201
|
Moco S, Martin FPJ, Rezzi S. Metabolomics view on gut microbiome modulation by polyphenol-rich foods. J Proteome Res 2012; 11:4781-90. [PMID: 22905879 DOI: 10.1021/pr300581s] [Citation(s) in RCA: 165] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Health is influenced by genetic, lifestyle, and diet determinants; therefore, nutrition plays an essential role in health management. Still, the substantiation of nutritional health benefits is challenged by the intrinsic macro- and micronutrient complexity of foods and individual responses. Evidence of healthy effects of food requires new strategies not only to stratify populations according to their metabolic requirements but also to predict and measure individual responses to dietary intakes. The influence of the gut microbiome and its interaction with the host is pivotal to understand nutrition and metabolism. Thus, the modulation of the gut microbiome composition by alteration of food habits has potentialities in health improvement or even disease prevention. Dietary polyphenols are naturally occurring constituents in vegetables and fruits, including coffee and cocoa. They are commonly associated to health benefits, although mechanistic evidence in vivo is not yet fully understood. Polyphenols are extensively metabolized by gut bacteria into a complex series of end-products that support a significant effect on the functional ecology of symbiotic partners that can affect the host physiology. This review reports recent nutritional metabolomics inspections of gut microbiota-host metabolic interactions with a particular focus on the cometabolism of cocoa and coffee polyphenols.
Collapse
Affiliation(s)
- Sofia Moco
- BioAnalytical Science, Nestle Research Center, Vers-chez-les-Blanc, PO Box 44, 1000 Lausanne 26, Switzerland.
| | | | | |
Collapse
|
202
|
Evaluation of pharmacokinetic differences of acetaminophen in pseudo germ-free rats. Biopharm Drug Dispos 2012; 33:292-303. [DOI: 10.1002/bdd.1799] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 05/31/2012] [Accepted: 07/08/2012] [Indexed: 12/15/2022]
|
203
|
Chuang HL, Huang YT, Chiu CC, Liao CD, Hsu FL, Huang CC, Hou CC. Metabolomics characterization of energy metabolism reveals glycogen accumulation in gut-microbiota-lacking mice. J Nutr Biochem 2012; 23:752-8. [DOI: 10.1016/j.jnutbio.2011.03.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2010] [Revised: 03/10/2011] [Accepted: 03/28/2011] [Indexed: 01/30/2023]
|
204
|
van Duynhoven J, van Velzen E, Westerhuis J, Foltz M, Jacobs D, Smilde A. Nutrikinetics: Concept, technologies, applications, perspectives. Trends Food Sci Technol 2012. [DOI: 10.1016/j.tifs.2012.01.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
205
|
Holmes E, Kinross J, Gibson GR, Burcelin R, Jia W, Pettersson S, Nicholson JK. Therapeutic Modulation of Microbiota-Host Metabolic Interactions. Sci Transl Med 2012; 4:137rv6. [DOI: 10.1126/scitranslmed.3004244] [Citation(s) in RCA: 181] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
206
|
Jang ZH, Chung HC, Ahn YG, Kwon YK, Kim JS, Ryu JH, Ryu DH, Kim CH, Hwang GS. Metabolic profiling of an alcoholic fatty liver in zebrafish (Danio rerio). MOLECULAR BIOSYSTEMS 2012; 8:2001-9. [PMID: 22532405 DOI: 10.1039/c2mb25073j] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Zebrafish (Danio rerio) is becoming a popular developmental biology model to study diseases and for drug discovery. In this study, we performed proton nuclear magnetic resonance spectroscopy ((1)H-NMR)- and gas chromatography-mass spectrometry (GC/MS)-based metabolic profiling of an alcoholic fatty liver using a zebrafish disease model. We examined metabolic differences between the control and alcoholic fatty liver groups in zebrafish to determine how metabolism in an alcoholic fatty liver is regulated. Multivariate statistical analysis showed a significant difference between the control and alcoholic fatty liver groups. The alcoholic fatty liver group showed increased excretion of isoleucine, acetate, succinate, choline, creatine, acetoacetate, 3-hydroxybutyrate (3HB), ethyl glucuronide (EtG), lactate/pyruvate ratio, fatty acids, and cholesterol, and decreased excretion of citrate, aspartate, tyrosine, glycine, glucose, alanine, betaine, and maltose. Metabolites identified in the fatty liver groups were associated with long-term alcohol consumption, which causes both oxidation-reduction (redox) changes and oxidative stress. This study suggests that global metabolite profiling in a zebrafish model can provide insights into the metabolic changes in an alcoholic fatty liver.
Collapse
Affiliation(s)
- Zi-Hey Jang
- Seoul Centre, Korea Basic Science Institute, Seoul 136-713, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
207
|
Tehrani AB, Nezami BG, Gewirtz A, Srinivasan S. Obesity and its associated disease: a role for microbiota? Neurogastroenterol Motil 2012; 24:305-11. [PMID: 22339979 PMCID: PMC3303978 DOI: 10.1111/j.1365-2982.2012.01895.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Gut microbiota have recently been implicated in the pathogenesis of the obesity and its related metabolic diseases. A variety of factors including diet, genetic background, environment and host innate and adaptive immune responses define an individual's gut microbiota. PURPOSE In this review we outline potential mechanisms by which gut microbiota can contribute to the development of obesity focusing on specific processes such as microbial energy extraction, microbiota induced-inflammation and regulation of appetite. We review the current understanding of each of these processes on regulating metabolism and examine potential therapeutic strategies for the treatment or prevention of the metabolic syndrome. We explore the hypothesis that alteration in gut microbiota may be an initial event leading to altered feeding behavior and/or systemic inflammation, ultimately leading to weight gain and the metabolic syndrome.
Collapse
Affiliation(s)
- Ali Bonakdar Tehrani
- Division of Digestive Diseases, Emory University, 615 Michael Street, Atlanta, GA 30322
| | - Behtash Ghazi Nezami
- Division of Digestive Diseases, Emory University, 615 Michael Street, Atlanta, GA 30322,Atlanta Veterans Affairs Medical Center, Decatur, GA
| | - Andrew Gewirtz
- Center for Inflammation, Immunity & Infection and Department of Biology, Georgia State University, Atlanta GA USA
| | - Shanthi Srinivasan
- Division of Digestive Diseases, Emory University, 615 Michael Street, Atlanta, GA 30322,Atlanta Veterans Affairs Medical Center, Decatur, GA
| |
Collapse
|
208
|
Dai ZL, Li XL, Xi PB, Zhang J, Wu G, Zhu WY. L-Glutamine regulates amino acid utilization by intestinal bacteria. Amino Acids 2012; 45:501-12. [PMID: 22451274 DOI: 10.1007/s00726-012-1264-4] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 03/03/2012] [Indexed: 12/14/2022]
Abstract
Catabolism of amino acids (AA) by intestinal bacteria greatly affects their bioavailability in the systemic circulation and the health of animals and humans. This study tests the novel hypothesis that L-glutamine regulates AA utilization by luminal bacteria of the small intestine. Pure bacterial strains (Streptococcus sp., Escherichia coli and Klebsiella sp.) and mixed bacterial cultures derived from the jejunum or ileum of pigs were cultured in the presence of 0-5 mM L-glutamine under anaerobic conditions. After 3 h of incubation, samples were taken for the determination of AA utilization. Results showed concentration-dependent increases in the utilization of glutamine in parallel with the increased conversion of glutamine into glutamate in all the bacteria. Complete utilization of asparagine, aspartate and serine was observed in pure bacterial strains after the 3-h incubation. The addition of glutamine reduced the net utilization of asparagine by both jejunal and ileal mixed bacteria. Net utilization of lysine, leucine, valine, ornithine and serine by jejunal or ileal mixed bacteria decreased with the addition of glutamine in a concentration-dependent manner. Collectively, glutamine dynamically modulates the bacterial metabolism of the arginine family of AA as well as the serine and aspartate families of AA and reduced the catabolism of most AA (including nutritionally essential and nonessential AA) in jejunal or ileal mixed bacteria. The beneficial effects of glutamine on gut nutrition and health may involve initiation of the signaling pathways related to AA metabolism in the luminal bacteria of the small intestine.
Collapse
Affiliation(s)
- Zhao-Lai Dai
- Laboratory of Gastrointestinal Microbiology, Nanjing Agricultural University, Nanjing, 210095, China.
| | | | | | | | | | | |
Collapse
|
209
|
Kootte RS, Vrieze A, Holleman F, Dallinga-Thie GM, Zoetendal EG, de Vos WM, Groen AK, Hoekstra JBL, Stroes ES, Nieuwdorp M. The therapeutic potential of manipulating gut microbiota in obesity and type 2 diabetes mellitus. Diabetes Obes Metab 2012; 14:112-20. [PMID: 21812894 DOI: 10.1111/j.1463-1326.2011.01483.x] [Citation(s) in RCA: 244] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Obesity and type 2 diabetes mellitus (T2DM) are attributed to a combination of genetic susceptibility and lifestyle factors. Their increasing prevalence necessitates further studies on modifiable causative factors and novel treatment options. The gut microbiota has emerged as an important contributor to the obesity--and T2DM--epidemic proposed to act by increasing energy harvest from the diet. Although obesity is associated with substantial changes in the composition and metabolic function of the gut microbiota, the pathophysiological processes remain only partly understood. In this review we will describe the development of the adult human microbiome and discuss how the composition of the gut microbiota changes in response to modulating factors. The influence of short-chain fatty acids, bile acids, prebiotics, probiotics, antibiotics and microbial transplantation is discussed from studies using animal and human models. Ultimately, we aim to translate these findings into therapeutic pathways for obesity and T2DM in humans.
Collapse
Affiliation(s)
- R S Kootte
- Department of Vascular Medicine, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
210
|
Matsumoto M, Kibe R, Ooga T, Aiba Y, Kurihara S, Sawaki E, Koga Y, Benno Y. Impact of intestinal microbiota on intestinal luminal metabolome. Sci Rep 2012; 2:233. [PMID: 22724057 PMCID: PMC3380406 DOI: 10.1038/srep00233] [Citation(s) in RCA: 243] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 12/23/2011] [Indexed: 12/19/2022] Open
Abstract
Low-molecular-weight metabolites produced by intestinal microbiota play a direct role in health and disease. In this study, we analyzed the colonic luminal metabolome using capillary electrophoresis mass spectrometry with time-of-flight (CE-TOFMS) -a novel technique for analyzing and differentially displaying metabolic profiles- in order to clarify the metabolite profiles in the intestinal lumen. CE-TOFMS identified 179 metabolites from the colonic luminal metabolome and 48 metabolites were present in significantly higher concentrations and/or incidence in the germ-free (GF) mice than in the Ex-GF mice (p < 0.05), 77 metabolites were present in significantly lower concentrations and/or incidence in the GF mice than in the Ex-GF mice (p < 0.05), and 56 metabolites showed no differences in the concentration or incidence between GF and Ex-GF mice. These indicate that intestinal microbiota highly influenced the colonic luminal metabolome and a comprehensive understanding of intestinal luminal metabolome is critical for clarifying host-intestinal bacterial interactions.
