201
|
Litvin AP, Babaev AA, Parfenov PS, Dubavik A, Cherevkov SA, Baranov MA, Bogdanov KV, Reznik IA, Ilin PO, Zhang X, Purcell-Milton F, Gun'ko YK, Fedorov AV, Baranov AV. Ligand-Assisted Formation of Graphene/Quantum Dot Monolayers with Improved Morphological and Electrical Properties. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E723. [PMID: 32290368 PMCID: PMC7221828 DOI: 10.3390/nano10040723] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/06/2020] [Accepted: 04/08/2020] [Indexed: 12/29/2022]
Abstract
Hybrid nanomaterials based on graphene and PbS quantum dots (QDs) have demonstrated promising applications in optoelectronics. However, the formation of high-quality large-area hybrid films remains technologically challenging. Here, we demonstrate that ligand-assisted self-organization of covalently bonded PbS QDs and reduced graphene oxide (rGO) can be utilized for the formation of highly uniform monolayers. After the post-deposition ligand exchange, these films demonstrated high conductivity and photoresponse. The obtained films demonstrate a remarkable improvement in morphology and charge transport compared to those obtained by the spin-coating method. It is expected that these materials might find a range of applications in photovoltaics and optoelectronics.
Collapse
Affiliation(s)
- Aleksandr P Litvin
- Center of Information Optical Technology, ITMO University, St. Petersburg 197101, Russia
| | - Anton A Babaev
- Center of Information Optical Technology, ITMO University, St. Petersburg 197101, Russia
| | - Peter S Parfenov
- Center of Information Optical Technology, ITMO University, St. Petersburg 197101, Russia
| | - Aliaksei Dubavik
- Center of Information Optical Technology, ITMO University, St. Petersburg 197101, Russia
| | - Sergei A Cherevkov
- Center of Information Optical Technology, ITMO University, St. Petersburg 197101, Russia
| | - Mikhail A Baranov
- Center of Information Optical Technology, ITMO University, St. Petersburg 197101, Russia
| | - Kirill V Bogdanov
- Center of Information Optical Technology, ITMO University, St. Petersburg 197101, Russia
| | - Ivan A Reznik
- Center of Information Optical Technology, ITMO University, St. Petersburg 197101, Russia
| | - Pavel O Ilin
- Center of Information Optical Technology, ITMO University, St. Petersburg 197101, Russia
| | - Xiaoyu Zhang
- College of Materials Science and Engineering, Jilin University, Changchun 130012, China
| | - Finn Purcell-Milton
- School of Chemistry and CRANN Trinity College Dublin, Dublin 2, Dublin D02 PN40, Ireland
| | - Yurii K Gun'ko
- School of Chemistry and CRANN Trinity College Dublin, Dublin 2, Dublin D02 PN40, Ireland
| | - Anatoly V Fedorov
- Center of Information Optical Technology, ITMO University, St. Petersburg 197101, Russia
| | - Alexander V Baranov
- Center of Information Optical Technology, ITMO University, St. Petersburg 197101, Russia
| |
Collapse
|
202
|
Lee YS, Ito T, Shimura K, Watanabe T, Bu HB, Hyeon-Deuk K, Kim D. Coupled electronic states in CdTe quantum dot assemblies fabricated by utilizing chemical bonding between ligands. NANOSCALE 2020; 12:7124-7133. [PMID: 32191241 DOI: 10.1039/d0nr00194e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Semiconductor quantum dot superlattices (QDSLs) have attracted much attention as key materials for realizing new optoelectronic devices such as solar cells with high conversion efficiency and thermoelectric elements with high electrical conductivity. To improve the charge transport properties of QDSL-based optoelectronic devices, it is important that the QD structures form minibands, which are the coupled electronic states between QDs. A shorter inter-QD distance and a periodic arrangement of QDs are the essential conditions for the formation of minibands. In this study, we use CdTe QDs capped with short ligands of N-acetyl-l cysteine (NAC) to fabricate three-dimensional QD assemblies by utilizing chemical bonding between NACs. Absorption spectra clearly display the quantum resonance phenomenon originating from the coupling of the wave functions between the adjacent QDs in CdTe QD assemblies. Furthermore, we demonstrate the formation of minibands in CdTe QD assemblies by examining both, the excitation energy dependence of photoluminescence (PL) spectra and the detection energy dependence of PL excitation spectra. The fabrication method of QD assemblies utilizing chemical bonding between NACs can be applied to all QDs capped with NAC as a ligand.
Collapse
Affiliation(s)
- Yong-Shin Lee
- Department of Applied Physics, Osaka City University, Osaka 558-8585, Japan.
| | | | | | | | | | | | | |
Collapse
|
203
|
Xiang C, Wu L, Lu Z, Li M, Wen Y, Yang Y, Liu W, Zhang T, Cao W, Tsang SW, Shan B, Yan X, Qian L. High efficiency and stability of ink-jet printed quantum dot light emitting diodes. Nat Commun 2020; 11:1646. [PMID: 32242016 PMCID: PMC7118149 DOI: 10.1038/s41467-020-15481-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 03/12/2020] [Indexed: 11/09/2022] Open
Abstract
The low efficiency and fast degradation of devices from ink-jet printing process hinders the application of quantum dot light emitting diodes on next generation displays. Passivating the trap states caused by both anion and cation under-coordinated sites on the quantum dot surface with proper ligands for ink-jet printing processing reminds a problem. Here we show, by adapting the idea of dual ionic passivation of quantum dots, ink-jet printed quantum dot light emitting diodes with an external quantum efficiency over 16% and half lifetime of more than 1,721,000 hours were reported for the first time. The liquid phase exchange of ligands fulfills the requirements of ink-jet printing processing for possible mass production. And the performance from ink-jet printed quantum dot light emitting diodes truly opens the gate of quantum dot light emitting diode application for industry.
Collapse
Affiliation(s)
- Chaoyu Xiang
- TCL Research, No. 1001 Zhongshan Park Road, Nanshan District, Shenzhen, 518067, People's Republic of China. .,Division of Functional Materials and Nanodevices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Science, 1219 West Zhongguan Road, Ningbo, 315201, Zhejiang, People's Republic of China.
| | - Longjia Wu
- TCL Research, No. 1001 Zhongshan Park Road, Nanshan District, Shenzhen, 518067, People's Republic of China
| | - Zizhe Lu
- TCL Research, No. 1001 Zhongshan Park Road, Nanshan District, Shenzhen, 518067, People's Republic of China
| | - Menglin Li
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, People's Republic of China.,Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, People's Republic of China
| | - Yanwei Wen
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, Hubei, People's Republic of China
| | - Yixing Yang
- TCL Research, No. 1001 Zhongshan Park Road, Nanshan District, Shenzhen, 518067, People's Republic of China
| | - Wenyong Liu
- TCL Research, No. 1001 Zhongshan Park Road, Nanshan District, Shenzhen, 518067, People's Republic of China
| | - Ting Zhang
- TCL Research, No. 1001 Zhongshan Park Road, Nanshan District, Shenzhen, 518067, People's Republic of China
| | - Weiran Cao
- TCL Research, No. 1001 Zhongshan Park Road, Nanshan District, Shenzhen, 518067, People's Republic of China
| | - Sai-Wing Tsang
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, People's Republic of China.,Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, People's Republic of China
| | - Bin Shan
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, Hubei, People's Republic of China
| | - Xiaolin Yan
- TCL Research, No. 1001 Zhongshan Park Road, Nanshan District, Shenzhen, 518067, People's Republic of China.
| | - Lei Qian
- TCL Research, No. 1001 Zhongshan Park Road, Nanshan District, Shenzhen, 518067, People's Republic of China. .,Division of Functional Materials and Nanodevices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Science, 1219 West Zhongguan Road, Ningbo, 315201, Zhejiang, People's Republic of China.
| |
Collapse
|
204
|
Lv Z, Wang Y, Chen J, Wang J, Zhou Y, Han ST. Semiconductor Quantum Dots for Memories and Neuromorphic Computing Systems. Chem Rev 2020; 120:3941-4006. [DOI: 10.1021/acs.chemrev.9b00730] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ziyu Lv
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, P. R. China
| | - Yan Wang
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, P. R. China
| | - Jingrui Chen
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, P. R. China
| | - Junjie Wang
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, P. R. China
| | - Ye Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, P. R. China
| | - Su-Ting Han
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, P. R. China
| |
Collapse
|
205
|
Le TH, Kim S, Chae S, Choi Y, Park CS, Heo E, Lee U, Kim H, Kwon OS, Im WB, Yoon H. Zero reduction luminescence of aqueous-phase alloy core/shell quantum dots via rapid ambient-condition ligand exchange. J Colloid Interface Sci 2020; 564:88-98. [PMID: 31911231 DOI: 10.1016/j.jcis.2019.12.104] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/21/2019] [Accepted: 12/23/2019] [Indexed: 12/28/2022]
Abstract
Quantum dots (QDs) have been widely studied as promising materials for various applications because of their outstanding photoluminescence (PL). Although ligand exchange methods for QDs have been developed over two decades, the PL quantum yield (QY) of aqueous phase QDs is still lower than that of their organic phase and the mechanism of quenching has not been clearly understood. In this study, we demonstrate for the first time that 3-mercaptopropionic-capped CdZnSeS/ZnS core/shell QDs obtained via ligand exchange in a ternary solvent system containing chloroform/water/dimethyl sulfoxide can enable the fast phase transfer and zero reduction of PL under ambient condition. The new solvent system allows the ligand-exchanged QDs to exhibit enhanced QYs up to 8.1% of that of the organic-phase QDs. Based on both theoretical calculation and experiment, it was found that control over the physical/chemical perturbation between the organic/aqueous phases by choosing appropriate solvents for the ligand exchange process is very important to preserve the optical properties of QDs. We believe that our new technologies and theoretical knowledge offer opportunities for the future design and optimization of highly stable and highly luminescent aqueous-phase QDs for various applications.
Collapse
Affiliation(s)
- Thanh-Hai Le
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Gwangju 61186, South Korea
| | - Semin Kim
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Gwangju 61186, South Korea
| | - Subin Chae
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Gwangju 61186, South Korea
| | - Yunseok Choi
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Gwangju 61186, South Korea
| | - Chul Soon Park
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Gwangju 61186, South Korea
| | - Eunseo Heo
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Gwangju 61186, South Korea
| | - Unhan Lee
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Gwangju 61186, South Korea
| | - Hyungwoo Kim
- Alan G. MacDiarmid Energy Research Institute, School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Gwangju 61186, South Korea; Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Gwangju 61186, South Korea
| | - Oh Seok Kwon
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon 34141, South Korea; Department of NanoBiotechnology, Korea University of Science and Technology (UST), 125 Gwahak-ro, Daejeon 34141, South Korea.
| | - Won Bin Im
- Division of Materials Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, South Korea.
| | - Hyeonseok Yoon
- Alan G. MacDiarmid Energy Research Institute, School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Gwangju 61186, South Korea; Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Gwangju 61186, South Korea.
| |
Collapse
|
206
|
Kennehan ER, Munson KT, Doucette GS, Marshall AR, Beard MC, Asbury JB. Dynamic Ligand Surface Chemistry of Excited PbS Quantum Dots. J Phys Chem Lett 2020; 11:2291-2297. [PMID: 32131595 DOI: 10.1021/acs.jpclett.0c00539] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The ligand shell around colloidal quantum dots mediates the electron and energy transfer processes that underpin their use in optoelectronic and photocatalytic applications. Here, we show that the surface chemistry of carboxylate anchoring groups of oleate ligands passivating PbS quantum dots undergoes significant changes when the quantum dots are excited to their excitonic states. We directly probe the changes of surface chemistry using time-resolved mid-infrared spectroscopy that records the evolution of the vibrational frequencies of carboxylate groups following excitation of the electronic states. The data reveal a reduction of the Pb-O coordination of carboxylate anchoring groups to lead atoms at the quantum dot surfaces. The dynamic surface chemistry of the ligands may increase their surface mobility in the excited state and enhance the ability of molecular species to penetrate the ligand shell to undergo energy and charge transfer processes that depend sensitively on distance.
