201
|
Hou XJ, Jin ZD, Jiang F, Zhu JW, Li ZS. Expression of Smad7 and Smad ubiquitin regulatory factor 2 in a rat model of chronic pancreatitis. J Dig Dis 2015; 16:408-415. [PMID: 25943897 DOI: 10.1111/1751-2980.12253] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To quantify the expressions of Smad7 and Smad ubiquitin regulatory factor 2 (Smurf2) in the pancreas in rats with chronic pancreatitis (CP). METHODS A total of 16 male Wistar rats were randomly divided into the control group and the CP group, with 8 rats in each group. CP was induced in vivo with dibutyltin dichloride (DBTC). Four weeks after DBTC administration, histological assessment and the measurement of hydroxyproline content in the pancreatic tissues were performed to assess the inflammation and fibrosis of the pancreas. Immunohistochemistry and reverse transcription polymerase chain reaction (RT-PCR) for transforming growth factor (TGF)-β1 and α-smooth muscle actin (α-SMA) were applied to assess activated pancreatic stellate cells (PSC) and TGF-β1 expression. Smad7 and Smurf2 expressions in the pancreas were measured using Western blot and RT-PCR. RESULTS Typical histopathological characteristics of DBTC-induced CP in the rats with extensively activated PSC. Compared with the control group, the expressions of TGF-β1, α-SMA and hydroxyproline content in the pancreatic tissues in the CP group were significantly increased. Meanwhile, the mRNA and protein expressions of Smad7 and Smurf2 were significant increased in the fibrotic pancreas, in which the expressions of Smad7 proteins showed an obvious reduction compared with controls. CONCLUSION The dysregulation of Smad7 and Smurf2 may be associated with the pathogenesis of pancreatic fibrosis through the TGF-β signaling pathway.
Collapse
Affiliation(s)
- Xiao Jia Hou
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Zhen Dong Jin
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Fei Jiang
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Jian Wei Zhu
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Zhao Shen Li
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
202
|
Luo JY, Zhang Y, Wang L, Huang Y. Regulators and effectors of bone morphogenetic protein signalling in the cardiovascular system. J Physiol 2015; 593:2995-3011. [PMID: 25952563 DOI: 10.1113/jp270207] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 04/27/2015] [Indexed: 12/22/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) play key roles in the regulation of cell proliferation, differentiation and apoptosis in various tissues and organs, including the cardiovascular system. BMPs signal through both Smad-dependent and -independent cascades to exert a wide spectrum of biological activities. Cardiovascular disorders such as abnormal angiogenesis, atherosclerosis, pulmonary hypertension and cardiac hypertrophy have been linked to aberrant BMP signalling. To correct the dysregulated BMP signalling in cardiovascular pathogenesis, it is essential to get a better understanding of how the regulators and effectors of BMP signalling control cardiovascular function and how the dysregulated BMP signalling contributes to cardiovascular dysfunction. We hence highlight several key regulators of BMP signalling such as extracellular regulators of ligands, mechanical forces, microRNAs and small molecule drugs as well as typical BMP effectors like direct downstream target genes, mitogen-activated protein kinases, reactive oxygen species and microRNAs. The insights into these molecular processes will help target both the regulators and important effectors to reverse BMP-associated cardiovascular pathogenesis.
Collapse
Affiliation(s)
- Jiang-Yun Luo
- Shenzhen Research Institute, Institute of Vascular Medicine, and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yang Zhang
- Shenzhen Research Institute, Institute of Vascular Medicine, and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong SAR, China.,Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard University, Boston, MA, USA
| | - Li Wang
- Shenzhen Research Institute, Institute of Vascular Medicine, and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yu Huang
- Shenzhen Research Institute, Institute of Vascular Medicine, and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
203
|
Liu S, Nheu T, Luwor R, Nicholson SE, Zhu HJ. SPSB1, a Novel Negative Regulator of the Transforming Growth Factor-β Signaling Pathway Targeting the Type II Receptor. J Biol Chem 2015; 290:17894-17908. [PMID: 26032413 DOI: 10.1074/jbc.m114.607184] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Indexed: 01/17/2023] Open
Abstract
Appropriate cellular signaling is essential to control cell proliferation, differentiation, and cell death. Aberrant signaling can have devastating consequences and lead to disease states, including cancer. The transforming growth factor-β (TGF-β) signaling pathway is a prominent signaling pathway that has been tightly regulated in normal cells, whereas its deregulation strongly correlates with the progression of human cancers. The regulation of the TGF-β signaling pathway involves a variety of physiological regulators. Many of these molecules act to alter the activity of Smad proteins. In contrast, the number of molecules known to affect the TGF-β signaling pathway at the receptor level is relatively low, and there are no known direct modulators for the TGF-β type II receptor (TβRII). Here we identify SPSB1 (a Spry domain-containing Socs box protein) as a novel regulator of the TGF-β signaling pathway. SPSB1 negatively regulates the TGF-β signaling pathway through its interaction with both endogenous and overexpressed TβRII (and not TβRI) via its Spry domain. As such, TβRII and SPSB1 co-localize on the cell membrane. SPSB1 maintains TβRII at a low level by enhancing the ubiquitination levels and degradation rates of TβRII through its Socs box. More importantly, silencing SPSB1 by siRNA results in enhanced TGF-β signaling and migration and invasion of tumor cells.
Collapse
Affiliation(s)
- Sheng Liu
- Departments of Surgery (the Royal Melbourne Hospital), University of Melbourne, Parkville, Victoria 3050, Australia; Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3050, Australia
| | - Thao Nheu
- Departments of Surgery (the Royal Melbourne Hospital), University of Melbourne, Parkville, Victoria 3050, Australia
| | - Rodney Luwor
- Departments of Surgery (the Royal Melbourne Hospital), University of Melbourne, Parkville, Victoria 3050, Australia
| | - Sandra E Nicholson
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3050, Australia; Departments of Medical Biology, University of Melbourne, Parkville, Victoria 3050, Australia
| | - Hong-Jian Zhu
- Departments of Surgery (the Royal Melbourne Hospital), University of Melbourne, Parkville, Victoria 3050, Australia.
| |
Collapse
|
204
|
Tuazon FB, Mullins MC. Temporally coordinated signals progressively pattern the anteroposterior and dorsoventral body axes. Semin Cell Dev Biol 2015; 42:118-33. [PMID: 26123688 PMCID: PMC4562868 DOI: 10.1016/j.semcdb.2015.06.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 06/16/2015] [Indexed: 10/23/2022]
Abstract
The vertebrate body plan is established through the precise spatiotemporal coordination of morphogen signaling pathways that pattern the anteroposterior (AP) and dorsoventral (DV) axes. Patterning along the AP axis is directed by posteriorizing signals Wnt, fibroblast growth factor (FGF), Nodal, and retinoic acid (RA), while patterning along the DV axis is directed by bone morphogenetic proteins (BMP) ventralizing signals. This review addresses the current understanding of how Wnt, FGF, RA and BMP pattern distinct AP and DV cell fates during early development and how their signaling mechanisms are coordinated to concomitantly pattern AP and DV tissues.
Collapse
Affiliation(s)
- Francesca B Tuazon
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, 1152 BRBII/III, 421 Curie Boulevard, Philadelphia, PA 19104-6058, United States
| | - Mary C Mullins
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, 1152 BRBII/III, 421 Curie Boulevard, Philadelphia, PA 19104-6058, United States.
| |
Collapse
|
205
|
Fan J, Im CS, Cui ZK, Guo M, Bezouglaia O, Fartash A, Lee JY, Nguyen J, Wu BM, Aghaloo T, Lee M. Delivery of Phenamil Enhances BMP-2-Induced Osteogenic Differentiation of Adipose-Derived Stem Cells and Bone Formation in Calvarial Defects. Tissue Eng Part A 2015; 21:2053-65. [PMID: 25869476 DOI: 10.1089/ten.tea.2014.0489] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) have been widely used for bone repair in the craniofacial region. However, its high dose requirement in clinical applications revealed adverse effects and inefficient bone formation, along with high cost. Here, we report a novel osteoinductive strategy to effectively complement the osteogenic activity of BMP-2 using phenamil, a small molecule that can induce osteogenic differentiation via stimulation of BMP signaling. Treatment of adipose-derived stem cells (ASCs) with BMP-2 in combination with phenamil significantly promoted the in vitro osteogenic differentiation of ASCs. The efficacy of the combination strategy of phenamil+BMP-2 was further confirmed in a mouse calvarial defect model using scaffolds consisting of poly(lactic-co-glycolic acid) and apatite layer on their surfaces designed to slowly release phenamil and BMP-2. Six weeks after implantation, the scaffolds treated with phenamil+BMP-2 significantly promoted mouse calvarial regeneration as demonstrated by micro-computerized tomography and histology, compared with the groups treated with phenamil or BMP-2 alone. Moreover, the combination treatment reduced the BMP-2 dose without compromising calvarial healing efficacy. These results suggest promising complementary therapeutic strategies for bone repair in more efficient and cost-effective manners.
Collapse
Affiliation(s)
- Jiabing Fan
- 1 Division of Advanced Prosthodontics, UCLA School of Dentistry , Los Angeles, California
| | - Choong Sung Im
- 1 Division of Advanced Prosthodontics, UCLA School of Dentistry , Los Angeles, California
| | - Zhong-Kai Cui
- 1 Division of Advanced Prosthodontics, UCLA School of Dentistry , Los Angeles, California
| | - Mian Guo
- 2 Department of Neurosurgery, the 2nd Affiliated Hospital of Harbin Medical University , Harbin, China
| | - Olga Bezouglaia
- 3 Division of Diagnostic and Surgical Sciences, UCLA School of Dentistry , Los Angeles, California
| | - Armita Fartash
- 3 Division of Diagnostic and Surgical Sciences, UCLA School of Dentistry , Los Angeles, California
| | - Ju-Yeon Lee
- 1 Division of Advanced Prosthodontics, UCLA School of Dentistry , Los Angeles, California
| | - John Nguyen
- 1 Division of Advanced Prosthodontics, UCLA School of Dentistry , Los Angeles, California
| | - Benjamin M Wu
- 4 Department of Bioengineering, University of California , Los Angeles, California
| | - Tara Aghaloo
- 3 Division of Diagnostic and Surgical Sciences, UCLA School of Dentistry , Los Angeles, California
| | - Min Lee
- 1 Division of Advanced Prosthodontics, UCLA School of Dentistry , Los Angeles, California.,4 Department of Bioengineering, University of California , Los Angeles, California
| |
Collapse
|
206
|
Gang X, Wang G, Huang H. Androgens regulate SMAD ubiquitination regulatory factor-1 expression and prostate cancer cell invasion. Prostate 2015; 75:561-72. [PMID: 25631036 PMCID: PMC4593471 DOI: 10.1002/pros.22935] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 10/28/2014] [Indexed: 11/05/2022]
Abstract
BACKGROUND Prostate cancer (PCa) is the most commonly diagnosed male cancer in the United States and is a hormone-driven disease. Androgens have been recognized as a major promoter of PCa development and progression. However, the mechanism of androgen action in PCa, especially in PCa cell invasion and metastasis remains largely unclear. SMAD ubiquitination regulatory factor-1 (SMURF1) is a C2-WW-HECT-domain E3 ubiquitin ligase that plays important roles in cancer cell metastasis. Whether there is a relationship between androgens and SMURF1 expression is not known. METHODS The effect of androgens on the expression of SMURF1 in PCa cell lines was examined by Western blot analyses and reverse transcription-polymerase chain reaction (RT-PCR). Gene transfection was performed by electroporation to manipulate the expression levels of proteins studied. The binding of AR to the SMURF1 gene enhancer was determined by chromatin immunoprecipitation (ChIP) assay. Cell migration and invasion was measured by wound healing and Matrigel invasion assays, respectively. RESULTS We found that expression of SMURF1 is upregulated by androgens in PCa cell lines and that this effect of androgens is mediated through the androgen receptor (AR). We further showed that androgens regulate SMURF1 expression at transcriptional level and provided evidence that AR transcriptionally activates SMURF1 by binding to its enhancer that contains a canonical half androgen responsive element (ARE). Finally, we demonstrated that SMURF1 is important for androgen-induced invasion of PCa cells. CONCLUSIONS We demonstrate for the first time that SMURF1 is a bona fide target gene of the AR. Our findings also suggest a potential role of SMURF1 in PCa metastasis.
