201
|
Nakamoto M, Nalavadi V, Epstein MP, Narayanan U, Bassell GJ, Warren ST. Fragile X mental retardation protein deficiency leads to excessive mGluR5-dependent internalization of AMPA receptors. Proc Natl Acad Sci U S A 2007; 104:15537-42. [PMID: 17881561 PMCID: PMC2000537 DOI: 10.1073/pnas.0707484104] [Citation(s) in RCA: 193] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Fragile X syndrome (FXS), a common inherited form of mental retardation, is caused by the functional absence of the fragile X mental retardation protein (FMRP), an RNA-binding protein that regulates the translation of specific mRNAs at synapses. Altered synaptic plasticity has been described in a mouse FXS model. However, the mechanism by which the loss of FMRP alters synaptic function, and subsequently causes the mental impairment, is unknown. Here, in cultured hippocampal neurons, we used siRNAs against Fmr1 to demonstrate that a reduction of FMRP in dendrites leads to an increase in internalization of the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) subunit, GluR1, in dendrites. This abnormal AMPAR trafficking was caused by spontaneous action potential-driven network activity without synaptic stimulation by an exogenous agonist and was rescued by 2-methyl-6-phenylethynyl-pyridine (MPEP), an mGluR5-specific inverse agonist. Because AMPAR internalization depends on local protein synthesis after mGluR5 stimulation, FMRP, a negative regulator of translation, may be viewed as a counterbalancing signal, wherein the absence of FMRP leads to an apparent excess of mGluR5 signaling in dendrites. Because AMPAR trafficking is a driving process for synaptic plasticity underlying learning and memory, our data suggest that hypersensitive AMPAR internalization in response to excess mGluR signaling may represent a principal cellular defect in FXS, which may be corrected by using mGluR antagonists.
Collapse
Affiliation(s)
| | | | | | | | | | - Stephen T. Warren
- Departments of *Human Genetics
- Biochemistry, and
- Pediatrics, Emory University School of Medicine, 615 Michael Street, Whitehead Biomedical Research Building, Atlanta, GA 30322
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
202
|
Common pathological processes in Alzheimer disease and type 2 diabetes: a review. ACTA ACUST UNITED AC 2007; 56:384-402. [PMID: 17920690 DOI: 10.1016/j.brainresrev.2007.09.001] [Citation(s) in RCA: 262] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Revised: 09/01/2007] [Accepted: 09/05/2007] [Indexed: 02/07/2023]
Abstract
Alzheimer disease (AD) and type 2 diabetes mellitus (T2DM) are conditions that affect a large number of people in the industrialized countries. Both conditions are on the increase, and finding novel treatments to cure or prevent them are a major aim in research. Somewhat surprisingly, AD and T2DM share several molecular processes that underlie the respective degenerative developments. This review describes and discusses several of these shared biochemical and physiological pathways. Disturbances in insulin signalling appears to be the main common impairment that affects cell growth and differentiation, cellular repair mechanisms, energy metabolism, and glucose utilization. Insulin not only regulates blood sugar levels but also acts as a growth factor on all cells including neurons in the CNS. Impairment of insulin signalling therefore not only affects blood glucose levels but also causes numerous degenerative processes. Other growth factor signalling systems such as insulin growth factors (IGFs) and transforming growth factors (TGFs) also are affected in both conditions. Also, the misfolding of proteins plays an important role in both diseases, as does the aggregation of amyloid peptides and of hyperphosphorylated proteins. Furthermore, more general physiological processes such as angiopathic and cytotoxic developments, the induction of apoptosis, or of non-apoptotic cell death via production of free radicals greatly influence the progression of AD and T2DM. The increase of detailed knowledge of these common physiological processes open up the opportunities for treatments that can prevent or reduce the onset of AD as well as T2DM.
Collapse
|
203
|
Zhao WQ, De Felice FG, Fernandez S, Chen H, Lambert MP, Quon MJ, Krafft GA, Klein WL. Amyloid beta oligomers induce impairment of neuronal insulin receptors. FASEB J 2007; 22:246-60. [PMID: 17720802 DOI: 10.1096/fj.06-7703com] [Citation(s) in RCA: 444] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Recent studies have indicated an association between Alzheimer's disease (AD) and central nervous system (CNS) insulin resistance. However, the cellular mechanisms underlying the link between these two pathologies have not been elucidated. Here we show that signal transduction by neuronal insulin receptors (IR) is strikingly sensitive to disruption by soluble Abeta oligomers (also known as ADDLs). ADDLs are known to accumulate in AD brain and have recently been implicated as primary candidates for initiating deterioration of synapse function, composition, and structure. Using mature cultures of hippocampal neurons, a preferred model for studies of synaptic cell biology, we found that ADDLs caused a rapid and substantial loss of neuronal surface IRs specifically on dendrites bound by ADDLs. Removal of dendritic IRs was associated with increased receptor immunoreactivity in the cell body, indicating redistribution of the receptors. The neuronal response to insulin, measured by evoked IR tyrosine autophosphorylation, was greatly inhibited by ADDLs. Inhibition also was seen with added glutamate or potassium-induced depolarization. The effects on IR function were completely blocked by NMDA receptor antagonists, tetrodotoxin, and calcium chelator BAPTA-AM. Downstream from the IR, ADDLs induced a phosphorylation of Akt at serine473, a modification associated with neurodegenerative and insulin resistance diseases. These results identify novel factors that affect neuronal IR signaling and suggest that insulin resistance in AD brain is a response to ADDLs, which disrupt insulin signaling and may cause a brain-specific form of diabetes as part of an overall pathogenic impact on CNS synapses.
Collapse
Affiliation(s)
- Wei-Qin Zhao
- Department of Neurobiology and Physiology, Northwestern University, 2205 Tech Dr., Hogan 5-110, Evanston, IL 60280, USA.
| | | | | | | | | | | | | | | |
Collapse
|
204
|
Lee CC, Kuo YM, Huang CC, Hsu KS. Insulin rescues amyloid beta-induced impairment of hippocampal long-term potentiation. Neurobiol Aging 2007; 30:377-87. [PMID: 17692997 DOI: 10.1016/j.neurobiolaging.2007.06.014] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2007] [Revised: 06/06/2007] [Accepted: 06/27/2007] [Indexed: 11/22/2022]
Abstract
Cerebral accumulation of amyloid beta-protein (Abeta) is generally believed to play a critical role in the pathogenesis of Alzheimer's disease (AD). Recent evidence suggests that Abeta-induced synaptic dysfunction is one of earliest pathogenic events observed in AD. Here we report that synthetic Abeta(1-42) strongly inhibited the induction of long-term potentiation (LTP) in the CA1 region of rat hippocampal slices. To ascertain which Abeta(1-42) sequences contribute to the impairment of LTP, we compared actions of several Abeta fragments and found that the sequence within 25-35 region of Abeta mainly contributes to the expression of LTP impairment. Importantly, we show that insulin and insulin-like growth factor-1 significantly inhibit Abeta oligomer formation, particularly dimers and trimers, and ameliorate the synthetic Abeta-induced suppression of LTP. Furthermore, dithiothreitol was found to be capable of significantly preventing the inhibitory effect of insulin on Abeta oligomer formation. In contrast, hemoglobin promotes Abeta oligomer formation and enhances Abeta-mediated inhibition of LTP induction. These results suggest that insulin may have utility in treating the earliest stages of Abeta-induced synaptic dysfunction in AD patients.
Collapse
Affiliation(s)
- Cheng-Che Lee
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | | | | | | |
Collapse
|
205
|
Baiardi G, Ruiz AM, Beling A, Borgonovo J, Martínez G, Landa AI, Sosa MA, Gargiulo PA. Glutamatergic ionotropic blockade within accumbens disrupts working memory and might alter the endocytic machinery in rat accumbens and prefrontal cortex. J Neural Transm (Vienna) 2007; 114:1519-28. [PMID: 17616844 DOI: 10.1007/s00702-007-0776-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2007] [Accepted: 06/10/2007] [Indexed: 11/27/2022]
Abstract
Effects of blocking N-methyl-D-aspartic acid (NMDA) and non-NMDA glutamatergic receptors on performance in the hole board test was studied in male rats bilaterally cannulated into the nucleus accumbens (Acc). Rats, divided into 5 groups, received either 1 microl injections of saline, (+/-) 2-amino-7-phosphonoheptanoic acid (AP-7) (0.5 or 1 microg) or 2,3-dioxo-6-nitro-1,2,3,4,tetrahydrobenzo-(f)quinoxaline-7-sulphonamide disodium (NBQX, 0.5 or 1 microg) 10 min before testing. An increase by AP-7 was observed in ambulatory movements (0.5 microg; p < 0.05), non-ambulatory movements and number of movements (1 microg; p < 0.05); sniffing and total exploration (1 microg; p < 0.01). When holes were considered in order from the first to the fifth by the number of explorations, the most visited holes (first and second) of the AP-7 group were significantly higher than the corresponding holes of saline group (p < 0.05 for 0.5 microg and p < 0.001 for 1 microg). When the second hole was compared with the first of his group, a difference was only observed in the AP-7 1 microg group (p < 0.001). Increasing differences between the other holes and the first were observed by drug treatment. At molecular level, it was observed that AP-7 induced an increase of the coat protein AP-2 expression in Acc, but not AP-180 neither the synaptic protein synaptophysin. The increase of AP-2 was also observed in the medial prefrontal cortex by the action of AP-7 but not NBQX. We conclude that NMDA glutamatergic blockade might induce an activation of the endocytic machinery into the Acc, leading to stereotypies and perseverations, lacking cortical intentional direction.
Collapse
Affiliation(s)
- G Baiardi
- Laboratorio de Neurociencias y Psicología Experimental, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
206
|
Jiang J, Suppiramaniam V, Wooten MW. Posttranslational modifications and receptor-associated proteins in AMPA receptor trafficking and synaptic plasticity. Neurosignals 2007; 15:266-82. [PMID: 17622793 DOI: 10.1159/000105517] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Accepted: 05/18/2007] [Indexed: 01/26/2023] Open
Abstract
AMPA-type glutamate receptors (AMPARs) mediate most fast excitatory synaptic transmission in the mammalian brain. It is widely believed that the long-lasting, activity-dependent changes in synaptic strength, including long-term potentiation and long-term depression, could be the molecular and cellular basis of experience-dependent plasticities, such as learning and memory. Those changes of synaptic strength are directly related to AMPAR trafficking to and away from the synapse. There are many forms of synaptic plasticity in the mammalian brain, while the prototypic form, hippocampal CA1 long-term potentiation, has received the most intense investigation. After synthesis, AMPAR subunits undergo posttranslational modifications such as glycosylation, palmitoylation, phosphorylation and potential ubiquitination. In addition, AMPAR subunits spatiotemporally associate with specific neuronal proteins in the cell. Those posttranslational modifications and receptor-associated proteins play critical roles in AMPAR trafficking and regulation of AMPAR-dependent synaptic plasticity. Here, we summarize recent studies on posttranslational modifications and associated proteins of AMPAR subunits, and their roles in receptor trafficking and synaptic plasticity.
