201
|
KONGKANERAMIT LALANA, WITOONSARIDSILP WASU, PEUNGVICHA PENCHOM, INGKANINAN KORNKANOK, WARANUCH NETI, SARISUTA NARONG. Antioxidant activity and antiapoptotic effect of Asparagus racemosus root extracts in human lung epithelial H460 cells. Exp Ther Med 2011; 2:143-148. [PMID: 22977482 PMCID: PMC3440636 DOI: 10.3892/etm.2010.172] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Accepted: 11/16/2010] [Indexed: 11/06/2022] Open
Abstract
The present study examined the antioxidant activity and protective effect of extracts from Asparagus racemosus roots against Lipofectamine-induced apoptosis. Five fractions from a successive extraction process ranging from non-polar to more polar solvents were obtained. The total saponin content as a marker in terms of diosgenin equivalent value of the root extracts was found to be in the range of 240-420 μg/mg extract, with higher values for the ethanol and aqueous fractions. The antioxidant activity measured using the DPPH method in terms of mean effective concentration (EC(50)) of the aqueous fraction was found to be 600 μg/ml as compared to 1.5 μg/ml of ascorbic acid. It is proposed that Asparagus racemosus root extracts effectively inhibit Lipofectamine-induced apoptosis by their protective effect, and may serve as an advantageous alternative option for gene delivery.
Collapse
Affiliation(s)
| | | | | | - KORNKANOK INGKANINAN
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000,
Thailand
| | - NETI WARANUCH
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000,
Thailand
| | | |
Collapse
|
202
|
Pecot CV, Calin GA, Coleman RL, Lopez-Berestein G, Sood AK. RNA interference in the clinic: challenges and future directions. Nat Rev Cancer 2011; 11:59-67. [PMID: 21160526 PMCID: PMC3199132 DOI: 10.1038/nrc2966] [Citation(s) in RCA: 634] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Inherent difficulties with blocking many desirable targets using conventional approaches have prompted many to consider using RNA interference (RNAi) as a therapeutic approach. Although exploitation of RNAi has immense potential as a cancer therapeutic, many physiological obstacles stand in the way of successful and efficient delivery. This Review explores current challenges to the development of synthetic RNAi-based therapies and considers new approaches to circumvent biological barriers, to avoid intolerable side effects and to achieve controlled and sustained release.
Collapse
Affiliation(s)
- Chad V Pecot
- U.T. M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
203
|
Intratracheally instilled mannosylated cationic liposome/NFκB decoy complexes for effective prevention of LPS-induced lung inflammation. J Control Release 2011; 149:42-50. [DOI: 10.1016/j.jconrel.2009.12.016] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2009] [Revised: 12/14/2009] [Accepted: 12/16/2009] [Indexed: 01/25/2023]
|
204
|
Liposomes for use in gene delivery. JOURNAL OF DRUG DELIVERY 2010; 2011:326497. [PMID: 21490748 PMCID: PMC3066571 DOI: 10.1155/2011/326497] [Citation(s) in RCA: 242] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 10/29/2010] [Indexed: 11/17/2022]
Abstract
Liposomes have a wide array of uses that have been continuously expanded and improved upon since first being observed to self-assemble into vesicular structures. These arrangements can be found in many shapes and sizes depending on lipid composition. Liposomes are often used to deliver a molecular cargo such as DNA for therapeutic benefit. The lipids used to form such lipoplexes can be cationic, anionic, neutral, or a mixture thereof. Herein physical packing parameters and specific lipids used for gene delivery will be discussed, with lipids classified according to overall charge.
Collapse
|
205
|
Thakor DK, Teng YD, Obata H, Nagane K, Saito S, Tabata Y. Nontoxic genetic engineering of mesenchymal stem cells using serum-compatible pullulan-spermine/DNA anioplexes. Tissue Eng Part C Methods 2010; 17:131-44. [PMID: 20698746 DOI: 10.1089/ten.tec.2010.0120] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Genetic modification of stem cells could be applied to initiate/enhance their secretion of therapeutic molecules, alter their biological properties, or label them for in vivo tracking. We recently developed a negatively charged gene carrier ("anioplex") based on pullulan-spermine, a conjugate prepared from a natural polysaccharide and polyamine. In rat mesenchymal stem cells (MSCs), anioplex-derived reporter gene activity was comparable to or exceeded that obtained using a commercial cationic lipid reagent. Transfection in the growth medium with 15% serum and antibiotics was approximately sevenfold more effective than in serum-free conditions. Cytotoxicity was essentially indiscernible after 24 h of anioplex transfection with 20 μg/mL DNA, in contrast to cationic lipid transfection that resulted in 40%-60% death of target MSCs. Anioplex-derived reporter gene activity persisted throughout the entire 3-week study, with post-transfection MSCs appearing to maintain osteogenic, adipogenic, and chondrogenic multipotency. In particular, chondrogenic pellet formation of differentiating human MSCs was significantly inhibited after lipofection but not after aniofection, which further indicates the biological inertness of pullulan-spermine/DNA anioplexes. Collectively, these data introduce a straightforward technology for genetic engineering of adult stem/progenitor cells under physiological niche-like conditions. Moreover, reporter gene activity was observed in rat spinal cords after minimally invasive intrathecal implantation, suggesting effective engraftment of donor MSCs. It is therefore plausible that anioplex-transfected MSCs or other stem/progenitor cells with autologous potential could be applied to disorders such as neurotrauma or neuropathic pain that involve the spinal cord and brain.
Collapse
Affiliation(s)
- Devang K Thakor
- Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | | | | | | | | | | |
Collapse
|
206
|
Mohammadabadi MR, El-Tamimy M, Gianello R, Mozafari MR. Supramolecular assemblies of zwitterionic nanoliposome-polynucleotide complexes as gene transfer vectors: Nanolipoplex formulation and in vitro characterisation. J Liposome Res 2010; 19:105-15. [PMID: 19242855 DOI: 10.1080/08982100802547326] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Synthetic gene transfer vectors based on zwitterionic nanoliposome-DNA assemblies (nanolipoplexes), formed by the mediation of magnesium ions, were prepared by a scalable method without employing volatile solvents, high-shear force treatments or extrusion. The zwitterionic nanolipoplexes (NLP) were formulated with PC (phosphatidylcholine) and DPPC (a natural lung surfactant) incorporating different amounts of cholesterol (CHOL). The resulting structures were characterised in terms of their morphology, size and DNA content. In addition, the toxicity and transfection efficiency of the nanolipoplexes were evaluated in cultured Chinese hamster ovary-K1 (CHO-K1) cells. The effects of the multivalent cation Mg(2+) on nanoliposome-DNA transfection potency were evaluated. Formulations containing 10% CHOL showed maximum transfection efficiency and the optimum amount of Mg(2+) ions for transfection with minimum cytotoxicity was ca. 20 mM. The zwitterionic formulations showed significantly less cytotoxicity compared to a commercially available cationic liposome reagent or polyethylenimine (PEI) while they were superior in terms of gene transfer potency. The zwitterionic vectors formulated in this study avoid the use of toxic cationic lipids as well as toxic solvents and may have potential application in gene therapy. The new method will enable scale-up and manufacture of safe and efficacious transfection vehicles required for preclinical and clinical studies. Based on the advantages and superiority of the formulated nanolipoplexes, this method allows for the acceleration of nanolipoplex formulation, enabling the rapid development and evaluation of novel carrier systems for genes and other drugs.
Collapse
Affiliation(s)
- M R Mohammadabadi
- Department of Animal Sciences, Faculty of Agriculture, Kerman Shahid Bahonar University, Kerman, Iran
| | | | | | | |
Collapse
|
207
|
Abu Lila AS, Ishida T, Kiwada H. Targeting anticancer drugs to tumor vasculature using cationic liposomes. Pharm Res 2010; 27:1171-83. [PMID: 20333455 DOI: 10.1007/s11095-010-0110-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Accepted: 03/01/2010] [Indexed: 01/28/2023]
Abstract
Liposomal drug delivery systems improve the therapeutic index of chemotherapeutic agents, and the use of cationic liposomes to deliver anticancer drugs to solid tumors has recently been recognized as a promising therapeutic strategy to improve the effectiveness of conventional chemotherapeutics. This review summarizes the selective targeting of cationic liposomes to tumor vasculature, the merits of incorporating the polymer polyethylene-glycol (PEG), and the impact of the molar percent of the cationic lipid included in cationic liposomes on liposomal targeting efficacy. In addition, the discussion herein includes the therapeutic benefit of a dual targeting approach, using PEG-coated cationic liposomes in vascular targeting (of tumor endothelial cells), and tumor targeting (of tumor cells) of anticancer drugs. Cationic liposomes have shown considerable promise in preclinical xenograft models and are poised for clinical development.
Collapse
Affiliation(s)
- Amr S Abu Lila
- Department of Pharmacokinetics and Biopharmaceutics, Subdivision of Biopharmaceutical Sciences, Institute of Health Biosciences, The University of Tokushima, 1-78-1, Sho-machi, Tokushima, 770-8505, Japan
| | | | | |
Collapse
|
208
|
Abstract
Application of nanotechnology to medical biology has brought remarkable success. Water-soluble fullerenes are molecules with great potential for biological use because they can endow unique characteristics of amphipathic property and form a self-assembled structure by chemical modification. Effective gene delivery in vitro with tetra(piperazino)fullerene epoxide (TPFE) and its superiority to Lipofectin have been described in a previous report. For this study, we evaluated the efficacy of in vivo gene delivery by TPFE. Delivery of enhanced green fluorescent protein gene (EGFP) by TPFE on pregnant female ICR mice showed distinct organ selectivity compared with Lipofectin; moreover, higher gene expression by TPFE was found in liver and spleen, but not in the lung. No acute toxicity of TPFE was found for the liver and kidney, although Lipofectin significantly increased liver enzymes and blood urea nitrogen. In fetal tissues, neither TPFE nor Lipofectin induced EGFP gene expression. Delivery of insulin 2 gene to female C57/BL6 mice increased plasma insulin levels and reduced blood glucose concentrations, indicating the potential of TPFE-based gene delivery for clinical application. In conclusion, this study demonstrated effective gene delivery in vivo for the first time using a water-soluble fullerene.