Collapse
Affiliation(s)
- Xiaokun Gang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin 130021, China
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Guixia Wang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin 130021, China
- Corresponding authors: Guixia Wang, M.D., Ph. D., Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin, China, 130021. Phone: +8615843081103. , Haojie Huang, Ph. D., Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905. Phone: +15072931311.
| | - Haojie Huang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
- Department of Urology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
- Mayo Clinic Cancer Center, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
- Corresponding authors: Guixia Wang, M.D., Ph. D., Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin, China, 130021. Phone: +8615843081103. , Haojie Huang, Ph. D., Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905. Phone: +15072931311.
| |
Collapse
|
207
|
Grünhagen J, Bhushan R, Degenkolbe E, Jäger M, Knaus P, Mundlos S, Robinson PN, Ott CE. MiR-497∼195 cluster microRNAs regulate osteoblast differentiation by targeting BMP signaling. J Bone Miner Res 2015; 30:796-808. [PMID: 25407900 DOI: 10.1002/jbmr.2412] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 11/07/2014] [Accepted: 11/13/2014] [Indexed: 12/27/2022]
Abstract
MicroRNAs play important roles during cell reprogramming and differentiation. In this study, we identified the miR-497∼195 cluster, a member of the miR-15 family, as strongly upregulated with age of postnatal bone development in vivo and late differentiation stages of primary osteoblasts cultured in vitro. Early expression of miR-195-5p inhibits differentiation and mineralization. Microarray analyses along with quantitative PCR demonstrate that miR-195-5p alters the gene regulatory network of osteoblast differentiation and impairs the induction of bone morphogenetic protein (BMP) responsive genes. Applying reporter gene and Western blot assays, we show that miR-195-5p interferes with the BMP/Smad-pathway in a dose-dependent manner. Systematically comparing the changes in mRNA levels in response to miR-195-5p overexpression with the changes observed in the natural course of osteoblast differentiation, we demonstrate that microRNAs of the miR-15 family affect several target genes involved in BMP signaling. Predicted targets including Furin, a protease that cleaves pro-forms, genes encoding receptors such as Acvr2a, Bmp1a, Dies1, and Tgfbr3, molecules within the cascade like Smad5, transcriptional regulators like Ski and Zfp423 as well as Mapk3 and Smurf1 were validated by quantitative PCR. Taken together, our data strongly suggest that miR-497∼195 cluster microRNAs act as intracellular antagonists of BMP signaling in bone cells.
Collapse
Affiliation(s)
- Johannes Grünhagen
- Institute for Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany; Research Group Development and Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
208
|
Ro H, Hur TL, Rhee M. Ubiquitin conjugation system for body axes specification in vertebrates. Anim Cells Syst (Seoul) 2015. [DOI: 10.1080/19768354.2015.1026399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
209
|
Jang WG, Jeong BC, Kim EJ, Choi H, Oh SH, Kim DK, Koo SH, Choi HS, Koh JT. Cyclic AMP Response Element-binding Protein H (CREBH) Mediates the Inhibitory Actions of Tumor Necrosis Factor α in Osteoblast Differentiation by Stimulating Smad1 Degradation. J Biol Chem 2015; 290:13556-66. [PMID: 25873397 DOI: 10.1074/jbc.m114.587923] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Indexed: 11/06/2022] Open
Abstract
Endoplasmic reticulum (ER) stress transducers, such as old astrocyte specifically induced substance (OASIS) and activating transcription factor 6 (ATF6), which are induced by bone morphogenetic protein 2 (BMP2), regulate bone formation and osteoblast differentiation. Here, we examined the role of cAMP response element-binding protein H (CREBH), a member of the same family of ER membrane-bound basic leucine zipper (bZIP) transcription factors as OASIS and ATF6, in osteoblast differentiation and bone formation. Proinflammatory cytokine TNFα increased CREBH expression by up-regulating the nuclear factor-κB (NF-κB) signaling pathway in osteoblasts, increased the level of N-terminal fragment of CREBH in the nucleus, and inhibited BMP2 induction of osteoblast specific gene expression. Overexpression of CREBH suppressed BMP2-induced up-regulation of the osteogenic markers runt-related transcription factor 2 (Runx2), alkaline phosphatase (ALP), and osteocalcin (OC) in MC3T3-E1 cells and primary osteoblasts, as well as BMP2-induced ALP activity and OC protein production. In contrast, knockdown of CREBH attenuated the inhibitory effect of TNFα on BMP2-induced osteoblast differentiation. Mechanistic studies revealed that CREBH increased the expression of Smad ubiquitination regulatory factor 1 (Smurf1), leading to ubiquitin-dependent degradation of Smad1, whereas knockdown of CREBH inhibited TNFα-mediated degradation of Smad1 by Smurf1. Consistent with these in vitro findings, administration of Ad-CREBH inhibited BMP2-induced ectopic and orthotopic bone formation in vivo. Taken together, these results suggest that CREBH is a novel negative regulator of osteoblast differentiation and bone formation.
Collapse
Affiliation(s)
- Won-Gu Jang
- From the Research Center for Biomineralization Disorders, Department of Pharmacology and Dental Therapeutics, School of Dentistry, and the Department of Biotechnology, School of Engineering, Daegu University, Gyeongsan 712-714, and
| | - Byung-Chul Jeong
- From the Research Center for Biomineralization Disorders, Department of Pharmacology and Dental Therapeutics, School of Dentistry, and
| | - Eun-Jung Kim
- From the Research Center for Biomineralization Disorders, Department of Pharmacology and Dental Therapeutics, School of Dentistry, and
| | - Hyuck Choi
- From the Research Center for Biomineralization Disorders, Department of Pharmacology and Dental Therapeutics, School of Dentistry, and
| | - Sin-Hye Oh
- From the Research Center for Biomineralization Disorders, Department of Pharmacology and Dental Therapeutics, School of Dentistry, and
| | - Don-Kyu Kim
- the National Creative Research Initiatives Center for Nuclear Receptor Signals, Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju 500-757
| | - Seung-Hoi Koo
- the Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul-136-701, Republic-of-Korea
| | - Hueng-Sik Choi
- the National Creative Research Initiatives Center for Nuclear Receptor Signals, Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju 500-757,
| | - Jeong-Tae Koh
- From the Research Center for Biomineralization Disorders, Department of Pharmacology and Dental Therapeutics, School of Dentistry, and
| |
Collapse
|
210
|
Tsubakihara Y, Hikita A, Yamamoto S, Matsushita S, Matsushita N, Oshima Y, Miyazawa K, Imamura T. Arkadia enhances BMP signalling through ubiquitylation and degradation of Smad6. J Biochem 2015; 158:61-71. [PMID: 25762727 DOI: 10.1093/jb/mvv024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 01/17/2015] [Indexed: 02/02/2023] Open
Abstract
Arkadia, a positive regulator of Smad-dependent signalling via the transforming growth factor-β (TGF-β) family, is an E3 ubiquitin ligase that induces ubiquitylation and proteasome-dependent degradation of TGF-β suppressors such as Smad7, c-Ski and SnoN. In this study, we examined the effects of Arkadia on bone morphogenetic protein (BMP)-induced osteoblast differentiation. Knockdown of Arkadia reduced mineralization and expression of osteoblast differentiation markers. Furthermore, we showed that Smad6, a BMP-specific inhibitory Smad, is a target of Arkadia: wild-type (WT) Arkadia, but not the C937A (CA) mutant lacking E3 ubiquitin-ligase activity, induced ubiquitylation and proteasome-dependent degradation of Smad6. Accordingly, protein levels of Smad6, Smad7 and c-Ski were elevated in MEFs from Arkadia KO mice. Finally, expression of Arkadia attenuated blockade of BMP signalling by Smad6 in a transcriptional reporter assay. These results demonstrate that Smad6 is a novel target of Arkadia, and that Arkadia positively regulates BMP signalling via degradation of Smad6, Smad7 and c-Ski/SnoN.
Collapse
Affiliation(s)
- Yutaro Tsubakihara
- Department of Molecular Medicine for Pathogenesis, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime; Division of Bio-imaging, Proteo-Science Center, Ehime University, Shitsukawa, Toon, Ehime; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Tokyo; Department of Gastroenterology and Metabiology, Ehime University, Shitsukawa, Toon, Ehime; Translational Research Center, Ehime University Hospital, Shitsukawa, Toon, Ehime; and Department of Biochemistry, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Atsuhiko Hikita
- Department of Molecular Medicine for Pathogenesis, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime; Division of Bio-imaging, Proteo-Science Center, Ehime University, Shitsukawa, Toon, Ehime; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Tokyo; Department of Gastroenterology and Metabiology, Ehime University, Shitsukawa, Toon, Ehime; Translational Research Center, Ehime University Hospital, Shitsukawa, Toon, Ehime; and Department of Biochemistry, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan Department of Molecular Medicine for Pathogenesis, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime; Division of Bio-imaging, Proteo-Science Center, Ehime University, Shitsukawa, Toon, Ehime; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Tokyo; Department of Gastroenterology and Metabiology, Ehime University, Shitsukawa, Toon, Ehime; Translational Research Center, Ehime University Hospital, Shitsukawa, Toon, Ehime; and Department of Biochemistry, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan Department of Molecular Medicine for Pathogenesis, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime; Division of Bio-imaging, Proteo-Science Center, Ehime University, Shitsukawa, Toon, Ehime; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Tokyo; Department of Gastroenterology and Metabiology, Ehime University, Shitsukawa, Toon, Ehime; Translational Research Center, Ehime University Hospital, Shitsukawa, Toon, Ehime; and Department of Biochemistry, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Shin Yamamoto
- Department of Molecular Medicine for Pathogenesis, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime; Division of Bio-imaging, Proteo-Science Center, Ehime University, Shitsukawa, Toon, Ehime; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Tokyo; Department of Gastroenterology and Metabiology, Ehime University, Shitsukawa, Toon, Ehime; Translational Research Center, Ehime University Hospital, Shitsukawa, Toon, Ehime; and Department of Biochemistry, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan Department of Molecular Medicine for Pathogenesis, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime; Division of Bio-imaging, Proteo-Science Center, Ehime University, Shitsukawa, Toon, Ehime; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Tokyo; Department of Gastroenterology and Metabiology, Ehime University, Shitsukawa, Toon, Ehime; Translational Research Center, Ehime University Hospital, Shitsukawa, Toon, Ehime; and Department of Biochemistry, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Sachi Matsushita
- Department of Molecular Medicine for Pathogenesis, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime; Division of Bio-imaging, Proteo-Science Center, Ehime University, Shitsukawa, Toon, Ehime; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Tokyo; Department of Gastroenterology and Metabiology, Ehime University, Shitsukawa, Toon, Ehime; Translational Research Center, Ehime University Hospital, Shitsukawa, Toon, Ehime; and Department of Biochemistry, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Natsuki Matsushita
- Department of Molecular Medicine for Pathogenesis, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime; Division of Bio-imaging, Proteo-Science Center, Ehime University, Shitsukawa, Toon, Ehime; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Tokyo; Department of Gastroenterology and Metabiology, Ehime University, Shitsukawa, Toon, Ehime; Translational Research Center, Ehime University Hospital, Shitsukawa, Toon, Ehime; and Department of Biochemistry, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Yusuke Oshima
- Department of Molecular Medicine for Pathogenesis, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime; Division of Bio-imaging, Proteo-Science Center, Ehime University, Shitsukawa, Toon, Ehime; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Tokyo; Department of Gastroenterology and Metabiology, Ehime University, Shitsukawa, Toon, Ehime; Translational Research Center, Ehime University Hospital, Shitsukawa, Toon, Ehime; and Department of Biochemistry, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan Department of Molecular Medicine for Pathogenesis, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime; Division of Bio-imaging, Proteo-Science Center, Ehime University, Shitsukawa, Toon, Ehime; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Tokyo; Department of Gastroenterology and Metabiology, Ehime University, Shitsukawa, Toon, Ehime; Translational Research Center, Ehime University Hospital, Shitsukawa, Toon, Ehime; and Department of Biochemistry, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan Department of Molecular Medicine for Pathogenesis, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime; Division of Bio-imaging, Proteo-Science Center, Ehime University, Shitsukawa, Toon, Ehime; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Tokyo; Department of Gastroenterology and Metabiology, Ehime University, Shitsukawa, Toon, Ehime; Translational Research Center, Ehime University Hospital, Shitsukawa, Toon, Ehime; and Department of Biochemistry, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan Department of Molecular Medicine for Pathogenesis, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime; Division of Bio-im
| | - Keiji Miyazawa
- Department of Molecular Medicine for Pathogenesis, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime; Division of Bio-imaging, Proteo-Science Center, Ehime University, Shitsukawa, Toon, Ehime; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Tokyo; Department of Gastroenterology and Metabiology, Ehime University, Shitsukawa, Toon, Ehime; Translational Research Center, Ehime University Hospital, Shitsukawa, Toon, Ehime; and Department of Biochemistry, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Takeshi Imamura
- Department of Molecular Medicine for Pathogenesis, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime; Division of Bio-imaging, Proteo-Science Center, Ehime University, Shitsukawa, Toon, Ehime; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Tokyo; Department of Gastroenterology and Metabiology, Ehime University, Shitsukawa, Toon, Ehime; Translational Research Center, Ehime University Hospital, Shitsukawa, Toon, Ehime; and Department of Biochemistry, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan Department of Molecular Medicine for Pathogenesis, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime; Division of Bio-imaging, Proteo-Science Center, Ehime University, Shitsukawa, Toon, Ehime; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Tokyo; Department of Gastroenterology and Metabiology, Ehime University, Shitsukawa, Toon, Ehime; Translational Research Center, Ehime University Hospital, Shitsukawa, Toon, Ehime; and Department of Biochemistry, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan Department of Molecular Medicine for Pathogenesis, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime; Division of Bio-imaging, Proteo-Science Center, Ehime University, Shitsukawa, Toon, Ehime; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Tokyo; Department of Gastroenterology and Metabiology, Ehime University, Shitsukawa, Toon, Ehime; Translational Research Center, Ehime University Hospital, Shitsukawa, Toon, Ehime; and Department of Biochemistry, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan Department of Molecular Medicine for Pathogenesis, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime; Division of Bio-im
| |
Collapse
|
211
|
Li D, Xie P, Zhao F, Shu J, Li L, Zhan Y, Zhang L. F-box protein Fbxo3 targets Smurf1 ubiquitin ligase for ubiquitination and degradation. Biochem Biophys Res Commun 2015; 458:941-5. [PMID: 25721664 DOI: 10.1016/j.bbrc.2015.02.089] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 02/13/2015] [Indexed: 02/06/2023]
Abstract
It has been demonstrated previously that F-box protein Fbxl15 targets HECT-type E3 Smurf1 and forms a functionally active SCF complex for ubiquitination and proteasomal degradation. Here we show that another F-box protein Fbxo3, belonging to the FBXO type protein family, also interacts with and targets Smurf1 for poly-ubiquitination and proteasomal degradation. Different from Fbxl15, Fbxo3 targets all the Nedd4 family members for their degradation, indicating that Fbxo3 plays an important role in controlling the stability of Nedd4. Taken together, we show that Smurf1 is an endogenous substrate of Fbxo3. Our study gains further insight into the novel role of Fbxo3 in BMP signaling.
