201
|
Batista LA, Bastos JR, Moreira FA. Role of endocannabinoid signalling in the dorsolateral periaqueductal grey in the modulation of distinct panic-like responses. J Psychopharmacol 2015; 29:335-43. [PMID: 25601395 DOI: 10.1177/0269881114566259] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Panic attacks, a major feature of panic disorder, can be modelled in rats by exposing animals to stimuli that induce escape reactions, such as the elevated T-maze or the activation of the dorsolateral periaqueductal grey. Since the cannabinoid CB1 receptor modulates various types of aversive responses, this study tested the hypothesis that enhancement of endocannabinoid signalling in the dorsolateral periaqueductal grey inhibits panic-like reactions in rats. Local injection of the CB1 agonist, arachidonoyl 2-Chloroethylamide (0.005-0.5 pmol), attenuated the escape response from the open arm of the elevated T-maze, a panicolytic effect. The anandamide hydrolysis inhibitor, URB597 (0.3-3 nmol), did not induce consistent results. In the test of dorsolateral periaqueductal grey stimulation with d,l-homocysteic acid, arachidonoyl 2-Chloroethylamide, at the lowest dose, attenuated the escape reaction. The highest dose of URB597 also inhibited this response, contrary to the result obtained in the elevated T-maze. This effect was reversed by the CB1 antagonist, AM251 (100 pmol). The present results confirm the anti-aversive property of direct CB1 receptor activation in the dorsolateral periaqueductal grey. The effect of the anandamide hydrolysis inhibitor, however, could be detected only in a model employing direct stimulation of this structure. Altogether, these results suggest that anandamide signalling is recruited only under certain types of aversive stimuli.
Collapse
Affiliation(s)
- Luara A Batista
- Graduate School in Neuroscience, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Brazil
| | - Juliana R Bastos
- Graduate School in Neuroscience, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Brazil
| | - Fabricio A Moreira
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Brazil
| |
Collapse
|
202
|
Magotti P, Bauer I, Igarashi M, Babagoli M, Marotta R, Piomelli D, Garau G. Structure of human N-acylphosphatidylethanolamine-hydrolyzing phospholipase D: regulation of fatty acid ethanolamide biosynthesis by bile acids. Structure 2015; 23:598-604. [PMID: 25684574 DOI: 10.1016/j.str.2014.12.018] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 12/16/2014] [Accepted: 12/18/2014] [Indexed: 12/31/2022]
Abstract
The fatty acid ethanolamides (FAEs) are lipid mediators present in all organisms and involved in highly conserved biological functions, such as innate immunity, energy balance, and stress control. They are produced from membrane N-acylphosphatidylethanolamines (NAPEs) and include agonists for G protein-coupled receptors (e.g., cannabinoid receptors) and nuclear receptors (e.g., PPAR-α). Here, we report the crystal structure of human NAPE-hydrolyzing phospholipase D (NAPE-PLD) at 2.65 Å resolution, a membrane enzyme that catalyzes FAE formation in mammals. NAPE-PLD forms homodimers partly separated by an internal ∼ 9-Å-wide channel and uniquely adapted to associate with phospholipids. A hydrophobic cavity provides an entryway for NAPE into the active site, where a binuclear Zn(2+) center orchestrates its hydrolysis. Bile acids bind with high affinity to selective pockets in this cavity, enhancing dimer assembly and enabling catalysis. These elements offer multiple targets for the design of small-molecule NAPE-PLD modulators with potential applications in inflammation and metabolic disorders.
Collapse
Affiliation(s)
- Paola Magotti
- Department of Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Inga Bauer
- Department of Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Miki Igarashi
- Department of Anatomy & Neurobiology, University of California - Irvine, Gillespie NRF 3101, Irvine, CA 92697, USA
| | - Masih Babagoli
- Department of Anatomy & Neurobiology, University of California - Irvine, Gillespie NRF 3101, Irvine, CA 92697, USA
| | - Roberto Marotta
- Nanochemistry, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Daniele Piomelli
- Department of Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy; Department of Anatomy & Neurobiology, University of California - Irvine, Gillespie NRF 3101, Irvine, CA 92697, USA.
| | - Gianpiero Garau
- Department of Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy.