Collapse
Affiliation(s)
- Jianxiong Jiang
- Department of Biological Sciences and Program in Cellular and Molecular Biosciences, Auburn University, AL 36849, USA
| | | | | |
Collapse
|
207
|
Kim J, Jung SC, Clemens AM, Petralia RS, Hoffman DA. Regulation of dendritic excitability by activity-dependent trafficking of the A-type K+ channel subunit Kv4.2 in hippocampal neurons. Neuron 2007; 54:933-47. [PMID: 17582333 PMCID: PMC1950443 DOI: 10.1016/j.neuron.2007.05.026] [Citation(s) in RCA: 263] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2006] [Revised: 09/06/2006] [Accepted: 05/23/2007] [Indexed: 11/21/2022]
Abstract
Voltage-gated A-type K+ channel Kv4.2 subunits are highly expressed in the dendrites of hippocampal CA1 neurons. However, little is known about the subcellular distribution and trafficking of Kv4.2-containing channels. Here we provide evidence for activity-dependent trafficking of Kv4.2 in hippocampal spines and dendrites. Live imaging and electrophysiological recordings showed that Kv4.2 internalization is induced rapidly upon glutamate receptor stimulation. Kv4.2 internalization was clathrin mediated and required NMDA receptor activation and Ca2+ influx. In dissociated hippocampal neurons, mEPSC amplitude depended on functional Kv4.2 expression level and was enhanced by stimuli that induced Kv4.2 internalization. Long-term potentiation (LTP) induced by brief glycine application resulted in synaptic insertion of GluR1-containing AMPA receptors along with Kv4.2 internalization. We also found evidence of Kv4.2 internalization upon synaptically evoked LTP in CA1 neurons of hippocampal slice cultures. These results present an additional mechanism for synaptic integration and plasticity through the activity-dependent regulation of Kv4.2 channel surface expression.
Collapse
Affiliation(s)
- Jinhyun Kim
- Molecular Neurophysiology and Biophysics Unit, Laboratory of Cellular and Synaptic Neurophysiology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
208
|
Vig PJS, Wei J, Shao Q, Hebert MD, Subramony SH, Sutton LT. Role of tissue transglutaminase type 2 in calbindin-D28k interaction with ataxin-1. Neurosci Lett 2007; 420:53-7. [PMID: 17442486 PMCID: PMC1949022 DOI: 10.1016/j.neulet.2007.04.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2007] [Revised: 03/23/2007] [Accepted: 04/03/2007] [Indexed: 11/28/2022]
Abstract
Spinocerebellar ataxia-1 (SCA1) is caused by the expansion of a polyglutamine repeats within the disease protein, ataxin-1. The mutant ataxin-1 precipitates as large intranuclear aggregates in the affected neurons. These aggregates may protect neurons from mutant protein and/or trigger neuronal degeneration by encouraging recruitment of other essential proteins. Our previous studies have shown that calcium binding protein calbindin-D28k (CaB) associated with SCAl pathogenesis is recruited to ataxin-l aggregates in Purkinje cells of SCAl mice. Since our recent findings suggest that tissue transglutaminase 2 (TG2) may be involved in crosslinking and aggregation of ataxin-l, the present study was initiated to determine if TG2 has any role in CaB-ataxin-l interaction. The guinea pig TG2 covalently crosslinked purified rat brain CaB. Time dependent progressive increase in aggregation produced large multimers, which stayed on top of the gel. CaB interaction with ataxin-l was studied using HeLa cell lysates expressing GFP and GFP tagged ataxin-l with normal and expanded polyglutamine repeats (Q2, Q30 and Q82). The reaction products were analyzed by Western blots using anti-polyglutamine, CaB or GFP antibodies. CaB interacted with ataxin-1 independent of TG2 as the protein-protein crosslinker DSS stabilized CaB-ataxin-l complex. TG2 crosslinked CaB preferentially with Q82 ataxin-1. The crosslinking was inhibited with EGTA or TG2 inhibitor cystamine. The present data indicate that CaB may be a TG2 substrate. In addition, aggregates of mutant ataxin-l may recruit CaB via TG2 mediated covalent crosslinking, further supporting the argument that ataxin-l aggregates may be toxic to neurons.
Collapse
Affiliation(s)
- P J S Vig
- Department of Neurology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA.
| | | | | | | | | | | |
Collapse
|
209
|
Tai CY, Mysore SP, Chiu C, Schuman EM. Activity-Regulated N-Cadherin Endocytosis. Neuron 2007; 54:771-85. [PMID: 17553425 DOI: 10.1016/j.neuron.2007.05.013] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2006] [Revised: 03/23/2007] [Accepted: 05/09/2007] [Indexed: 11/25/2022]
Abstract
Enduring forms of synaptic plasticity are thought to require ongoing regulation of adhesion molecules, such as N-cadherin, at synaptic junctions. Little is known about the activity-regulated trafficking of adhesion molecules. Here we demonstrate that surface N-cadherin undergoes a surprisingly high basal rate of internalization. Upon activation of NMDA receptors (NMDAR), the rate of N-cadherin endocytosis is significantly reduced, resulting in an accumulation of N-cadherin in the plasma membrane. Beta-catenin, an N-cadherin binding partner, is a primary regulator of N-cadherin endocytosis. Following NMDAR stimulation, beta-catenin accumulates in spines and exhibits increased binding to N-cadherin. Overexpression of a mutant form of beta-catenin, Y654F, prevents the NMDAR-dependent regulation of N-cadherin internalization, resulting in stabilization of surface N-cadherin molecules. Furthermore, the stabilization of surface N-cadherin blocks NMDAR-dependent synaptic plasticity. These results indicate that NMDAR activity regulates N-cadherin endocytosis, providing a mechanistic link between structural plasticity and persistent changes in synaptic efficacy.
Collapse
Affiliation(s)
- Chin-Yin Tai
- Division of Biology 114-96, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | |
Collapse
|
210
|
Fujiwara A, Kakizawa S, Iino M. Induction of cerebellar long-term depression requires activation of calcineurin in Purkinje cells. Neuropharmacology 2007; 52:1663-70. [PMID: 17485101 DOI: 10.1016/j.neuropharm.2007.03.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2005] [Revised: 03/22/2007] [Accepted: 03/22/2007] [Indexed: 11/16/2022]
Abstract
Cerebellar long-term depression (LTD) is an activity-dependent depression of synaptic transmission from parallel fibers to Purkinje cells underlying certain forms of motor learning. LTD is induced by the conjunctive stimulation of parallel fibers and climbing fibers, both of which supply excitatory inputs to Purkinje cells. The conjunctive stimulation induces a large increase in intracellular Ca(2+) concentration ([Ca(2+)](i)) in Purkinje cells. Although the increase in [Ca(2+)](i) is essential for LTD induction, the downstream signal transduction mechanism remains elusive. In this study, we show that LTD induction requires the activation of the Ca(2+)/calmodulin-dependent protein phosphatase 2B calcineurin. In acute cerebellar slices of mice, the LTD amplitude was significantly reduced in the presence of calcineurin inhibitors (cyclosporin A or FK506), whereas the basic electrophysiological properties of the parallel fiber-Purkinje cell synaptic transmission remained constant. Furthermore, a calcineurin autoinhibitory peptide perfused into Purkinje cells completely blocked LTD induction. On the other hand, microcystin LR, an inhibitor of protein phosphatase 1 and 2A, did not affect the induction of LTD. These results indicate that calcineurin activation is essential for LTD induction downstream of the conjunctive-stimulation-induced Ca(2+) signal in Purkinje cells.
Collapse
Affiliation(s)
- Akiko Fujiwara
- Department of Pharmacology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | |
Collapse
|
211
|
Ehlers MD, Heine M, Groc L, Lee MC, Choquet D. Diffusional trapping of GluR1 AMPA receptors by input-specific synaptic activity. Neuron 2007; 54:447-60. [PMID: 17481397 PMCID: PMC1993808 DOI: 10.1016/j.neuron.2007.04.010] [Citation(s) in RCA: 231] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Revised: 01/21/2007] [Accepted: 04/10/2007] [Indexed: 11/25/2022]
Abstract
Synaptic activity regulates the postsynaptic accumulation of AMPA receptors over timescales ranging from minutes to days. Indeed, the regulated trafficking and mobility of GluR1 AMPA receptors underlies many forms of synaptic potentiation at glutamatergic synapses throughout the brain. However, the basis for synapse-specific accumulation of GluR1 is unknown. Here we report that synaptic activity locally immobilizes GluR1 AMPA receptors at individual synapses. Using single-molecule tracking together with the silencing of individual presynaptic boutons, we demonstrate that local synaptic activity reduces diffusional exchange of GluR1 between synaptic and extraynaptic domains, resulting in postsynaptic accumulation of GluR1. At neighboring inactive synapses, GluR1 is highly mobile with individual receptors frequently escaping the synapse. Within the synapse, spontaneous activity confines the diffusional movement of GluR1 to restricted subregions of the postsynaptic membrane. Thus, local activity restricts GluR1 mobility on a submicron scale, defining an input-specific mechanism for regulating AMPA receptor composition and abundance.
Collapse
Affiliation(s)
- Michael D Ehlers
- Department of Neurobiology, Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | | | |
Collapse
|
212
|
Horne EA, Dell'Acqua ML. Phospholipase C is required for changes in postsynaptic structure and function associated with NMDA receptor-dependent long-term depression. J Neurosci 2007; 27:3523-34. [PMID: 17392468 PMCID: PMC6672111 DOI: 10.1523/jneurosci.4340-06.2007] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
NMDA receptor (NMDAR)-dependent hippocampal synaptic plasticity underlying learning and memory coordinately regulates dendritic spine structure and AMPA receptor (AMPAR) postsynaptic strength through poorly understood mechanisms. Induction of long-term depression (LTD) activates protein phosphatase 2B/calcineurin (CaN), leading to dendritic spine shrinkage through actin depolymerization and AMPAR depression through receptor dephosphorylation and internalization. The scaffold proteins A-kinase-anchoring protein 79/150 (AKAP79/150) and postsynaptic density 95 (PSD95) form a complex that controls the opposing actions of the cAMP-dependent protein kinase (PKA) and CaN in regulation of AMPAR phosphorylation. The AKAP79/150-PSD95 complex is disrupted in hippocampal neurons during LTD coincident with internalization of AMPARs, decreases in PSD95 levels, and loss of AKAP79/150 and PKA from spines. AKAP79/150 is targeted to spines through binding F-actin and the phospholipid phosphatidylinositol-(4,5)-bisphosphate (PIP2). Previous electrophysiological studies have demonstrated that inhibition of phospholipase C (PLC)-catalyzed hydrolysis of PIP2 inhibits NMDAR-dependent LTD; however, the signaling mechanisms that link PLC activation to alterations in dendritic spine structure and AMPAR function in LTD are unknown. We show here that NMDAR stimulation of PLC in cultured hippocampal neurons is necessary for AKAP79/150 loss from spines and depolymerization of spine actin. Importantly, we demonstrate that NMDAR activation of PLC is also necessary for decreases in spine PSD95 levels and AMPAR internalization. Thus, PLC signaling is required for structural and functional changes in spine actin, PSD scaffolding, and AMPAR trafficking underlying postsynaptic expression of LTD.