Collapse
Affiliation(s)
- Dongnian Li
- Department of Gastroenterology, Beijing Tongren Hospital, Capital Medical University, No.1 Dongjiaominxiang, Dongcheng District, Beijing 100730, China
| | - Ping Xie
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, No. 27 Taiping Road, Beijing 100850, China
| | - Fei Zhao
- Department of Ultrasound, Peking University Shougang Hospital, No.9 Jinyuanzhuang Road, Shijingshan District, Beijing 100144, China
| | - Jingyi Shu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, No. 27 Taiping Road, Beijing 100850, China
| | - Li Li
- Department of Gastroenterology, Beijing Tongren Hospital, Capital Medical University, No.1 Dongjiaominxiang, Dongcheng District, Beijing 100730, China
| | - Yutao Zhan
- Department of Gastroenterology, Beijing Tongren Hospital, Capital Medical University, No.1 Dongjiaominxiang, Dongcheng District, Beijing 100730, China.
| | - Lingqiang Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, No. 27 Taiping Road, Beijing 100850, China.
| |
Collapse
|
212
|
Marcuzzo S, Bonanno S, Kapetis D, Barzago C, Cavalcante P, D'Alessandro S, Mantegazza R, Bernasconi P. Up-regulation of neural and cell cycle-related microRNAs in brain of amyotrophic lateral sclerosis mice at late disease stage. Mol Brain 2015; 8:5. [PMID: 25626686 PMCID: PMC4318136 DOI: 10.1186/s13041-015-0095-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 01/14/2015] [Indexed: 12/11/2022] Open
Abstract
Background Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by selective motor neuron degeneration in motor cortex, brainstem and spinal cord. microRNAs (miRNAs) are small non-coding RNAs that bind complementary target sequences and modulate gene expression; they are key molecules for establishing a neuronal phenotype, and in neurodegeneration. Here we investigated neural miR-9, miR-124a, miR-125b, miR-219, miR-134, and cell cycle-related miR-19a and -19b, in G93A-SOD1 mouse brain in pre-symptomatic and late stage disease. Results Expression of miR-9, miR-124a, miR-19a and -19b was significantly increased in G93A-SOD1 whole brain at late stage disease compared to B6.SJL and Wt-SOD1 control brains. These miRNAs were then analyzed in manually dissected SVZ, hippocampus, primary motor cortex and brainstem motor nuclei in 18-week-old ALS mice compared to same age controls. In SVZ and hippocampus miR-124a was up-regulated, miR-219 was down-regulated, and numbers of neural stem progenitor cells (NSPCs) were significantly increased. In G93A-SOD1 brainstem motor nuclei and primary motor cortex, miR-9 and miR-124a were significantly up-regulated, miR-125b expression was also increased. miR-19a and -19b were up-regulated in primary motor cortex and hippocampus, respectively. Expression analysis of predicted miRNA targets identified miRNA/target gene pairs differentially expressed in G93A-SOD1 brain regions compared to controls. Conclusions Hierarchical clustering analysis, identifying two clusters of miRNA/target genes, one characterizing brainstem motor nuclei and primary motor cortex, the other hippocampus and SVZ, suggests that altered expression of neural and cell cycle-related miRNAs in these brain regions might contribute to ALS pathogenesis in G93A-SOD1 mice. Re-establishing their expression to normal levels could be a new therapeutic approach to ALS. Electronic supplementary material The online version of this article (doi:10.1186/s13041-015-0095-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stefania Marcuzzo
- Neurology IV - Neuromuscular Diseases and Neuroimmunology Unit, Fondazione Istituto Neurologico "Carlo Besta", Via Celoria 11, Milan, 20133, Italy.
| | - Silvia Bonanno
- Neurology IV - Neuromuscular Diseases and Neuroimmunology Unit, Fondazione Istituto Neurologico "Carlo Besta", Via Celoria 11, Milan, 20133, Italy.
| | - Dimos Kapetis
- Neurology IV - Neuromuscular Diseases and Neuroimmunology Unit, Fondazione Istituto Neurologico "Carlo Besta", Via Celoria 11, Milan, 20133, Italy.
| | - Claudia Barzago
- Neurology IV - Neuromuscular Diseases and Neuroimmunology Unit, Fondazione Istituto Neurologico "Carlo Besta", Via Celoria 11, Milan, 20133, Italy.
| | - Paola Cavalcante
- Neurology IV - Neuromuscular Diseases and Neuroimmunology Unit, Fondazione Istituto Neurologico "Carlo Besta", Via Celoria 11, Milan, 20133, Italy.
| | - Sara D'Alessandro
- Neurology IV - Neuromuscular Diseases and Neuroimmunology Unit, Fondazione Istituto Neurologico "Carlo Besta", Via Celoria 11, Milan, 20133, Italy. sara.d'
| | - Renato Mantegazza
- Neurology IV - Neuromuscular Diseases and Neuroimmunology Unit, Fondazione Istituto Neurologico "Carlo Besta", Via Celoria 11, Milan, 20133, Italy.
| | - Pia Bernasconi
- Neurology IV - Neuromuscular Diseases and Neuroimmunology Unit, Fondazione Istituto Neurologico "Carlo Besta", Via Celoria 11, Milan, 20133, Italy.
| |
Collapse
|
213
|
Multifaceted role of the ubiquitin ligase Itch in immune regulation. Immunol Cell Biol 2015; 93:452-60. [DOI: 10.1038/icb.2014.118] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 12/10/2014] [Accepted: 12/10/2014] [Indexed: 12/17/2022]
|
214
|
|
215
|
Bibbo C, Nelson J, Ehrlich D, Rougeux B. Bone morphogenetic proteins: indications and uses. Clin Podiatr Med Surg 2015; 32:35-43. [PMID: 25440416 DOI: 10.1016/j.cpm.2014.09.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The BMPs are a group of growth factors that have varied roles in the development and maintenance of many organ systems. Several of the BMPs have osteogenic potential, and exert their effects via complex and highly regulated pathways. At present, only rhBMP-2 and rhBMP-7 are available for clinical use, but only rhBMP-2 is readily available, and from a practical standpoint is considered the only commercially available BMP. Only a few studies exist on BMP use in foot and ankle surgery, but these have shown promising results with low complication rates. BMP is an adjuvant to bone healing,and does not substitute for structural bone needs. In addition, rhBMP-2 outside spinal fusions is considered to be US Food and Drug Administration off-label, and should be used only in patients who are at high risk for bone healing problems.
Collapse
Affiliation(s)
- Christopher Bibbo
- Department of Orthopaedics, Marshfield Clinic, 1000 North Oak Avenue, Marshfield, WI, USA; Division of Plastic & Reconstructive Surgery, Department of Surgery, Hospital of the University of Pennsylvania, 10 Penn Tower, 3400 Spruce Street, Philadelphia, PA 19104, USA.
| | - Jonas Nelson
- Division of Plastic & Reconstructive Surgery, Department of Surgery, Hospital of the University of Pennsylvania, 10 Penn Tower, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - David Ehrlich
- Division of Plastic & Reconstructive Surgery, Department of Surgery, Thomas Jefferson University, 840 Walnut Street, Philadelphia, PA 19107, USA
| | - Brian Rougeux
- Department of Orthopaedics, Marshfield Clinic, 1000 North Oak Avenue, Marshfield, WI, USA
| |
Collapse
|
216
|
Demasi M, Simões V, Bonatto D. Cross-talk between redox regulation and the ubiquitin-proteasome system in mammalian cell differentiation. Biochim Biophys Acta Gen Subj 2014; 1850:1594-606. [PMID: 25450485 DOI: 10.1016/j.bbagen.2014.10.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 10/24/2014] [Accepted: 10/28/2014] [Indexed: 12/15/2022]
Abstract
BACKGROUND Embryogenesis and stem cell differentiation are complex and orchestrated signaling processes. Reactive oxygen species (ROS) act as essential signal transducers in cellular differentiation, as has been shown through recent discoveries. On the other hand, the ubiquitin-proteasome system (UPS) has long been known to play an important role in all cellular regulated processes, including differentiation. SCOPE OF REVIEW In the present review, we focus on findings that highlight the interplay between redox signaling and the UPS regarding cell differentiation. Through systems biology analyses, we highlight major routes during cardiomyocyte differentiation based on redox signaling and UPS modulation. MAJOR CONCLUSION Oxygen availability and redox signaling are fundamental regulators of cell fate upon differentiation. The UPS plays an important role in the maintenance of pluripotency and the triggering of differentiation. GENERAL SIGNIFICANCE Cellular differentiation has been a matter of intense investigation mainly because of its potential therapeutic applications. Understanding regulatory mechanisms underlying cell differentiation is an important issue. Correspondingly, the role of UPS and regulation of redox processes have been emerged as essential factors to control the fate of cells upon differentiation. This article is part of a Special Issue entitled Redox regulation of differentiation and de-differentiation.
