201
|
Deb DK, Tanaka-Matakatsu M, Jones L, Richardson HE, Du W. Wingless signaling directly regulates cyclin E expression in proliferating embryonic PNS precursor cells. Mech Dev 2008; 125:857-64. [PMID: 18606221 PMCID: PMC2614831 DOI: 10.1016/j.mod.2008.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Revised: 06/02/2008] [Accepted: 06/11/2008] [Indexed: 10/22/2022]
Abstract
Cell proliferation and cell type specification are coordinately regulated during normal development. Cyclin E, a key G1/S cell cycle regulator, is regulated by multiple tissue-specific enhancers resulting in dynamic expression during Drosophila development. Here, we further characterized the enhancer that regulates cyclin E expression in the developing peripheral nervous system (PNS) and show that multiple sequence elements are required for the full cyclin E PNS enhancer activity. We further show that Wg signaling is important for the expression of cyclin E in the sensory organ precursor (SOP) cells through two conserved TCF binding sites. Blocking Wg signaling does not completely block SOP cell formation but does completely block SOP cell proliferation as well as the subsequent differentiation.
Collapse
Affiliation(s)
- Dilip K. Deb
- Ben May Department for Cancer Research, 929 E. 57 Street, University of Chicago, Chicago, IL
| | - Miho Tanaka-Matakatsu
- Ben May Department for Cancer Research, 929 E. 57 Street, University of Chicago, Chicago, IL
| | - Lynn Jones
- ARC Special Research Centre for the Molecular Genetics of Development, Research School of Biological Sciences, Australian National University, Canberra, ACT, Australia
| | | | - Wei Du
- Ben May Department for Cancer Research, 929 E. 57 Street, University of Chicago, Chicago, IL
| |
Collapse
|
202
|
Abstract
Primary cilia project from the surface of most vertebrate cells, and function in sensation and signaling during both development and adult tissue homeostasis. Mounting evidence links ciliary defects with a wide variety of diseases, underscoring the importance of understanding how these dynamic organelles are assembled and maintained. However, despite their physiological and clinical relevance, the logic and machinery that regulate ciliogenesis remain largely enigmatic. Here, we summarize emerging data that connect the assembly and disassembly of the primary cilium to cell cycle progression and we examine how determinants of cell architecture, including the planar cell polarity pathway, may regulate ciliogenesis. Additionally, identification of the genes underlying diverse ciliopathies in human patients is shedding light on the regulation of the formation of this complex organelle.
Collapse
Affiliation(s)
- Nicole Santos
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158-2324
| | - Jeremy F. Reiter
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158-2324
| |
Collapse
|
203
|
Abstract
OBJECTIVES The purpose of this study was to investigate whether pancreatic and duodenal homeobox factor 1 (PDX-1) could serve as a potential molecular target for the treatment of pancreatic cancer. METHODS Cell proliferation, invasion capacity, and protein levels of cell cycle mediators were determined in human pancreatic cancer cells transfected with mouse PDX-1 (mPDX-1) alone or with mPDX-1 short hairpin RNA (shRNA) and/or human PDX-1 shRNA (huPDX-1 shRNA). Tumor cell growth and apoptosis were also evaluated in vivo in PANC-1 tumor-bearing severe combined immunodeficient mice receiving multiple treatments of intravenous liposomal huPDX-1 shRNA. RESULTS mPDX-1 overexpression resulted in the significant increase of cell proliferation and invasion in MIA PaCa2, but not PANC-1 cells. This effect was blocked by knocking down mPDX-1 expression with mPDX-1 shRNA. Silencing of huPDX-1 expression in PANC-1 cells inhibited cell proliferation in vitro and suppressed tumor growth in vivo which was associated with increased tumor cell apoptosis. PDX-1 overexpression resulted in dysregulation of the cell cycle with up-regulation of cyclin D, cyclin E, and Cdk2 and down-regulation of p27. CONCLUSIONS PDX-1 regulates cell proliferation and invasion in human pancreatic cancer cells. Down-regulation of PDX-1 expression inhibits pancreatic cancer cell growth in vitro and in vivo, implying its use as a potential therapeutic target for the treatment of pancreatic cancer.
Collapse
|
204
|
Dakubo GD, Beug ST, Mazerolle CJ, Thurig S, Wang Y, Wallace VA. Control of glial precursor cell development in the mouse optic nerve by sonic hedgehog from retinal ganglion cells. Brain Res 2008; 1228:27-42. [PMID: 18625210 DOI: 10.1016/j.brainres.2008.06.058] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Revised: 06/11/2008] [Accepted: 06/12/2008] [Indexed: 10/21/2022]
Abstract
The development of glial precursor cells in the mammalian optic nerve depends on retinal ganglion cell (RGC) axons, but the signals that mediate this neuron-to-glia interaction have not been fully characterized. Sonic hedgehog (Shh) is expressed by RGCs, and we showed previously that it is required for the specification of astrocyte lineage cells at the optic disc. To study the role of RGC-derived Shh on astrocyte development at later developmental stages, we generated mice with a conditional ablation of Shh in the peripheral retina and analyzed gene expression and glial cell development in the optic nerve. Astrocyte development was initiated in the optic nerves of these mutant mice; however, the expression of Hedgehog (Hh) target genes, Gli1 and Ptch1 and cell cycle genes, Ccnd1 and Cdc25b in the optic nerves were downregulated. Astrocyte proliferation was markedly reduced. Oligodendrocyte precursor cells were fewer in the optic nerves of mutant mice, possibly as a consequence of reduced secretion of growth factors by astrocytes. At a later developmental stage, optic nerve axons displayed signs of Wallerian degeneration, including reduction of astrocyte processes, degenerating glial cells and formation of distended axons. We also demonstrate that the Hh pathway can be activated in optic nerve-derived astrocytes in vitro, but fails to induce cell cycle gene expression and proliferation. RGC-derived Shh signalling isthus necessary in vivo for maintenance of astrocyte proliferation, affecting both axo-glial and normal glial cell development in the optic nerve.
Collapse
|
205
|
Hedgehog signaling overrides p53-mediated tumor suppression by activating Mdm2. Proc Natl Acad Sci U S A 2008; 105:4838-43. [PMID: 18359851 DOI: 10.1073/pnas.0712216105] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The hedgehog (Hh) signaling pathway regulates the development of many organs in mammals, and activation of this pathway is widely observed in human cancers. Although it is known that Hh signaling activates the expression of genes involved in cell growth, the precise role of the Hh pathway in cancer development is still unclear. Here, we show that constitutively activated mutants of Smoothened (Smo), a transducer of the Hh signaling pathway, inhibit the accumulation of the tumor suppressor protein p53. This inhibition was also observed in the presence of Hh ligand or with the overexpression of the transcription factors Gli1 and Gli2, downstream effectors of Smo, indicating that this inhibition is specific for the Hh pathway. We also report that Smo mutants augment p53 binding to the E3 ubiquitin-protein ligase Mdm2 and promote p53 ubiquitination. Furthermore, Hh signaling induced the phosphorylation of human Mdm2 protein on serines 166 and 186, which are activating phosphorylation sites of Mdm2. Smo mutants enhanced the proliferation of mouse embryonic fibroblasts (MEFs) while inducing a DNA-damage response. Moreover, Smo partially inhibited p53-dependent apoptosis and cell growth inhibition in oncogene-expressing MEFs. We also found that accumulation of p53 is inhibited by Hh signaling in several human cancer cell lines. Therefore, the Hh pathway may be a powerful accelerator of oncogenesis by activating cell proliferation and inhibiting the p53-mediated anti-cancer barrier induced by oncogenic stress.
Collapse
|
206
|
A screen for modifiers of hedgehog signaling in Drosophila melanogaster identifies swm and mts. Genetics 2008; 178:1399-413. [PMID: 18245841 DOI: 10.1534/genetics.107.081638] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Signaling by Hedgehog (Hh) proteins shapes most tissues and organs in both vertebrates and invertebrates, and its misregulation has been implicated in many human diseases. Although components of the signaling pathway have been identified, key aspects of the signaling mechanism and downstream targets remain to be elucidated. We performed an enhancer/suppressor screen in Drosophila to identify novel components of the pathway and identified 26 autosomal regions that modify a phenotypic readout of Hh signaling. Three of the regions include genes that contribute constituents to the pathway-patched, engrailed, and hh. One of the other regions includes the gene microtubule star (mts) that encodes a subunit of protein phosphatase 2A. We show that mts is necessary for full activation of Hh signaling. A second region includes the gene second mitotic wave missing (swm). swm is recessive lethal and is predicted to encode an evolutionarily conserved protein with RNA binding and Zn(+) finger domains. Characterization of newly isolated alleles indicates that swm is a negative regulator of Hh signaling and is essential for cell polarity.
Collapse
|
207
|
Tung DCY, Chao KSC. Targeting hedgehog in cancer stem cells: how a paradigm shift can improve treatment response. Future Oncol 2008; 3:569-74. [PMID: 17927522 DOI: 10.2217/14796694.3.5.569] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The integration of developmental biology and cancer therapeutics has revolutionized the understanding of tumor proliferation. Cell-signaling pathways first recognized for their importance in embryogenesis have begun to inspire the scientific community to investigate new avenues in cancer initiation and growth. Other ground-breaking discoveries provided evidence for a revisit to the theory of cancer stem cells, which has long-term implications for the efficient and lasting elimination of cancer. This paradigm shift involves a change from viewing the malignant tumor as a perpetually mutating mass of clonogenic cells to seeing it as an organ mistakenly created by mutations that disrupt cell-signaling pathways in stem cells. As researchers find more evidence of the essential involvement of these signaling pathways in cancer formation and maintenance, the link between tumorigenesis and aberrant stem cell activation can be more clearly drawn. One such pathway is the hedgehog (Hh)-signaling pathway, which is important in growth and differentiation during embryogenesis and for proper functioning in many adult tissues. Investigation of this pathway and its involvement in cancer has already led to drug development that could eradicate basal cell carcinoma, the most common type of cancer in humans. Future research focused on Hh and related signaling pathways involved in cancer might improve treatment response in malignancies resistant to traditional therapy.