| |
Collapse
|
203
|
Abstract
Cells in injured and inflamed tissues produce a number of proalgesic lipid-derived mediators, which excite nociceptive neurons by activating selective G-protein-coupled receptors or ligand-gated ion channels. Recent work has shown that these proalgesic factors are counteracted by a distinct group of lipid molecules that lower nociceptor excitability and attenuate nociception in peripheral tissues. Analgesic lipid mediators include endogenous agonists of cannabinoid receptors (endocannabinoids), lipid-amide agonists of peroxisome proliferator-activated receptor-α, and products of oxidative metabolism of polyunsaturated fatty acids via cytochrome P450 and other enzyme pathways. Evidence indicates that these lipid messengers are produced and act at different stages of inflammation and the response to tissue injury, and may be part of a peripheral gating mechanism that regulates the access of nociceptive information to the spinal cord and the brain. Growing knowledge about this peripheral control system may be used to discover safer medicines for pain.
Collapse
|
204
|
Wolkers CPB, Barbosa Junior A, Menescal-de-Oliveira L, Hoffmann A. Acute administration of a cannabinoid CB1 receptor antagonist impairs stress-induced antinociception in fish. Physiol Behav 2015; 142:37-41. [PMID: 25656689 DOI: 10.1016/j.physbeh.2015.01.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 01/26/2015] [Accepted: 01/27/2015] [Indexed: 12/13/2022]
Abstract
This study evaluated the influence of the pre-treatment with AM251 (a cannabinoid type I receptor (CB1) selective antagonist) on the stress-induced antinociception promoted by restraint in the fish Leporinus macrocephalus. The application of 3 and 5 min of restraint stress promoted an inhibition of the behavioural response to the subcutaneous injection of 3% formaldehyde (increase in locomotor activity), suggesting the activation of an antinociceptive system. The acute intraperitoneal administration of AM251 (3 mg·kg(-1)) impaired this antinociceptive response induced by 3 and 5 min of restraint stress. The fish treated with AM251 before the application of restraint stress presented an increase in locomotor activity after the subcutaneous injection of formaldehyde, similar to fish not exposed to restraint, suggesting that the stress-induced antinociception promoted by restraint in fish is probably mediated by cannabinoid CB1 receptors. The results presented in this paper suggest the participation of the endocannabinoid system in nociception modulation in fish, supporting the hypothesis that an endogenous antinociceptive system activated by restraint stress is present in fish and that the modulation of antinociception by the CB1 receptor is evolutionary well-conserved across vertebrates.
Collapse
Affiliation(s)
- Carla Patrícia Bejo Wolkers
- School of Medicine of Ribeirão Preto, São Paulo University, Physiology Department, Bandeirantes Avenue 3900, Zip Code 14049-900, Ribeirão Preto, SP, Brazil.
| | - Augusto Barbosa Junior
- School of Medicine of Ribeirão Preto, São Paulo University, Physiology Department, Bandeirantes Avenue 3900, Zip Code 14049-900, Ribeirão Preto, SP, Brazil
| | - Leda Menescal-de-Oliveira
- School of Medicine of Ribeirão Preto, São Paulo University, Physiology Department, Bandeirantes Avenue 3900, Zip Code 14049-900, Ribeirão Preto, SP, Brazil
| | - Anette Hoffmann
- School of Medicine of Ribeirão Preto, São Paulo University, Physiology Department, Bandeirantes Avenue 3900, Zip Code 14049-900, Ribeirão Preto, SP, Brazil
| |
Collapse
|
205
|
Abstract
Eukaryotic and prokaryotic organisms possess huge numbers of uncharacterized enzymes. Selective inhibitors offer powerful probes for assigning functions to enzymes in native biological systems. Here, we discuss how the chemical proteomic platform activity-based protein profiling (ABPP) can be implemented to discover selective and in vivo-active inhibitors for enzymes. We further describe how these inhibitors have been used to delineate the biochemical and cellular functions of enzymes, leading to the discovery of metabolic and signaling pathways that make important contributions to human physiology and disease. These studies demonstrate the value of selective chemical probes as drivers of biological inquiry.