Collapse
Affiliation(s)
- Marilene Demasi
- Laboratory of Biochemistry and Biophysics, Instituto Butantan, São Paulo, SP, Brazil.
| | - Vanessa Simões
- Department of Genetics and Evolutive Biology, IB, Universidade de São Paulo, São Paulo, Brazil
| | - Diego Bonatto
- Center of Biotechnology, Universidade Federal do Rio Grande do Sul., Porto Alegre, RS, Brazil.
| |
Collapse
|
217
|
Ubiquitin E3 ligase dSmurf is essential for Wts protein turnover and Hippo signaling. Biochem Biophys Res Commun 2014; 454:167-71. [DOI: 10.1016/j.bbrc.2014.10.058] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 10/13/2014] [Indexed: 01/25/2023]
|
218
|
Demagny H, Araki T, De Robertis EM. The tumor suppressor Smad4/DPC4 is regulated by phosphorylations that integrate FGF, Wnt, and TGF-β signaling. Cell Rep 2014; 9:688-700. [PMID: 25373906 DOI: 10.1016/j.celrep.2014.09.020] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 08/11/2014] [Accepted: 09/11/2014] [Indexed: 12/31/2022] Open
Abstract
Smad4 is a major tumor suppressor currently thought to function constitutively in the transforming growth factor β (TGF-β)-signaling pathway. Here, we report that Smad4 activity is directly regulated by the Wnt and fibroblast growth factor (FGF) pathways through GSK3 and mitogen-activated protein kinase (MAPK) phosphorylation sites. FGF activates MAPK, which primes three sequential GSK3 phosphorylations that generate a Wnt-regulated phosphodegron bound by the ubiquitin E3 ligase β-TrCP. In the presence of FGF, Wnt potentiates TGF-β signaling by preventing Smad4 GSK3 phosphorylations that inhibit a transcriptional activation domain located in the linker region. When MAPK is not activated, the Wnt and TGF-β signaling pathways remain insulated from each other. In Xenopus embryos, these Smad4 phosphorylations regulate germ-layer specification and Spemann organizer formation. The results show that three major signaling pathways critical in development and cancer are integrated at the level of Smad4.
Collapse
Affiliation(s)
- Hadrien Demagny
- Howard Hughes Medical Institute and Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095-1662, USA
| | - Tatsuya Araki
- Howard Hughes Medical Institute and Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095-1662, USA
| | - Edward M De Robertis
- Howard Hughes Medical Institute and Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095-1662, USA.
| |
Collapse
|
219
|
Xie F, Zhang Z, van Dam H, Zhang L, Zhou F. Regulation of TGF-β Superfamily Signaling by SMAD Mono-Ubiquitination. Cells 2014; 3:981-93. [PMID: 25317929 PMCID: PMC4276910 DOI: 10.3390/cells3040981] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 09/03/2014] [Accepted: 09/26/2014] [Indexed: 12/29/2022] Open
Abstract
TGF-β(transforming growth factor-β) superfamily signaling mediators are important regulators of diverse physiological and pathological events. TGF-β signals are transduced by transmembrane type I and type II serine/threonine kinase receptors and their downstream effectors, the SMAD(drosophila mothers against decapentaplegic protein) proteins. Numerous studies have already demonstrated crucial regulatory roles for modification of TGF-β pathway components by poly-ubiquitination. Recently, several studies also uncovered mono-ubiquitination of SMADs as a mechanism for SMAD activation or inactivation. Mono-ubiquitination and subsequent deubiquitination of SMAD proteins accordingly play important roles in the control of TGF-β superfamily signaling. This review highlights the major pathways regulated by SMAD mono-ubiquitination.
Collapse
Affiliation(s)
- Feng Xie
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zhengkui Zhang
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Hans van Dam
- Department of Molecular Cell Biology, Cancer Genomics Centre Netherlands and Centre for Biomedical Genetics, Leiden University Medical Center, Postbus 9600 2300 RC Leiden, The Netherlands
| | - Long Zhang
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Fangfang Zhou
- Department of Molecular Cell Biology, Cancer Genomics Centre Netherlands and Centre for Biomedical Genetics, Leiden University Medical Center, Postbus 9600 2300 RC Leiden, The Netherlands.
| |
Collapse
|
220
|
MAEDA MEGUMI, CHEN YING, HAYASHI HIROAKI, KUMAGAI-TAKEI NAOKO, MATSUZAKI HIDENORI, LEE SUNI, NISHIMURA YASUMITSU, OTSUKI TAKEMI. Chronic exposure to asbestos enhances TGF-β1 production in the human adult T cell leukemia virus-immortalized T cell line MT-2. Int J Oncol 2014; 45:2522-32. [DOI: 10.3892/ijo.2014.2682] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 07/16/2014] [Indexed: 11/05/2022] Open
|
221
|
Wang M, Guo L, Wu Q, Zeng T, Lin Q, Qiao Y, Wang Q, Liu M, Zhang X, Ren L, Zhang S, Pei Y, Yin Z, Ding F, Wang HR. ATR/Chk1/Smurf1 pathway determines cell fate after DNA damage by controlling RhoB abundance. Nat Commun 2014; 5:4901. [PMID: 25249323 DOI: 10.1038/ncomms5901] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 08/02/2014] [Indexed: 11/09/2022] Open
Abstract
ATM- and RAD3-related (ATR)/Chk1 and ataxia-telangiectasia mutated (ATM)/Chk2 signalling pathways play critical roles in the DNA damage response. Here we report that the E3 ubiquitin ligase Smurf1 determines cell apoptosis rates downstream of DNA damage-induced ATR/Chk1 signalling by promoting degradation of RhoB, a small GTPase recognized as tumour suppressor by promoting death of transformed cells. We show that Smurf1 targets RhoB for degradation to control its abundance in the basal state. DNA damage caused by ultraviolet light or the alkylating agent methyl methanesulphonate strongly activates Chk1, leading to phosphorylation of Smurf1 that enhances its self-degradation, hence resulting in a RhoB accumulation to promote apoptosis. Suppressing RhoB levels by overexpressing Smurf1 or blocking Chk1-dependent Smurf1 self-degradation significantly inhibits apoptosis. Hence, our study unravels a novel ATR/Chk1/Smurf1/RhoB pathway that determines cell fate after DNA damage, and raises the possibility that aberrant upregulation of Smurf1 promotes tumorigenesis by excessively targeting RhoB for degradation.
Collapse
Affiliation(s)
- Meilin Wang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Lei Guo
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Qingang Wu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Taoling Zeng
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Qi Lin
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Yikai Qiao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Qun Wang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Mingdong Liu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Xin Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Lan Ren
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Sheng Zhang
- Department of Surgery, Zhongshan Hospital, Xiamen University, Xiamen, Fujian 361005, China
| | - Yihua Pei
- Central Laboratory, Zhongshan Hospital, Xiamen University, Xiamen, Fujian 361005, China
| | - Zhenyu Yin
- Department of Surgery, Zhongshan Hospital, Xiamen University, Xiamen, Fujian 361005, China
| | - Feng Ding
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Hong-Rui Wang
- 1] State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China [2] Shenzhen Research Institute of Xiamen University, Shenzhen, Guangdong 518057, China
| |
Collapse
|
222
|
Robson NC, Hidalgo L, Mc Alpine T, Wei H, Martínez VG, Entrena A, Melen GJ, MacDonald AS, Phythian-Adams A, Sacedón R, Maraskovsky E, Cebon J, Ramírez M, Vicente A, Varas A. Optimal effector functions in human natural killer cells rely upon autocrine bone morphogenetic protein signaling. Cancer Res 2014; 74:5019-5031. [PMID: 25038228 PMCID: PMC4167038 DOI: 10.1158/0008-5472.can-13-2845] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Natural killer (NK) cells are critical for innate tumor immunity due to their specialized ability to recognize and kill neoplastically transformed cells. However, NK cells require a specific set of cytokine-mediated signals to achieve optimal effector function. Th1-associated cytokines promote effector functions that are inhibited by the prototypic Th2 cytokine IL4 and the TGFβ superfamily members TGFβ1 and activin-A. Interestingly, the largest subgroup of the TGFβ superfamily are the bone morphogenetic proteins (BMP), but the effects of BMP signaling on NK cell effector functions have not been evaluated. Here, we demonstrate that blood-circulating NK cells express type I and II BMP receptors, BMP-2 and BMP-6 ligands, and phosphorylated isoforms of Smad-1/-5/-8, which mediate BMP family member signaling. In opposition to the inhibitory effects of TGFβ1 or activin-A, autocrine BMP signaling was supportive to NK cell function. Mechanistic investigations in cytokine and TLR-L-activated NK cells revealed that BMP signaling optimized IFNγ and global cytokine and chemokine production, phenotypic activation and proliferation, and autologous dendritic cell activation and target cytotoxicity. Collectively, our findings identify a novel auto-activatory pathway that is essential for optimal NK cell effector function, one that might be therapeutically manipulated to help eradicate tumors. Cancer Res; 74(18); 5019-31. ©2014 AACR.
Collapse
Affiliation(s)
- Neil C Robson
- Institute of Infection, Immunity & Inflammation, Sir Graeme Davis Building, The University of Glasgow, Scotland
| | - Laura Hidalgo
- Department of Cell Biology, Faculty of Medicine, Complutense University, 28040 Madrid, Spain
| | - Tristan Mc Alpine
- Ludwig Institute for Cancer Research, Austin Health, Heidelberg, VIC, 3084, Australia
| | - Heng Wei
- Ludwig Institute for Cancer Research, Austin Health, Heidelberg, VIC, 3084, Australia
| | - Víctor G Martínez
- Department of Cell Biology, Faculty of Medicine, Complutense University, 28040 Madrid, Spain
| | - Ana Entrena
- Department of Cell Biology, Faculty of Medicine, Complutense University, 28040 Madrid, Spain
| | - Gustavo J Melen
- Department of Oncohematology, Niño Jesús Hospital, 28009 Madrid, Spain
| | - Andrew S MacDonald
- MCCIR, Core Technology Facility, The University of Manchester, Manchester, M13 9NT, UK
| | | | - Rosa Sacedón
- Department of Cell Biology, Faculty of Medicine, Complutense University, 28040 Madrid, Spain
| | | | - Jonathan Cebon
- Ludwig Institute for Cancer Research, Austin Health, Heidelberg, VIC, 3084, Australia
| | - Manuel Ramírez
- Department of Oncohematology, Niño Jesús Hospital, 28009 Madrid, Spain
| | - Angeles Vicente
- Department of Cell Biology, Faculty of Medicine, Complutense University, 28040 Madrid, Spain
| | - Alberto Varas
- Department of Cell Biology, Faculty of Medicine, Complutense University, 28040 Madrid, Spain
| |
Collapse
|
223
|
Vimalraj S, Partridge NC, Selvamurugan N. A positive role of microRNA-15b on regulation of osteoblast differentiation. J Cell Physiol 2014; 229:1236-44. [PMID: 24435757 DOI: 10.1002/jcp.24557] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 01/10/2014] [Indexed: 12/17/2022]
Abstract
Osteoblast differentiation is tightly regulated by several factors including microRNAs (miRNAs). In this paper, we report that pre-mir-15b is highly expressed in differentiated osteoblasts. The functional role of miR-15b in osteoblast differentiation was determined using miR-15b mimic/inhibitor and the expression of osteoblast differentiation marker genes such as alkaline phosphatase (ALP), type I collagen genes was decreased by miR-15b inhibitor. Runx2, a bone specific transcription factor is generally required for expression of osteoblast differentiation marker genes and in response to miR-15b inhibitor treatment, Runx2 mRNA expression was not changed; whereas its protein expression was decreased. Even though Smurf1 (SMAD specific E3 ubiquitin protein ligase 1), HDAC4 (histone deacetylase 4), Smad7, and Crim1 were found to be few of miR-15b's putative target genes, there was increased expression of only Smurf1 gene at mRNA and protein levels by miR-15b inhibitor. miR-15b mimic treatment significantly increased and decreased expressions of Runx2 and Smurf1 proteins, respectively. We further identified that the Smurf1 3'UTR is directly targeted by miR-15b using the luciferase reporter gene system. This is well documented that Smurf1 interacts with Runx2 and degrades it by proteasomal pathway. Hence, based on our results we suggest that miR-15b promotes osteoblast differentiation by indirectly protecting Runx2 protein from Smurf1 mediated degradation. Thus, this study identified that miR-15b can act as a positive regulator for osteoblast differentiation.