Collapse
Affiliation(s)
- Eric R Kennehan
- Magnitude Instruments, State College, Pennsylvania 16803, United States
| | - Kyle T Munson
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Grayson S Doucette
- Intercollege Materials Science and Engineering Program, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Ashley R Marshall
- Chemical and Materials Science, National Renewable Energy Laboratory (NREL), Golden, Colorado 80401, United States
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309, United States
| | - Matthew C Beard
- Chemical and Materials Science, National Renewable Energy Laboratory (NREL), Golden, Colorado 80401, United States
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309, United States
| | - John B Asbury
- Magnitude Instruments, State College, Pennsylvania 16803, United States
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Intercollege Materials Science and Engineering Program, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
207
|
Duan J, Wang Y, Yang X, Tang Q. Alkyl‐Chain‐Regulated Charge Transfer in Fluorescent Inorganic CsPbBr
3
Perovskite Solar Cells. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000199] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jialong Duan
- Institute of New Energy TechnologyCollege of Information Science and TechnologyJinan University Guangzhou 510632 P. R. China
| | - Yudi Wang
- Institute of New Energy TechnologyCollege of Information Science and TechnologyJinan University Guangzhou 510632 P. R. China
| | - Xiya Yang
- Institute of New Energy TechnologyCollege of Information Science and TechnologyJinan University Guangzhou 510632 P. R. China
| | - Qunwei Tang
- Institute of New Energy TechnologyCollege of Information Science and TechnologyJinan University Guangzhou 510632 P. R. China
- Joint Laboratory for Deep Blue Fishery EngineeringQingdao National Laboratory for Marine Science and Technology Qingdao 266237 P. R. China
| |
Collapse
|
208
|
Recent Developments of Solar Cells from PbS Colloidal Quantum Dots. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10051743] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PbS (lead sulfide) colloidal quantum dots consist of crystallites with diameters in the nanometer range with organic molecules on their surfaces, partly with additional metal complexes as ligands. These surface molecules are responsible for solubility and prevent aggregation, but the interface between semiconductor quantum dots and ligands also influences the electronic structure. PbS quantum dots are especially interesting for optoelectronic applications and spectroscopic techniques, including photoluminescence, photodiodes and solar cells. Here we concentrate on the latter, giving an overview of the optical properties of solar cells prepared with PbS colloidal quantum dots, produced by different methods and combined with diverse other materials, to reach high efficiencies and fill factors.
Collapse
|
209
|
Utterback JK, Ruzicka JL, Keller HR, Pellows LM, Dukovic G. Electron Transfer from Semiconductor Nanocrystals to Redox Enzymes. Annu Rev Phys Chem 2020; 71:335-359. [PMID: 32074472 DOI: 10.1146/annurev-physchem-050317-014232] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This review summarizes progress in understanding electron transfer from photoexcited nanocrystals to redox enzymes. The combination of the light-harvesting properties of nanocrystals and the catalytic properties of redox enzymes has emerged as a versatile platform to drive a variety of enzyme-catalyzed reactions with light. Transfer of a photoexcited charge from a nanocrystal to an enzyme is a critical first step for these reactions. This process has been studied in depth in systems that combine Cd-chalcogenide nanocrystals with hydrogenases. The two components can be assembled in close proximity to enable direct interfacial electron transfer or integrated with redox mediators to transport charges. Time-resolved spectroscopy and kinetic modeling have been used to measure the rates and efficiencies of the electron transfer. Electron transfer has been described within the framework of Marcus theory, providing insights into the factors that can be used to control the photochemical activity of these biohybrid systems. The range of potential applications and reactions that can be achieved using nanocrystal-enzyme systems is expanding, and numerous fundamental and practical questions remain to be addressed.
Collapse
Affiliation(s)
- James K Utterback
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, USA; , , .,Current affiliation: Department of Chemistry, University of California, Berkeley, California 94720, USA;
| | - Jesse L Ruzicka
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, USA; , ,
| | - Helena R Keller
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, Colorado 80309, USA;
| | - Lauren M Pellows
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, USA; , ,
| | - Gordana Dukovic
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, USA; , ,
| |
Collapse
|
210
|
Duan J, Wang Y, Yang X, Tang Q. Alkyl‐Chain‐Regulated Charge Transfer in Fluorescent Inorganic CsPbBr
3
Perovskite Solar Cells. Angew Chem Int Ed Engl 2020; 59:4391-4395. [DOI: 10.1002/anie.202000199] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Jialong Duan
- Institute of New Energy TechnologyCollege of Information Science and TechnologyJinan University Guangzhou 510632 P. R. China
| | - Yudi Wang
- Institute of New Energy TechnologyCollege of Information Science and TechnologyJinan University Guangzhou 510632 P. R. China
| | - Xiya Yang
- Institute of New Energy TechnologyCollege of Information Science and TechnologyJinan University Guangzhou 510632 P. R. China
| | - Qunwei Tang
- Institute of New Energy TechnologyCollege of Information Science and TechnologyJinan University Guangzhou 510632 P. R. China
- Joint Laboratory for Deep Blue Fishery EngineeringQingdao National Laboratory for Marine Science and Technology Qingdao 266237 P. R. China
| |
Collapse
|
211
|
Albaladejo-Siguan M, Becker-Koch D, Taylor AD, Sun Q, Lami V, Oppenheimer PG, Paulus F, Vaynzof Y. Efficient and Stable PbS Quantum Dot Solar Cells by Triple-Cation Perovskite Passivation. ACS NANO 2020; 14:384-393. [PMID: 31721556 DOI: 10.1021/acsnano.9b05848] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Solution-processed quantum dots (QDs) have a high potential for fabricating low-cost, flexible, and large-scale solar energy harvesting devices. It has recently been demonstrated that hybrid devices employing a single monovalent cation perovskite solution for PbS QD surface passivation exhibit enhanced photovoltaic performance when compared to standard ligand passivation. Herein, we demonstrate that the use of a triple cation Cs0.05(MA0.17FA0.83)0.95Pb(I0.9Br0.1)3 perovskite composition for surface passivation of the quantum dots results in highly efficient solar cells, which maintain 96% of their initial performance after 1200 h shelf storage. We confirm perovskite shell formation around the PbS nanocrystals by a range of spectroscopic techniques as well as high-resolution transmission electron microscopy. We find that the triple cation shell results in a favorable energetic alignment to the core of the dot, resulting in reduced recombination due to charge confinement without limiting transport in the active layer. Consequently, photovoltaic devices fabricated via a single-step film deposition reached a maximum AM1.5G power conversion efficiency of 11.3% surpassing most previous reports of PbS solar cells employing perovskite passivation.
Collapse
Affiliation(s)
- Miguel Albaladejo-Siguan
- Kirchhoff Institute for Physics, Heidelberg University , Im Neuenheimer Feld 227 , 69120 Heidelberg , Germany
- Integrated Centre for Applied Physics and Photonic Materials and Centre for Advancing Electronics Dresden (cfaed) , Technical University of Dresden , Nöthnitzer Straße 61 , 01187 Dresden , Germany
| | - David Becker-Koch
- Kirchhoff Institute for Physics, Heidelberg University , Im Neuenheimer Feld 227 , 69120 Heidelberg , Germany
- Integrated Centre for Applied Physics and Photonic Materials and Centre for Advancing Electronics Dresden (cfaed) , Technical University of Dresden , Nöthnitzer Straße 61 , 01187 Dresden , Germany
| | - Alexander D Taylor
- Kirchhoff Institute for Physics, Heidelberg University , Im Neuenheimer Feld 227 , 69120 Heidelberg , Germany
- Integrated Centre for Applied Physics and Photonic Materials and Centre for Advancing Electronics Dresden (cfaed) , Technical University of Dresden , Nöthnitzer Straße 61 , 01187 Dresden , Germany
| | - Qing Sun
- Kirchhoff Institute for Physics, Heidelberg University , Im Neuenheimer Feld 227 , 69120 Heidelberg , Germany
| | - Vincent Lami
- Kirchhoff Institute for Physics, Heidelberg University , Im Neuenheimer Feld 227 , 69120 Heidelberg , Germany
| | - Pola Goldberg Oppenheimer
- School of Biochemical Engineering , University of Birmingham , Edgbaston , Birmingham , West Midlands B15 2TT , United Kingdom
| | - Fabian Paulus
- Kirchhoff Institute for Physics, Heidelberg University , Im Neuenheimer Feld 227 , 69120 Heidelberg , Germany
- Integrated Centre for Applied Physics and Photonic Materials and Centre for Advancing Electronics Dresden (cfaed) , Technical University of Dresden , Nöthnitzer Straße 61 , 01187 Dresden , Germany
| | - Yana Vaynzof
- Kirchhoff Institute for Physics, Heidelberg University , Im Neuenheimer Feld 227 , 69120 Heidelberg , Germany
- Integrated Centre for Applied Physics and Photonic Materials and Centre for Advancing Electronics Dresden (cfaed) , Technical University of Dresden , Nöthnitzer Straße 61 , 01187 Dresden , Germany
| |
Collapse
|
212
|
Nakotte T, Luo H, Pietryga J. PbE (E = S, Se) Colloidal Quantum Dot-Layered 2D Material Hybrid Photodetectors. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E172. [PMID: 31963894 PMCID: PMC7022979 DOI: 10.3390/nano10010172] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 02/04/2023]
Abstract
Hybrid lead chalcogenide (PbE) (E = S, Se) quantum dot (QD)-layered 2D systems are an emerging class of photodetectors with unique potential to expand the range of current technologies and easily integrate into current complementary metal-oxide-semiconductor (CMOS)-compatible architectures. Herein, we review recent advancements in hybrid PbE QD-layered 2D photodetectors and place them in the context of key findings from studies of charge transport in layered 2D materials and QD films that provide lessons to be applied to the hybrid system. Photodetectors utilizing a range of layered 2D materials including graphene and transition metal dichalcogenides sensitized with PbE QDs in various device architectures are presented. Figures of merit such as responsivity (R) and detectivity (D*) are reviewed for a multitude of devices in order to compare detector performance. Finally, a look to the future considers possible avenues for future device development, including potential new materials and device treatment/fabrication options.
Collapse
Affiliation(s)
- Tom Nakotte
- Department of Chemical and Materials Engineering, New Mexico State University, Las Cruces, NM 88003, USA;
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA;
| | - Hongmei Luo
- Department of Chemical and Materials Engineering, New Mexico State University, Las Cruces, NM 88003, USA;
| | - Jeff Pietryga
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA;
| |
Collapse
|
213
|
Liyanage T, Nagaraju M, Johnson M, Muhoberac BB, Sardar R. Reversible Tuning of the Plasmoelectric Effect in Noble Metal Nanostructures Through Manipulation of Organic Ligand Energy Levels. NANO LETTERS 2020; 20:192-200. [PMID: 31765167 DOI: 10.1021/acs.nanolett.9b03588] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Ligand-controlled tuning of localized surface plasmon resonance (LSPR) properties of noble metal nanostructures is fundamentally important for various optoelectronic applications such as photocatalysis, photovoltaics, and sensing. Here we demonstrate that the free carrier concentration of gold triangular nanoprisms (Au TNPs) can be tuned up to 12% upon functionalization of their surface with different para-substituted thiophenolate (X-Ph-S-) ligands. We achieve this unprecedentedly large optical response (plasmoelectric effect) in TNPs through the selective manipulation of electronic processes at the Au-thiolate interface. Interestingly, thiophenolates with electron withdrawing (donating) groups (X) produce λLSPR blue (red) shifts with broadening (narrowing) of localized surface plasmon resonance peak (λLSPR) line widths. Surprisingly, these experimental results are opposite to a straightforward application of the Drude model. Utilizing density functional theory calculations, we develop here a frontier molecular orbital approach of Au-thiophenolate interactions in the solid-state to delineate the observed spectral response. Importantly, all the spectroscopic properties are fully reversible by exchanging thiophenolates containing electron withdrawing groups with thiophenolates having electron donating groups, and vice versa. On the basis of the experimental data and calculations, we propose that the delocalization of electrons wave function controls the free carrier concentration of Au and thus the LSPR properties rather than simple electronic properties (inductive and/or resonance effects) of thiophenolates. This is further supported by the experimentally determined work functions, which are tunable over 1.9 eV in the X-Ph-S-passivated Au TNPs. We believe that our unexpected finding has great potential to guide in developing unique noble metal nanostructure-organic ligand hybrid nanoconjugates, which could allow us to bypass the complications associated with off-resonance LSPR activation of noble metal-doped semiconductor nanocrystals for various surface plasmon-driven applications.
