201
|
Offenhäuser N, Castelletti D, Mapelli L, Soppo BE, Regondi MC, Rossi P, D'Angelo E, Frassoni C, Amadeo A, Tocchetti A, Pozzi B, Disanza A, Guarnieri D, Betsholtz C, Scita G, Heberlein U, Di Fiore PP. Increased ethanol resistance and consumption in Eps8 knockout mice correlates with altered actin dynamics. Cell 2006; 127:213-26. [PMID: 17018287 DOI: 10.1016/j.cell.2006.09.011] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2006] [Revised: 07/30/2006] [Accepted: 09/08/2006] [Indexed: 01/18/2023]
Abstract
Dynamic modulation of the actin cytoskeleton is critical for synaptic plasticity, abnormalities of which are thought to contribute to mental illness and addiction. Here we report that mice lacking Eps8, a regulator of actin dynamics, are resistant to some acute intoxicating effects of ethanol and show increased ethanol consumption. In the brain, the N-methyl-D-aspartate (NMDA) receptor is a major target of ethanol. We show that Eps8 is localized to postsynaptic structures and is part of the NMDA receptor complex. Moreover, in Eps8 null mice, NMDA receptor currents and their sensitivity to inhibition by ethanol are abnormal. In addition, Eps8 null neurons are resistant to the actin-remodeling activities of NMDA and ethanol. We propose that proper regulation of the actin cytoskeleton is a key determinant of cellular and behavioral responses to ethanol.
Collapse
Affiliation(s)
- Nina Offenhäuser
- Fondazione Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139 Milan, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
202
|
Carpenter-Hyland EP, Chandler LJ. Homeostatic plasticity during alcohol exposure promotes enlargement of dendritic spines. Eur J Neurosci 2006; 24:3496-506. [PMID: 17229098 DOI: 10.1111/j.1460-9568.2006.05247.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Modifications of the size, shape and number of dendritic spines is thought to be an important component of activity-dependent changes of neuronal circuits, and may play an important role in the plasticity of drug addiction. The present study examined whether homeostatic increases in synaptic N-methyl-d-aspartate (NMDA) receptors in response to chronic ethanol exposure is associated with corresponding morphological changes in dendritic spines. Prolonged exposure of rat hippocampal cultures to either the NMDA receptor antagonist d(-)-2-amino-5-phosphono-pentanoic acid or to ethanol increased punctate staining of F-actin and the postsynaptic density protein-95 (PSD-95). The increase in dendritic F-actin occurred only with clusters that co-localized with PSD-95 clusters, indicating that these actin structures likely represent dendritic spines. The ethanol-induced increases in PSD-95 and F-actin clusters were activity-dependent and reversible. Finally, inhibition of protein palmitoylation prevented ethanol-induced increases in synaptic NMDA receptor clustering and F-actin without altering the basal clustering of either F-actin or PSD-95. These observations support a model in which chronic ethanol exposure induces homeostatic increases of NR2B-containing NMDA receptors and PSD-95 to the postsynaptic density. This in turn may provide a scaffolding platform for the subsequent recruitment of actin signaling cascades that alter actin cycling and promote spine enlargement.
Collapse
|
203
|
Krueger S, Fitzsimonds RM. Remodeling the plasticity debate: the presynaptic locus revisited. Physiology (Bethesda) 2006; 21:346-51. [PMID: 16990455 DOI: 10.1152/physiol.00013.2006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The cellular mechanisms contributing to long-term potentiation and activity-induced formation of glutamatergic synapses have been intensely debated. Recent studies have sparked renewed interest in the role of presynaptic components in these processes. Based on the present evidence, it appears likely that long-term plasticity utilizes both pre- and postsynaptic expression mechanisms.
Collapse
Affiliation(s)
- Stefan Krueger
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada.
| | | |
Collapse
|
204
|
Smith BA, Roy H, De Koninck P, Grütter P, De Koninck Y. Dendritic spine viscoelasticity and soft-glassy nature: balancing dynamic remodeling with structural stability. Biophys J 2006; 92:1419-30. [PMID: 17114228 PMCID: PMC1783894 DOI: 10.1529/biophysj.106.092361] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Neuronal dendritic spines are a key component of brain circuitry, implicated in many mechanisms for plasticity and long-term stability of synaptic communication. They can undergo rapid actin-based activity-dependent shape fluctuations, an intriguing biophysical property that is believed to alter synaptic transmission. Yet, because of their small size (approximately 1 microm or less) and metastable behavior, spines are inaccessible to most physical measurement techniques. Here we employ atomic force microscopy elasticity mapping and novel dynamic indentation methods to probe the biomechanics of dendritic spines in living neurons. We find that spines exhibit 1), a wide range of rigidities, correlated with morphological characteristics, axonal association, and glutamatergic stimulation, 2), a uniquely large viscosity, four to five times that of other cell types, consistent with a high density of solubilized proteins, and 3), weak power-law rheology, described by the soft-glassy model for cellular mechanics. Our findings provide a new perspective on spine functionality and identify key mechanical properties that govern the ability of spines to rapidly remodel and regulate internal protein trafficking but also maintain structural stability.
Collapse
Affiliation(s)
- Benjamin A Smith
- Department of Physics, McGill University, Montreal, QC, Canada H3A 2T8
| | | | | | | | | |
Collapse
|
205
|
O'Leary H, Lasda E, Bayer KU. CaMKIIbeta association with the actin cytoskeleton is regulated by alternative splicing. Mol Biol Cell 2006; 17:4656-65. [PMID: 16928958 PMCID: PMC1635389 DOI: 10.1091/mbc.e06-03-0252] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2006] [Revised: 08/02/2006] [Accepted: 08/11/2006] [Indexed: 11/11/2022] Open
Abstract
The Ca(2+)/calmodulin (CaM)-dependent protein kinase II (CaMKII)beta has morphogenic functions in neurons not shared by the alpha isoform. CaMKIIbeta contains three exons (v1, v3, and v4) not present in the CaMKIIalpha gene, and two of these exons (v1 and v4) are subject to differential alternative splicing. We show here that CaMKIIbeta, but not alpha, mediated bundling of F-actin filaments in vitro. Most importantly, inclusion of exon v1 was required for CaMKIIbeta association with the F-actin cytoskeleton within cells. CaMKIIbetae, which is the dominant variant around birth and lacks exon v1 sequences, failed to associate with F-actin. By contrast, CaMKIIbeta', which instead lacks exon v4, associated with F-actin as full-length CaMKIIbeta. Previous studies with CaMKIIbeta mutants have indicated a role of nonstimulated kinase activity in enhancing dendritic arborization. Here, we show that F-actin-targeted CaMKIIbeta, but not alpha, was able to phosphorylate actin in vitro even by nonstimulated basal activity in absence of Ca(2+)/CaM. In rat pancreatic islets and in skeletal muscle, the actin-associated CaMKIIbeta' and betaM were the predominant variants, respectively. Thus, cytoskeletal targeting may mediate functions of CaMKIIbeta variants also outside the nervous system.
Collapse
Affiliation(s)
| | | | - K. Ulrich Bayer
- *Department of Pharmacology
- Biomedical Sciences Program, and
- Neuroscience Program, University of Colorado Health Sciences Center, Aurora, CO 80045
| |
Collapse
|
206
|
Gurniak CB, Witke W. HuGE, a novel GFP-actin-expressing mouse line for studying cytoskeletal dynamics. Eur J Cell Biol 2006; 86:3-12. [PMID: 17049405 DOI: 10.1016/j.ejcb.2006.08.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Revised: 08/23/2006] [Accepted: 08/23/2006] [Indexed: 11/30/2022] Open
Abstract
Analysis of actin remodeling in live cells and tissues has become an increasingly important tool to study actin-dependent cellular processes. To facilitate these experiments in the mouse we have generated a GFP-actin-expressing line (huGE) by knock-in of the GFP-actin gene into the profilin 1 locus. Here we show that GFP-actin is expressed throughout embryonic development and in all tissues except skeletal muscle, in a pattern similar to profilin 1. Particularly high expression of GFP-actin was observed in bone marrow and all blood cells. The GFP-actin fusion protein is functional as shown by its co-localization with endogenous actin in F-actin-rich structures. Therefore, the huGE mouse line provides a novel tool to monitor actin dynamics in mouse embryos and a wide range of organs.
Collapse
Affiliation(s)
- Christine B Gurniak
- EMBL Mouse Biology Unit, Campus Adriano Buzzati-Traverso, Via Ramarini 32, I-00016 Monterotondo, Italy
| | | |
Collapse
|
207
|
Murphy JA, Jensen ON, Walikonis RS. BRAG1, a Sec7 domain-containing protein, is a component of the postsynaptic density of excitatory synapses. Brain Res 2006; 1120:35-45. [PMID: 17045249 DOI: 10.1016/j.brainres.2006.08.096] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2006] [Revised: 08/16/2006] [Accepted: 08/21/2006] [Indexed: 12/13/2022]
Abstract
The postsynaptic density (PSD) at excitatory synapses is a dynamic complex of glutamatergic receptors and associated proteins that governs synaptic structure and coordinates signal transduction. In this study, we report that BRAG1, a putative guanine nucleotide exchange factor for the Arf family of GTP-binding proteins, is a major component of the PSD. BRAG1 was identified in a 190 kDa band in the PSD fraction with the use of mass spectrometry coupled to searching of a protein sequence database. BRAG1 expression is abundant in the adult rat forebrain, and it is strongly enriched in the PSD fraction compared to forebrain homogenate and synaptosomes. Immunocytochemical localization of BRAG1 in dissociated hippocampal neurons shows that it forms discrete clusters that colocalize with the postsynaptic marker PSD-95 at sites along dendrites. BRAG1 contains a Sec7 domain, a domain that catalyzes exchange of GDP for GTP on the Arf family of small GTP-binding proteins. In their GTP-bound active state, Arfs regulate trafficking of vesicles and cytoskeletal structure. We demonstrate that the Sec7 domain of BRAG1 promotes binding of GTP to Arf in vitro. These data suggest that BRAG1 may modulate the functions of Arfs at synaptic sites.