Collapse
|
209
|
Chen P, Sun YJ, Zhu ZC, Wang RX, Shi XD, Lin C, Ye YT. A controlled release system of superoxide dismutase by electrospun fiber and its antioxidant activity in vitro. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2010; 21:609-614. [PMID: 19894104 DOI: 10.1007/s10856-009-3927-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Accepted: 10/26/2009] [Indexed: 05/28/2023]
Abstract
In this paper, a new controlled release system of superoxide dismutase was developed by electrospun composite fibers. Highly loading efficacy of sod from 85.6 to 98.0% was achieved. The superoxide dismutase can be released from the system for 234 h, and obvious initial burst release of superoxide dismutase in vitro was not observed. In vitro release rate of superoxide dismutase in the first 66 h basically is faster than the corresponding rate at a later stage. Antioxidant activity of the released superoxide dismutase was still high, and it remained stable during the preparation by electrospinning and release experiment. We hope this composite system be used as an implanted form, in the treatment for several disease involved with the superoxide radical in the future.
Collapse
Affiliation(s)
- Ping Chen
- Department of Chemistry and Food Science, Chizhou College, Jianshe Road 169, Chizhou, Anhui, 247000, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
210
|
Gene Delivery into Mammalian Cells: An Overview on Existing Approaches Employed In Vitro and In Vivo. Top Curr Chem (Cham) 2010; 296:1-13. [DOI: 10.1007/128_2010_71] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
211
|
Abstract
Small interfering RNA (siRNA) technology holds great promise as a therapeutic intervention for targeted gene silencing in cancer and other diseases. However, in vivo systemic delivery of siRNA-based therapeutics to tumour tissues/cells remains a challenge. The major limitations against the use of siRNA as a therapeutic tool are its degradation by serum nucleases, poor cellular uptake and rapid renal clearance following systemic administration. Several siRNA-based loco-regional therapeutics are already in clinical trials. Further development of siRNAs for anti-cancer therapy depends on the development of safe and effective nanocarriers for systemic administration. To overcome these hurdles, nuclease-resistant chemically modified siRNAs and variety of synthetic and natural biodegradable lipids and polymers have been developed to systemically deliver siRNA with different efficacy and safety profiles. Cationic liposomes have emerged as one of the most attractive carriers because of their ability to form complexes with negatively charged siRNA and high in vitro transfection efficiency. However, their effectiveness as potential therapeutic carriers is limited by potential for pulmonary toxicity. Recently, our laboratories described the use of neutral 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine based nanoliposomes in murine tumour models. We found this approach to be safe and 10- and 30-fold more effective than cationic liposomes and naked siRNA, respectively, for systemic delivery of siRNA into tumour tissues. Here, we review potential approaches for systemic delivery of siRNA for cancer therapy.
Collapse
Affiliation(s)
- B Ozpolat
- Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030-4009, USA
| | | | | |
Collapse
|
212
|
|
213
|
Wu SY, McMillan NAJ. Lipidic systems for in vivo siRNA delivery. AAPS JOURNAL 2009; 11:639-52. [PMID: 19757082 DOI: 10.1208/s12248-009-9140-1] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Accepted: 08/14/2009] [Indexed: 11/30/2022]
Abstract
The ability of small-interfering RNA (siRNA) to silence specific target genes not only offers a tool to study gene function but also represents a novel approach for the treatment of various human diseases. Its clinical use, however, has been severely hampered by the lack of delivery of these molecules to target cell populations in vivo due to their instability, inefficient cell entry, and poor pharmacokinetic profile. Various delivery vectors including liposomes, polymers, and nanoparticles have thus been developed in order to circumvent these problems. This review presents a comprehensive overview of the barriers and recent progress for both local and systemic delivery of therapeutic siRNA using lipidic vectors. Different strategies for formulating these siRNA-loaded lipid particles as well as the general concern about their safe use in vivo will also be discussed. Finally, current advances in the targeted delivery of siRNA and their impacts on the field of RNA interference (RNAi)-based therapy will be presented.
Collapse
Affiliation(s)
- Sherry Y Wu
- Diamantina Institute for Cancer, Immunology and Metabolic Medicine, University of Queensland, Level 4, R-Wing, Princess Alexandra Hospital, Ipswich Rd, Buranda, QLD, 4102, Australia
| | | |
Collapse
|
214
|
Saraswat P, Soni RR, Bhandari A, Nagori BP. DNA as therapeutics; an update. Indian J Pharm Sci 2009; 71:488-98. [PMID: 20502565 PMCID: PMC2866338 DOI: 10.4103/0250-474x.58169] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Revised: 08/25/2009] [Accepted: 09/12/2009] [Indexed: 12/26/2022] Open
Abstract
Human gene therapy is the introduction of new genetic material into the cells of an individual with the intention of producing a therapeutic benefit for the patient. Deoxyribonucleic acid and ribonucleic acid are used in gene therapy. Over time and with proper oversight, human gene therapy might become an effective weapon in modern medicine's arsenal to help fight diseases such as cancer, acquired immunodeficiency syndrome, diabetes, high blood pressure, coronary heart disease, peripheral vascular disease, neurodegenerative diseases, cystic fibrosis, hemophilia and other genetic disorders. Gene therapy trials in humans are of two types, somatic and germ line gene therapy. There are many ethical, social, and commercial issues raised by the prospects of treating patients whose consent is impossible to obtain. This review summarizes deoxyribonucleic acid-based therapeutics and gene transfer technologies for the diseases that are known to be genetic in origin. Deoxyribonucleic acid-based therapeutics includes plasmids, oligonucleotides for antisense and antigene applications, deoxyribonucleic acid aptamers and deoxyribonucleic acidzymes. This review also includes current status of gene therapy and recent developments in gene therapy research.
Collapse
Affiliation(s)
- P. Saraswat
- Mahatma Gandhi Medical College and Hospital, RIICO Institutional Area, Sitapura, Jaipur-302 022, India
| | - R. R. Soni
- Jaipur Fertility and Microsurgery Research Center, Bani Park, Jaipur-302 016, India
| | - A. Bhandari
- Department of Pharmacy, Jodhpur National University, Narnadi, Jhanwar Road, Jodhpur-342 001, India
| | - B. P. Nagori
- Department of Pharmaceutical Chemistry, L. M. College of Science and Technology, Shastri Nagar, Jodhpur-342 003, India
| |
Collapse
|
215
|
Addressing the problem of cationic lipid-mediated toxicity: the magnetoliposome model. Biomaterials 2009; 30:3691-701. [PMID: 19371948 DOI: 10.1016/j.biomaterials.2009.03.040] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Accepted: 03/21/2009] [Indexed: 11/21/2022]
Abstract
The high biocompatibility and versatile nature of liposomes made these particles keystone components in many hot-topic research areas. For transfection and cell labelling purposes, synthetic cationic lipids are often added, but in most studies, little attention has been paid to their cytotoxic effects. In the present work, cationic magnetoliposomes (MLs), i.e. iron oxide cores enwrapped by a phospholipid bilayer (dimyristoylphosphatidylcholine or sphingomyelin) doped with cationic lipids (1,2-distearoyl-3-trimethylammonium propane), serve as a model to examine cationic lipid toxicity. Mechanisms of cytotoxic effects were found to be either dependent or independent of actual particle internalisation according to data obtained in the absence or presence of several endocytosis inhibitors. The former seem to be caused by the generation of reactive oxygen species (ROS) leading to a Ca2+ influx at high ROS levels. The latter are due to a destabilisation of the cell plasma membrane upon transfer of the cationic lipid from the ML bilayer into the plasma membrane. However, these adverse effects can be diminished by the use of a ROS scavenger, a Ca(2+)-channel blocker or by modulating the liposome size, lipid bilayer constitution or by stabilising the membrane by anchoring it on a solid core. Careful attention must be paid in terms of assessing cell viability as the effects are highly time dependent and the data suggest the incompatibility of using the well-known MTT assay when high levels of ROS species are generated.
Collapse
|
216
|
Wilson KD, de Jong SD, Tam YK. Lipid-based delivery of CpG oligonucleotides enhances immunotherapeutic efficacy. Adv Drug Deliv Rev 2009; 61:233-42. [PMID: 19232375 DOI: 10.1016/j.addr.2008.12.014] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Accepted: 12/15/2008] [Indexed: 11/26/2022]
Abstract
There has been significant interest in the potential of cytosine-guanine (CpG) containing oligodeoxynucleotides (ODN) as an immunotherapy for malignant, infectious and allergic diseases. While human trials have yielded promising results, clinical use of free CpG ODN still faces several challenges which limit their effectiveness. These include suboptimal in vivo stability, toxicity, unfavorable pharmacokinetic/biodistribution characteristics, lack of specificity for target cells and the requirement for intracellular uptake. To overcome these challenges, optimized lipid-based delivery systems have been developed to protect the CpG ODN payload, modify their circulation/distribution so as to enhance immune cell targeting and facilitate intracellular uptake. Ultimately, lipid-mediated delivery has the capacity to increase the immunopotency of CpG ODN and enhance their prophylactic or therapeutic efficacy in a range of diseases. Lipid-encapsulation provides a feasible strategy to optimize the immunostimulatory activity and immunotherapeutic efficacy of CpG ODN, thereby allowing their full clinical potential to be realized.