Collapse
Affiliation(s)
| | - Mark L. Dell'Acqua
- Department of Pharmacology
- Program in Neuroscience, School of Medicine, University of Colorado at Denver and Health Sciences Center, Aurora, Colorado 80045
| |
Collapse
|
213
|
Cole AR, Astell A, Green C, Sutherland C. Molecular connexions between dementia and diabetes. Neurosci Biobehav Rev 2007; 31:1046-63. [PMID: 17544131 DOI: 10.1016/j.neubiorev.2007.04.004] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Revised: 03/27/2007] [Accepted: 04/11/2007] [Indexed: 12/29/2022]
Abstract
Recent evidence suggests that the molecular defects associated with the development of diabetes also contribute to an increased risk of all types of dementia, including Alzheimer's disease, vascular dementia and Pick's disease. Indeed, the presence of type II diabetes mellitus results in a two to three fold higher risk of developing dementia [Fontbonne et al., 2001. Changes in cognitive abilities over a 4-year period are unfavourably affected in elderly diabetic subjects: results of the Epidemiology of Vascular Aging Study. Diabetes Care 24, 366-370; Gregg et al., 2000. Is diabetes associated with cognitive impairment and cognitive decline among older women? Study of Osteoporotic Fractures Research Group. Archives of Internal Medicine 160, 174-180; Peila et al., 2002. Type 2 diabetes, APOE gene, and the risk for dementia and related pathologies: The Honolulu-Asia Aging Study. Diabetes 51, 1256-1262]. There are currently 250 million people worldwide (>2 million in the UK) diagnosed with diabetes, and this number is predicted to double within the next 20 years, therefore the associated risk translates into a potential explosion in the appearance of dementia in the population. This review primarily focuses on the proposed molecular links between insulin action, Diabetes and Alzheimer's disease, while discussing the potential for therapeutic intervention to alleviate these disorders. In particular, we will review the regulation of glycogen synthase kinase-3 (GSK-3) and its neuronal substrates.
Collapse
Affiliation(s)
- Adam R Cole
- Division of Pathology and Neurosciences, University of Dundee, Ninewells Hospital, Dundee, Scotland, UK
| | | | | | | |
Collapse
|
214
|
Kopp C, Longordo F, Lüthi A. Experience-dependent changes in NMDA receptor composition at mature central synapses. Neuropharmacology 2007; 53:1-9. [PMID: 17499817 DOI: 10.1016/j.neuropharm.2007.03.014] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Revised: 03/15/2007] [Accepted: 03/24/2007] [Indexed: 01/29/2023]
Abstract
N-methyl-D-aspartate receptor (NMDAR) activation is obligatory for the induction of diverse forms of synaptic plasticity. The molecular composition and the function of NMDARs are themselves modified by synaptic activity, which, in turn, alters the ability of synapses to undergo subsequent plastic modification. This homeostatic control of synaptic plasticity is well-known for the experience-dependent development of sensory cortices. However, it is now becoming clear that NMDAR properties may not only be altered at juvenile, but also at mature synapses. Diverse types of behavioral manipulation, such as sensory experience, learning and sleep deprivation alter the NR2A/NR2B ratio of hippocampal or cortical NMDARs. As an additional facet to the dynamics of NMDAR function, NMDAR trafficking is regulated by G-protein-coupled neurotransmitter receptors implicated in learning and arousal, such as orexin and dopamine. These findings suggest that mature glutamatergic synapses may be modified by recent activity via alterations in synaptic NMDAR function. Rapid forms of NMDAR trafficking, perhaps controlled by the neurochemical environment featuring specific states of arousal and learning, may regulate plasticity and modulate cognitive abilities in adulthood.
Collapse
Affiliation(s)
- Caroline Kopp
- Division of Pharmacology and Neurobiology, Biozentrum, University of Basel, Basel, Switzerland
| | | | | |
Collapse
|
215
|
Bruneau EG, Akaaboune M. Running to stand still: ionotropic receptor dynamics at central and peripheral synapses. Mol Neurobiol 2007; 34:137-51. [PMID: 17220535 DOI: 10.1385/mn:34:2:137] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2006] [Revised: 11/30/1999] [Accepted: 06/21/2006] [Indexed: 02/07/2023]
Abstract
For synapses to form and function, neurotransmitter receptors must be recruited to a location on the postsynaptic cell in direct apposition to presynaptic neurotransmitter release. However, once receptors are inserted into the postsynaptic membrane, they are not fixed in place but are continually exchanged between synaptic and extrasynaptic regions, and they cycle between the surface and intracellular compartments. This article highlights and compares the current knowledge about the dynamics of acetylcholine receptors at the vertebrate peripheral neuromuscular junction and AMPA, N-methyl-D-aspartate, and gamma-aminobutyric acid receptors in central synapses.
Collapse
Affiliation(s)
- Emile G Bruneau
- Department of Molecular, Cellular and Developmental Biology and Program in Neuroscience, University of Michigan, Ann Arbor, MI, USA
| | | |
Collapse
|
216
|
Metzler M, Gan L, Pan Wong T, Liu L, Helm J, Liu L, Georgiou J, Wang Y, Bissada N, Cheng K, Roder JC, Wang YT, Hayden MR. NMDA receptor function and NMDA receptor-dependent phosphorylation of huntingtin is altered by the endocytic protein HIP1. J Neurosci 2007; 27:2298-308. [PMID: 17329427 PMCID: PMC6673493 DOI: 10.1523/jneurosci.5175-06.2007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Huntingtin-interacting protein 1 (HIP1) is an endocytic adaptor protein that plays a role in clathrin-mediated endocytosis and the ligand-induced internalization of AMPA receptors (AMPARs) (Metzler et al., 2003). In the present study, we investigated the role of HIP1 in NMDA receptor (NMDAR) function by analyzing NMDA-dependent transport and NMDA-induced excitotoxicity in neurons from HIP1-/- mice. HIP1 colocalizes with NMDARs in hippocampal and cortical neurons and affinity purifies with NMDARs by GST (glutathione S-transferase) pull down and coimmunoprecipitation. A profound decrease in NMDA-induced AMPAR internalization of 75% occurs in neurons from HIP1-/- mice compared with wild type, using a quantitative single-cell-based internalization assay. This defect in NMDA-dependent removal of surface AMPARs is in agreement with the observed defect in long-term depression induction in hippocampal brain slices of HIP1-/- mice and supports a role of HIP1 in AMPAR internalization in vivo. HIP1-/- neurons are partially protected from NMDA-induced excitotoxicity as assessed by LDH (lactate dehydrogenase) release, TUNEL (terminal deoxynucleotidyl transferase-mediated biotinylated dUTP nick end labeling) and caspase-3 activation assays, which points to a role of HIP1 in NMDA-induced cell death. Interestingly, phosphorylation of Akt and its substrate huntingtin (htt) decreases during NMDA-induced excitotoxicity by 48 and 31%, respectively. This decrease is significantly modulated by HIP1, resulting in 94 and 48% changes in P-Akt and P-htt levels in HIP1-/- neurons, respectively. In summary, we have shown that HIP1 influences important NMDAR functions and that both HIP1 and htt participate in NMDA-induced cell death. These findings may provide novel insights into the cellular mechanisms underlying enhanced NMDA-induced excitotoxicity in Huntington's disease.
Collapse
Affiliation(s)
- Martina Metzler
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada V5Z 4H4
| | - Lu Gan
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada V5Z 4H4
| | - Tak Pan Wong
- Department of Medicine and The Brain Research Centre, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3, and
| | - Lidong Liu
- Department of Medicine and The Brain Research Centre, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3, and
| | - Jeffrey Helm
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada V5Z 4H4
| | - Lili Liu
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada V5Z 4H4
| | - John Georgiou
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada M5G 1X5
| | - Yushan Wang
- Department of Medicine and The Brain Research Centre, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3, and
| | - Nagat Bissada
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada V5Z 4H4
| | - Kevin Cheng
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada V5Z 4H4
| | - John C. Roder
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada M5G 1X5
| | - Yu Tian Wang
- Department of Medicine and The Brain Research Centre, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3, and
| | - Michael R. Hayden
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada V5Z 4H4
| |
Collapse
|
217
|
Yi JJ, Ehlers MD. Emerging roles for ubiquitin and protein degradation in neuronal function. Pharmacol Rev 2007; 59:14-39. [PMID: 17329546 DOI: 10.1124/pr.59.1.4] [Citation(s) in RCA: 176] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Alterations in cellular structure and synapse composition are central to proper nervous system function. Recent work has identified the ubiquitin-proteasome system (UPS) as a key regulator of neuronal biology. The UPS is essential for the growth and development of immature neurons and is a critical mediator of synaptic adaptability in mature neurons. Furthermore, proteinaceous deposits that accumulate in diverse neurodegenerative disorders are enriched in components of the UPS, suggesting that UPS dysfunction may be pivotal for pathogenesis. Here, we summarize existing knowledge about the role of the UPS in brain function, highlighting recent work delineating its importance in neuronal development, plasticity, and degeneration.
Collapse
Affiliation(s)
- Jason J Yi
- Program in Cell and Molecular Biology, Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
218
|
Jones TL, Hefferan MP, Marsala M, Sorkin LS. Low-speed subcellular fractionation method for determining noxious stimulus-evoked spinal neurokinin-1 receptor internalization. J Neurosci Methods 2007; 161:23-31. [PMID: 17083983 DOI: 10.1016/j.jneumeth.2006.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2006] [Revised: 09/28/2006] [Accepted: 10/02/2006] [Indexed: 11/18/2022]
Abstract
Substance P release from nociceptive primary afferents activates post-synaptic neurokinin-1 (NK-1) receptors causing subsequent NK-1 receptor internalization. Fluorescent immunohistochemistry is typically used to quantify NK-1 receptor internalization, an indirect measure of substance P (SP) release. However, this technique entails several limitations that restrict its application. Using simple subcellular fractionation and immunoblotting methods, we demonstrate that intrathecal SP invokes a rapid and dose-dependent increase in dorsal horn cytoplasmic NK-1 receptors. We also show that hind paw compression and noxious thermal stimulation increase cytoplasmic NK-1 receptor, when compared to sham stimulations. Fluorescent immunohistochemistry confirmed that increases in cytoplasmic NK-1 corresponded with increased NK-1 receptor internalization. Herein, we report that low-speed centrifugation and Western immunoblotting provide NK-1 internalization results consistent with those obtained by more traditional methods. These data support previous findings demonstrating a role for spinal NK-1 receptors in nociceptive processing.