Collapse
Affiliation(s)
- Jessica A Murphy
- Department of Physiology and Neurobiology, University of Connecticut, 75 North Eagleville Road, U-3156, Storrs, CT 06269, USA
| | | | | |
Collapse
|
208
|
Haber M, Zhou L, Murai KK. Cooperative astrocyte and dendritic spine dynamics at hippocampal excitatory synapses. J Neurosci 2006; 26:8881-91. [PMID: 16943543 PMCID: PMC6675342 DOI: 10.1523/jneurosci.1302-06.2006] [Citation(s) in RCA: 308] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Accumulating evidence is redefining the importance of neuron-glial interactions at synapses in the CNS. Astrocytes form "tripartite" complexes with presynaptic and postsynaptic structures and regulate synaptic transmission and plasticity. Despite our understanding of the importance of neuron-glial relationships in physiological contexts, little is known about the structural interplay between astrocytes and synapses. In the past, this has been difficult to explore because studies have been hampered by the lack of a system that preserves complex neuron-glial relationships observed in the brain. Here we present a system that can be used to characterize the intricate relationship between astrocytic processes and synaptic structures in situ using organotypic hippocampal slices, a preparation that retains the three-dimensional architecture of astrocyte-synapse interactions. Using time-lapse confocal imaging, we demonstrate that astrocytes can rapidly extend and retract fine processes to engage and disengage from motile postsynaptic dendritic spines. Surprisingly, astrocytic motility is, on average, higher than its dendritic spine counterparts and likely relies on actin-based cytoskeletal reorganization. Changes in astrocytic processes are typically coordinated with changes in spines, and astrocyte-spine interactions are stabilized at larger spines. Our results suggest that dynamic structural changes in astrocytes help control the degree of neuron-glial communication at hippocampal synapses.
Collapse
Affiliation(s)
- Michael Haber
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Quebec, H3G 1A4, Canada
| | - Lei Zhou
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Quebec, H3G 1A4, Canada
| | - Keith K. Murai
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Quebec, H3G 1A4, Canada
| |
Collapse
|
209
|
Shrestha BR, Vitolo OV, Joshi P, Lordkipanidze T, Shelanski M, Dunaevsky A. Amyloid beta peptide adversely affects spine number and motility in hippocampal neurons. Mol Cell Neurosci 2006; 33:274-82. [PMID: 16962789 DOI: 10.1016/j.mcn.2006.07.011] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Revised: 07/17/2006] [Accepted: 07/28/2006] [Indexed: 01/06/2023] Open
Abstract
Elevated levels of amyloid-beta peptide (Abeta) are found in Down's syndrome patients and alter synaptic function during the early stages of Alzheimer's disease. Dendritic spines, sites of most excitatory synaptic contacts, are considered to be an important locus for encoding synaptic plasticity. We used time-lapse two-photon imaging of hippocampal pyramidal neurons in organotypic slices to study the effects of Abeta on the development of dendritic spines. We report that exposure of hippocampal neurons to sub-lethal levels of Abeta decreased spine density, increased spine length and subdued spine motility. The effect of Abeta on spine density was reversible. Moreover, Abeta's effect on dendritic spine density was blocked by rolipram, a phosphodiesterase type IV inhibitor, suggesting the involvement of a cAMP dependent pathway. These findings raise the possibility that Abeta-induced spine alterations could underlie the cognitive defects in Alzheimer's disease and Down syndrome.
Collapse
Affiliation(s)
- Brikha R Shrestha
- Department of Neuroscience, Brown University, Box 1953, 190 Thayer Street, Providence, RI 02912, USA
| | | | | | | | | | | |
Collapse
|
210
|
Christensen RN, Ha BK, Sun F, Bresnahan JC, Beattie MS. Kainate induces rapid redistribution of the actin cytoskeleton in ameboid microglia. J Neurosci Res 2006; 84:170-81. [PMID: 16625662 DOI: 10.1002/jnr.20865] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Microglia are key mediators of the immune response in the central nervous system (CNS). They are closely related to macrophages and undergo dramatic morphological and functional changes after CNS trauma or excitotoxic lesions. Microglia can be directly stimulated by excitatory neurotransmitters and are known to express many neurotransmitter receptors. The role of these receptors, however, is not clear. This study describes the microglial response to the glutamate receptor agonist kainate (KA) and shows via immunochemistry that the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA)-type glutamate receptor subunit GluR1 is present on cultured microglia. In the presence of 100 microM or 1 mM KA, cultured microglia underwent dramatic morphological and cytoskeletal changes as observed by time-lapse photography and quantitative confocal analysis of phalloidin labeling. KA-stimulated microglia showed condensation of cytoplasmic actin filaments, rapid de- and repolymerization, and cytoplasmic redistribution of condensed actin bundles. Rearrangement of actin filaments-thought to be involved in locomotion and phagocytosis and to indicate an increased level of activation (for reviews see Greenberg [ 1995] Trends Cell Biol. 5:93-99; Imai and Kohsaka [ 2002] Glia 40:164-174)-was significantly increased in treated vs. control cultures. Morphological plasticity and membrane ruffling were also seen. These findings suggest direct microglial excitation via glutamate receptor pathways. Thus, neurotransmitter release after brain or spinal cord injury might directly modulate the inflammatory response.
Collapse
|
211
|
Yao J, Qi J, Chen G. Actin-dependent activation of presynaptic silent synapses contributes to long-term synaptic plasticity in developing hippocampal neurons. J Neurosci 2006; 26:8137-47. [PMID: 16885227 PMCID: PMC6673772 DOI: 10.1523/jneurosci.1183-06.2006] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Developing neurons have greater capacity in experience-dependent plasticity than adult neurons but the molecular mechanism is not well understood. Here we report a developmentally regulated long-term synaptic plasticity through actin-dependent activation of presynaptic silent synapses in cultured hippocampal neurons. Live FM 1-43 imaging and retrospective immunocytochemistry revealed that many presynaptic boutons in immature neurons are functionally silent at resting conditions, but can be converted into active ones after repetitive neuronal stimulation. The activation of presynaptic silent synapses is dependent on L-type calcium channels and protein kinase A (PKA)/PKC signaling pathways. Moreover, blocking actin polymerization with latrunculin A and cytochalasin B abolishes long-term increase of presynaptic functional boutons induced by repetitive stimulation, whereas actin polymerizer jasplakinolide increases the number of active boutons in immature neurons. In mature neurons, however, presynaptic boutons are mostly functional and repetitive stimulation did not induce additional enhancement. Quantitative immunostaining with phalloidin revealed a significant increase in axonal F-actin level after repetitive stimulation in immature but not mature neurons. These results suggest that actin-dependent activation of presynaptic silent synapses contributes significantly to the long-term synaptic plasticity during neuronal development.
Collapse
|
212
|
Fujisawa S, Shirao T, Aoki C. In vivo, competitive blockade of N-methyl-D-aspartate receptors induces rapid changes in filamentous actin and drebrin A distributions within dendritic spines of adult rat cortex. Neuroscience 2006; 140:1177-87. [PMID: 16650941 PMCID: PMC2844451 DOI: 10.1016/j.neuroscience.2006.03.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2006] [Accepted: 03/06/2006] [Indexed: 10/24/2022]
Abstract
In vitro studies have demonstrated that prolonged N-methyl-D-aspartate receptor (NMDAR) blockade triggers a homeostatic up-regulation of NMDARs at synapses. Such upregulation can also be seen within 30 min in vivo in adult rats, implicating trafficking of reserve pools of NMDARs. Here, we evaluated the involvement of filamentous actin (F-actin), the major cytoskeletal component in spines, in this rapid in vivo homeostatic response, using biotinylated phalloidin as its probe. We also immuno-labeled spines for drebrin A, an F-actin-binding protein found at excitatory synapses and with a proposed role of modulating F-actin's cross-linking with one another and interactions with NMDARs. Quantitative 2-D analysis of ultrastructural images revealed that NMDAR blockade increased filamentous actin labeling per spine by 62.5% (P<0.005). The proportion of dendritic spines immuno-labeled for drebrin A also increased significantly, from 67.5% to 85% following NMDAR blockade (P<0.001), especially among larger spines. The frequency distributions of spine widths and postsynaptic density lengths were not affected by the D-(+)-2-amino-5-phosphonopentanoic acid (D-APV) treatment. However, the average postsynaptic density length was reduced by 25 nm among the fewer, drebrin A immuno-negative spines, indicating that drebrin A confers stability to synapse size. We propose that, in a homeostatic in vivo response, increases of drebrin A and F-actin within spines can enhance NMDAR trafficking by reducing cytoskeletal rigidity within the spine cytoplasm without changing the overt morphology of axo-spinous synapses. Alternatively or in addition, the cytoskeletal redistribution within spine cytoplasm may be triggered by the D-APV-induced, homeostatic up-regulation of NMDAR.
