Y, He L, Ma W, Chen L. Reduced graphene oxide‐based bortezomib delivery system for photothermal chemotherapy with enhanced therapeutic efficacy. POLYM INT 2018; 67:1648-1654. [DOI: 10.1002/pi.5689] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 08/07/2018] [Indexed: 01/19/2023]
Abstract
AbstractIn cancer treatment, it still is a curial challenge to enhance therapeutic efficacy and reduce side effects. A novel reduced graphene oxide‐based nanoplatform (rGO/PDex) has been constructed to deliver an anticancer drug, bortezomib (BTZ), for photo‐chemotherapy. The structure and properties of the nanoplatform were characterized. The obtained data strongly indicated that rGO/PDex had enhanced stability. Further, folic acid was introduced and the resulting rGO/PDexF nanoplatform exhibited improved cellular uptake due to the active targeting effect. The anticancer drug BTZ could be effectively encapsulated into the rGO‐based nanoplatform and be released in a controlled manner. In vitro experiments demonstrated that BTZ‐loaded rGO‐based nanoparticles displayed enhanced therapeutic efficacy compared with the single chemotherapy, indicating the great potential of rGO‐based nanoparticles for cancer treatments. © 2018 Society of Chemical Industry
Collapse
Affiliation(s)
- Yanfang Hu
- Department of Chemistry Northeast Normal University Changchun PR China
| | - Liang He
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun PR China
| | - Weiqian Ma
- Department of Chemistry Northeast Normal University Changchun PR China
| | - Li Chen
- Department of Chemistry Northeast Normal University Changchun PR China
| |
Collapse
|
227
|
Fadeel B, Bussy C, Merino S, Vázquez E, Flahaut E, Mouchet F, Evariste L, Gauthier L, Koivisto AJ, Vogel U, Martín C, Delogu LG, Buerki-Thurnherr T, Wick P, Beloin-Saint-Pierre D, Hischier R, Pelin M, Candotto Carniel F, Tretiach M, Cesca F, Benfenati F, Scaini D, Ballerini L, Kostarelos K, Prato M, Bianco A. Safety Assessment of Graphene-Based Materials: Focus on Human Health and the Environment. ACS NANO 2018; 12:10582-10620. [PMID: 30387986 DOI: 10.1021/acsnano.8b04758] [Citation(s) in RCA: 338] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Graphene and its derivatives are heralded as "miracle" materials with manifold applications in different sectors of society from electronics to energy storage to medicine. The increasing exploitation of graphene-based materials (GBMs) necessitates a comprehensive evaluation of the potential impact of these materials on human health and the environment. Here, we discuss synthesis and characterization of GBMs as well as human and environmental hazard assessment of GBMs using in vitro and in vivo model systems with the aim to understand the properties that underlie the biological effects of these materials; not all GBMs are alike, and it is essential that we disentangle the structure-activity relationships for this class of materials.
Collapse
Affiliation(s)
- Bengt Fadeel
- Nanosafety & Nanomedicine Laboratory, Institute of Environmental Medicine , Karolinska Institutet , 17777 Stockholm , Sweden
| | - Cyrill Bussy
- Nanomedicine Laboratory, Faculty of Biology, Medicine & Health , University of Manchester , Manchester M13 9PL , United Kingdom
| | - Sonia Merino
- Faculty of Chemical Science and Technology , University of Castilla-La Mancha , 13071 Ciudad Real , Spain
| | - Ester Vázquez
- Faculty of Chemical Science and Technology , University of Castilla-La Mancha , 13071 Ciudad Real , Spain
| | | | | | | | - Laury Gauthier
- CNRS, Université Paul Sabatier , 31062 Toulouse , France
| | - Antti J Koivisto
- National Research Centre for the Working Environment , 2100 Copenhagen , Denmark
| | - Ulla Vogel
- National Research Centre for the Working Environment , 2100 Copenhagen , Denmark
| | - Cristina Martín
- University of Strasbourg, CNRS , Immunology, Immunopathology and Therapeutic Chemistry , 67000 Strasbourg , France
| | - Lucia G Delogu
- Department of Chemistry and Pharmacy University of Sassari , Sassari 7100 , Italy
- Istituto di Ricerca Pediatrica , Fondazione Città della Speranza , 35129 Padova , Italy
| | - Tina Buerki-Thurnherr
- Swiss Federal Laboratories for Materials Science and Technology (EMPA) , 9014 St. Gallen , Switzerland
| | - Peter Wick
- Swiss Federal Laboratories for Materials Science and Technology (EMPA) , 9014 St. Gallen , Switzerland
| | | | - Roland Hischier
- Swiss Federal Laboratories for Materials Science and Technology (EMPA) , 9014 St. Gallen , Switzerland
| | - Marco Pelin
- Department of Life Sciences , University of Trieste , 34127 Trieste , Italy
| | | | - Mauro Tretiach
- Department of Life Sciences , University of Trieste , 34127 Trieste , Italy
| | - Fabrizia Cesca
- Center for Synaptic Neuroscience and Technology , Istituto Italiano di Tecnologia , 16132 Genova , Italy
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology , Istituto Italiano di Tecnologia , 16132 Genova , Italy
| | - Denis Scaini
- Scuola Internazionale Superiore di Studi Avanzati (SISSA) , 34136 Trieste , Italy
| | - Laura Ballerini
- Scuola Internazionale Superiore di Studi Avanzati (SISSA) , 34136 Trieste , Italy
| | - Kostas Kostarelos
- Nanomedicine Laboratory, Faculty of Biology, Medicine & Health , University of Manchester , Manchester M13 9PL , United Kingdom
| | - Maurizio Prato
- Department of Chemical and Pharmaceutical Sciences , University of Trieste , 34127 Trieste , Italy
- Carbon Nanobiotechnology Laboratory , CIC BiomaGUNE , 20009 San Sebastian , Spain
- Basque Foundation for Science, Ikerbasque , 48013 Bilbao , Spain
| | - Alberto Bianco
- University of Strasbourg, CNRS , Immunology, Immunopathology and Therapeutic Chemistry , 67000 Strasbourg , France
| |
Collapse
|
228
|
