201
|
Schizophrenia interactome with 504 novel protein-protein interactions. NPJ SCHIZOPHRENIA 2016; 2:16012. [PMID: 27336055 PMCID: PMC4898894 DOI: 10.1038/npjschz.2016.12] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 02/17/2016] [Accepted: 02/23/2016] [Indexed: 11/29/2022]
Abstract
Genome-wide association studies of schizophrenia (GWAS) have revealed the role of rare and common genetic variants, but the functional effects of the risk variants remain to be understood. Protein interactome-based studies can facilitate the study of molecular mechanisms by which the risk genes relate to schizophrenia (SZ) genesis, but protein–protein interactions (PPIs) are unknown for many of the liability genes. We developed a computational model to discover PPIs, which is found to be highly accurate according to computational evaluations and experimental validations of selected PPIs. We present here, 365 novel PPIs of liability genes identified by the SZ Working Group of the Psychiatric Genomics Consortium (PGC). Seventeen genes that had no previously known interactions have 57 novel interactions by our method. Among the new interactors are 19 drug targets that are targeted by 130 drugs. In addition, we computed 147 novel PPIs of 25 candidate genes investigated in the pre-GWAS era. While there is little overlap between the GWAS genes and the pre-GWAS genes, the interactomes reveal that they largely belong to the same pathways, thus reconciling the apparent disparities between the GWAS and prior gene association studies. The interactome including 504 novel PPIs overall, could motivate other systems biology studies and trials with repurposed drugs. The PPIs are made available on a webserver, called Schizo-Pi at http://severus.dbmi.pitt.edu/schizo-pi with advanced search capabilities.
Collapse
|
202
|
Malt EA, Juhasz K, Malt UF, Naumann T. A Role for the Transcription Factor Nk2 Homeobox 1 in Schizophrenia: Convergent Evidence from Animal and Human Studies. Front Behav Neurosci 2016; 10:59. [PMID: 27064909 PMCID: PMC4811959 DOI: 10.3389/fnbeh.2016.00059] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 03/11/2016] [Indexed: 12/22/2022] Open
Abstract
Schizophrenia is a highly heritable disorder with diverse mental and somatic symptoms. The molecular mechanisms leading from genes to disease pathology in schizophrenia remain largely unknown. Genome-wide association studies (GWASs) have shown that common single-nucleotide polymorphisms associated with specific diseases are enriched in the recognition sequences of transcription factors that regulate physiological processes relevant to the disease. We have used a “bottom-up” approach and tracked a developmental trajectory from embryology to physiological processes and behavior and recognized that the transcription factor NK2 homeobox 1 (NKX2-1) possesses properties of particular interest for schizophrenia. NKX2-1 is selectively expressed from prenatal development to adulthood in the brain, thyroid gland, parathyroid gland, lungs, skin, and enteric ganglia, and has key functions at the interface of the brain, the endocrine-, and the immune system. In the developing brain, NKX2-1-expressing progenitor cells differentiate into distinct subclasses of forebrain GABAergic and cholinergic neurons, astrocytes, and oligodendrocytes. The transcription factor is highly expressed in mature limbic circuits related to context-dependent goal-directed patterns of behavior, social interaction and reproduction, fear responses, responses to light, and other homeostatic processes. It is essential for development and mature function of the thyroid gland and the respiratory system, and is involved in calcium metabolism and immune responses. NKX2-1 interacts with a number of genes identified as susceptibility genes for schizophrenia. We suggest that NKX2-1 may lie at the core of several dose dependent pathways that are dysregulated in schizophrenia. We correlate the symptoms seen in schizophrenia with the temporal and spatial activities of NKX2-1 in order to highlight promising future research areas.