Collapse
Affiliation(s)
- Toni L Jones
- University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0818, USA.
| | | | | | | |
Collapse
|
219
|
Kastning K, Kukhtina V, Kittler JT, Chen G, Pechstein A, Enders S, Lee SH, Sheng M, Yan Z, Haucke V. Molecular determinants for the interaction between AMPA receptors and the clathrin adaptor complex AP-2. Proc Natl Acad Sci U S A 2007; 104:2991-6. [PMID: 17289840 PMCID: PMC1815294 DOI: 10.1073/pnas.0611170104] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2006] [Indexed: 12/22/2022] Open
Abstract
alpha-Amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)-type glutamate receptors undergo constitutive and ligand-induced internalization that requires dynamin and the clathrin adaptor complex AP-2. We report here that an atypical basic motif within the cytoplasmic tails of AMPA-type glutamate receptors directly associates with mu2-adaptin by a mechanism similar to the recognition of the presynaptic vesicle protein synaptotagmin 1 by AP-2. A synaptotagmin 1-derived AP-2 binding peptide competes the interaction of the AMPA receptor subunit GluR2 with AP-2mu and increases the number of surface active glutamate receptors in living neurons. Moreover, fusion of the GluR2-derived tail peptide with a synaptotagmin 1 truncation mutant restores clathrin/AP-2-dependent internalization of the chimeric reporter protein. These data suggest that common mechanisms regulate AP-2-dependent internalization of pre- and postsynaptic membrane proteins.
Collapse
Affiliation(s)
- Kathrin Kastning
- *Department of Membrane Biochemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 6, 14195 Berlin, Germany
| | - Viktoria Kukhtina
- *Department of Membrane Biochemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 6, 14195 Berlin, Germany
| | - Josef T. Kittler
- Department of Physiology, University College London, London WC1E 6BT, United Kingdom
| | - Guojun Chen
- Department of Physiology and Biophysics, University at Buffalo, State University of New York, Buffalo, NY 14214
| | - Arndt Pechstein
- *Department of Membrane Biochemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 6, 14195 Berlin, Germany
| | - Sven Enders
- Department of Clinical Biochemistry and Pathobiochemistry, Charite Campus Benjamin Franklin, Freie Universität Berlin, Hindenburgdamm 30, 12200 Berlin, Germany; and
| | - Sang Hyoung Lee
- Picower Center for Learning and Memory, RIKEN-MIT Neuroscience Research Center, Howard Hughes Medical Institute and Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Morgan Sheng
- Picower Center for Learning and Memory, RIKEN-MIT Neuroscience Research Center, Howard Hughes Medical Institute and Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Zhen Yan
- Department of Physiology and Biophysics, University at Buffalo, State University of New York, Buffalo, NY 14214
| | - Volker Haucke
- *Department of Membrane Biochemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 6, 14195 Berlin, Germany
| |
Collapse
|
220
|
Chen L, Tracy T, Nam CI. Dynamics of postsynaptic glutamate receptor targeting. Curr Opin Neurobiol 2007; 17:53-8. [PMID: 17161597 DOI: 10.1016/j.conb.2006.11.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2006] [Accepted: 11/28/2006] [Indexed: 01/01/2023]
Abstract
Targeting of glutamate receptors to synapses is an important event in both developing and mature neurons. Glutamate receptors are delivered to nascent synapses during synaptogenesis and to existing synapses during activity-dependent synaptic strengthening. Increasing evidence suggests that glutamate receptors are inserted into the plasma membrane before they accumulate at the synapse. Lateral diffusion of receptors occurs at both synaptic and non-synaptic membranes, and glutamate receptors can exchange rapidly between synaptic and extrasynaptic sites. In addition, recent studies show that postsynaptic scaffold molecules can be highly mobile. The dynamic nature of the synapse suggests that many mechanisms might be involved in regulating synapse formation and synaptic plasticity.
Collapse
Affiliation(s)
- Lu Chen
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3200, USA.
| | | | | |
Collapse
|
221
|
Coyle DE. Spinal cord transcriptional profile analysis reveals protein trafficking and RNA processing as prominent processes regulated by tactile allodynia. Neuroscience 2007; 144:144-56. [PMID: 17069981 DOI: 10.1016/j.neuroscience.2006.08.081] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2006] [Revised: 08/14/2006] [Accepted: 08/30/2006] [Indexed: 11/29/2022]
Abstract
Since partial peripheral injury does not necessarily lead to the development of neuropathic pain it is possible that a set of genes is directly regulated by the development of neuropathic pain independent of the genes regulated by nerve injury. This study identifies the genes expressed within the spinal cord that are uniquely regulated by tactile allodynia in rats. Using subtractive methods, genes regulated by allodynia were differentiated from those of nerve injury. Gene ontology analysis identified that allodynic genes are involved in a variety of processes including myelination, actin cytoskeleton reorganization, dephosphorylation, phosphorylation, response to stress, as well as protein trafficking and RNA processing. The processes of protein trafficking and RNA processing were found to be as statistically significant as other processes that have been associated with neuropathic pain development such as response to stress, phosphorylation, and cell migration. Trafficking and transcription are linked and undergo activity dependent regulation which results in both rapid and gradual synaptic changes (plasticity). The data presented here greatly expand the list of genes regulated by the development of tactile allodynia and reveal protein trafficking and RNA processing as prominent biological processes that may be involved in synaptic plasticity changes within the spinal cord in response to allodynia.
Collapse
Affiliation(s)
- D E Coyle
- Department of Anesthesiology, University of Cincinnati, 231 Albert Sabin Way, PO Box 670531, Cincinnati, OH 45267-0531, USA.
| |
Collapse
|
222
|
Gallo JM, Leigh PN. Chapter 8 Spinobulbar muscular atrophy (Kennedy's disease). HANDBOOK OF CLINICAL NEUROLOGY 2007; 82:155-69. [PMID: 18808893 DOI: 10.1016/s0072-9752(07)80011-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
223
|
Pöschel B, Stanton PK. Comparison of cellular mechanisms of long-term depression of synaptic strength at perforant path-granule cell and Schaffer collateral-CA1 synapses. PROGRESS IN BRAIN RESEARCH 2007; 163:473-500. [PMID: 17765734 DOI: 10.1016/s0079-6123(07)63026-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This chapter compares the cellular mechanisms that have been implicated in the induction and expression of long-term depression (LTD) at Schaffer collateral-CA1 synapses to perforant path-dentate gyrus (DG) synapses. In general, Schaffer collateral LTD and long-term potentiation (LTP) both appear to be a complex combination of many alterations in synaptic transmission that occur at both presynaptic and postsynaptic sites, while at perforant path synapses, most evidence has focused on postsynaptic long-term alterations. Within the DG, the medial perforant path is far more studied than lateral perforant path synapses, where most evidence relates to the induction of heterosynaptic LTD at lateral perforant path synapses when LTP is induced in the medial perforant path. Of course, there remain many other classes of synapses in the DG where synaptic plasticity, including LTD, have been largely neglected. It is clear that a better understanding of the range of DG loci where long-lasting activity-dependent plasticity, both LTD and LTP, are expressed will be essential to improve our understanding of the cognitive roles of such DG plasticity.
Collapse
Affiliation(s)
- Beatrice Pöschel
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 10595, USA
| | | |
Collapse
|
224
|
Benedict C, Hallschmid M, Schultes B, Born J, Kern W. Intranasal insulin to improve memory function in humans. Neuroendocrinology 2007; 86:136-42. [PMID: 17643054 DOI: 10.1159/000106378] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2007] [Accepted: 06/25/2007] [Indexed: 01/08/2023]
Abstract
BACKGROUND Compelling evidence indicates that central nervous insulin enhances learning and memory and in particular benefits hippocampus-dependent (i.e., declarative) memory. Intranasal administration of insulin provides an effective way of delivering the compound to the central nervous system, bypassing the blood-brain barrier and avoiding systemic side effects. METHODS Here we review a series of recent studies on the effects of intranasally administered insulin on memory functions in humans. In accordance with the beneficial effects of intravenously administered insulin on hippocampus-dependent declarative memory observed in hyperinsulinemic-euglycemic clamp studies, intranasal insulin administration similarly improves this type of memory, but in the absence of adverse peripheral side effects. RESULT AND CONCLUSION Considering that cerebrospinal fluid insulin levels are reduced in patients suffering from Alzheimer's disease, these results may be of considerable relevance for future clinical applications of insulin in the treatment of memory disorders.
Collapse
Affiliation(s)
- Christian Benedict
- Department of Neuroendocrinology, University of Lübeck, Lübeck, Germany.
| | | | | | | | | |
Collapse
|
225
|
Gincel D, Regan MR, Jin L, Watkins AM, Bergles DE, Rothstein JD. Analysis of cerebellar Purkinje cells using EAAT4 glutamate transporter promoter reporter in mice generated via bacterial artificial chromosome-mediated transgenesis. Exp Neurol 2007; 203:205-12. [PMID: 17022974 DOI: 10.1016/j.expneurol.2006.08.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2006] [Revised: 07/20/2006] [Accepted: 08/02/2006] [Indexed: 11/19/2022]
Abstract
The EAAT4 glutamate transporter helps regulate excitatory neurotransmission and prevents glutamate-mediated excitotoxicity in the cerebellum. Immunohistochemistry and in situ hybridization have previously defined a cerebellar cell population expressing this protein. These methods, however, are not well suited for evaluating the dynamic regulation of the transporter and its gene-especially in living tissues. To better study EAAT4 expression and regulation, we generated bacterial artificial chromosome (BAC) promoter eGFP reporter transgenic mice. Histological analysis of the transgenic mice revealed that the EAAT4 promoter is active predominantly in Purkinje cells, but can also be modestly detected in other neurons early postnatally. EAAT4 promoter activity was not present in non-neuronal cells. Cerebellar organotypic slice cultures prepared from BAC transgenic mice provided a unique reagent to study transporter and Purkinje cell expression and regulation in living tissue. The correlation of promoter activity to protein expression makes the EAAT4 BAC promoter reporter a valuable tool to study regulation of EAAT4 expression.
Collapse
Affiliation(s)
- Dan Gincel
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21287, USA
| | | | | | | | | | | |
Collapse
|
226
|
Merienne K, Friedman J, Akimoto M, Abou-Sleymane G, Weber C, Swaroop A, Trottier Y. Preventing polyglutamine-induced activation of c-Jun delays neuronal dysfunction in a mouse model of SCA7 retinopathy. Neurobiol Dis 2006; 25:571-81. [PMID: 17189700 PMCID: PMC1858671 DOI: 10.1016/j.nbd.2006.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2006] [Revised: 10/27/2006] [Accepted: 11/01/2006] [Indexed: 11/23/2022] Open
Abstract
We have approached the role of cellular stress in neurodegenerative diseases caused by polyglutamine expansion (polyQ) in the context of Spinocerebellar ataxia type 7 (SCA7) that includes retinal degeneration. Using the R7E mouse, in which polyQ-ataxin-7 is specifically over-expressed in rod photoreceptors, we previously showed that rod dysfunction correlated to moderate and prolonged activation of the JNK/c-Jun stress pathway. SCA7 retinopathy was also associated with reduced expression of rod-specific genes, including the transcription factor Nrl, which is essential for rod differentiation and function. Here, we report that R7E retinopathy is improved upon breeding with the JunAA knock-in mice, in which JNK-mediated activation of c-Jun is compromised. Expression of Nrl and its downstream targets, which are involved in phototranduction, are partially restored in the JunAA-R7E mice. We further show that c-Jun can directly repress the transcription of Nrl. Our studies suggest that polyQ-induced cellular stress leads to repression of genes necessary for neuronal fate and function.