Collapse
Affiliation(s)
- Thakshila Liyanage
- Department of Chemistry and Chemical Biology and §Integrated Nanosystems Development Institute , Indiana University-Purdue University Indianapolis , 402 N. Blackford Street, LD326 , Indianapolis , Indiana 46202 , United States
| | - Malpuri Nagaraju
- Department of Chemistry and Chemical Biology and §Integrated Nanosystems Development Institute , Indiana University-Purdue University Indianapolis , 402 N. Blackford Street, LD326 , Indianapolis , Indiana 46202 , United States
| | - Merrell Johnson
- Department of Physics , Purdue University Fort Wayne , 2101 E. Coliseum Boulevard , Fort Wayne , Indiana 46805 , United States
| | - Barry B Muhoberac
- Department of Chemistry and Chemical Biology and §Integrated Nanosystems Development Institute , Indiana University-Purdue University Indianapolis , 402 N. Blackford Street, LD326 , Indianapolis , Indiana 46202 , United States
| | - Rajesh Sardar
- Department of Chemistry and Chemical Biology and §Integrated Nanosystems Development Institute , Indiana University-Purdue University Indianapolis , 402 N. Blackford Street, LD326 , Indianapolis , Indiana 46202 , United States
| |
Collapse
|
214
|
Cascade surface modification of colloidal quantum dot inks enables efficient bulk homojunction photovoltaics. Nat Commun 2020; 11:103. [PMID: 31900394 PMCID: PMC6941986 DOI: 10.1038/s41467-019-13437-2] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 11/10/2019] [Indexed: 12/24/2022] Open
Abstract
Control over carrier type and doping levels in semiconductor materials is key for optoelectronic applications. In colloidal quantum dots (CQDs), these properties can be tuned by surface chemistry modification, but this has so far been accomplished at the expense of reduced surface passivation and compromised colloidal solubility; this has precluded the realization of advanced architectures such as CQD bulk homojunction solids. Here we introduce a cascade surface modification scheme that overcomes these limitations. This strategy provides control over doping and solubility and enables n-type and p-type CQD inks that are fully miscible in the same solvent with complete surface passivation. This enables the realization of homogeneous CQD bulk homojunction films that exhibit a 1.5 times increase in carrier diffusion length compared with the previous best CQD films. As a result, we demonstrate the highest power conversion efficiency (13.3%) reported among CQD solar cells.
Collapse
|
215
|
Zhang Y, Wu G, Liu F, Ding C, Zou Z, Shen Q. Photoexcited carrier dynamics in colloidal quantum dot solar cells: insights into individual quantum dots, quantum dot solid films and devices. Chem Soc Rev 2020; 49:49-84. [PMID: 31825404 DOI: 10.1039/c9cs00560a] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The certified power conversion efficiency (PCE) record of colloidal quantum dot solar cells (QDSCs) has considerably improved from below 4% to 16.6% in the last few years. However, the record PCE value of QDSCs is still substantially lower than the theoretical efficiency. So far, there have been several reviews on recent and significant achievements in QDSCs, but reviews on photoexcited carrier dynamics in QDSCs are scarce. The photovoltaic performances of QDSCs are still limited by the photovoltage, photocurrent and fill factor that are mainly determined by the photoexcited carrier dynamics, including carrier (or exciton) generation, carrier extraction or transfer, and the carrier recombination process, in the devices. In this review, the photoexcited carrier dynamics in the whole QDSCs, originating from individual quantum dots (QDs) to the entire device as well as the characterization methods used for analyzing the photoexcited carrier dynamics are summarized and discussed. The recent research including photoexcited multiple exciton generation (MEG), hot electron extraction, and carrier transfer between adjacent QDs, as well as carrier injection and recombination at each interface of QDSCs are discussed in detail herein. The influence of photoexcited carrier dynamics on the physiochemical properties of QDs and photovoltaic performances of QDSC devices is also discussed.
Collapse
Affiliation(s)
- Yaohong Zhang
- Faculty of Informatics and Engineering, The University of Electro-Communications, Tokyo 182-8585, Japan.
| | | | | | | | | | | |
Collapse
|
216
|
Suzuki R, Onodera T, Kasai H, Oikawa H. Chemical modification utilizing a terminal structure exposed on the specific surface of polymer-metal complex nanocrystals. RSC Adv 2020; 10:6135-6138. [PMID: 35496015 PMCID: PMC9049687 DOI: 10.1039/c9ra10244b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 01/17/2020] [Indexed: 11/21/2022] Open
Abstract
It has been difficult to selectively modify the surface of molecular crystals by chemical reactions because they usually have no reaction points on their surfaces. In this paper, focusing on the unique nanocrystal surface of the polymer metal complex (PMC) [{Cu2(μ-Br)2(PPh3)2}(μ-bpy)]n having an exposed reactive terminal chain, we successfully modified the surface of PMC nanocrystals (NCs) through an alkylation reaction. Interestingly, after the alkylation reaction, the luminescence spectrum of PMC NCs blue-shifted, and the luminescence quantum yield increased. PMC NCs with a large specific surface area showed optically peculiar or characteristic properties compared with the corresponding bulk crystals. PMC NCs have high potential as a new class of luminescent materials due to their surface effect. We modified the surface of polymer metal complex nanocrystals (PMC NCs) with the alkylation reaction by utilizing coordinatively unsaturated bipyridine ligands exposed on the (010), and successfully changed the luminescence properties of PMC NCs.![]()
Collapse
Affiliation(s)
- Ryuju Suzuki
- Institute of Multidisciplinary Research for Advanced Materials
- Tohoku University
- Sendai 980-8577
- Japan
| | - Tsunenobu Onodera
- Institute of Multidisciplinary Research for Advanced Materials
- Tohoku University
- Sendai 980-8577
- Japan
| | - Hitoshi Kasai
- Institute of Multidisciplinary Research for Advanced Materials
- Tohoku University
- Sendai 980-8577
- Japan
| | - Hidetoshi Oikawa
- Institute of Multidisciplinary Research for Advanced Materials
- Tohoku University
- Sendai 980-8577
- Japan
| |
Collapse
|
217
|
Abstract
The conversion of solar energy into electricity via the photovoltaic (PV) effect has been rapidly developing in the last decades due to its potential for transition from fossil fuels to renewable energy based economies. In particular, the advances in PV technology and on the economy of scale permitted to reduce the cost of the energy produced with solar cells down to the energy cost of conventional fossil fuel. Thus, PV will play an important role to address the biggest challenges of our planet including global warming, climate change and air pollution. In this paper, we will introduce the photovoltaic technology recalling the working principle of the photovoltaic conversion and describing the different PV available on the market and under development. In the last section, we will focus more on the emerging technology of the halide perovskite, which is the research subject of the authors.
Collapse
|
218
|
Sukharevska N, Bederak D, Dirin D, Kovalenko M, Loi MA. Improved Reproducibility of PbS Colloidal Quantum Dots Solar Cells Using Atomic Layer-Deposited TiO 2. ENERGY TECHNOLOGY (WEINHEIM, GERMANY) 2020; 8:1900887. [PMID: 32064223 PMCID: PMC7006825 DOI: 10.1002/ente.201900887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/02/2019] [Indexed: 05/16/2023]
Abstract
Thanks to their broadly tunable bandgap and strong absorption, colloidal lead chalcogenide quantum dots (QDs) are highly appealing as solution-processable active layers for third-generation solar cells. However, the modest reproducibility of this kind of solar cell is a pertinent issue, which inhibits the exploitation of this material class in optoelectronics. This issue is not necessarily imputable to the active layer but may originate from different constituents of the device structure. Herein, the deposition of TiO2 electron transport layer is focused on. Atomic layer deposition (ALD) greatly improves the reproducibility of PbS QD solar cells compared with the previously optimized sol-gel (SG) approach. Power conversion efficiency (PCE) of the solar cells using atomic layer-deposited TiO2 lies in the range between 5.5% and 7.2%, whereas solar cells with SG TiO2 have PCE ranging from 0.5% to 6.9% with a large portion of short-circuited devices. Investigations of TiO2 layers by atomic force microscopy and scanning electron microscopy reveal that these films have very different surface morphologies. Whereas the TiO2 films prepared by SG synthesis and deposited by spin coating are very smooth, TiO2 films made by ALD repeat the surface texture of the fluorine-doped tin oxide (FTO) substrate underneath.
Collapse
Affiliation(s)
- Nataliia Sukharevska
- Photophysics & OptoElectronicsZernike Institute for Advanced MaterialsNijenborgh 4GroningenAG9747The Netherlands
| | - Dmytro Bederak
- Photophysics & OptoElectronicsZernike Institute for Advanced MaterialsNijenborgh 4GroningenAG9747The Netherlands
| | - Dmitry Dirin
- Department of Chemistry and Applied BiosciencesETH ZurichVladimir Prelog Weg 1Zurich8093Switzerland
| | - Maksym Kovalenko
- Department of Chemistry and Applied BiosciencesETH ZurichVladimir Prelog Weg 1Zurich8093Switzerland
| | - Maria Antonietta Loi
- Photophysics & OptoElectronicsZernike Institute for Advanced MaterialsNijenborgh 4GroningenAG9747The Netherlands
| |
Collapse
|
219
|
Ung D, Murphy IA, Cossairt BM. Designing nanoparticle interfaces for inner-sphere catalysis. Dalton Trans 2020; 49:4995-5005. [DOI: 10.1039/d0dt00785d] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Interfacial chemistry dramatically impacts the activity (performance) and reactivity (mechanism) of nanoparticle catalysts.
Collapse
Affiliation(s)
- David Ung
- University of Washington
- Department of Chemistry
- Seattle
- USA
| | - Ian A. Murphy
- University of Washington
- Department of Chemistry
- Seattle
- USA
| | | |
Collapse
|
220
|
Abelson A, Qian C, Salk T, Luan Z, Fu K, Zheng JG, Wardini JL, Law M. Collective topo-epitaxy in the self-assembly of a 3D quantum dot superlattice. NATURE MATERIALS 2020; 19:49-55. [PMID: 31611669 DOI: 10.1038/s41563-019-0485-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 08/15/2019] [Indexed: 05/25/2023]
Abstract
Epitaxially fused colloidal quantum dot (QD) superlattices (epi-SLs) may enable a new class of semiconductors that combine the size-tunable photophysics of QDs with bulk-like electronic performance, but progress is hindered by a poor understanding of epi-SL formation and surface chemistry. Here we use X-ray scattering and correlative electron imaging and diffraction of individual SL grains to determine the formation mechanism of three-dimensional PbSe QD epi-SL films. We show that the epi-SL forms from a rhombohedrally distorted body centred cubic parent SL via a phase transition in which the QDs translate with minimal rotation (~10°) and epitaxially fuse across their {100} facets in three dimensions. This collective epitaxial transformation is atomically topotactic across the 103-105 QDs in each SL grain. Infilling the epi-SLs with alumina by atomic layer deposition greatly changes their electrical properties without affecting the superlattice structure. Our work establishes the formation mechanism of three-dimensional QD epi-SLs and illustrates the critical importance of surface chemistry to charge transport in these materials.
Collapse
Affiliation(s)
- Alex Abelson
- Department of Materials Science and Engineering, University of California, Irvine, Irvine, CA, USA
| | - Caroline Qian
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, CA, USA
| | - Trenton Salk
- Department of Physics and Astronomy, University of California, Irvine, Irvine, CA, USA
| | - Zhongyue Luan
- Department of Materials Science and Engineering, University of California, Irvine, Irvine, CA, USA
| | - Kan Fu
- Department of Materials Science and Engineering, University of California, Irvine, Irvine, CA, USA
| | - Jian-Guo Zheng
- Irvine Materials Research Institute, University of California, Irvine, Irvine, CA, USA
| | - Jenna L Wardini
- Department of Materials Science and Engineering, University of California, Irvine, Irvine, CA, USA
| | - Matt Law
- Department of Materials Science and Engineering, University of California, Irvine, Irvine, CA, USA.
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, CA, USA.