Collapse
Affiliation(s)
- Eva A Malt
- Department of Adult Habilitation, Akershus University HospitalLørenskog, Norway; Institute of Clinical Medicine, Ahus Campus University of OsloOslo, Norway
| | - Katalin Juhasz
- Department of Adult Habilitation, Akershus University Hospital Lørenskog, Norway
| | - Ulrik F Malt
- Institute of Clinical Medicine, University of OsloOslo, Norway; Department of Research and Education, Institution of Oslo University HospitalOslo, Norway
| | - Thomas Naumann
- Centre of Anatomy, Institute of Cell Biology and Neurobiology, Charite Universitätsmedizin Berlin Berlin, Germany
| |
Collapse
|
203
|
Quach TT, Lerch JK, Honnorat J, Khanna R, Duchemin AM. Neuronal networks in mental diseases and neuropathic pain: Beyond brain derived neurotrophic factor and collapsin response mediator proteins. World J Psychiatry 2016; 6:18-30. [PMID: 27014595 PMCID: PMC4804265 DOI: 10.5498/wjp.v6.i1.18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 11/24/2015] [Accepted: 01/07/2016] [Indexed: 02/05/2023] Open
Abstract
The brain is a complex network system that has the capacity to support emotion, thought, action, learning and memory, and is characterized by constant activity, constant structural remodeling, and constant attempt to compensate for this remodeling. The basic insight that emerges from complex network organization is that substantively different networks can share common key organizational principles. Moreover, the interdependence of network organization and behavior has been successfully demonstrated for several specific tasks. From this viewpoint, increasing experimental/clinical observations suggest that mental disorders are neural network disorders. On one hand, single psychiatric disorders arise from multiple, multifactorial molecular and cellular structural/functional alterations spreading throughout local/global circuits leading to multifaceted and heterogeneous clinical symptoms. On the other hand, various mental diseases may share functional deficits across the same neural circuit as reflected in the overlap of symptoms throughout clinical diagnoses. An integrated framework including experimental measures and clinical observations will be necessary to formulate a coherent and comprehensive understanding of how neural connectivity mediates and constraints the phenotypic expression of psychiatric disorders.
Collapse
|
204
|
Negrón-Oyarzo I, Lara-Vásquez A, Palacios-García I, Fuentealba P, Aboitiz F. Schizophrenia and reelin: a model based on prenatal stress to study epigenetics, brain development and behavior. Biol Res 2016; 49:16. [PMID: 26968981 PMCID: PMC4787713 DOI: 10.1186/s40659-016-0076-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 02/22/2016] [Indexed: 11/20/2022] Open
Abstract
Schizophrenia is a severe psychiatric disorder that results in a significant disability for the patient. The disorder is characterized by impairment of the adaptive orchestration of actions, a cognitive function that is mainly dependent on the prefrontal cortex. This behavioral deficit, together with cellular and neurophysiological alterations in the prefrontal cortex, as well as reduced density of GABAergic cells and aberrant oscillatory activity, all indicate structural and functional deficits of the prefrontal cortex in schizophrenia. Among the several risk factors for the development of schizophrenia, stress during the prenatal period has been identified as crucial. Thus, it is proposed that prenatal stress induces neurodevelopmental alterations in the prefrontal cortex that are expressed as cognitive impairment observed in schizophrenia. However, the precise mechanisms that link prenatal stress with the impairment of prefrontal cortex function is largely unknown. Reelin is an extracellular matrix protein involved in the development of cortical neural connectivity at embryonic stages, and in synaptic plasticity at postnatal stages. Interestingly, down-regulation of reelin expression has been associated with epigenetic changes in the reelin gene of the prefrontal cortex of schizophrenic patients. We recently showed that, similar to schizophrenic patients, prenatal stress induces down-expression of reelin associated with the methylation of its promoter in the rodent prefrontal cortex. These alterations were paralleled with altered prefrontal cortex functional connectivity and impairment in prefrontal cortex-dependent behavioral tasks. Therefore, considering molecular, cellular, physiological and behavioral evidence, we propose a unifying framework that links prenatal stress and prefrontal malfunction through epigenetic alterations of the reelin gene.
Collapse
Affiliation(s)
- Ignacio Negrón-Oyarzo
- Departamento de Psiquiatría, Escuela de Medicina, and Centro Interdisciplinario de Neurociencia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ariel Lara-Vásquez
- Departamento de Psiquiatría, Escuela de Medicina, and Centro Interdisciplinario de Neurociencia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ismael Palacios-García
- Departamento de Psiquiatría, Escuela de Medicina, and Centro Interdisciplinario de Neurociencia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo Fuentealba
- Departamento de Psiquiatría, Escuela de Medicina, and Centro Interdisciplinario de Neurociencia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Francisco Aboitiz
- Departamento de Psiquiatría, Escuela de Medicina, and Centro Interdisciplinario de Neurociencia, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
205
|
The NMDA Receptor and Schizophrenia: From Pathophysiology to Treatment. ADVANCES IN PHARMACOLOGY 2016; 76:351-82. [PMID: 27288082 DOI: 10.1016/bs.apha.2016.01.006] [Citation(s) in RCA: 185] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Schizophrenia is a severe mental illness that affects almost 1% of the population worldwide. Even though the etiology of schizophrenia is uncertain, it is believed to be a neurodevelopmental disorder that results from a combination of environmental insults and genetic vulnerabilities. Over the past 20 years, there has been a confluence of evidence from many research disciplines pointing to alterations in excitatory signaling, particularly involving hypofunction of the N-methyl-d-aspartate receptor (NMDAR), as a key contributor to the schizophrenia disease process. This review describes the structure-function relationship of the NMDAR channel and how the glycine modulatory site acts as an important regulator of its activity. In addition, this review highlights the genetic, pharmacologic, and biochemical evidence supporting the hypothesis that NMDAR hypofunction contributes to the pathophysiology of schizophrenia. Finally, this chapter highlights some of the most recent and promising pharmacological strategies that are designed to either, directly or indirectly, augment NMDAR function in an effort to treat the cognitive and negative symptoms of schizophrenia that are not helped by currently available medications.