Collapse
Affiliation(s)
- Micah J Niphakis
- The Skaggs Institute for Chemical Biology and the Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037;
| | | |
Collapse
|
206
|
Corcoran L, Roche M, Finn DP. The Role of the Brain's Endocannabinoid System in Pain and Its Modulation by Stress. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 125:203-55. [DOI: 10.1016/bs.irn.2015.10.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
207
|
The Potential of Inhibitors of Endocannabinoid Metabolism for Drug Development: A Critical Review. Handb Exp Pharmacol 2015; 231:95-128. [PMID: 26408159 DOI: 10.1007/978-3-319-20825-1_4] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The endocannabinoids anandamide and 2-arachidonoylglycerol are metabolised by both hydrolytic enzymes (primarily fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MGL)) and oxygenating enzymes (e.g. cyclooxygenase-2, COX-2). In the present article, the in vivo data for compounds inhibiting endocannabinoid metabolism have been reviewed, focussing on inflammation and pain. Potential reasons for the failure of an FAAH inhibitor in a clinical trial in patients with osteoarthritic pain are discussed. It is concluded that there is a continued potential for compounds inhibiting endocannabinoid metabolism in terms of drug development, but that it is wise not to be unrealistic in terms of expectations of success.
Collapse
|
208
|
Lau BK, Vaughan CW. Descending modulation of pain: the GABA disinhibition hypothesis of analgesia. Curr Opin Neurobiol 2014; 29:159-64. [DOI: 10.1016/j.conb.2014.07.010] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 06/20/2014] [Accepted: 07/02/2014] [Indexed: 10/25/2022]
|
209
|
Yin JB, Wu HH, Dong YL, Zhang T, Wang J, Zhang Y, Wei YY, Lu YC, Wu SX, Wang W, Li YQ. Neurochemical properties of BDNF-containing neurons projecting to rostral ventromedial medulla in the ventrolateral periaqueductal gray. Front Neural Circuits 2014; 8:137. [PMID: 25477786 PMCID: PMC4238372 DOI: 10.3389/fncir.2014.00137] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 10/31/2014] [Indexed: 12/18/2022] Open
Abstract
The periaqueductal gray (PAG) modulates nociception via a descending pathway that relays in the rostral ventromedial medulla (RVM) and terminates in the spinal cord. Previous behavioral pharmacology and electrophysiological evidence suggests that brain-derived neurotrophic factor (BDNF) plays an important role in descending pain modulation, likely through the PAG-RVM pathway. However, detailed information is still lacking on the distribution of BDNF, activation of BDNF-containing neurons projecting to RVM in the condition of pain, and neurochemical properties of these neurons within the PAG. Through fluorescent in situ hybridization (FISH) and immunofluorescent staining, the homogenous distributions of BDNF mRNA and protein were observed in the four subregions of PAG. Both neurons and astrocytes expressed BDNF, but not microglia. By combining retrograde tracing methods and formalin pain model, there were more BDNF-containing neurons projecting to RVM being activated in the ventrolateral subregion of PAG (vlPAG) than other subregions of PAG. The neurochemical properties of BDNF-containing projection neurons in the vlPAG were investigated. BDNF-containing projection neurons expressed the autoreceptor TrkB in addition to serotonin (5-HT), neurotensin (NT), substance P (SP), calcitonin gene related peptide (CGRP), nitric oxide synthase (NOS), and parvalbumin (PV) but not tyrosine decarboxylase (TH). It is speculated that BDNF released from projection neurons in the vlPAG might participate in the descending pain modulation through enhancing the presynaptic release of other neuroactive substances (NSs) in the RVM.