Collapse
Affiliation(s)
- Mitsuharu Matsumoto
- Dairy Science and Technology Institute, Kyodo Milk Industry Co. Ltd., Tokyo 190-0182, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
211
|
Lee SH, An JH, Park HM, Jung BH. Investigation of endogenous metabolic changes in the urine of pseudo germ-free rats using a metabolomic approach. J Chromatogr B Analyt Technol Biomed Life Sci 2012; 887-888:8-18. [PMID: 22300547 DOI: 10.1016/j.jchromb.2011.12.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 11/28/2011] [Accepted: 12/29/2011] [Indexed: 02/08/2023]
Abstract
Gut microflora are recognized as an active metabolic compartment in whole body systems. Understanding their impact on host physiology is an ongoing process, although many studies demonstrate that they play significant roles in host life. To assess the impact of gut microflora on host physiology in normal or close to normal conditions of the intestine, we prepared pseudo germ-free rats by antibiotic treatment, and we investigated urinary metabolite profiles of pseudo germ-free rats using UPLC-QTOF-MS based on metabolomics. The repeatability and stability of the analysis were evaluated using QC samples and testmixes in both positive and negative ionization modes. When data sets were analyzed with OPLS-DA, 25 metabolites related to the activities of gut microflora were identified. The changes of amino acid metabolism, especially aromatic or sulfur amino acids, and alternations of bioactive nutrients, such as isoflavonoid and riboflavin were observed in the pseudo germ-free rats. Among the sulfur amino acid metabolites, the metabolites reflecting oxidative stress increased in the urine of pseudo germ-free animals, which imply that the activities of intestinal microorganisms can affect the host redox homeostasis. Altered isoflavonoid metabolism due to lack of gut bacteria may impact on steroid hormone metabolism in the body, especially estrogen metabolism. These results indicate that the some essential metabolic pathways are sensitive to the activities of gut microorganism and directly or indirectly affected by the state of intestinal bacteria, thus gut microflora plays an important role in whole body physiology.
Collapse
Affiliation(s)
- Soo Hyun Lee
- Biomolecules Function Research Center, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | | | | | | |
Collapse
|
212
|
Amalaradjou MAR, Bhunia AK. Modern approaches in probiotics research to control foodborne pathogens. ADVANCES IN FOOD AND NUTRITION RESEARCH 2012; 67:185-239. [PMID: 23034117 PMCID: PMC7150249 DOI: 10.1016/b978-0-12-394598-3.00005-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Foodborne illness is a serious public health concern. There are over 200 known microbial, chemical, and physical agents that are known to cause foodborne illness. Efforts are made for improved detection, control and prevention of foodborne pathogen in food, and pathogen associated diseases in the host. Several commonly used approaches to control foodborne pathogens include antibiotics, natural antimicrobials, bacteriophages, bacteriocins, ionizing radiations, and heat. In addition, probiotics offer a potential intervention strategy for the prevention and control of foodborne infections. This review focuses on the use of probiotics and bioengineered probiotics to control foodborne pathogens, their antimicrobial actions, and their delivery strategies. Although probiotics have been demonstrated to be effective in antagonizing foodborne pathogens, challenges exist in the characterization and elucidation of underlying molecular mechanisms of action and in the development of potential delivery strategies that could maintain the viability and functionality of the probiotic in the target organ.
Collapse
|
213
|
Martin FPJ, Collino S, Rezzi S. 1H NMR-based metabonomic applications to decipher gut microbial metabolic influence on mammalian health. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2011; 49 Suppl 1:S47-S54. [PMID: 22290709 DOI: 10.1002/mrc.2810] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Recent advances in molecular biology and microbiology have increased awareness on the importance of the gut microbiota to the overall mammalian host's health status. There is therefore increasing interest in nutrition research to characterise the molecular foundations of the gut microbial mammalian crosstalk at both physiological and biochemical pathway levels. Tackling these challenges can be achieved through systems biology strategies based on the measurement of metabolites to assess the highly complex metabolic exchanges between diverse biological compartments, including organs, biofluids and microbial symbionts. By opening a direct biochemical window into the metabolome, metabonomics is uniquely suited for the identification of biomarkers providing better understanding of these complex metabolic processes. Recent applications of top-down system biology based on (1)H NMR spectroscopy coupled to advanced chemometric modelling approaches provided compelling evidence that system-wide and organ-specific changes in biochemical processes may be finely tuned by gut microbial activities. This review aims at describing current advances in NMR-based metabonomics where the main objective is to discern the molecular pathways and biochemical mechanisms under the influence of the gut microbiota. Furthermore, emphasis is given on nutritional approaches, where the quest for homeostatic balance is dependent not only on the host but also on the nutritional modulation of the gut microbiota-host metabolic interactions, using, for instance, probiotics and prebiotics.
Collapse
Affiliation(s)
- François-Pierre J Martin
- BioAnalytical Science, Metabonomics & Biomarkers, Nestlé Research Center, Lausanne, Switzerland.
| | | | | |
Collapse
|
214
|
Mestdagh R, Dumas ME, Rezzi S, Kochhar S, Holmes E, Claus SP, Nicholson JK. Gut microbiota modulate the metabolism of brown adipose tissue in mice. J Proteome Res 2011; 11:620-30. [PMID: 22053906 DOI: 10.1021/pr200938v] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A two by two experimental study has been designed to determine the effect of gut microbiota on energy metabolism in mouse models. The metabolic phenotype of germ-free (GF, n = 20) and conventional (n = 20) mice was characterized using a NMR spectroscopy-based metabolic profiling approach, with a focus on sexual dimorphism (20 males, 20 females) and energy metabolism in urine, plasma, liver, and brown adipose tissue (BAT). Physiological data of age-matched GF and conventional mice showed that male animals had a higher weight than females in both groups. In addition, conventional males had a significantly higher total body fat content (TBFC) compared to conventional females, whereas this sexual dimorphism disappeared in GF animals (i.e., male GF mice had a TBFC similar to those of conventional and GF females). Profiling of BAT hydrophilic extracts revealed that sexual dimorphism in normal mice was absent in GF animals, which also displayed lower BAT lactate levels and higher levels of (D)-3-hydroxybutyrate in liver, plasma, and BAT, together with lower circulating levels of VLDL. These data indicate that the gut microbiota modulate the lipid metabolism in BAT, as the absence of gut microbiota stimulated both hepatic and BAT lipolysis while inhibiting lipogenesis. We also demonstrated that (1)H NMR metabolic profiles of BAT were excellent predictors of BW and TBFC, indicating the potential of BAT to fight against obesity.
Collapse
Affiliation(s)
- Renaud Mestdagh
- Division of Biomolecular Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London , SW7 2AZ, London, UK
| | | | | | | | | | | | | |
Collapse
|
215
|
Abstract
This review examines mechanisms by which the bacteria present in the gut interact with nutrients and host biology to affect the risk of obesity and associated disorders, including diabetes, inflammation, and liver diseases. The bacterial metabolism of nutrients in the gut is able to drive the release of bioactive compounds (including short-chain fatty acids or lipid metabolites), which interact with host cellular targets to control energy metabolism and immunity. Animal and human data demonstrate that phylogenic changes occur in the microbiota composition in obese versus lean individuals; they suggest that the count of specific bacteria is inversely related to fat mass development, diabetes, and/or the low levels of inflammation associated with obesity. The prebiotic and probiotic approaches are presented as interesting research tools to counteract the drop in target bacteria and thereby to estimate their relevance in the improvement of host metabolism.
Collapse
Affiliation(s)
- Nathalie M Delzenne
- Louvain Drug Research Institute, Metabolism and Nutrition Research Group, Université catholique de Louvain, Brussels, Belgium.
| | | |
Collapse
|
216
|
Feng J, Liu H, Bhakoo KK, Lu L, Chen Z. A metabonomic analysis of organ specific response to USPIO administration. Biomaterials 2011; 32:6558-69. [PMID: 21641028 DOI: 10.1016/j.biomaterials.2011.05.035] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Accepted: 05/10/2011] [Indexed: 02/08/2023]
Abstract
As ultrasmall superparamagnetic particles of iron oxides (USPIO) have been widely used in clinical medicine as MRI contrast agents, hence their potential toxicity and adverse effects following administration have attracted particular attention. In the present study, high resolution magic-angle-spinning (1)H NMR spectroscopy coupled with multivariate statistical analysis was used to directly determine the metabolic consequences of specific-tissues, including kidney, liver and spleen following the intravenous administration of USPIO. Alterations of renal, hepatic and splenic function were reflected by changes in a number of metabolic pathways including small molecules involved in energy, lipid, glucose, and amino acids metabolism. The toxicological potential and metabolic fate of USPIO seems to be linked to their surface chemistry and particle size. Hierarchical principal component analysis was used to explore the multidimensional metabolic relationships between various biological matrices such as kidney, liver, spleen, plasma and urine. Information on the involvement of USPIO in transportation, absorption, biotransformation, biodistribution and secretion was derived from metabolic correlation analysis between different organs and biofluids. Such a metabonomic strategy provides methodology for investigating the potential adverse biological effects of similar nanoparticles on the environmental and human health and assessing the drug interventions on the targeted organ.