Collapse
Affiliation(s)
- David C Y Tung
- The University of Texas, Department of Radiation Oncology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | | |
Collapse
|
208
|
Fiaschi M, Rozell B, Bergström Å, Toftgård R, Kleman MI. Targeted Expression of GLI1 in the Mammary Gland Disrupts Pregnancy-induced Maturation and Causes Lactation Failure. J Biol Chem 2007; 282:36090-101. [DOI: 10.1074/jbc.m704280200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
209
|
Hatton BA, Knoepfler PS, Kenney AM, Rowitch DH, de Alborán IM, Olson JM, Eisenman RN. N-myc is an essential downstream effector of Shh signaling during both normal and neoplastic cerebellar growth. Cancer Res 2007; 66:8655-61. [PMID: 16951180 DOI: 10.1158/0008-5472.can-06-1621] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We examined the genetic requirements for the Myc family of oncogenes in normal Sonic hedgehog (Shh)-mediated cerebellar granule neuronal precursor (GNP) expansion and in Shh pathway-induced medulloblastoma formation. In GNP-enriched cultures derived from N-myc(Fl/Fl) and c-myc(Fl/Fl) mice, disruption of N-myc, but not c-myc, inhibited the proliferative response to Shh. Conditional deletion of c-myc revealed that, although it is necessary for the general regulation of brain growth, it is less important for cerebellar development and GNP expansion than N-myc. In vivo analysis of compound mutants carrying the conditional N-myc null and the activated Smoothened (ND2:SmoA1) alleles showed, that although granule cells expressing the ND2:SmoA1 transgene are present in the N-myc null cerebellum, no hyperproliferation or tumor formation was detected. Taken together, these findings provide in vivo evidence that N-myc acts downstream of Shh/Smo signaling during GNP proliferation and that N-myc is required for medulloblastoma genesis even in the presence of constitutively active signaling from the Shh pathway.
Collapse
Affiliation(s)
- Beryl A Hatton
- Clinical Research Division, Fred Hutchinson Cancer Research Center, University of Washington, Seattle, WA 98109, USA.
| | | | | | | | | | | | | |
Collapse
|
210
|
Kobune M, Kato J, Kawano Y, Sasaki K, Uchida H, Takada K, Takahashi S, Takimoto R, Niitsu Y. Adenoviral vector-mediated transfer of the Indian hedgehog gene modulates lymphomyelopoiesis in vivo. Stem Cells 2007; 26:534-42. [PMID: 17962696 DOI: 10.1634/stemcells.2007-0741] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Indian hedgehog (Ihh) plays an essential role in angiogenesis, hematogenesis, and epiphysis formation during embryogenesis. In the present study, we injected an adenoviral vector (Adv) carrying the mock-control (Adv-control) or Ihh (Adv-Ihh) gene into severe combined immunodeficiency (SCID) or BALB/c mice to evaluate the effects of lhh on the regulation of postnatal hematopoiesis in vivo. After the i.v. injection of Adv-Ihh, the expression of vector-derived Ihh mRNA was detected in the liver. Four weeks after administration of Adv-Ihh to SCID mice, we observed an increase in the number of c-Kit+ cells and clonogenic cells per 10(5) mononuclear cells in the bone marrow compared with Adv-control-administered mice. Moreover, after administration of Adv-Ihh to BALB/c mice, the number of splenic B220+IgM(low)CD23(int)CD21(int) B lymphocytes and CD4+ T lymphocytes was strongly increased. Furthermore, the number of thymic double-negative (DN)2, DN3, CD8+ immature single-positive, and CD4+/CD8- cells was significantly elevated relative to the number in mice that received the control Adv vector. Our results suggest that enhanced signaling by Ihh can modulate the proliferation and differentiation of splenic B lymphocytes and thymic T lymphocytes during bone marrow hematopoiesis in vivo. Thus, modulation of the hedgehog signaling pathway may provide a therapeutic strategy to stimulate lymphomyelopoiesis in vivo.
Collapse
Affiliation(s)
- Masayoshi Kobune
- Fourth Department of Internal Medicine, Sapporo Medical University School of Medicine, Chuo-ku, South-1, West-16 Sapporo, Hokkaido 060-8556, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
211
|
dE2F2-independent rescue of proliferation in cells lacking an activator dE2F1. Mol Cell Biol 2007; 27:8561-70. [PMID: 17923695 DOI: 10.1128/mcb.01068-07] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
In Drosophila melanogaster, the loss of activator de2f1 leads to a severe reduction in cell proliferation and repression of E2F targets. To date, the only known way to rescue the proliferation block in de2f1 mutants was through the inactivation of dE2F2. This suggests that dE2F2 provides a major contribution to the de2f1 mutant phenotype. Here, we report that in mosaic animals, in addition to de2f2, the loss of a DEAD box protein Belle (Bel) also rescues proliferation of de2f1 mutant cells. Surprisingly, the rescue occurs in a dE2F2-independent manner since the loss of Bel does not relieve dE2F2-mediated repression. In the eye disc, bel mutant cells fail to undergo a G1 arrest in the morphogenetic furrow, delay photoreceptor recruitment and differentiation, and show a reduction of the transcription factor Ci155. The down-regulation of Ci155 is important since it is sufficient to partially rescue proliferation of de2f1 mutant cells. Thus, mutation of bel relieves the dE2F2-mediated cell cycle arrest in de2f1 mutant cells through a novel Ci155-dependent mechanism without functional inactivation of the dE2F2 repressor.
Collapse
|
212
|
Heo JS, Lee MY, Han HJ. Sonic hedgehog stimulates mouse embryonic stem cell proliferation by cooperation of Ca2+/protein kinase C and epidermal growth factor receptor as well as Gli1 activation. Stem Cells 2007; 25:3069-80. [PMID: 17901397 DOI: 10.1634/stemcells.2007-0550] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Hedgehog signaling has an essential role in the control of stem cell growth in embryonic tissues. Therefore, this study examined the effect of sonic hedgehog (Shh) on the self-renewal of mouse embryonic stem (ES) cells and its related mechanisms. Shh increased DNA synthesis blocked by the inhibition of the smoothened receptor. Shh required Gli1 activation to induce the increases in Notch/Hes-1 and Wnt/beta-catenin. Shh increased the intracellular calcium concentration ([Ca(2+)](i)) and protein kinase C (PKC) activity. We show that the Shh-induced increase in the Gli1 mRNA level requires [Ca(2+)](i) and PKC. Shh increased the phosphorylation of epidermal growth factor receptor (EGFR), which is blocked by the matrix metalloproteinase inhibitor. Subsequently, Shh increased the nuclear factor (NF)-kappaB p65 phosphorylation, which was inhibited by blocking PKC and EGFR tyrosine kinase. Shh also increased the level of the cell cycle regulatory proteins in a dose-dependent manner. However, Shh decreased the levels of the cyclin-dependent kinase inhibitory proteins. The effect of Shh on these proteins was inhibited by blocking PKC, EGFR, and NF-kappaB as well as transfection of Gli1 small interfering RNA (siRNA). Finally, Shh-induced progression of the G1/S-phase was blocked by the inhibition of PKC and EGFR tyrosine kinase. In conclusion, Shh stimulates mouse ES cell proliferation through Gli1 activation as well as Ca(2+)/PKC and EGFR. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Jung Sun Heo
- Department of Veterinary Physiology, Biotherapy Human Resources Center, College of Veterinary Medicine, Chonnam National University, Gwangju, Korea
| | | | | |
Collapse
|
213
|
Ji Z, Mei FC, Johnson BH, Thompson EB, Cheng X. Protein kinase A, not Epac, suppresses hedgehog activity and regulates glucocorticoid sensitivity in acute lymphoblastic leukemia cells. J Biol Chem 2007; 282:37370-7. [PMID: 17895245 DOI: 10.1074/jbc.m703697200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Cyclic AMP synergizes strongly with glucocorticoids (GC) to induce apoptosis in normal or malignant lymphoid cells. We examined the individual roles that cAMP-dependent protein kinase (PKA) and Epac (exchange protein directly activated by cAMP), two intracellular cAMP receptors, play in this synergistic effect. Our studies demonstrate that PKA is responsible for the observed synergism with GC, whereas Epac exerts a weak antagonistic effect against GC-induced apoptosis. We find that endogenous PKA activity is higher in the GC-sensitive clone than in the GC-resistant clone. In the GC-sensitive clone, higher PKA activity is associated with lower Hedgehog (Hh) activity. Moreover, inhibition of Hh activity by Hh pathway-specific inhibitors leads to cell cycle arrest and apoptosis in CEM (human acute lymphoblastic leukemia, T lineage) cells, and the GC-sensitive clone is more sensitive to Hh inhibition. These results suggest that Hh activity is critical for leukemia cell growth and survival and that the level of Hh activity is in part responsible for the synergism between cAMP and GC.
Collapse
Affiliation(s)
- Zhenyu Ji
- Department of Pharmacology and Toxicology, School of Medicine, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | | | | | | |
Collapse
|
214
|
Kong L, Yu XP, Bai XH, Zhang WF, Zhang Y, Zhao WM, Jia JH, Tang W, Zhou YB, Liu CJ. RbAp48 is a critical mediator controlling the transforming activity of human papillomavirus type 16 in cervical cancer. J Biol Chem 2007; 282:26381-91. [PMID: 17616526 DOI: 10.1074/jbc.m702195200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Although human papillomavirus (HPV) infections are the primary cause of cervical cancer, the molecular mechanism by which HPV induces cervical cancer remains largely unclear. We used two-dimensional electrophoresis with mass spectrometry to study protein expression profiling between HPV16-positive cervical mucosa epithelial H8 cells and cervical cancer Caski cells to identify 18 differentially expressed proteins. Among them, retinoblastoma-binding protein 4 (RbAp48) was selected, and its differentiation expression was verified with both additional cervical cancer-derived cell lines and human tissues of cervical intraepithelial neoplasia and cervical cancer. Suppression of RbAp48 using small interfering RNA approach in H8 cells significantly stimulated cell proliferation and colony formation and inhibited senescence-like phenotype. Remarkably, H8 cells acquired transforming activity if RpAp48 was suppressed, because H8 cells stably transfected with RbAp48 small interfering RNA led to tumor formation in nude mice. In addition, overexpression of RbAp48 significantly inhibited cell growth and tumor formation. This RbAp48-mediated transformation of HPV16 is probably because of the regulation by RbAp48 of tumor suppressors retinoblastoma and p53, apoptosis-related enzymes caspase-3 and caspase-8, and oncogenic genes, including E6, E7, cyclin D1 (CCND1), and c-MYC. In brief, RbAp48, previously unknown in cervical carcinogenesis, was isolated in a global screen and identified as a critical mediator controlling the transforming activity of HPV16 in cervical cancer.