Collapse
|
217
|
Molina MDC, Anchordoquy TJ. Formulation strategies to minimize oxidative damage in lyophilized lipid/DNA complexes during storage. J Pharm Sci 2009; 97:5089-105. [PMID: 18399563 DOI: 10.1002/jps.21365] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
It has been shown that degradation of lipid/DNA complexes (lipoplexes) continues in the dried state during storage. The goal of this study was to evaluate the ability of various strategies to minimize the formation of reactive oxygen species (ROS) in lyophilized lipoplexes during storage, including metal removal from reagents, air displacement, and fortification with chelator/antioxidant agents. Formulations containing individual chelator (DTPA) and antioxidants (L-methionine or alpha-tocopherol), or in combination, were subjected to lyophilization. Accelerated storage conditions were investigated and physico-chemical characteristics and biological activity of samples were monitored at different time intervals. Generation of ROS during storage was determined by adding proxyl fluorescamine to the formulations prior to freeze-drying. Lipid peroxidation was assessed by monitoring the formation of thiobarbituric reactive substances (TBARS) and lipid hydroperoxides. We also assessed the effect of increased moisture content on the chemical and biological stability of lipoplexes containing additives. Our results show that both ROS and TBARS are generated in lyophilized cakes during storage, and that agents such as DTPA or alpha-tocopherol are efficient in protecting lipid/DNA complexes against oxidative damage in the dried state. Our experiments also indicate that higher residual moisture has a deleterious effect on the stability of lipid/DNA complexes during storage.
Collapse
|
218
|
Mozafari MR, Reed CJ, Rostron C, Hasirci V. A Review of Scanning Probe Microscopy Investigations of Liposome-DNA Complexes. J Liposome Res 2008; 15:93-107. [PMID: 16194929 DOI: 10.1081/lpr-64965] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Liposome-DNA complexes are one of the most promising systems for the protection and delivery of nucleic acids to combat neoplastic, viral, and genetic diseases. In addition, they are being used as models in the elucidation of many biological phenomena such as viral infection and transduction. In order to understand these phenomena and to realize the mechanism of nucleic acid transfer by liposome-DNA complexes, studies at the molecular level are required. To this end, scanning probe microscopy (SPM) is increasingly being used in the characterization of lipid layers, lipid aggregates, liposomes, and their complexes with nucleic acid molecules. The most attractive attributes of SPM are the potential to image samples with subnanometer spatial resolution under physiological conditions and provide information on their physical and mechanical properties. This review describes the application of scanning tunneling microscopy and atomic force microscopy, the two most commonly applied SPM techniques, in the characterisation of liposome-DNA complexes.
Collapse
Affiliation(s)
- M R Mozafari
- School of Pharmacy and Chemistry, Liverpool John Moores University, England, UK.
| | | | | | | |
Collapse
|
219
|
Alsarra IA, Hamed AY, Alanazi FK. Acyclovir liposomes for intranasal systemic delivery: development and pharmacokinetics evaluation. Drug Deliv 2008; 15:313-21. [PMID: 18763162 DOI: 10.1080/10717540802035251] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Intranasal route is one of the most attractive routes for distributing drugs to systemic circulation. Liposomes are used as biocompatible carriers to improve delivery properties across nasal mucosa. The objective of the present study was to formulate acyclovir liposomes and partition into poly-N-vinyl-2-pyrrolidone. Entrapment efficiency showed that multilamellar and unilamellar liposomes were 43.2% +/- 0.83 and 21% +/- 1.01, respectively. The bioavailability of acyclovir from nasal mucoadhesive gel was 60.72% compared with intravenous route. The use of liposomes acyclovir and mucoadhesive gel not only promoted the prolonged contact between the drug and the absorptive sites in the nasal cavity, but also facilitated direct absorption through the nasal mucosa.
Collapse
Affiliation(s)
- Ibrahim A Alsarra
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia.
| | | | | |
Collapse
|
220
|
Degradation of lyophilized lipid/DNA complexes during storage: The role of lipid and reactive oxygen species. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:2119-26. [DOI: 10.1016/j.bbamem.2008.04.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Revised: 04/03/2008] [Accepted: 04/03/2008] [Indexed: 11/18/2022]
|
221
|
Gusachenko Simonova ON, Pishnyi DV, Vlassov VV, Zenkova MA. Modified concatemeric oligonucleotide complexes: new system for efficient oligonucleotide transfer into mammalian cells. Hum Gene Ther 2008; 19:532-46. [PMID: 18457543 DOI: 10.1089/hum.2007.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Antisense oligonucleotides and double-stranded small interfering RNAs have become an important instrument for the manipulation of gene expression in molecular biology experiments and a promising tool for the development of gene-targeted therapeutics. One of the main impediments in the use of oligonucleotide-based therapeutics is their poor uptake by target cells. The formation of supramolecular concatemeric complexes by oligonucleotides was shown to promote their binding to various mammalian cells [Simonova, O.N.,Vladimirova, A.V., Zenkova, M.A., and Vlassov, V.V. (2006). Biochim. Biophys. Acta 1758, 413-418]. We attempted to improve the efficiency of oligonucleotide concatemer delivery into cells by the attachment of lipophilic cholesterol molecules to the components of concatemeric complexes. Uptake, cellular distribution, and biological activity of the supramolecular complexes formed by delivered antisense oligonucleotides and cholesterol-modified "carrier" oligonucleotides were studied. Our results demonstrate that incorporation of an antisense oligonucleotide into the self-assembling concatemeric system promotes its delivery into cells without the addition of any supplementary transfection agents and allows achieving specific inhibition of the target gene expression.
Collapse
Affiliation(s)
- Olesya N Gusachenko Simonova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia.
| | | | | | | |
Collapse
|
222
|
de Jesús Valle MJ, Dinis-Oliveira RJ, Carvalho F, Bastos ML, Sánchez Navarro A. Toxicological evaluation of lactose and chitosan delivered by inhalation. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2008; 19:387-97. [PMID: 18325238 DOI: 10.1163/156856208783721038] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
These days, inhalation constitutes a promising administration route for many drugs. However, this route exhibits unique limitations, and formulations aimed at pulmonary delivery should include as few as possible additives in order to maintain lung functionality. The purpose of this work was to investigate the safety of lactose and chitosan to the pulmonary tissue when delivered by inhalation. The study was carried out with 18 Wistar rats divided in three groups receiving distilled water, lactose or chitosan. A solution of each excipient was administered by inhalation at a dose of 20 mg. The lungs were excised and processed to determine several biochemical parameters used as toxicity biomarkers. Protein and carbonyl group content, lipid peroxidation, reduced and oxidized glutathione (GSSG), myeloperoxidase (MPO), cooper/zinc and manganese superoxide dismutase, catalase, glutathione S-transferase and glutathione peroxidase were determined. Results of myeloperoxidase activity and glutathione disulfide lung concentrations showed a relevant decrease for chitosan group compared to control: 4.67 +/- 2.27 versus 15.10 +/- 7.27 (P = 0.011) for MPO and 0.89 +/- 0.68 versus 2.02 +/- 0.22 (P = 0.014) for GSSG. The other parameters did not vary significantly among groups. Lactose and chitosan administered by inhalation failed to show toxic effects to the pulmonary tissue. A protective effect against oxidative stress might even be attributed to chitosan, since some biomarkers had values significantly lower than those observed in the control group when this product was inhaled. Nevertheless, caution must be taken regarding chemical composition and technological processes applied to incorporate these products during drug formulation, in particular for dry powder inhalators.
Collapse
Affiliation(s)
- M J de Jesús Valle
- Pharmacy Department, University of Salamanca, Licenciado Méndez Nieto s/n., Salamanca, Spain
| | | | | | | | | |
Collapse
|
223
|
Coating didodecyldimethylammonium bromide onto Au nanoparticles increases the stability of its complex with DNA. J Control Release 2008; 129:128-34. [DOI: 10.1016/j.jconrel.2008.04.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Revised: 04/01/2008] [Accepted: 04/13/2008] [Indexed: 12/31/2022]
|
224
|
Kongkaneramit L, Sarisuta N, Azad N, Lu Y, Iyer AKV, Wang L, Rojanasakul Y. Dependence of reactive oxygen species and FLICE inhibitory protein on lipofectamine-induced apoptosis in human lung epithelial cells. J Pharmacol Exp Ther 2008; 325:969-77. [PMID: 18354056 DOI: 10.1124/jpet.107.136077] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2025] Open
Abstract
Cationic liposomes such as lipofectamine (LF) are widely used as nonviral gene delivery vectors; however, their clinical application is limited by their cytotoxicity. These agents have been shown to induce apoptosis as the primary mode of cell death, but their mechanism of action is not well understood. The present study investigated the mechanism of LF-induced apoptosis and examined the role of reactive oxygen species (ROS) in this process. We found that LF induced apoptosis of human epithelial H460 cells through a mechanism that involves caspase activation and ROS generation. Inhibition of caspase activity by pan-caspase inhibitor (z-VAD-fmk) or by specific caspase-8 inhibitor (z-IETD-fmk) or caspase-9 inhibitor (z-LEHD-fmk) inhibited the apoptotic effect of LF. Overexpression of FLICE-inhibitory protein (FLIP) or B-cell lymphoma-2, which are known inhibitors of the extrinsic and intrinsic death pathways, respectively, similarly inhibited apoptosis by LF. Induction of apoptosis by LF was shown to require ROS generation because its inhibition by ROS scavengers or by ectopic expression of antioxidant enzyme superoxide dismutase and glutathione peroxidase strongly inhibited the apoptotic effect of LF. Electron spin resonance studies showed that LF induced multiple ROS; however, superoxide was found to be the primary ROS responsible for LF-induced apoptosis. The mechanism by which ROS mediate the apoptotic effect of LF involves down-regulation of FLIP through the ubiquitination pathway. In demonstrating the role of FLIP and ROS in LF death signaling, we document a novel mechanism of apoptosis regulation that may be exploited to decrease cytotoxicity and increase gene transfection efficiency of cationic liposomes.