Collapse
|
206
|
Sawa A, Ishizuka K, Katsanis N. The potential of DISC1 protein as a therapeutic target for mental illness. Expert Opin Ther Targets 2016; 20:641-3. [PMID: 26810812 DOI: 10.1517/14728222.2016.1146694] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Akira Sawa
- a Department of Psychiatry and Behavioral Sciences , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Koko Ishizuka
- a Department of Psychiatry and Behavioral Sciences , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Nicholas Katsanis
- b Center for Human Disease Modeling and Departments of Cell Biology and Pediatrics , Duke University School of Medicine , Durham , NC , USA
| |
Collapse
|
207
|
Dell'Angelica EC. Melanosomes made from recycling (endosomes): A tubule-stabilizing function revealed for Biogenesis of Lysosome-related Organelles Complex-1. Pigment Cell Melanoma Res 2016; 29:258-9. [PMID: 26801347 DOI: 10.1111/pcmr.12456] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
208
|
Plomin R, DeFries JC, Knopik VS, Neiderhiser JM. Top 10 Replicated Findings From Behavioral Genetics. PERSPECTIVES ON PSYCHOLOGICAL SCIENCE 2016; 11:3-23. [PMID: 26817721 PMCID: PMC4739500 DOI: 10.1177/1745691615617439] [Citation(s) in RCA: 188] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
In the context of current concerns about replication in psychological science, we describe 10 findings from behavioral genetic research that have replicated robustly. These are "big" findings, both in terms of effect size and potential impact on psychological science, such as linearly increasing heritability of intelligence from infancy (20%) through adulthood (60%). Four of our top 10 findings involve the environment, discoveries that could have been found only with genetically sensitive research designs. We also consider reasons specific to behavioral genetics that might explain why these findings replicate.
Collapse
Affiliation(s)
- Robert Plomin
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London
| | - John C DeFries
- Institute for Behavioral Genetics, University of Colorado
| | - Valerie S Knopik
- Department of Psychiatry, Rhode Island Hospital, Providence, Rhode Island, and Departments of Psychiatry and Human Behavior and Behavioral and Social Sciences, Brown University
| | | |
Collapse
|
209
|
Nikolova YS, Hariri AR. Can we observe epigenetic effects on human brain function? Trends Cogn Sci 2015; 19:366-73. [PMID: 26051383 DOI: 10.1016/j.tics.2015.05.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 05/05/2015] [Accepted: 05/06/2015] [Indexed: 12/12/2022]
Abstract
Imaging genetics has identified many contributions of DNA sequence variation to individual differences in brain function, behavior, and risk for psychopathology. Recent studies have extended this work beyond the genome by mapping epigenetic differences, specifically gene methylation in peripherally assessed DNA, onto variability in behaviorally and clinically relevant brain function. These data have generated understandable enthusiasm for the potential of such research to illuminate biological mechanisms of risk. We use our research on the effects of genetic and epigenetic variation in the human serotonin transporter on brain function to generate a guardedly optimistic opinion that the available data encourage continued research in this direction, and suggest strategies to promote faster progress.
Collapse
Affiliation(s)
- Yuliya S Nikolova
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, Canada.
| | - Ahmad R Hariri
- Laboratory of NeuroGenetics, Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA
| |
Collapse
|
210
|
Jawaid H, Ali S. Genetics in psychiatry – diagnostic support or an illness classification! ACTA MEDICA INTERNATIONAL 2015. [DOI: 10.5530/ami.2015.4.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|