Collapse
MESH Headings
- Animals
- Carrier Proteins/antagonists & inhibitors
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Caspase 3/biosynthesis
- Caspase 3/genetics
- Caspase 8/biosynthesis
- Caspase 8/genetics
- Cell Line, Transformed
- Cell Line, Tumor
- Cell Transformation, Viral/drug effects
- Cellular Senescence/drug effects
- Cyclin D
- Cyclins/biosynthesis
- Cyclins/genetics
- Electrophoresis, Gel, Two-Dimensional
- Female
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic/drug effects
- HeLa Cells
- Human papillomavirus 16/genetics
- Human papillomavirus 16/metabolism
- Humans
- Mice
- Mice, Nude
- Neoplasm Transplantation
- Nuclear Proteins/antagonists & inhibitors
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Oncogene Proteins, Viral/biosynthesis
- Oncogene Proteins, Viral/genetics
- Papillomavirus E7 Proteins
- Phenotype
- Proto-Oncogene Proteins c-myc/biosynthesis
- Proto-Oncogene Proteins c-myc/genetics
- RNA, Small Interfering/pharmacology
- Repressor Proteins/biosynthesis
- Repressor Proteins/genetics
- Retinoblastoma Protein/biosynthesis
- Retinoblastoma Protein/genetics
- Retinoblastoma-Binding Protein 4
- Tumor Suppressor Protein p53/biosynthesis
- Tumor Suppressor Protein p53/genetics
- Uterine Cervical Neoplasms/genetics
- Uterine Cervical Neoplasms/metabolism
- Uterine Cervical Dysplasia/genetics
- Uterine Cervical Dysplasia/metabolism
- Uterine Cervical Dysplasia/virology
Collapse
Affiliation(s)
- Li Kong
- Department of Orthopaedic Surgery, New York University Medical Center, New York, New York 10003, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
215
|
Dentice M, Luongo C, Huang S, Ambrosio R, Elefante A, Mirebeau-Prunier D, Zavacki AM, Fenzi G, Grachtchouk M, Hutchin M, Dlugosz AA, Bianco AC, Missero C, Larsen PR, Salvatore D. Sonic hedgehog-induced type 3 deiodinase blocks thyroid hormone action enhancing proliferation of normal and malignant keratinocytes. Proc Natl Acad Sci U S A 2007; 104:14466-71. [PMID: 17720805 PMCID: PMC1964817 DOI: 10.1073/pnas.0706754104] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2006] [Indexed: 12/21/2022] Open
Abstract
The Sonic hedgehog (Shh) pathway plays a critical role in hair follicle physiology and is constitutively active in basal cell carcinomas (BCCs), the most common human malignancy. Type 3 iodothyronine deiodinase (D3), the thyroid hormone-inactivating enzyme, is frequently expressed in proliferating and neoplastic cells, but its role in this context is unknown. Here we show that Shh, through Gli2, directly induces D3 in proliferating keratinocytes and in mouse and human BCCs. We demonstrate that Gli-induced D3 reduces intracellular active thyroid hormone, thus resulting in increased cyclin D1 and keratinocyte proliferation. D3 knockdown caused a 5-fold reduction in the growth of BCC xenografts in nude mice. Shh-induced thyroid hormone degradation via D3 synergizes with the Shh-mediated reduction of the type 2 deiodinase, the thyroxine-activating enzyme, and both effects are reversed by cAMP. This previously unrecognized functional cross-talk between Shh/Gli2 and thyroid hormone in keratinocytes is a pathway by which Shh produces its proliferative effects and offers a potential therapeutic approach to BCC.
Collapse
Affiliation(s)
- Monica Dentice
- *Department of Molecular and Clinical Endocrinology and Oncology, University of Naples Federico II, 80131 Naples, Italy
| | - Cristina Luongo
- *Department of Molecular and Clinical Endocrinology and Oncology, University of Naples Federico II, 80131 Naples, Italy
| | - Stephen Huang
- Thyroid Section, Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Raffaele Ambrosio
- *Department of Molecular and Clinical Endocrinology and Oncology, University of Naples Federico II, 80131 Naples, Italy
| | - Antonia Elefante
- *Department of Molecular and Clinical Endocrinology and Oncology, University of Naples Federico II, 80131 Naples, Italy
| | - Delphine Mirebeau-Prunier
- Thyroid Section, Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Ann Marie Zavacki
- Thyroid Section, Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Gianfranco Fenzi
- *Department of Molecular and Clinical Endocrinology and Oncology, University of Naples Federico II, 80131 Naples, Italy
| | - Marina Grachtchouk
- Department of Dermatology and Comprehensive Cancer Center, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, MI 48109; and
| | - Mark Hutchin
- Department of Dermatology and Comprehensive Cancer Center, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, MI 48109; and
| | - Andrzej A. Dlugosz
- Department of Dermatology and Comprehensive Cancer Center, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, MI 48109; and
| | - Antonio C. Bianco
- Thyroid Section, Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Caterina Missero
- Center of Genetics Engineering (CEINGE), Biotecnologie Avanzate Scarl, 80145 Naples, Italy
| | - P. Reed Larsen
- Thyroid Section, Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Domenico Salvatore
- *Department of Molecular and Clinical Endocrinology and Oncology, University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
216
|
Umemori M, Takemura M, Maeda K, Ohba K, Adachi-Yamada T. Drosophila T-box transcription factor Optomotor-blind prevents pathological folding and local overgrowth in wing epithelium through confining Hh signal. Dev Biol 2007; 308:68-81. [PMID: 17573067 DOI: 10.1016/j.ydbio.2007.05.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Revised: 05/07/2007] [Accepted: 05/09/2007] [Indexed: 12/21/2022]
Abstract
Aberration of morphogen signaling leads directly to inappropriate cell differentiation and secondarily causes various pathological phenotypes such as abnormal morphogenesis and tumorigenesis. However, mechanisms for linking morphogen signaling and the higher order phenotypes have not been fully elucidated. Here we focus on the Drosophila T-box gene optomotor-blind (omb), a transcriptional target of a long-range morphogen Decapentaplegic (Dpp). Genetic analyses of omb function revealed that a negative feedback loop, where omb plays a crucial role, exists between Dpp and its upstream regulator Hedgehog (Hh), a short-range morphogen. Consequently, dysfunction of omb elicits hyperactivation of Hh signaling that causes an ectopic folding and local overgrowth in the wing columnar epithelium, neither of which are the direct results of reduced Dpp response. In the case of the local overgrowth, it was never seen in mutants for thick veins (tkv) encoding a Dpp receptor, suggesting that the Dpp signaling pathway is divided into two antagonistic branches, one of which contains Omb. Thus defect in feedback between the two morphogens explains both phenotypes, and disruption of a balance between the morphogen targets further accounts for the local overgrowth. These are the mechanisms for generating secondary phenotypes when a single signaling factor Omb fails to function.
Collapse
Affiliation(s)
- Makoto Umemori
- Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | | | | | | | | |
Collapse
|
217
|
Kugler SJ, Nagel AC. putzig is required for cell proliferation and regulates notch activity in Drosophila. Mol Biol Cell 2007; 18:3733-40. [PMID: 17634285 PMCID: PMC1995712 DOI: 10.1091/mbc.e07-03-0263] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We have identified the gene putzig (pzg) as a key regulator of cell proliferation and of Notch signaling in Drosophila. pzg encodes a Zn-finger protein that was found earlier within a macromolecular complex, including TATA-binding protein-related factor 2 (TRF2)/DNA replication-related element factor (DREF). This complex is involved in core promoter selection, where DREF functions as a transcriptional activator of replication-related genes. Here, we provide the first in vivo evidence that pzg is required for the expression of cell cycle and replication-related genes, and hence for normal developmental growth. Independent of its role in the TRF2/DREF complex, pzg acts as a positive regulator of Notch signaling that may occur by chromatin activation. Down-regulation of pzg activity inhibits Notch target gene activation, whereas Hedgehog (Hh) signal transduction and growth regulation are unaffected. Our findings uncover different modes of operation of pzg during imaginal development of Drosophila, and they provide a novel mechanism of Notch regulation.
Collapse
Affiliation(s)
- Sabrina J. Kugler
- Institute of Genetics (240), University of Hohenheim, 70599 Stuttgart, Germany
| | - Anja C. Nagel
- Institute of Genetics (240), University of Hohenheim, 70599 Stuttgart, Germany
| |
Collapse
|
218
|
Dierks C, Grbic J, Zirlik K, Beigi R, Englund NP, Guo GR, Veelken H, Engelhardt M, Mertelsmann R, Kelleher JF, Schultz P, Warmuth M. Essential role of stromally induced hedgehog signaling in B-cell malignancies. Nat Med 2007; 13:944-51. [PMID: 17632527 DOI: 10.1038/nm1614] [Citation(s) in RCA: 262] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2006] [Accepted: 06/04/2007] [Indexed: 01/21/2023]
Abstract
Interaction of cancer cells with their microenvironment generated by stromal cells is essential for tumor cell survival and influences the localization of tumor growth. Here we demonstrate that hedgehog ligands secreted by bone-marrow, nodal and splenic stromal cells function as survival factors for malignant lymphoma and plasmacytoma cells derived from transgenic Emu-Myc mice or isolated from humans with these malignancies. Hedgehog pathway inhibition in lymphomas induced apoptosis through downregulation of Bcl2, but was independent of p53 or Bmi1 expression. Blockage of hedgehog signaling in vivo inhibited expansion of mouse lymphoma cells in a syngeneic mouse model and reduced tumor mass in mice with fully developed disease. Our data indicate that stromally induced hedgehog signaling may provide an important survival signal for B- and plasma-cell malignancies in vitro and in vivo. Disruption of this interaction by hedgehog pathway inhibition could provide a new strategy in lymphoma and multiple myeloma therapy.