Collapse
Affiliation(s)
- S Fujisawa
- Center for Neural Science, New York University, 4 Washington Place #809, New York, NY 10003, USA.
| | | | | |
Collapse
|
213
|
Majewska AK, Sur M. Plasticity and specificity of cortical processing networks. Trends Neurosci 2006; 29:323-9. [PMID: 16697057 DOI: 10.1016/j.tins.2006.04.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2005] [Revised: 03/03/2006] [Accepted: 04/28/2006] [Indexed: 10/24/2022]
Abstract
The cerebral cortex is subdivided into discrete functional areas that are defined by specific properties, including the presence of different cell types, molecular expression patterns, microcircuitry and long-range connectivity. These properties enable different areas of cortex to carry out distinct functions. Emerging data argue that the particular structure and identity of cortical areas derives not only from specific inputs but also from unique processing networks. The aim of this review is to summarize current information on the interplay of intrinsic molecular cues with activity patterns that are driven by sensory experience and shape cortical networks as they develop, emphasizing synaptic connections in networks that process vision. This review is part of the TINS special issue on The Neural Substrates of Cognition.
Collapse
Affiliation(s)
- Ania K Majewska
- Department of Neurobiology and Anatomy, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | | |
Collapse
|
214
|
Dierssen M, Ramakers GJA. Dendritic pathology in mental retardation: from molecular genetics to neurobiology. GENES BRAIN AND BEHAVIOR 2006; 5 Suppl 2:48-60. [PMID: 16681800 DOI: 10.1111/j.1601-183x.2006.00224.x] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Mental retardation (MR) is a developmental brain disorder characterized by impaired cognitive performance and adaptive skills that affects 1-2% of the population. During the last decade, a large number of genes have been cloned that cause MR upon mutation in humans. The causal role of these genes provides an excellent starting point to investigate the cellular, neurobiological and behavioral alterations and mechanisms responsible for the cognitive impairment in mentally retarded persons. However, studies on Down syndrome (DS) reveal that overexpression of a cluster of genes and various forms of MR that are caused by single-gene mutations, such as fragile X (FraX), Rett, Coffin-Lowry, Rubinstein-Taybi syndrome and non-syndromic forms of MR, causes similar phenotypes. In spite of the many differences in the manifestation of these forms of MR, evidence converges on the proposal that MR is primarily due to deficiencies in neuronal network connectivity in the major cognitive centers in the brain, which secondarily results in impaired information processing. Although MR has been largely regarded as a brain disorder that cannot be cured, our increased understanding of the abnormalities and mechanisms underlying MR may provide an avenue for the development of therapies for MR. In this review, we discuss the neurobiology underlying MR, with a focus on FraX and DS.
Collapse
Affiliation(s)
- M Dierssen
- Neurobehavioral Analysis Laboratory, Genes and Disease Program, Center for Genomic Regulation, (CRG-UPF) PRBB, 08003 Barcelona, Spain.
| | | |
Collapse
|
215
|
Hanus C, Ehrensperger MV, Triller A. Activity-dependent movements of postsynaptic scaffolds at inhibitory synapses. J Neurosci 2006; 26:4586-95. [PMID: 16641238 PMCID: PMC6674069 DOI: 10.1523/jneurosci.5123-05.2006] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Dendritic spines show an activity-dependent cytoskeleton-based remodeling coupled with variations in receptor number and the functional properties of excitatory synapses. In this study, we analyzed the dynamics of gephyrin containing inhibitory postsynaptic scaffolds imaging a Venus::gephyrin (VeGe) chimera in dissociated spinal cord neurons. We provide evidence that the postsynaptic scaffolds at mature synapses display a submicrometric rapid lateral motion and are continuously moving on the dendritic shaft. This dynamic behavior is calcium dependent and is controlled by the cytoskeleton. Minute rearrangement within the gephyrin scaffold as well as the scaffold lateral displacements are F-actin dependent. The lateral movements are counteracted by microtubules. Moreover, the action of the potassium channel blocker 4-aminopyridine and receptor antagonists indicate that the dynamics of postsynaptic gephyrin scaffolds are controlled by synaptic activity.
Collapse
|
216
|
Maas C, Tagnaouti N, Loebrich S, Behrend B, Lappe-Siefke C, Kneussel M. Neuronal cotransport of glycine receptor and the scaffold protein gephyrin. ACTA ACUST UNITED AC 2006; 172:441-51. [PMID: 16449194 PMCID: PMC2063653 DOI: 10.1083/jcb.200506066] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The dynamics of postsynaptic receptor scaffold formation and remodeling at inhibitory synapses remain largely unknown. Gephyrin, which is a multimeric scaffold protein, interacts with cytoskeletal elements and stabilizes glycine receptors (GlyRs) and individual subtypes of γ-aminobutyric acid A receptors at inhibitory postsynaptic sites. We report intracellular mobility of gephyrin transports packets over time. Gephyrin units enter and exit active synapses within several minutes. In addition to previous reports of GlyR–gephyrin interactions at plasma membranes, we show cosedimentation and coimmunoprecipitation of both proteins from vesicular fractions. Moreover, GlyR and gephyrin are cotransported within neuronal dendrites and further coimmunoprecipitate and colocalize with the dynein motor complex. As a result, the blockade of dynein function or dynein–gephyrin interaction, as well as the depolymerization of microtubules, interferes with retrograde gephyrin recruitment. Our data suggest a GlyR–gephyrin–dynein transport complex and support the concept that gephyrin–motor interactions contribute to the dynamic and activity-dependent rearrangement of postsynaptic GlyRs, a process thought to underlie the regulation of synaptic strength.
Collapse
Affiliation(s)
- Christoph Maas
- Zentrum für Molekulare Neurobiologie Hamburg, Universität Hamburg, D-20251 Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
217
|
Abstract
Although plastic changes are known to occur in developing and adult cortex, it remains unclear whether these changes require remodeling of cortical circuitry whereby synapses are formed and eliminated or whether they rely on changes in the strength of existing synapses. To determine the structural stability of dendritic spines and axon terminals in vivo, we chose two approaches. First, we performed time-lapse two-photon imaging of dendritic spine motility of layer 5 pyramidal neurons in juvenile [postnatal day 28 (P28)] mice in visual, auditory, and somatosensory cortices. We found that there were differences in basal rates of dendritic spine motility of the same neuron type in different cortices, with visual cortex exhibiting the least structural dynamics. Rewiring visual input into the auditory cortex at birth, however, failed to alter dendritic spine motility, suggesting that structural plasticity rates might be intrinsic to the cortical region. Second, we investigated the persistence of both the presynaptic (axon terminals) and postsynaptic (dendritic spine) structures in young adult mice (P40-P61), using chronic in vivo two-photon imaging in different sensory areas. Both terminals and spines were relatively stable, with >80% persisting over a 3 week period in all sensory regions. Axon terminals were more stable than dendritic spines. These data suggest that changes in network function during adult learning and memory might occur through changes in the strength and efficacy of existing synapses as well as some remodeling of connectivity through the loss and gain of synapses.
Collapse
Affiliation(s)
- Ania K Majewska
- Department of Brain and Cognitive Sciences, Picower Center for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| | | | | |
Collapse
|
218
|
Yamoah EN, Levic S, Redell JB, Crow T. Inhibition of conditioned stimulus pathway phosphoprotein 24 expression blocks the reduction in A-type transient K+ current produced by one-trial in vitro conditioning of Hermissenda. J Neurosci 2006; 25:4793-800. [PMID: 15888654 PMCID: PMC6724784 DOI: 10.1523/jneurosci.5256-04.2005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Long-term intrinsic enhanced excitability is a characteristic of cellular plasticity and learning-dependent modifications in the activity of neural networks. The regulation of voltage-dependent K+ channels by phosphorylation/dephosphorylation and their localization is proposed to be important in the control of cellular plasticity. One-trial conditioning in Hermissenda results in enhanced excitability in sensory neurons, type B photoreceptors, of the conditioned stimulus pathway. Conditioning also regulates the phosphorylation of conditioned stimulus pathway phosphoprotein 24 (Csp24), a cytoskeletal-related protein containing multiple beta-thymosin-like domains. Recently, it was shown that the downregulation of Csp24 expression mediated by an antisense oligonucleotide blocked the development of enhanced excitability in identified type B photoreceptors after one-trial conditioning without affecting short-term excitability. Here, we show using whole-cell patch recordings that one-trial in vitro conditioning applied to isolated photoreceptors produces a significant reduction in the amplitude of the A-type transient K+ current (I(A)) detected 1.5-16 h after conditioning. One-trial conditioning produced a depolarized shift in the steady-state activation curve of I(A) without altering the inactivation curve. The conditioning-dependent reduction in I(A) was blocked by preincubation of the photoreceptors with Csp antisense oligonucleotide. These results provide an important link between Csp24, a cytoskeletal protein, and regulation of voltage-gated ion channels associated with intrinsic enhanced excitability underlying pavlovian conditioning.