Liao C, Li Y, Tjong SC. Graphene Nanomaterials: Synthesis, Biocompatibility, and Cytotoxicity. Int J Mol Sci 2018; 19:E3564. [PMID: 30424535 PMCID: PMC6274822 DOI: 10.3390/ijms19113564] [Citation(s) in RCA: 252] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/08/2018] [Accepted: 11/08/2018] [Indexed: 12/12/2022] Open
Abstract
Graphene, graphene oxide, and reduced graphene oxide have been widely considered as promising candidates for industrial and biomedical applications due to their exceptionally high mechanical stiffness and strength, excellent electrical conductivity, high optical transparency, and good biocompatibility. In this article, we reviewed several techniques that are available for the synthesis of graphene-based nanomaterials, and discussed the biocompatibility and toxicity of such nanomaterials upon exposure to mammalian cells under in vitro and in vivo conditions. Various synthesis strategies have been developed for their fabrication, generating graphene nanomaterials with different chemical and physical properties. As such, their interactions with cells and organs are altered accordingly. Conflicting results relating biocompatibility and cytotoxicity induced by graphene nanomaterials have been reported in the literature. In particular, graphene nanomaterials that are used for in vitro cell culture and in vivo animal models may contain toxic chemical residuals, thereby interfering graphene-cell interactions and complicating interpretation of experimental results. Synthesized techniques, such as liquid phase exfoliation and wet chemical oxidation, often required toxic organic solvents, surfactants, strong acids, and oxidants for exfoliating graphite flakes. Those organic molecules and inorganic impurities that are retained in final graphene products can interact with biological cells and tissues, inducing toxicity or causing cell death eventually. The residual contaminants can cause a higher risk of graphene-induced toxicity in biological cells. This adverse effect may be partly responsible for the discrepancies between various studies in the literature.
Collapse
Affiliation(s)
- Chengzhu Liao
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Yuchao Li
- Department of Materials Science and Engineering, Liaocheng University, Liaocheng 252000, China.
| | - Sie Chin Tjong
- Department of Physics, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| |
Collapse
|
229
|
de Melo-Diogo D, Lima-Sousa R, Alves CG, Costa EC, Louro RO, Correia IJ. Functionalization of graphene family nanomaterials for application in cancer therapy. Colloids Surf B Biointerfaces 2018; 171:260-275. [DOI: 10.1016/j.colsurfb.2018.07.030] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/13/2018] [Accepted: 07/14/2018] [Indexed: 11/28/2022]
|
230
|
Piperno A, Scala A, Mazzaglia A, Neri G, Pennisi R, Sciortino MT, Grassi G. Cellular Signaling Pathways Activated by Functional Graphene Nanomaterials. Int J Mol Sci 2018; 19:E3365. [PMID: 30373263 PMCID: PMC6274994 DOI: 10.3390/ijms19113365] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/11/2018] [Accepted: 10/23/2018] [Indexed: 12/12/2022] Open
Abstract
The paper reviews the network of cellular signaling pathways activated by Functional Graphene Nanomaterials (FGN) designed as a platform for multi-targeted therapy or scaffold in tissue engineering. Cells communicate with each other through a molecular device called signalosome. It is a transient co-cluster of signal transducers and transmembrane receptors activated following the binding of transmembrane receptors to extracellular signals. Signalosomes are thus efficient and sensitive signal-responding devices that amplify incoming signals and convert them into robust responses that can be relayed from the plasma membrane to the nucleus or other target sites within the cell. The review describes the state-of-the-art biomedical applications of FGN focusing the attention on the cell/FGN interactions and signalosome activation.
Collapse
Affiliation(s)
- Anna Piperno
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d'Alcontres 31, 98166 Messina, Italy.
| | - Angela Scala
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d'Alcontres 31, 98166 Messina, Italy.
| | - Antonino Mazzaglia
- CNR-ISMN c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences of the University of Messina, V.le F. Stagno d'Alcontres 31, 98166 Messina, Italy.
| | - Giulia Neri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d'Alcontres 31, 98166 Messina, Italy.
- Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, 20131 Milan, Italy.
| | - Rosamaria Pennisi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d'Alcontres 31, 98166 Messina, Italy.
| | - Maria Teresa Sciortino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d'Alcontres 31, 98166 Messina, Italy.
| | - Giovanni Grassi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d'Alcontres 31, 98166 Messina, Italy.
| |
Collapse
|
231
|
Lu N, Wang L, Lv M, Tang Z, Fan C. Graphene-based nanomaterials in biosystems. NANO RESEARCH 2018; 12:247-264. [PMID: 32218914 PMCID: PMC7090610 DOI: 10.1007/s12274-018-2209-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/12/2018] [Accepted: 09/14/2018] [Indexed: 05/23/2023]
Abstract
Graphene-based nanomaterials have emerged as a novel type of materials with exceptional physicochemical properties and numerous applications in various areas. In this review, we summarize recent advances in studying interactions between graphene and biosystems. We first provide a brief introduction on graphene and its derivatives, and then discuss on the toxicology and biocompatibility of graphene, including the extracellular interactions between graphene and biomacromolecules, cellular studies of graphene, and in vivo toxicological effects. Next, we focus on various graphene-based practical applications in antibacterial materials, wound addressing, drug delivery, and water purification. We finally present perspectives on challenges and future developments in these exciting fields.