Collapse
Affiliation(s)
- S Vimalraj
- Department of Biotechnology, School of Bioengineering, SRM University, Kattankulathur, Tamil Nadu, India
| | | | | |
Collapse
|
224
|
PI3K-GSK3 signalling regulates mammalian axon regeneration by inducing the expression of Smad1. Nat Commun 2014; 4:2690. [PMID: 24162165 PMCID: PMC3836055 DOI: 10.1038/ncomms3690] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 09/27/2013] [Indexed: 01/20/2023] Open
Abstract
In contrast to neurons in the central nervous system, mature neurons in the mammalian peripheral nervous system (PNS) can regenerate axons after injury, in part, by enhancing intrinsic growth competence. However, the signalling pathways that enhance the growth potential and induce spontaneous axon regeneration remain poorly understood. Here we reveal that phosphatidylinositol 3-kinase (PI3K) signalling is activated in response to peripheral axotomy and that PI3K pathway is required for sensory axon regeneration. Moreover, we show that glycogen synthase kinase 3 (GSK3), rather than mammalian target of rapamycin, mediates PI3K-dependent augmentation of the growth potential in the PNS. Furthermore, we show that PI3K-GSK3 signal is conveyed by the induction of a transcription factor Smad1 and that acute depletion of Smad1 in adult mice prevents axon regeneration in vivo. Together, these results suggest PI3K-GSK3-Smad1 signalling as a central module for promoting sensory axon regeneration in the mammalian nervous system.
Collapse
|
225
|
Choi YH, Kim YJ, Jeong HM, Jin YH, Yeo CY, Lee KY. Akt enhances Runx2 protein stability by regulating Smurf2 function during osteoblast differentiation. FEBS J 2014; 281:3656-66. [PMID: 24961731 DOI: 10.1111/febs.12887] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 05/28/2014] [Accepted: 06/19/2014] [Indexed: 10/25/2022]
Abstract
Runx2 plays essential roles in bone formation and chondrocyte maturation. Akt promotes osteoblast differentiation induced by the bone morphogenetic proteins BMP2 and enhances the function and transcriptional activity of Runx2. However, the precise molecular mechanism underlying the relationship between Runx2 and Akt is not well understood. In this study, we examined the role of Akt in regulating Runx2 function. We found that Akt increases the stability of Runx2 protein. However, the level of Runx2 mRNA was not affected by Akt, and we did not find any evidence for direct modification of Runx2 by Akt. Instead, we found evidence that Akt induces the phosphorylation of the Smad ubiquitination regulatory factor Smurf2 and decreases the level of Smurf2 protein through ubiquitin/proteasome-mediated degradation of Smurf2. Akt also alleviates Smurf2-mediated suppression of Runx2 transcriptional activity. Taken together, our results suggest that Akt regulates osteoblast differentiation, at least in part, by enhancing the protein stability and transcriptional activity of Runx2 through regulation of ubiquitin/proteasome-mediated degradation of Smurf2.
Collapse
Affiliation(s)
- You Hee Choi
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju, Korea
| | | | | | | | | | | |
Collapse
|
226
|
Chu T, Zhou H, Li F, Wang T, Lu L, Feng S. Astrocyte transplantation for spinal cord injury: current status and perspective. Brain Res Bull 2014; 107:18-30. [PMID: 24878447 DOI: 10.1016/j.brainresbull.2014.05.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 05/17/2014] [Accepted: 05/19/2014] [Indexed: 02/07/2023]
Abstract
Spinal cord injury (SCI) often causes incurable neurological dysfunction because axonal regeneration in adult spinal cord is rare. Astrocytes are gradually recognized as being necessary for the regeneration after SCI as they promote axonal growth under both physiological and pathophysiological conditions. Heterogeneous populations of astrocytes have been explored for structural and functional restoration. The results range from the early variable and modest effects of immature astrocyte transplantation to the later significant, but controversial, outcomes of glial-restricted precursor (GRP)-derived astrocyte (GDA) transplantation. However, the traditional neuron-centric view and the concerns about the inhibitory roles of astrocytes after SCI, along with the sporadic studies and the lack of a comprehensive review, have led to some confusion over the usefulness of astrocytes in SCI. It is the purpose of the review to discuss the current status of astrocyte transplantation for SCI based on a dialectical view of the context-dependent manner of astrocyte behavior and the time-associated characteristics of glial scarring. Critical issues are then analyzed to reveal the potential direction of future research.
Collapse
Affiliation(s)
- Tianci Chu
- Department of Orthopaedics, Tianjin Medical University General Hospital, Anshan Road No. 154, Heping District, Tianjin 300052, PR China.
| | - Hengxing Zhou
- Department of Orthopaedics, Tianjin Medical University General Hospital, Anshan Road No. 154, Heping District, Tianjin 300052, PR China.
| | - Fuyuan Li
- Department of Orthopaedics, Tianjin Medical University General Hospital, Anshan Road No. 154, Heping District, Tianjin 300052, PR China.
| | - Tianyi Wang
- Department of Orthopaedics, Tianjin Medical University General Hospital, Anshan Road No. 154, Heping District, Tianjin 300052, PR China.
| | - Lu Lu
- Department of Orthopaedics, Tianjin Medical University General Hospital, Anshan Road No. 154, Heping District, Tianjin 300052, PR China.
| | - Shiqing Feng
- Department of Orthopaedics, Tianjin Medical University General Hospital, Anshan Road No. 154, Heping District, Tianjin 300052, PR China.
| |
Collapse
|
227
|
Kirmizitas A, Gillis WQ, Zhu H, Thomsen GH. Gtpbp2 is required for BMP signaling and mesoderm patterning in Xenopus embryos. Dev Biol 2014; 392:358-67. [PMID: 24858484 DOI: 10.1016/j.ydbio.2014.05.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 04/27/2014] [Accepted: 05/07/2014] [Indexed: 12/26/2022]
Abstract
Smad proteins convey canonical intracellular signals for activated receptors in the TGFβ superfamily, but the activity of Smads and their impact on target genes are further regulated by a wide variety of cofactors and partner proteins. We have identified a new Smad1 partner, a GTPase named Gtpbp2 that is a distant relative of the translation factor eEf1a. Gtpbp2 affects canonical signaling in the BMP branch of the TGFβ superfamily, as morpholino knockdown of Gtpbp2 decreases, and overexpression of Gtpbp2 enhances, animal cap responses to BMP4. During Xenopus development, gtpbp2 transcripts are maternally expressed and localized to the egg animal pole, and partitioned into the nascent ectodermal and mesodermal cells during cleavage and early gastrulation stages. Subsequently, gtpbp2 is expressed in the neural folds, and in early tadpoles undergoing organogenesis gtpbp2 is expressed prominently in the brain, eyes, somites, ventral blood island and branchial arches. Consistent with its expression, morpholino knockdown of Gtpbp2 causes defects in ventral-posterior germ layer patterning, gastrulation and tadpole morphology. Overexpressed Gtpbp2 can induce ventral-posterior marker genes and localize to cell nuclei in Xenopus animal caps, highlighting its role in regulating BMP signaling in the early embryo. Here, we introduce this large GTPase as a novel factor in BMP signaling and ventral-posterior patterning.
Collapse
Affiliation(s)
- Arif Kirmizitas
- Department of Biochemistry and Cell Biology, Graduate Program in Molecular and Cellular Biology, Center for Developmental Genetics, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - William Q Gillis
- Department of Biochemistry and Cell Biology, Graduate Program in Molecular and Cellular Biology, Center for Developmental Genetics, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Haitao Zhu
- Department of Biochemistry and Cell Biology, Graduate Program in Molecular and Cellular Biology, Center for Developmental Genetics, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Gerald H Thomsen
- Department of Biochemistry and Cell Biology, Graduate Program in Molecular and Cellular Biology, Center for Developmental Genetics, Stony Brook University, Stony Brook, NY 11794-5215, USA.
| |
Collapse
|
228
|
Cao Y, Wang C, Zhang X, Xing G, Lu K, Gu Y, He F, Zhang L. Selective small molecule compounds increase BMP-2 responsiveness by inhibiting Smurf1-mediated Smad1/5 degradation. Sci Rep 2014; 4:4965. [PMID: 24828823 PMCID: PMC4021816 DOI: 10.1038/srep04965] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 04/25/2014] [Indexed: 12/21/2022] Open
Abstract
The ubiquitin ligase Smad ubiquitination regulatory factor-1 (Smurf1) negatively regulates bone morphogenetic protein (BMP) pathway by ubiquitinating certain signal components for degradation. Thus, it can be an eligible pharmacological target for increasing BMP signal responsiveness. We established a strategy to discover small molecule compounds that block the WW1 domain of Smurf1 from interacting with Smad1/5 by structure based virtual screening, molecular experimental examination and cytological efficacy evaluation. Our selected hits could reserve the protein level of Smad1/5 from degradation by interrupting Smurf1-Smad1/5 interaction and inhibiting Smurf1 mediated ubiquitination of Smad1/5. Further, these compounds increased BMP-2 signal responsiveness and the expression of certain downstream genes, enhanced the osteoblastic activity of myoblasts and osteoblasts. Our work indicates targeting Smurf1 for inhibition could be an accessible strategy to discover BMP-sensitizers that might be applied in future clinical treatments of bone disorders such as osteopenia.
Collapse
Affiliation(s)
- Yu Cao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Collaborative Innovation Center for Cancer Medicine, Beijing, China
| | - Cheng Wang
- 1] State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Collaborative Innovation Center for Cancer Medicine, Beijing, China [2] School of Medicine, Shihezi University, Shihezi, Xinjiang Province, China
| | - Xueli Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Collaborative Innovation Center for Cancer Medicine, Beijing, China
| | - Guichun Xing
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Collaborative Innovation Center for Cancer Medicine, Beijing, China
| | - Kefeng Lu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Collaborative Innovation Center for Cancer Medicine, Beijing, China
| | - Yongqing Gu
- School of Medicine, Shihezi University, Shihezi, Xinjiang Province, China
| | - Fuchu He
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Collaborative Innovation Center for Cancer Medicine, Beijing, China
| | - Lingqiang Zhang
- 1] State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Collaborative Innovation Center for Cancer Medicine, Beijing, China [2] Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning Province, China
| |
Collapse
|
229
|
Xie P, Zhang M, He S, Lu K, Chen Y, Xing G, Lu Y, Liu P, Li Y, Wang S, Chai N, Wu J, Deng H, Wang HR, Cao Y, Zhao F, Cui Y, Wang J, He F, Zhang L. The covalent modifier Nedd8 is critical for the activation of Smurf1 ubiquitin ligase in tumorigenesis. Nat Commun 2014; 5:3733. [DOI: 10.1038/ncomms4733] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 03/25/2014] [Indexed: 02/06/2023] Open
|
230
|
Lee HL, Park HJ, Kwon A, Baek K, Woo KM, Ryoo HM, Kim GS, Baek JH. Smurf1 plays a role in EGF inhibition of BMP2-induced osteogenic differentiation. Exp Cell Res 2014; 323:276-87. [DOI: 10.1016/j.yexcr.2014.03.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 01/30/2014] [Accepted: 03/03/2014] [Indexed: 12/13/2022]
|
231
|
Zhang J, Zhang X, Xie F, Zhang Z, van Dam H, Zhang L, Zhou F. The regulation of TGF-β/SMAD signaling by protein deubiquitination. Protein Cell 2014; 5:503-17. [PMID: 24756567 PMCID: PMC4085288 DOI: 10.1007/s13238-014-0058-8] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 03/28/2014] [Indexed: 01/17/2023] Open
Abstract
Transforming growth factor-β (TGF-β) members are key cytokines that control embryogenesis and tissue homeostasis via transmembrane TGF-β type II (TβR II) and type I (TβRI) and serine/threonine kinases receptors. Aberrant activation of TGF-β signaling leads to diseases, including cancer. In advanced cancer, the TGF-β/SMAD pathway can act as an oncogenic factor driving tumor cell invasion and metastasis, and thus is considered to be a therapeutic target. The activity of TGF-β/SMAD pathway is known to be regulated by ubiquitination at multiple levels. As ubiquitination is reversible, emerging studies have uncovered key roles for ubiquitin-removals on TGF-β signaling components by deubiquitinating enzymes (DUBs). In this paper, we summarize the latest findings on the DUBs that control the activity of the TGF-β signaling pathway. The regulatory roles of these DUBs as a driving force for cancer progression as well as their underlying working mechanisms are also discussed.