Collapse
Affiliation(s)
- Jun-Bin Yin
- Department of Anatomy and K.K. Leung Brain Research Centre, Preclinical School of Medicine, Fourth Military Medical University Xi'an, China
| | - Huang-Hui Wu
- Department of Anesthesiology, Fuzhou General Hospital Affiliated to Fujian Medical University Fuzhou, China
| | - Yu-Lin Dong
- Department of Anatomy and K.K. Leung Brain Research Centre, Preclinical School of Medicine, Fourth Military Medical University Xi'an, China
| | - Ting Zhang
- Department of Anatomy and K.K. Leung Brain Research Centre, Preclinical School of Medicine, Fourth Military Medical University Xi'an, China
| | - Jian Wang
- Department of Anatomy and K.K. Leung Brain Research Centre, Preclinical School of Medicine, Fourth Military Medical University Xi'an, China
| | - Yong Zhang
- Department of Anatomy and K.K. Leung Brain Research Centre, Preclinical School of Medicine, Fourth Military Medical University Xi'an, China
| | - Yan-Yan Wei
- Department of Anatomy and K.K. Leung Brain Research Centre, Preclinical School of Medicine, Fourth Military Medical University Xi'an, China
| | - Ya-Cheng Lu
- Department of Anatomy and K.K. Leung Brain Research Centre, Preclinical School of Medicine, Fourth Military Medical University Xi'an, China
| | - Sheng-Xi Wu
- Department of Anatomy and K.K. Leung Brain Research Centre, Preclinical School of Medicine, Fourth Military Medical University Xi'an, China
| | - Wen Wang
- Department of Anatomy and K.K. Leung Brain Research Centre, Preclinical School of Medicine, Fourth Military Medical University Xi'an, China
| | - Yun-Qing Li
- Department of Anatomy and K.K. Leung Brain Research Centre, Preclinical School of Medicine, Fourth Military Medical University Xi'an, China
| |
Collapse
|
210
|
Caterina MJ. TRP channel cannabinoid receptors in skin sensation, homeostasis, and inflammation. ACS Chem Neurosci 2014; 5:1107-16. [PMID: 24915599 PMCID: PMC4240254 DOI: 10.1021/cn5000919] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
![]()
In
the skin, cannabinoid lipids, whether of endogenous or exogenous
origin, are capable of regulating numerous sensory, homeostatic, and
inflammatory events. Although many of these effects are mediated by
metabotropic cannabinoid receptors, a growing body of evidence has
revealed that multiple members of the transient receptor potential
(TRP) ion channel family can act as “ionotropic cannabinoid
receptors”. Furthermore, many of these same TRP channels are
intimately involved in cutaneous processes that include the initiation
of pain, temperature, and itch perception, the maintenance of epidermal
homeostasis, the regulation of hair follicles and sebaceous glands,
and the modulation of dermatitis. Ionotropic cannabinoid receptors
therefore represent potentially attractive targets for the therapeutic
use of cannabinoids to treat sensory and dermatological diseases.
Furthermore, the interactions between neurons and other cell types
that are mediated by cutaneous ionotropic cannabinoid receptors are
likely to be recapitulated during physiological and pathophysiological
processes in the central nervous system and elsewhere, making the
skin an ideal setting in which to dissect general complexities of
cannabinoid signaling.
Collapse
Affiliation(s)
- Michael J. Caterina
- Departments of Neurosurgery,
Biological Chemistry, and Neuroscience, Neurosurgery Pain Research
Institute, Center for Sensory Biology, Johns Hopkins School of Medicine, 725 N. Wolfe St., Baltimore, Maryland 21205, United States
| |
Collapse
|
211
|
Polyunsaturated fatty acids and their metabolites in brain function and disease. Nat Rev Neurosci 2014; 15:771-85. [PMID: 25387473 DOI: 10.1038/nrn3820] [Citation(s) in RCA: 931] [Impact Index Per Article: 93.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The brain is highly enriched with fatty acids. These include the polyunsaturated fatty acids (PUFAs) arachidonic acid and docosahexaenoic acid, which are largely esterified to the phospholipid cell membrane. Once PUFAs are released from the membrane, they can participate in signal transduction, either directly or after enzymatic conversion to a variety of bioactive derivatives ('mediators'). PUFAs and their mediators regulate several processes within the brain, such as neurotransmission, cell survival and neuroinflammation, and thereby mood and cognition. PUFA levels and the signalling pathways that they regulate are altered in various neurological disorders, including Alzheimer's disease and major depression. Diet and drugs targeting PUFAs may lead to novel therapeutic approaches for the prevention and treatment of brain disorders.