Collapse
Affiliation(s)
- Christine Dierks
- Kinase Biology/In-vivo Oncology, Department of Pharmacology, Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
219
|
Arsić D, Beasley SW, Sullivan MJ. Switched-on Sonic hedgehog: a gene whose activity extends beyond fetal development--to oncogenesis. J Paediatr Child Health 2007; 43:421-3. [PMID: 17535169 DOI: 10.1111/j.1440-1754.2007.01104.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Embryonic and fetal development is a highly complex process choreographed by several families of genes that regulate early development of the embryo. Disruption in the structure and/or function of developmental genes produces morphogenic errors of development. One such family is the Hedgehog (Hh) signalling pathway, which plays an important role in the embryonal development of both invertebrates and vertebrates, including normal development of the brain, eye, limbs, foregut and its derivatives. Disruption of the Sonic hedgehog expression during critical periods of development is associated with developmental disorders of the brain, namely, holoprosencephaly, and the VATER association. Inappropriate activation of the pathway in post-embryonic development has been demonstrated in several human malignancies, including those of the brain and skin, both in children and adults. Specific inhibition of Hh signalling in these tumours inhibits growth of a wide range of malignancies. This demonstrates a requirement for Hh signalling in these tumours. These observations suggest that a better understanding of the genetic control of morphogenesis can ultimately provide us with greater knowledge of how congenital structural abnormalities occur, as well as the processes that lead to several childhood and other tumours. There may be a closer relationship between embryogenesis and oncogenesis than previously realised.
Collapse
Affiliation(s)
- Dejan Arsić
- Children's Cancer and Developmental Genetics Research Group, Department of Paediatrics, Christchurch School of Medicine and Health Sciences, Christchurch, New Zealand
| | | | | |
Collapse
|
220
|
Garcia K, Duncan T, Su TT. Analysis of the cell division cycle in Drosophila. Methods 2007; 41:198-205. [PMID: 17189862 DOI: 10.1016/j.ymeth.2006.08.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2006] [Indexed: 01/12/2023] Open
Abstract
Drosophila melanogaster presents in an unparalleled opportunity to study the regulation of the cell division cycle in the context of cellular differentiation, growth regulation and the development of a multicellular organism. The complexity of Drosophila cell cycles and the large number of techniques available can, however, be overwhelming. We aim to provide here (1) an overview of cell cycle regulation and techniques in Drosophila and (2) a detailed description of techniques we recently used to study embryonic mitoses.
Collapse
Affiliation(s)
- Kristin Garcia
- MCD Biology, University of Colorado, Boulder, CO 80309-0347, USA
| | | | | |
Collapse
|
221
|
Bayly RD, Ngo M, Aglyamova GV, Agarwala S. Regulation of ventral midbrain patterning by Hedgehog signaling. Development 2007; 134:2115-24. [PMID: 17507412 DOI: 10.1242/dev.02850] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the developing ventral midbrain, the signaling molecule sonic hedgehog(SHH) is sufficient to specify a striped pattern of cell fates (midbrain arcs). Here, we asked whether and precisely how hedgehog (HH) signaling might be necessary for ventral midbrain patterning. By blocking HH signaling by in ovo misexpression of Ptc1Δloop2,we show that HH signaling is necessary and can act directly at a distance to specify midbrain cell fates. Ventral midbrain progenitors extinguish their dependence upon HH in a spatiotemporally complex manner, completing cell-fate specification at the periphery by Hamburger and Hamilton stage 13. Thus,patterning at the lateral periphery of the ventral midbrain is accomplished early, when the midbrain is small and the HH signal needs to travel relatively short distances (approximately 30 cell diameters). Interestingly, single-cell injections demonstrate that patterning in the midbrain occurs within the context of cortex-like radial columns of cells that can share HH blockade and are cytoplasmically connected by gap junctions. HH blockade results in increased cell scatter, disrupting the spatial coherence of the midbrain arc pattern. Finally, HH signaling is required for the integrity and the signaling properties of the boundaries of the midbrain (e.g. the midbrain-hindbrain boundary, the dorsoventral boundary), its perturbations resulting in abnormal cell mixing across `leaky' borders.
Collapse
Affiliation(s)
- Roy D Bayly
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712-0248, USA
| | | | | | | |
Collapse
|
222
|
Ou CY, Wang CH, Jiang J, Chien CT. Suppression of Hedgehog signaling by Cul3 ligases in proliferation control of retinal precursors. Dev Biol 2007; 308:106-19. [PMID: 17559828 DOI: 10.1016/j.ydbio.2007.05.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Revised: 05/08/2007] [Accepted: 05/10/2007] [Indexed: 02/04/2023]
Abstract
Cullin-RING ubiquitin ligases ubiquitinate protein substrates and control their levels through degradation. Here we show that cullin3 (Cul3) suppresses Hedgehog (Hh) signaling through downregulating the level of the signaling pathway effector cubitus interruptus (Ci). High-level Hh signaling promotes Cul3-dependent Ci degradation, leading to the downregulation of Hh signaling. This process is manifested in controlling cell proliferation during Drosophila retinal development. In Cul3 mutants, the population of interommatidial cells is increased, which can be mimicked by overexpression of Ci and suppressed by depleting endogenous Ci. Hh also regulates the population of interommatidial cells in the pupal stage. Alterations in the interommatidial cell population correlate with alterations in precursor proliferation in the second mitotic wave of larval eye discs. Taken together, these results suggest that Cul3 downregulates Ci levels to modulate Hh signaling activity, thus ensuring proper cell proliferation during retinal development.
Collapse
Affiliation(s)
- Chan-Yen Ou
- Taiwan International Graduate Program, Graduate Institute of Life Science, National Defense Medical Center and Academia Sinica, Taipei, Taiwan
| | | | | | | |
Collapse
|
223
|
Feng YZ, Shiozawa T, Miyamoto T, Kashima H, Kurai M, Suzuki A, Ying-Song J, Konishi I. Overexpression of hedgehog signaling molecules and its involvement in the proliferation of endometrial carcinoma cells. Clin Cancer Res 2007; 13:1389-98. [PMID: 17332280 DOI: 10.1158/1078-0432.ccr-06-1407] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Research has revealed abnormal activation of the hedgehog pathway in human malignancies. The present study was undertaken to examine the expression and functional involvement of the hedgehog pathway in endometrial tissues. EXPERIMENTAL DESIGN The expression of sonic hedgehog (Shh), patched (Ptch), Smoothened (Smo), and Gli1 was examined in various endometrial tissues and endometrial carcinoma cell lines. The effect of hedgehog signaling on the proliferation of endometrial carcinoma cell lines was also examined. RESULTS The expression of Shh, Ptch, Smo, and Gli1 was very weak in normal endometrium, but was increased in endometrial hyperplasia and carcinoma stepwisely with significant differences. There was no marked difference in the expression of these molecules in carcinomas according to stages and histologic grades. Treatment with cyclopamine, a specific inhibitor of the hedgehog pathway, for endometrial carcinoma Ishikawa and HHUA cells suppressed growth by 56% and 67%, respectively, compared with the control. The addition of recombinant Shh peptide to HHUA cells enhanced their proliferation by 41%. The silencing of Gli1 using small interfering RNA (siGli1) resulted in the growth suppression and down-regulation of Ptch expression. In addition, the cyclopamine/siGli1-induced growth suppression was associated with the down-regulation of cyclins D1 and A and N-myc. No somatic mutations for ptch and smo genes were detected in the endometrial carcinoma cases examined. CONCLUSIONS The abnormal activation of this pathway is involved in the proliferation of endometrial carcinoma cells possibly in an auto-/paracrine fashion, suggesting the possibility of the hedgehog pathway being a novel candidate for molecular targeting.
Collapse
Affiliation(s)
- Yu-Zhen Feng
- Department of Obstetrics and Gynecology, Shinshu University School of Medicine, Asahi, Matsumoto, Japan
| | | | | | | | | | | | | | | |
Collapse
|
224
|
Overexpression of cyclin L2 induces apoptosis and cell-cycle arrest in human lung cancer cells. Chin Med J (Engl) 2007. [DOI: 10.1097/00029330-200705020-00010] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
225
|
Chen BY, Liu JY, Chang HH, Chang CP, Lo WY, Kuo WH, Yang CR, Lin DPC. Hedgehog is involved in prostate basal cell hyperplasia formation and its progressing towards tumorigenesis. Biochem Biophys Res Commun 2007; 357:1084-9. [PMID: 17466949 DOI: 10.1016/j.bbrc.2007.04.091] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2007] [Accepted: 04/11/2007] [Indexed: 11/27/2022]
Abstract
The role of Hedgehog signaling in human basal cell hyperplasia formation and its progressing towards tumorigenesis was investigated. Hedgehog signaling members including PTCH1, GLI1, GLI2, and GLI3 were found co-localized with p63 expression in most hyperplastic basal cells, but rarely in normal basal cells, suggesting Hedgehog involvement in basal cell hyperplasia formation. Both CK-14 and CK-8 markers were found co-localized in the majority of hyperplastic basal cells, but relatively few in the normal basal cells, indicating a Hedgehog-promoted transitory differentiation. Furthermore, CK-14 and PTCH1 were found co-localized with CD44 in the hyerplastic basal cells, in a way similar to the CD44 co-localization with PTCH1 and GLI1 in the cancer cells. Together, the present study indicated Hedgehog involvement in forming basal cell hyperplasia and its progressing towards cancer, presumably by transforming the normal basal stem cells into the cancer stem cells where persistent Hedgehog activation might be mandatory for tumorigenesis.
Collapse
Affiliation(s)
- Bo-Yie Chen
- Institute of Biochemistry and Biotechnology, Chung Shan Medical University, Taichung 402, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
226
|
Abstract
OBJECTIVES Hedgehog (Hh) signaling is an important mediator of tumorigenesis of pancreatic ductal adenocarcinoma (PA). It is intriguing to explore whether Hh signaling is also involved in pancreatic cystic neoplasms, which are phenotypically different from PA. METHODS Patients with solid and pseudopapillary tumor (SPT; n = 12), mucinous cystic neoplasm (MCN; n = 18), intraductal papillary mucinous neoplasm (IPMN; n = 18), and PA (n = 20) were studied. Expression of Hh signaling molecules including sonic Hh (sHh), smoothened (Smo), patched 1 (Ptc1), and Gli were determined using immunohistochemistry and/or Western blotting. Cell cycle-regulator genes, including cyclin A, B, C, and D1 messenger RNA, were determined using ribonuclease protection assay. RESULTS Six of 12 SPT, 8 of 18 MCN, 17 of 18 IPMN, and 20 of 20 PA displayed Hh signaling using immunohistochemistry. Sonic Hh was predominantly expressed in stromal cells neighboring to the neoplastic cells of SPT and IPMN; in contrast, sHh was expressed in both stromal cells and neoplastic epithelial cells of MCN and PA. The quantitative expression of sHh signaling detected by Western blotting showed that expression of Ptc1 and Gli, but not Smo, corresponded to the magnitude of sonic hedgehog ligand. The expression of cyclin D1 messenger RNA was highest in PA, followed by MCN, IPMN, and SPT, which matches with Ptc1 and Gli. CONCLUSIONS Hedgehog signaling pathway might play a role during tumorigenesis of SPT, MCN, IPMN, and PA. Mucinous cystic neoplasm and PA exhibit an autocrine regulation of sHh, whereas SPT and IPMN do not. Overexpression of Ptc1 and Gli, reflected by cyclin D1, might represent proliferative potential of various pancreatic neoplasms.