Collapse
Affiliation(s)
- Na Lu
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai, 201620 China
| | - Liqian Wang
- Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800 China
| | - Min Lv
- Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800 China
| | - Zisheng Tang
- Department of Endodontics, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011 China
- National Clinical Research Center of Oral Diseases, Shanghai, 200011 China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011 China
| | - Chunhai Fan
- Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800 China
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
| |
Collapse
|
232
|
Hou M, Yang R, Zhang L, Zhang L, Liu G, Xu Z, Kang Y, Xue P. Injectable and Natural Humic Acid/Agarose Hybrid Hydrogel for Localized Light-Driven Photothermal Ablation and Chemotherapy of Cancer. ACS Biomater Sci Eng 2018; 4:4266-4277. [DOI: 10.1021/acsbiomaterials.8b01147] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mengmeng Hou
- Institute for Clean Energy and Advanced Materials, Faculty of Materials and Energy, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Chongqing 400715, China
| | - Ruihao Yang
- Institute for Clean Energy and Advanced Materials, Faculty of Materials and Energy, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Chongqing 400715, China
| | - Lei Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Leiyang Zhang
- Institute for Clean Energy and Advanced Materials, Faculty of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Gang Liu
- Institute for Clean Energy and Advanced Materials, Faculty of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Zhigang Xu
- Institute for Clean Energy and Advanced Materials, Faculty of Materials and Energy, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Chongqing 400715, China
| | - Yuejun Kang
- Institute for Clean Energy and Advanced Materials, Faculty of Materials and Energy, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Chongqing 400715, China
| | - Peng Xue
- Institute for Clean Energy and Advanced Materials, Faculty of Materials and Energy, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Chongqing 400715, China
| |
Collapse
|
233
|
de Melo-Diogo D, Costa EC, Alves CG, Lima-Sousa R, Ferreira P, Louro RO, Correia IJ. POxylated graphene oxide nanomaterials for combination chemo-phototherapy of breast cancer cells. Eur J Pharm Biopharm 2018; 131:162-169. [DOI: 10.1016/j.ejpb.2018.08.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 08/03/2018] [Accepted: 08/18/2018] [Indexed: 01/08/2023]
|
234
|
Lebre F, Hanlon D, Boland JB, Coleman J, Lavelle EC. Exfoliation in Endotoxin‐Free Albumin Generates Pristine Graphene with Reduced Inflammatory Properties. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/adbi.201800102] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Filipa Lebre
- Adjuvant Research GroupSchool of Biochemistry and ImmunologyTrinity Biomedical Sciences InstituteTrinity College Dublin Dublin 2 D02 PN40 Ireland
- Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN)Trinity College Dublin Dublin 2 D02 PN40 Ireland
- Advanced Materials Bio‐Engineering Research Centre (AMBER)Trinity College Dublin Dublin 2 D02 PN40 Ireland
| | - Damien Hanlon
- Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN)Trinity College Dublin Dublin 2 D02 PN40 Ireland
- Advanced Materials Bio‐Engineering Research Centre (AMBER)Trinity College Dublin Dublin 2 D02 PN40 Ireland
- School of PhysicsUniversity of DublinTrinity College Dublin 2 Ireland
| | - John B. Boland
- Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN)Trinity College Dublin Dublin 2 D02 PN40 Ireland
- Advanced Materials Bio‐Engineering Research Centre (AMBER)Trinity College Dublin Dublin 2 D02 PN40 Ireland
- School of PhysicsUniversity of DublinTrinity College Dublin 2 Ireland
| | - Jonathan Coleman
- Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN)Trinity College Dublin Dublin 2 D02 PN40 Ireland
- Advanced Materials Bio‐Engineering Research Centre (AMBER)Trinity College Dublin Dublin 2 D02 PN40 Ireland
- School of PhysicsUniversity of DublinTrinity College Dublin 2 Ireland
| | - Ed C. Lavelle
- Adjuvant Research GroupSchool of Biochemistry and ImmunologyTrinity Biomedical Sciences InstituteTrinity College Dublin Dublin 2 D02 PN40 Ireland
- Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN)Trinity College Dublin Dublin 2 D02 PN40 Ireland
- Advanced Materials Bio‐Engineering Research Centre (AMBER)Trinity College Dublin Dublin 2 D02 PN40 Ireland
| |
Collapse
|
235
|
Zhang CJ, Wang CX, Gao ZY, Ke C, Fu LM, Zhang Z, Wang Y, Zhang JP. Wide field of view, real time bioimaging apparatus for noninvasive analysis of nanocarrier pharmacokinetics in living model animals. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2018; 89:085105. [PMID: 30184676 DOI: 10.1063/1.5026852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 07/13/2018] [Indexed: 06/08/2023]
Abstract
Understanding nanocarrier pharmacokinetics is crucial for the emerging nanopharmacy, which highly demands noninvasive and real-time visualization of the in vivo dynamics of nanocarriers. To this end, we have developed a 2-photon excitation and time-resolved (TPE-TR) bioimaging apparatus for the analysis of the spatial distribution and temporal evolution of nanocarriers in living model animals. The specific polymeric nanocarrier, Eu@pmma-maa doped with Eu-complexes luminescing in long persistence at ∼615 nm upon near-infrared 2-photon excitation, allows the complete rejection of tissue autofluorescence by selective luminescence detection. This together with a unique beam shaping scheme for homogeneous line excitation, a delicate timing strategy for single-shot line scanning, and an equal optical path design for in-plane scan endows the TPE-TR apparatus with the following prominent features: an imaging depth of ∼10 mm, a field of view (FOV) of 32 × 32 mm2 along with a horizontal resolution of ∼60 μm, a sub-10 s frame time, and negligible laser heating effect. In addition, a combination of the in-plane line scan with the 3D scan of a model animal offers the convenience for examining an interested FOV with a millimeter vertical resolution. Application of TPE-TR bioimaging to a living mouse reveals rich information on the dynamics of nanocarriers including the spatial distribution and temporal evolution and the kinetics of domains of interest. The noninvasive TPE-TR bioimaging instrumentation with a wide FOV and a large imaging depth will find applications in the pharmaceutical development of nanocarriers and relevant research fields.