Collapse
Affiliation(s)
- Jianghua Feng
- Department of Electronic Science, Fujian Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China.
| | | | | | | | | |
Collapse
|
217
|
Ellero-Simatos S, Claus SP, Benelli C, Forest C, Letourneur F, Cagnard N, Beaune PH, de Waziers I. Combined transcriptomic-(1)H NMR metabonomic study reveals that monoethylhexyl phthalate stimulates adipogenesis and glyceroneogenesis in human adipocytes. J Proteome Res 2011; 10:5493-502. [PMID: 22017230 PMCID: PMC3229183 DOI: 10.1021/pr200765v] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
![]()
Adipose tissue is a major storage site for lipophilic environmental contaminants. The environmental metabolic disruptor hypothesis postulates that some pollutants can promote obesity or metabolic disorders by activating nuclear receptors involved in the control of energetic homeostasis. In this context, monoethylhexyl phthalate (MEHP) is of particular concern since it was shown to activate the peroxisome proliferator-activated receptor γ (PPARγ) in 3T3-L1 murine preadipocytes. In the present work, we used an untargeted, combined transcriptomic-1H NMR-based metabonomic approach to describe the overall effect of MEHP on primary cultures of human subcutaneous adipocytes differentiated in vitro. MEHP stimulated rapidly and selectively the expression of genes involved in glyceroneogenesis, enhanced the expression of the cytosolic phosphoenolpyruvate carboxykinase, and reduced fatty acid release. These results demonstrate that MEHP increased glyceroneogenesis and fatty acid reesterification in human adipocytes. A longer treatment with MEHP induced the expression of genes involved in triglycerides uptake, synthesis, and storage; decreased intracellular lactate, glutamine, and other amino acids; increased aspartate and NAD, and resulted in a global increase in triglycerides. Altogether, these results indicate that MEHP promoted the differentiation of human preadipocytes to adipocytes. These mechanisms might contribute to the suspected obesogenic effect of MEHP. Using an untargeted combined transcriptomic-1H NMR-based metabonomic approach, we describe the overall effect of monoethyl-hexyl phthalate (MEHP) on primary cultures of human subcutaneous adipocytes differentiated in vitro. MEHP rapidly and selectively stimulated glyceroneogenesis, a metabolic pathway involved in the control of fatty acid release from adipose tissue. A longer treatment with MEHP promoted the differentiation of human preadipocytes to adipocytes. These mechanisms might contribute to an obesogenic effect of MEHP.
Collapse
Affiliation(s)
- Sandrine Ellero-Simatos
- INSERM, UMR 775, Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Saints Pères, 75006 Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
218
|
Rezzonico E, Mestdagh R, Delley M, Combremont S, Dumas ME, Holmes E, Nicholson J, Bibiloni R. Bacterial adaptation to the gut environment favors successful colonization: microbial and metabonomic characterization of a simplified microbiota mouse model. Gut Microbes 2011; 2:307-18. [PMID: 22157236 PMCID: PMC3337120 DOI: 10.4161/gmic.18754] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Rodent models harboring a simple yet functional human intestinal microbiota provide a valuable tool to study the relationships between mammals and their bacterial inhabitants. In this study, we aimed to develop a simplified gnotobiotic mouse model containing 10 easy-to-grow bacteria, readily available from culture repositories, and of known genome sequence, that overall reflect the dominant commensal bacterial makeup found in adult human feces. We observed that merely inoculating a mix of fresh bacterial cultures into ex-germ free mice did not guarantee a successful intestinal colonization of the entire bacterial set, as mice inoculated simultaneously with all strains only harbored 3 after 21 d. Therefore, several inoculation procedures were tested and levels of individual strains were quantified using molecular tools. Best results were obtained by inoculating single bacterial strains into individual animals followed by an interval of two weeks before allowing the animals to socialize to exchange their commensal microbes. Through this procedure, animals were colonized with almost the complete bacterial set (9/10). Differences in the intestinal composition were also reflected in the urine and plasma metabolic profiles, where changes in lipids, SCFA, and amino acids were observed. We conclude that adaptation of bacterial strains to the host's gut environment (mono-colonization) may predict a successful establishment of a more complex microbiota in rodents.
Collapse
Affiliation(s)
- Enea Rezzonico
- Nestlé Research Centre; Bioanalytical Science Department; Lausanne, Switzerland
| | - Renaud Mestdagh
- Division of Biomolecular Medicine, Department of Surgery and Cancer, Faculty of Medicine; Imperial College London; London, UK
| | - Michèle Delley
- Nestlé Research Centre; Bioanalytical Science Department; Lausanne, Switzerland
| | - Séverine Combremont
- Nestlé Research Centre; Bioanalytical Science Department; Lausanne, Switzerland
| | - Marc-Emmanuel Dumas
- Division of Biomolecular Medicine, Department of Surgery and Cancer, Faculty of Medicine; Imperial College London; London, UK
| | - Elaine Holmes
- Division of Biomolecular Medicine, Department of Surgery and Cancer, Faculty of Medicine; Imperial College London; London, UK
| | - Jeremy Nicholson
- Division of Biomolecular Medicine, Department of Surgery and Cancer, Faculty of Medicine; Imperial College London; London, UK
| | - Rodrigo Bibiloni
- Nestlé Research Centre; Bioanalytical Science Department; Lausanne, Switzerland,Correspondence to: Rodrigo Bibiloni,
| |
Collapse
|
219
|
Zheng X, Xie G, Zhao A, Zhao L, Yao C, Chiu NHL, Zhou Z, Bao Y, Jia W, Nicholson JK, Jia W. The footprints of gut microbial-mammalian co-metabolism. J Proteome Res 2011; 10:5512-22. [PMID: 21970572 DOI: 10.1021/pr2007945] [Citation(s) in RCA: 226] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Gut microbiota are associated with essential various biological functions in humans through a "network" of microbial-host co-metabolism to process nutrients and drugs and modulate the activities of multiple pathways in organ systems that are linked to different diseases. The microbiome impacts strongly on the metabolic phenotypes of the host, and hence, metabolic readouts can give insights into functional metagenomic activity. We applied an untargeted mass spectrometry (MS) based metabonomics approach to profile normal Wistar rats exposed to a broad spectrum β-lactam antibiotic imipenem/cilastatin sodium, at 50 mg/kg/daily for 4 days followed by a 14-day recovery period. In-depth metabolic phenotyping allowed identification of a panel of 202 urinary and 223 fecal metabolites significantly related to end points of a functional metagenome (p < 0.05 in at least one day), many of which have not been previously reported such as oligopeptides and carbohydrates. This study shows extensive gut microbiota modulation of host systemic metabolism involving short-chain fatty acids, tryptophan, tyrosine metabolism, and possibly a compensatory mechanism of indole-melatonin production. Given the integral nature of the mammalian genome and metagenome, this panel of metabolites will provide a new platform for potential therapeutic markers and mechanistic solutions to complex problems commonly encountered in pathology, toxicology, or drug metabolism studies.
Collapse
Affiliation(s)
- Xiaojiao Zheng
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
220
|
Regulatory role for l-arginine in the utilization of amino acids by pig small-intestinal bacteria. Amino Acids 2011; 43:233-44. [DOI: 10.1007/s00726-011-1067-z] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 08/25/2011] [Indexed: 12/16/2022]
|
221
|
Pflughoeft KJ, Versalovic J. Human microbiome in health and disease. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2011; 7:99-122. [PMID: 21910623 DOI: 10.1146/annurev-pathol-011811-132421] [Citation(s) in RCA: 322] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mammals are complex assemblages of mammalian and bacterial cells organized into functional organs, tissues, and cellular communities. Human biology can no longer concern itself only with human cells: Microbiomes at different body sites and functional metagenomics must be considered part of systems biology. The emergence of metagenomics has resulted in the generation of vast data sets of microbial genes and pathways present in different body habitats. The profound differences between microbiomes in various body sites reveal how metagenomes contribute to tissue and organ function. As next-generation DNA-sequencing methods provide whole-metagenome data in addition to gene-expression profiling, metaproteomics, and metabonomics, differences in microbial composition and function are being linked to health and disease states in different organs and tissues. Global parameters of microbial communities may provide valuable information regarding human health status and disease predisposition. More detailed knowledge of the human microbiome will yield next-generation diagnostics and therapeutics for various acute, chronic, localized, and systemic human diseases.
Collapse
Affiliation(s)
- Kathryn J Pflughoeft
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | |
Collapse
|
222
|
Li JV, Ashrafian H, Bueter M, Kinross J, Sands C, le Roux CW, Bloom SR, Darzi A, Athanasiou T, Marchesi JR, Nicholson JK, Holmes E. Metabolic surgery profoundly influences gut microbial-host metabolic cross-talk. Gut 2011; 60:1214-23. [PMID: 21572120 PMCID: PMC3677150 DOI: 10.1136/gut.2010.234708] [Citation(s) in RCA: 319] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Bariatric surgery is increasingly performed worldwide to treat morbid obesity and is also known as metabolic surgery to reflect its beneficial metabolic effects especially with respect to improvement in type 2 diabetes. Understanding surgical weight loss mechanisms and metabolic modulation is required to enhance patient benefits and operative outcomes. METHODS The authors applied a parallel and statistically integrated bacterial profiling and metabonomic approach to characterise Roux-en-Y gastric bypass (RYGB) effects in a non-obese rat model. RESULTS Substantial shifts of the main gut phyla towards higher concentrations of Proteobacteria (52-fold), specifically Enterobacter hormaechei, are shown. Low concentrations of Firmicutes (4.5-fold) and Bacteroidetes (twofold) in comparison with sham-operated rats were also found. Faecal extraction studies revealed a decrease in faecal bile acids and a shift from protein degradation to putrefaction through decreased faecal tyrosine with concomitant increases in faecal putrescine and diaminoethane. Decreased urinary amines and cresols were found and indices of modulated energy metabolism were demonstrated after RYGB, including decreased urinary succinate, 2-oxoglutarate, citrate and fumarate. These changes could also indicate renal tubular acidosis, which is associated with increased flux of mitochondrial tricarboxylic acid cycle intermediates. A surgically induced effect on the gut-brain-liver metabolic axis is inferred from modulated faecal γ-aminobutyric acid and glutamate. CONCLUSION This profound co-dependence of mammalian and microbial metabolism, which is systematically altered after RYGB surgery, suggests that RYGB exerts local and global metabolic effects. The effect of RYGB surgery on the host metabolic-microbial cross-talk augments our understanding of the metabolic phenotype of bariatric procedures and can facilitate enhanced treatments for obesity-related diseases.