Collapse
Affiliation(s)
- Lalana Kongkaneramit
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, West Virginia 26506, USA
| | | | | | | | | | | | | |
Collapse
|
225
|
Yan W, Chen W, Huang L. Reactive oxygen species play a central role in the activity of cationic liposome based cancer vaccine. J Control Release 2008; 130:22-8. [PMID: 18554742 DOI: 10.1016/j.jconrel.2008.05.005] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Revised: 04/25/2008] [Accepted: 05/06/2008] [Indexed: 11/17/2022]
Abstract
Recently, we developed a simple and potent therapeutic liposome cancer vaccine consisting of a peptide antigen and a cationic lipid. The molecular mechanism of the adjuvanticity of cationic liposome was studied and described in the current report. First, cationic DOTAP liposome, but not the neutral liposome DOPC, was shown to generate reactive oxygen species (ROS) in mouse bone marrow-derived dendritic cells (BMDC). ROS generation by DOTAP was required for ERK and p38 activation and downstream chemokine/cytokine induction. Furthermore, ROS were shown to be involved in the expression of the co-stimulatory molecules CD86/CD80 induced by DOTAP. However, as the DOTAP concentration increased from 50 to 800 microM, the apoptotic marker Annexin V and ROS double positive cells increased, suggesting that high dose of DOTAP-generated ROS causes cell apoptosis. In vivo, optimal amount of ROS in the draining lymph nodes (DLN) and anti-tumor (HPV positive TC-1 tumor) activity induced by E7 peptide (antigen derived from E7 oncoprotein of human papillomavirus (HPV) type 16) formulated in 100 nmol DOTAP were attenuated by incorporating DOPC in the formulation, suggesting that ROS are essential for the vaccine induced anti-tumor activity. Moreover, 600 nmol DOTAP/E7 generated huge amount of ROS in the DLN and showed no activity of tumor regression. Interestingly, 600 nmol DOTAP/E7-induced ROS were tuned down to the same level induced by 100 nmol DOTAP/E7 by adding DOPC in the formulation and this formulation showed tumor regression activity. In conclusion, DOTAP is an active DC stimulator resulting in the activation of ERK and p38 and induction of chemokines, cytokines and co-stimulatory molecules mediated by appropriate amount of ROS. Our data elucidated an important mechanism of adjuvant activity of cationic liposome and could facilitate rational design of synthetic lipid based adjuvants and vaccine formulation.
Collapse
Affiliation(s)
- Weili Yan
- Division of Molecular Pharmaceutics, School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | |
Collapse
|
226
|
Tyagi RK, Sharma PK, Vyas SP, Mehta A. Various carrier system(s)- mediated genetic vaccination strategies against malaria. Expert Rev Vaccines 2008; 7:499-520. [PMID: 18444895 DOI: 10.1586/14760584.7.4.499] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The introduction of vaccine technology has facilitated an unprecedented multiantigen approach to develop an effective vaccine against complex pathogens, such as Plasmodium spp., that cause severe malaria. The capacity of multisubunit DNA vaccines encoding different stage Plasmodium antigens to induce CD8(+) cytotoxic T lymphocytes and IFN-gamma responses in mice, monkeys and humans has been observed. Moreover, genetic vaccination may be multi-immune (i.e., capable of eliciting more than one type of immune response, including cell-mediated and humoral). In the case of malaria parasites, a cytotoxic T-lymphocyte response is categorically needed against the intracellular hepatocyte stage while a humoral response, with antibodies targeted against antigens from all stages of the life cycle, is also needed. Therefore, the key to success for any DNA-based therapy is to design a vector able to serve as a safe and efficient delivery system. This has encouraged the development of nonviral DNA-mediated gene-transfer techniques, such as liposomes, virosomes, microspheres and nanoparticles. Efficient and relatively safe DNA transfection using lipoplexes makes them an appealing alternative to be explored for gene delivery. In addition, liposome-entrapped DNA has been shown to enhance the potency of DNA vaccines, possibly by facilitating uptake of the plasmid by antigen-presenting cells. Another recent technology using cationic lipids has been deployed and has generated substantial interest in this approach to gene transfer. This review comprises various aspects that could be decisive in the formulation of efficient and stable carrier system(s) for the development of malaria vaccines.
Collapse
Affiliation(s)
- Rajeev K Tyagi
- Biomedical Parasitology Unit, Pasteur Institute, 25-28 Rue Du Dr Roux, 75724 Paris Cedex 15, France.
| | | | | | | |
Collapse
|
227
|
Mozafari MR, Reed CJ, Rostron C. Prospects of anionic nanolipoplexes in nanotherapy: Transmission electron microscopy and light scattering studies. Micron 2007; 38:787-95. [PMID: 17681472 DOI: 10.1016/j.micron.2007.06.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Currently nanosystems composed of polynucleotides and lipid vesicles (nanolipoplexes) are considered to be promising tools for gene therapeutics. Successful in vivo application of these vectors depends on their physicochemical, technological and biological characteristics including morphology, size distribution, molecular interactions and stability. Anionic nanoliposomes (DPPC:DCP:CHOL) were prepared by two different techniques, namely the conventional thin-film hydration method followed by extrusion, and the heating method (HM), in which no volatile solvent or detergent is used. A non-viral and non-cationic gene transfer vector was constructed by incorporating plasmid DNA (pcDNA3.1/His B/lacZ) to the HM-nanoliposomes by the electrostatic mediation of Ca(2+) ions. Transfection efficiency of the nanolipoplexes was evaluated using a human bronchial epithelial cell line (16HBE14o-) in the presence of serum. Particle characterisation, stability of the formulations and lipid-DNA interaction studies were performed using transmission electron microscopy (TEM) and light scattering. TEM pictures of nanolipoplexes showed presence of two to four closely packed vesicles with signs of fusion. Efficient delivery of plasmid DNA and subsequent beta-galactosidase expression was achieved using the anionic nanolipoplexes. Transfection efficiency increased with lipid:DNA ratio up to 7:1 (w/w), where transfection efficiency was 12-fold higher than in untreated cells. Further increase in lipid ratio decreased transfection. These nanolipoplexes appear to be safe, stable and efficient in the protection and delivery of DNA to different cells and tissues.
Collapse
Affiliation(s)
- M Reza Mozafari
- Riddet Centre, Massey University, Private Bag 11 222, Palmerston North, New Zealand.
| | | | | |
Collapse
|
228
|
Abstract
Gene therapy is a promising therapeutic strategy to combat genetic or acquired diseases at their root cause rather than just treating symptoms. It is well recognised that there is an urgent need for non-toxic and efficient gene delivery vectors to fully exploit the current potential of gene therapy in molecular medicine. Cell-specific targeting of bioactive nucleotides is a prerequisite to attain the concentration of nucleic acids required for therapeutic efficacy in the target tissue. Many metal ions such as Mg2+, Mn2+, Ba2+ and, most importantly, Ca2+ have been demonstrated to have significant roles in gene delivery. These inorganic cations show low toxicity, good biocompatibility and promise for controlled delivery properties, thus presenting a new alternative to toxic and immunogenic carriers. Recently, inorganic nanoparticles alone, or in combination with a colloidal particulate system such as nanoliposome, an advanced approach to gene delivery, were found to exert a positive effect on gene transfer. In this report, the role of the divalent cations in nucleic acid delivery, particularly with respect to the potential improvement of transfection efficiency of nanolipoplexes, is reviewed.
Collapse
Affiliation(s)
- M Reza Mozafari
- Riddet Centre, Private Bag 11-222, Massey University, Palmerston North, New Zealand
| | | |
Collapse
|
229
|
Mortazavi SM, Mohammadabadi MR, Khosravi-Darani K, Mozafari MR. Preparation of liposomal gene therapy vectors by a scalable method without using volatile solvents or detergents. J Biotechnol 2007; 129:604-13. [PMID: 17353061 DOI: 10.1016/j.jbiotec.2007.02.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2006] [Revised: 01/24/2007] [Accepted: 02/07/2007] [Indexed: 11/27/2022]
Abstract
A scalable and safe method was developed to prepare liposomal carriers for entrapment and delivery of genetic material. The carrier systems were composed of endogenously occurring dipalmitoylphosphatidylcholine (DPPC), negatively charged dicetylphosphate (DCP), cholesterol (CHOL) and glycerol (3%, v/v). Liposomes were prepared by a modified and improved version of the heating method in which no harmful chemical or procedure is involved. Anionic lipoplexes were formed by incorporating plasmid DNA (pCMV-GFP) to the liposomes by the mediation of calcium ions. Transfection efficiency and toxicity of the lipoplexes were evaluated in CHO-K1 cells using flow cytometry and MTT assay, respectively. Controls included DNA-Ca(2+) complexes (without lipids), anionic liposome-DNA complexes (with no Ca(2+)), and a commercially available cationic liposomal formulation. Results indicated fast and reproducible formation of non-toxic lipoplexes that possess long-term stability, high DNA entrapment capacity (81%) and high transfection efficiency. The lipoplex preparation method has the potential of large-scale manufacture of safe and efficient carriers of nucleic acid drugs.