Collapse
Affiliation(s)
- Chao-Jie Zhang
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Chuan-Xi Wang
- Beijing National Laboratory for Molecular Science, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, and Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Zhi-Yue Gao
- Beijing National Laboratory for Molecular Science, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, and Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Can Ke
- Beijing National Laboratory for Molecular Science, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, and Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Li-Min Fu
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Zhuo Zhang
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Yuan Wang
- Beijing National Laboratory for Molecular Science, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, and Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Jian-Ping Zhang
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| |
Collapse
|
236
|
Liu J, Liu K, Feng L, Liu Z, Xu L. Comparison of nanomedicine-based chemotherapy, photodynamic therapy and photothermal therapy using reduced graphene oxide for the model system. Biomater Sci 2018; 5:331-340. [PMID: 27935610 DOI: 10.1039/c6bm00526h] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Given the complexity of tumors, several nanomaterial-based treatment modalities like chemotherapy (CT), photodynamic therapy (PDT) and photothermal therapy (PTT) have been developed for combating cancers. However, it is still unclear which strategy is better or how to select optimal approaches for combination treatment since each strategy has been investigated under different conditions. Inspired by its good payload capacity and unique near-infrared absorption, reduced graphene oxide (rGO) was selected in this study as the carrier for loading of doxorubicin (DOX), a chemotherapy drug, and chlorin e6 (Ce6), a photosensitizer. The therapeutic efficacies of PTT, CT and PDT were systematically investigated in vitro using 2D culture and multicellular tumor spheroid (3D) models. Interestingly, while all three types of therapies delivered by rGO appeared to be effective in the conventional 2D cell culture model, only PTT but not CT and PDT showed great treatment efficacy in the 3D tumor spheroid model at the tested concentrations. Such a difference is due to the fact that heat diffusion is much more efficient than the diffusion of therapeutic molecules inside the tumor. Furthermore, in vivo evidence also confirmed the unique advantage of PTT compared to the other two treatment modalities using the TdT-mediated dUTP nick end labeling (TUNEL) staining assay. This study highlights the unique advantages of nanomedicine-based photothermal therapy among these three modalities in cancer treatment in terms of killing tumor cells located far from tumor blood vessels.
Collapse
Affiliation(s)
- Jingjing Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Kai Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Liangzhu Feng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Ligeng Xu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
237
|
Won SM, Song E, Zhao J, Li J, Rivnay J, Rogers JA. Recent Advances in Materials, Devices, and Systems for Neural Interfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1800534. [PMID: 29855089 DOI: 10.1002/adma.201800534] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 02/28/2018] [Indexed: 06/08/2023]
Abstract
Technologies capable of establishing intimate, long-lived optical/electrical interfaces to neural systems will play critical roles in neuroscience research and in the development of nonpharmacological treatments for neurological disorders. The development of high-density interfaces to 3D populations of neurons across entire tissue systems in living animals, including human subjects, represents a grand challenge for the field, where advanced biocompatible materials and engineered structures for electrodes and light emitters will be essential. This review summarizes recent progress in these directions, with an emphasis on the most promising demonstrated concepts, materials, devices, and systems. The article begins with an overview of electrode materials with enhanced electrical and/or mechanical performance, in forms ranging from planar films, to micro/nanostructured surfaces, to 3D porous frameworks and soft composites. Subsequent sections highlight integration with active materials and components for multiplexed addressing, local amplification, wireless data transmission, and power harvesting, with multimodal operation in soft, shape-conformal systems. These advances establish the foundations for scalable architectures in optical/electrical neural interfaces of the future, where a blurring of the lines between biotic and abiotic systems will catalyze profound progress in neuroscience research and in human health/well-being.