- Department of Chemistry, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
221
|
Balan AD, Olshansky JH, Horowitz Y, Han HL, O'Brien EA, Tang L, Somorjai GA, Alivisatos AP. Unsaturated Ligands Seed an Order to Disorder Transition in Mixed Ligand Shells of CdSe/CdS Quantum Dots. ACS NANO 2019; 13:13784-13796. [PMID: 31751115 DOI: 10.1021/acsnano.9b03054] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
A phase transition within the ligand shell of core/shell quantum dots is studied in the prototypical system of colloidal CdSe/CdS quantum dots with a ligand shell composed of bound oleate (OA) and octadecylphosphonate (ODPA). The ligand shell composition is tuned using a ligand exchange procedure and quantified through proton NMR spectroscopy. Temperature-dependent photoluminescence spectroscopy reveals a signature of a phase transition within the organic ligand shell. Surprisingly, the ligand order to disorder phase transition triggers an abrupt increase in the photoluminescence quantum yield (PLQY) and full-width at half-maximum (FWHM) with increasing temperature. The temperature and width of the phase transition show a clear dependence on ligand shell composition, such that QDs with higher ODPA fractions have sharper phase transitions that occur at higher temperatures. In order to gain a molecular understanding of the changes in ligand ordering, Fourier transform infrared and vibrational sum frequency generation spectroscopies are performed. These measurements confirm that an order/disorder transition in the ligand shell tracks with the photoluminescence changes that accompany the ligand phase transition. The phase transition is simulated through a lattice model that suggests that the ligand shell is well-mixed and does not have completely segregated domains of OA and ODPA. Furthermore, we show that the unsaturated chains of OA seed disorder within the ligand shell.
Collapse
Affiliation(s)
- Arunima D Balan
- Material Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
- Kavli Energy NanoScience Institute , Berkeley , California 94720 , United States
| | - Jacob H Olshansky
- Material Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
- Kavli Energy NanoScience Institute , Berkeley , California 94720 , United States
| | - Yonatan Horowitz
- Material Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
- Kavli Energy NanoScience Institute , Berkeley , California 94720 , United States
| | - Hui-Ling Han
- Material Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
- Kavli Energy NanoScience Institute , Berkeley , California 94720 , United States
| | - Erin A O'Brien
- Material Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
- Kavli Energy NanoScience Institute , Berkeley , California 94720 , United States
| | | | - Gabor A Somorjai
- Material Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
- Kavli Energy NanoScience Institute , Berkeley , California 94720 , United States
| | - A Paul Alivisatos
- Material Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
- Kavli Energy NanoScience Institute , Berkeley , California 94720 , United States
| |
Collapse
|
222
|
Zhang C, Lian L, Yang Z, Zhang J, Zhu H. Quantum Confinement-Tunable Ultrafast Charge Transfer in a PbS Quantum Dots/WSe 2 0D-2D Hybrid Structure: Transition from the Weak to Strong Coupling Regime. J Phys Chem Lett 2019; 10:7665-7671. [PMID: 31769296 DOI: 10.1021/acs.jpclett.9b03293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
0D-2D mixed-dimensional hybrid structures, which combine tunable optical properties of 0D quantum dots (QDs) and high transport mobilities of 2D layered materials, have shown great potential in optoelectronic applications. Understanding charge transfer dynamics at the 0D-2D interface is essential but still lacking. Here, using PbS QD/WSe2 system, by simply controlling PbS QD size, we show a tunable hole transfer (HT) rate by more than 4 orders of magnitude (from ∼1 ns to <100 fs) and, interestingly, transition from the weak to strong coupling regime due to quantum confinement effect. In contrast to reported layer-dependent energy transfer dynamics, we observe a robust HT rate against WSe2 layer number, which can be ascribed to a subtle change of WSe2 valence band structure with layer number. Our results are important to not only fundamental understanding of charge transfer behavior at nanoscale low-dimensional interface but also help design next-generation mixed-dimensional optoelectronic devices.
Collapse
Affiliation(s)
- Chi Zhang
- Centre for Chemistry of High-Performance & Novel Materials, Department of Chemistry , Zhejiang University , Hangzhou , Zhejiang 310027 , China
| | - Linyuan Lian
- School of Optical and Electronic Information , Huazhong University of Science and Technology , 1037 Luoyu Road , Wuhan , Hubei 430074 , China
| | - Zhaoliang Yang
- Centre for Chemistry of High-Performance & Novel Materials, Department of Chemistry , Zhejiang University , Hangzhou , Zhejiang 310027 , China
| | - Jianbing Zhang
- School of Optical and Electronic Information , Huazhong University of Science and Technology , 1037 Luoyu Road , Wuhan , Hubei 430074 , China
| | - Haiming Zhu
- Centre for Chemistry of High-Performance & Novel Materials, Department of Chemistry , Zhejiang University , Hangzhou , Zhejiang 310027 , China
| |
Collapse
|
223
|
Light-driven carbon-carbon bond formation via CO 2 reduction catalyzed by complexes of CdS nanorods and a 2-oxoacid oxidoreductase. Proc Natl Acad Sci U S A 2019; 117:135-140. [PMID: 31852819 DOI: 10.1073/pnas.1903948116] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Redox enzymes are capable of catalyzing a vast array of useful reactions, but they require redox partners that donate or accept electrons. Semiconductor nanocrystals provide a mechanism to convert absorbed photon energy into redox equivalents for enzyme catalysis. Here, we describe a system for photochemical carbon-carbon bond formation to make 2-oxoglutarate by coupling CO2 with a succinyl group. Photoexcited electrons from cadmium sulfide nanorods (CdS NRs) transfer to 2-oxoglutarate:ferredoxin oxidoreductase from Magnetococcus marinus MC-1 (MmOGOR), which catalyzes a carbon-carbon bond formation reaction. We thereby decouple MmOGOR from its native role in the reductive tricarboxylic acid cycle and drive it directly with light. We examine the dependence of 2-oxoglutarate formation on a variety of factors and, using ultrafast transient absorption spectroscopy, elucidate the critical role of electron transfer (ET) from CdS NRs to MmOGOR. We find that the efficiency of this ET depends strongly on whether the succinyl CoA (SCoA) cosubstrate is bound at the MmOGOR active site. We hypothesize that the conformational changes due to SCoA binding impact the CdS NR-MmOGOR interaction in a manner that decreases ET efficiency compared to the enzyme with no cosubstrate bound. Our work reveals structural considerations for the nano-bio interfaces involved in light-driven enzyme catalysis and points to the competing factors of enzyme catalysis and ET efficiency that may arise when complex enzyme reactions are driven by artificial light absorbers.
Collapse
|
224
|
Grimaldi G, van den Brom MJ, du Fossé I, Crisp RW, Kirkwood N, Gudjonsdottir S, Geuchies JJ, Kinge S, Siebbeles LDA, Houtepen AJ. Engineering the Band Alignment in QD Heterojunction Films via Ligand Exchange. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2019; 123:29599-29608. [PMID: 31867087 PMCID: PMC6913897 DOI: 10.1021/acs.jpcc.9b09470] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/18/2019] [Indexed: 05/24/2023]
Abstract
Colloidal quantum dots (QDs) allow great flexibility in the design of optoelectronic devices, thanks to their size-dependent optical and electronic properties and the possibility to fabricate thin films with solution-based processing. In particular, in QD-based heterojunctions, the band gap of both components can be controlled by varying the size of the QDs. However, control over the band alignment between the two materials is required to tune the dynamics of carrier transfer across a heterostructure. We demonstrate that ligand exchange strategies can be used to control the band alignment of PbSe and CdSe QDs in a mixed QD solid, shifting it from a type-I to a type-II alignment. The change in alignment is observed in both spectroelectrochemical and transient absorption measurements, leading to a change in the energy of the conduction band edges in the two materials and in the direction of electron transfer upon photoexcitation. Our work demonstrates the possibility to tune the band offset of QD heterostructures via control of the chemical species passivating the QD surface, allowing full control over the energetics of the heterostructure without requiring changes in the QD composition.
Collapse
Affiliation(s)
- Gianluca Grimaldi
- Optoelectronic
Materials Section, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Mark J. van den Brom
- Optoelectronic
Materials Section, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Indy du Fossé
- Optoelectronic
Materials Section, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Ryan W. Crisp
- Optoelectronic
Materials Section, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Nicholas Kirkwood
- Optoelectronic
Materials Section, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Solrun Gudjonsdottir
- Optoelectronic
Materials Section, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Jaco J. Geuchies
- Optoelectronic
Materials Section, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Sachin Kinge
- Toyota
Motor Europe, Materials Research & Development, Hoge Wei 33, B-1930 Zaventem, Belgium
| | - Laurens D. A. Siebbeles
- Optoelectronic
Materials Section, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Arjan J. Houtepen
- Optoelectronic
Materials Section, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
225
|
Martín-García B, Spirito D, Bellani S, Prato M, Romano V, Polovitsyn A, Brescia R, Oropesa-Nuñez R, Najafi L, Ansaldo A, D'Angelo G, Pellegrini V, Krahne R, Moreels I, Bonaccorso F. Extending the Colloidal Transition Metal Dichalcogenide Library to ReS 2 Nanosheets for Application in Gas Sensing and Electrocatalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1904670. [PMID: 31788951 DOI: 10.1002/smll.201904670] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/04/2019] [Indexed: 06/10/2023]
Abstract
Among the large family of transition metal dichalcogenides, recently ReS2 has stood out due to its nearly layer-independent optoelectronic and physicochemical properties related to its 1T distorted octahedral structure. This structure leads to strong in-plane anisotropy, and the presence of active sites at its surface makes ReS2 interesting for gas sensing and catalysts applications. However, current fabrication methods use chemical or physical vapor deposition (CVD or PVD) processes that are costly, time-consuming and complex, therefore limiting its large-scale production and exploitation. To address this issue, a colloidal synthesis approach is developed, which allows the production of ReS2 at temperatures below 360 °C and with reaction times shorter than 2h. By combining the solution-based synthesis with surface functionalization strategies, the feasibility of colloidal ReS2 nanosheet films for sensing different gases is demonstrated with highly competitive performance in comparison with devices built with CVD-grown ReS2 and MoS2 . In addition, the integration of the ReS2 nanosheet films in assemblies together with carbon nanotubes allows to fabricate electrodes for electrocatalysis for H2 production in both acid and alkaline conditions. Results from proof-of-principle devices show an electrocatalytic overpotential competitive with devices based on ReS2 produced by CVD, and even with MoS2 , WS2 , and MoSe2 electrocatalysts.
Collapse
Affiliation(s)
- Beatriz Martín-García
- Graphene Labs, Istituto Italiano di Tecnologia, via Morego 30, 16163, Genova, Italy
- Nanochemistry Department, Istituto Italiano di Tecnologia, via Morego 30, 16163, Genova, Italy
| | - Davide Spirito
- Optoelectronics Group, Istituto Italiano di Tecnologia, via Morego 30, 16163, Genova, Italy
| | - Sebastiano Bellani
- Graphene Labs, Istituto Italiano di Tecnologia, via Morego 30, 16163, Genova, Italy
| | - Mirko Prato
- Materials Characterization Facility, Istituto Italiano di Tecnologia, via Morego 30, 16163, Genova, Italy
| | - Valentino Romano
- Graphene Labs, Istituto Italiano di Tecnologia, via Morego 30, 16163, Genova, Italy
- Dipartimento di Scienze Matematiche ed Informatiche, Scienze Fisiche e Scienze della Terra, Università di Messina, Viale F. Stagno d'Alcontres 31, S. Agata, 98166, Messina, Italy
| | - Anatolii Polovitsyn
- Nanochemistry Department, Istituto Italiano di Tecnologia, via Morego 30, 16163, Genova, Italy
- Department of Chemistry, Ghent University, Krijgslaan 281-S3, 9000, Gent, Belgium
| | - Rosaria Brescia
- Electron Microscopy Facility, Istituto Italiano di Tecnologia, via Morego 30, 16163, Genova, Italy
| | | | - Leyla Najafi
- Graphene Labs, Istituto Italiano di Tecnologia, via Morego 30, 16163, Genova, Italy
| | - Alberto Ansaldo
- Graphene Labs, Istituto Italiano di Tecnologia, via Morego 30, 16163, Genova, Italy
| | - Giovanna D'Angelo
- Dipartimento di Scienze Matematiche ed Informatiche, Scienze Fisiche e Scienze della Terra, Università di Messina, Viale F. Stagno d'Alcontres 31, S. Agata, 98166, Messina, Italy
| | - Vittorio Pellegrini
- Graphene Labs, Istituto Italiano di Tecnologia, via Morego 30, 16163, Genova, Italy
- BeDimensional Spa., Via Albisola 121, 16163, Genova, Italy
| | - Roman Krahne
- Optoelectronics Group, Istituto Italiano di Tecnologia, via Morego 30, 16163, Genova, Italy
| | - Iwan Moreels
- Nanochemistry Department, Istituto Italiano di Tecnologia, via Morego 30, 16163, Genova, Italy
- Department of Chemistry, Ghent University, Krijgslaan 281-S3, 9000, Gent, Belgium
| | - Francesco Bonaccorso
- Graphene Labs, Istituto Italiano di Tecnologia, via Morego 30, 16163, Genova, Italy
- BeDimensional Spa., Via Albisola 121, 16163, Genova, Italy
| |
Collapse
|
226
|
Zhang JY, Xu JL, Chen T, Gao X, Wang SD. Toward Broadband Imaging: Surface-Engineered PbS Quantum Dot/Perovskite Composite Integrated Ultrasensitive Photodetectors. ACS APPLIED MATERIALS & INTERFACES 2019; 11:44430-44437. [PMID: 31680508 DOI: 10.1021/acsami.9b14645] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
PbS colloidal quantum dots passivated by the thiocyanate anion (SCN-) are developed to combine with perovskite (CH3NH3PbI3) as building blocks for UV-vis-NIR broadband photodetectors. Both high electrical conductivity and appropriate energy-level alignment are obtained by the in situ ligand exchange with SCN-. The PbS-SCN/CH3NH3PbI3 composite photodetectors are sensitive to a broad wavelength range covering the UV-vis-NIR region (365-1550 nm), possessing an excellent responsivity of 255 A W-1 at 365 nm and 1.58 A W-1 at 940 nm, remarkably high detectivity of 4.9 × 1013 Jones at 365 nm and 3.0 × 1011 Jones at 940 nm, and fast response time of ≤42 ms. Furthermore, a 10 × 10 photodetector array is fabricated and integrated, which constitutes a high-performance broadband image sensor. Our approach paves a way for the development of highly sensitive broadband photodetectors/imagers that can be easily integrated.