Collapse
Affiliation(s)
- Jia V. Li
- Sections of Biomolecular Medicine, Imperial College London, SW7 2AZ, UK
- Biosurgery & Surgical Technology, Department of Surgery and Cancer, Imperial College London, SW7 2AZ, UK
| | - Hutan Ashrafian
- Biosurgery & Surgical Technology, Department of Surgery and Cancer, Imperial College London, SW7 2AZ, UK
- Section of Investigative Medicine, Division of Diabetes, Endocrinology & Metabolism, Department of Medicine, Faculty of Medicine, Imperial College London, SW7 2AZ, UK
| | - Marco Bueter
- Section of Investigative Medicine, Division of Diabetes, Endocrinology & Metabolism, Department of Medicine, Faculty of Medicine, Imperial College London, SW7 2AZ, UK
| | - James Kinross
- Sections of Biomolecular Medicine, Imperial College London, SW7 2AZ, UK
- Biosurgery & Surgical Technology, Department of Surgery and Cancer, Imperial College London, SW7 2AZ, UK
| | - Caroline Sands
- Sections of Biomolecular Medicine, Imperial College London, SW7 2AZ, UK
| | - Carel W le Roux
- Section of Investigative Medicine, Division of Diabetes, Endocrinology & Metabolism, Department of Medicine, Faculty of Medicine, Imperial College London, SW7 2AZ, UK
| | - Stephen R. Bloom
- Section of Investigative Medicine, Division of Diabetes, Endocrinology & Metabolism, Department of Medicine, Faculty of Medicine, Imperial College London, SW7 2AZ, UK
| | - Ara Darzi
- Biosurgery & Surgical Technology, Department of Surgery and Cancer, Imperial College London, SW7 2AZ, UK
| | - Thanos Athanasiou
- Biosurgery & Surgical Technology, Department of Surgery and Cancer, Imperial College London, SW7 2AZ, UK
| | - Julian R. Marchesi
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AT, UK
| | - Jeremy K. Nicholson
- Sections of Biomolecular Medicine, Imperial College London, SW7 2AZ, UK
- Biosurgery & Surgical Technology, Department of Surgery and Cancer, Imperial College London, SW7 2AZ, UK
| | - Elaine Holmes
- Sections of Biomolecular Medicine, Imperial College London, SW7 2AZ, UK
| |
Collapse
|
223
|
Clausen MR, Christensen KL, Hedemann MS, Liu Y, Purup S, Schmidt M, Callesen H, Stagsted J, Bertram HC. Metabolomic phenotyping of a cloned pig model. BMC PHYSIOLOGY 2011; 11:14. [PMID: 21859467 PMCID: PMC3174869 DOI: 10.1186/1472-6793-11-14] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 08/22/2011] [Indexed: 12/15/2022]
Abstract
BACKGROUND Pigs are widely used as models for human physiological changes in intervention studies, because of the close resemblance between human and porcine physiology and the high degree of experimental control when using an animal model. Cloned animals have, in principle, identical genotypes and possibly also phenotypes and this offer an extra level of experimental control which could possibly make them a desirable tool for intervention studies. Therefore, in the present study, we address how phenotype and phenotypic variation is affected by cloning, through comparison of cloned pigs and normal outbred pigs. RESULTS The metabolic phenotype of cloned pigs (n = 5) was for the first time elucidated by nuclear magnetic resonance (NMR)-based metabolomic analysis of multiple bio-fluids including plasma, bile and urine. The metabolic phenotype of the cloned pigs was compared with normal outbred pigs (n = 6) by multivariate data analysis, which revealed differences in the metabolic phenotypes. Plasma lactate was higher for cloned vs control pigs, while multiple metabolites were altered in the bile. However a lower inter-individual variability for cloned pigs compared with control pigs could not be established. CONCLUSIONS From the present study we conclude that cloned and normal outbred pigs are phenotypically different. However, it cannot be concluded that the use of cloned animals will reduce the inter-individual variation in intervention studies, though this is based on a limited number of animals.
Collapse
Affiliation(s)
- Morten R Clausen
- Department of Food Science, Science and Technology, Aarhus University, Aarslev, Denmark
| | | | | | | | | | | | | | | | | |
Collapse
|
224
|
Bäckhed F. Programming of host metabolism by the gut microbiota. ANNALS OF NUTRITION AND METABOLISM 2011; 58 Suppl 2:44-52. [PMID: 21846980 DOI: 10.1159/000328042] [Citation(s) in RCA: 157] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The human gut harbors a vast ensemble of bacteria that has co-evolved with the human host and performs several important functions that affect our physiology and metabolism. The human gut is sterile at birth and is subsequently colonized with bacteria from the mother and the environment. The complexity of the gut microbiota is increased during childhood, and adult humans contain 150-fold more bacterial genes than human genes. Recent advances in next-generation sequencing technology and mechanistic testing in gnotobiotic mice have identified the gut microbiota as an environmental factor that contributes to obesity. Germ-free mice are protected against developing diet-induced obesity and the underlying mechanisms whereby the gut microbiota contributes to host metabolism are beginning to be clarified. The obese phenotype is associated with increased microbial fermentation and energy extraction; however, other microbially modulated mechanisms contribute to disease progression as well. The gut microbiota has profound effects on host gene expression in the enterohepatic system, including genes involved in immunity and metabolism. For example, the gut microbiota affects expression of secreted proteins in the gut, which modulate lipid metabolism in peripheral organs. In addition, the gut microbiota is also a source of proinflammatory molecules that augment adipose inflammation and macrophage recruitment by signaling through the innate immune system. TLRs (Toll-like receptors) are integral parts of the innate immune system and are expressed by both macrophages and epithelial cells. Activation of TLRs in macrophages dramatically impairs glucose homeostasis, whereas TLRs in the gut may alter the gut microbial composition that may have profound effects on host metabolism. Accordingly, reprogramming the gut microbiota, or its function, in early life may have beneficial effects on host metabolism later in life.
Collapse
Affiliation(s)
- Fredrik Bäckhed
- Sahlgrenska Center for Cardiovascular and Metabolic Research/Wallenberg Laboratory and Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
225
|
Kanther M, Sun X, Mühlbauer M, Mackey LC, Flynn EJ, Bagnat M, Jobin C, Rawls JF. Microbial colonization induces dynamic temporal and spatial patterns of NF-κB activation in the zebrafish digestive tract. Gastroenterology 2011; 141:197-207. [PMID: 21439961 PMCID: PMC3164861 DOI: 10.1053/j.gastro.2011.03.042] [Citation(s) in RCA: 175] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2010] [Revised: 02/15/2011] [Accepted: 03/04/2011] [Indexed: 12/31/2022]
Abstract
BACKGROUND & AIMS The nuclear factor κ-light-chain enhancer of activated B cells (NF-κB) transcription factor pathway is activated in response to diverse microbial stimuli to regulate expression of genes involved in immune responses and tissue homeostasis. However, the temporal and spatial activation of NF-κB in response to microbial signals have not been determined in whole living organisms, and the molecular and cellular details of these responses are not well understood. We used in vivo imaging and molecular approaches to analyze NF-κB activation in response to the commensal microbiota in transparent gnotobiotic zebrafish. METHODS We used DNA microarrays, in situ hybridization, and quantitative reverse transcription polymerase chain reaction analyses to study the effects of the commensal microbiota on gene expression in gnotobiotic zebrafish. Zebrafish PAC2 and ZFL cells were used to study the NF-κB signaling pathway in response to bacterial stimuli. We generated transgenic zebrafish that express enhanced green fluorescent protein under transcriptional control of NF-κB, and used them to study patterns of NF-κB activation during development and microbial colonization. RESULTS Bacterial stimulation induced canonical activation of the NF-κB pathway in zebrafish cells. Colonization of germ-free transgenic zebrafish with a commensal microbiota activated NF-κB and led to up-regulation of its target genes in intestinal and extraintestinal tissues of the digestive tract. Colonization with the bacterium Pseudomonas aeruginosa was sufficient to activate NF-κB, and this activation required a functional flagellar apparatus. CONCLUSIONS In zebrafish, transcriptional activity of NF-κB is spatially and temporally regulated by specific microbial factors. The observed patterns of NF-κB-dependent responses to microbial colonization indicate that cells in the gastrointestinal tract respond robustly to the microbial environment.
Collapse
Affiliation(s)
- Michelle Kanther
- Department of Cell and Molecular Physiology, University of North Carolina, Chapel Hill, NC,Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC
| | - Xiaolun Sun
- Department of Medicine, University of North Carolina, Chapel Hill, NC
| | - Marcus Mühlbauer
- Department of Medicine, University of North Carolina, Chapel Hill, NC
| | - Lantz C. Mackey
- Department of Cell and Molecular Physiology, University of North Carolina, Chapel Hill, NC
| | - Edward J. Flynn
- Department of Cell and Molecular Physiology, University of North Carolina, Chapel Hill, NC
| | - Michel Bagnat
- Department of Cell Biology, Duke University Medical School, Durham, NC
| | - Christian Jobin
- Department of Medicine, University of North Carolina, Chapel Hill, NC,Department of Pharmacology, University of North Carolina, Chapel Hill, NC,Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC
| | - John F. Rawls
- Department of Cell and Molecular Physiology, University of North Carolina, Chapel Hill, NC,Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC
| |
Collapse
|
226
|
Swann JR, Tuohy KM, Lindfors P, Brown DT, Gibson GR, Wilson ID, Sidaway J, Nicholson JK, Holmes E. Variation in antibiotic-induced microbial recolonization impacts on the host metabolic phenotypes of rats. J Proteome Res 2011; 10:3590-603. [PMID: 21591676 DOI: 10.1021/pr200243t] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The interaction between the gut microbiota and their mammalian host is known to have far-reaching consequences with respect to metabolism and health. We investigated the effects of eight days of oral antibiotic exposure (penicillin and streptomycin sulfate) on gut microbial composition and host metabolic phenotype in male Han-Wistar rats (n = 6) compared to matched controls. Early recolonization was assessed in a third group exposed to antibiotics for four days followed by four days recovery (n = 6). Fluorescence in situ hybridization analysis of the intestinal contents collected at eight days showed a significant reduction in all bacterial groups measured (control, 10(10.7) cells/g feces; antibiotic-treated, 10(8.4)). Bacterial suppression reduced the excretion of mammalian-microbial urinary cometabolites including hippurate, phenylpropionic acid, phenylacetylglycine and indoxyl-sulfate whereas taurine, glycine, citrate, 2-oxoglutarate, and fumarate excretion was elevated. While total bacterial counts remained notably lower in the recolonized animals (10(9.1) cells/g faeces) compared to the controls, two cage-dependent subgroups emerged with Lactobacillus/Enterococcus probe counts dominant in one subgroup. This dichotomous profile manifested in the metabolic phenotypes with subgroup differences in tricarboxylic acid cycle metabolites and indoxyl-sulfate excretion. Fecal short chain fatty acids were diminished in all treated animals. Antibiotic treatment induced a profound effect on the microbiome structure, which was reflected in the metabotype. Moreover, the recolonization process was sensitive to the microenvironment, which may impact on understanding downstream consequences of antibiotic consumption in human populations.
Collapse
Affiliation(s)
- Jonathan R Swann
- Biomolecular Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
227
|
Holmes E, Li JV, Athanasiou T, Ashrafian H, Nicholson JK. Understanding the role of gut microbiome-host metabolic signal disruption in health and disease. Trends Microbiol 2011; 19:349-59. [PMID: 21684749 DOI: 10.1016/j.tim.2011.05.006] [Citation(s) in RCA: 381] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 05/13/2011] [Indexed: 02/08/2023]
Abstract
There is growing awareness of the importance of the gut microbiome in health and disease, and recognition that the microbe to host metabolic signalling is crucial to understanding the mechanistic basis of their interaction. This opens new avenues of research for advancing knowledge on the aetiopathologic consequences of dysbiosis with potential for identifying novel microbially-related drug targets. Advances in both sequencing technologies and metabolic profiling platforms, coupled with mathematical integration approaches, herald a new era in characterizing the role of the microbiome in metabolic signalling within the host and have far reaching implications in promoting health in both the developed and developing world.