Collapse
Affiliation(s)
- S Moazam Mortazavi
- Biochemistry Group, Medical School of Sanandaj, Faculty of Medicine, Kurdestan University, Sanandaj, Kurdestan, Iran
| | | | | | | |
Collapse
|
230
|
Flexman JA, Minoshima S, Kim Y, Miyoshi S, Cross DJ, Maravilla K, Anzai Y. Efficiency of transfection and localization of superparamagnetic iron oxide particles in neural progenitor cells using two methods. CONFERENCE PROCEEDINGS : ... ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL CONFERENCE 2007; 2004:5246-9. [PMID: 17271523 DOI: 10.1109/iembs.2004.1404466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Stem cells represent a potentially revolutionary therapy for neurological pathologies but for which a thorough investigation of cell behavior in the living nervous system has yet to be performed. Contrast-enhanced cell tracking with magnetic resonance imaging can enable this investigation by introducing superparagmagnetic iron oxide (SPIO) particles within the cell membrane. Before magnetically labeled cells can be observed in vivo, it is essential to maximize SPIO transfer into the cell and to fully understand the localization of the contrast agent in mature neural cells. For practical applications, a quantitative evaluation of labeled cells before implantation will allow in vivo assertions. In this study, we present a comparison between two methods for magnetic transfection of neural progenitor cells: the hemmaglutinating virus of Japan envelope (HVJ-E) as a viral vector and a liposomal reagent. We show that HVJ-E is a more efficient vehicle of cell transfection using quantitative evaluation and that the iron content per cell can be predicted using a simple, automated image analysis of stained, labeled cells. Image analysis is also used in this study to show that the contrast agent is distributed in the axon after differentiation, an important aspect of understanding cell tracking in vivo.
Collapse
Affiliation(s)
- J A Flexman
- Department of Bioengineering, Washington University, Seattle, WA, USA
| | | | | | | | | | | | | |
Collapse
|
231
|
Molina MDC, Anchordoquy TJ. Metal contaminants promote degradation of lipid/DNA complexes during lyophilization. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1768:669-77. [PMID: 17224131 PMCID: PMC1851895 DOI: 10.1016/j.bbamem.2006.12.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Revised: 11/30/2006] [Accepted: 12/05/2006] [Indexed: 10/23/2022]
Abstract
Oxidation reactions represent an important degradation pathway of nucleic acid-based pharmaceuticals. To evaluate the role of metal contamination and chelating agents in the formation of reactive oxygen species (ROS) during lyophilization, ROS generation and the stability of lipid/DNA complexes were investigated. Trehalose-containing formulations were lyophilized with different levels of transition metals. ROS generation was examined by adding proxyl fluorescamine to the formulations prior to freeze-drying. Results show that ROS were generated during lyophilization, and both supercoil content and transfection rates decreased as the levels of metal-induced ROS increased. The experiments incorporating chelators demonstrated that some of these agents (e.g., DTPA, desferal) clearly suppress ROS generation, while others (e.g., EDTA) enhance ROS. Surprisingly, there was not a strong correlation of ROS generated in the presence of chelators with the maintenance of supercoil content. In this study, we demonstrated the adverse effects of the presence of metals (especially Fe(2+)) in nonviral vector formulations. While some chelators attenuate ROS generation and preserve DNA integrity, the effects of these additives on vector stability during lyophilization are difficult to predict. Further study is needed to develop potent formulation strategies that inhibit ROS generation and DNA degradation during lyophilization and storage.
Collapse
Affiliation(s)
- Marion d C Molina
- Center for Pharmaceutical Biotechnology, University of Colorado Health Sciences Center School of Pharmacy, C238, Denver, CO 80262, USA.
| | | |
Collapse
|
232
|
Khazanov E, Simberg D, Barenholz Y. Lipoplexes prepared from cationic liposomes and mammalian DNA induce CpG-independent, direct cytotoxic effects in cell cultures and in mice. J Gene Med 2006; 8:998-1007. [PMID: 16741997 DOI: 10.1002/jgm.933] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Recent studies demonstrated the cytotoxic activity of bacterial DNA (pDNA) complexed with cationic lipids. This cytotoxicity is related to the ability of pDNA to induce potently the immune system, which is associated with release of inflammatory cytokines. Both activities seem to be related to the nonmethylated CpG sequences present in the pDNA. Here we study the cytotoxic activity of nonbacterial DNA complexed with cationic lipids against various tumor cell lines. METHODS Various nucleic acids complexed with cationic liposomes were prepared and their cytotoxic activity was studied in cell cultures and in tumor-bearing mice. Cell uptake of lipoplexes was evaluated, and mechanism of DNA cytotoxic activity was studied. RESULTS We found that nonbacterial (vertebrate) genomic DNA when complexed with cationic lipids is highly cytotoxic against C-26 and M-109 tumor cells. Cationic lipids alone were not toxic to these cells. The cytotoxic activity does not result from nonspecific acidification of the intracellular milieu, as substitution of DNA by poly-L-glutamate did not result in cytotoxicity, although the level of uptake of anionic charges per cell was similar to that of the nucleic acids, suggesting that this cytotoxic effect is specific to nucleic acids. By studying the nucleic acid fate using confocal microscopy, we found that cytotoxicity correlated with the release of DNA into the cytoplasm following uptake of lipoplexes. Injection of calf thymus DNA-based lipoplexes to mice with peritoneal C-26 metastases resulted in doubling of median survival time and long-term survival in 20% of the tumor-bearing mice. Judging by low levels of IFN-gamma, TNF-alpha and IL-6 in the treated mice, this effect cannot be ascribed to Th-1 inflammation, but rather to a direct cytotoxic effect on the tumor cells. CONCLUSIONS The above data provide a new insight into the mechanisms of lipoplex-mediated antitumor effects in vitro and in vivo and new perspectives in cancer therapy.
Collapse
Affiliation(s)
- Elena Khazanov
- Laboratory of Membrane and Liposome Research, Department of Biochemistry, The Hebrew University-Hadassah Medical School Jerusalem, Israel.
| | | | | |
Collapse
|
233
|
Halder J, Kamat AA, Landen CN, Han LY, Lutgendorf SK, Lin YG, Merritt WM, Jennings NB, Chavez-Reyes A, Coleman RL, Gershenson DM, Schmandt R, Cole SW, Lopez-Berestein G, Sood AK. Focal adhesion kinase targeting using in vivo short interfering RNA delivery in neutral liposomes for ovarian carcinoma therapy. Clin Cancer Res 2006; 12:4916-24. [PMID: 16914580 PMCID: PMC3144499 DOI: 10.1158/1078-0432.ccr-06-0021] [Citation(s) in RCA: 241] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Focal adhesion kinase (FAK) plays a critical role in ovarian cancer cell survival and in various steps in the metastatic cascade. Based on encouraging in vitro results with FAK silencing, we examined the in vivo therapeutic potential of this approach using short interfering RNA (siRNA) in the neutral liposome 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC). EXPERIMENTAL DESIGN Therapy experiments of FAK siRNA with or without docetaxel were done using human ovarian cancer cell lines SKOV3ip1, HeyA8, and HeyA8MDR in nude mice. Additional experiments with a cisplatin-resistant cell line (A2780-CP20) were also done. Assessments of angiogenesis (CD31), cell proliferation (proliferating cell nuclear antigen), and apoptosis (terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling) were done using immunohistochemical analysis. RESULTS A single dose of FAK siRNA-DOPC was highly effective in reducing in vivo FAK expression for up to 4 days as assayed by Western blot and immunohistochemical analysis. Therapy experiments were started 1 week after injection of the ovarian cancer cells. Treatment with FAK siRNA-DOPC (150 mug/kg twice weekly) reduced mean tumor weight by 44% to 72% in the three cell lines compared with the control group (Ps < 0.05 for HeyA8, A2780-CP20, and SKOV3ip1). When FAK siRNA-DOPC was combined with docetaxel, there was even greater reduction in mean tumor weight in all models (all Ps < 0.05). Similar results were observed in combination with cisplatin. Treatment with FAK siRNA-DOPC plus docetaxel resulted in decreased microvessel density, decreased expression of vascular endothelial growth factor and matrix metalloproteinase-9, and increased apoptosis of tumor-associated endothelial cells and tumor cells. CONCLUSIONS Taken together, these findings suggest that FAK siRNA-DOPC plus docetaxel or platinum might be a novel therapeutic approach against ovarian cancer.