Collapse
Affiliation(s)
- Juan Zhang
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058 China
- Department of Molecular Cell Biology, Cancer Genomics Centre Netherlands and Centre of Biomedical Genetics, Leiden University Medical Center, Postbus 9600, 2300 RC Leiden, The Netherlands
| | - Xiaofei Zhang
- Department of Molecular Cell Biology, Cancer Genomics Centre Netherlands and Centre of Biomedical Genetics, Leiden University Medical Center, Postbus 9600, 2300 RC Leiden, The Netherlands
| | - Feng Xie
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058 China
| | - Zhengkui Zhang
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058 China
| | - Hans van Dam
- Department of Molecular Cell Biology, Cancer Genomics Centre Netherlands and Centre of Biomedical Genetics, Leiden University Medical Center, Postbus 9600, 2300 RC Leiden, The Netherlands
| | - Long Zhang
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058 China
- Department of Molecular Cell Biology, Cancer Genomics Centre Netherlands and Centre of Biomedical Genetics, Leiden University Medical Center, Postbus 9600, 2300 RC Leiden, The Netherlands
| | - Fangfang Zhou
- Department of Molecular Cell Biology, Cancer Genomics Centre Netherlands and Centre of Biomedical Genetics, Leiden University Medical Center, Postbus 9600, 2300 RC Leiden, The Netherlands
| |
Collapse
|
232
|
Fei C, He X, Xie S, Miao H, Zhou Z, Li L. Smurf1-mediated axin ubiquitination requires Smurf1 C2 domain and is cell cycle-dependent. J Biol Chem 2014; 289:14170-7. [PMID: 24700460 DOI: 10.1074/jbc.m113.536714] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previously, Smad ubiquitination regulatory factor 1 (Smurf1)-mediated Lys29 (K29)-linked poly-ubiquitination of Axin has been identified as a novel regulatory process in Wnt/β-catenin signaling. In this work, we discovered that the C2 domain of Smurf1 is critical for targeting Axin for ubiquitination. We found that the C2 domain-mediated plasma membrane localization of Smurf1 is required for Axin ubiquitination, and interfering with that disturbs the co-localization of Smurf1 and Axin around the plasma membrane. Moreover, the C2 domain of Smurf1, rather than its WW domains, is involved in Smurf1's interaction with Axin; and the putative PPXY motifs (PY motif) of Axin are not essential for such an interaction, indicating that Smurf1 binds to Axin in a non-canonical way independent of WW-PY interaction. Further, we found that Smurf1-Axin interaction and Axin ubiquitination are attenuated in the G2/M phase of cell cycle, contributing to an increased cell response to Wnt stimulation at that stage. Collectively, we uncovered a dual role of Smurf1 C2 domain, recruiting Smurf1 to membrane for accessing Axin and mediating its interaction with Axin, and that Smurf1-mediated Axin ubiquitination is subjected to the regulation of cell cycle.
Collapse
Affiliation(s)
- Cong Fei
- From the State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaoli He
- From the State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Sichun Xie
- From the State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Haofei Miao
- From the State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhilei Zhou
- From the State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lin Li
- From the State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
233
|
Saritas-Yildirim B, Silva EM. The role of targeted protein degradation in early neural development. Genesis 2014; 52:287-99. [PMID: 24623518 DOI: 10.1002/dvg.22771] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 03/05/2014] [Accepted: 03/07/2014] [Indexed: 11/08/2022]
Abstract
As neural stem cells differentiate into neurons during neurogenesis, the proteome of the cells is restructured by de novo expression and selective removal of regulatory proteins. The control of neurogenesis at the level of gene regulation is well documented and the regulation of protein abundance through protein degradation via the Ubiquitin/26S proteasome pathway is a rapidly developing field. This review describes our current understanding of the role of the proteasome pathway in neurogenesis. Collectively, the studies show that targeted protein degradation is an important regulatory mechanism in the generation of new neurons.
Collapse
|
234
|
Qi H, Jin M, Duan Y, Du X, Zhang Y, Ren F, Wang Y, Tian Q, Wang X, Wang Q, Zhu Y, Xie Y, Liu C, Cao X, Mishina Y, Chen D, Deng CX, Chang Z, Chen L. FGFR3 induces degradation of BMP type I receptor to regulate skeletal development. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1237-47. [PMID: 24657641 DOI: 10.1016/j.bbamcr.2014.03.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 02/16/2014] [Accepted: 03/12/2014] [Indexed: 01/04/2023]
Abstract
Fibroblast growth factors (FGFs) and their receptors (FGFRs) play significant roles in vertebrate organogenesis and morphogenesis. FGFR3 is a negative regulator of chondrogenesis and multiple mutations with constitutive activity of FGFR3 result in achondroplasia, one of the most common dwarfisms in humans, but the molecular mechanism remains elusive. In this study, we found that chondrocyte-specific deletion of BMP type I receptor a (Bmpr1a) rescued the bone overgrowth phenotype observed in Fgfr3 deficient mice by reducing chondrocyte differentiation. Consistently, using in vitro chondrogenic differentiation assay system, we demonstrated that FGFR3 inhibited BMPR1a-mediated chondrogenic differentiation. Furthermore, we showed that FGFR3 hyper-activation resulted in impaired BMP signaling in chondrocytes of mouse growth plates. We also found that FGFR3 inhibited BMP-2- or constitutively activated BMPR1-induced phosphorylation of Smads through a mechanism independent of its tyrosine kinase activity. We found that FGFR3 facilitates BMPR1a to degradation through Smurf1-mediated ubiquitination pathway. We demonstrated that down-regulation of BMP signaling by BMPR1 inhibitor dorsomorphin led to the retardation of chondrogenic differentiation, which mimics the effect of FGF-2 on chondrocytes and BMP-2 treatment partially rescued the retarded growth of cultured bone rudiments from thanatophoric dysplasia type II mice. Our findings reveal that FGFR3 promotes the degradation of BMPR1a, which plays an important role in the pathogenesis of FGFR3-related skeletal dysplasia.
Collapse
Affiliation(s)
- Huabing Qi
- Center of Bone Metabolism and Repair (CBMR), Trauma Center, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Min Jin
- Center of Bone Metabolism and Repair (CBMR), Trauma Center, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Yaqi Duan
- Center of Bone Metabolism and Repair (CBMR), Trauma Center, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Xiaolan Du
- Center of Bone Metabolism and Repair (CBMR), Trauma Center, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China; State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing 400042, China
| | - Yuanquan Zhang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Fangli Ren
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yinyin Wang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Qingyun Tian
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA; Department of Orthopaedic Surgery, New York University School of Medicine and NYU Hospital for Joint Diseases, New York, NY 10003, USA
| | - Xiaofeng Wang
- Center of Bone Metabolism and Repair (CBMR), Trauma Center, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Quan Wang
- Center of Bone Metabolism and Repair (CBMR), Trauma Center, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Ying Zhu
- Center of Bone Metabolism and Repair (CBMR), Trauma Center, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Yangli Xie
- Center of Bone Metabolism and Repair (CBMR), Trauma Center, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Chuanju Liu
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA; Department of Orthopaedic Surgery, New York University School of Medicine and NYU Hospital for Joint Diseases, New York, NY 10003, USA
| | - Xu Cao
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yuji Mishina
- Department of Biologic & Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | - Di Chen
- Department of Biochemistry, Rush University, Chicago, IL 60612, USA
| | - Chu-xia Deng
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, 10/9N105, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zhijie Chang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Medicine, Tsinghua University, Beijing 100084, China.
| | - Lin Chen
- Center of Bone Metabolism and Repair (CBMR), Trauma Center, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China; State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing 400042, China; Department of Rehabilitation Medicine, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China.
| |
Collapse
|
235
|
Wei J, Ferron M, Clarke CJ, Hannun YA, Jiang H, Blaner WS, Karsenty G. Bone-specific insulin resistance disrupts whole-body glucose homeostasis via decreased osteocalcin activation. J Clin Invest 2014; 124:1-13. [PMID: 24642469 DOI: 10.1172/jci72323] [Citation(s) in RCA: 175] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 01/22/2014] [Indexed: 12/24/2022] Open
Abstract
Insulin signaling in osteoblasts has been shown recently to contribute to whole-body glucose homeostasis in animals fed a normal diet; however, it is unknown whether bone contributes to the insulin resistance that develops in animals challenged by a high-fat diet (HFD). Here, we evaluated the consequences of osteoblast-specific overexpression of or loss of insulin receptor in HFD-fed mice. We determined that the severity of glucose intolerance and insulin resistance that mice develop when fed a HFD is in part a consequence of osteoblast-dependent insulin resistance. Insulin resistance in osteoblasts led to a decrease in circulating levels of the active form of osteocalcin, thereby decreasing insulin sensitivity in skeletal muscle. Insulin resistance developed in osteoblasts as the result of increased levels of free saturated fatty acids, which promote insulin receptor ubiquitination and subsequent degradation. Together, these results underscore the involvement of bone, among other tissues, in the disruption of whole-body glucose homeostasis resulting from a HFD and the involvement of insulin and osteocalcin cross-talk in glucose intolerance. Furthermore, our data indicate that insulin resistance develops in bone as the result of lipotoxicity-associated loss of insulin receptors.
Collapse
MESH Headings
- Animals
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Bone Resorption/metabolism
- Bone Resorption/pathology
- Bone and Bones/metabolism
- Diet, High-Fat
- Fatty Acids, Nonesterified/metabolism
- Glucose/metabolism
- Glucose Intolerance/metabolism
- Homeostasis
- Humans
- Insulin Resistance/physiology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Models, Biological
- Muscle, Skeletal/metabolism
- Osteoblasts/metabolism
- Osteocalcin/metabolism
- Receptor, Insulin/genetics
- Receptor, Insulin/metabolism
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Signal Transduction
- Ubiquitin-Protein Ligases/genetics
- Ubiquitin-Protein Ligases/metabolism
- Up-Regulation
Collapse
|
236
|
Cao S, Xiao L, Rao JN, Zou T, Liu L, Zhang D, Turner DJ, Gorospe M, Wang JY. Inhibition of Smurf2 translation by miR-322/503 modulates TGF-β/Smad2 signaling and intestinal epithelial homeostasis. Mol Biol Cell 2014; 25:1234-43. [PMID: 24554769 PMCID: PMC3982989 DOI: 10.1091/mbc.e13-09-0560] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Smurf2 is an E3 ubiquitin ligase that regulates TGF-β/Smad signaling and is implicated in a wide variety of cellular responses. miR-322 and miR-503 repress Smurf2 translation and thus modulate TGF-β/Smad2 signaling and intestinal epithelial homeostasis. Smad ubiquitin regulatory factor 2 (Smurf2) is an E3 ubiquitin ligase that regulates transforming growth factor β (TGF-β)/Smad signaling and is implicated in a wide variety of cellular responses, but the exact mechanisms that control Smurf2 abundance are largely unknown. Here we identify microRNA-322 (miR-322) and miR-503 as novel factors that regulate Smurf2 expression posttranscriptionally. Both miR-322 and miR-503 interact with Smurf2 mRNA via its 3′-untranslated region (UTR) and repress Smurf2 translation but do not affect total Smurf2 mRNA levels. Studies using heterologous reporter constructs reveal a greater repressive effect of miR-322/503 through a single binding site in the Smurf2 3′-UTR, whereas point mutation of this site prevents miR-322/503–induced repression of Smurf2 translation. Increased levels of endogenous Smurf2 via antagonism of miR-322/503 inhibits TGF-β–induced Smad2 activation by increasing degradation of phosphorylated Smad2. Furthermore, the increase in Smurf2 in intestinal epithelial cells (IECs) expressing lower levels of miR-322/503 is associated with increased resistance to apoptosis, which is abolished by Smurf2 silencing. These findings indicate that miR-322/503 represses Smurf2 translation, in turn affecting intestinal epithelial homeostasis by altering TGF-β/Smad2 signaling and IEC apoptosis.