Collapse
Affiliation(s)
- Elaine Holmes
- Department of Surgery and Cancer, Imperial College London, London, UK
| | | | | | | | | |
Collapse
|
228
|
Jové M, Serrano JCE, Ortega N, Ayala V, Anglès N, Reguant J, Morelló JR, Romero MP, Motilva MJ, Prat J, Pamplona R, Portero-Otín M. Multicompartmental LC-Q-TOF-Based Metabonomics as an Exploratory Tool to Identify Novel Pathways Affected by Polyphenol-Rich Diets in Mice. J Proteome Res 2011; 10:3501-12. [DOI: 10.1021/pr200132s] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Mariona Jové
- Institut de Recerca Biomèdica de Lleida-Universitat de Lleida-Parc Científic i Agroalimentari Tecnològic de Lleida (IRBLLEIDA-UdL-PCiTAL), c/Montserrat Roig 2, 25008 Lleida, Spain
| | - José C. E. Serrano
- Institut de Recerca Biomèdica de Lleida-Universitat de Lleida-Parc Científic i Agroalimentari Tecnològic de Lleida (IRBLLEIDA-UdL-PCiTAL), c/Montserrat Roig 2, 25008 Lleida, Spain
| | - Nàdia Ortega
- Departament de Tecnologia dels Aliments, XaRTA-TPV, Escola Tècnica Superior d’ Enginyeria Agrària, Universitat de Lleida, Av/Alcalde Rovira Roure 191, 25198 Lleida, Spain
| | - Victòria Ayala
- Institut de Recerca Biomèdica de Lleida-Universitat de Lleida-Parc Científic i Agroalimentari Tecnològic de Lleida (IRBLLEIDA-UdL-PCiTAL), c/Montserrat Roig 2, 25008 Lleida, Spain
| | - Neus Anglès
- La Morella Nuts, SA. Apel.les Mestres, S/N 43006 Reus, Spain
| | - Jordi Reguant
- La Morella Nuts, SA. Apel.les Mestres, S/N 43006 Reus, Spain
| | - José R. Morelló
- La Morella Nuts, SA. Apel.les Mestres, S/N 43006 Reus, Spain
| | - Maria Paz Romero
- Departament de Tecnologia dels Aliments, XaRTA-TPV, Escola Tècnica Superior d’ Enginyeria Agrària, Universitat de Lleida, Av/Alcalde Rovira Roure 191, 25198 Lleida, Spain
| | - Maria José Motilva
- Departament de Tecnologia dels Aliments, XaRTA-TPV, Escola Tècnica Superior d’ Enginyeria Agrària, Universitat de Lleida, Av/Alcalde Rovira Roure 191, 25198 Lleida, Spain
| | - Joan Prat
- Institut de Recerca Biomèdica de Lleida-Universitat de Lleida-Parc Científic i Agroalimentari Tecnològic de Lleida (IRBLLEIDA-UdL-PCiTAL), c/Montserrat Roig 2, 25008 Lleida, Spain
| | - Reinald Pamplona
- Institut de Recerca Biomèdica de Lleida-Universitat de Lleida-Parc Científic i Agroalimentari Tecnològic de Lleida (IRBLLEIDA-UdL-PCiTAL), c/Montserrat Roig 2, 25008 Lleida, Spain
| | - Manuel Portero-Otín
- Institut de Recerca Biomèdica de Lleida-Universitat de Lleida-Parc Científic i Agroalimentari Tecnològic de Lleida (IRBLLEIDA-UdL-PCiTAL), c/Montserrat Roig 2, 25008 Lleida, Spain
| |
Collapse
|
229
|
O'Shea EF, Cotter PD, Stanton C, Ross RP, Hill C. Production of bioactive substances by intestinal bacteria as a basis for explaining probiotic mechanisms: bacteriocins and conjugated linoleic acid. Int J Food Microbiol 2011; 152:189-205. [PMID: 21742394 DOI: 10.1016/j.ijfoodmicro.2011.05.025] [Citation(s) in RCA: 188] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 05/30/2011] [Accepted: 05/31/2011] [Indexed: 01/01/2023]
Abstract
The mechanisms by which intestinal bacteria achieve their associated health benefits can be complex and multifaceted. In this respect, the diverse microbial composition of the human gastrointestinal tract (GIT) provides an almost unlimited potential source of bioactive substances (pharmabiotics) which can directly or indirectly affect human health. Bacteriocins and fatty acids are just two examples of pharmabiotic substances which may contribute to probiotic functionality within the mammalian GIT. Bacteriocin production is believed to confer producing strains with a competitive advantage within complex microbial environments as a consequence of their associated antimicrobial activity. This has the potential to enable the establishment and prevalence of producing strains as well as directly inhibiting pathogens within the GIT. Consequently, these antimicrobial peptides and the associated intestinal producing strains may be exploited to beneficially influence microbial populations. Intestinal bacteria are also known to produce a diverse array of health-promoting fatty acids. Indeed, certain strains of intestinal bifidobacteria have been shown to produce conjugated linoleic acid (CLA), a fatty acid which has been associated with a variety of systemic health-promoting effects. Recently, the ability to modulate the fatty acid composition of the liver and adipose tissue of the host upon oral administration of CLA-producing bifidobacteria and lactobacilli was demonstrated in a murine model. Importantly, this implies a potential therapeutic role for probiotics in the treatment of certain metabolic and immunoinflammatory disorders. Such examples serve to highlight the potential contribution of pharmabiotic production to probiotic functionality in relation to human health maintenance.
Collapse
Affiliation(s)
- Eileen F O'Shea
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | | | | | | | | |
Collapse
|
230
|
Rahmioglu N, Le Gall G, Heaton J, Kay KL, Smith NW, Colquhoun IJ, Ahmadi KR, Kemsley EK. Prediction of variability in CYP3A4 induction using a combined 1H NMR metabonomics and targeted UPLC-MS approach. J Proteome Res 2011; 10:2807-16. [PMID: 21491888 DOI: 10.1021/pr200077n] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The activity of Cytochrome P450 3A4 (CYP3A4) enzyme is associated with many adverse or poor therapeutic responses to drugs. We used (1)H NMR-based metabonomics to identify a metabolic signature associated with variation in induced CYP3A4 activity. A total of 301 female twins, aged 45--84, participated in this study. Each volunteer was administered a potent inducer of CYP3A4 (St. John's Wort) for 14 days and the activity of CYP3A4 was quantified through the metabolism of the exogenously administered probe drug quinine sulfate (300 mg). Pre- and postintervention fasting urine samples were used to obtain metabolite profiles, using (1)H NMR spectroscopy, and were analyzed using UPLC--MS to obtain a marker for CYP3A4 induction, via the ratio of 3-hydroxyquinine to quinine (3OH-Q:Q). Multiple linear regression was used to build a predictive model for 3OH-Q:Q values based on the preintervention metabolite profiles. A combination of seven metabolites and seven covariates showed a strong (r = 0.62) relationship with log(3OH-Q:Q). This regression model demonstrated significant (p < 0.00001) predictive ability when applied to an independent validation set. Our results highlight the promise of metabonomics for predicting CYP3A4-mediated drug response.
Collapse
Affiliation(s)
- Nilufer Rahmioglu
- Department of Twin Research & Genetic Epidemiology, King's College London, London, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
231
|
|
232
|
Greiner T, Bäckhed F. Effects of the gut microbiota on obesity and glucose homeostasis. Trends Endocrinol Metab 2011; 22:117-23. [PMID: 21353592 DOI: 10.1016/j.tem.2011.01.002] [Citation(s) in RCA: 227] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 01/05/2011] [Accepted: 01/06/2011] [Indexed: 02/06/2023]
Abstract
The human gut is home to a vast number of bacteria, the microbiota, whose genomes complement our own set of genes. The gut microbiota functions at the intersection between host genotype and diet to modulate host physiology and metabolism, and recent data have revealed that the gut microbiota can affect obesity. The gut microbiota contributes to host metabolism by several mechanisms including increased energy harvest from the diet, modulation of lipid metabolism, altered endocrine function, and increased inflammatory tone. The gut microbiota could thus be considered to be an environmental factor that modulates obesity and other metabolic diseases.
Collapse
Affiliation(s)
- Thomas Greiner
- Sahlgrenska Center for Cardiovascular and Metabolic Research/Wallenberg Laboratory, Department of Molecular and Clinical Medicine, University of Gothenburg, S-413 45 Gothenburg, Sweden
| | | |
Collapse
|
233
|
Abstract
The gut microbiota enhances the host’s metabolic capacity for processing nutrients and drugs and modulate the activities of multiple pathways in a variety of organ systems. We have probed the systemic metabolic adaptation to gut colonization for 20 days following exposure of axenic mice (n = 35) to a typical environmental microbial background using high-resolution 1H nuclear magnetic resonance (NMR) spectroscopy to analyze urine, plasma, liver, kidney, and colon (5 time points) metabolic profiles. Acquisition of the gut microbiota was associated with rapid increase in body weight (4%) over the first 5 days of colonization with parallel changes in multiple pathways in all compartments analyzed. The colonization process stimulated glycogenesis in the liver prior to triggering increases in hepatic triglyceride synthesis. These changes were associated with modifications of hepatic Cyp8b1 expression and the subsequent alteration of bile acid metabolites, including taurocholate and tauromuricholate, which are essential regulators of lipid absorption. Expression and activity of major drug-metabolizing enzymes (Cyp3a11 and Cyp2c29) were also significantly stimulated. Remarkably, statistical modeling of the interactions between hepatic metabolic profiles and microbial composition analyzed by 16S rRNA gene pyrosequencing revealed strong associations of the Coriobacteriaceae family with both the hepatic triglyceride, glucose, and glycogen levels and the metabolism of xenobiotics. These data demonstrate the importance of microbial activity in metabolic phenotype development, indicating that microbiota manipulation is a useful tool for beneficially modulating xenobiotic metabolism and pharmacokinetics in personalized health care. Gut bacteria have been associated with various essential biological functions in humans such as energy harvest and regulation of blood pressure. Furthermore, gut microbial colonization occurs after birth in parallel with other critical processes such as immune and cognitive development. Thus, it is essential to understand the bidirectional interaction between the host metabolism and its symbionts. Here, we describe the first evidence of an in vivo association between a family of bacteria and hepatic lipid metabolism. These results provide new insights into the fundamental mechanisms that regulate host-gut microbiota interactions and are thus of wide interest to microbiological, nutrition, metabolic, systems biology, and pharmaceutical research communities. This work will also contribute to developing novel strategies in the alteration of host-gut microbiota relationships which can in turn beneficially modulate the host metabolism.