Collapse
Affiliation(s)
- Maw-Sen Liu
- Departments of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, Taipei, Taiwan
| | | | | |
Collapse
|
227
|
Russell MC, Cowan RG, Harman RM, Walker AL, Quirk SM. The hedgehog signaling pathway in the mouse ovary. Biol Reprod 2007; 77:226-36. [PMID: 17392501 DOI: 10.1095/biolreprod.106.053629] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The hedgehog (HH) signaling pathway plays an essential role in the Drosophila ovary, regulating cell proliferation and differentiation, but a role in the mammalian ovary has not been defined. Expression of components of the HH pathway in the mouse ovary and effects of altering HH signaling in vitro were determined. RT-PCR analyses show developmentally regulated expression of sonic (Shh), indian (Ihh) and desert (Dhh) HH in the ovary. Expression is detected in whole ovary, granulosa cells, and corpora lutea. The mRNAs for the two receptors, patched homolog 1 and 2 (Ptch1, Ptch2), and the signal transducer, smoothened (Smo), are also expressed. Immunohistochemistry using an antibody that detects all three HH ligands demonstrated HH protein primarily in granulosa cells of follicles from primary to antral stages of development. Follicles also stained for PTCH1 and SMO in both granulosa and theca cells. Treatment of cultured preantral follicles and granulosa cells with recombinant SHH increased growth and proliferation while treatment with the HH pathway inhibitor, cyclopamine, had no effect. Therefore, activation of HH signaling can increase cell proliferation and follicle growth but is not essential for these processes in vitro. Treatment of granulosa cells with SHH increased levels of mRNA for Gli1, a transcriptional target of HH signaling, while cyclopamine decreased expression. SHH had no effect on production of progesterone by cultured granulosa cells, while cyclopamine increased progesterone production. The results demonstrate a functional HH pathway in the follicle and identify granulosa cells as at least one of the potential targets of HH signaling.
Collapse
Affiliation(s)
- Matthew C Russell
- Department of Animal Science, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | |
Collapse
|
228
|
Escudero LM, Freeman M. Mechanism of G1 arrest in the Drosophila eye imaginal disc. BMC DEVELOPMENTAL BIOLOGY 2007; 7:13. [PMID: 17335573 PMCID: PMC1810524 DOI: 10.1186/1471-213x-7-13] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2006] [Accepted: 03/02/2007] [Indexed: 10/28/2022]
Abstract
BACKGROUND Most differentiating cells are arrested in G1-phase of the cell cycle and this proliferative quiescence appears important to allow differentiation programmes to be executed. An example occurs in the Drosophila eye imaginal disc, where all cells are synchronized and arrested in G1 phase prior to making a fate choice either to initiate the first round of photoreceptor differentiation or to re-enter one terminal mitosis. RESULTS We have analysed the mechanism of this temporally regulated G1-phase in order to develop an integrated model of this proliferative regulation. We find that an overlapping set of cell cycle inhibitors combine to form an efficient barrier to cell cycle progression. This barrier depends on both the primary secreted signals that drive retinal development, Dpp and Hh. Each of these has distinct, as well as partially overlapping functions, in ensuring that Cyclin E and dE2F1 are kept in check. Additionally, inhibition of Cyclin A by Roughex is essential, and this regulation is independent of Dpp and Hh. CONCLUSION One implication of these results is to further support the idea that Cyclin A has important functions in S-phase entry as well as in mitosis. The unexpectedly complex network of regulation may reflect the importance of cells being uniformly ready to respond to the inductive signals that coordinate retinal differentiation.
Collapse
Affiliation(s)
- Luis M Escudero
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | - Matthew Freeman
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| |
Collapse
|
229
|
Gerber AN, Wilson CW, Li YJ, Chuang PT. The hedgehog regulated oncogenes Gli1 and Gli2 block myoblast differentiation by inhibiting MyoD-mediated transcriptional activation. Oncogene 2007; 26:1122-36. [PMID: 16964293 PMCID: PMC3325095 DOI: 10.1038/sj.onc.1209891] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2006] [Revised: 07/03/2006] [Accepted: 07/05/2006] [Indexed: 01/21/2023]
Abstract
The mechanism by which activation of the Hedgehog (Hh) pathway modulates differentiation and promotes oncogenesis in specific tissues is poorly understood. We therefore, analysed rhabdomyosarcomas from mice that were haploinsufficient for the Hh-binding protein, Hip1, or for the Hh receptor, Patched 1 (Ptch1). Transfection of the Hh-regulated transcription factor Gli1, which is expressed in a subset of mouse and human rhabdomyosarcomas, suppressed differentiation of myogenic rhabdomyosarcoma lines generated from Hip1+/- and Ptch1+/- mice. The closely related factor, Gli2, had similar effects. Gli1 and Gli2 inhibited myogenesis by repressing the capacity of MyoD to activate transcription. Deletion analysis of Gli1 indicated that multiple domains of Gli1 are required for efficient inhibition of MyoD. Gli1 reduced the ability of MyoD to heterodimerize with E12 and bind DNA, providing one mechanism whereby the Gli proteins modulate the activity of MyoD. This novel activity of Gli proteins provides new insights into how Hh signaling modulates terminal differentiation through inhibition of tissue-specific factors such as MyoD. This mechanism may contribute to the broad role of Hh signaling and the Gli proteins in differentiation decisions and cancer formation.
Collapse
Affiliation(s)
- AN Gerber
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, CA, USA
| | - CW Wilson
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Y-J Li
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - P-T Chuang
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| |
Collapse
|
230
|
Sukhanova MJ, Deb DK, Gordon GM, Matakatsu MT, Du W. Proneural basic helix-loop-helix proteins and epidermal growth factor receptor signaling coordinately regulate cell type specification and cdk inhibitor expression during development. Mol Cell Biol 2007; 27:2987-96. [PMID: 17296729 PMCID: PMC1899942 DOI: 10.1128/mcb.01685-06] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Cell differentiation and cell cycle exit are coordinately regulated during development; however, the molecular logic underlying this regulation is not known. The Drosophila cdk inhibitor Dacapo (Dap) is one of the key cell cycle regulators that exhibit dynamic expression during development and contribute to the developmental regulation of the cell cycle. In this study, regulation of Dap expression during cell type specification was investigated. The expression of Dap in the R2 and R5 precursors of the developing eye and in the newly recruited leg disc femoral sense organ precursors was found to be controlled by the epidermal growth factor receptor signaling-regulated transcription factor Pointed (Pnt) and the proneural basic helix-loop-helix proteins Atonal (Ato) and Daughterless (Da). We show that Pnt, Ato, and Da regulate Dap expression directly through their respective binding sites precisely at the time when these transcription factors function to specify neural fates. These results show that Dap expression is directly regulated by developmental mechanisms that simultaneously control cell type specification. This is potentially a general mechanism by which the expression of key cell cycle regulators is coordinated with differentiation during normal development. The direct regulation of key cell cycle regulators by the differentiation factors ensures coordinated regulation of cell cycle and differentiation.
Collapse
Affiliation(s)
- Madina J Sukhanova
- Ben May Department for Cancer Research, The University of Chicago, 924 E. 57th Street, Chicago, IL 60637, USA
| | | | | | | | | |
Collapse
|
231
|
Yang HS, Hinds PW. pRb-mediated control of epithelial cell proliferation and Indian hedgehog expression in mouse intestinal development. BMC DEVELOPMENTAL BIOLOGY 2007; 7:6. [PMID: 17257418 PMCID: PMC1794236 DOI: 10.1186/1471-213x-7-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2006] [Accepted: 01/26/2007] [Indexed: 12/28/2022]
Abstract
BACKGROUND Self-renewal of the epithelium of the small intestine is a highly regulated process involving cell proliferation and differentiation of stem cells or progenitor cells located at the bottom of the crypt, ending ultimately with extrusion of the terminally differentiated cells at the tip of villus. RESULTS Here, we utilized the Cre/loxP system to investigate the function of the retinoblastoma protein, pRb in intestinal epithelium. pRb null mice displayed a profoundly altered development of the intestine with increased proliferation and abnormal expression of differentiation markers. Loss of pRb induces cell hyperproliferation in the proliferative region (crypt) as well as in the differentiated zone (villi). The absence of pRb further results in an increase in the population of enterocytes, goblet, enteroendocrine and Paneth cells. In addition, differentiated enteroendocrine cells failed to exit the cell cycle in the absence of pRb. These proliferative changes were accompanied by increased expression of Indian hedgehog and activation of hedgehog signals, a known pathway for intestinal epithelial cell proliferation. CONCLUSION Our studies have revealed a unique function of pRb in intestine development which is critical for controlling not only the proliferation of a stem cell or progenitor cell population but that of terminally differentiated cells as well.
Collapse
Affiliation(s)
- Hai-Su Yang
- Molecular Oncology Research Institute, Tufts-New England Medical Center, 75 Kneeland Street, Boston, MA 02111, USA
| | - Philip W Hinds
- Molecular Oncology Research Institute, Tufts-New England Medical Center, 75 Kneeland Street, Boston, MA 02111, USA
| |
Collapse
|
232
|
Abstract
Several key signalling pathways, such as Hedgehog, Notch, Wnt and BMP-TGFbeta-Activin (bone morphogenetic protein-transforming growth factor-beta-Activin), are involved in most processes essential to the proper development of an embryo. It is also becoming increasingly clear that these pathways can have a crucial role in tumorigenesis when reactivated in adult tissues through sporadic mutations or other mechanisms. We will focus here on the Hedgehog pathway, which is abnormally activated in most basal cell carcinomas, and discuss potential therapeutic opportunities offered by the progress made in understanding this signalling pathway.