Collapse
Affiliation(s)
- Karine Merienne
- Department of Molecular Pathology, Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC), CNRS/INSERM/ULP, BP10142, 67404 Illkirch Cédex, CU de Strasbourg
- Chaire de Génétique Humaine, Collège de France
| | - James Friedman
- Department of Ophthalmology & Visual Sciences, W.K. Kellogg Eye Center, University of Michigan, Ann Arbor, MI 48105, USA
| | - Masayuki Akimoto
- Department of Ophthalmology & Visual Sciences, W.K. Kellogg Eye Center, University of Michigan, Ann Arbor, MI 48105, USA
- Translational Research Center, Kyoto University Hospital, Japan
| | - Gretta Abou-Sleymane
- Department of Molecular Pathology, Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC), CNRS/INSERM/ULP, BP10142, 67404 Illkirch Cédex, CU de Strasbourg
- Chaire de Génétique Humaine, Collège de France
| | - Chantal Weber
- Department of Molecular Pathology, Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC), CNRS/INSERM/ULP, BP10142, 67404 Illkirch Cédex, CU de Strasbourg
- Chaire de Génétique Humaine, Collège de France
| | - Anand Swaroop
- Department of Ophthalmology & Visual Sciences, W.K. Kellogg Eye Center, University of Michigan, Ann Arbor, MI 48105, USA
- Department of Human Genetics, W.K. Kellogg Eye Center, University of Michigan, Ann Arbor, MI 48105, USA
| | - Yvon Trottier
- Department of Molecular Pathology, Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC), CNRS/INSERM/ULP, BP10142, 67404 Illkirch Cédex, CU de Strasbourg
- Chaire de Génétique Humaine, Collège de France
| |
Collapse
|
227
|
Earnshaw BA, Bressloff PC. Biophysical model of AMPA receptor trafficking and its regulation during long-term potentiation/long-term depression. J Neurosci 2006; 26:12362-73. [PMID: 17122061 PMCID: PMC6675437 DOI: 10.1523/jneurosci.3601-06.2006] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AMPA receptors mediate the majority of fast excitatory synaptic transmission in the CNS, and evidence suggests that AMPA receptor trafficking regulates synaptic strength, a phenomenon implicated in learning and memory. There are two major mechanisms of AMPA receptor trafficking: exocytic/endocytic exchange of surface receptors with intracellular receptor pools, and the lateral diffusion or hopping of surface receptors between the postsynaptic density and the surrounding extrasynaptic membrane. In this paper, we present a biophysical model of these trafficking mechanisms under basal conditions and during the expression of long-term potentiation (LTP) and depression (LTD). We show how our model reproduces a wide range of physiological data, and use this to make predictions regarding possible targets of second-messenger pathways activated during the induction phase of LTP/LTD.
Collapse
Affiliation(s)
- Berton A. Earnshaw
- Department of Mathematics, University of Utah, Salt Lake City, Utah 84112
| | - Paul C. Bressloff
- Department of Mathematics, University of Utah, Salt Lake City, Utah 84112
| |
Collapse
|
228
|
Hsieh H, Boehm J, Sato C, Iwatsubo T, Tomita T, Sisodia S, Malinow R. AMPAR removal underlies Abeta-induced synaptic depression and dendritic spine loss. Neuron 2006; 52:831-43. [PMID: 17145504 PMCID: PMC1850952 DOI: 10.1016/j.neuron.2006.10.035] [Citation(s) in RCA: 834] [Impact Index Per Article: 43.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Revised: 06/10/2006] [Accepted: 10/26/2006] [Indexed: 12/15/2022]
Abstract
Beta amyloid (Abeta), a peptide generated from the amyloid precursor protein (APP) by neurons, is widely believed to underlie the pathophysiology of Alzheimer's disease. Recent studies indicate that this peptide can drive loss of surface AMPA and NMDA type glutamate receptors. We now show that Abeta employs signaling pathways of long-term depression (LTD) to drive endocytosis of synaptic AMPA receptors. Synaptic removal of AMPA receptors is necessary and sufficient to produce loss of dendritic spines and synaptic NMDA responses. Our studies indicate the central role played by AMPA receptor trafficking in Abeta-induced modification of synaptic structure and function.
Collapse
Affiliation(s)
- Helen Hsieh
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | | | | | | | | | | | |
Collapse
|
229
|
Selak S, Paternain AV, Fritzler MJ, Lerma J. Human autoantibodies against early endosome antigen-1 enhance excitatory synaptic transmission. Neuroscience 2006; 143:953-64. [PMID: 17113235 DOI: 10.1016/j.neuroscience.2006.10.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Revised: 10/05/2006] [Accepted: 10/07/2006] [Indexed: 11/17/2022]
Abstract
Early endosome antigen 1 (EEA1), a peripheral membrane protein associated with the cytoplasmic face of early endosomes, controls vesicle fusion during endocytosis, as extensively studied in non-neuronal cells. In neurons, early endosomes are involved in recycling of synaptic vesicles and neurotransmitter receptors. Since certain patients bearing autoantibodies that target EEA1 develop neurological disease, we studied the subcellular distribution of EEA1 in neurons and the effect on neurotransmission of purified immunoglobulins from the serum of a patient bearing EEA1 autoantibodies. EEA1 was localized in the soma and in the postsynaptic nerve terminals. Electrophysiological recordings in hippocampal slices including purified EEA1 antibodies in the patch pipette solution, revealed a run-up of AMPA, N-methyl-D-aspartate and kainate receptor-mediated excitatory post-synaptic currents recorded from CA3 pyramidal neurons, which was absent in the recordings obtained in the presence of control human immunoglobulin G. Inclusion of human EEA1 antibodies had no effect on inhibitory post-synaptic responses. Recordings in the presence of a dominant-negative C-terminal EEA1 deletion mutant produced a similar effect as observed with human anti-EEA1 antibodies. This specific effect on the excitatory synaptic transmission may be due to the impairment of internalization of specific glutamate receptors and their subsequent accumulation in the synapse. These results may account for the neurological deficits observed in some patients developing EEA1 autoantibodies.
Collapse
Affiliation(s)
- S Selak
- Instituto de Neurociencias de Alicante, Consejo Superior de Investigaciones Científicas and Universidad Miguel Hernández, Aptdo 18, 03550 Sant Joan d'Alacant, Spain
| | | | | | | |
Collapse
|
230
|
Lai C, Xie C, McCormack SG, Chiang HC, Michalak MK, Lin X, Chandran J, Shim H, Shimoji M, Cookson MR, Huganir RL, Rothstein JD, Price DL, Wong PC, Martin LJ, Zhu JJ, Cai H. Amyotrophic lateral sclerosis 2-deficiency leads to neuronal degeneration in amyotrophic lateral sclerosis through altered AMPA receptor trafficking. J Neurosci 2006; 26:11798-806. [PMID: 17093100 PMCID: PMC2556290 DOI: 10.1523/jneurosci.2084-06.2006] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Revised: 08/31/2006] [Accepted: 10/04/2006] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS), the most common adult-onset motor neuron disease is caused by a selective loss of motor neurons. One form of juvenile onset autosomal recessive ALS (ALS2) has been linked to the loss of function of the ALS2 gene. The pathogenic mechanism of ALS2-deficiency, however, remains unclear. To further understand the function of alsin that is encoded by the full-length ALS2 gene, we screened proteins interacting with alsin. Here, we report that alsin interacted with glutamate receptor interacting protein 1 (GRIP1) both in vitro and in vivo, and colocalized with GRIP1 in neurons. In support of the physiological interaction between alsin and GRIP1, the subcellular distribution of GRIP1 was altered in ALS2(-/-) spinal motor neurons, which correlates with a significant reduction of AMPA-type glutamate receptor subunit 2 (GluR2) at the synaptic/cell surface of ALS2(-/-) neurons. The decrease of calcium-impermeable GluR2-containing AMPA receptors at the cell/synaptic surface rendered ALS2(-/-) neurons more susceptible to glutamate receptor-mediated neurotoxicity. Our findings reveal a novel function of alsin in AMPA receptor trafficking and provide a novel pathogenic link between ALS2-deficiency and motor neuron degeneration, suggesting a protective role of alsin in maintaining the survival of motor neurons.
Collapse
Affiliation(s)
- Chen Lai
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland 20892
| | - Chengsong Xie
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland 20892
| | - Stefanie G. McCormack
- Department of Pharmacology and Neuroscience Graduate Program, University of Virginia School of Medicine, Charlottesville, Virginia 22908
| | | | - Marta K. Michalak
- Department of Pharmacology and Neuroscience Graduate Program, University of Virginia School of Medicine, Charlottesville, Virginia 22908
- Biotechnology Graduate Program, Technical University of Łódź, 90-924 Łódź, Poland
| | - Xian Lin
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland 20892
| | - Jayanth Chandran
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland 20892
| | - Hoon Shim
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland 20892
| | - Mika Shimoji
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland 20892
| | - Mark R. Cookson
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland 20892
| | - Richard L. Huganir
- Neuroscience, and
- Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, and
| | | | | | | | | | - J. Julius Zhu
- Department of Pharmacology and Neuroscience Graduate Program, University of Virginia School of Medicine, Charlottesville, Virginia 22908
| | - Huaibin Cai
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
231
|
Abstract
Rearrangement of molecular structures at individual synapses can contribute to network plasticity. At mossy fiber presynaptic terminals, experience regulates both connectivity and structure of individual boutons. Moreover, dendritic spines and postsynaptic densities of glutamatergic synapses rapidly form and remodel in an activity-dependent manner. Recent studies of the postsynaptic scaffold molecule gephyrin have now revealed that also inhibitory shaft synapses undergo rapid remodeling at the postsynaptic scaffold level. Taking into account that also surface membrane receptors are highly mobile, local coincidence of receptors and scaffold elements in adjacent layers at dendritic shafts might depend on regulatory processes underlying synaptic plasticity.
Collapse
Affiliation(s)
- Matthias Kneussel
- Zentrum für Molekulare Neurobiologie Hamburg, ZMNH, Universität Hamburg, Falkenried 94, D-20251 Hamburg, Germany.
| |
Collapse
|
232
|
Murphy JA, Jensen ON, Walikonis RS. BRAG1, a Sec7 domain-containing protein, is a component of the postsynaptic density of excitatory synapses. Brain Res 2006; 1120:35-45. [PMID: 17045249 DOI: 10.1016/j.brainres.2006.08.096] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2006] [Revised: 08/16/2006] [Accepted: 08/21/2006] [Indexed: 12/13/2022]
Abstract
The postsynaptic density (PSD) at excitatory synapses is a dynamic complex of glutamatergic receptors and associated proteins that governs synaptic structure and coordinates signal transduction. In this study, we report that BRAG1, a putative guanine nucleotide exchange factor for the Arf family of GTP-binding proteins, is a major component of the PSD. BRAG1 was identified in a 190 kDa band in the PSD fraction with the use of mass spectrometry coupled to searching of a protein sequence database. BRAG1 expression is abundant in the adult rat forebrain, and it is strongly enriched in the PSD fraction compared to forebrain homogenate and synaptosomes. Immunocytochemical localization of BRAG1 in dissociated hippocampal neurons shows that it forms discrete clusters that colocalize with the postsynaptic marker PSD-95 at sites along dendrites. BRAG1 contains a Sec7 domain, a domain that catalyzes exchange of GDP for GTP on the Arf family of small GTP-binding proteins. In their GTP-bound active state, Arfs regulate trafficking of vesicles and cytoskeletal structure. We demonstrate that the Sec7 domain of BRAG1 promotes binding of GTP to Arf in vitro. These data suggest that BRAG1 may modulate the functions of Arfs at synaptic sites.