Collapse
Affiliation(s)
- Shan Cao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201 Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201 Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201 Laboratory of Genetics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, MD 21224
| | | | | | | | | | | | | | | | | |
Collapse
|
237
|
Kakoi H, Maeda S, Shinohara N, Matsuyama K, Imamura K, Kawamura I, Nagano S, Setoguchi T, Yokouchi M, Ishidou Y, Komiya S. Bone morphogenic protein (BMP) signaling up-regulates neutral sphingomyelinase 2 to suppress chondrocyte maturation via the Akt protein signaling pathway as a negative feedback mechanism. J Biol Chem 2014; 289:8135-50. [PMID: 24505141 DOI: 10.1074/jbc.m113.509331] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although bone morphogenic protein (BMP) signaling promotes chondrogenesis, it is not clear whether BMP-induced chondrocyte maturation is cell-autonomously terminated. Loss of function of Smpd3 in mice results in an increase in mature hypertrophic chondrocytes. Here, we report that in chondrocytes the Runx2-dependent expression of Smpd3 was increased by BMP-2 stimulation. Neutral sphingomyelinase 2 (nSMase2), encoded by the Smpd3 gene, was detected both in prehypertrophic and hypertrophic chondrocytes of mouse embryo bone cartilage. An siRNA for Smpd3, as well as the nSMase inhibitor GW4869, significantly enhanced BMP-2-induced differentiation and maturation of chondrocytes. Conversely, overexpression of Smpd3 or C2-ceramide, which mimics the function of nSMase2, inhibited chondrogenesis. Upon induction of Smpd3 siRNA or GW4869, phosphorylation of both Akt and S6 proteins was increased. The accelerated chondrogenesis induced by Smpd3 silencing was negated by application of the Akt inhibitor MK2206 or the mammalian target of rapamycin inhibitor rapamycin. Importantly, in mouse bone culture, GW4869 treatment significantly promoted BMP-2-induced hypertrophic maturation and calcification of chondrocytes, which subsequently was eliminated by C2-ceramide. Smpd3 knockdown decreased the apoptosis of terminally matured ATDC5 chondrocytes, probably as a result of decreased ceramide production. In addition, we found that expression of hyaluronan synthase 2 (Has2) was elevated by a loss of Smpd3, which was restored by MK2206. Indeed, expression of Has2 protein decreased in nSMase2-positive hypertrophic chondrocytes in the bones of mouse embryos. Our data suggest that the Smpd3/nSMase2-ceramide-Akt signaling axis negatively regulates BMP-induced chondrocyte maturation and Has2 expression to control the rate of endochondral ossification as a negative feedback mechanism.
Collapse
|
238
|
An H, Krist DT, Statsyuk AV. Crosstalk between kinases and Nedd4 family ubiquitin ligases. ACTA ACUST UNITED AC 2014; 10:1643-57. [DOI: 10.1039/c3mb70572b] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Understanding the interplay between kinase and E3 ligase signaling pathways will allow better understanding of therapeutically relevant pathways and the design of small molecule therapeutics targeting these pathways.
Collapse
Affiliation(s)
- Heeseon An
- Department of Chemistry
- Northwestern University
- Evanston, USA
| | - David T. Krist
- Department of Chemistry
- Northwestern University
- Evanston, USA
| | | |
Collapse
|
239
|
Miyares RL, Stein C, Renisch B, Anderson JL, Hammerschmidt M, Farber SA. Long-chain Acyl-CoA synthetase 4A regulates Smad activity and dorsoventral patterning in the zebrafish embryo. Dev Cell 2013; 27:635-47. [PMID: 24332754 PMCID: PMC3895552 DOI: 10.1016/j.devcel.2013.11.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 09/09/2013] [Accepted: 11/12/2013] [Indexed: 12/12/2022]
Abstract
Long-chain polyunsaturated fatty acids (LC-PUFA) and their metabolites are critical players in cell biology and embryonic development. Here we show that long-chain acyl-CoA synthetase 4a (Acsl4a), an LC-PUFA activating enzyme, is essential for proper patterning of the zebrafish dorsoventral axis. Loss of Acsl4a results in dorsalized embryos due to attenuated bone morphogenetic protein (Bmp) signaling. We demonstrate that Acsl4a modulates the activity of Smad transcription factors, the downstream mediators of Bmp signaling. Acsl4a promotes the inhibition of p38 mitogen-activated protein kinase and the Akt-mediated inhibition of glycogen synthase kinase 3, critical inhibitors of Smad activity. Consequently, introduction of a constitutively active Akt can rescue the dorsalized phenotype of Acsl4a-deficient embryos. Our results reveal a critical role for Acsl4a in modulating Bmp-Smad activity and provide a potential avenue for LC-PUFAs to influence a variety of developmental processes.
Collapse
Affiliation(s)
- Rosa Linda Miyares
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218, USA
| | - Cornelia Stein
- Institute of Developmental Biology, University of Cologne, D-50674 Cologne, Germany
| | - Björn Renisch
- Institute of Developmental Biology, University of Cologne, D-50674 Cologne, Germany
| | | | - Matthias Hammerschmidt
- Institute of Developmental Biology, University of Cologne, D-50674 Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, D-50931 Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, D-50674 Cologne, Germany.
| | - Steven Arthur Farber
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218, USA.
| |
Collapse
|
240
|
Kwon A, Lee HL, Woo KM, Ryoo HM, Baek JH. SMURF1 plays a role in EGF-induced breast cancer cell migration and invasion. Mol Cells 2013; 36:548-55. [PMID: 24241683 PMCID: PMC3887964 DOI: 10.1007/s10059-013-0233-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 09/23/2013] [Accepted: 09/30/2013] [Indexed: 01/02/2023] Open
Abstract
Epidermal growth factor (EGF) is a well-known growth factor that induces cancer cell migration and invasion. Previous studies have shown that SMAD ubiquitination regulatory factor 1 (SMURF1), an E3 ubiquitin ligase, regulates cell motility by inducing RhoA degradation. Therefore, we examined the role of SMURF1 in EGF-induced cell migration and invasion using MDA-MB-231 cells, a human breast cancer cell line. EGF increased SMURF1 expression at both the mRNA and protein levels. All ErbB family members were expressed in MDA-MB-231 cells and receptor tyrosine kinase inhibitors specific for the EGF receptor (EGFR) or ErbB2 blocked the EGF-mediated induction of SMURF1 expression. Within the signaling pathways examined, ERK1/2 and protein kinase C activity were required for EGF-induced SMURF1 expression. The overexpression of constitutively active MEK1 increased the SMURF1 to levels similar to those induced by EGF. SMURF1 induction by EGF treatment or by the overexpression of MEK1 or SMURF1 resulted in enhanced cell migration and invasion, whereas SMURF1 knockdown suppressed EGF- or MEK1-induced cell migration and invasion. EGF treatment or SMURF1 overexpression decreased the endogenous RhoA protein levels. The overexpression of constitutively active RhoA prevented EGF- or SMURF1-induced cell migration and invasion. These results suggest that EGFinduced SMURF1 plays a role in breast cancer cell migration and invasion through the downregulation of RhoA.
Collapse
Affiliation(s)
- Arang Kwon
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 110-749,
Korea
| | - Hye-Lim Lee
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 110-749,
Korea
| | - Kyung Mi Woo
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 110-749,
Korea
| | - Hyun-Mo Ryoo
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 110-749,
Korea
| | - Jeong-Hwa Baek
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 110-749,
Korea
| |
Collapse
|
241
|
Kristensen SG, Andersen K, Clement CA, Franks S, Hardy K, Andersen CY. Expression of TGF-beta superfamily growth factors, their receptors, the associated SMADs and antagonists in five isolated size-matched populations of pre-antral follicles from normal human ovaries. ACTA ACUST UNITED AC 2013; 20:293-308. [DOI: 10.1093/molehr/gat089] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
242
|
Imamura T, Oshima Y, Hikita A. Regulation of TGF-β family signalling by ubiquitination and deubiquitination. J Biochem 2013; 154:481-9. [PMID: 24165200 DOI: 10.1093/jb/mvt097] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Members of the transforming growth factor-β (TGF-β) family, including TGF-βs, activin and bone morphogenetic proteins (BMPs), are multifunctional proteins that regulate a wide variety of cellular responses, such as proliferation, differentiation, migration and apoptosis. TGF-β family signalling is mainly mediated by membranous serine/threonine kinase receptors and intracellular Smad proteins. This signalling is tightly regulated by various post-translational modifications including ubiquitination. Several E3 ubiquitin ligases play a crucial role in the recognition and ubiquitin-dependent degradation of TGF-β family receptors, Smad proteins and their interacted proteins to regulate positively and negatively TGF-β family signalling. In contrast, non-degradative ubiquitin modifications also regulate TGF-β family signalling. Recently, in addition to protein ubiquitination, deubiquitination by deubiquitinating enzymes has been reported to control TGF-β family signalling pathways. Interestingly, more recent studies suggest that TGF-β signalling is not only regulated via ubiquitination and/or deubiquitination, but also it relies on ubiquitination for its effect on other pathways. Thus, ubiquitin modifications play key roles in TGF-β family signal transduction and cross-talk between TGF-β family signalling and other signalling pathways. Here, we review the current understandings of the positive and negative regulatory mechanisms by ubiquitin modifications that control TGF-β family signalling.
Collapse
Affiliation(s)
- Takeshi Imamura
- Department of Molecular Medicine for Pathogenesis, Ehime University Graduate School of Medicine; Division of Bio-imaging, Proteo-Science Center, Ehime University; Translational Research Center, Ehime University Hospital; and Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Shitsukawa, Toon, Ehime 791-0295, Japan
| | | | | |
Collapse
|
243
|
Wang J, Zhang Y, Weng W, Qiao Y, Ma L, Xiao W, Yu Y, Pan Q, Sun F. Impaired phosphorylation and ubiquitination by p70 S6 kinase (p70S6K) and Smad ubiquitination regulatory factor 1 (Smurf1) promote tribbles homolog 2 (TRIB2) stability and carcinogenic property in liver cancer. J Biol Chem 2013; 288:33667-33681. [PMID: 24089522 DOI: 10.1074/jbc.m113.503292] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Tribbles homolog 2 (TRIB2) is critical for both solid and non-solid malignancies. Recently, TRIB2 was identified as a liver cancer-specific Wnt/β-catenin signaling downstream target and is functionally important for liver cancer cell survival and transformation. TRIB2 functions as a protein that interacts with E3 ubiquitin ligases and thereby modulates protein stability of downstream effectors. However, the regulation underlying TRIB2 protein stability per se has not yet been reported. In this study, we found that TRIB2 was up-regulated and exhibited high stability in liver cancer cells compared with other cells. We performed a structure-function analysis of TRIB2 and identified a domain (amino acids 1-5) at the N terminus that interacted with the E3 ubiquitin ligase Smurf1 and was critical for protein stability. Deletion of this domain extended TRIB2 half-life time accompanied with a more significant malignant property compared with wild type TRIB2. Furthermore, Smurf1-mediated ubiquitination required phosphorylation of TRIB2 by p70 S6 kinase (p70S6K) via another domain (amino acids 69-85) that is also essential for correct TRIB2 subcellular localization. Mutation of Ser-83 diminished p70S6K-induced phosphorylation of TRIB2. Moreover, the high stability of TRIB2 may be due to the fact that both p70S6K and Smurf1 were down-regulated and negatively correlated with TRIB2 expression in both liver cancer tissues and established liver cancer cell lines. Taken together, impaired phosphorylation and ubiquitination by p70S6K and Smurf1 increase the protein stability of TRIB2 in liver cancer and thus may be helpful in the development of diagnosis and treatment strategies against this malignant disease.