Collapse
Affiliation(s)
- Lee L Rubin
- Harvard Stem Cell Institute, Biolabs, Room 150, 16 Divinity Avenue, Cambridge, Massachusetts 02138, USA.
| | | |
Collapse
|
233
|
Locker M, Agathocleous M, Amato MA, Parain K, Harris WA, Perron M. Hedgehog signaling and the retina: insights into the mechanisms controlling the proliferative properties of neural precursors. Genes Dev 2006; 20:3036-48. [PMID: 17079690 PMCID: PMC1620016 DOI: 10.1101/gad.391106] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Hedgehog signaling has been linked to cell proliferation in a variety of systems; however, its effects on the cell cycle have not been closely studied. In the vertebrate retina, Hedgehog's effects are controversial, with some reports emphasizing increased proliferation and others pointing to a role in cell cycle exit. Here we demonstrate a novel role for Hedgehog signaling in speeding up the cell cycle in the developing retina by reducing the length of G1 and G2 phases. These fast cycling cells tend to exit the cell cycle early. Conversely, retinal progenitors with blocked Hedgehog signaling cycle more slowly, with longer G1 and G2 phases, and remain in the cell cycle longer. Hedgehog may modulate cell cycle kinetics through activation of the key cell cycle activators cyclin D1, cyclin A2, cyclin B1, and cdc25C. These findings support a role for Hedgehog in regulating the conversion from slow cycling stem cells to fast cycling transient amplifying progenitors that are closer to cell cycle exit.
Collapse
Affiliation(s)
- Morgane Locker
- Laboratoire Gènes, Développement et Neurogenèse, Université Paris XI, UMR Centre national de la Recherche Scientifique (CNRS) 8080, Orsay, France
| | | | | | | | | | | |
Collapse
|
234
|
Abstract
Hedgehog signaling coordinates a variety of patterning processes during early embryonic development. Drosophila hedgehog and its vertebrate orthologs, Sonic hedgehog, Indian hedgehog, and Desert hedgehog, share a generally conserved signal transduction cascade. However, the particular mechanisms by which the lipid-modified molecules specify embryonic tissues differ substantially. Vertebrate skeletal patterning is one of the most intensively studied biological processes. During skeletogenesis, Sonic and Indian hedgehog provide positional information and initiate or maintain cellular differentiation programs regulating the formation of cartilage and bone. They either signal directly to adjacent cells or form tightly regulated gradients that act over long distances to pattern the axial and appendicular skeleton and regulate crucial steps during endochondral ossification. As a consequence, malfunction of the hedgehog signaling network can cause severe skeletal disorders and tumors.
Collapse
Affiliation(s)
- Harald W A Ehlen
- University of Duisburg-Essen, Center for Medical Biotechnology, Essen, Germany
| | | | | |
Collapse
|
235
|
Hochman E, Kinston S, Harmelin A, Göttgens B, Izraeli S. The SCL 3' enhancer responds to Hedgehog signaling during hemangioblast specification. Exp Hematol 2006; 34:1643-50. [PMID: 17157160 DOI: 10.1016/j.exphem.2006.07.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2006] [Revised: 06/27/2006] [Accepted: 07/31/2006] [Indexed: 11/18/2022]
Abstract
OBJECTIVE The Hedgehog family of intercellular proteins has a crucial role in embryonic development. Recent experimental data suggests that the Hedgehog pathway may play a role in early hematopoiesis and angiogenesis. Stem cell leukemia (SCL), a basic helix-loop-helix (bHLH) transcription factor, is essential for the specification and function of the hemangioblast. SCL expression in early hematopoietic precursors and endothelium is directed by a 3' enhancer. We hypothesized that the SCL 3' enhancer is regulated by Hedgehog signaling during specification of mesoderm towards hemangioblastic fate. MATERIALS AND METHODS Whole embryos derived from transgenic mouse lines carrying reporter genes under the regulation of SCL 3' enhancer were cultured in the presence of active Hedgehog peptide. Hedgehog transcriptional regulation of SCL 3' enhancer was studied by in vitro and in vivo binding and reporter assays. RESULTS Hedgehog induced expansion of cells in which the SCL 3' enhancer was transcriptionally activated. A Gli-binding site within the 3' enhancer of SCL was identified and Gli1 was demonstrated to bind and transactivate this enhancer in a sequence-dependent manner. We further demonstrated that the core region of the SCL 3' enhancer is transcriptionally regulated by Hedgehog in-vivo and that the Gli-binding site located in this enhancer is essential for Hedgehog transcriptional regulation in vitro. CONCLUSION These findings suggest that SCL may be a direct target of Hedgehog signaling during hemangioblast specification.
Collapse
Affiliation(s)
- Eldar Hochman
- The Research Section of Pediatric Malignancies, The Sheba Cancer Research Center, Safra Children's Hospital, Sheba Medical Center and Faculty of Medicine, Tel-Aviv University, Tel Hashomer, Israel
| | | | | | | | | |
Collapse
|
236
|
Jinawath A, Akiyama Y, Sripa B, Yuasa Y. Dual blockade of the Hedgehog and ERK1/2 pathways coordinately decreases proliferation and survival of cholangiocarcinoma cells. J Cancer Res Clin Oncol 2006; 133:271-8. [PMID: 17294242 DOI: 10.1007/s00432-006-0166-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2006] [Accepted: 10/27/2006] [Indexed: 10/23/2022]
Abstract
PURPOSE The Hedgehog (Hh) and pERK1/2 pathways participate in the tumorigenesis of various tissues, but there has been no report on the involvement of these two pathways in cholangiocarcinoma (CCA). The aim of this study was to evaluate the effects of the Hh pathway inhibitor, cyclopamine, and MEK inhibitor, U0126, as a single agent or in combination on CCA cell proliferation and survival. METHODS Seven CCA cell lines were treated with cyclopamine and/or U0126, and cell proliferation was determined by WST-1 assay. The cell cycle was investigated by fluorescence-activated cell sorter analysis. The expression levels of several cell cycle-related genes were determined by western blot analyses. RESULTS Cyclopamine decreased cell proliferation and arrested the cell cycle at the G1 phase, while U0126 decreased the proliferation of CCA cells with KRAS mutation stronger than with wild-type KRAS. The combination of both inhibitors had an additive antiproliferative effect, particularly in cells with KRAS mutation, and induced caspase-dependent apoptosis in the CCA cells. The expression levels of cell cycle-related proteins that are targets of the two pathways, such as cyclin D1 and cyclin B1, were strongly decreased in some CCA cell lines after combined inhibitor treatment. CONCLUSION Our results suggest that the Hedgehog and ERK1/2 pathways are important for CCA cell proliferation, and simultaneous inhibition of the two pathways may lead to stronger decreases in cell growth and viability in a subset of CCA cases.
Collapse
Affiliation(s)
- Artit Jinawath
- Department of Molecular Oncology, Graduate School of Medicine and Dentistry, Tokyo Medical and Dental University, 1-5-45, Yushima, Tokyo 113-8519, Japan
| | | | | | | |
Collapse
|
237
|
Legent K, Dutriaux A, Delanoue R, Silber J. Cell cycle genes regulate vestigial and scalloped to ensure normal proliferation in the wing disc of Drosophila melanogaster. Genes Cells 2006; 11:907-18. [PMID: 16866874 DOI: 10.1111/j.1365-2443.2006.00993.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In Drosophila, the Vestigial-Scalloped (VG-SD) dimeric transcription factor is required for wing cell identity and proliferation. Previous results have shown that VG-SD controls expression of the cell cycle positive regulator dE2F1 during wing development. Since wing disc growth is a homeostatic process, we investigated the possibility that genes involved in cell cycle progression regulate vg and sd expression in feedback loops. We focused our experiments on two major regulators of cell cycle progression: dE2F1 and the antagonist dacapo (dap). Our results reinforce the idea that VG/SD stoichiometry is critical for correct development and that an excess in SD over VG disrupts wing growth. We reveal that transcriptional activity of VG-SD and the VG/SD ratio are both modulated by down-expression of cell cycle genes. We also detected a dap-induced sd up-regulation that disrupts wing growth. Moreover, we observed a rescue of a vg hypomorphic mutant phenotype by dE2F1 that is concomitant with vg and sd induction. This regulation of the VG-SD activity by dE2F1 is dependent on the vg genetic background. Our results support the hypothesis that cell cycle genes fine-tune wing growth and cell proliferation, in part, through control of the VG/SD stoichiometry and activity. This points to a homeostatic feedback regulation between proliferation regulators and the VG-SD wing selector.
Collapse
Affiliation(s)
- Kevin Legent
- Institut Jacques Monod, CNRS UMR 7592, Universités Paris 6/Paris 7, Tour 43, 2 place Jussieu, 75251 Paris, cedex 05, France
| | | | | | | |
Collapse
|
238
|
Parker J. Control of Compartment Size by an EGF Ligand from Neighboring Cells. Curr Biol 2006; 16:2058-65. [PMID: 17055987 DOI: 10.1016/j.cub.2006.08.092] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2005] [Revised: 08/24/2006] [Accepted: 08/24/2006] [Indexed: 11/25/2022]
Abstract
Insect bodies are subdivided into anterior (A) and posterior (P) compartments: cohesive fields of distinct cell lineage and cell affinity . Like organs in many animal species, compartments can develop to normal sizes despite considerable variation in cell division . This implies that overall compartment dimensions are subject to genetic control, but the mechanisms are unknown. Here, studying Drosophila's embryonic segments, I show that P compartment dimensions depend on epidermal growth factor receptor (EGFR) signaling. I suggest the primary activating ligand is Spitz, emanating from neighboring A compartment cells. Spi/EGFR activity stimulates P compartment cell enlargement and survival, but evidence is presented that Spitz is secreted in limited amounts, so that increasing the number of cells within the P compartment causes the per-cell Spitz level to drop. This leads to compensatory apoptosis and cell-size reductions that preserve compartment dimensions. Conversely, I propose that lowering P compartment cell numbers enhances per-cell Spitz availability; this increases cell survival and cell size, again safeguarding compartment size. The results argue that the gauging of P compartment size is due, at least in part, to cells surviving and growing according to Spi availability. These data offer mechanistic insight into how diffusible molecules control organ size.