Collapse
|
234
|
Spencer MD, Hamp TJ, Reid RW, Fischer LM, Zeisel SH, Fodor AA. Association between composition of the human gastrointestinal microbiome and development of fatty liver with choline deficiency. Gastroenterology 2011; 140:976-86. [PMID: 21129376 PMCID: PMC3049827 DOI: 10.1053/j.gastro.2010.11.049] [Citation(s) in RCA: 527] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Revised: 11/09/2010] [Accepted: 11/16/2010] [Indexed: 01/18/2023]
Abstract
BACKGROUND & AIMS Nonalcoholic fatty liver disease affects up to 30% of the US population, but the mechanisms underlying this condition are incompletely understood. We investigated how diet standardization and choline deficiency influence the composition of the microbial community in the human gastrointestinal tract and the development of fatty liver under conditions of choline deficiency. METHODS We performed a 2-month inpatient study of 15 female subjects who were placed on well-controlled diets in which choline levels were manipulated. We used 454-FLX pyrosequencing of 16S ribosomal RNA bacterial genes to characterize microbiota in stool samples collected over the course of the study. RESULTS The compositions of the gastrointestinal microbial communities changed with choline levels of diets; each individual's microbiome remained distinct for the duration of the experiment, even though all subjects were fed identical diets. Variations between subjects in levels of Gammaproteobacteria and Erysipelotrichi were directly associated with changes in liver fat in each subject during choline depletion. Levels of these bacteria, change in amount of liver fat, and a single nucleotide polymorphism that affects choline were combined into a model that accurately predicted the degree to which subjects developed fatty liver on a choline-deficient diet. CONCLUSIONS Host factors and gastrointestinal bacteria each respond to dietary choline deficiency, although the gut microbiota remains distinct in each individual. We identified bacterial biomarkers of fatty liver that result from choline deficiency, adding to the accumulating evidence that gastrointestinal microbes have a role in metabolic disorders.
Collapse
Affiliation(s)
- Melanie D. Spencer
- Department of Bioinformatics and Genomics, University of North Carolina, Charlotte, NC 28223, USA
| | - Timothy J. Hamp
- Department of Bioinformatics and Genomics, University of North Carolina, Charlotte, NC 28223, USA
| | - Robert W. Reid
- Department of Bioinformatics and Genomics, University of North Carolina, Charlotte, NC 28223, USA
| | - Leslie M. Fischer
- Department of Nutrition, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Steven H. Zeisel
- Department of Nutrition, University of North Carolina, Chapel Hill, NC 27599, USA
,
Nutrition Research Institute, University of North Carolina, Kannapolis, NC 28081, USA
| | - Anthony A. Fodor
- Department of Bioinformatics and Genomics, University of North Carolina, Charlotte, NC 28223, USA
,
To whom correspondence should be addressed: Department of Bioinformatics and Genomics, University of North Carolina, Charlotte, NC 28223, USA. Phone: 704-687-8214. Fax: 704-687-8667
| |
Collapse
|
235
|
Metabolism of select amino acids in bacteria from the pig small intestine. Amino Acids 2011; 42:1597-608. [PMID: 21344175 DOI: 10.1007/s00726-011-0846-x] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 02/08/2011] [Indexed: 12/14/2022]
Abstract
This study investigated the metabolism of select amino acids (AA) in bacterial strains (Streptococcus sp., Escherichia coli and Klebsiella sp.) and mixed bacterial cultures derived from the jejunum and ileum of pigs. Cells were incubated at 37°C for 3 h in anaerobic media containing 0.5-5 mM select AA plus [U-14C]-labeled tracers to determine their decarboxylation and incorporation into bacterial protein. Results showed that all types of bacteria rapidly utilized glutamine, lysine, arginine and threonine. However, rates of the utilization of AA by pure cultures of E. coli and Klebsiella sp. were greater than those for mixed bacterial cultures or Streptococcus sp. The oxidation of lysine, threonine and arginine accounted for 10% of their utilization in these pure bacterial cultures, but values were either higher or lower in mixed bacterial cultures depending on AA, bacterial species and the gut segment (e.g., 15% for lysine in jejunal and ileal mixed bacteria; 5.5 and 0.3% for threonine in jejunal mixed bacteria and ileal mixed bacteria, respectively; and 20% for arginine in ileal mixed bacteria). Percentages of AA used for bacterial protein synthesis were 50-70% for leucine, 25% for threonine, proline and methionine, 15% for lysine and arginine and 10% for glutamine. These results indicate diverse metabolism of AA in small-intestinal bacteria in a species- and gut compartment-dependent manner. This diversity may contribute to AA homeostasis in the gut. The findings have important implications for both animal and human nutrition, as well as their health and well-beings.
Collapse
|
236
|
Abstract
Microbial colonization of mammals is an evolution-driven process that modulate host physiology, many of which are associated with immunity and nutrient intake. Here, we report that colonization by gut microbiota impacts mammalian brain development and subsequent adult behavior. Using measures of motor activity and anxiety-like behavior, we demonstrate that germ free (GF) mice display increased motor activity and reduced anxiety, compared with specific pathogen free (SPF) mice with a normal gut microbiota. This behavioral phenotype is associated with altered expression of genes known to be involved in second messenger pathways and synaptic long-term potentiation in brain regions implicated in motor control and anxiety-like behavior. GF mice exposed to gut microbiota early in life display similar characteristics as SPF mice, including reduced expression of PSD-95 and synaptophysin in the striatum. Hence, our results suggest that the microbial colonization process initiates signaling mechanisms that affect neuronal circuits involved in motor control and anxiety behavior.
Collapse
|
237
|
Subpopulation-specific metabolic pathway usage in mixed cultures as revealed by reporter protein-based 13C analysis. Appl Environ Microbiol 2011; 77:1816-21. [PMID: 21216909 DOI: 10.1128/aem.02696-10] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Most large-scale biological processes, like global element cycling or decomposition of organic matter, are mediated by microbial consortia. Commonly, the different species in such consortia exhibit mutual metabolic dependencies that include the exchange of nutrients. Despite the global importance, surprisingly little is known about the metabolic interplay between species in particular subpopulations. To gain insight into the intracellular fluxes of subpopulations and their interplay within such mixed cultures, we developed here a (13)C flux analysis approach based on affinity purification of the recombinant fusion glutathione S-transferase (GST) and green fluorescent protein (GFP) as a reporter protein. Instead of detecting the (13)C labeling patterns in the typically used amino acids from the total cellular protein, our method detects these (13)C patterns in amino acids from the reporter protein that has been expressed in only one species of the consortium. As a proof of principle, we validated our approach by mixed-culture experiments of an Escherichia coli wild type with two metabolic mutants. The reporter method quantitatively resolved the expected mutant-specific metabolic phenotypes down to subpopulation fractions of about 1%.
Collapse
|
238
|
The endocannabinoid system links gut microbiota to adipogenesis. Mol Syst Biol 2010; 6:392. [PMID: 20664638 PMCID: PMC2925525 DOI: 10.1038/msb.2010.46] [Citation(s) in RCA: 479] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Accepted: 05/20/2010] [Indexed: 12/05/2022] Open
Abstract
We investigated several models of gut microbiota modulation: selective (prebiotics, probiotics, high-fat), drastic (antibiotics, germ-free mice) and mice bearing specific mutations of a key gene involved in the toll-like receptors (TLR) bacteria-host interaction (Myd88−/−). Here we report that gut microbiota modulates the intestinal endocannabinoid (eCB) system-tone, which in turn regulates gut permeability and plasma lipopolysaccharide (LPS) levels. The activation of the intestinal endocannabinoid system increases gut permeability which in turn enhances plasma LPS levels and inflammation in physiological and pathological conditions such as obesity and type 2 diabetes. The investigation of adipocyte differentiation and lipogenesis (both markers of adipogenesis) indicate that gut microbiota controls adipose tissue physiology through LPS-eCB system regulatory loops and may play a critical role in the adipose tissue plasticity during obesity. In vivo, ex vivo and in vitro studies indicate that LPS acts as a master switch on adipose tissue metabolism, by blocking the cannabinoid-driven adipogenesis.