Collapse
Affiliation(s)
- Ebenezer N Yamoah
- Center for Neuroscience, Department of Otolaryngology, University of California, Davis, California 95616, USA
| | | | | | | |
Collapse
|
219
|
Calabrese B, Wilson MS, Halpain S. Development and regulation of dendritic spine synapses. Physiology (Bethesda) 2006; 21:38-47. [PMID: 16443821 DOI: 10.1152/physiol.00042.2005] [Citation(s) in RCA: 180] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Dendritic spines are small protrusions from neuronal dendrites that form the postsynaptic component of most excitatory synapses in the brain. They play critical roles in synaptic transmission and plasticity. Recent advances in imaging and molecular technologies reveal that spines are complex, dynamic structures that contain a dense array of cytoskeletal, transmembrane, and scaffolding molecules. Several neurological and psychiatric disorders exhibit dendritic spine abnormalities.
Collapse
Affiliation(s)
- Barbara Calabrese
- Department of Cell Biology and Institute for Childhood and Neglected Diseases, The Scripps Research Institute, La Jolla, California, USA
| | | | | |
Collapse
|
220
|
Van de Ven TJ, VanDongen HMA, VanDongen AMJ. The nonkinase phorbol ester receptor alpha 1-chimerin binds the NMDA receptor NR2A subunit and regulates dendritic spine density. J Neurosci 2006; 25:9488-96. [PMID: 16221859 PMCID: PMC6725706 DOI: 10.1523/jneurosci.2450-05.2005] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Abnormalities in dendritic spines have long been associated with cognitive dysfunction and neurodevelopmental delay, whereas rapid changes in spine shape underlie synaptic plasticity. The key regulators of cytoskeletal reorganization in dendrites and spines are the Rho GTPases, which modify actin polymerization in response to synaptic signaling. Rho GTPase activity is modulated by multiple regulatory proteins, some of which have been found to associate with proteins localized to spines. Here, we show that the nonkinase phorbol ester receptor alpha1-chimerin is present in dendrites and spines, where it binds to the NMDA receptor NR2A subunit in a phorbol ester-dependent manner. Alpha1-chimerin contains a GTPase activating (GAP) domain, with activity toward the Rho family member Rac1. Overexpression of alpha1-chimerin in cultured hippocampal neurons inhibits formation of new spines and removes existing spines. This reduction in spine density is mediated by Rac1 inhibition, because it depends critically on the presence of a functional GAP domain. Conversely, depletion of alpha1-chimerin leads to an increase in spine density, indicating that a basal inhibition of Rac1 maintains the number of spines at a submaximal level. The ability of alpha1-chimerin to modulate spine number requires an interaction with the NMDA receptor, because an alpha1-chimerin mutant that binds weakly to NR2A fails to decrease spine density. Together, these results suggest that alpha1-chimerin is able to modulate dendritic spine morphology by binding to synaptic NMDA receptors and locally inactivating Rac1.
Collapse
Affiliation(s)
- Thomas J Van de Ven
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
221
|
Zago WM, Massey KA, Berg DK. Nicotinic activity stabilizes convergence of nicotinic and GABAergic synapses on filopodia of hippocampal interneurons. Mol Cell Neurosci 2006; 31:549-59. [PMID: 16403644 DOI: 10.1016/j.mcn.2005.11.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2005] [Revised: 10/28/2005] [Accepted: 11/17/2005] [Indexed: 11/25/2022] Open
Abstract
Nicotinic acetylcholine receptors containing alpha7 subunits occupy pre- and postsynaptic sites in the adult hippocampus. We find that embryonic hippocampal slices in culture display the receptors most prominently on interneurons where they form clusters localized in part on filopodia. The receptors often co-distribute specifically with GABAA receptors. In septal-hippocampal co-cultures, the filopodia become co-innervated by cholinergic and GABAergic terminals abutting the receptor clusters. Nicotinic transmission appears to stabilize the cholinergic contacts: pharmacological blockade of the alpha7-containing nicotinic receptors increases the rate of filopodia movement and decreases the incidence of the clusters being adjacent to cholinergic terminals. Immunostaining fresh hippocampal slices from neonatal rat pups confirms that cholinergic and GABAergic terminals contact alpha7-containing nicotinic receptor clusters in vivo, and the clusters appear to include filopodial sites. The results indicate a convergence of nicotinic and GABAergic input at specific sites on developing hippocampal interneurons and suggest that synaptic activity helps stabilize the nicotinic contribution.
Collapse
Affiliation(s)
- Wagner M Zago
- Neurobiology Section, Division of Biology, 0357, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0357, USA
| | | | | |
Collapse
|
222
|
Sekino Y, Tanaka S, Hanamura K, Yamazaki H, Sasagawa Y, Xue Y, Hayashi K, Shirao T. Activation of N-methyl-d-aspartate receptor induces a shift of drebrin distribution: Disappearance from dendritic spines and appearance in dendritic shafts. Mol Cell Neurosci 2006; 31:493-504. [PMID: 16368245 DOI: 10.1016/j.mcn.2005.11.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2005] [Revised: 10/27/2005] [Accepted: 11/03/2005] [Indexed: 11/18/2022] Open
Abstract
Drebrin is a major actin-filament-binding protein localized in mature dendritic spines. A recent in vivo immunoelectron microscopic study suggests that drebrin content at each dendritic spine is regulated by some unknown mechanisms. In the present in vitro study, we examined whether glutamate stimulation alters drebrin content in dendritic spines. Glutamate stimulation induced disappearance of drebrin immunostaining from dendritic spines but led to appearance of drebrin immunostaining in dendritic shafts and somata. The glutamate-induced shift of drebrin immunostaining was blocked by an NMDA receptor antagonist. Immunoblot analyses showed that both the total and the cytosolic drebrin remained unchanged and revealed that the drebrin shift was not due to drebrin degradation. These findings indicate that NMDA receptor activation induces a shift in subcellular distribution of drebrin associated with actin filaments, and that the shift might be a molecular basis for actin reorganization accompanied with synaptic plasticity.
Collapse
Affiliation(s)
- Yuko Sekino
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | | | | | | | | | | | | | | |
Collapse
|
223
|
Zhang H, Macara IG. The polarity protein PAR-3 and TIAM1 cooperate in dendritic spine morphogenesis. Nat Cell Biol 2006; 8:227-37. [PMID: 16474385 DOI: 10.1038/ncb1368] [Citation(s) in RCA: 176] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2005] [Accepted: 01/23/2006] [Indexed: 12/31/2022]
Abstract
PAR-3 (partitioning-defective gene 3) is essential for cell polarization in many contexts, including axon specification. However, polarity proteins have not been implicated in later steps of neuronal differentiation, such as dendritic spine morphogenesis. Here, we show that PAR-3 is necessary for normal spine development in primary hippocampal neurons. Depletion of PAR-3 causes the formation of multiple filopodia- and lamellipodia-like dendritic protrusions - a phenotype similar to neurons expressing activated Rac. PAR-3 regulates spine formation by binding the Rac guanine nucleotide-exchange factor (GEF) TIAM1, and spatially restricting it to dendritic spines. Thus, a balance of PAR-3 and TIAM1 is essential to modulate Rac-GTP levels and to allow spine morphogenesis.
Collapse
Affiliation(s)
- Huaye Zhang
- Center for Cell Signaling, Department of Microbiology, University of Virginia School of Medicine, Charlottesville, VA 22908-0577, USA.
| | | |
Collapse
|
224
|
Shi Y, Ethell IM. Integrins control dendritic spine plasticity in hippocampal neurons through NMDA receptor and Ca2+/calmodulin-dependent protein kinase II-mediated actin reorganization. J Neurosci 2006; 26:1813-22. [PMID: 16467530 PMCID: PMC6793632 DOI: 10.1523/jneurosci.4091-05.2006] [Citation(s) in RCA: 164] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2005] [Revised: 12/30/2005] [Accepted: 12/31/2005] [Indexed: 01/07/2023] Open
Abstract
The formation of dendritic spines during development and their structural plasticity in the adult brain are critical aspects of synaptogenesis and synaptic plasticity. Many different factors and proteins have been shown to control dendritic spine development and remodeling (Ethell and Pasquale, 2005). The extracellular matrix (ECM) components and their cell surface receptors, integrins, have been found in the vicinity of synapses and shown to regulate synaptic efficacy and play an important role in long-term potentiation (Bahr et al., 1997; Chavis and Westbrook, 2001; Chan et al., 2003; Lin et al., 2003; Bernard-Trifilo et al., 2005). Although molecular mechanisms by which integrins affect synaptic efficacy have begun to emerge, their role in structural plasticity is poorly understood. Here, we show that integrins are involved in spine remodeling in cultured hippocampal neurons. The treatment of 14 d in vitro hippocampal neurons with arginine-glycine-aspartate (RGD)-containing peptide, an established integrin ligand, induced elongation of existing dendritic spines and promoted formation of new filopodia. These effects were also accompanied by integrin-dependent actin reorganization and synapse remodeling, which were partially inhibited by function-blocking antibodies against beta1 and beta3 integrins. This actin reorganization was blocked with the NMDA receptor (NMDAR) antagonist MK801 [(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine hydrogen maleate]. The Ca2+/calmodulin-dependent protein kinase II (CaMKII) inhibitor KN93 (N-[2-[N-(4-chlorocinnamyl)-N-methylaminomethyl]phenyl]-N-(2-hydroxyethyl)-4-methoxybenzenesulfonamide) also suppressed RGD-induced actin reorganization and synapse remodeling. Our findings show that integrins control ECM-mediated spine remodeling in hippocampal neurons through NMDAR/CaMKII-dependent actin reorganization.