Collapse
Affiliation(s)
- Joseph Parker
- Division of Cell Biology, Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, United Kingdom.
| |
Collapse
|
239
|
Nieuwenhuis E, Motoyama J, Barnfield PC, Yoshikawa Y, Zhang X, Mo R, Crackower MA, Hui CC. Mice with a targeted mutation of patched2 are viable but develop alopecia and epidermal hyperplasia. Mol Cell Biol 2006; 26:6609-22. [PMID: 16914743 PMCID: PMC1592833 DOI: 10.1128/mcb.00295-06] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hedgehog (Hh) signaling plays pivotal roles in tissue patterning and development in Drosophila melanogaster and vertebrates. The Patched1 (Ptc1) gene, encoding the Hh receptor, is mutated in nevoid basal cell carcinoma syndrome, a human genetic disorder associated with developmental abnormalities and increased incidences of basal cell carcinoma (BCC) and medulloblastoma (MB). Ptc1 mutations also occur in sporadic forms of BCC and MB. Mutational studies with mice have verified that Ptc1 is a tumor suppressor. We previously identified a second mammalian Patched gene, Ptc2, and demonstrated its distinct expression pattern during embryogenesis, suggesting a unique role in development. Most notably, Ptc2 is expressed in an overlapping pattern with Shh in the epidermal compartment of developing hair follicles and is highly expressed in the developing limb bud, cerebellum, and testis. Here, we describe the generation and phenotypic analysis of Ptc2(tm1/tm1) mice. Our molecular analysis suggests that Ptc2(tm1) likely represents a hypomorphic allele. Despite the dynamic expression of Ptc2 during embryogenesis, Ptc2(tm1/tm1) mice are viable, fertile, and apparently normal. Interestingly, adult Ptc2(tm1/tm1) male animals develop skin lesions consisting of alopecia, ulceration, and epidermal hyperplasia. While functional compensation by Ptc1 might account for the lack of a strong mutant phenotype in Ptc2-deficient mice, our results suggest that normal Ptc2 function is required for adult skin homeostasis.
Collapse
Affiliation(s)
- Erica Nieuwenhuis
- Program in Developmental Biology, The Hospital for Sick Children, Toronto Medical Discovery Towers, MaRS Building, East Tower, Room 13-314, Toronto, Ontario M5G 1L7, Canada
| | | | | | | | | | | | | | | |
Collapse
|
240
|
Grachtchouk M, Liu J, Wang A, Wei L, Bichakjian CK, Garlick J, Paulino AF, Giordano T, Dlugosz AA. Odontogenic keratocysts arise from quiescent epithelial rests and are associated with deregulated hedgehog signaling in mice and humans. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 169:806-14. [PMID: 16936257 PMCID: PMC1698812 DOI: 10.2353/ajpath.2006.060054] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Accepted: 05/10/2006] [Indexed: 12/21/2022]
Abstract
Odontogenic keratocysts in humans are aggressive, noninflammatory jaw cysts that may harbor PTCH1 mutations, leading to constitutive activity of the embryonic Hedgehog (Hh) signaling pathway. We show here that epithelial expression of the Hh transcriptional effector Gli2 is sufficient for highly penetrant keratocyst development in transgenic mice. Mouse and human keratocysts expressed similar markers, leading to tooth misalignment, bone remodeling, and craniofacial abnormalities. We detected Hh target gene expression in epithelial cells lining keratocysts from both species, implicating deregulated Hh signaling in their development. Most mouse keratocysts arose from rests of Malassez--quiescent, residual embryonic epithelial cells that remain embedded in the periodontal ligament surrounding mature teeth. In Gli2-expressing mice, these rests were stimulated to proliferate, stratify, and form a differentiated squamous epithelium. The frequent development of keratocysts in Gli2-expressing mice supports the idea that GLI transcription factor activity mediates pathological responses to deregulated Hh signaling in humans. Moreover, Gli2-mediated reactivation of quiescent epithelial rests to form keratocysts indicates that these cells retain the capacity to function as progenitor cells on activation by an appropriate developmental signal.
Collapse
Affiliation(s)
- Marina Grachtchouk
- Department of Dermatology and Comprehensive Cancer Center, University of Michigan, 3316 CCGC, Box 0932, 1500 E. Medical Center Dr., Ann Arbor, MI 48109-0932, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
241
|
Xu J, Srinivas BP, Tay SY, Mak A, Yu X, Lee SGP, Yang H, Govindarajan KR, Leong B, Bourque G, Mathavan S, Roy S. Genomewide expression profiling in the zebrafish embryo identifies target genes regulated by Hedgehog signaling during vertebrate development. Genetics 2006; 174:735-52. [PMID: 16888327 PMCID: PMC1602081 DOI: 10.1534/genetics.106.061523] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Hedgehog proteins play critical roles in organizing the embryonic development of animals, largely through modulation of target gene expression. Little is currently known, however, about the kinds and numbers of genes whose expression is controlled, directly or indirectly, by Hedgehog activity. Using techniques to globally repress or activate Hedgehog signaling in zebrafish embryos followed by microarray-based expression profiling, we have discovered a cohort of genes whose expression responds significantly to loss or gain of Hedgehog function. We have confirmed the Hedgehog responsiveness of a representative set of these genes with whole-mount in situ hybridization as well as real time PCR. In addition, we show that the consensus Gli-binding motif is enriched within the putative regulatory elements of a sizeable proportion of genes that showed positive regulation in our assay, indicating that their expression is directly induced by Hedgehog. Finally, we provide evidence that the Hedgehog-dependent spatially restricted transcription of one such gene, nkx2.9, is indeed mediated by Gli1 through a single Gli recognition site located within an evolutionarily conserved enhancer fragment. Taken together, this study represents the first comprehensive survey of target genes regulated by the Hedgehog pathway during vertebrate development. Our data also demonstrate for the first time the functionality of the Gli-binding motif in the control of Hedgehog signaling-induced gene expression in the zebrafish embryo.
Collapse
Affiliation(s)
- Jun Xu
- Institute of Molecular and Cell Biology, Singapore
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
242
|
Abstract
Stem cells are self-renewing multipotent cells essential for development or homeostasis of many tissues. Stem cell populations can be found in most multicellular plants and animals. The mechanisms by which these populations are maintained are diverse, utilizing both intrinsic and extrinsic factors to regulate cell division and differentiation. The genetic tools of the fruitfly, Drosophila melanogaster, have permitted detailed characterization of two stem cell populations. In this review, we will examine these contrasting stem cell model systems from Drosophila and their relevance to stem cell populations in other organisms.
Collapse
Affiliation(s)
- Susan M W Harrison
- Department of Biology, University of Kentucky, 101 T.H. Morgan Building, Lexington, KY 40506, USA.
| | | |
Collapse
|
243
|
Douard R, Moutereau S, Pernet P, Chimingqi M, Allory Y, Manivet P, Conti M, Vaubourdolle M, Cugnenc PH, Loric S. Sonic Hedgehog-dependent proliferation in a series of patients with colorectal cancer. Surgery 2006; 139:665-70. [PMID: 16701100 DOI: 10.1016/j.surg.2005.10.012] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2005] [Revised: 09/29/2005] [Accepted: 10/21/2005] [Indexed: 12/21/2022]
Abstract
BACKGROUND The Hedgehog (Hh) gene family is known to regulate development of stem cells. In addition, activation is responsible for the induction of GLI1 proto-oncogene and subsequent cellular proliferation. Sonic Hedgehog (SHh), one of the Hh family members promotes carcinogenesis in airway and pancreatic epithelia, is expressed in colonic stem cells. As differentiated colonic cells arise from constant renewal of Hedgehog-expressing colonic stem cells, SHh could be involved in human colonic carcinogenesis. METHODS Tissue samples of colorectal adenocarcinoma (T) and adjacent normal colon tissue (NT) were sampled from each of 44 consecutive patients with colorectal cancer. Specific transcription of SHh, GLI1, and the GLI1 downstream target FOXM1 were evaluated using semiquantitative reverse transcriptase polymerase chain reaction. Similar in vitro measurements of mRNA of GLI1 and FOXM1 transcription levels after specific induction by SHh-Np were performed in the HT-29 colorectal tumor cell line to confirm the in vivo results. RESULTS SHh mRNA was overexpressed in colorectal adenocarcinomas in 38 of 44 (86%) patients. Expression of transcription levels of GLI1 and FOXM1 correlated with SHh expression (SHh vs GLI1, r = 0.77, P < .0001; GLI1 vs FOXM1, r = 0.68, P < .0001; SHh vs FOXM1, r = 0.79, P < .0001). SHh overexpression did not appear to correlate with the patient characteristics evaluated. Similarly, when studied in the HT-29 colorectal cell line, exogenous SHh promoted cell proliferation, while inhibition of SHh expression decreased proliferation. Expression of GLI1 and FOXM1 mRNA increased with exogenous exposure to SHh. CONCLUSIONS We demonstrated increased expression of SHh mRNA in human colonic adenocarcinomas and in a colorectal cell line with downstream increased expression of GLI1 and FOXM1 mRNA known to promote cell proliferation. This upregulation within human colorectal adenocarcinoma tissue confirms the potential role of the Hh pathway in colorectal carcinogenesis and suggests a potential therapeutic target of Hh blockade in colorectal cancer.
Collapse
Affiliation(s)
- Richard Douard
- General Surgery Department, APHP Georges Pompidou University Hospital, Paris.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
244
|
Bénazéraf B, Chen Q, Peco E, Lobjois V, Médevielle F, Ducommun B, Pituello F. Identification of an unexpected link between the Shh pathway and a G2/M regulator, the phosphatase CDC25B. Dev Biol 2006; 294:133-47. [PMID: 16564519 DOI: 10.1016/j.ydbio.2006.02.035] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2005] [Revised: 01/12/2006] [Accepted: 02/22/2006] [Indexed: 12/23/2022]
Abstract
Sonic hedgehog (Shh) signaling controls numerous aspects of vertebrate development, including proliferation of precursors in different organs. Identification of molecules that link the Shh pathway to cell cycle machinery is therefore of major importance for an understanding of the mechanisms underlying Shh-dependent proliferation. Here, we show that an actor in the control of entry into mitosis, the phosphatase CDC25B, is transcriptionally upregulated by the Shh/Gli pathway. Unlike other G2/M regulators, CDC25B is highly expressed in domains of Shh activity, including the ventral neural tube and the posterior limb bud. Loss- and gain-of-function experiments reveal that Shh contributes to CDC25B transcriptional activation in the neural tube both of chick and mouse embryos. Moreover, CDC25B transcripts are absent from the posterior limb bud of Shh-/- mice, while anterior grafts of Shh-expressing cells in the chicken limb bud induce ectopic CDC25B expression. Arresting the cell cycle does not reduce the level of CDC25B expression in the neural tube strongly suggesting that the upregulation of CDC25B is not an indirect consequence of the Shh-dependent proliferation. These data reveal an unexpected developmental link between the Shh pathway and a participant in G2/M control.