Collapse
Affiliation(s)
- Sang Min Won
- Department of Electrical and Computer Engineering, Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana Champaign, Urbana, IL, 61801, USA
| | - Enming Song
- Department of Materials Science and Engineering, Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana Champaign, Northwestern University, Evanston, IL, 60208, USA
| | - Jianing Zhao
- Department of Mechanical Science and Engineering, Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana Champaign, Urbana, IL, 61801, USA
| | - Jinghua Li
- Department of Materials Science and Engineering, Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana Champaign, Northwestern University, Evanston, IL, 60208, USA
| | - Jonathan Rivnay
- Department of Biomedical Engineering, Simpson Querrey Institute for Nanobiotechnology, Northwestern University, Evanston, IL, 60208, USA
| | - John A Rogers
- Center for Bio-Integrated Electronics, Department of Materials Science and Engineering, Biomedical Engineering, Chemistry, Mechanical Engineering, Electrical Engineering and Computer Science, and Neurological Surgery, Simpson Querrey Institute for Nano/biotechnology, McCormick School of Engineering and Feinberg School of Medicine, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
238
|
Ghosal K, Sarkar K. Biomedical Applications of Graphene Nanomaterials and Beyond. ACS Biomater Sci Eng 2018; 4:2653-2703. [DOI: 10.1021/acsbiomaterials.8b00376] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Krishanu Ghosal
- Gene Therapy and Tissue Engineering Lab, Department of Polymer Science & Technology, University of Calcutta, 92 A.P.C. Road, Kolkata 700 009, India
| | - Kishor Sarkar
- Gene Therapy and Tissue Engineering Lab, Department of Polymer Science & Technology, University of Calcutta, 92 A.P.C. Road, Kolkata 700 009, India
| |
Collapse
|
239
|
Ganguly P, Breen A, Pillai SC. Toxicity of Nanomaterials: Exposure, Pathways, Assessment, and Recent Advances. ACS Biomater Sci Eng 2018; 4:2237-2275. [DOI: 10.1021/acsbiomaterials.8b00068] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Priyanka Ganguly
- Nanotechnology and Bio-Engineering Research Group, Department of Environmental Science, School of Science, Institute of Technology Sligo, Ash Lane, Sligo F91 YW50, Ireland
- Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Institute of Technology Sligo, Ash Lane, Sligo F91 YW50, Ireland
| | - Ailish Breen
- Nanotechnology and Bio-Engineering Research Group, Department of Environmental Science, School of Science, Institute of Technology Sligo, Ash Lane, Sligo F91 YW50, Ireland
- Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Institute of Technology Sligo, Ash Lane, Sligo F91 YW50, Ireland
| | - Suresh C. Pillai
- Nanotechnology and Bio-Engineering Research Group, Department of Environmental Science, School of Science, Institute of Technology Sligo, Ash Lane, Sligo F91 YW50, Ireland
- Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Institute of Technology Sligo, Ash Lane, Sligo F91 YW50, Ireland
| |
Collapse
|
240
|
Banerjee AN. Graphene and its derivatives as biomedical materials: future prospects and challenges. Interface Focus 2018; 8:20170056. [PMID: 29696088 PMCID: PMC5915658 DOI: 10.1098/rsfs.2017.0056] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2018] [Indexed: 01/20/2023] Open
Abstract
Graphene and its derivatives possess some intriguing properties, which generates tremendous interests in various fields, including biomedicine. The biomedical applications of graphene-based nanomaterials have attracted great interests over the last decade, and several groups have started working on this field around the globe. Because of the excellent biocompatibility, solubility and selectivity, graphene and its derivatives have shown great potential as biosensing and bio-imaging materials. Also, due to some unique physico-chemical properties of graphene and its derivatives, such as large surface area, high purity, good bio-functionalizability, easy solubility, high drug loading capacity, capability of easy cell membrane penetration, etc., graphene-based nanomaterials become promising candidates for bio-delivery carriers. Besides, graphene and its derivatives have also shown interesting applications in the fields of cell-culture, cell-growth and tissue engineering. In this article, a comprehensive review on the applications of graphene and its derivatives as biomedical materials has been presented. The unique properties of graphene and its derivatives (such as graphene oxide, reduced graphene oxide, graphane, graphone, graphyne, graphdiyne, fluorographene and their doped versions) have been discussed, followed by discussions on the recent efforts on the applications of graphene and its derivatives in biosensing, bio-imaging, drug delivery and therapy, cell culture, tissue engineering and cell growth. Also, the challenges involved in the use of graphene and its derivatives as biomedical materials are discussed briefly, followed by the future perspectives of the use of graphene-based nanomaterials in bio-applications. The review will provide an outlook to the applications of graphene and its derivatives, and may open up new horizons to inspire broader interests across various disciplines.
Collapse
Affiliation(s)
- Arghya Narayan Banerjee
- School of Mechanical Engineering, College of Mechanical and IT Engineering, Yeungnam University, Gyeongsan-Si 712-749, South Korea
| |
Collapse
|
241
|
Wei Y, Quan L, Zhou C, Zhan Q. Factors relating to the biodistribution & clearance of nanoparticles & their effects on in vivo application. Nanomedicine (Lond) 2018; 13:1495-1512. [DOI: 10.2217/nnm-2018-0040] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Nanoparticles have promising biomedical applications for drug delivery, tumor imaging and tumor treatment. Pharmacokinetics are important for the in vivo application of nanoparticles. Biodistribution and clearance are largely defined as the key points of pharmacokinetics to maximize therapeutic efficacy and to minimize side effects. Different engineered nanoparticles have different biodistribution and clearance processes. The interactions of organs with nanoparticles, which are determined by the characteristics of the organs and the biochemical/physical properties of the nanoparticles, are a major factor influencing biodistribution and clearance. In this review, the clearance functions of organs and the properties related to pharmacokinetics, including nanoparticle size, shape, biodegradation and surface modifications are discussed.