Obesity and type II diabetes have reached epidemic proportions and are associated with a massive expansion of the adipose tissue. Recent data have shown that these metabolic disorders are characterised by low-grade inflammation of unknown molecular origin (Hotamisligil and Erbay, 2008; Shoelson and Goldfine, 2009); therefore, it is of the utmost importance to identify the link between inflammation and adipose tissue metabolism and plasticity. Among the latest important discoveries published in the field, two new concepts have driven this study. First, emerging data have shown that gut microbiota is involved in the control of energy homeostasis (Ley et al, 2005; Turnbaugh et al, 2006; Claus et al, 2008) Obesity is characterised by the massive expansion of adipose tissues and is associated with inflammation (Weisberg et al, 2003). It is possible that both this expansion and the associated inflammation are controlled by microbiota and lipopolysaccharide (LPS) (Cani et al, 2007a, 2008), a cell wall component of Gram-negative bacteria that is among the most potent inducers of inflammation (Cani et al, 2007a, 2007b, 2008; Cani and Delzenne, 2009). Second, obesity is also characterised by greater endocannabinoid (eCB) system tone (increased eCB plasma levels, altered expression of the cannabinoid receptor 1 (CB1 mRNA) and increased eCB levels in the adipose tissue) (Engeli et al, 2005; Bluher et al, 2006; Matias et al, 2006; Cote et al, 2007; D'Eon et al, 2008; Starowicz et al, 2008; Di Marzo et al, 2009; Izzo et al, 2009). Several studies have suggested a close relationship between LPS, gut microbiota and the eCB system. Indeed, LPS controls the synthesis of eCB in macrophages, whereas macrophage infiltration in the adipose tissue occurring during obesity is an important factor in the development of the metabolic disorders (Weisberg et al, 2003). We have shown that macrophage infiltration is not only dependent on the activation of the receptor CD14 by LPS, but is also dependent on the gut microbiota composition and the gut barrier function (gut permeability) (Cani et al, 2007a, 2008). Moreover, LPS controls the synthesis of eCBs both in vivo (Hoareau et al, 2009) and in vitro (Di Marzo et al, 1999; Maccarrone et al, 2001) through mechanisms dependent of the LPS receptor signalling pathway (Liu et al, 2003). Thus, obesity is nowadays associated with changes in gut microbiota and a higher endocannabinoid system tone, both having a function in the disease's pathophysiology. Given that the convergent molecular mechanisms that may affect these different supersystem activities and adiposity remain to be elucidated, we tested the hypothesis that the gut microbiota and the eCB system control gut permeability and adipogenesis, by a LPS-dependent mechanism, under both physiological and obesity-related conditions. First, we found that high-fat diet-induced obese and diabetic animals exhibit threefold higher colonic CB1 mRNA, whereas no modification was observed in the small intestinal segment (jejunum). Moreover, selective modulation of gut microbiota using prebiotics (i.e. non-digestible compounds fermented by specific bacteria in the gut) (Gibson and Roberfroid, 1995) reduces by about one half this effect. Similarly, in genetically obese mice (ob/ob), prebiotic treatment decreases colonic CB1 mRNA and colonic eCB concentrations (AEA) (Figure 2A). In addition, we have observed a modulation of FAAH and MGL mRNA (Figure 2A). Furthermore, we have found that antibiotic treatment decreasing the number of gut bacteria content was associated with a strong reduction of the CB1 receptor levels in the colon of healthy mice. Second, we show that the endocannabinoid system controls gut barrier function (in vivo and in vitro) and endotoxaemia. More precisely, we designed two in vivo experiments in obese and lean mice (Figure 2). In a first experiment, we blocked the CB1 receptor in obese mice with a specific and selective antagonist (SR141716A) and found that the blockade of the CB1 receptor reduces plasma LPS levels by a mechanism linked to the improvement of the gut barrier function (Figure 2C) as shown by the lower alteration of tight junctions proteins (zonula occludens-1 (ZO-1) and occludin) distribution and localisation, and independently of food intake behaviour (Figures 2D and 3). In a second set of experiments performed in lean wild-type mice, we mimicked the increased eCB system tone observed during obesity by chronic (4-week) infusion of a cannabinoid receptor agonist (HU-210) through mini-pumps implanted subcutaneously. We found that cannabinoid agonist administration significantly increased plasma LPS levels. Furthermore, increased plasma fluorescein isothiocyanate-dextran levels were observed after oral gavage (Figure 2F and G). These sets of in vivo experiments strongly suggest that an overactive eCB system increases gut permeability. Finally, in a cellular model of intestinal epithelial barrier (Caco-2 cells monolayer), we found that CB1 receptor antagonist normalised LPS and the cannabinoid receptors agonist HU-210-induced epithelial barrier alterations. Third, we provide evidence that adipogenesis is under the control of the gut microbiota, through the modulation of the gut and adipose tissue endocannabinoid systems in both physiological and pathological conditions. We found that the higher eCB system tone (found in obesity or mimicked by eCB agonist) participates to the regulation of adipogenesis by directly acting on the adipose tissue, but also indirectly by increasing plasma LPS levels, which consequently impair adipogenesis and promote inflammatory states. Here, we found that both the specific modulation of the gut microbiota and the blockade of the CB1 receptor decrease plasma LPS levels and is associated with higher adipocyte differentiation and lipogenesis rate. One possible explanation for these surprising data could be as follows: plasma LPS levels might be under the control of CB1 in the intestine (gut barrier function); therefore, under particular pathophysiological conditions in vivo (e.g. obesity/type II diabetes), this could lead to higher circulating LPS levels. Furthermore, CB1 receptor blockade might paradoxically increase adipogenesis because of the ability of CB1 antagonist to reduce gut permeability and counteract the LPS-induced inhibitory effect on adipocyte differentiation and lipogenesis (i.e. a disinhibition mechanism). In summary, given that these treatments reduce gut permeability and, hence, plasma LPS levels and inflammatory tone, we hypothesised that LPS could act as a regulator in this process. This hypothesis was further supported in vitro and in vivo by the observation that cannabinoid-induced adipocyte differentiation and lipogenesis were directly altered (i.e. reduced) in the presence of physiological levels of LPS. In summary, because these treatments reduce gut permeability, hence, plasma LPS and inflammatory tone, we hypothesised that LPS acts as a regulator in this process. Altogether, our data provide the evidence that the consequences of obesity and gut microbiota dysregulation on gut permeability and metabolic endotoxaemia are clearly mediated by the eCB system, those observed on adiposity are likely the result of two systems interactions: LPS-dependent pathways activities and eCB system tone dysregulation (Figure 9). Our results indicate that the endocannabinoid system tone and the plasma LPS levels have a critical function in the regulation of the adipose tissue plasticity. As obesity is commonly characterised by increased eCB system tone, higher plasma LPS levels, altered gut microbiota and impaired adipose tissue metabolism, it is likely that the increased eCB system tone found in obesity is caused by a failure or a vicious cycle within the pathways controlling the eCB system. These findings show that two novel therapeutic targets in the treatment of obesity, the gut microbiota and the endocannabinoid system, are closely interconnected. They also provide evidence for the presence of a new integrative physiological axis between gut and adipose tissue regulated by LPS and endocannabinoids. Finally, we propose that the increased endotoxaemia and endocannabinoid system tone found in obesity might explain the altered adipose tissue metabolism. Obesity is characterised by altered gut microbiota, low-grade inflammation and increased endocannabinoid (eCB) system tone; however, a clear connection between gut microbiota and eCB signalling has yet to be confirmed. Here, we report that gut microbiota modulate the intestinal eCB system tone, which in turn regulates gut permeability and plasma lipopolysaccharide (LPS) levels. The impact of the increased plasma LPS levels and eCB system tone found in obesity on adipose tissue metabolism (e.g. differentiation and lipogenesis) remains unknown. By interfering with the eCB system using CB1 agonist and antagonist in lean and obese mouse models, we found that the eCB system controls gut permeability and adipogenesis. We also show that LPS acts as a master switch to control adipose tissue metabolism both in vivo and ex vivo by blocking cannabinoid-driven adipogenesis. These data indicate that gut microbiota determine adipose tissue physiology through LPS-eCB system regulatory loops and may have critical functions in adipose tissue plasticity during obesity.
Collapse
|
239
|
Coen M. A metabonomic approach for mechanistic exploration of pre-clinical toxicology. Toxicology 2010; 278:326-40. [DOI: 10.1016/j.tox.2010.07.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 07/29/2010] [Accepted: 07/30/2010] [Indexed: 12/17/2022]
|
240
|
Aura AM, Mattila I, Hyötyläinen T, Gopalacharyulu P, Bounsaythip C, Orešič M, Oksman-Caldentey KM. Drug metabolome of the simvastatin formed by human intestinal microbiota in vitro. MOLECULAR BIOSYSTEMS 2010; 7:437-46. [PMID: 21060933 DOI: 10.1039/c0mb00023j] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The human colon contains a diverse microbial population which contributes to degradation and metabolism of food components. Drug metabolism in the colon is generally poorly understood. Metabolomics techniques and in vitro colon models are now available which afford detailed characterization of drug metabolites in the context of colon metabolism. The aim of this work was to identify novel drug metabolites of Simvastatin (SV) by using an anaerobic human in vitro colon model at body temperature coupled with systems biology platform, excluding the metabolism of the host liver and intestinal epithelia. Comprehensive two-dimensional gas chromatography with a time-of-flight mass spectrometry (GC×GC-TOFMS) was used for the metabolomic analysis. Metabolites showing the most significant differences in the active faecal suspension were elucidated in reference with SV fragmentation and compared with controls: inactive suspension or buffer with SV, or with active suspension alone. Finally, time courses of selected metabolites were investigated. Our data suggest that SV is degraded by hydrolytic cleavage of methylbutanoic acid from the SV backbone. Metabolism involves demethylation of dimethylbutanoic acid, hydroxylation/dehydroxylation and β-oxidation resulting in the production of 2-hydroxyisovaleric acid (3-methyl-2-hydroxybutanoic acid), 3-hydroxybutanoic acid and lactic acid (2-hydroxypropanoic acid), and finally re-cyclisation of heptanoic acid (possibly de-esterified and cleaved methylpyranyl arm) to produce cyclohexanecarboxylic acid. Our study elucidates a pathway of colonic microbial metabolism of SV as well as demonstrates the applicability of the in vitro colon model and metabolomics to the discovery of novel drug metabolites from drug response profiles.
Collapse
Affiliation(s)
- Anna-Marja Aura
- VTT Technical Research Centre of Finland, PO Box 1000, Tietotie 2, Espoo, FI-02044 VTT, Finland.
| | | | | | | | | | | | | |
Collapse
|
241
|
Reaves ML, Rabinowitz JD. Metabolomics in systems microbiology. Curr Opin Biotechnol 2010; 22:17-25. [PMID: 21050741 DOI: 10.1016/j.copbio.2010.10.001] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 09/29/2010] [Accepted: 10/01/2010] [Indexed: 11/28/2022]
Abstract
Because of the importance of microbes as model organisms, biotechnology tools, and contributors to mammalian and ecosystem metabolism, there has been longstanding interest in measuring their metabolite levels. Current metabolomic methods, involving mass spectrometry-based measurement of cell extracts, enable routine quantitation of most central metabolites. Metabolomics alone, however, is inadequate to understand cellular metabolic activity: Flux measurement and proteomic, genetic, and biochemical approaches with a metabolomics bent are all needed. Here we highlight examples where these integrated methods have contributed to discovery of metabolic pathways, regulatory interactions, and homeostasis mechanisms. We also indicate enduring challenges concerning unstable and low abundance compounds, subcellular compartmentalization, and quantitative amalgamation of different data types.
Collapse
Affiliation(s)
- Marshall Louis Reaves
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | | |
Collapse
|
242
|
Martin FPJ, Sprenger N, Montoliu I, Rezzi S, Kochhar S, Nicholson JK. Dietary modulation of gut functional ecology studied by fecal metabonomics. J Proteome Res 2010; 9:5284-95. [PMID: 20806900 DOI: 10.1021/pr100554m] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A major source of intestinal metabolites results from both host and microbial processing of dietary nutrients. (1)H NMR-based metabolic profiling of mouse feces was carried out over time in different microbiome mouse models, including conventional (n = 9), conventionalized (n = 10), and "humanized" gnotobiotic mice inoculated with a model of human baby microbiota (HBM, n = 17). HBM mice were supplemented with Lactobacillus paracasei with (n = 10) and without (n = 7) prebiotics. Animals not supplemented with prebiotics received a diet enriched in glucose and lactose as placebo. In conventionalized animals, microbial populations and activities converged in term of multivariate mapping toward conventional mice. Both groups decreased bacterial processing of dietary proteins when switching to a diet enriched in glucose and lactose, as described with low levels of 5-aminovalerate, acetate, and propionate and high levels of lysine and arginine. The HBM model differs from conventional and conventionalized microbiota in terms of type, proportion, and metabolic activity of gut bacteria (lower short chain fatty acids (SCFAs), lactate, 5-aminovalerate, and oligosaccharides, higher bile acids and choline). The probiotics supplementation of HBM mice was associated with a specific amino acid pattern that can be linked to L. paracasei proteolytic activities. The combination of L. paracasei with the galactosyl-oligosaccharide prebiotics was related to the enhanced growth of bifidobacteria and lactobacilli, and a specific metabolism of carbohydrates, proteins, and SCFAs. The present study describes how the assessment of metabolic changes in feces may provide information for studying nutrient-microbiota relationships in different microbiome mouse models.