Collapse
|
225
|
Racz B, Weinberg RJ. Spatial organization of cofilin in dendritic spines. Neuroscience 2006; 138:447-56. [PMID: 16388910 DOI: 10.1016/j.neuroscience.2005.11.025] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2005] [Revised: 11/09/2005] [Accepted: 11/14/2005] [Indexed: 11/19/2022]
Abstract
Synaptic plasticity is associated with morphological changes in dendritic spines. The actin-based cytoskeleton plays a key role in regulating spine structure, and actin reorganization in spines is critical for the maintenance of long term potentiation. To test the hypothesis that a stable pool of F-actin rests in the spine "core," while a dynamic pool lies peripherally in its "shell," we performed immunoelectron microscopy in the stratum radiatum of rat hippocampus to elucidate the subcellular distribution of cofilin, an actin-depolymerizing protein that mediates reorganization of the actin cytoskeleton. We provide direct evidence that cofilin in spines avoids the core, and instead concentrates in the shell and within the postsynaptic density. These data suggest that cofilin may link synaptic plasticity to the actin remodeling that underlies changes in spine morphology.
Collapse
Affiliation(s)
- B Racz
- Department of Cell and Developmental Biology, and Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
226
|
Zhao C, Teng EM, Summers RG, Ming GL, Gage FH. Distinct morphological stages of dentate granule neuron maturation in the adult mouse hippocampus. J Neurosci 2006; 26:3-11. [PMID: 16399667 PMCID: PMC6674324 DOI: 10.1523/jneurosci.3648-05.2006] [Citation(s) in RCA: 967] [Impact Index Per Article: 50.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2005] [Revised: 10/23/2005] [Accepted: 10/29/2005] [Indexed: 11/21/2022] Open
Abstract
Adult neurogenesis in the dentate gyrus may contribute to hippocampus-dependent functions, yet little is known about when and how newborn neurons are functional because of limited information about the time course of their connectivity. By using retrovirus-mediated gene transduction, we followed the dendritic and axonal growth of adult-born neurons in the mouse dentate gyrus and identified distinct morphological stages that may indicate different levels of connectivity. Axonal projections of newborn neurons reach the CA3 area 10-11 d after viral infection, 5-6 d before the first spines are formed. Quantitative analyses show that the peak of spine growth occurs during the first 3-4 weeks, but further structural modifications of newborn neurons take place for months. Moreover, the morphological maturation is differentially affected by age and experience, as shown by comparisons between adult and postnatal brains and between housing conditions. Our study reveals the key morphological transitions of newborn granule neurons during their course of maturation.
Collapse
Affiliation(s)
- Chunmei Zhao
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
227
|
Abstract
Synapses in the brain must maintain a balance between learning-related plasticity and the stability necessary for reliable function. In this issue of Neuron, Calabrese and Halpain describe cell-transfection experiments implicating MARCKS, a protein that binds to both the cell surface and actin cytoskeleton, in the maintenance of dendritic spines.
Collapse
Affiliation(s)
- Andrew Matus
- Friedrich Miescher Institute, Maulbeerstrasse 66, 4058 Basel, Switzerland
| |
Collapse
|
228
|
Pawlak R, Rao BSS, Melchor JP, Chattarji S, McEwen B, Strickland S. Tissue plasminogen activator and plasminogen mediate stress-induced decline of neuronal and cognitive functions in the mouse hippocampus. Proc Natl Acad Sci U S A 2005; 102:18201-6. [PMID: 16330749 PMCID: PMC1312427 DOI: 10.1073/pnas.0509232102] [Citation(s) in RCA: 182] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Repeated stress can impair function in the hippocampus, a brain structure essential for learning and memory. Although behavioral evidence suggests that severe stress triggers cognitive impairment, as seen in major depression or posttraumatic stress disorder, little is known about the molecular mediators of these functional deficits in the hippocampus. We report here both pre- and postsynaptic effects of chronic stress, manifested as a reduction in the number of NMDA receptors, dendritic spines, and expression of growth-associated protein-43 in the cornu ammonis 1 region. Strikingly, the stress-induced decrease in NMDA receptors coincides spatially with sites of plasminogen activation, thereby predicting a role for tissue plasminogen activator (tPA) in this form of stress-induced plasticity. Consistent with this possibility, tPA-/- and plasminogen-/- mice are protected from stress-induced decrease in NMDA receptors and reduction in dendritic spines. At the behavioral level, these synaptic and molecular signatures of stress-induced plasticity are accompanied by impaired acquisition, but not retrieval, of hippocampal-dependent spatial learning, a deficit that is not exhibited by the tPA-/- and plasminogen-/- mice. These findings establish the tPA/plasmin system as an important mediator of the debilitating effects of prolonged stress on hippocampal function at multiple levels of neural organization.
Collapse
Affiliation(s)
- Robert Pawlak
- Department of Cell Physiology and Pharmacology, University of Leicester, UK
| | | | | | | | | | | |
Collapse
|
229
|
Martynyuk AE, Glushakov AV, Sumners C, Laipis PJ, Dennis DM, Seubert CN. Impaired glutamatergic synaptic transmission in the PKU brain. Mol Genet Metab 2005; 86 Suppl 1:S34-42. [PMID: 16153867 DOI: 10.1016/j.ymgme.2005.06.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2005] [Revised: 06/23/2005] [Accepted: 06/24/2005] [Indexed: 11/24/2022]
Abstract
This paper reviews recent results of our investigation of the mechanisms whereby hyperphenylalaninemia may cause brain dysfunction in classical phenylketonuria (PKU). Acute applications of L-Phe in rat and mouse hippocampal and cerebrocortical cultured neurons, at a range of concentrations found in PKU brain, significantly and reversibly depressed glutamatergic synaptic transmission by a combination of pre- and postsynaptic actions: (1) competition for the glycine-binding site of the N-methyl-D-aspartate (NMDA) receptors; (2) attenuation of neurotransmitter release; (3) competition for the glutamate-binding site of (RS)-amino-3-hydroxy-5-methyl-4-isoxazolepropioinic acid and kainate (AMPA/kainate) receptors. Unlike L-Phe, its non-tyrosine metabolites, phenylacetic acid, phenylpyruvic acid, and phenyllactic acid, did not produce antiglutamatergic effects. L-Phe did not affect inhibitory gamma-aminobutyric (GABA)-ergic transmission. Consistent with this specific pattern of effects caused by L-Phe in neuronal cultures, the expression of NMDA receptor NR2A and AMPA receptor Glu1 and Glu2/3 subunits in brain of hyperphenylalaninemic PKU mice (Pah(enu2) strain) was significantly increased, whereas expression of the NMDA receptor NR2B subunit was decreased. There was no change in GABA alpha1 subunit expression. Considering the important role of glutamatergic synaptic transmission in normal brain development and function, these L-Phe-induced changes in glutamatergic synaptic transmission in PKU brain may be a critical element of the neurological symptoms of PKU.
Collapse
Affiliation(s)
- A E Martynyuk
- Department of Anesthesiology, University of Florida, Gainesville, FL, USA.
| | | | | | | | | | | |
Collapse
|
230
|
Physiological roles of spine motility: development, plasticity and disorders. Biochem Soc Trans 2005; 33:1299-302. [PMID: 16246103 DOI: 10.1042/bst0331299] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The vast majority of excitatory connections in the hippocampus are made on dendritic spines. Both dendritic spines and molecules within the membrane are able to move, but the physiological role of these movements is unclear. In the developing brain, spines show highly dynamic behaviour thought to facilitate new synaptic connections. Dynamic movements also occur in adults but the role of this movement is unclear. We have studied the effects of the most important excitatory neurotransmitter, glutamate, and found receptor activation to enhance movement of molecules within the spine membrane. This action of glutamate may be important in regulating the trafficking of neurotransmitter receptors that mediate change in synaptic function. In addition, we have studied the dynamic interactions between pre- and postsynaptic structures labelled with FM 4-64 and a membrane-targeted GFP (green fluorescent protein), respectively, in hippocampal slice cultures under conditions of increased activity, such as epilepsy. Our findings suggest a novel form of activity-dependent synaptic plasticity where spontaneous glutamate release is sufficient to trigger changes in the hippocampal microcircuitry by attracting neighbouring spines responsive to an enhanced level of extracellular glutamate.
Collapse
|
231
|
Holcman D, Korkotian E, Segal M. Calcium dynamics in dendritic spines, modeling and experiments. Cell Calcium 2005; 37:467-75. [PMID: 15820395 DOI: 10.1016/j.ceca.2005.01.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2004] [Accepted: 01/06/2005] [Indexed: 11/26/2022]
Abstract
Dendritic spines are microstructures, about one femtoliter in volume, where excitatory synapses are made with incoming afferents, in most neurons of the vertebrate brain. The spine contains all the molecular constituents of the postsynaptic side of the synapse, as well as a contractile element that can cause its movement in space. It also contains calcium handling machineries to allow fast buffering of excess calcium that influx through voltage and NMDA gated channels. The spine is connected to the dendrite through a thin neck that serves as a variable barrier between the spine head and the parent dendrite. We review a novel modeling approach that is more suitable for the accurate description of the stochastic behavior of individual molecules in microstructures. Using this approach, we predict the calcium handling ability of the spine in complex situations associated with synaptic activity, spine motility and plasticity.