Collapse
Affiliation(s)
- Jyotsnabaran Halder
- Department of Gynecologic Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Aparna A. Kamat
- Department of Gynecologic Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Charles N. Landen
- Department of Gynecologic Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Liz Y. Han
- Department of Gynecologic Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | | | - Yvonne G. Lin
- Department of Gynecologic Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - William M. Merritt
- Department of Gynecologic Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Nicholas B. Jennings
- Department of Gynecologic Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Arturo Chavez-Reyes
- Department of Experimental Therapeutics, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Robert L. Coleman
- Department of Gynecologic Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - David M. Gershenson
- Department of Gynecologic Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Rosemarie Schmandt
- Department of Gynecologic Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Steven W. Cole
- Department of Medical Hematology Oncology, University of California at Los Angeles, Los Angeles, California
| | - Gabriel Lopez-Berestein
- Department of Gynecologic Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Anil K. Sood
- Department of Gynecologic Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas
- Department of Cancer Biology, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| |
Collapse
|
234
|
Aoki M, Ishii T, Kanaoka M, Kimura T. RNA interference in immune cells by use of osmotic delivery of siRNA. Biochem Biophys Res Commun 2006; 341:326-33. [PMID: 16426577 DOI: 10.1016/j.bbrc.2005.12.191] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Accepted: 12/28/2005] [Indexed: 12/31/2022]
Abstract
Delivery of siRNA to immune cells has been one of the major obstacles to widespread application of RNAi in the immunology field. Here, we report that osmotic delivery of siRNA can be used to silence genes in macrophage RAW264.7 without incurring either cytotoxic or immunomodulatory activity. We also showed usefulness of the osmotic delivery in other types of cells including T cell DO11.10. By repeated osmotic delivery of siRNA, long-term gene silencing was readily achieved. When TLR4 was disrupted in RAW264.7 cells for 48 h and the cells were stimulated with the TLR4 ligand LPS, a significant decrease in TNFalpha production was observed. DNA microarray-based gene expression profile analysis showed that gene silencing by osmotic delivery of siRNA was target-specific and the delivery method itself had little influence on overall gene expression.
Collapse
Affiliation(s)
- Mikio Aoki
- Genomic Science Laboratories, Dainippon Sumitomo Pharma Co., Ltd., 3-1-98 Kasudade Naka, Konohana-ku, Osaka 554-0022, Japan
| | | | | | | |
Collapse
|
235
|
Kulkarni VI, Shenoy VS, Dodiya SS, Rajyaguru TH, Murthy RR. Role of calcium in gene delivery. Expert Opin Drug Deliv 2006; 3:235-45. [PMID: 16506950 DOI: 10.1517/17425247.3.2.235] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The treatment of genetic diseases using therapeutic gene transfer is considered to be a significant development. This development has brought with it certain limitations, and the process of overcoming these barriers has seen a drastic change in gene delivery. Many metal ions such as Mg2+, Mn2+, Ba2+ and, most importantly, Ca2+ have been demonstrated to have significant roles in gene delivery. Recently, calcium phosphate alone, or in combination with viral and nonviral vectors, was found to exert a positive effect on gene transfer when incorporated in the colloidal particulate system, which is an advancing approach to gene delivery. This review elaborates on various successful methods of using calcium in gene delivery.
Collapse
Affiliation(s)
- Vijay I Kulkarni
- Centre for Postgraduate Studies and Research, New Drug Delivery Systems laboratory, Pharmacy Department, Donors Plaza, MS University of Baroda, Fatehgunj, Vadodara - 390 002, India.
| | | | | | | | | |
Collapse
|
236
|
Zughaier SM, Shafer WM, Stephens DS. Antimicrobial peptides and endotoxin inhibit cytokine and nitric oxide release but amplify respiratory burst response in human and murine macrophages. Cell Microbiol 2006; 7:1251-62. [PMID: 16098213 PMCID: PMC1388267 DOI: 10.1111/j.1462-5822.2005.00549.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Antimicrobial peptides (AMPs), in addition to their antibacterial properties, are also chemotactic and signalling molecules that connect the innate and adaptive immune responses. The role of AMP [alpha defensins, LL-37, a cathepsin G-derived peptide (CG117-136), protegrins (PG-1), polymyxin B (PMX) and LLP1] in modulating the respiratory burst response in human and murine macrophages in the presence of bacterial endotoxin [lipopolysaccharide (LPS) or lipooligosaccharide (LOS)] was investigated. AMP were found to neutralize endotoxin induction of nitric oxide and TNFalpha release in macrophages in a dose-dependent manner. In contrast, macrophages primed overnight with AMP and LOS or LPS significantly enhanced reactive oxygen species (ROS) release compared with cells primed with endotoxin or AMP alone, while no responses were seen in unprimed cells. This enhanced ROS release by macrophages was seen in all cell lines including those obtained from C3H/HeJ (TLR4-/-) mice. Similar effects were also seen when AMP and endotoxin were added directly with zymosan to trigger phagocytosis and the respiratory burst in unprimed RAW 264.7 and C3H/HeJ macrophages. Amplification of ROS release was also demonstrated in a cell-free system of xanthine and xanthine oxidase. Although AMP inhibited cytokine and nitric oxide induction by endotoxin in a TLR4-dependent manner, AMP and endotoxin amplified ROS release in a TLR4-independent manner possibly by exerting a prolonged catalytic effect on the ROS generating enzymes such as the NADPH-oxidase complex.
Collapse
Affiliation(s)
- Susu M Zughaier
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, and Laboratories of Microbial Pathogenesis, Atlanta, GA, USA.
| | | | | |
Collapse
|
237
|
Borowik T, Widerak K, Ugorski M, Langner M. Combined effect of surface electrostatic charge and poly(ethyl glycol) on the association of liposomes with colon carcinoma cells. J Liposome Res 2006; 15:199-213. [PMID: 16393911 DOI: 10.1080/08982100500364370] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Particulate drug formulations are considered to be a means that may improve the pharmacokinetics and biodistribution of active compounds. By using them, drug distribution is determined solely by the properties of the carrier. The surface properties of such supramolecular aggregates determine how they will interact with various biological structures. Among others, surface electrostatic charge and surface grafted polymers are considered to be among the major factors affecting its interaction with proteins and cells. In this article, we present experimental evidence that properly selected surface electrostatic charge and grafted polymers can alter the association of liposomes with colon cancer cells. The dependence of the adsorption of liposomes onto the cell surface on the quantity and length of surface grafted polymers for a certain surface charge density exhibits a distinct maximum. For example, when liposomes were formed with 20 mol% of DOTAP, PE-PEG350 increased liposome adsorption by up to 6 mol%. This adsorption maximum depends on both polymer length and charge type. Results presented in this article show that the interaction of liposomes with colon cancer cells can be tuned by a proper combination of liposome surface electrostatics and surface grafted polymers.
Collapse
Affiliation(s)
- T Borowik
- Institute of Physics, Wroclaw University of Technology, Wroclaw, Poland.
| | | | | | | |
Collapse
|
238
|
Tam YK. Liposomal encapsulation enhances the activity of immunostimulatory oligonucleotides. ACTA ACUST UNITED AC 2006. [DOI: 10.2217/17460875.1.1.35] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
239
|
Miyoshi S, Flexman JA, Cross DJ, Maravilla KR, Kim Y, Anzai Y, Oshima J, Minoshima S. Transfection of neuroprogenitor cells with iron nanoparticles for magnetic resonance imaging tracking: cell viability, differentiation, and intracellular localization. Mol Imaging Biol 2005; 7:286-95. [PMID: 16080022 DOI: 10.1007/s11307-005-0008-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
PURPOSE Magnetic resonance imaging (MRI) can track labeled cells in the brain. The use of hemagglutinating virus of Japan envelopes (HVJ-Es) to effectively introduce the contrast agent to neural progenitor cells (NPCs) is limited to date despite their high NPC affinity. PROCEDURES HVJ-Es and Lipofectamine 2000 were compared as transfection vehicles of superparamagnetic iron oxide (SPIO). Labeled NPCs were examined for iron content, MRI signal change, and fundamental cell characteristics. Prussian Blue staining was used after differentiation to determine SPIO localization. RESULTS HVJ-Es transfected up to 12.5 +/- 8.8 times more SPIO into NPCs. HVJ-Es do not affect cell viability or differentiation capability. Superparamagnetic iron oxide was disseminated in both the soma and neurites. CONCLUSIONS These findings indicate that HVJ-Es are an effective vehicle for SPIO transfection of NPCs. The intracellular localization after differentiation raises the question as to the capability of MRI to distinguish cell migration from axonal or dendritic growth in vivo.
Collapse
Affiliation(s)
- Sosuke Miyoshi
- Department of Bioengineering, University of Washington, Seattle, USA
| | | | | | | | | | | | | | | |
Collapse
|
240
|
Rengel RG, Filipović-Grcić J, Cepelak I, Zanić-Grubisić T, Barisić K. The effect of liposomes with superoxide dismutase on A2182 cells. Eur J Pharm Biopharm 2005; 60:47-51. [PMID: 15848055 DOI: 10.1016/j.ejpb.2004.12.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2004] [Revised: 12/07/2004] [Accepted: 12/07/2004] [Indexed: 11/21/2022]
Abstract
Differently charged liposomes were examined for the efficiency of delivery of Cu/Zn superoxide dismutase (CuZnSOD) to human lung epithelial cells, A2182, and their prospects of cell protection from oxidative agents. A2182 cells were treated with cationic, neutral and anionic liposomes with encapsulated CuZnSOD. Untreated cells and cells pre-treated with liposome-encapsulated CuZnSOD were exposed to oxidative stress caused by xanthine/xanthine oxidase. Cellular antioxidant response was monitored for 4 or 24h after the beginning of oxidative stress induced by the activity of superoxide dismutase (SOD) and total glutathione concentration. CuZnSOD-loaded liposomes increased the SOD activity of A2182 cells 24h after treatment. The highest increase of cellular SOD, by 108%, was achieved using anionic liposomes. Neutral and cationic liposomes increased cellular SOD by 83 and 85%, respectively. Cationic liposomes were the most cytotoxic. Exposure of untreated cells to oxidative stress increased the cellular glutathione level after 24h. Cells pre-treated with liposome-encapsulated CuZnSOD were protected from oxidative stress, as shown by the unchanged concentration of cellular glutathione.