Collapse
Affiliation(s)
- Jing-Yue Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices , Soochow University , Suzhou , Jiangsu 215123 , P. R. China
| | - Jian-Long Xu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices , Soochow University , Suzhou , Jiangsu 215123 , P. R. China
| | - Tong Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices , Soochow University , Suzhou , Jiangsu 215123 , P. R. China
| | - Xu Gao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices , Soochow University , Suzhou , Jiangsu 215123 , P. R. China
| | - Sui-Dong Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices , Soochow University , Suzhou , Jiangsu 215123 , P. R. China
| |
Collapse
|
227
|
Cao L, Liu X, Guo Z, Zhou L. Surface/Interface Engineering for Constructing Advanced Nanostructured Light-Emitting Diodes with Improved Performance: A Brief Review. MICROMACHINES 2019; 10:E821. [PMID: 31783596 PMCID: PMC6953049 DOI: 10.3390/mi10120821] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/21/2019] [Accepted: 11/25/2019] [Indexed: 01/30/2023]
Abstract
With the rise of nanoscience and nanotechnologies, especially the continuous deepening of research on low-dimensional materials and structures, various kinds of light-emitting devices based on nanometer-structured materials are gradually becoming the natural candidates for the next generation of advanced optoelectronic devices with improved performance through engineering their interface/surface properties. As dimensions of light-emitting devices are scaled down to the nanoscale, the plentitude of their surface/interface properties is one of the key factors for their dominating device performance. In this paper, firstly, the generation, classification, and influence of surface/interface states on nanometer optical devices will be given theoretically. Secondly, the relationship between the surface/interface properties and light-emitting diode device performance will be investigated, and the related physical mechanisms will be revealed by introducing classic examples. Especially, how to improve the performance of light-emitting diodes by using factors such as the surface/interface purification, quantum dots (QDs)-emitting layer, surface ligands, optimization of device architecture, and so on will be summarized. Finally, we explore the main influencing actors of research breakthroughs related to the surface/interface properties on the current and future applications for nanostructured light-emitting devices.
Collapse
Affiliation(s)
- Lianzhen Cao
- Department of Physics and Optoelectronic Engineering, Weifang University, Weifang 261061, China;
- CASKey Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Xia Liu
- Department of Physics and Optoelectronic Engineering, Weifang University, Weifang 261061, China;
- CASKey Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Zhen Guo
- CASKey Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
- Shandong Guo Ke Medical Technology Development Co., Ltd., Jinan 25001, China
- Zhongke Mass Spectrometry (Tianjin) Medical Technology Co., Ltd. Tianjin 300399, China
| | - Lianqun Zhou
- CASKey Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
- Jihua Laboratory, Foshan 528200, China
| |
Collapse
|
228
|
Kim Y, Chang JH, Choi H, Kim YH, Bae WK, Jeong S. III-V colloidal nanocrystals: control of covalent surfaces. Chem Sci 2019; 11:913-922. [PMID: 34084346 PMCID: PMC8145357 DOI: 10.1039/c9sc04290c] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 11/25/2019] [Indexed: 01/15/2023] Open
Abstract
Colloidal quantum dots (QDs) are nanosized semiconductors whose electronic features are dictated by the quantum confinement effect. The optical, electrical, and chemical properties of QDs are influenced by their dimensions and surface landscape. The surface of II-VI and IV-VI QDs has been extensively explored; however, in-depth investigations on the surface of III-V QDs are still lagging behind. This Perspective discusses the current understanding of the surface of III-V QDs, outlines deep trap states presented by surface defects, and suggests strategies to overcome challenges associated with deep traps. Lastly, we discuss a route to create well-defined facets in III-V QDs by providing a platform for surface studies and a recently reported approach in atomistic understanding of covalent III-V QD surfaces using the electron counting model with fractional dangling bonds.
Collapse
Affiliation(s)
- Youngsik Kim
- Department of Energy Science, Center for Artificial Atoms, Sungkyunkwan University Suwon-si Gyeonggi-do 16419 Republic of Korea
| | - Jun Hyuk Chang
- School of Chemical and Biological Engineering, Seoul National University Seoul Republic of Korea
| | - Hyekyoung Choi
- Department of Energy Science, Center for Artificial Atoms, Sungkyunkwan University Suwon-si Gyeonggi-do 16419 Republic of Korea
| | - Yong-Hyun Kim
- Graduate School of Nanoscience and Technology, Department of Physics, Korea Advanced Institute of Science and Technology Daejeon 34141 Republic of Korea
| | - Wan Ki Bae
- SKKU Advanced Institute of Nanotechnology (SAINT), Center for Artificial Atoms, Sungkyunkwan University Suwon-si Gyeonggi-do 16419 Republic of Korea
| | - Sohee Jeong
- Department of Energy Science, Center for Artificial Atoms, Sungkyunkwan University Suwon-si Gyeonggi-do 16419 Republic of Korea
| |
Collapse
|
229
|
Nguyen HT, Ryu SY, Duong AT, Lee S. Effects of 1,2-ethanedithiol concentration on performance improvement of quantum-dot LEDs. RSC Adv 2019; 9:38464-38468. [PMID: 35540207 PMCID: PMC9075991 DOI: 10.1039/c9ra08411h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 11/16/2019] [Indexed: 12/30/2022] Open
Abstract
We report systematic efficiency variations of green-emitting CdSe@ZnS quantum-dot (QD) LEDs (QLEDs) in response to in situ treatments with 1,2-ethanedithiol (EDT) solutions at various concentrations. The main effect of in situ EDT treatment on a QD layer spin-coated onto a ZnO layer was vacuum-level shift due to dipole moments on the surface of the QD layer and at the interface between QD and ZnO layers. Competing contributions of these dipole moments were responsible for changes in energy level configurations and, accordingly, electron and hole barriers that resulted in discrepancies in electron- and hole-current variations. QLED efficiency was best when treated with an EDT solution of 4 mM, attributable to the largest increase in the hole- to electron current ratio. The maximum luminous yield of the 4 mM EDT-treated QLED was 5.43 cd A-1, which is 10 times higher than that of an untreated device. Furthermore, the luminous yield of this treated device remained as high as 2.56 cd A-1 at a luminance of 500 cd m-2.
Collapse
Affiliation(s)
- Huu Tuan Nguyen
- Phenikaa Research and Technology Institute (PRATI), A&A Green Phoenix Group 167 Hoang Ngan Hanoi 10000 Viet Nam
- Faculty of Electrical and Electronic Engineering, Phenikaa Institute for Advanced Study (PIAS), Phenikaa University Yen Nghia, Ha-Dong District Hanoi 10000 Viet Nam
| | - Shin Young Ryu
- Department of Physics, Department of Energy Systems Research, Ajou University Suwon 16499 Republic of Korea
| | - Anh Tuan Duong
- Phenikaa Research and Technology Institute (PRATI), A&A Green Phoenix Group 167 Hoang Ngan Hanoi 10000 Viet Nam
- Faculty of Electrical and Electronic Engineering, Phenikaa Institute for Advanced Study (PIAS), Phenikaa University Yen Nghia, Ha-Dong District Hanoi 10000 Viet Nam
| | - Soonil Lee
- Department of Physics, Department of Energy Systems Research, Ajou University Suwon 16499 Republic of Korea
| |
Collapse
|
230
|
Schival KA, Gipson RR, Prather KV, Tsui EY. Photoinduced Surface Charging in Iron-Carbonyl-Functionalized Colloidal Semiconductor Nanocrystals. NANO LETTERS 2019; 19:7770-7774. [PMID: 31596596 DOI: 10.1021/acs.nanolett.9b02726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Organometallic surface functionalization of colloidal CdSe and CdS nanocrystals using iron tetracarbonyl moieties is demonstrated to enable study of in situ colloidal nanocrystal surface redox chemistry. Spectroscopic measurements of the surface-bound metal carbonyl C-O stretches were used to elucidate the coordination environments and local symmetry of surface sites. The C-O stretching frequencies of these fragments were correlated to the electric field induced by nanocrystal surface charges and shift in energy upon surface reduction or oxidation. These measurements revealed that CdSe nanocrystals can accumulate multiple surface electrons under supra-band gap photoexcitation, a process likely relevant to photoactivated nanocrystal processes such as photobrightening. These surface charges are stable for hours and decay extremely slowly under anaerobic conditions.
Collapse
Affiliation(s)
- Keith A Schival
- Department of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , Indiana 46556 , United States
| | - Robert R Gipson
- Department of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , Indiana 46556 , United States
| | - Keaton V Prather
- Department of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , Indiana 46556 , United States
| | - Emily Y Tsui
- Department of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , Indiana 46556 , United States
| |
Collapse
|
231
|
Dey S, Cohen H, Pinkas I, Lin H, Kazes M, Oron D. Band alignment and charge transfer in CsPbBr3–CdSe nanoplatelet hybrids coupled by molecular linkers. J Chem Phys 2019; 151:174704. [DOI: 10.1063/1.5124552] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Swayandipta Dey
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Hagai Cohen
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Iddo Pinkas
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Hong Lin
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Miri Kazes
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Dan Oron
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
232
|
Koscher BA, Nett Z, Alivisatos AP. The Underlying Chemical Mechanism of Selective Chemical Etching in CsPbBr 3 Nanocrystals for Reliably Accessing Near-Unity Emitters. ACS NANO 2019; 13:11825-11833. [PMID: 31553569 DOI: 10.1021/acsnano.9b05782] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Reliably accessing nanocrystal luminophores with near-unity efficiencies aids in the ability to understand the upper performance limits in optoelectronic applications that require minimal nonradiative losses. Constructing structure-function relationships at the atomic level, while accounting for inevitable defects, allows for the development of robust strategies to achieve near-unity quantum yield luminophores. For CsPbBr3 perovskite nanocrystals, bromine vacancies leave behind undercoordinated lead atoms that act as traps, limiting the achievable optical performance of the material. We show that selective etching represents a promising path for mitigating the consequences of optical defects in CsPbBr3 nanocrystals. A mechanistic understanding of the etching reaction is essential for developing strategies to finely control the reaction. We report a study of the selective etching mechanism of CsPbBr3 nanocrystal cubes by controlling the etchant chemical potential. We observe optical absorption and luminescence trajectories while varying the extent and rate of lead removal, removing in some cases up to 75% of the lead from the original nanocrystal ensemble. At modest etchant chemical potentials, the size and shape uniformity of the nanocrystal ensemble improves in addition to the quantum yield, proceeding through a layer-by-layer etching mechanism. Operating with excessively high etchant chemical potentials is detrimental to the overall optical performance as the etching transitions to nonselective, while too low of a chemical potential results in incomplete etching. Through this general approach, we show how to finely control selective etching to consistently access a steady state or chemical stability zone of near-unity quantum yield CsPbBr3 nanocrystals postsynthetically, suggesting a practical framework to extend this treatment to other perovskite compositions and sizes.