Collapse
Affiliation(s)
- Jessica A Murphy
- Department of Physiology and Neurobiology, University of Connecticut, 75 North Eagleville Road, U-3156, Storrs, CT 06269, USA
| | | | | |
Collapse
|
233
|
Abstract
Neurons are among the largest and most complex cells in the body. Their immense size and intricate geometry pose many unique cell-biological problems. How is dendritic architecture established and maintained? How do neurons traffic newly synthesized integral membrane proteins over such long distances to synapses? Functionally, protein trafficking to and from the postsynaptic membrane has emerged as a key mechanism underlying various forms of synaptic plasticity. Which organelles are involved in postsynaptic trafficking, and how do they integrate and respond to activity at individual synapses? Here we review what is currently known about long-range trafficking of newly synthesized postsynaptic proteins as well as the local rules that govern postsynaptic trafficking at individual synapses.
Collapse
Affiliation(s)
- Matthew J Kennedy
- Howard Hughes Medical Institute, Department of Neurobiology, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | |
Collapse
|
234
|
Mao SC, Hsiao YH, Gean PW. Extinction training in conjunction with a partial agonist of the glycine site on the NMDA receptor erases memory trace. J Neurosci 2006; 26:8892-9. [PMID: 16943544 PMCID: PMC6675349 DOI: 10.1523/jneurosci.0365-06.2006] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2006] [Revised: 06/20/2006] [Accepted: 07/20/2006] [Indexed: 11/21/2022] Open
Abstract
Much evidence indicates that extinction training does not erase memory traces but instead forms inhibitory learning that prevents the expression of original memory. Fear conditioning induces long-term potentiation and drives synaptic insertion of AMPA receptors into the amygdala. Here we show that extinction training applied 1 h after training reversed the conditioning-induced increase in surface glutamate receptor subunit 1 (GluR1) in parallel with the inhibition of startle potentiation. However, if applied 24 h after training, extinction training reduced startle potentiation without influencing the GluR1 increase. We infused D-cycloserine (DCS), a partial agonist of the glycine site on the NMDA receptor, bilaterally into the amygdala 30 min before extinction training. This augmented the extinction training-elicited reduction in startle and reversed the conditioning-induced increase in GluR1. Delivery of five sets of tetanic stimulation (TS) to the external capsule produced a robust enhancement of synaptic responses in the lateral amygdala neurons that persisted for >2 h. Low-frequency stimulation applied 1 h after TS had no long-lasting effect on synaptic responses. The same treatments, however, induced depotentiation in the presence of DCS and reversed TS-induced increase in surface GluR1. Together, this study has two important findings: (1) whether a memory trace remains intact or is erased depends on the interval between conditioning and extinction training and (2) DCS facilitates the reversal of memory trace. DCS-induced augmentation of extinction and reversal of GluR1 surface expression are likely mediated by DCS-facilitated endocytosis of AMPA receptors.
Collapse
Affiliation(s)
- Sheng-Chun Mao
- Institute of Basic Medical Sciences and Department of Pharmacology, Center for Gene Regulation and Signal Transduction Research, National Cheng-Kung University, Tainan 701, Taiwan
| | - Ya-Hsin Hsiao
- Institute of Basic Medical Sciences and Department of Pharmacology, Center for Gene Regulation and Signal Transduction Research, National Cheng-Kung University, Tainan 701, Taiwan
| | - Po-Wu Gean
- Institute of Basic Medical Sciences and Department of Pharmacology, Center for Gene Regulation and Signal Transduction Research, National Cheng-Kung University, Tainan 701, Taiwan
| |
Collapse
|
235
|
Nakamichi N, Yoneda Y. Maturation-dependent reduced responsiveness of intracellular free Ca2+ ions to repeated stimulation by N-methyl-d-aspartate in cultured rat cortical neurons. Neurochem Int 2006; 49:230-7. [PMID: 16517022 DOI: 10.1016/j.neuint.2006.01.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2005] [Revised: 01/10/2006] [Accepted: 01/17/2006] [Indexed: 11/25/2022]
Abstract
In contrast to other ionotropic glutamate receptors, N-methyl-d-aspartate (NMDA) receptor channels are rather stable after the simulation. Brief exposure to NMDA at 50 microM rapidly increased the fluorescence intensity for increased intracellular free Ca(2+) levels in a reversible- and concentration-dependent manner in rat cortical neurons cultured for 3-15 days in vitro (DIV), while EC(50) values were significantly decreased in proportion to cellular maturation from 3 to 15 DIV. Although a constant increase was persistently seen in the fluorescence throughout the sustained exposure to NMDA for 60 min irrespective of the cell maturation from 3 to 15 DIV, the second brief exposure for 5 min resulted in a less efficient increase in the fluorescence than that found after the first brief exposure for 5 min in a manner dependent on intervals between the two repetitive brief exposures. In vitro maturation significantly shortened the interval required for the reduced responsiveness to the second brief exposure, while in immature neurons prolonged intervals were required for the reduced responsiveness to the second brief exposure to NMDA. Moreover, brief exposure to NMDA led to a marked decrease in immunoreactivity to extracellular loop of NR1 subunit in cultured neurons not permeabilized in proportion to the time after washing. These results suggest that cellular maturation would facilitate the desensitization process to repeated stimulation by NMDA, without markedly affecting that to sustained stimulation, through a mechanism related to the decreased number of NMDA receptors expressed at cell surfaces in cultured rat cortical neurons.
Collapse
Affiliation(s)
- Noritaka Nakamichi
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Natural Science and Technology, Kakuma-machi, Ishikawa 920-1192, Japan
| | | |
Collapse
|
236
|
Vázquez-López A, Sierra-Paredes G, Sierra-Marcuño G. Anticonvulsant effect of the calcineurin inhibitor ascomycin on seizures induced by picrotoxin microperfusion in the rat hippocampus. Pharmacol Biochem Behav 2006; 84:511-6. [PMID: 16872668 DOI: 10.1016/j.pbb.2006.06.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2006] [Revised: 06/13/2006] [Accepted: 06/21/2006] [Indexed: 11/23/2022]
Abstract
The potential in vivo anticonvulsant effect of calcineurin (protein phosphatase 2B) inhibitor ascomycin against seizures induced by intrahippocampal microdialysis of picrotoxin was examined in the present study. After establishing individual picrotoxin seizure thresholds, ascomycin was continually microperfused into the rat hippocampus through microdialysis probes at concentrations 10, 50 and 100 microM. No behavioral or electroencephalographic effects were observed during microperfusion of ascomycin alone. Low concentrations (10 microM) of ascomycin did not prevent picrotoxin seizures, however, 50 and 100 microM ascomycin showed antiepileptic effect, completely suppressing seizures in 41.7% and 75% of the animals studied respectively. Mean seizure duration and mean number of seizures were significantly reduced (P < 0.01) by microperfusion of 100 microM ascomycin. Calcineurin activity might be involved in the biochemical changes leading to picrotoxin-induced epileptic seizures. The present findings provide additional in vivo evidence of the involvement of phosphorylation/dephosphorylation mechanisms in the development of epileptic seizures, suggesting that calcineurin modulation may be a possible strategy in the search for new anticonvulsant drugs.
Collapse
Affiliation(s)
- Araceli Vázquez-López
- Neuroscience Division, Department of Biochemistry and Molecular Biology, School of Medicine, University of Santiago, San Francisco 1, 15782 Santiago de Compostela, Spain
| | | | | |
Collapse
|
237
|
Abstract
Glutamatergic synapses in the central nervous system are characterized by an electron-dense web underneath the postsynaptic membrane; this web is called the postsynaptic density (PSD). PSDs are composed of a dense network of several hundred proteins, creating a macromolecular complex that serves a wide range of functions. Prominent PSD proteins such as members of the MaGuk or ProSAP/Shank family build up a dense scaffold that creates an interface between clustered membrane-bound receptors, cell adhesion molecules and the actin-based cytoskeleton. Moreover, kinases, phosphatases and several proteins of different signalling pathways are specifically localized within the spine/PSD compartment. Small GTPases and regulating proteins are also enriched in PSDs being the molecular basis for regulated structural changes of cytoskeletal components within the synapse in response to external or internal stimuli, e.g. synaptic activation. This synaptic rearrangement (structural plasticity) is a rapid process and is believed to underlie learning and memory formation. The characterization of synapse/PSD proteins is especially important in the light of recent data suggesting that several mental disorders have their molecular defect at the synapse/PSD level.
Collapse
Affiliation(s)
- T M Boeckers
- Department of Anatomy and Cell Biology, Ulm University, 89081 Ulm, Germany.
| |
Collapse
|
238
|
Groc L, Choquet D. AMPA and NMDA glutamate receptor trafficking: multiple roads for reaching and leaving the synapse. Cell Tissue Res 2006; 326:423-38. [PMID: 16847641 DOI: 10.1007/s00441-006-0254-9] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2006] [Accepted: 05/18/2006] [Indexed: 11/29/2022]
Abstract
Glutamate receptor trafficking in and out of synapses is one of the core mechanisms for rapid changes in the number of functional receptors during synaptic plasticity. Recent data have shown that the fast gain and loss of receptors from synaptic sites are accounted for by endocytic/exocytic processes and by their lateral diffusion in the plane of the membrane. These events are interdependent and regulated by neuronal activity and interactions with scaffolding proteins. We review here the main cellular steps for AMPA and NMDA receptor synthesis, traffic within intracellular organelles, membrane exocytosis/endocytosis and surface trafficking. We focus on new findings that shed light on the regulation of receptor cycling events and surface trafficking and the way that this might reshape our thinking about the specific regulation of receptor accumulation at synapses.
Collapse
Affiliation(s)
- Laurent Groc
- UMR 5091 CNRS-Université de Bordeaux 2 Physiologie Cellulaire de la Synapse, Institut François Magendie, Rue Camille Saint Saëns, 33077 Bordeaux Cédex, France
| | | |
Collapse
|
239
|
Yamashita A, Makita K, Kuroiwa T, Tanaka K. Glutamate transporters GLAST and EAAT4 regulate postischemic Purkinje cell death: An in vivo study using a cardiac arrest model in mice lacking GLAST or EAAT4. Neurosci Res 2006; 55:264-70. [PMID: 16647773 DOI: 10.1016/j.neures.2006.03.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2005] [Revised: 03/03/2006] [Accepted: 03/16/2006] [Indexed: 11/30/2022]
Abstract
Cerebellar Purkinje cells represent a group of neurons highly vulnerable to ischemia. Excitotoxicity is thought to be an important pathophysiological mechanism in Purkinje cell death following ischemia. The glutamate transporter is the only mechanism for the removal of glutamate from the extracellular fluid in the brain. Therefore, glutamate transporters are believed to play a critical role in protecting Purkinje cells from ischemia-induced damage. Two distinct glutamate transporters, GLAST and EAAT4, are expressed most abundantly in the cerebellar cortex. GLAST is expressed in Bergmann glia, whereas EAAT4 is concentrated in the perisynaptic regions of Purkinje cell spines. However, the in vivo functional significance of these glial and neuronal glutamate transporters in postischemic Purkinje cell death is largely unknown. To clarify the role of these glutamate transporters in the protection of Purkinje cells after global brain ischemia, we evaluated Purkinje cell loss after cardiac arrest in mice lacking GLAST or EAAT4. We found that Purkinje cells with low EAAT4 expression were selectively lost after cardiac arrest in GLAST mutant mice. This result demonstrates that GLAST plays a role in preventing excitotoxic cerebellar damage after ischemia in concert with EAAT4.