Collapse
Affiliation(s)
- Yanchun Wei
- Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huai'an, Jiangsu 223001, PR China
- Centre for Optical & Electromagnetic Research, Guangdong Provincial Key Laboratory of Optical Information Materials & Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, PR China
| | - Li Quan
- Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huai'an, Jiangsu 223001, PR China
| | - Chao Zhou
- Centre for Optical & Electromagnetic Research, Guangdong Provincial Key Laboratory of Optical Information Materials & Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, PR China
| | - Qiuqiang Zhan
- Centre for Optical & Electromagnetic Research, Guangdong Provincial Key Laboratory of Optical Information Materials & Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, PR China
- Key Laboratory of Optoelectronic Devices & Systems of Ministry of Education & Guangdong Province, Shenzhen University, Shenzhen 518052, PR China
| |
Collapse
|
242
|
Yang B, Chen Y, Shi J. Material Chemistry of Two-Dimensional Inorganic Nanosheets in Cancer Theranostics. Chem 2018. [DOI: 10.1016/j.chempr.2018.02.012] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
243
|
Chu J, Shi P, Yan W, Fu J, Yang Z, He C, Deng X, Liu H. PEGylated graphene oxide-mediated quercetin-modified collagen hybrid scaffold for enhancement of MSCs differentiation potential and diabetic wound healing. NANOSCALE 2018; 10:9547-9560. [PMID: 29745944 DOI: 10.1039/c8nr02538j] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Nanoscale delivery based on polyethylene glycol (PEG)ylated graphene oxide (GO-PEG) merits attention for biomedical applications owing to its functional surface modification, superior solubility/biocompatibility and controllable drug release capability. However, impaired skin regeneration in applications of these fascinating nanomaterials in diabetes is still limited, and critical issues need to be addressed regarding insufficient collagen hyperplasia and inadequate blood supply. Therefore, a high-performance tissue engineering scaffold with biocompatible and biodegradable properties is essential for diabetic wound healing. Natural and artificial acellular dermal matrix (ADM) scaffolds with spatially organized collagen fibers can provide a suitable architecture and environment for cell attachment and proliferation. Here, a novel collagen-nanomaterial-drug hybrid scaffold was constructed from GO-PEG-mediated quercetin (GO-PEG/Que)-modified ADM (ADM-GO-PEG/Que). The resulting unique and versatile hybrid scaffold exhibited multiple advantages, including the following: a biocompatible, cell-adhesive surface for accelerating mesenchymal stem cell (MSC) attachment and proliferation; superior stability and adjustability of the conduction potential of quercetin for inducing the differentiation of MSCs into adipocytes and osteoblasts; and a biodegradable nanofiber interface for promoting collagen deposition and angiogenesis in diabetic wound repair. This study provides new prospects for the design of innovative GO-PEG-based collagen hybrid scaffolds for application in efficient therapeutic drug delivery, stem cell-based therapies, tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Jing Chu
- MOE Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, China.
| | | | | | | | | | | | | | | |
Collapse
|
244
|
Chen L, Duan X, Xiang Z. [Recent advances in application of graphene oxide for bone tissue engineering]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2018; 32:625-629. [PMID: 29806354 PMCID: PMC8430019 DOI: 10.7507/1002-1892.201712063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Indexed: 02/05/2023]
Abstract
Objective To review the recent advances in the application of graphene oxide (GO) for bone tissue engineering. Methods The latest literature at home and abroad on the GO used in the bone regeneration and repair was reviewed, including general properties of GO, degradation performance, biocompatibility, and application in bone tissue engineering. Results GO has an abundance of oxygen-containing functionalities, high surface area, and good biocompatibility. In addition, it can promote stem cell adhesion, proliferation, and differentiation. Moreover, GO has many advantages in the construction of new composite scaffolds and improvement of the performance of traditional scaffolds. Conclusion GO has been a hot topic in the field of bone tissue engineering due to its excellent physical and chemical properties. And many problems still need to be solved.
Collapse
Affiliation(s)
- Li Chen
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Xin Duan
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Zhou Xiang
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041,
| |
Collapse
|
245
|
Loftus C, Saeed M, Davis DM, Dunlop IE. Activation of Human Natural Killer Cells by Graphene Oxide-Templated Antibody Nanoclusters. NANO LETTERS 2018; 18:3282-3289. [PMID: 29676151 PMCID: PMC5951604 DOI: 10.1021/acs.nanolett.8b01089] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 04/12/2018] [Indexed: 05/25/2023]
Abstract
An emerging new paradigm is that immune cell activation is controlled by transient interactions between supramolecular assemblies of receptors and ligands. Current immunotherapy biologic pharmaceuticals that activate or desensitize NK cells are, however, individual molecules that do not replicate this nanoscale organization of proteins. Here, we use nanoscale graphene oxide (NGO) as a template to generate soluble nanoscale clusters of Natural Killer cell-activating antibodies. We control nanocluster size and molecular number to mimic reported values for cell surface proteins. These NGO-templated molecular nanoclusters, used to stimulate NK cells via the CD16 receptor, successfully induced cellular activation, indicated by degranulation of cytolytic granules and IFN-γ secretion. Importantly, activation significantly exceeded that induced by the same antibodies applied as a solution of individual molecules. These results demonstrate that future immunotherapies could be enhanced by assembling immunomodulatory drugs into nanoclusters and establish NGO-templating as a candidate technology.
Collapse
Affiliation(s)
- Christian Loftus
- Department
of Chemistry and Department of Materials, Imperial College
London, Exhibition Road, London SW7 2AZ, United Kingdom
- Manchester
Collaborative Center for Inflammation Research, University of Manchester, 46 Grafton Street, Manchester M13 9NT, United Kingdom
| | - Mezida Saeed
- Manchester
Collaborative Center for Inflammation Research, University of Manchester, 46 Grafton Street, Manchester M13 9NT, United Kingdom
| | - Daniel M. Davis
- Manchester
Collaborative Center for Inflammation Research, University of Manchester, 46 Grafton Street, Manchester M13 9NT, United Kingdom
| | - Iain E. Dunlop
- Department
of Chemistry and Department of Materials, Imperial College
London, Exhibition Road, London SW7 2AZ, United Kingdom
| |
Collapse
|
246
|
Qu Y, He F, Yu C, Liang X, Liang D, Ma L, Zhang Q, Lv J, Wu J. Advances on graphene-based nanomaterials for biomedical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 90:764-780. [PMID: 29853147 DOI: 10.1016/j.msec.2018.05.018] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 03/26/2018] [Accepted: 05/03/2018] [Indexed: 02/07/2023]
Abstract
Graphene-based nanomaterials, such as graphene oxide and reduced graphene oxide, have been attracting increasing attention in the field of biology and biomedicine over the past few years. Incorporation of these novel materials with drug, gene, photosensitizer and other cargos to construct novel delivery systems has witnessed rapid advance on the basis of their large surface area, distinct surface properties, excellent biocompatibility and pH sensitivity. Moreover, the inherent photothermal effect of these appealing materials enables them with the ability of killing targeting cells via a physical mechanism. Recently, more attentions have been attached to tissue engineering, including bone, neural, cardiac, cartilage, musculoskeletal, and skin/adipose tissue engineering, due to the outstanding mechanical strength, stiffness, electrical conductivity, various two-dimensional (2D) and three-dimensional (3D) morphologies of graphene-based nanomaterials. Herein, emerging applications of these nanomaterials in bio-imaging, drug/gene delivery, phototherapy, multimodality therapy and tissue engineering were comprehensively reviewed. Inevitably, the burgeon of this kind of novel materials leads to the endeavor to consider their safety so that this issue has been deeply discussed and summarized in our review. We hope that this review offers an overall understanding of these nanomaterials for later in-depth investigations.