Collapse
Affiliation(s)
- Brent A Koscher
- Department of Chemistry , University of California , Berkeley , California 94720 , United States
- Materials Science Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
- Kavli Energy NanoScience Institute , Berkeley , California 94720 , United States
| | - Zachary Nett
- Department of Chemistry , University of California , Berkeley , California 94720 , United States
- Materials Science Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
- Kavli Energy NanoScience Institute , Berkeley , California 94720 , United States
| | - A Paul Alivisatos
- Department of Chemistry , University of California , Berkeley , California 94720 , United States
- Department of Materials Science and Engineering , University of California , Berkeley , California 94720 , United States
- Materials Science Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
- Kavli Energy NanoScience Institute , Berkeley , California 94720 , United States
| |
Collapse
|
233
|
Zhou Q, Cho Y, Yang S, Weiss EA, Berkelbach TC, Darancet P. Large Band Edge Tunability in Colloidal Nanoplatelets. NANO LETTERS 2019; 19:7124-7129. [PMID: 31545615 DOI: 10.1021/acs.nanolett.9b02645] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We study the impact of organic surface ligands on the electronic structure and electronic band edge energies of quasi-two-dimensional (2D) colloidal cadmium selenide nanoplatelets (NPLs) using density functional theory. We show how control of the ligand and ligand-NPL interface dipoles results in large band edge energy shifts, over a range of 5 eV for common organic ligands with a minor effect on the NPL band gaps. Using a model self-energy to account for the dielectric contrast and an effective mass model of the excitons, we show that the band edge tunability of NPLs together with the strong dependence of the optical band gap on NPL thickness can lead to favorable photochemical and optoelectronic properties.
Collapse
Affiliation(s)
- Qunfei Zhou
- Materials Research Science and Engineering Center , Northwestern University , Evanston , Illinois 60208 , United States
- Center for Nanoscale Materials , Argonne National Laboratory , Argonne , Illinois 60439 , United States
| | - Yeongsu Cho
- Department of Chemistry and James Franck Institute , University of Chicago , Chicago , Illinois 60637 , United States
| | - Shenyuan Yang
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors , Chinese Academy of Sciences , Beijing 100083 , China
- Center for Materials Science and Optoelectronics Engineering , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Emily A Weiss
- Department of Chemistry and Department of Materials Science and Engineering , Northwestern University , Evanston , Illinois 60208 , United States
| | - Timothy C Berkelbach
- Department of Chemistry , Columbia University , New York , New York 10027 , United States
- Center for Computational Quantum Physics , Flatiron Institute , New York , New York 10010 , United States
| | - Pierre Darancet
- Center for Nanoscale Materials , Argonne National Laboratory , Argonne , Illinois 60439 , United States
- Northwestern Argonne Institute of Science and Engineering , Evanston , Illinois 60208 , United States
| |
Collapse
|
234
|
Woo HK, Kang MS, Park T, Bang J, Jeon S, Lee WS, Ahn J, Cho G, Ko DK, Kim Y, Ha DH, Oh SJ. Colloidal-annealing of ZnO nanoparticles to passivate traps and improve charge extraction in colloidal quantum dot solar cells. NANOSCALE 2019; 11:17498-17505. [PMID: 31532437 DOI: 10.1039/c9nr06346c] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The popularity of colloidal quantum dot (CQD) solar cells has increased owing to their tunable bandgap, multiple exciton generation, and low-cost solution processes. ZnO nanoparticle (NP) layers are generally employed as electron transport layers in CQD solar cells to efficiently extract the electrons. However, trap sites and the unfavorable band structure of the as-synthesized ZnO NPs have hindered their potential performance. Herein, we introduce a facile method of ZnO NP annealing in the colloidal state. Electrical, structural, and optical analyses demonstrated that the colloidal-annealing of ZnO NPs effectively passivated the defects and simultaneously shifted their band diagram; therefore, colloidal-annealing is a more favorable method as compared to conventional film-annealing. These CQD solar cells based on colloidal-annealed ZnO NPs exhibited efficient charge extraction, reduced recombination and achieved an enhanced power conversion efficiency (PCE) of 9.29%, whereas the CQD solar cells based on ZnO NPs without annealing had a PCE of 8.05%. Moreover, the CQD solar cells using colloidal-annealed ZnO NPs exhibited an improved air stability with 98% retention after 120 days, as compared to that of CQD solar cells using non-annealed ZnO NPs with 84% retention.
Collapse
Affiliation(s)
- Ho Kun Woo
- Department of Materials Science and Engineering, Korea University, 02841, Republic of Korea.
| | - Min Su Kang
- Department of Materials Science and Engineering, Korea University, 02841, Republic of Korea.
| | - Taesung Park
- Department of Materials Science and Engineering, Korea University, 02841, Republic of Korea.
| | - Junsung Bang
- Department of Materials Science and Engineering, Korea University, 02841, Republic of Korea.
| | - Sanghyun Jeon
- Department of Materials Science and Engineering, Korea University, 02841, Republic of Korea.
| | - Woo Seok Lee
- Department of Materials Science and Engineering, Korea University, 02841, Republic of Korea.
| | - Junhyuk Ahn
- Department of Materials Science and Engineering, Korea University, 02841, Republic of Korea.
| | - Geonhee Cho
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Dong-Kyun Ko
- Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, USA
| | - Younghoon Kim
- Convergence Research Center for Solar Energy, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungang-Daero, Hyeonpung, Daegu 42988, Korea
| | - Don-Hyung Ha
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Soong Ju Oh
- Department of Materials Science and Engineering, Korea University, 02841, Republic of Korea.
| |
Collapse
|
235
|
Venettacci C, Martín-García B, Prato M, Moreels I, De Iacovo A. Increasing responsivity and air stability of PbS colloidal quantum dot photoconductors with iodine surface ligands. NANOTECHNOLOGY 2019; 30:405204. [PMID: 31272086 DOI: 10.1088/1361-6528/ab2f4b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
PbS colloidal quantum dots (QDs) are a promising material for the realization of low-cost, high-responsivity near-infrared photodetectors. Previously reported attempts showed high responsivity but a fast performance decay in air-exposed devices, demanding encapsulation of the photodetectors. Conversely, devices with very high air stability have been demonstrated but the low trap-state density hinders photoconductive gain and reduces overall responsivity. In this paper, photoconductive devices prepared with partially tetrabutylammonium iodide exchanged PbS QDs are presented with enhanced air stability and high responsivity at low voltage, low optical power.
Collapse
Affiliation(s)
- Carlo Venettacci
- Department of Engineering, University Roma Tre, Via Vito Volterra 62, I-00146 Rome, Italy
| | | | | | | | | |
Collapse
|
236
|
Gao Y, Zheng J, Chen W, Yuan L, Teh ZL, Yang J, Cui X, Conibeer G, Patterson R, Huang S. Enhancing PbS Colloidal Quantum Dot Tandem Solar Cell Performance by Graded Band Alignment. J Phys Chem Lett 2019; 10:5729-5734. [PMID: 31510742 DOI: 10.1021/acs.jpclett.9b02423] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Colloidal quantum dot solids are attractive candidates for tandem solar cells because of their widely tunable bandgaps. However, the development of the quantum dot tandem solar cell has lagged far behind that of its single-junction counterpart. One of the fundamental problems with colloidal quantum dot solar cells is the relatively small diffusion length, which limits the quantum dot absorbing layer thickness and hence the power conversion efficiency. In this research, guided by optical modeling and utilizing a graded band alignment strategy, a two-terminal monolithic solution-processed quantum dot tandem solar cell has been successfully fabricated and a power conversion efficiency of 6.8% has been achieved. The band grading approach utilized the complementary tuning of work functions and band alignment through judicious choices of the nanoparticle surface chemistry and quantum dot confined size. This work demonstrates a general approach to improving the efficiency for tandem thin-film solar cells.
Collapse
Affiliation(s)
- Yijun Gao
- Australian Centre for Advanced Photovoltaics, School of Photovoltaic and Renewable Energy Engineering , University of New South Wales , Sydney 2052 , Australia
| | - Jianghui Zheng
- Australian Centre for Advanced Photovoltaics, School of Photovoltaic and Renewable Energy Engineering , University of New South Wales , Sydney 2052 , Australia
| | - Weijian Chen
- Australian Centre for Advanced Photovoltaics, School of Photovoltaic and Renewable Energy Engineering , University of New South Wales , Sydney 2052 , Australia
- Centre for Translational Atomaterials , Swinburne University of Technology , Hawthorn , Vic 3122 , Australia
| | - Lin Yuan
- Australian Centre for Advanced Photovoltaics, School of Photovoltaic and Renewable Energy Engineering , University of New South Wales , Sydney 2052 , Australia
- Department of Chemistry-Ångström, Physical Chemistry , Uppsala University , 75120 Uppsala , Sweden
| | - Zhi Li Teh
- Australian Centre for Advanced Photovoltaics, School of Photovoltaic and Renewable Energy Engineering , University of New South Wales , Sydney 2052 , Australia
| | - Jianfeng Yang
- Australian Centre for Advanced Photovoltaics, School of Photovoltaic and Renewable Energy Engineering , University of New South Wales , Sydney 2052 , Australia
| | - Xin Cui
- Australian Centre for Advanced Photovoltaics, School of Photovoltaic and Renewable Energy Engineering , University of New South Wales , Sydney 2052 , Australia
| | - Gavin Conibeer
- Australian Centre for Advanced Photovoltaics, School of Photovoltaic and Renewable Energy Engineering , University of New South Wales , Sydney 2052 , Australia
| | - Robert Patterson
- Australian Centre for Advanced Photovoltaics, School of Photovoltaic and Renewable Energy Engineering , University of New South Wales , Sydney 2052 , Australia
| | - Shujuan Huang
- Australian Centre for Advanced Photovoltaics, School of Photovoltaic and Renewable Energy Engineering , University of New South Wales , Sydney 2052 , Australia
- School of Engineering , Macquarie University , Sydney 2109 , Australia
| |
Collapse
|
237
|
Skurlov ID, Korzhenevskii IG, Mudrak AS, Dubavik A, Cherevkov SA, Parfenov PS, Zhang X, Fedorov AV, Litvin AP, Baranov AV. Optical Properties, Morphology, and Stability of Iodide-Passivated Lead Sulfide Quantum Dots. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E3219. [PMID: 31581439 PMCID: PMC6803903 DOI: 10.3390/ma12193219] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/20/2019] [Accepted: 09/27/2019] [Indexed: 11/25/2022]
Abstract
Iodide atomic surface passivation of lead chalcogenides has spawned a race in efficiency of quantum dot (QD)-based optoelectronic devices. Further development of QD applications requires a deeper understanding of the passivation mechanisms. In the first part of the current study, we compare optics and electrophysical properties of lead sulfide (PbS) QDs with iodine ligands, obtained from different iodine sources. Methylammonium iodide (MAI), lead iodide (PbI2), and tetrabutylammonium iodide (TBAI) were used as iodine precursors. Using ultraviolet photoelectron spectroscopy, we show that different iodide sources change the QD HOMO/LUMO levels, allowing their fine tuning. AFM measurements suggest that colloidally-passivated QDs result in formation of more uniform thin films in one-step deposition. The second part of this paper is devoted to the PbS QDs with colloidally-exchanged shells (i.e., made from MAI and PbI2). We especially focus on QD optical properties and their stability during storage in ambient conditions. Colloidal lead iodide treatment is found to reduce the QD film resistivity and improve photoluminescence quantum yield (PLQY). At the same time stability of such QDs is reduced. MAI-treated QDs are found to be more stable in the ambient conditions but tend to agglomerate, which leads to undesirable changes in their optics.