Collapse
Affiliation(s)
- Akihide Yamashita
- Laboratory of Molecular Neuroscience, School of Biomedical Science and Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | | | | | | |
Collapse
|
240
|
Liu B, Liao M, Mielke JG, Ning K, Chen Y, Li L, El-Hayek YH, Gomez E, Zukin RS, Fehlings MG, Wan Q. Ischemic insults direct glutamate receptor subunit 2-lacking AMPA receptors to synaptic sites. J Neurosci 2006; 26:5309-19. [PMID: 16707783 PMCID: PMC6675311 DOI: 10.1523/jneurosci.0567-06.2006] [Citation(s) in RCA: 155] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Regulated AMPA receptor (AMPAR) trafficking at excitatory synapses is a mechanism critical to activity-dependent alterations in synaptic efficacy. The role of regulated AMPAR trafficking in insult-induced synaptic remodeling and/or cell death is, however, as yet unclear. Here we show that brief oxygen-glucose deprivation (OGD), an in vitro model of brain ischemia, promotes redistribution of AMPARs at synapses of hippocampal neurons, leading to a switch in AMPAR subunit composition. Ischemic insults promote internalization of glutamate receptor subunit 2 (GluR2)-containing AMPARs from synaptic sites via clathrin-dependent endocytosis and facilitate delivery of GluR2-lacking AMPARs to synaptic sites via soluble N-ethylmaleimide-sensitive factor attachment protein receptor-dependent exocytosis, evident at early times after insult. The OGD-induced switch in receptor subunit composition requires PKC activation, dissociation of GluR2 from AMPA receptor-binding protein, and association with protein interacting with C kinase-1. We further show that AMPARs at synapses of insulted neurons exhibit functional properties of GluR2-lacking AMPARs. AMPAR-mediated miniature EPSCs exhibit increased amplitudes and enhanced sensitivity to subunit-specific blockers of GluR2-lacking AMPARs, evident at 24 h after ischemia. The OGD-induced alterations in synaptic AMPA currents require clathrin-mediated receptor endocytosis and PKC activation. Thus, ischemic insults promote targeting of GluR2-lacking AMPARs to synapses of hippocampal neurons, mechanisms that may be relevant to ischemia-induced synaptic remodeling and/or neuronal death.
Collapse
|
241
|
Hallett PJ, Spoelgen R, Hyman BT, Standaert DG, Dunah AW. Dopamine D1 activation potentiates striatal NMDA receptors by tyrosine phosphorylation-dependent subunit trafficking. J Neurosci 2006; 26:4690-700. [PMID: 16641250 PMCID: PMC6674081 DOI: 10.1523/jneurosci.0792-06.2006] [Citation(s) in RCA: 163] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Interactions between dopaminergic and glutamatergic afferents in the striatum are essential for motor learning and the regulation of movement. An important mechanism for these interactions is the ability of dopamine, through D1 receptors, to potentiate NMDA glutamate receptor function. Here we show that, in striatal neurons, D1 receptor activation leads to rapid trafficking of NMDA receptor subunits, with increased NR1 and NR2B subunits in dendrites, enhanced coclustering of these subunits with the postsynaptic density scaffolding molecule postsynaptic density-95, and increased surface expression. The dopamine D1 receptor-mediated NMDA receptor trafficking is blocked by an inhibitor of tyrosine kinases. Blockers of tyrosine phosphatases also induce NMDA subunit trafficking, but this effect is nonselective and alters both NR2A- and NR2B-containing receptors. Furthermore, tyrosine phosphatase inhibition leads to the clustering of tyrosine-phosphorylated NR2B subunit along dendritic shafts. Our findings reveal that D1 receptor activation can potentiate striatal NMDA subunit function by directly promoting the surface insertion of the receptor complexes. This effect is regulated by the reciprocal actions of protein tyrosine phosphatases and tyrosine kinases. Modification of these pathways may be a useful therapeutic target for Parkinson's disease and other basal ganglia disorders in which abnormal function of striatal NMDA receptors contributes to the symptoms of the diseases.
Collapse
|
242
|
Xia Y, Carroll RC, Nawy S. State-dependent AMPA receptor trafficking in the mammalian retina. J Neurosci 2006; 26:5028-36. [PMID: 16687494 PMCID: PMC6674261 DOI: 10.1523/jneurosci.0169-06.2006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2005] [Revised: 04/04/2006] [Accepted: 04/05/2006] [Indexed: 11/21/2022] Open
Abstract
The rapid cycling of AMPA receptors (AMPARs) at the membrane maintains synaptic transmission at a number of CNS synapses and may play a role in several forms of synaptic plasticity. It is unclear, however, how prevalent the trafficking of AMPARs is in the CNS, particularly at synapses not known to exhibit activity-dependent plasticity. Because trafficking is regulated by basal synaptic activity, a question also remains as to how receptor trafficking is modulated at synapses subject to different patterns of synaptic activation. We have investigated whether trafficking of AMPARs occurs in retinal neurons, which are subject to tonic glutamate release. We find two distinct states of AMPAR trafficking in ON ganglion cells. Light adaptation serves to stabilize AMPARs in a noncycling mode. However, dark adaptation for as little as 8 h triggers a switch to a second state of trafficking characterized by rapid cycling. We provide evidence that the activation of AMPARs is critical for switching between cycling and noncycling states. The induction of cycling further appears to be modulated by changes in the function of glutamate receptor 2/3-interacting proteins. Our results suggest that there is a strong link between synaptic activity and AMPAR trafficking in retinal neurons. These results further suggest the existence of a previously unknown form of activity-dependent plasticity in the retina that may be regulated in the course of a normal light/dark cycle.
Collapse
|
243
|
Lai AY, Swayze RD, El-Husseini A, Song C. Interleukin-1 beta modulates AMPA receptor expression and phosphorylation in hippocampal neurons. J Neuroimmunol 2006; 175:97-106. [PMID: 16626814 DOI: 10.1016/j.jneuroim.2006.03.001] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2005] [Revised: 03/05/2006] [Accepted: 03/06/2006] [Indexed: 11/17/2022]
Abstract
Interleukin (IL)-1beta is a pro-inflammatory cytokine involved in modulating inflammation and stress responses in the brain. Central administration of IL-1beta impairs both memory functions and long-term potentiation (LTP) induction. However, the molecular events responsible for the downstream effects of IL-1beta are not fully understood. Given the potential regulatory role of IL-1beta in LTP, we assessed whether IL-1beta influences surface expression and phosphorylation of glutamate receptors. We found that IL-1beta, but not IL-10 or tumour necrosis factor (TNF)-alpha, down-regulated the surface expression and Ser831 phosphorylation of the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunit GluR1. Agents that block IL-1beta receptor activity abolished these effects. In contrast, no change in the surface expression of the N-methyl-d-aspartate (NMDA) receptor subunit NR1 was observed. The inhibition of NMDA receptor activity or depletion of extracellular calcium blocked IL-1beta effects on GluR1 phosphorylation and surface expression. NMDA-mediated calcium influx was also regulated by IL-1beta. These findings suggest that IL-1beta selectively regulates AMPA receptor phosphorylation and surface expression through extracellular calcium and an unknown mechanism involving NMDA receptor activity.
Collapse
Affiliation(s)
- Aaron Y Lai
- Department of Psychiatry, Neurochemical Research Unit, University of Alberta, Canada
| | | | | | | |
Collapse
|
244
|
Binshtok AM, Fleidervish IA, Sprengel R, Gutnick MJ. NMDA receptors in layer 4 spiny stellate cells of the mouse barrel cortex contain the NR2C subunit. J Neurosci 2006; 26:708-15. [PMID: 16407568 PMCID: PMC6674419 DOI: 10.1523/jneurosci.4409-05.2006] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In layer 4 of the somatosensory cortex, the glutamatergic synapses that interconnect spiny stellate (SpS) neurons, which are the major targets of thalamocortical input, differ from most other neocortical excitatory synapses in that they have an extremely large NMDA receptor (NMDAR)-mediated component that is relatively insensitive to voltage-dependent Mg2+ blockade. We now report that this unique feature of the NMDA response reflects the distinctive subunit composition of the underlying receptors. We studied NMDAR-mediated miniature EPSCs (mEPSCs) and NMDA channel currents in tangential brain slices of mouse barrel cortex, which exclusively contain layer 4. NMDAR-mediated mEPSCs in SpS neurons were prominent at negative membrane potentials, and NMDA channels in outside-out patches excised from the somata of the same neurons had relatively low conductance and reduced susceptibility to Mg2+ block. These are characteristic features of heteromeric NMDAR assemblies that contain the NR2C subunit. Some patches also contained NMDA channels with higher conductance and a greater sensitivity to Mg2+. In the neocortex of transgenic mice in which a beta-galactosidase (lacZ) indicator gene was controlled by the NR2C promoter, the lacZ indicator was densely expressed in layer 4. In current-clamp recordings, blockade of NMDARs caused hyperpolarization and an increase in apparent input resistance. Our data demonstrate that the SpS neurons of layer 4 functionally express NR2C subunits; this is the likely explanation for their ability to generate large NMDAR-mediated EPSPs that are effective at resting potential, without previous depolarization.
Collapse
Affiliation(s)
- Alexander M Binshtok
- Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | | | | | | |
Collapse
|
245
|
Tsirigotis M, Tang MY, Beyers M, Zhang M, Woulfe J, Gray DA. Delayed spinocerebellar ataxia in transgenic mice expressing mutant ubiquitin. Neuropathol Appl Neurobiol 2006; 32:26-39. [PMID: 16409551 DOI: 10.1111/j.1365-2990.2005.00694.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Spinocerebellar ataxia type 1 (SCA1) is an incurable neurodegenerative disease resulting from loss of Purkinje neurones within the cerebellum. The ubiquitin proteasome pathway (UPP) has been implicated in SCA1 but the role of proteolysis in the disease is still poorly understood. To further investigate this issue in vivo, genetic crosses were performed between an established mouse model of SCA1 and novel strains expressing elevated levels of wild type or mutant isoforms of ubiquitin. The K48R mutant isoform of ubiquitin (a dominant negative inhibitor of proteolysis) was found to significantly delay the deterioration of Purkinje neurones as evidenced by behavioural, morphological, and molecular indicators. This delay was accompanied by stabilization of p300/CBP, transcriptional mediators whose abundance and activity would otherwise decline in the course of the SCA1 disease, and persistence of protein kinase C gamma (PKCgamma), a protein involved in Purkinje cell dendritic development that is mutated in one form of spinocerebellar ataxia. Whereas the stabilization of p300/CBP was found to occur at the post-translational level the modulation of PKCgamma was at the level of transcription. These results are consistent with transcriptional dysregulation as a key mechanism in neurodegeneration through loss of p300/CBP. Further, the results suggest that the UPP is a potentially useful target for the development of novel therapies for the treatment of neurodegenerative disease.