Collapse
Affiliation(s)
- Ying Qu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Science, Shandong University, Jinan, Shandong, 250012, China
| | - Feng He
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Science, Shandong University, Jinan, Shandong, 250012, China
| | - Chenggong Yu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Science, Shandong University, Jinan, Shandong, 250012, China
| | - Xuewu Liang
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Science, Shandong University, Jinan, Shandong, 250012, China
| | - Dong Liang
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Science, Shandong University, Jinan, Shandong, 250012, China
| | - Long Ma
- Department of Analytical Chemistry, the testing center of Shandong Bureau, Jinan, Shandong, 250014, China
| | - Qiuqiong Zhang
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Science, Shandong University, Jinan, Shandong, 250012, China
| | - Jiahui Lv
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Science, Shandong University, Jinan, Shandong, 250012, China
| | - Jingde Wu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Science, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
247
|
Ouyang L, Deng Y, Yang L, Shi X, Dong T, Tai Y, Yang W, Chen ZG. Graphene-Oxide-Decorated Microporous Polyetheretherketone with Superior Antibacterial Capability and In Vitro Osteogenesis for Orthopedic Implant. Macromol Biosci 2018; 18:e1800036. [DOI: 10.1002/mabi.201800036] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/08/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Ling Ouyang
- School of Materials Science and Engineering; Sichuan University; Chengdu 610065 China
| | - Yi Deng
- School of Chemical Engineering; Sichuan University; Chengdu 610065 China
- Department of Mechanical Engineering; The University of Hong Kong; 999077 Hong Kong China
| | - Lei Yang
- School of Materials Science and Engineering; Sichuan University; Chengdu 610065 China
| | - Xiuyuan Shi
- School of Materials Science and Engineering; Sichuan University; Chengdu 610065 China
| | - Taosheng Dong
- School of Materials Science and Engineering; Sichuan University; Chengdu 610065 China
| | - Youyi Tai
- School of Materials Science and Engineering; Sichuan University; Chengdu 610065 China
| | - Weizhong Yang
- School of Materials Science and Engineering; Sichuan University; Chengdu 610065 China
| | - Zhi-Gang Chen
- Centre for Future Materials; University of Southern Queensland; Springfield QLD 4300 Australia
- Materials Engineering; The University of Queensland; Brisbane QLD 4072 Australia
| |
Collapse
|
248
|
Wang B, Su X, Liang J, Yang L, Hu Q, Shan X, Wan J, Hu Z. Synthesis of polymer-functionalized nanoscale graphene oxide with different surface charge and its cellular uptake, biosafety and immune responses in Raw264.7 macrophages. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 90:514-522. [PMID: 29853120 DOI: 10.1016/j.msec.2018.04.096] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 03/21/2018] [Accepted: 04/30/2018] [Indexed: 12/20/2022]
Abstract
Polymer-functionalized graphene oxide (GO) has superior properties such as large surface area, extraordinary mechanical strength, high carrier mobility, good stability in physiological media and low cytotoxicity, making it an attractive material for drug and gene delivery. Herein, we successfully synthesized GO with an average size of 168.3 nm by a modified Hummers' method. Branched polyethylenimine (PEI) and 6-armed polyethylene glycol (PEG) functionalized GO complexes (GO-PEI and GO-PEG) with different zeta potentials of 47.2 mV and -43.0 mV, respectively, were successfully synthesized through amide linkages between the COOH groups of GO and the NH2 groups of PEI and PEG. Then, the interactions between GO-PEI and GO-PEG complexes and Raw264.7 mouse monocyte-macrophage cells were investigated. The GO-PEI and GO-PEG complexes could both be internalized by Raw264.7 cells. However, compared with the GO-PEG complex, the GO-PEI complex showed higher intracellular delivery efficiency in Raw264.7 cells. Moreover, it was found that the GO-PEI complex not only gathered in endosomes but also in the cytoplasm, whereas GO-PEG gathered in endosomes only. The MTT tests showed that both GO-PEI and GO-PEG complexes exhibited very low cytotoxicity towards Raw264.7 cells when at a low concentration. The cellular immune response test demonstrated the GO-PEG complex enhanced the secretion of IL-6, illustrating it was more stimulus towards macrophage cells. The above results indicated that the GO-PEI complex, with a positive surface charge, demonstrated better potential to be used in effective drug and gene delivery.