Collapse
Affiliation(s)
- Ivan D Skurlov
- Center "Information Optical Technologies", ITMO University, 49 Kronverksky Pr., St. Petersburg 197101, Russia.
| | - Iurii G Korzhenevskii
- Center "Information Optical Technologies", ITMO University, 49 Kronverksky Pr., St. Petersburg 197101, Russia.
| | - Anastasiia S Mudrak
- Center "Information Optical Technologies", ITMO University, 49 Kronverksky Pr., St. Petersburg 197101, Russia.
| | - Aliaksei Dubavik
- Center "Information Optical Technologies", ITMO University, 49 Kronverksky Pr., St. Petersburg 197101, Russia.
| | - Sergei A Cherevkov
- Center "Information Optical Technologies", ITMO University, 49 Kronverksky Pr., St. Petersburg 197101, Russia.
| | - Petr S Parfenov
- Center "Information Optical Technologies", ITMO University, 49 Kronverksky Pr., St. Petersburg 197101, Russia.
| | - Xiaoyu Zhang
- College of Materials Science, Jilin University, Changchun 130012, China.
| | - Anatoly V Fedorov
- Center "Information Optical Technologies", ITMO University, 49 Kronverksky Pr., St. Petersburg 197101, Russia.
| | - Aleksandr P Litvin
- Center "Information Optical Technologies", ITMO University, 49 Kronverksky Pr., St. Petersburg 197101, Russia.
| | - Alexander V Baranov
- Center "Information Optical Technologies", ITMO University, 49 Kronverksky Pr., St. Petersburg 197101, Russia.
| |
Collapse
|
238
|
Yang G, Zhu Y, Huang J, Xu X, Cui S, Lu Z. Hole transport layer selection toward efficient colloidal PbS quantum dot solar cells. OPTICS EXPRESS 2019; 27:A1338-A1349. [PMID: 31684491 DOI: 10.1364/oe.27.0a1338] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/27/2019] [Indexed: 06/10/2023]
Abstract
The effect of energy level alignment between the hole transport layer (HTL) and active layer in PbS quantum dot (QD) solar cells was investigated. Here, a great variation in device performance was observed when employing different hole transporting materials. Devices using HTLs that could not block electrons only show poor device behaviors, while those employing wide band-gap hole transporting materials with shallow lowest unoccupied molecular orbital (LUMO) energies to block electrons exhibit reduced dark currents as well as enhanced device efficiencies. A power conversion efficiency of 4.4% was obtained by utilizing Poly-TPD as the HTL due to the optimized energy level alignment. These improvements were realized by preventing current leakage and consequent counter diode formation. The efficiency can be further improved to 4.9% by inserting EDT-treated PbS QD film (PbS-EDT) hole transporting materials with higher hole mobility as well as suitable energy levels that can increase the collection efficiency.
Collapse
|
239
|
Yazdani N, Jansen M, Bozyigit D, Lin WMM, Volk S, Yarema O, Yarema M, Juranyi F, Huber SD, Wood V. Nanocrystal superlattices as phonon-engineered solids and acoustic metamaterials. Nat Commun 2019; 10:4236. [PMID: 31530815 PMCID: PMC6748911 DOI: 10.1038/s41467-019-12305-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 08/28/2019] [Indexed: 11/29/2022] Open
Abstract
Phonon engineering of solids enables the creation of materials with tailored heat-transfer properties, controlled elastic and acoustic vibration propagation, and custom phonon-electron and phonon-photon interactions. These can be leveraged for energy transport, harvesting, or isolation applications and in the creation of novel phonon-based devices, including photoacoustic systems and phonon-communication networks. Here we introduce nanocrystal superlattices as a platform for phonon engineering. Using a combination of inelastic neutron scattering and modeling, we characterize superlattice-phonons in assemblies of colloidal nanocrystals and demonstrate that they can be systematically engineered by tailoring the constituent nanocrystals, their surfaces, and the topology of superlattice. This highlights that phonon engineering can be effectively carried out within nanocrystal-based devices to enhance functionality, and that solution processed nanocrystal assemblies hold promise not only as engineered electronic and optical materials, but also as functional metamaterials with phonon energy and length scales that are unreachable by traditional architectures.
Collapse
Affiliation(s)
- Nuri Yazdani
- Materials and Device Engineering Group, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, CH-8092, Switzerland
| | - Maximilian Jansen
- Materials and Device Engineering Group, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, CH-8092, Switzerland
| | - Deniz Bozyigit
- Materials and Device Engineering Group, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, CH-8092, Switzerland
| | - Weyde M M Lin
- Materials and Device Engineering Group, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, CH-8092, Switzerland
| | - Sebastian Volk
- Materials and Device Engineering Group, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, CH-8092, Switzerland
| | - Olesya Yarema
- Materials and Device Engineering Group, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, CH-8092, Switzerland
| | - Maksym Yarema
- Materials and Device Engineering Group, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, CH-8092, Switzerland
| | - Fanni Juranyi
- Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institute, CH-5232, Villigen PSI, Switzerland
| | - Sebastian D Huber
- Institute for Theoretical Physics, ETH Zurich, 8093, Zürich, Switzerland
| | - Vanessa Wood
- Materials and Device Engineering Group, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, CH-8092, Switzerland.
| |
Collapse
|
240
|
Chu A, Martinez B, Ferré S, Noguier V, Gréboval C, Livache C, Qu J, Prado Y, Casaretto N, Goubet N, Cruguel H, Dudy L, Silly MG, Vincent G, Lhuillier E. HgTe Nanocrystals for SWIR Detection and Their Integration up to the Focal Plane Array. ACS APPLIED MATERIALS & INTERFACES 2019; 11:33116-33123. [PMID: 31426628 DOI: 10.1021/acsami.9b09954] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Infrared applications remain too often a niche market due to their prohibitive cost. Nanocrystals offer an interesting alternative to reach cost disruption especially in the short-wave infrared (SWIR, λ < 1.7 μm) where material maturity is now high. Two families of materials are candidate for SWIR photoconduction: lead and mercury chalcogenides. Lead sulfide typically benefits from all the development made for a wider band gap such as the one made for solar cells, while HgTe takes advantage of the development relative to mid-wave infrared detectors. Here, we make a fair comparison of the two material detection properties in the SWIR and discuss the material stability. At such wavelengths, studies have been mostly focused on PbS rather than on HgTe, therefore we focus in the last part of the discussion on the effect of surface chemistry on the electronic spectrum of HgTe nanocrystals. We unveil that tuning the capping ligands is a viable strategy to adjust the material from the p-type to ambipolar. Finally, HgTe nanocrystals are integrated into multipixel devices to quantize spatial homogeneity and onto read-out circuits to obtain a fast and sensitive infrared laser beam profile.
Collapse
Affiliation(s)
- Audrey Chu
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, INSP , F-75005 Paris , France
- ONERA-The French Aerospace Lab , Chemin de la Hunière, BP 80100 , F-91123 Palaiseau , France
| | - Bertille Martinez
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, INSP , F-75005 Paris , France
- Laboratoire de Physique et d'Étude des Matériaux , ESPCI Paris PSL Research University, Sorbonne Université Univ Paris 06, CNRS , 10 rue Vauquelin 75005 Paris , France
| | - Simon Ferré
- New Imaging Technologies SA , 1 impasse de la Noisette 91370 Verrières le Buisson , France
| | - Vincent Noguier
- New Imaging Technologies SA , 1 impasse de la Noisette 91370 Verrières le Buisson , France
| | - Charlie Gréboval
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, INSP , F-75005 Paris , France
| | - Clément Livache
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, INSP , F-75005 Paris , France
- Laboratoire de Physique et d'Étude des Matériaux , ESPCI Paris PSL Research University, Sorbonne Université Univ Paris 06, CNRS , 10 rue Vauquelin 75005 Paris , France
| | - Junling Qu
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, INSP , F-75005 Paris , France
| | - Yoann Prado
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, INSP , F-75005 Paris , France
| | - Nicolas Casaretto
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, INSP , F-75005 Paris , France
| | - Nicolas Goubet
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, INSP , F-75005 Paris , France
- Sorbonne Université, CNRS, De la Molécule aux Nano-objets: Réactivité, Interactions et Spectroscopies, MONARIS , F-75005 Paris , France
| | - Hervé Cruguel
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, INSP , F-75005 Paris , France
| | - Lenart Dudy
- Synchrotron-SOLEIL , Saint-Aubin, BP48 , F91192 Gif sur Yvette Cedex , France
| | - Mathieu G Silly
- Synchrotron-SOLEIL , Saint-Aubin, BP48 , F91192 Gif sur Yvette Cedex , France
| | - Grégory Vincent
- ONERA-The French Aerospace Lab , Chemin de la Hunière, BP 80100 , F-91123 Palaiseau , France
| | - Emmanuel Lhuillier
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, INSP , F-75005 Paris , France
| |
Collapse
|
241
|
Xue J, Wang R, Chen L, Nuryyeva S, Han TH, Huang T, Tan S, Zhu J, Wang M, Wang ZK, Zhang C, Lee JW, Yang Y. A Small-Molecule "Charge Driver" enables Perovskite Quantum Dot Solar Cells with Efficiency Approaching 13. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1900111. [PMID: 31343086 DOI: 10.1002/adma.201900111] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 07/03/2019] [Indexed: 05/20/2023]
Abstract
Halide perovskite colloidal quantum dots (CQDs) have recently emerged as a promising candidate for CQD photovoltaics due to their superior optoelectronic properties to conventional chalcogenides CQDs. However, the low charge separation efficiency due to quantum confinement still remains a critical obstacle toward higher-performance perovskite CQD photovoltaics. Available strategies employed in the conventional CQD devices to enhance the carrier separation, such as the design of type-Ⅱ core-shell structure and versatile surface modification to tune the electronic properties, are still not applicable to the perovskite CQD system owing to the difficulty in modulating surface ligands and structural integrity. Herein, a facile strategy that takes advantage of conjugated small molecules that provide an additional driving force for effective charge separation in perovskite CQD solar cells is developed. The resulting perovskite CQD solar cell shows a power conversion efficiency approaching 13% with an open-circuit voltage of 1.10 V, short-circuit current density of 15.4 mA cm-2 , and fill factor of 74.8%, demonstrating the strong potential of this strategy toward achieving high-performance perovskite CQD solar cells.
Collapse
Affiliation(s)
- Jingjing Xue
- Department of Materials Science and Engineering and California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
| | - Rui Wang
- Department of Materials Science and Engineering and California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
| | - Lan Chen
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Selbi Nuryyeva
- Department of Materials Science and Engineering and California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
| | - Tae-Hee Han
- Department of Materials Science and Engineering and California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
| | - Tianyi Huang
- Department of Materials Science and Engineering and California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
| | - Shaun Tan
- Department of Materials Science and Engineering and California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
| | - Jiahui Zhu
- Department of Materials Science and Engineering and California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
| | - Minhuan Wang
- Department of Materials Science and Engineering and California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
| | - Zhao-Kui Wang
- Department of Materials Science and Engineering and California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
| | - Chunfeng Zhang
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Jin-Wook Lee
- Department of Materials Science and Engineering and California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
| | - Yang Yang
- Department of Materials Science and Engineering and California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
| |
Collapse
|
242
|
Greaney MJ, Joy J, Combs BA, Das S, Buckley JJ, Bradforth SE, Brutchey RL. Effects of interfacial ligand type on hybrid P3HT:CdSe quantum dot solar cell device parameters. J Chem Phys 2019; 151:074704. [DOI: 10.1063/1.5114932] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Matthew J. Greaney
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| | - Jimmy Joy
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| | - Blair A. Combs
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| | - Saptaparna Das
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| | - Jannise J. Buckley
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| | - Stephen E. Bradforth
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| | - Richard L. Brutchey
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| |
Collapse
|
243
|
Peters JL, van der Bok JC, Hofmann JP, Vanmaekelbergh D. Hybrid Oleate-Iodide Ligand Shell for Air-Stable PbSe Nanocrystals and Superstructures. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2019; 31:5808-5815. [PMID: 31423050 PMCID: PMC6694723 DOI: 10.1021/acs.chemmater.9b01891] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/27/2019] [Indexed: 06/10/2023]
Abstract
A postsynthetic treatment is presented to improve the air stability of PbSe nanocrystals (NCs) and PbSe square superstructures. The addition of z-type Pb(oleate)2 ligands together with x-type iodide ligands creates a hybrid ligand shell containing both ligands. The air stability of the PbSe NCs is checked by enduring absorption spectroscopy under ambient conditions. With a combined NaI + Pb(oleate)2 treatment, the absorption spectrum remains unchanged for several days under ambient conditions. Fourier transform infrared spectroscopy shows that the surface coordination of the oleate ligands changes by the chemical treatment: from mixed chelating bidentate + bridging to Pb for the pristine nanocrystals to almost exclusive chelating bidentate coordination after chemical passivation. The shift of the C-H stretching vibration shows that the oleate hydrocarbon layer is in a more liquidlike state after the chemical treatment, suggesting that oleate and iodide ligands are often present on adjacent surface positions.