Collapse
Affiliation(s)
- Ruzica Galović Rengel
- Department of Medical Biochemistry and Hematology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia.
| | | | | | | | | |
Collapse
|
241
|
Patil SD, Rhodes DG, Burgess DJ. DNA-based therapeutics and DNA delivery systems: a comprehensive review. AAPS J 2005; 7:E61-77. [PMID: 16146351 PMCID: PMC2751499 DOI: 10.1208/aapsj070109] [Citation(s) in RCA: 422] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2004] [Accepted: 04/08/2004] [Indexed: 12/18/2022] Open
Abstract
The past several years have witnessed the evolution of gene medicine from an experimental technology into a viable strategy for developing therapeutics for a wide range of human disorders. Numerous prototype DNA-based biopharmaceuticals can now control disease progression by induction and/or inhibition of genes. These potent therapeutics include plasmids containing transgenes, oligonucleotides, aptamers, ribozymes, DNAzymes, and small interfering RNAs. Although only 2 DNA-based pharmaceuticals (an antisense oligonucleotide formulation, Vitravene, (USA, 1998), and an adenoviral gene therapy treatment, Gendicine (China, 2003), have received approval from regulatory agencies; numerous candidates are in advanced stages of human clinical trials. Selection of drugs on the basis of DNA sequence and structure has a reduced potential for toxicity, should result in fewer side effects, and therefore should eventually yield safer drugs than those currently available. These predictions are based on the high selectivity and specificity of such molecules for recognition of their molecular targets. However, poor cellular uptake and rapid in vivo degradation of DNA-based therapeutics necessitate the use of delivery systems to facilitate cellular internalization and preserve their activity. This review discusses the basis of structural design, mode of action, and applications of DNA-based therapeutics. The mechanisms of cellular uptake and intracellular trafficking of DNA-based therapeutics are examined, and the constraints these transport processes impose on the choice of delivery systems are summarized. Finally, the development of some of the most promising currently available DNA delivery platforms is discussed, and the merits and drawbacks of each approach are evaluated.
Collapse
MESH Headings
- Antisense Elements (Genetics)/administration & dosage
- Antisense Elements (Genetics)/pharmacokinetics
- Antisense Elements (Genetics)/therapeutic use
- Aptamers, Nucleotide/administration & dosage
- Aptamers, Nucleotide/pharmacokinetics
- Aptamers, Nucleotide/therapeutic use
- Biological Transport
- DNA/administration & dosage
- DNA/genetics
- DNA/pharmacokinetics
- DNA/therapeutic use
- DNA, Catalytic/administration & dosage
- DNA, Catalytic/pharmacokinetics
- DNA, Catalytic/therapeutic use
- DNA, Recombinant/administration & dosage
- DNA, Recombinant/genetics
- DNA, Recombinant/pharmacokinetics
- DNA, Recombinant/therapeutic use
- Dosage Forms
- Drug Delivery Systems
- Drug Design
- Genes, Transgenic, Suicide
- Genetic Therapy/methods
- Genetic Vectors/administration & dosage
- Genetic Vectors/pharmacokinetics
- Genetic Vectors/therapeutic use
- Humans
- Liposomes/administration & dosage
- Liposomes/classification
- Plasmids/administration & dosage
- Plasmids/genetics
- Plasmids/therapeutic use
- RNA, Catalytic/administration & dosage
- RNA, Catalytic/pharmacokinetics
- RNA, Catalytic/therapeutic use
- RNA, Small Interfering/administration & dosage
- RNA, Small Interfering/pharmacokinetics
- RNA, Small Interfering/therapeutic use
- Transgenes
Collapse
Affiliation(s)
- Siddhesh D. Patil
- Department of Pharmaceutical Sciences, University of Connecticut, 06269 Storrs, CT
| | - David G. Rhodes
- Department of Pharmaceutical Sciences, University of Connecticut, 06269 Storrs, CT
| | - Diane J. Burgess
- Department of Pharmaceutical Sciences, University of Connecticut, 06269 Storrs, CT
| |
Collapse
|
242
|
Patil SD, Rhodes DG, Burgess DJ. Biophysical characterization of anionic lipoplexes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2005; 1711:1-11. [PMID: 15904657 DOI: 10.1016/j.bbamem.2005.03.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2004] [Revised: 02/11/2005] [Accepted: 03/02/2005] [Indexed: 11/23/2022]
Abstract
Transfection efficiency of liposomal gene delivery vectors depends on an optimal balance in the electro-chemical and structural properties of the transfection-capable complexes. We have recently reported a novel anionic lipoplex DNA delivery system composed of a ternary complex of endogenous occurring non-toxic anionic lipids, physiological Ca2+ cations, and plasmid DNA encoding a gene of interest with high transfection efficiency and low toxicity. In this work, we investigate the electro-chemical and structural properties anionic lipoplexes and compare them with those of Ca2+-DNA complexes. Biophysical characterization is used to explain the transfection efficiency of anionic lipoplexes in mammalian CHO-K1 cells. Circular dichroism and fluorescence spectroscopy showed that the plasmid DNA underwent conformational transition from native B-DNA to Z-DNA due to compaction and condensation upon Ca2+-mediated complexation with anionic liposomes. Zeta potential measurements and gel electrophoresis studies demonstrated that Ca2+ interaction with plasmid DNA during the formation of lipoplexes also led to increased association of supercoiled plasmid DNA with the lipoplexes, leading to charge neutralization which is expected to facilitate transfection. However, even 10-fold higher concentrations of Ca2+ alone (in the absence of the anionic liposomes) were unable to induce these changes in plasmid DNA molecules. A model explaining the possible mechanism of anionic lipoplex formation and the correlation of high transfection efficiency to biophysical properties was proposed. These studies confirm the utility of biophysical studies to identify optimal formulation conditions to design efficient liposomal gene delivery vectors.
Collapse
Affiliation(s)
- Siddhesh D Patil
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA
| | | | | |
Collapse
|
243
|
Cryan SA. Carrier-based strategies for targeting protein and peptide drugs to the lungs. AAPS JOURNAL 2005; 7:E20-41. [PMID: 16146340 PMCID: PMC2751494 DOI: 10.1208/aapsj070104] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
With greater interest in delivery of protein and peptide-based drugs to the lungs for topical and systemic activity, a range of new devices and formulations are being investigated. While a great deal of recent research has focused on the development of novel devices, attention must now be paid to the formulation of these macromolecular drugs. The emphasis in this review will be on targeting of protein/peptide drugs by inhalation using carriers and ligands.
Collapse
Affiliation(s)
- Sally-Ann Cryan
- School of Pharmacy, Royal College of Surgeons in Ireland, Dublin 2, Ireland.
| |
Collapse
|
244
|
Huang YC, Vieira A, Huang KL, Yeh MK, Chiang CH. Pulmonary inflammation caused by chitosan microparticles. J Biomed Mater Res A 2005; 75:283-7. [PMID: 16059899 DOI: 10.1002/jbm.a.30421] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Chitosan is a cationic biopolymer derived from chitin with potential therapeutic applications such as controlled drug delivery to mucosal-epithelial surfaces in the body. Inhaled chitosan microparticles (CM), for example, are of potential interest in pulmonary pharmacotherapy. In this context, we examine some basic reactions of lung tissue to CM. Inhaled CM (2-10 mg/kg of particles) induce dose-dependent proinflammatory effects in rat lungs; these effects are documented in increases in bronchoalveolar lavage fluid protein (BALF-P) and lactate dehydrogenase activity (BALF-LDH) and increases in lung tissue myeloperoxidase (MPO) activity and leukocyte migration. Overall, the biochemical parameters (i.e., average of BALF-P, BALF-DH, and MPO) indicate that the inflammation response is 1.8-fold greater than controls without CM; the same inflammation parameters, however, are 1.9-fold lower with CM compared with the proinflammatory effects of lipopolysaccharide (LPS). Cytological examination of BALF shows a large infiltration of polymorphonuclear neutrophils to lung tissue: more than a sixfold increase in this population of inflammatory cells, after inhalation of CM relative to air inhalation controls. Thus, the results indicate that inhaled CM can have significant proinflammatory effects on lung tissues; these effects are mild relative to LPS but need to be considered in the context of therapeutic applications via pulmonary delivery if such concentrations of CM are used.
Collapse
Affiliation(s)
- Y C Huang
- Graduate Institute of Life Science, National Defense Medical Center, University of National Defense, Taipei, Taiwan.
| | | | | | | | | |
Collapse
|
245
|
Choi WJ, Kim JK, Choi SH, Park JS, Ahn WS, Kim CK. Low toxicity of cationic lipid-based emulsion for gene transfer. Biomaterials 2004; 25:5893-903. [PMID: 15172502 DOI: 10.1016/j.biomaterials.2004.01.031] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2003] [Accepted: 01/20/2004] [Indexed: 10/26/2022]
Abstract
Cationic liposome has been studied as one of the most promising non-viral gene delivery systems. However, it has major drawbacks such as the formation of large aggregates at higher concentrations and the instability in the serum due to cationic lipid. As an alternative gene delivery system, cationic emulsion was formulated and transfection efficiency was evaluated in vitro and in vivo, in comparison with cationic liposome. Cationic emulsion was prepared with varying compositions of 3 beta [N-(N',N'-dimethylaminoethane) carbamoyl] cholesterol (DC-Chol), dioleoylphosphatidyl ethanolamine (DOPE), caster oil and Tween 80. Cationic liposome was prepared with DC-Chol and DOPE. The particle size of all the DNA/lipid complexes varied from 150 to 230 nm. The in vitro transfection efficiency of plasmid DNA was assessed by the expression of green fluorescent protein as a reporter. Of various formulations, cationic emulsion E2 (DC-Chol/DOPE/Castor Oil/Tween 80 = 0.3:0.3:0.3:0.15) and cationic liposome L3 (DC-Chol/DOPE = 0.6:0.3) showed improved transfection. DNA/E2 complexes exhibited higher transfection efficiencies (17.39+/-0.58%) in comparison with DNA/L3 complexes (11.47+/-0.59%). DNA/E2 complexes also showed a better physical stability and a stronger serum resistance than DNA/L3 complexes. Moreover, the cytotoxicity of DNA/E2 complexes was comparable to that of DNA/L3 complexes. When DNA/lipid complexes were intravenously administered, DNA/E2 complexes showed a prolonged circulation in blood and mRNA expression in various tissues compared with DNA/L3 complexes. These results suggest that cationic emulsion E2 could be a potential gene delivery system in clinical approaches because of enhanced in vivo gene transfer with low toxicity.