Collapse
Affiliation(s)
- D Holcman
- Department of Mathematics, The Weizmann Institute, Rehovot 76100, Israel
| | | | | |
Collapse
|
232
|
Oertner TG, Matus A. Calcium regulation of actin dynamics in dendritic spines. Cell Calcium 2005; 37:477-82. [PMID: 15820396 DOI: 10.1016/j.ceca.2005.01.016] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2004] [Accepted: 01/06/2005] [Indexed: 11/25/2022]
Abstract
Most excitatory synapses in the brain are made on spines, small protrusions from dendrites that exist in many different shapes and sizes. Spines are highly motile, a process that reflects rapid rearrangements of the actin cytoskeleton inside the spine, and can also change shape and size over longer timescales. These different forms of morphological plasticity are regulated in an activity-dependent way, involving calcium influx through glutamate receptors and voltage-gated calcium channels. Many proteins regulating the turnover of filamentous actin (F-actin) are calcium-dependent and might transduce intracellular calcium levels into spine shape changes. On the other hand, the morphology of a spine might affect the function of the synapse residing on it. In particular, the induction of synaptic plasticity is known to require large elevations in the postsynaptic calcium concentration, which depend on the ability of the spine to compartmentalize calcium. Since the actin cytoskeleton is also known to anchor postsynaptic glutamate receptors, changes in the actin polymerization state have the potential to influence synaptic function in a number of ways. Here we review the most prominent types of changes in spine morphology in hippocampal pyramidal cells with regard to their calcium-dependence and discuss their potential impact on synaptic function.
Collapse
|
233
|
Abstract
In mammalian excitatory neurons, dendritic spines are separated from dendrites by thin necks. Diffusion across the neck limits the chemical and electrical isolation of each spine. We found that spine/dendrite diffusional coupling is heterogeneous and uncovered a class of diffusionally isolated spines. The barrier to diffusion posed by the neck and the number of diffusionally isolated spines is bidirectionally regulated by neuronal activity. Furthermore, coincident synaptic activation and postsynaptic action potentials rapidly restrict diffusion across the neck. The regulation of diffusional coupling provides a possible mechanism for determining the amplitude of postsynaptic potentials and the accumulation of plasticity-inducing molecules within the spine head.
Collapse
Affiliation(s)
- Brenda L Bloodgood
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | | |
Collapse
|
234
|
Yamashita T, Miyagi Y, Ono M, Ito H, Watanabe K, Sonoda T, Tsuzuki K, Ozawa S, Aoki I, Okuda K, Mishina M, Kawamoto S. Identification and characterization of a novel Delphilin variant with an alternative N-terminus. ACTA ACUST UNITED AC 2005; 141:83-94. [PMID: 16168524 DOI: 10.1016/j.molbrainres.2005.08.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2004] [Revised: 08/02/2005] [Accepted: 08/04/2005] [Indexed: 11/30/2022]
Abstract
Delphilin is identified as a Glutamate receptor delta2 (GluRdelta2) subunit interacting protein, consisting of a PDZ domain and formin homology (FH) domains 1 and 2, in addition to a C-terminal coiled-coil structure. Delphilin has been shown to be selectively expressed in cerebellar Purkinje cells where it co-localizes with the GluRdelta2 subunit at the Purkinje cell-parallel fiber synapses. Although Delphilin specifically interacts with the GluRdelta2 C-terminus via its PDZ domain, the physiological role of the interaction is not yet understood. Here, we report that the Delphilin protein exhibits diversity at its N-terminus by variable usage of the first several exons. Interestingly, the two Delphilin mRNAs which correspond to the first one initially identified (now designated as Delphilin alpha) and the second that contains a newly identified first exon (designated as Delphilin beta), show different chronological expression profiles. Delphilin beta mRNA was not decreased throughout the cerebellar development in vivo and in vitro, while in vivo Delphilin alpha mRNA gradually decreases following the first postnatal week. Delphilins alpha and beta also revealed different subcellular distribution with some overlap. Specifically, the cerebellar synaptosomal membrane fraction contained the Delphilin beta protein. Both Delphilin alpha and beta localized at the dendritic spines with GluRdelta2; however, dendritic shafts in cultured Purkinje cells also included Delphilin beta. In MDCK cells upon becoming confluent, Delphilin alpha moved to the cell-cell junction area, whereas Delphilin beta maintained a diffuse distribution pattern throughout the cytoplasm. Taken as a whole, these two different Delphilins seemed to play functionally different roles in developing and matured cerebellar Purkinje cells.
Collapse
Affiliation(s)
- Tetsuji Yamashita
- Department of Bacteriology, Yokohama City University School of Medicine, 3-9 Fukuura, Yokohama 236-0004, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
235
|
Gisselsson LL, Matus A, Wieloch T. Actin redistribution underlies the sparing effect of mild hypothermia on dendritic spine morphology after in vitro ischemia. J Cereb Blood Flow Metab 2005; 25:1346-55. [PMID: 15874974 DOI: 10.1038/sj.jcbfm.9600131] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Brain hypothermia is at present the most effective neuroprotective treatment against brain ischemia in man. Ischemia induces a redistribution of proteins involved in synaptic functions, which is markedly diminished by therapeutic hypothermia (33 degrees C). Dendritic spines at excitatory synapses are motile and show both shape changes and rearrangement of synaptic proteins as a consequence of neuronal activity. We investigated the effect of reduced temperature (33 degrees C and 27 degrees C compared with 37 degrees C), on spine motility, length and morphology by studying the distribution of GFP-actin before, during and after induction of in vitro ischemia. Because high-concentration actin filaments are located inside spines, dissociated hippocampal neurons (7-11 DIV) from transgenic mice expressing GFP-actin were used in this study. The movement of the spines and the distribution of GFP-actin were recorded using time-lapse fluorescence microscopy. Under normal conditions rapid rearrangement of GFP-actin was seen in dendritic spines, indicating highly motile spines at 37 degrees C. Decreasing the incubation temperature to 33 degrees C or 27 degrees C, dramatically reduces actin dynamics (spine motility) by approximately 50% and 70%, respectively. In addition, the length of the spine shaft was reduced by 20%. We propose that decreasing the temperature from 37 degrees C to 33 degrees C during ischemia decreases the neuronal actin polymerization rate, which reduces spine calcium kinetics, disrupts detrimental cell signaling and protects neurons against damage.
Collapse
Affiliation(s)
- L Lennart Gisselsson
- Laboratory for Experimental Brain Research, Wallenberg Neuroscience Center, Lund University, Lund, Sweden.
| | | | | |
Collapse
|
236
|
Calabrese B, Halpain S. Essential Role for the PKC Target MARCKS in Maintaining Dendritic Spine Morphology. Neuron 2005; 48:77-90. [PMID: 16202710 DOI: 10.1016/j.neuron.2005.08.027] [Citation(s) in RCA: 156] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2005] [Revised: 07/20/2005] [Accepted: 08/19/2005] [Indexed: 01/21/2023]
Abstract
Spine morphology is regulated by intracellular signals, like PKC, that affect cytoskeletal and membrane dynamics. We investigated the role of MARCKS (myristoylated, alanine-rich C-kinase substrate) in dendrites of 3-week-old hippocampal cultures. MARCKS associates with membranes via the combined action of myristoylation and a polybasic effector domain, which binds phospholipids and/or F-actin, unless phosphorylated by PKC. Knockdown of endogenous MARCKS using RNAi reduced spine density and size. PKC activation induced similar effects, which were prevented by expression of a nonphosphorylatable mutant. Moreover, expression of pseudophosphorylated MARCKS was, by itself, sufficient to induce spine loss and shrinkage, accompanied by reduced F-actin content. Nonphosphorylatable MARCKS caused spine elongation and increased the mobility of spine actin clusters. Surprisingly, it also decreased spine density via a novel mechanism of spine fusion, an effect that required the myristoylation sequence. Thus, MARCKS is a key factor in the maintenance of dendritic spines and contributes to PKC-dependent morphological plasticity.
Collapse
Affiliation(s)
- Barbara Calabrese
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
237
|
Abstract
Synapses are highly specialized intercellular junctions that mediate the transmission of information between axons and target cells. A fundamental property of synapses is their ability to modify the efficacy of synaptic communication through various forms of synaptic plasticity. Recent developments in imaging techniques have revealed that synapses exhibit a high degree of morphological plasticity under basal conditions and also in response to neuronal activity that induces alterations in synaptic strength. The underlying molecular basis for this morphological plasticity has attracted much attention, yet its functional significance to the mechanisms of synaptic transmission and synaptic plasticity remains elusive. These morphological changes ultimately require the dynamic actin cytoskeleton, which is the major structural component of synapses. Delineating the physiological roles of the actin cytoskeleton in supporting synaptic transmission and synaptic plasticity, therefore, paves the way for gaining molecular insights into when and how synaptic machineries couple synapse form and function.
Collapse
Affiliation(s)
- Christian Dillon
- MRC Cell Biology Unit and Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, United Kingdom.
| | | |
Collapse
|
238
|
Yamada RX, Matsuki N, Ikegaya Y. cAMP differentially regulates axonal and dendritic development of dentate granule cells. J Biol Chem 2005; 280:38020-8. [PMID: 16155295 DOI: 10.1074/jbc.m503800200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neurite polarity is a morphological characteristic of dentate gyrus granule cells, which extend axons to the hilar region and dendrites in the opposite direction, i.e. to the molecular layer. This remarkable polarity must require a differential system for axon and dendrite guidance. Here, we report that the axon and dendrites of a granule cell are differentially responsive to cAMP. In developing cultures of dispersed granule cells, dendritic growth cones were increased in number after pharmacological activation of cAMP signaling and decreased after blockade of cAMP signaling. Activation of cAMP signaling antagonized dendritic collapse induced by the potent repellents Sema3F and glutamate. In contrast to dendrites, axons were protected from Sema3F-induced collapse when cAMP signaling was inhibited. Axonal and dendritic growth cones both expressed type 1 adenylyl cyclase, but only axons showed a cAMP increase in response to Sema3F, and the elevated cAMP was sufficient to collapse axonal growth cones. Thus, the axons and dendrites of dentate granule cells differ in the regulation of cAMP levels as well as responsiveness to cAMP. cAMP may be crucial for shaping the information flow polarity in the dentate gyrus circuit.