Collapse
Affiliation(s)
- J. L. Peters
- Condensed
Matter and Interfaces, Debye Institute for Nanomaterials Science, Utrecht University, P.O. Box 80000, 3508 TA Utrecht, The Netherlands
| | - J. C. van der Bok
- Condensed
Matter and Interfaces, Debye Institute for Nanomaterials Science, Utrecht University, P.O. Box 80000, 3508 TA Utrecht, The Netherlands
| | - J. P. Hofmann
- Laboratory
for Inorganic Materials and Catalysis, Department of Chemical Engineering
and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - D. Vanmaekelbergh
- Condensed
Matter and Interfaces, Debye Institute for Nanomaterials Science, Utrecht University, P.O. Box 80000, 3508 TA Utrecht, The Netherlands
| |
Collapse
|
244
|
Mandal D, Goswami PN, Rath AK. Thiol and Halometallate, Mutually Passivated Quantum Dot Ink for Photovoltaic Application. ACS APPLIED MATERIALS & INTERFACES 2019; 11:26100-26108. [PMID: 31257850 DOI: 10.1021/acsami.9b07605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Tunable-band-gap colloidal QDs are a potential building block to harvest the wide-energy solar spectrum. The solution-phase surface passivation with lead halide-based halometallate ligands has remarkably simplified the processing of quantum dots (QDs) and enabled the proficient use of materials for the development of solar cells. It is, however, shown that the hallometalate ligand passivated QD ink allows the formation of thick crystalline shell layer, which limits the carrier transport of the QD solids. Organic thiols have long been used to develop QD solar cells using the solid-state ligand exchange approach. However, their use is limited in solution-phase passivation due to poor dispersity of thiol-treated QDs in common solvents. In this report, a joint passivation strategy using thiol and halometallate ligand is developed to prepare the QD ink. The mutually passivated QDs show a 50% reduction in shell thickness, reduced trap density, and improved monodispersity in their solid films. These improvements lead to a 4 times increase in carrier mobility and doubling of the diffusion length, which enable the carrier extraction from a much thicker absorbing layer. The photovoltaic devices show a high efficiency of 10.3% and reduced hysteresis effect. The improvement in surface passivation leads to reduced oxygen doping and improved ambient stability of the solar cells.
Collapse
Affiliation(s)
- Debranjan Mandal
- CSIR-National Chemical Laboratory , Dr. Homi Bhabha Road , Pune 411008 , India
- Academy of Scientific and Innovative Research (AcSIR) , Ghaziabad 201002 , India
| | - Prasenjit N Goswami
- CSIR-National Chemical Laboratory , Dr. Homi Bhabha Road , Pune 411008 , India
| | - Arup K Rath
- CSIR-National Chemical Laboratory , Dr. Homi Bhabha Road , Pune 411008 , India
- Academy of Scientific and Innovative Research (AcSIR) , Ghaziabad 201002 , India
| |
Collapse
|
245
|
Liu Y, Peard N, Grossman JC. Bandlike Transport in PbS Quantum Dot Superlattices with Quantum Confinement. J Phys Chem Lett 2019; 10:3756-3762. [PMID: 31185712 DOI: 10.1021/acs.jpclett.9b01282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Optoelectronic devices made from colloidal quantum dots (CQDs) often take advantage of the combination of tunable quantum-confined optical properties and carrier mobilities of strongly coupled systems. In this work, first-principles calculations are applied to investigate the electronic, optical, and transport properties of PbS CQD superlattices. Our results show that even in the regime of strong necking and fusing between PbS CQDs, quantum confinement can be generally preserved. In particular, computed carrier mobilities for simple cubic and two-dimensional square lattices fused along the {100} facets are 2-3 orders of magnitude larger than those of superlattices fused along {110} and {111} facets. The relative magnitude of the electron and hole mobilities strongly depends on the crystal and electronic structures. Our results illustrate the importance of understanding the crystal structure of CQD films and that strongly fused CQD superlattices offer a promising pathway for achieving tunable quantum-confined optical properties while increasing carrier mobilities.
Collapse
Affiliation(s)
- Yun Liu
- Department of Materials Science and Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Nolan Peard
- Department of Physics , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Jeffrey C Grossman
- Department of Materials Science and Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| |
Collapse
|
246
|
Fan JZ, La Croix AD, Yang Z, Howard E, Quintero-Bermudez R, Levina L, Jenkinson NM, Spear NJ, Li Y, Ouellette O, Lu ZH, Sargent EH, Macdonald JE. Ligand cleavage enables formation of 1,2-ethanedithiol capped colloidal quantum dot solids. NANOSCALE 2019; 11:10774-10781. [PMID: 31134264 DOI: 10.1039/c9nr02708d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Colloidal quantum dots have garnered significant interest in optoelectronics, particularly in quantum dot solar cells (QDSCs). Here we report QDSCs fabricated using a ligand that is modified, following film formation, such that it becomes an efficient hole transport layer. The ligand, O-((9H-fluoren-9-yl)methyl) S-(2-mercaptoethyl) carbonothioate (FMT), contains the surface ligand 1,2-ethanedithiol (EDT) protected at one end using fluorenylmethyloxycarbonyl (Fmoc). The strategy enables deprotection following colloidal deposition, producing films containing quantum dots whose surfaces are more thoroughly covered with the remaining EDT molecules. To compare fabrication methods, we deposited CQDs onto the active layer: in one case, the traditional EDT-PbS/EDT-PbS is used, while in the other EDT-PbS/FMT-PbS is used. The devices based on the new EDT/FMT match the PCE values of EDT/EDT controls, and maintain a higher PCE over an 18 day storage interval, a finding we attribute to an increased thiol coverage using the FMT protocol.
Collapse
Affiliation(s)
- James Z Fan
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario M5S 3G4, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
247
|
Cho Y, Pak S, An G, Hou B, Cha S. Quantum Dots for Hybrid Energy Harvesting: From Integration to Piezo‐Phototronics. Isr J Chem 2019. [DOI: 10.1002/ijch.201900035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yuljae Cho
- Department of Engineering ScienceUniversity of Oxford Parks Road Oxford OX1 3PJ United Kingdom
- Department of EngineeringUniversity of Cambridge 9 JJ Thomson Avenue Cambridge CB3 0FA United Kingdom
| | - Sangyeon Pak
- Department of PhysicsSungkyunkwan University Suwon Republic of Korea
| | - Geon‐Hyoung An
- Department of Energy EngineeringGyeongnam National University of Science and Technology Jinju-si, Geyongsangnam-do 52725 Republic of Korea
| | - Bo Hou
- Department of EngineeringUniversity of Cambridge 9 JJ Thomson Avenue Cambridge CB3 0FA United Kingdom
| | - SeungNam Cha
- Department of PhysicsSungkyunkwan University Suwon Republic of Korea
| |
Collapse
|
248
|
Li B, Kim JM, Amaratunga GAJ. Inorganic Quantum Dot Materials and their Applications in “Organic” Hybrid Solar Cells. Isr J Chem 2019. [DOI: 10.1002/ijch.201900034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Benxuan Li
- Department of EngineeringUniversity of Cambridge 9 JJ Thomson Avenue Cambridge CB3 0FA UK
| | - Jong Min Kim
- Department of EngineeringUniversity of Cambridge 9 JJ Thomson Avenue Cambridge CB3 0FA UK
| | - Gehan A. J. Amaratunga
- Department of EngineeringUniversity of Cambridge 9 JJ Thomson Avenue Cambridge CB3 0FA UK
| |
Collapse
|
249
|
Hoye RLZ, Lai ML, Anaya M, Tong Y, Gałkowski K, Doherty T, Li W, Huq TN, Mackowski S, Polavarapu L, Feldmann J, MacManus-Driscoll JL, Friend RH, Urban AS, Stranks SD. Identifying and Reducing Interfacial Losses to Enhance Color-Pure Electroluminescence in Blue-Emitting Perovskite Nanoplatelet Light-Emitting Diodes. ACS ENERGY LETTERS 2019; 4:1181-1188. [PMID: 31119197 PMCID: PMC6516044 DOI: 10.1021/acsenergylett.9b00571] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 04/17/2019] [Indexed: 05/22/2023]
Abstract
Perovskite nanoplatelets (NPls) hold promise for light-emitting applications, having achieved photoluminescence quantum efficiencies approaching unity in the blue wavelength range, where other metal-halide perovskites have typically been ineffective. However, the external quantum efficiencies (EQEs) of blue-emitting NPl light-emitting diodes (LEDs) have reached only 0.12%. In this work, we show that NPl LEDs are primarily limited by a poor electronic interface between the emitter and hole injector. We show that the NPls have remarkably deep ionization potentials (≥6.5 eV), leading to large barriers for hole injection, as well as substantial nonradiative decay at the NPl/hole-injector interface. We find that an effective way to reduce these nonradiative losses is by using poly(triarylamine) interlayers, which lead to an increase in the EQE of the blue (464 nm emission wavelength) and sky-blue (489 nm emission wavelength) LEDs to 0.3% and 0.55%, respectively. Our work also identifies the key challenges for further efficiency increases.
Collapse
Affiliation(s)
- Robert L. Z. Hoye
- Department
of Materials Science and Metallurgy, University
of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, U.K.
- E-mail: (R. L. Z. Hoye)
| | - May-Ling Lai
- Cavendish
Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, U.K.
| | - Miguel Anaya
- Cavendish
Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, U.K.
| | - Yu Tong
- Chair
for Photonics and Optoelectronics, Nano-Institute Munich, Department
of Physics, Ludwig-Maximilians-Universität
München, Königinstraße 10, 80539 Munich, Germany
- Nanosystems
Initiative Munich (NIM) and Center for NanoScience (CeNS), Schellingstraße 4, 80799 Munich, Germany
| | - Krzysztof Gałkowski
- Cavendish
Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, U.K.
- Institute
of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, 5th Grudziadzka St., 87−100 Toruń, Poland
| | - Tiarnan Doherty
- Cavendish
Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, U.K.
| | - Weiwei Li
- Department
of Materials Science and Metallurgy, University
of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, U.K.
| | - Tahmida N. Huq
- Department
of Materials Science and Metallurgy, University
of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, U.K.
| | - Sebastian Mackowski
- Institute
of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, 5th Grudziadzka St., 87−100 Toruń, Poland
| | - Lakshminarayana Polavarapu
- Chair
for Photonics and Optoelectronics, Nano-Institute Munich, Department
of Physics, Ludwig-Maximilians-Universität
München, Königinstraße 10, 80539 Munich, Germany
- Nanosystems
Initiative Munich (NIM) and Center for NanoScience (CeNS), Schellingstraße 4, 80799 Munich, Germany
| | - Jochen Feldmann
- Chair
for Photonics and Optoelectronics, Nano-Institute Munich, Department
of Physics, Ludwig-Maximilians-Universität
München, Königinstraße 10, 80539 Munich, Germany
- Nanosystems
Initiative Munich (NIM) and Center for NanoScience (CeNS), Schellingstraße 4, 80799 Munich, Germany
| | - Judith L. MacManus-Driscoll
- Department
of Materials Science and Metallurgy, University
of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, U.K.
| | - Richard H. Friend
- Cavendish
Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, U.K.
| | - Alexander S. Urban
- Nanosystems
Initiative Munich (NIM) and Center for NanoScience (CeNS), Schellingstraße 4, 80799 Munich, Germany
- Nanospectroscopy
Group, Nano-Institute Munich, Department of Physics, Ludwig-Maximilians-Universität München, Königinstraße 10, 80539 Munich, Germany
| | - Samuel D. Stranks
- Cavendish
Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, U.K.
- E-mail: (S. D. Stranks)
| |
Collapse
|
250
|
A colloidal quantum dot infrared photodetector and its use for intraband detection. Nat Commun 2019; 10:2125. [PMID: 31073132 PMCID: PMC6509134 DOI: 10.1038/s41467-019-10170-8] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 04/18/2019] [Indexed: 11/09/2022] Open
Abstract
Wavefunction engineering using intraband transition is the most versatile strategy for the design of infrared devices. To date, this strategy is nevertheless limited to epitaxially grown semiconductors, which lead to prohibitive costs for many applications. Meanwhile, colloidal nanocrystals have gained a high level of maturity from a material perspective and now achieve a broad spectral tunability. Here, we demonstrate that the energy landscape of quantum well and quantum dot infrared photodetectors can be mimicked from a mixture of mercury selenide and mercury telluride nanocrystals. This metamaterial combines intraband absorption with enhanced transport properties (i.e. low dark current, fast time response and large thermal activation energy). We also integrate this material into a photodiode with the highest infrared detection performances reported for an intraband-based nanocrystal device. This work demonstrates that the concept of wavefunction engineering at the device scale can now be applied for the design of complex colloidal nanocrystal-based devices. The field of wavefunction engineering using intraband transition to design infrared devices has been limited to epitaxially grown semiconductors. Here the authors demonstrate that a device with similar energy landscape can be obtained from a mixture of colloidal quantum dots made of HgTe and HgSe.
Collapse
|