Collapse
Affiliation(s)
- Jiayi Wang
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, 200072 Shanghai, China
| | - Yue Zhang
- Central Laboratory, Shanghai Tenth People's Hospital of Tongji University, 200072 Shanghai, China
| | - Wenhao Weng
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, 200072 Shanghai, China
| | - Yongxia Qiao
- School of Public Health, Shanghai Jiaotong University School of Medicine, 200025 Shanghai, China
| | - Lifang Ma
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, 200072 Shanghai, China
| | - Weifan Xiao
- Central Laboratory, Shanghai Tenth People's Hospital of Tongji University, 200072 Shanghai, China
| | - Yongchun Yu
- Central Laboratory, Shanghai Tenth People's Hospital of Tongji University, 200072 Shanghai, China
| | - Qiuhui Pan
- Central Laboratory, Shanghai Tenth People's Hospital of Tongji University, 200072 Shanghai, China.
| | - Fenyong Sun
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, 200072 Shanghai, China.
| |
Collapse
|
244
|
Makioka K, Yamazaki T, Takatama M, Ikeda M, Okamoto K. Immunolocalization of Smurf1 in Hirano bodies. J Neurol Sci 2013; 336:24-8. [PMID: 24238996 DOI: 10.1016/j.jns.2013.09.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 09/13/2013] [Accepted: 09/19/2013] [Indexed: 10/26/2022]
Abstract
The Smad ubiquitination regulatory factor 1 (Smurf1) is one of the E3 ubiquitin ligases and is related to multiple biological processes. Despite the various roles played by this protein, there is no report on the function of Smurf1 in neurodegeneration. Hirano bodies (HBs) are intracellular structures within neuronal processes and were first described in the hippocampus of individuals with amyotrophic lateral sclerosis and the parkinsonism-dementia complex of Guam. In addition, the number of HBs increases in the brains of patients with Alzheimer's disease (AD) compared with age-matched non-demented control individuals. In this study, we immunohistochemically demonstrated that Smurf1 localized in HBs in the brains of patients with AD by using plural anti-Smurf1 antibodies, and Smurf1 co-localized with HBs marker proteins by using confocal microscopy. Moreover, we demonstrated that Smurf1 localized in HB-like F-actin aggregates in a cell culture system via treatment with the actin-stabilizing toxin jasplakinolide (jpk). Smurf1 represents a novel protein component of HBs, to be included in an expanding list of HB-associated proteins.
Collapse
Affiliation(s)
- Kouki Makioka
- Department of Neurology, Gunma University Graduate School of Medicine, Gunma, Japan.
| | | | | | - Masaki Ikeda
- Department of Neurology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Koichi Okamoto
- Department of Neurology, Gunma University Graduate School of Medicine, Gunma, Japan; Geriatric Research Institute and Hospital, Gunma, Japan
| |
Collapse
|
245
|
Smurf-mediated differential proteolysis generates dynamic BMP signaling in germline stem cells during Drosophila testis development. Dev Biol 2013; 383:106-20. [PMID: 23988579 DOI: 10.1016/j.ydbio.2013.08.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 08/15/2013] [Accepted: 08/17/2013] [Indexed: 01/01/2023]
Abstract
Germline stem cells (GSCs) produce gametes throughout the reproductive life of many animals, and intensive studies have revealed critical roles of BMP signaling to maintain GSC self-renewal in Drospophila adult gonads. Here, we show that BMP signaling is downregulated as testes develop and this regulation controls testis growth, stem cell number, and the number of spermatogonia divisions. Phosphorylated Mad (pMad), the activated Drosophila Smad in germ cells, was restricted from anterior germ cells to GSCs and hub-proximal cells during early larval development. pMad levels in GSCs were then dramatically downregulated from early third larval instar (L3) to late L3, and maintained at low levels in pupal and adult GSCs. The spatial restriction and temporal down-regulation of pMad, reflecting the germ cell response to BMP signaling activity, required action in germ cells of E3 ligase activity of HECT domain protein Smurf. Analyses of Smurf mutant testes and dosage-dependent genetic interaction between Smurf and mad indicated that pMad downregulation was required for both the normal decrease in stem cell number during testis maturation in the pupal stage, and for normal limit of four rounds of spermatogonia cell division for control of germ cell numbers and testis size. Smurf protein was expressed at a constant low level in GSCs and spermatogonia during development. Rescue experiments showed that expression of exogenous Smurf protein in early germ cells promoted pMad downregulation in GSCs in a stage-dependent but concentration-independent manner, suggesting that the competence of Smurf to attenuate response to BMP signaling may be regulated during development. Taken together, our work reveals a critical role for differential attenuation of the response to BMP signaling in GSCs and early germ cells for control of germ cell number and gonad growth during development.
Collapse
|
246
|
Smurf1-mediated Lys29-linked nonproteolytic polyubiquitination of axin negatively regulates Wnt/β-catenin signaling. Mol Cell Biol 2013; 33:4095-105. [PMID: 23959799 DOI: 10.1128/mcb.00418-13] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Ubiquitination plays important and diverse roles in modulating protein functions. As a C2-WW-HECT-type ubiquitin ligase, Smad ubiquitination regulatory factor 1 (Smurf1) commonly serves to regulate ubiquitin-dependent protein degradation in a number of signaling pathways. Here, we report a novel function of Smurf1 in regulating Wnt/β-catenin signaling through targeting axin for nonproteolytic ubiquitination. Our data unambiguously demonstrate that Smurf1 ubiquitinates axin through Lys 29 (K29)-linked polyubiquitin chains. Unexpectedly, Smurf1-mediated axin ubiquitination does not lead to its degradation but instead disrupts its interaction with the Wnt coreceptors LRP5/6, which subsequently attenuates Wnt-stimulated LRP6 phosphorylation and represses Wnt/β-catenin signaling. The inhibitory function of Smurf1 on Wnt/β-catenin signaling is further evidenced by analysis with Smurf1 knockout murine embryonic fibroblasts. We next identified K789 and K821 in axin as the ubiquitination sites by Smurf1. Consistently, Smurf1 could neither disrupt the interaction of an axin(K789/821R) double mutant with LRP5/6 nor attenuate the phosphorylation of LRP6 in axin(K789/821R)-expressing cells. Collectively, our studies uncover Smurf1 as a new regulator for the Wnt/β-catenin signaling pathway via modulating the activity of axin.
Collapse
|
247
|
Formanowicz D, Kozak A, Głowacki T, Radom M, Formanowicz P. Hemojuvelin-hepcidin axis modeled and analyzed using Petri nets. J Biomed Inform 2013; 46:1030-43. [PMID: 23954231 DOI: 10.1016/j.jbi.2013.07.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 07/21/2013] [Accepted: 07/25/2013] [Indexed: 10/26/2022]
Abstract
Systems biology approach to investigate biological phenomena seems to be very promising because it is capable to capture one of the fundamental properties of living organisms, i.e. their inherent complexity. It allows for analysis biological entities as complex systems of interacting objects. The first and necessary step of such an analysis is building a precise model of the studied biological system. This model is expressed in the language of some branch of mathematics, as for example, differential equations. During the last two decades the theory of Petri nets has appeared to be very well suited for building models of biological systems. The structure of these nets reflects the structure of interacting biological molecules and processes. Moreover, on one hand, Petri nets have intuitive graphical representation being very helpful in understanding the structure of the system and on the other hand, there is a lot of mathematical methods and software tools supporting an analysis of the properties of the nets. In this paper a Petri net based model of the hemojuvelin-hepcidin axis involved in the maintenance of the human body iron homeostasis is presented. The analysis based mainly on T-invariants of the model properties has been made and some biological conclusions have been drawn.
Collapse
Affiliation(s)
- Dorota Formanowicz
- Department of Clinical Biochemistry and Laboratory Medicine, Poznan University of Medical Sciences, Poznań, Poland
| | | | | | | | | |
Collapse
|
248
|
Matsuzaki K. Smad phospho-isoforms direct context-dependent TGF-β signaling. Cytokine Growth Factor Rev 2013; 24:385-99. [PMID: 23871609 DOI: 10.1016/j.cytogfr.2013.06.002] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 06/12/2013] [Indexed: 02/06/2023]
Abstract
Better understanding of TGF-β signaling has deepened our appreciation of normal epithelial cell homeostasis and its dysfunction in such human disorders as cancer and fibrosis. Smad proteins, which convey signals from TGF-β receptors to the nucleus, possess intermediate linker regions connecting Mad homology domains. Membrane-bound, cytoplasmic, and nuclear protein kinases differentially phosphorylate Smad2 and Smad3 to create C-tail (C), the linker (L), or dually (L/C) phosphorylated (p, phospho-) isoforms. According to domain-specific phosphorylation, distinct transcriptional responses, and selective metabolism, Smad phospho-isoform pathways can be grouped into 4 types: cytostatic pSmad3C signaling, mitogenic pSmad3L (Ser-213) signaling, invasive/fibrogenic pSmad2L (Ser-245/250/255)/C or pSmad3L (Ser-204)/C signaling, and mitogenic/migratory pSmad2/3L (Thr-220/179)/C signaling. We outline how responses to TGF-β change through the multiple Smad phospho-isoforms as normal epithelial cells mature from stem cells through progenitors to differentiated cells, and further reflect upon how constitutive Ras-activating mutants favor the Smad phospho-isoform pathway promoting tumor progression. Finally, clinical analyses of reversible Smad phospho-isoform signaling during human carcinogenesis could assess effectiveness of interventions aimed at reducing human cancer risk. Spatiotemporally separate, functionally different Smad phospho-isoforms have been identified in specific cells and tissues, answering long-standing questions about context-dependent TGF-β signaling.
Collapse
Affiliation(s)
- Koichi Matsuzaki
- Department of Gastroenterology and Hepatology, Kansai Medical University, 10-15 Fumizonocho, Moriguchi, Osaka 570-8506, Japan.
| |
Collapse
|
249
|
Al-Salihi MA, Herhaus L, Sapkota GP. Regulation of the transforming growth factor β pathway by reversible ubiquitylation. Open Biol 2013; 2:120082. [PMID: 22724073 PMCID: PMC3376735 DOI: 10.1098/rsob.120082] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 04/25/2012] [Indexed: 12/20/2022] Open
Abstract
The transforming growth factor β (TGFβ) signalling pathway plays a central role during embryonic development and in adult tissue homeostasis. It regulates gene transcription through a signalling cascade from cell surface receptors to intracellular SMAD transcription factors and their nuclear cofactors. The extent, duration and potency of signalling in response to TGFβ cytokines are intricately regulated by complex biochemical processes. The corruption of these regulatory processes results in aberrant TGFβ signalling and leads to numerous human diseases, including cancer. Reversible ubiquitylation of pathway components is a key regulatory process that plays a critical role in ensuring a balanced response to TGFβ signals. Many studies have investigated the mechanisms by which various E3 ubiquitin ligases regulate the turnover and activity of TGFβ pathway components by ubiquitylation. Moreover, recent studies have shed new light into their regulation by deubiquitylating enzymes. In this report, we provide an overview of current understanding of the regulation of TGFβ signalling by E3 ubiquitin ligases and deubiquitylases.
Collapse
Affiliation(s)
- Mazin A Al-Salihi
- Medical Research Council-Protein Phosphorylation Unit, Sir James Black Centre, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | | | | |
Collapse
|
250
|
Cao Y, Zhang L. A Smurf1 tale: function and regulation of an ubiquitin ligase in multiple cellular networks. Cell Mol Life Sci 2013; 70:2305-17. [PMID: 23007848 PMCID: PMC11113965 DOI: 10.1007/s00018-012-1170-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 09/05/2012] [Accepted: 09/11/2012] [Indexed: 01/17/2023]
Abstract
Since being discovered and intensively studied for over a decade, Smad ubiquitylation regulatory factor-1 (Smurf1) has been linked with several important biological pathways, including the bone morphogenetic protein pathway, the non-canonical Wnt pathway, and the mitogen-activated protein kinase pathway. Multiple functions of this ubiquitin ligase have been discovered in cell growth and morphogenesis, cell migration, cell polarity, and autophagy. Smurf1 is related to physiological manifestations in terms of age-dependent deficiency in bone formation and invasion of tumor cells. Smurf1-knockout mice have a significant phenotype in the skeletal system and considerable manifestations during embryonic development and neural outgrowth. In depth studying of Smurf1 will help us to understand the etiopathological mechanisms of related disorders. Here, we will summarize historical and recent studies on Smurf1, and discuss the E3 ligase-dependent and -independent functions of Smurf1. Moreover, intracellular regulations of Smurf1 and related physiological phenotypes will be described in this review.
Collapse
Affiliation(s)
- Yu Cao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, 100850 China
| | - Lingqiang Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, 100850 China
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044 Liaoning Province China
| |
Collapse
|