Collapse
Affiliation(s)
- Ryuji X Yamada
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, University of Tokyo, Japan
| | | | | |
Collapse
|
239
|
Hirbec H, Martin S, Henley JM. Syntenin is involved in the developmental regulation of neuronal membrane architecture. Mol Cell Neurosci 2005; 28:737-46. [PMID: 15797720 DOI: 10.1016/j.mcn.2004.12.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2004] [Revised: 12/08/2004] [Accepted: 12/13/2004] [Indexed: 11/26/2022] Open
Abstract
Syntenin is a approximately 33 kDa scaffolding protein that we have shown previously to bind to kainate receptor subunits via a PDZ interaction. Here we show that syntenin has a tightly regulated developmental profile in neurons and is most abundant in the period of intense growth and synapse formation and stabilization. There is extensive colocalization of syntenin and kainate receptors with particularly intense labeling for both proteins at growth cones. Overexpression of GFP-syntenin in both young and mature neurons evokes marked changes in neuronal morphology by increasing the number of dendritic protrusions. These results are consistent with the involvement of syntenin in controlling membrane organization and suggest that by interaction with kainate receptors it may play a role in determining the formation and maturation of synapses.
Collapse
Affiliation(s)
- Hélène Hirbec
- MRC Centre for Synaptic Plasticity, Department of Anatomy, School of Medical Sciences, University Walk, University of Bristol, Bristol, BS8 1TD, UK
| | | | | |
Collapse
|
240
|
Ryan XP, Alldritt J, Svenningsson P, Allen PB, Wu GY, Nairn AC, Greengard P. The Rho-specific GEF Lfc interacts with neurabin and spinophilin to regulate dendritic spine morphology. Neuron 2005; 47:85-100. [PMID: 15996550 DOI: 10.1016/j.neuron.2005.05.013] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2003] [Revised: 01/24/2004] [Accepted: 05/06/2005] [Indexed: 01/07/2023]
Abstract
Neurabin and spinophilin are homologous protein phosphatase 1 and actin binding proteins that regulate dendritic spine function. A yeast two-hybrid analysis using the coiled-coil domain of neurabin revealed an interaction with Lfc, a Rho GEF. Lfc was highly expressed in brain, where it interacted with either neurabin or spinophilin. In neurons, Lfc was largely found in the shaft of dendrites in association with microtubules but translocated to spines upon neuronal stimulation. Moreover, expression of Lfc resulted in reduction in spine length and size. Both the translocation and the effect on spine morphology depended on the coiled-coil domain of Lfc. Coexpression of neurabin or spinophilin with Lfc resulted in their clustering together with F-actin, a process that depended on Rho activity. Thus, interaction between Lfc and neurabin/spinophilin selectively regulates Rho-dependent organization of F-actin in spines and is a link between the microtubule and F-actin cytoskeletons in dendrites.
Collapse
Affiliation(s)
- Xiaozhou P Ryan
- Laboratory of Molecular and Cellular Neuroscience, Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | | | | | | | | | | | | |
Collapse
|
241
|
Oray S, Majewska A, Sur M. Effects of Synaptic Activity on Dendritic Spine Motility of Developing Cortical Layer V Pyramidal Neurons. Cereb Cortex 2005; 16:730-41. [PMID: 16120796 DOI: 10.1093/cercor/bhj019] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
It is increasingly clear that dendritic spines play an important role in compartmentalizing post-synaptic signals and that their dynamic morphological properties have functional consequences. Here, we examine this issue using two-photon microscopy to characterize spine motility on layer V pyramidal neurons in acute slices of the developing mouse cortex. In this system, all spine classes except filopodia become less dynamic as development proceeds. General manipulations of activity (TTX or KCl treatment) do not alter spine dynamics, although increased glutamatergic transmission (AMPA or NMDA treatment) stabilizes developing cortical spines. These effects on spine dynamics do not appear to be related to AMPA or NMDA receptor expression as assessed with immunolabeling, as there is no correlation between spine motility and AMPA (GluR1/2) or NMDA (NR1/NR2B) receptor subunit expression on a spine by spine basis. These results indicate that activity through glutamatergic synapses is important for regulating spine motility in the developing mouse cortex, and that the relative complement of receptors, while different across morphological classifications, cannot account for differences in dynamic structural changes in dendritic spines.
Collapse
Affiliation(s)
- Serkan Oray
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
242
|
Restivo L, Ferrari F, Passino E, Sgobio C, Bock J, Oostra BA, Bagni C, Ammassari-Teule M. Enriched environment promotes behavioral and morphological recovery in a mouse model for the fragile X syndrome. Proc Natl Acad Sci U S A 2005; 102:11557-62. [PMID: 16076950 PMCID: PMC1183589 DOI: 10.1073/pnas.0504984102] [Citation(s) in RCA: 226] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2004] [Indexed: 02/08/2023] Open
Abstract
Fragile X syndrome, the most frequent form of hereditary mental retardation, is due to a mutation of the fragile X mental retardation 1 (FMR1) gene on the X chromosome. Like fragile X patients, FMR1-knockout (FMR1-KO) mice lack the normal fragile X mental retardation protein (FMRP) and show both cognitive alterations and an immature neuronal morphology. We reared FMR1-KO mice in a C57BL/6 background in enriched environmental conditions to examine the possibility that experience-dependent stimulation alleviates their behavioral and neuronal abnormalities. FMR1-KO mice kept in standard cages were hyperactive, displayed an altered pattern of open field exploration, and did not show habituation. Quantitative morphological analyses revealed a reduction in basal dendrite length and branching together with more immature-appearing spines along apical dendrites of layer five pyramidal neurons in the visual cortex. Enrichment largely rescued these behavioral and neuronal abnormalities while increasing alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate receptor subunit 1 (GluR1) levels in both genotypes. Enrichment did not, however, affect FMRP levels in the WT mice. These data suggest that FMRP-independent pathways activating glutamatergic signaling are preserved in FMR1-KO mice and that they can be elicited by environmental stimulation.
Collapse
Affiliation(s)
- Leonardo Restivo
- Laboratory of Psychobiology, Consiglio Nazionale delle Ricerche Institute of Neuroscience, 00179 Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
243
|
Abstract
A synapse is the connection between neurons that joins an axon of one neuron to the dendrite of another. One class of synapses is formed at the contact point between an axon and a small protrusion from a dendrite, called a dendritic spine. These spines are motile and deformable, which indicates that synaptic functions are controlled, at least in part, by their morphological changes. Recent studies show that the cadherin cell-adhesion molecules and their cytoplasmic partners, catenins, can modulate axon-spine contacts in a manner that responds to neural activity. These observations indicate that cadherins, which are essential for general cell-cell adhesion, also play a role in the control of synaptic dynamics.
Collapse
Affiliation(s)
- Masatoshi Takeichi
- RIKEN Center for Developmental Biology, 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan.
| | | |
Collapse
|
244
|
Umeda T, Ebihara T, Okabe S. Simultaneous observation of stably associated presynaptic varicosities and postsynaptic spines: morphological alterations of CA3-CA1 synapses in hippocampal slice cultures. Mol Cell Neurosci 2005; 28:264-74. [PMID: 15691708 DOI: 10.1016/j.mcn.2004.09.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2004] [Revised: 09/17/2004] [Accepted: 09/17/2004] [Indexed: 11/22/2022] Open
Abstract
Dendritic spines are highly motile structures, but the extent and mode of coordination in motility between spines and presynaptic varicosities with synaptic contacts is not clear. To analyze movements of dendritic spines and axonal varicosities simultaneously, we labeled CA1 pyramidal cells with green fluorescent protein and CA3 pyramidal cells with rhodamine-dextran in hippocampal slice cultures. Varicosities and spines were visualized using two-photon microscopy to detect close association of two components. Time-lapse imaging revealed that they performed rapid morphological changes without losing their contacts. The extent of overall structural changes between varicosities and spines was correlated, while the direction of short-term volume changes was regulated independently. Furthermore, alterations of dendritic morphology induced by strong electrical stimulation had little effects on their association. These results indicate the presence of local regulatory mechanisms to coordinate presynaptic and postsynaptic motility.