Collapse
Affiliation(s)
- M Tsirigotis
- Ottawa Health Research Institute, Ottawa, Ontario, Canada K1H 8L6
| | | | | | | | | | | |
Collapse
|
246
|
Smith KE, Gibson ES, Dell’Acqua ML. cAMP-dependent protein kinase postsynaptic localization regulated by NMDA receptor activation through translocation of an A-kinase anchoring protein scaffold protein. J Neurosci 2006; 26:2391-402. [PMID: 16510716 PMCID: PMC6793655 DOI: 10.1523/jneurosci.3092-05.2006] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2005] [Revised: 01/18/2006] [Accepted: 01/19/2006] [Indexed: 11/21/2022] Open
Abstract
NMDA receptor-dependent long-term potentiation and long-term depression (LTD) involve changes in AMPA receptor activity and postsynaptic localization that are in part controlled by glutamate receptor 1 (GluR1) subunit phosphorylation. The scaffolding molecule A-kinase anchoring protein (AKAP)79/150 targets both the cAMP-dependent protein kinase (PKA) and protein phosphatase 2B/calcineurin (PP2B/CaN) to AMPA receptors to regulate GluR1 phosphorylation. Here, we report that brief NMDA receptor activation leads to persistent redistribution of AKAP79/150 and PKA-RII, but not PP2B/CaN, from postsynaptic membranes to the cytoplasm in hippocampal slices. Similar to LTD, AKAP79/150 redistribution requires PP2B/CaN activation and is accompanied by GluR1 dephosphorylation and internalization. Using fluorescence resonance energy transfer microscopy in hippocampal neurons, we demonstrate that PKA anchoring to AKAP79/150 is required for NMDA receptor regulation of PKA-RII localization and that movement of AKAP-PKA complexes underlies PKA redistribution. These findings suggest that LTD involves removal of AKAP79/150 and PKA from synapses in addition to activation of PP2B/CaN. Movement of AKAP79/150-PKA complexes from the synapse could further favor the actions of phosphatases in maintaining dephosphorylation of postsynaptic substrates, such as GluR1, that are important for LTD induction and expression. In addition, our observations demonstrate that AKAPs serve not solely as stationary anchors in cells but also as dynamic signaling components.
Collapse
|
247
|
Chen G, Kittler JT, Moss SJ, Yan Z. Dopamine D3 receptors regulate GABAA receptor function through a phospho-dependent endocytosis mechanism in nucleus accumbens. J Neurosci 2006; 26:2513-21. [PMID: 16510729 PMCID: PMC6793654 DOI: 10.1523/jneurosci.4712-05.2006] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2005] [Revised: 01/24/2006] [Accepted: 01/24/2006] [Indexed: 11/21/2022] Open
Abstract
The dopamine D3 receptor, which is highly enriched in nucleus accumbens (NAc), has been suggested to play an important role in reinforcement and reward. To understand the potential cellular mechanism underlying D3 receptor functions, we examined the effect of D3 receptor activation on GABAA receptor (GABAAR)-mediated current and inhibitory synaptic transmission in medium spiny neurons of NAc. Application of PD128907 [(4aR,10bR)-3,4a,4,10b-tetrahydro-4-propyl-2H,5H-[1]benzopyrano-[4,3-b]-1,4-oxazin-9-ol hydrochloride], a specific D3 receptor agonist, caused a significant reduction of GABAAR current in acutely dissociated NAc neurons and miniature IPSC amplitude in NAc slices. This effect was blocked by dialysis with a dynamin inhibitory peptide, which prevents the clathrin/activator protein 2 (AP2)-mediated GABAA receptor endocytosis. In addition, the D3 effect on GABAAR current was prevented by agents that manipulate protein kinase A (PKA) activity. Infusion of a peptide derived from GABAAR beta subunits, which contains an atypical binding motif for the clathrin AP2 adaptor complex and the major PKA phosphorylation sites and binds with high affinity to AP2 only when dephosphorylated, diminished the D3 regulation of IPSC amplitude. The phosphorylated equivalent of the peptide was without effect. Moreover, PD128907 increased GABAAR internalization and reduced the surface expression of GABAA receptor beta subunits in NAc slices, which was prevented by dynamin inhibitory peptide or cAMP treatment. Together, our results suggest that D3 receptor activation suppresses the efficacy of inhibitory synaptic transmission in NAc by increasing the phospho-dependent endocytosis of GABAA receptors.
Collapse
|
248
|
Dell'Acqua ML, Smith KE, Gorski JA, Horne EA, Gibson ES, Gomez LL. Regulation of neuronal PKA signaling through AKAP targeting dynamics. Eur J Cell Biol 2006; 85:627-33. [PMID: 16504338 DOI: 10.1016/j.ejcb.2006.01.010] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Central to organization of signaling pathways are scaffolding, anchoring and adaptor proteins that mediate localized assembly of multi-protein complexes containing receptors, second messenger-generating enzymes, kinases, phosphatases, and substrates. At the postsynaptic density (PSD) of excitatory synapses, AMPA (AMPAR) and NMDA (NMDAR) glutamate receptors are linked to signaling proteins, the actin cytoskeleton, and synaptic adhesion molecules on dendritic spines through a network of scaffolding proteins that may play important roles regulating synaptic structure and receptor functions in synaptic plasticity underlying learning and memory. AMPARs are rapidly recruited to dendritic spines through NMDAR activation during induction of long-term potentiation (LTP) through pathways that also increase the size and F-actin content of spines. Phosphorylation of AMPAR-GluR1 subunits by the cAMP-dependent protein kinase (PKA) helps stabilize AMPARs recruited during LTP. In contrast, induction of long-term depression (LTD) leads to rapid calcineurin-protein phosphatase 2B (CaN) mediated dephosphorylation of PKA-phosphorylated GluR1 receptors, endocytic removal of AMPAR from synapses, and a reduction in spine size. However, mechanisms for coordinately regulating AMPAR localization, phosphorylation, and synaptic structure by PKA and CaN are not well understood. A kinase-anchoring protein (AKAP) 79/150 is a PKA- and CaN-anchoring protein that is linked to NMDARs and AMPARs through PSD-95 and SAP97 membrane-associated guanylate kinase (MAGUK) scaffolds. Importantly, disruption of PKA-anchoring in neurons and functional analysis of GluR1-MAGUK-AKAP79 complexes in heterologous cells suggests that AKAP79/150-anchored PKA and CaN may regulate AMPARs in LTD. In the work presented at the "First International Meeting on Anchored cAMP Signaling Pathways" (Berlin-Buch, Germany, October 15-16, 2005), we demonstrate that AKAP79/150 is targeted to dendritic spines by an N-terminal basic region that binds phosphatidylinositol-4,5-bisphosphate (PIP(2)), F-actin, and actin-linked cadherin adhesion molecules. Thus, anchoring of PKA and CaN as well as physical linkage of the AKAP to both cadherin-cytoskeletal and MAGUK-receptor complexes could play roles in coordinating changes in synaptic structure and receptor signaling functions underlying plasticity. Importantly, we provide evidence showing that NMDAR-CaN signaling pathways implicated in AMPAR regulation during LTD lead to a disruption of AKAP79/150 interactions with actin, MAGUKs, and cadherins and lead to a loss of the AKAP and anchored PKA from postsynapses. Our studies thus far indicate that this AKAP79/150 translocation depends on activation of CaN, F-actin reorganization, and possibly Ca(2+)-CaM binding to the N-terminal basic regions. Importantly, this tranlocation of the AKAP79/150-PKA complex from spines may shift the balance of PKA kinase and CaN/PP1 phosphatase activity at the postsynapse in favor of the phosphatases. This loss of PKA could then promote actions of CaN and PP1 during induction of LTD including maintaining AMPAR dephosphorylation, promoting AMPAR endocytosis, and preventing AMPAR recycling. Overall, these findings challenge the accepted notion that AKAPs are static anchors that position signaling proteins near fixed target substrates and instead suggest that AKAPs can function in more dynamic manners to regulate local signaling events.
Collapse
Affiliation(s)
- Mark L Dell'Acqua
- Department of Pharmacology, University of Colorado at Denver and Health Sciences Center at Fitzsimons, P.O. Box 6511, Mail Stop 8303, Aurora, CO 80045-0508, USA.
| | | | | | | | | | | |
Collapse
|
249
|
Adesnik H, Nicoll RA, England PM. Photoinactivation of native AMPA receptors reveals their real-time trafficking. Neuron 2006; 48:977-85. [PMID: 16364901 DOI: 10.1016/j.neuron.2005.11.030] [Citation(s) in RCA: 174] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2005] [Revised: 10/13/2005] [Accepted: 11/11/2005] [Indexed: 11/22/2022]
Abstract
AMPA receptors mediate the majority of the fast excitatory transmission in the central nervous system. Much evidence suggests that the fast trafficking of AMPA receptors into and out of the postsynaptic membrane underlies changes in synaptic strength thought to be necessary for higher cognitive functions such as learning and memory. Despite the abundance of research conducted in this area, a direct, real-time functional assay that measures the trafficking of native AMPA receptors has been lacking. Toward this aim, we use a photoreactive, irreversible antagonist of AMPA receptors, ANQX, to rapidly silence surface AMPA receptors and investigate directly the trafficking of native AMPA receptors in real time. We find that the most dynamic movement of AMPA receptors occurs by lateral movement across the surface of neurons. Fast cycling of surface AMPA receptors with receptors from internal stores does occur but exclusively at extrasynaptic somatic sites. The cycling of synaptic AMPA receptors only occurs on a much longer timescale with complete exchange requiring at least 16 hr. This cycling is not dependent on protein synthesis or action potential driven network activity. These data suggest a revised model of AMPA receptor trafficking wherein a large internal store of AMPA receptors exchanges rapidly with extrasynaptic somatic AMPA receptors, and these newly inserted AMPA receptors then travel laterally along dendrites to reside stably at synapses.
Collapse
Affiliation(s)
- Hillel Adesnik
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California 94143, USA
| | | | | |
Collapse
|
250
|
Abstract
Status epilepticus is a neurological emergency that results in mortality and neurological morbidity. It has been postulated that the reduction of inhibitory transmission during status epilepticus results from a rapid modification of GABA(A) receptors. However, the mechanism(s) that contributes to this modification has not been elucidated. We report, using an in vitro model of status epilepticus combined with electrophysiological and cellular imaging techniques, that prolonged epileptiform bursting results in a reduction of GABA-mediated synaptic inhibition. Furthermore, we found that constitutive internalization of GABA(A) receptors is rapid and accelerated by the increased neuronal activity associated with seizures. Inhibition of neuronal activity reduced the rate of internalization. These findings suggest that the rate of GABA(A) receptor internalization is regulated by neuronal activity and its acceleration contributes to the reduction of inhibitory transmission observed during prolonged seizures.
Collapse
|