Collapse
Affiliation(s)
- Bing Wang
- Department of Polymer Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Xiaopeng Su
- Department of Polymer Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Junlong Liang
- Department of Polymer Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Lifeng Yang
- Department of Polymer Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Qinli Hu
- Department of Polymer Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xinyi Shan
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Junmin Wan
- Department of Polymer Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhiwen Hu
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
249
|
Valentini F, Mari E, Zicari A, Calcaterra A, Talamo M, Scioli MG, Orlandi A, Mardente S. Metal Free Graphene Oxide (GO) Nanosheets and Pristine-Single Wall Carbon Nanotubes (p-SWCNTs) Biocompatibility Investigation: A Comparative Study in Different Human Cell Lines. Int J Mol Sci 2018; 19:ijms19051316. [PMID: 29710799 PMCID: PMC5983736 DOI: 10.3390/ijms19051316] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 04/21/2018] [Accepted: 04/23/2018] [Indexed: 02/07/2023] Open
Abstract
The in vitro biocompatibility of Graphene Oxide (GO) nanosheets, which were obtained by the electrochemical exfoliation of graphite electrodes in an electrolytic bath containing salts, was compared with the pristine Single Wall Carbon Nanotubes (p-SWCNTs) under the same experimental conditions in different human cell lines. The cells were treated with different concentrations of GO and SWCNTs for up to 48 h. GO did not induce any significant morphological or functional modifications (demonstrating a high biocompatibility), while SWNCTs were toxic at any concentration used after a few hours of treatment. The cell viability or cytotoxicity were detected by the trypan blue assay and the lactate dehydrogenase LDH quantitative enzymatic test. The Confocal Laser Scanning Microscopy (CLSM) and transmission electron microscopy (TEM) analysis demonstrated the uptake and internalization of GO sheets into cells, which was localized mainly in the cytoplasm. Different results were observed in the same cell lines treated with p-SWCNTs. TEM and CLSM (Confocal Laser Scanning Microscopy) showed that the p-SWCNTs induced vacuolization in the cytoplasm, disruption of cellular architecture and damage to the nuclei. The most important result of this study is our finding of a higher GO biocompatibility compared to the p-SWCNTs in the same cell lines. This means that GO nanosheets, which are obtained by the electrochemical exfoliation of a graphite-based electrode (carried out in saline solutions or other physiological working media) could represent an eligible nanocarrier for drug delivery, gene transfection and molecular cell imaging tests.
Collapse
Affiliation(s)
- Federica Valentini
- Department of Sciences and Chemical Technologies, University of Rome Tor Vergata, via della Ricerca Scientifica 1, 00133 Rome, Italy.
- INUIT Foundation, University of Roma Tor Vergata, via dell'Archigginasio, 00133 Rome, Italy.
| | - Emanuela Mari
- Department of Experimental Medicine, University of Rome Sapienza, Viale Regina Elena 324, 00161 Rome, Italy.
| | - Alessandra Zicari
- Department of Experimental Medicine, University of Rome Sapienza, Viale Regina Elena 324, 00161 Rome, Italy.
| | - Andrea Calcaterra
- INUIT Foundation, University of Roma Tor Vergata, via dell'Archigginasio, 00133 Rome, Italy.
| | - Maurizio Talamo
- INUIT Foundation, University of Roma Tor Vergata, via dell'Archigginasio, 00133 Rome, Italy.
| | - Maria Giovanna Scioli
- Department of Medicine, Pathological Anatomy, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy.
| | - Augusto Orlandi
- Department of Medicine, Pathological Anatomy, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy.
| | - Stefania Mardente
- Department of Experimental Medicine, University of Rome Sapienza, Viale Regina Elena 324, 00161 Rome, Italy.
| |
Collapse
|
250
|
Kawamoto K, Miyaji H, Nishida E, Miyata S, Kato A, Tateyama A, Furihata T, Shitomi K, Iwanaga T, Sugaya T. Characterization and evaluation of graphene oxide scaffold for periodontal wound healing of class II furcation defects in dog. Int J Nanomedicine 2018; 13:2365-2376. [PMID: 29713167 PMCID: PMC5912619 DOI: 10.2147/ijn.s163206] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Introduction The 3-dimensional scaffold plays a key role in volume and quality of repair tissue in periodontal tissue engineering therapy. We fabricated a novel 3D collagen scaffold containing carbon-based 2-dimensional layered material, named graphene oxide (GO). The aim of this study was to characterize and assess GO scaffold for periodontal tissue healing of class II furcation defects in dog. Materials and methods GO scaffolds were prepared by coating the surface of a 3D collagen sponge scaffold with GO dispersion. Scaffolds were characterized using cytotoxicity and tissue reactivity tests. In addition, GO scaffold was implanted into dog class II furcation defects and periodontal healing was investigated at 4 weeks postsurgery. Results GO scaffold exhibited low cytotoxicity and enhanced cellular ingrowth behavior and rat bone forming ability. In addition, GO scaffold stimulated healing of dog class II furcation defects. Periodontal attachment formation, including alveolar bone, periodontal ligament-like tissue, and cementum-like tissue, was significantly increased by GO scaffold implantation, compared with untreated scaffold. Conclusion The results suggest that GO scaffold is biocompatible and possesses excellent bone and periodontal tissue formation ability. Therefore, GO scaffold would be beneficial for periodontal tissue engineering therapy.
Collapse
Affiliation(s)
- Kohei Kawamoto
- Department of Periodontology and Endodontology, Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Hirofumi Miyaji
- Department of Periodontology and Endodontology, Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Erika Nishida
- Department of Periodontology and Endodontology, Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Saori Miyata
- Department of Periodontology and Endodontology, Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Akihito Kato
- Department of Periodontology and Endodontology, Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Akito Tateyama
- Department of Periodontology and Endodontology, Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Tomokazu Furihata
- Department of Periodontology and Endodontology, Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Kanako Shitomi
- Department of Periodontology and Endodontology, Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Toshihiko Iwanaga
- Department of Histology and Cytology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Tsutomu Sugaya
- Department of Periodontology and Endodontology, Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|