Collapse
Affiliation(s)
- Tatsuya Umeda
- Department of Cell Biology, School of Medicine, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | | | | |
Collapse
|
245
|
Mothe AJ, Kulbatski I, van Bendegem RL, Lee L, Kobayashi E, Keating A, Tator CH. Analysis of green fluorescent protein expression in transgenic rats for tracking transplanted neural stem/progenitor cells. J Histochem Cytochem 2005; 53:1215-26. [PMID: 15983120 DOI: 10.1369/jhc.5a6639.2005] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Green fluorescent protein (GFP) expression was evaluated in tissues of different transgenic rodents--Sprague-Dawley (SD) rat strain [SD-Tg(GFP)Bal], W rat strain [Wistar-TgN(CAG-GFP)184ys], and M mouse strain [Tg(GFPU)5Nagy/J]--by direct fluorescence of native GFP expression and by immunohistochemistry. The constitutively expressing GFP transgenic strains showed tissue-specific differences in GFP expression, and GFP immunohistochemistry amplified the fluorescent signal. The fluorescence of stem/progenitor cells cultured as neurospheres from the ependymal region of the adult spinal cord from the GFP SD and W rat strains was assessed in vitro. After transplantation of the cells into wild-type spinal cord, the ability to track the grafted cells was evaluated in vivo. Cultured stem/progenitor cells from the SD strain required GFP immunostaining to be visualized. Likewise, after transplantation of SD cells into the spinal cord, immunohistochemical amplification of the GFP signal was required for detection. In contrast, GFP expression of stem/progenitor cells generated from the W strain was readily detected by direct fluorescence both in vitro and in vivo without the need for immunohistochemical amplification. The cultured stem/progenitor cells transplanted into the spinal cord survived for at least 49 days after transplantation, and continued to express GFP, demonstrating stable expression of the GFP transgene in vivo.
Collapse
Affiliation(s)
- Andrea J Mothe
- Division of Cellular and Molecular Biology, Toronto Western Research Institute, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
246
|
Mitra R, Jadhav S, McEwen BS, Vyas A, Chattarji S. Stress duration modulates the spatiotemporal patterns of spine formation in the basolateral amygdala. Proc Natl Acad Sci U S A 2005; 102:9371-6. [PMID: 15967994 PMCID: PMC1166638 DOI: 10.1073/pnas.0504011102] [Citation(s) in RCA: 484] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
It has long been hypothesized that morphological and numerical alterations in dendritic spines underlie long-term structural encoding of experiences. Here we investigate the efficacy of aversive experience in the form of acute immobilization stress (AIS) and chronic immobilization stress (CIS) in modulating spine density in the basolateral amygdala (BLA) of male rats. We find that CIS elicits a robust increase in spine density across primary and secondary branches of BLA spiny neurons. We observed this CIS-induced spinogenesis in the BLA 1 d after the termination of CIS. In contrast, AIS fails to affect spine density or dendritic arborization when measured 1 d later. Strikingly, the same AIS causes a gradual increase in spine density 10 d later but without any effect on dendritic arbors. Thus, by modulating the duration of immobilization stress, it is possible to induce the formation of new spines without remodeling dendrites. However, unlike CIS-induced spine formation, the gradual increase in spine density 10 d after a single exposure to AIS is localized on primary dendrites. Finally, this delayed induction of BLA spinogenesis is paralleled by a gradual development of anxiety-like behavior on the elevated plus-maze 10 d after AIS. These findings demonstrate that stressful experiences can lead to the formation of new dendritic spines in the BLA, which is believed to be a locus of storage for fear memories. Our results also suggest that stress may facilitate symptoms of chronic anxiety disorders like post-traumatic stress disorder by enhancing synaptic connectivity in the BLA.
Collapse
Affiliation(s)
- Rupshi Mitra
- National Centre for Biological Sciences, Bangalore 560065, India
| | | | | | | | | |
Collapse
|
247
|
Palmer CL, Cotton L, Henley JM. The molecular pharmacology and cell biology of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors. Pharmacol Rev 2005; 57:253-77. [PMID: 15914469 PMCID: PMC3314513 DOI: 10.1124/pr.57.2.7] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptors (AMPARs) are of fundamental importance in the brain. They are responsible for the majority of fast excitatory synaptic transmission, and their overactivation is potently excitotoxic. Recent findings have implicated AMPARs in synapse formation and stabilization, and regulation of functional AMPARs is the principal mechanism underlying synaptic plasticity. Changes in AMPAR activity have been described in the pathology of numerous diseases, such as Alzheimer's disease, stroke, and epilepsy. Unsurprisingly, the developmental and activity-dependent changes in the functional synaptic expression of these receptors are under tight cellular regulation. The molecular and cellular mechanisms that control the postsynaptic insertion, arrangement, and lifetime of surface-expressed AMPARs are the subject of intense and widespread investigation. For example, there has been an explosion of information about proteins that interact with AMPAR subunits, and these interactors are beginning to provide real insight into the molecular and cellular mechanisms underlying the cell biology of AMPARs. As a result, there has been considerable progress in this field, and the aim of this review is to provide an account of the current state of knowledge.
Collapse
Affiliation(s)
- Claire L Palmer
- Medical Research Council Centre for Synaptic Plasticity, Department of Anatomy, School of Medical Sciences, Bristol University, Bristol, UK
| | | | | |
Collapse
|
248
|
Gu Z, Jiang Q, Fu AKY, Ip NY, Yan Z. Regulation of NMDA receptors by neuregulin signaling in prefrontal cortex. J Neurosci 2005; 25:4974-84. [PMID: 15901778 PMCID: PMC6724849 DOI: 10.1523/jneurosci.1086-05.2005] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2004] [Revised: 04/13/2005] [Accepted: 04/13/2005] [Indexed: 11/21/2022] Open
Abstract
Recent linkage studies have identified a significant association of the neuregulin gene with schizophrenia, but how neuregulin is involved in schizophrenia is primarily unknown. Aberrant NMDA receptor functions have been implicated in the pathophysiology of schizophrenia. Therefore, we hypothesize that neuregulin, which is present in glutamatergic synaptic vesicles, may affect NMDA receptor functions via actions on its ErbB receptors enriched in postsynaptic densities, hence participating in emotional regulation and cognitive processes that are impaired in schizophrenia. To test this, we examined the regulation of NMDA receptor currents by neuregulin signaling pathways in prefrontal cortex (PFC), a prominent area affected in schizophrenia. We found that bath perfusion of neuregulin significantly reduced whole-cell NMDA receptor currents in acutely isolated and cultured PFC pyramidal neurons and decreased NMDA receptor-mediated EPSCs in PFC slices. The effect of neuregulin was mainly blocked by application of the ErbB receptor tyrosine kinase inhibitor, phospholipase C (PLC) inhibitor, IP3 receptor (IP3R) antagonist, or Ca2+ chelators. The neuregulin regulation of NMDA receptor currents was also markedly attenuated in cultured neurons transfected with mutant forms of Ras or a dominant-negative form of MEK1 (mitogen-activated protein kinase kinase 1). Moreover, the neuregulin effect was prevented by agents that stabilize or disrupt actin polymerization but not by agents that interfere with microtubule assembly. Furthermore, neuregulin treatment increased the abundance of internalized NMDA receptors in cultured PFC neurons, which was also sensitive to agents affecting actin cytoskeleton. Together, our study suggests that both PLC/IP3R/Ca2+ and Ras/MEK/ERK (extracellular signal-regulated kinase) signaling pathways are involved in the neuregulin-induced reduction of NMDA receptor currents, which is likely through enhancing NR1 internalization via an actin-dependent mechanism.
Collapse
Affiliation(s)
- Zhenglin Gu
- Department of Physiology and Biophysics, State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Buffalo, New York 14214, USA
| | | | | | | | | |
Collapse
|
249
|
Wood DA, Buse JE, Wellman CL, Rebec GV. Differential environmental exposure alters NMDA but not AMPA receptor subunit expression in nucleus accumbens core and shell. Brain Res 2005; 1042:176-83. [PMID: 15854589 DOI: 10.1016/j.brainres.2005.02.029] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2004] [Revised: 01/18/2005] [Accepted: 02/12/2005] [Indexed: 11/19/2022]
Abstract
Environmentally enriched (EE) rats show neurobehavioral differences relative to less stimulated, socially isolated (SI) littermates. Although experience-dependent cortical changes are presumed to underlie learning differences in these differentially housed animals, EE rats show reduced reward-seeking behavior and altered cytoarchitecture and dopaminergic function in the nucleus accumbens (NAcc), a brain area involved in adaptive, goal-directed activity. Given that glutamate and its interaction with dopamine regulate motivational and associative processing in this brain region, we assessed expression of the NR1 subunit of the N-methyl-D-aspartate (NMDA) receptor and the GluR1 subunit of the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor in the NAcc core and shell of EE and SI rats. Our results indicate fewer intensely stained NR1 immunopositive neurons in both core and shell of EE relative to SI rats. No such differences were observed in GluR1 staining. These results suggest that environmental experience alters NMDA but not AMPA receptor expression in NAcc. Increased expression of the NR1 subunit in the NAcc of SI rats may augment impulsivity and reward-seeking behavior relative to EE rats.
Collapse
Affiliation(s)
- David A Wood
- Program in Neural Science, Department of Psychology, Indiana University, 1101 E. Tenth Street, Bloomington, IN 47405-7007, USA
| | | | | | | |
Collapse
|
250
|
Abstract
A recent flurry of time-lapse imaging studies of live neurons have tried to address the century-old question: what morphological changes in dendritic spines can be related to long-term memory? Changes that have been proposed to relate to memory include the formation of new spines, the enlargement of spine heads and the pruning of spines. These observations also relate to a more general question of how stable dendritic spines are. The objective of this review is to critically assess the new data and to propose much needed criteria that relate spines to memory, thereby allowing progress in understanding the morphological basis of memory.
Collapse
Affiliation(s)
- Menahem Segal
- Department of Neurobiology, The Weizmann Institute, Rehovot, 76100 Israel.
| |
Collapse
|