Collapse
Affiliation(s)
- Woo-Jeong Choi
- National Research Lab for Drug and Gene Delivery, College of Pharmacy, Seoul National University, San 56-1 Shillim-dong Kwanak-gu, Seoul 151-742, Republic of Korea
| | | | | | | | | | | |
Collapse
|
246
|
Patil SD, Rhodes DG, Burgess DJ. Anionic liposomal delivery system for DNA transfection. AAPS JOURNAL 2004; 6:e29. [PMID: 15760094 PMCID: PMC2751225 DOI: 10.1208/aapsj060429] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The present study investigates the use of novel anionic lipoplexes composed of physiological components for plasmid DNA delivery into mammalian cells in vitro. Liposomes were prepared from mixtures of endogenously occurring anionic and zwitterionic lipids, 1,2-dioleoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (sodium salt) (DOPG) and 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), respectively, at a molar ratio of 17:83 (DOPG:DOPE). Anionic lipoplexes were formed by complexation between anionic liposomes and plasmid DNA molecules encoding green fluorescence protein (GFP) using Ca2+ ions. Transfection and toxicity were evaluated in CHO-K1 cells using flow cytometry and propidium iodide staining, respectively. Controls included Ca2+-DNA complexes (without lipids), anionic liposomes (no Ca2+), and a cationic liposomal formulation. Efficient delivery of plasmid DNA and subsequent GFP expression was achieved using anionic lipoplexes. Transfection efficiency increased with Ca2+ concentration up to 14 mM Ca2+, where transfection efficiency was 7-fold higher than in untreated cells, with minimum toxicity. Further increase in Ca2+ decreased transfection. Transfection efficiency of anionic lipoplexes was similar to that of cationic liposomes (lipofectAmine), whereas their toxicity was significantly lower. Ca2+-DNA complexes exhibited minimal and irregular transfection with relatively high cytotoxicity. A model was developed to explain the basis of anionic lipoplex uptake and transfection efficacy. Effective transfection is explained on the formation of nonbilayer hexagonal lipid phases. Efficient and relatively safe DNA transfection using anionic lipoplexes makes them an appealing alternative to be explored for gene delivery.
Collapse
Affiliation(s)
- Siddhesh D. Patil
- />Department of Pharmaceutical Sciences, University of Connecticut, 06269 Storrs, CT
| | - David G. Rhodes
- />Department of Pharmaceutical Sciences, University of Connecticut, 06269 Storrs, CT
| | - Diane J. Burgess
- />Department of Pharmaceutical Sciences, University of Connecticut, 06269 Storrs, CT
| |
Collapse
|
247
|
Takano S, Aramaki Y, Tsuchiya S. Physicochemical properties of liposomes affecting apoptosis induced by cationic liposomes in macrophages. Pharm Res 2003; 20:962-8. [PMID: 12880280 DOI: 10.1023/a:1024441702398] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
PURPOSE Cationic liposomes are expected to be useful as nonviral vectors for gene delivery. Cationic liposomes showed cytotoxicity, and we proposed that the cytotoxicity is through apoptosis. In this study, we examined the effects of liposomal properties, such as liposomal charge, size, membrane fluidity, and PEG coating, on the induction of apoptosis in the macrophage-like cell line RAW264.7. METHODS RAW264.7 cells were treated with liposomes, and the induction of apoptosis was evaluated by monitoring the changes in DNA content by flow cytometry. The association of liposomes with cells and the generation of reactive oxygen species (ROS) were also measured by flow cytometry. RESULTS The induction of apoptosis of RAW264.7 cells was dependent on the concentrations of stearylamine or cholesterol, a component of cationic liposomes. A significant correlation was observed between the degree of apoptosis and association of cationic liposomes with the cells. Coating the liposomal surface with polyethylene glycol (PEG) decreased the association of cationic liposomes with RAW264.7 cells and reduced the induction of apoptosis. Liposomal size also affected the induction of apoptosis, and larger liposomes showed a higher degree of apoptosis induction. Furthermore, ROS, which were required for the induction of apoptosis by cationic liposomes, were generated in a cholesterol content-dependent manner, and ROS generation was also decreased by PEG coating as the association and the induction of apoptosis were reduced. CONCLUSIONS The degree of apoptosis is related to the extent of association of cationic liposomes with cells and is related to the generation of ROS.
Collapse
Affiliation(s)
- Shuhei Takano
- School of Pharmacy, Tokyo University of Pharmacy and Life Science, Tokyo 192-0392, Japan
| | | | | |
Collapse
|
248
|
Torchilin VP, Levchenko TS, Rammohan R, Volodina N, Papahadjopoulos-Sternberg B, D'Souza GGM. Cell transfection in vitro and in vivo with nontoxic TAT peptide-liposome-DNA complexes. Proc Natl Acad Sci U S A 2003; 100:1972-7. [PMID: 12571356 PMCID: PMC149943 DOI: 10.1073/pnas.0435906100] [Citation(s) in RCA: 330] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2002] [Indexed: 12/25/2022] Open
Abstract
Liposomes modified with TAT peptide (TATp-liposomes) showed fast and efficient translocation into the cell cytoplasm with subsequent migration into the perinuclear zone. TATp-liposomes containing a small quantity (
Collapse
Affiliation(s)
- Vladimir P Torchilin
- Department of Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA.
| | | | | | | | | | | |
Collapse
|
249
|
Ye J, Wang L, Zhang X, Tantishaiyakul V, Rojanasakul Y. Inhibition of TNF-alpha gene expression and bioactivity by site-specific transcription factor-binding oligonucleotides. Am J Physiol Lung Cell Mol Physiol 2003; 284:L386-94. [PMID: 12388368 DOI: 10.1152/ajplung.00134.2002] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The present study investigated transcriptional inactivation of TNF-alpha gene by nuclear factor-binding oligonucleotides (ON) and their effects on pulmonary inflammatory responses in mice. PCR-based gene mutation and gel shift assays were used to identify specific cis-acting elements necessary for nuclear factor binding and transactivation of TNF-alpha gene by lipopolysaccharide (LPS). LPS inducibility of TNF-alpha was shown to require transcriptional activation by NF-kappaB at multiple binding sites, including the -850 (kappa1), -655 (kappa2), and -510 (kappa3) sites, whereas the -210 (kappa4) site had no effect. Maximum inducibility was associated with the activation of kappa3 site. The sequence-specific, double-stranded ON targeting this site was most effective in inhibiting TNF-alpha activity induced by LPS. The inhibitory effect of ON on TNF-alpha bioactivity was also investigated using a murine lung inflammation model. Pretreatment of mice with ON, but not its mutated sequence, inhibited LPS-induced inflammatory neutrophil influx and TNF-alpha production by lung cells. Effective inhibition by ON in this model was shown to require a liposomal agent for efficient cellular delivery of the ON. Together, our results indicate that transcriptional inactivation of TNF-alpha gene can be achieved by using ON that compete for nuclear factor binding to TNF-alpha gene promoter. This gene inhibition approach may be used as a research tool or as potential therapeutic modality for diseases with etiology dependent on aberrant gene expression.
Collapse
Affiliation(s)
- Jianping Ye
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA 70808, USA
| | | | | | | | | |
Collapse
|
250
|
Audouy SAL, de Leij LFMH, Hoekstra D, Molema G. In vivo characteristics of cationic liposomes as delivery vectors for gene therapy. Pharm Res 2002; 19:1599-605. [PMID: 12458664 DOI: 10.1023/a:1020989709019] [Citation(s) in RCA: 148] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
After a decade of clinical trials, gene therapy seems to have found its place between excessive ambitions and feasible aims, with encouraging results obtained in recent years. Intracellular delivery of genetic material is the key step in gene therapy. Optimization of delivery vectors is of major importance for turning gene therapy into a successful therapeutic method. Nonviral gene delivery relies mainly on the complexes formed from cationic liposomes (or cationic polymers) and DNA, i.e., lipoplexes (or polyplexes). Many lipoplex formulations have been studied, but in vivo activity is generally low compared to that of viral systems. This review gives a concise overview of studies on the application of cationic liposomes in vivo in animal models of diseases and in clinical studies. The transfection efficiency, the pharmacokinetic and pharmacodynamic properties of the lipid-DNA complexes, and potentially relevant applications for cationic liposomes are discussed. Furthermore, the toxicity of, and the induction of an inflammatory response in association with the administration of lipoplexes are described. Increasing understanding of lipoplex behavior and gene transfer capacities in vivo offers new possibilities to enhance their efficiency and paves the path to more extensive clinical applications in the future.
Collapse
Affiliation(s)
- Sandrine A L Audouy
- Department of Membrane Cell Biology, Groningen University Institute for Drug Exploration, Groningen, The Netherlands
| | | | | | | |
Collapse
|