Collapse
|
243
|
Tuohy KM, Brown DT, Klinder A, Costabile A. Shaping the human microbiome with prebiotic foods – current perspectives for continued development. ACTA ACUST UNITED AC 2010. [DOI: 10.1616/1476-2137.15989] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
244
|
Keun HC. Metabolic Profiling for Biomarker Discovery. Biomarkers 2010. [DOI: 10.1002/9780470918562.ch4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
245
|
Systemic gut microbial modulation of bile acid metabolism in host tissue compartments. Proc Natl Acad Sci U S A 2010; 108 Suppl 1:4523-30. [PMID: 20837534 DOI: 10.1073/pnas.1006734107] [Citation(s) in RCA: 546] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We elucidate the detailed effects of gut microbial depletion on the bile acid sub-metabolome of multiple body compartments (liver, kidney, heart, and blood plasma) in rats. We use a targeted ultra-performance liquid chromatography with time of flight mass-spectrometry assay to characterize the differential primary and secondary bile acid profiles in each tissue and show a major increase in the proportion of taurine-conjugated bile acids in germ-free (GF) and antibiotic (streptomycin/penicillin)-treated rats. Although conjugated bile acids dominate the hepatic profile (97.0 ± 1.5%) of conventional animals, unconjugated bile acids comprise the largest proportion of the total measured bile acid profile in kidney (60.0 ± 10.4%) and heart (53.0 ± 18.5%) tissues. In contrast, in the GF animal, taurine-conjugated bile acids (especially taurocholic acid and tauro-β-muricholic acid) dominated the bile acid profiles (liver: 96.0 ± 14.5%; kidney: 96 ± 1%; heart: 93 ± 1%; plasma: 93.0 ± 2.3%), with unconjugated and glycine-conjugated species representing a small proportion of the profile. Higher free taurine levels were found in GF livers compared with the conventional liver (5.1-fold; P < 0.001). Bile acid diversity was also lower in GF and antibiotic-treated tissues compared with conventional animals. Because bile acids perform important signaling functions, it is clear that these chemical communication networks are strongly influenced by microbial activities or modulation, as evidenced by farnesoid X receptor-regulated pathway transcripts. The presence of specific microbial bile acid co-metabolite patterns in peripheral tissues (including heart and kidney) implies a broader signaling role for these compounds and emphasizes the extent of symbiotic microbial influences in mammalian homeostasis.
Collapse
|
246
|
Abstract
The human gut is populated by a microbiota composed of tens of trillions of organisms and millions of genes that together form a metabolic "organ." Intra- and interpersonal differences in the structure and functions of this organ suggest that it could contribute to our normal metabolic variations and also to metabolic disorders. This Commentary discusses experimental approaches for connecting microbial and host metabolism in the context of health and disease.
Collapse
Affiliation(s)
- Andrew L Goodman
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis MO 63108, USA
| | | |
Collapse
|
247
|
Integrated Development of Metabonomics and Its New Progress. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2010. [DOI: 10.1016/s1872-2040(09)60057-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
248
|
Host-microbial symbiosis in the vertebrate gastrointestinal tract and the Lactobacillus reuteri paradigm. Proc Natl Acad Sci U S A 2010; 108 Suppl 1:4645-52. [PMID: 20615995 DOI: 10.1073/pnas.1000099107] [Citation(s) in RCA: 227] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Vertebrates engage in symbiotic associations with vast and complex microbial communities that colonize their gastrointestinal tracts. Recent advances have provided mechanistic insight into the important contributions of the gut microbiome to vertebrate biology, but questions remain about the evolutionary processes that have shaped symbiotic interactions in the gut and the consequences that arise for both the microbes and the host. Here we discuss the biological principles that underlie microbial symbiosis in the vertebrate gut and the potential of the development of mutualism. We then review phylogenetic and experimental studies on the vertebrate symbiont Lactobacillus reuteri that have provided novel insight into the ecological and evolutionary strategy of a gut microbe and its relationship with the host. We argue that a mechanistic understanding of the microbial symbiosis in the vertebrate gut and its evolution will be important to determine how this relationship can go awry, and it may reveal possibilities by which the gut microbiome can be manipulated to support health.
Collapse
|
249
|
Abstract
Dietary polyphenols are components of many foods such as tea, fruit, and vegetables and are associated with several beneficial health effects although, so far, largely based on epidemiological studies. The intact forms of complex dietary polyphenols have limited bioavailability, with low circulating levels in plasma. A major part of the polyphenols persists in the colon, where the resident microbiota produce metabolites that can undergo further metabolism upon entering systemic circulation. Unraveling the complex metabolic fate of polyphenols in this human superorganism requires joint deployment of in vitro and humanized mouse models and human intervention trials. Within these systems, the variation in diversity and functionality of the colonic microbiota can increasingly be captured by rapidly developing microbiomics and metabolomics technologies. Furthermore, metabolomics is coming to grips with the large biological variation superimposed on relatively subtle effects of dietary interventions. In particular when metabolomics is deployed in conjunction with a longitudinal study design, quantitative nutrikinetic signatures can be obtained. These signatures can be used to define nutritional phenotypes with different kinetic characteristics for the bioconversion capacity for polyphenols. Bottom-up as well as top-down approaches need to be pursued to link gut microbial diversity to functionality in nutritional phenotypes and, ultimately, to bioactivity of polyphenols. This approach will pave the way for personalization of nutrition based on gut microbial functionality of individuals or populations.
Collapse
|
250
|
Want EJ, Coen M, Masson P, Keun HC, Pearce JTM, Reily MD, Robertson DG, Rohde CM, Holmes E, Lindon JC, Plumb RS, Nicholson JK. Ultra Performance Liquid Chromatography-Mass Spectrometry Profiling of Bile Acid Metabolites in Biofluids: Application to Experimental Toxicology Studies. Anal Chem 2010; 82:5282-9. [DOI: 10.1021/ac1007078] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Elizabeth J. Want
- Biomolecular Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, SW7 2AZ, U.K., Bristol Myers-Squibb, Route 206 and Province Line Road, Princeton, New Jersey 08543-4000, Drug Safety Research and Development, Pfizer Global Research and Development, Chazy, New York 12921, and Waters Corporation, 34 Maple Street, Milford, Massachusetts 01757
| | - Muireann Coen
- Biomolecular Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, SW7 2AZ, U.K., Bristol Myers-Squibb, Route 206 and Province Line Road, Princeton, New Jersey 08543-4000, Drug Safety Research and Development, Pfizer Global Research and Development, Chazy, New York 12921, and Waters Corporation, 34 Maple Street, Milford, Massachusetts 01757
| | - Perrine Masson
- Biomolecular Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, SW7 2AZ, U.K., Bristol Myers-Squibb, Route 206 and Province Line Road, Princeton, New Jersey 08543-4000, Drug Safety Research and Development, Pfizer Global Research and Development, Chazy, New York 12921, and Waters Corporation, 34 Maple Street, Milford, Massachusetts 01757
| | - Hector C. Keun
- Biomolecular Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, SW7 2AZ, U.K., Bristol Myers-Squibb, Route 206 and Province Line Road, Princeton, New Jersey 08543-4000, Drug Safety Research and Development, Pfizer Global Research and Development, Chazy, New York 12921, and Waters Corporation, 34 Maple Street, Milford, Massachusetts 01757
| | - Jake T. M. Pearce
- Biomolecular Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, SW7 2AZ, U.K., Bristol Myers-Squibb, Route 206 and Province Line Road, Princeton, New Jersey 08543-4000, Drug Safety Research and Development, Pfizer Global Research and Development, Chazy, New York 12921, and Waters Corporation, 34 Maple Street, Milford, Massachusetts 01757
| | - Michael D. Reily
- Biomolecular Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, SW7 2AZ, U.K., Bristol Myers-Squibb, Route 206 and Province Line Road, Princeton, New Jersey 08543-4000, Drug Safety Research and Development, Pfizer Global Research and Development, Chazy, New York 12921, and Waters Corporation, 34 Maple Street, Milford, Massachusetts 01757
| | - Donald G. Robertson
- Biomolecular Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, SW7 2AZ, U.K., Bristol Myers-Squibb, Route 206 and Province Line Road, Princeton, New Jersey 08543-4000, Drug Safety Research and Development, Pfizer Global Research and Development, Chazy, New York 12921, and Waters Corporation, 34 Maple Street, Milford, Massachusetts 01757
| | - Cynthia M. Rohde
- Biomolecular Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, SW7 2AZ, U.K., Bristol Myers-Squibb, Route 206 and Province Line Road, Princeton, New Jersey 08543-4000, Drug Safety Research and Development, Pfizer Global Research and Development, Chazy, New York 12921, and Waters Corporation, 34 Maple Street, Milford, Massachusetts 01757
| | - Elaine Holmes
- Biomolecular Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, SW7 2AZ, U.K., Bristol Myers-Squibb, Route 206 and Province Line Road, Princeton, New Jersey 08543-4000, Drug Safety Research and Development, Pfizer Global Research and Development, Chazy, New York 12921, and Waters Corporation, 34 Maple Street, Milford, Massachusetts 01757
| | - John C. Lindon
- Biomolecular Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, SW7 2AZ, U.K., Bristol Myers-Squibb, Route 206 and Province Line Road, Princeton, New Jersey 08543-4000, Drug Safety Research and Development, Pfizer Global Research and Development, Chazy, New York 12921, and Waters Corporation, 34 Maple Street, Milford, Massachusetts 01757
| | - Robert S. Plumb
- Biomolecular Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, SW7 2AZ, U.K., Bristol Myers-Squibb, Route 206 and Province Line Road, Princeton, New Jersey 08543-4000, Drug Safety Research and Development, Pfizer Global Research and Development, Chazy, New York 12921, and Waters Corporation, 34 Maple Street, Milford, Massachusetts 01757
| | - Jeremy K. Nicholson
- Biomolecular Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, SW7 2AZ, U.K., Bristol Myers-Squibb, Route 206 and Province Line Road, Princeton, New Jersey 08543-4000, Drug Safety Research and Development, Pfizer Global Research and Development, Chazy, New York 12921, and Waters Corporation, 34 Maple Street, Milford, Massachusetts 01757
| |
Collapse
|