Collapse
Affiliation(s)
- Bertrand Bénazéraf
- Centre de Biologie du Développement, UMR5547 CNRS-Université P. Sabatier, IFR109--Institut d'Exploration Fonctionnelle des Génomes, 118 route de Narbonne, 31062 Toulouse Cedex, France
| | | | | | | | | | | | | |
Collapse
|
245
|
Jones C, Reifegerste R, Moses K. Characterization of Drosophila mini-me, a gene required for cell proliferation and survival. Genetics 2006; 173:793-808. [PMID: 16547096 PMCID: PMC1526529 DOI: 10.1534/genetics.106.056762] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the developing Drosophila eye, the morphogenetic furrow is a developmental organizing center for patterning and cell proliferation. The furrow acts both to limit eye size and to coordinate the number of cells to the number of facets. Here we report the molecular and functional characterization of Drosophila mini-me (mnm), a potential regulator of cell proliferation and survival in the developing eye. We first identified mnm as a dominant modifier of hedgehog loss-of-function in the developing eye. We report that mnm encodes a conserved protein with zinc knuckle and RING finger domains. We show that mnm is dispensable for patterning of the eye disc, but required in the eye for normal cell proliferation and survival. We also show that mnm null mutant cells exhibit altered cell cycle profiles and contain excess nucleic acid. Moreover, mnm overexpression can induce cells to proliferate and incorporate BrdU. Thus, our data implicate mnm as a regulator of mitotic progression during the proliferative phase of eye development, possibly through the control of nucleic acid metabolism.
Collapse
Affiliation(s)
- Chonnettia Jones
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | |
Collapse
|
246
|
Li X, Deng W, Nail CD, Bailey SK, Kraus MH, Ruppert JM, Lobo-Ruppert SM. Snail induction is an early response to Gli1 that determines the efficiency of epithelial transformation. Oncogene 2006; 25:609-21. [PMID: 16158046 PMCID: PMC1361531 DOI: 10.1038/sj.onc.1209077] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Gli family members mediate constitutive Hedgehog signaling in the common skin cancer, basal cell carcinoma (BCC). Snail/Snai1 is rapidly induced by Gli1 in vitro, and is coexpressed with Gli1 in human hair follicles and skin tumors. In the current study, we generated a dominant-negative allele of Snail, SnaZFD, composed of the zinc-finger domain and flanking sequence. In promoter-reporter assays, SnaZFD blocked the activity of wild-type Snail on the E-cadherin promoter. Snail loss-of-function mediated by SnaZFD or by one of several short hairpin RNAs inhibited transformation of RK3E epithelial cells by Gli1. Conversely, enforced expression of Snail promoted transformation in vitro by Gli1, but not by other genes that were tested, including Notch1, ErbB2, and N-Ras. As observed for Gli1, wild-type Snail repressed E-cadherin in RK3E cells and induced blebbing of the cytoplasmic membrane. Induction of a conditional Gli1 transgene in the basal keratinocytes of mouse skin led to rapid upregulation of Snail transcripts and to cell proliferation in the interfollicular epidermis. Established Gli1-induced skin lesions exhibited molecular similarities to BCC, including loss of E-cadherin. The results identify Snail as a Gli1-inducible effector of transformation in vitro, and an early Gli1-responsive gene in the skin.
Collapse
Affiliation(s)
| | - Wentao Deng
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Clinton D. Nail
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Sarah K. Bailey
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Matthias H. Kraus
- Department of Cell Biology
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - J. Michael Ruppert
- Department of Cell Biology
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Susan M. Lobo-Ruppert
- Department of Cell Biology
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
- *Correspondence: Department of Medicine, Room 570 WTI, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294-3300. Phone: (205) 975-0556; Fax: (205) 934-9511;
| |
Collapse
|
247
|
Kasper M, Regl G, Frischauf AM, Aberger F. GLI transcription factors: mediators of oncogenic Hedgehog signalling. Eur J Cancer 2006; 42:437-45. [PMID: 16406505 DOI: 10.1016/j.ejca.2005.08.039] [Citation(s) in RCA: 306] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2005] [Revised: 08/08/2005] [Accepted: 08/10/2005] [Indexed: 12/21/2022]
Abstract
The current concept of tumourigenesis holds that cancer results from the progressive acquisition of mutations that endow affected cells with selective growth advantages by activating multiple processes including intrinsic mitogenic and pro-survival pathways. Constitutive activation of the Hedgehog (HH)/GLI signalling cascade has recently been implicated in the growth of a number of human malignancies ranging from semi-malignant tumours of the skin to highly aggressive cancers of the brain, lung, pancreas and prostate. This review focuses on the role of the GLI zinc finger transcription factors, which mediate Hedgehog signalling at the distal end of the pathway. We summarise recent data on the mechanisms by which latent GLI proteins are activated in response to stimulation of Hedgehog signalling. Based on the identification of a growing number of direct GLI target genes, we propose that HH-driven tumourigenesis relies on multiple cellular processes such as promotion of G1/S phase progression, enhancement of cell survival by providing anti-apoptotic cues, increase in metastatic potential of Hedgehog responsive cells, and activation of potential tumour stem cells. In view of the critical role of GLI genes in Hedgehog-associated cancers, strategies that aim at interfering with GLI function are likely to represent efficient approaches in future targeted cancer therapy.
Collapse
Affiliation(s)
- Maria Kasper
- Department of Molecular Biology, University of Salzburg, Hellbrunnerstrasse 34, A-5020 Salzburg, Austria
| | | | | | | |
Collapse
|
248
|
Adolphe C, Hetherington R, Ellis T, Wainwright B. Patched1 Functions as a Gatekeeper by Promoting Cell Cycle Progression. Cancer Res 2006; 66:2081-8. [PMID: 16489008 DOI: 10.1158/0008-5472.can-05-2146] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mutations in the Hedgehog receptor, Patched 1 (Ptch1), have been linked to both familial and sporadic forms of basal cell carcinoma (BCC), leading to the hypothesis that loss of Ptch1 function is sufficient for tumor progression. By combining conditional knockout technology with the inducible activity of the Keratin6 promoter, we provide in vivo evidence that loss of Ptch1 function from the basal cell population of mouse skin is sufficient to induce rapid skin tumor formation, reminiscent of human BCC. Elimination of Ptch1 does not promote the nuclear translocation of beta-catenin and does not induce ectopic activation or expression of Notch pathway constituents. In the absence of Ptch1, however, a large proportion of basal cells exhibit nuclear accumulation of the cell cycle regulators cyclin D1 and B1. Collectively, our data suggest that Ptch1 likely functions as a tumor suppressor by inhibiting G1-S phase and G2-M phase cell cycle progression, and the rapid onset of tumor progression clearly indicates Ptch1 functions as a "gatekeeper." In addition, we note the high frequency and rapid onset of tumors in this mouse model makes it an ideal system for testing therapeutic strategies, such as Patched pathway inhibitors.
Collapse
MESH Headings
- Animals
- Carcinoma, Basal Cell/genetics
- Carcinoma, Basal Cell/metabolism
- Carcinoma, Basal Cell/pathology
- Cell Cycle/physiology
- Cell Nucleus/metabolism
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Cyclin B/metabolism
- Cyclin B1
- Cyclin D1/metabolism
- Hair Follicle/metabolism
- Hair Follicle/pathology
- Mice
- Mice, Transgenic
- Patched Receptors
- Patched-1 Receptor
- Receptors, Cell Surface/biosynthesis
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/physiology
- Receptors, Notch/metabolism
- Skin/metabolism
- Skin/pathology
- Skin Neoplasms/genetics
- Skin Neoplasms/metabolism
- Skin Neoplasms/pathology
- beta Catenin/metabolism
Collapse
Affiliation(s)
- Christelle Adolphe
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | | | | | | |
Collapse
|
249
|
Mandal S, Guptan P, Owusu-Ansah E, Banerjee U. Mitochondrial regulation of cell cycle progression during development as revealed by the tenured mutation in Drosophila. Dev Cell 2006; 9:843-54. [PMID: 16326395 DOI: 10.1016/j.devcel.2005.11.006] [Citation(s) in RCA: 224] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2005] [Revised: 11/02/2005] [Accepted: 11/10/2005] [Indexed: 12/28/2022]
Abstract
The precise control of the cell cycle requires regulation by many intrinsic and extrinsic factors. Whether the metabolic status of the cell exerts a direct control over cell cycle checkpoints is not well understood. We isolated a mutation, tenured (tend), in a gene encoding cytochrome oxidase subunit Va. This mutation causes a drop in intracellular ATP to levels sufficient to maintain cell survival, growth, and differentiation, but not to enable progression through the cell cycle. Analysis of this gene in vivo and in cell lines shows that a specific pathway involving AMPK and p53 is activated that causes elimination of Cyclin E, resulting in cell cycle arrest. We demonstrate that in multiple tissues the mitochondrion has a direct and specific role in enforcing a G1-S cell cycle checkpoint during periods of energy deprivation.
Collapse
Affiliation(s)
- Sudip Mandal
- Department of Molecular, Cell, and Developmental Biology, Department of Biological Chemistry and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California 90095, USA
| | | | | | | |
Collapse
|
250
|
Vrailas AD, Moses K. Smoothened, thickveins and the genetic control of cell cycle and cell fate in the developing Drosophila eye. Mech Dev 2006; 123:151-65. [PMID: 16412615 DOI: 10.1016/j.mod.2005.11.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2005] [Revised: 11/04/2005] [Accepted: 11/07/2005] [Indexed: 11/18/2022]
Abstract
The Hedgehog and Decapentaplegic pathways have several well-characterized functions in the developing Drosophila compound eye, including initiation and progression of the morphogenetic furrow. Other functions involve control of cell cycle and cell survival as well as cell type specification. Here we have used the mosaic clone analysis of null mutations of the smoothened and thickveins genes (which encode the receptors for these two signals) both alone and in combination, to study cell cycle and cell fate in the developing eye. We conclude that both pathways have several, but differing roles in furrow induction and cell fate and survival, but that neither directly affects cell type specification.
Collapse
Affiliation(s)
- Alysia D Vrailas
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | |
Collapse
|