Collapse
|
212
|
Colombano G, Albani C, Ottonello G, Ribeiro A, Scarpelli R, Tarozzo G, Daglian J, Jung KM, Piomelli D, Bandiera T. O-(triazolyl)methyl carbamates as a novel and potent class of fatty acid amide hydrolase (FAAH) inhibitors. ChemMedChem 2014; 10:380-95. [PMID: 25338703 DOI: 10.1002/cmdc.201402374] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Indexed: 11/09/2022]
Abstract
Inhibition of fatty acid amide hydrolase (FAAH) activity is under investigation as a valuable strategy for the treatment of several disorders, including pain and drug addiction. A number of potent FAAH inhibitors belonging to different chemical classes have been disclosed to date; O-aryl carbamates are one of the most representative families. In the search for novel FAAH inhibitors, a series of O-(1,2,3-triazol-4-yl)methyl carbamate derivatives were designed and synthesized exploiting a copper- catalyzed [3+2] cycloaddition reaction between azides and alkynes (click chemistry). Exploration of the structure-activity relationships within this new class of compounds identified potent inhibitors of both rat and human FAAH with IC50 values in the single-digit nanomolar range. In addition, these derivatives showed improved stability in rat plasma and kinetic solubility in buffer with respect to the lead compound. Based on the results of the study, the novel analogues identified can be considered to be promising starting point for the development of new FAAH inhibitors with improved drug-like properties.
Collapse
Affiliation(s)
- Giampiero Colombano
- Drug Discovery & Development, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova (Italy); The Institute of Cancer Research, 15 Cotswold Rd, Sutton, Surrey SM2 5NG (UK). ,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
213
|
Kerr DM, Harhen B, Okine BN, Egan LJ, Finn DP, Roche M. The monoacylglycerol lipase inhibitor JZL184 attenuates LPS-induced increases in cytokine expression in the rat frontal cortex and plasma: differential mechanisms of action. Br J Pharmacol 2014; 169:808-19. [PMID: 23043675 DOI: 10.1111/j.1476-5381.2012.02237.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 08/31/2012] [Accepted: 09/05/2012] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND AND PURPOSE JZL184 is a selective inhibitor of monoacylglycerol lipase (MAGL), the enzyme that preferentially catabolizes the endocannabinoid 2-arachidonoyl glycerol (2-AG). Here, we have studied the effects of JZL184 on inflammatory cytokines in the brain and plasma following an acute immune challenge and the underlying receptor and molecular mechanisms involved. EXPERIMENTAL APPROACH JZL184 and/or the CB₁ receptor antagonist, AM251 or the CB₂ receptor antagonist, AM630 were administered to rats 30 min before lipopolysaccharide (LPS). 2 h later cytokine expression and levels, MAGL activity, 2-AG, arachidonic acid and prostaglandin levels were measured in the frontal cortex, plasma and spleen. KEY RESULTS JZL184 attenuated LPS-induced increases in IL-1β, IL-6, TNF-α and IL-10 but not the expression of the inhibitor of NFkB (IκBα) in rat frontal cortex. AM251 attenuated JZL184-induced decreases in frontal cortical IL-1β expression. Although arachidonic acid levels in the frontal cortex were reduced in JZL184-treated rats, MAGL activity, 2-AG, PGE₂ and PGD₂ were unchanged. In comparison, MAGL activity was inhibited and 2-AG levels enhanced in the spleen following JZL184. In plasma, LPS-induced increases in TNF-α and IL-10 levels were attenuated by JZL184, an effect partially blocked by AM251. In addition, AM630 blocked LPS-induced increases in plasma IL-1β in the presence, but not absence, of JZL184. CONCLUSION AND IMPLICATIONS Inhibition of peripheral MAGL in rats by JZL184 suppressed LPS-induced circulating cytokines that in turn may modulate central cytokine expression. The data provide further evidence for the endocannabinoid system as a therapeutic target in treatment of central and peripheral inflammatory disorders.
Collapse
Affiliation(s)
- D M Kerr
- Physiology, School of Medicine, National University of Ireland, Galway, Ireland
| | | | | | | | | | | |
Collapse
|
214
|
Kohnz RA, Nomura DK. Chemical approaches to therapeutically target the metabolism and signaling of the endocannabinoid 2-AG and eicosanoids. Chem Soc Rev 2014; 43:6859-69. [PMID: 24676249 PMCID: PMC4159426 DOI: 10.1039/c4cs00047a] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The endocannabinoid system, most popularly known as the target of the psychoactive component of marijuana, Δ(9)-tetrahydrocannabinol (THC), is a signaling network that modulates a diverse range of physiological processes including nociception, behavior, cognitive function, appetite, metabolism, motor control, memory formation, and inflammation. While THC and its derivatives have garnered notoriety in the eyes of the public, the endocannabinoid system consists of two endogenous signaling lipids, 2-arachidonoylglycerol (2-AG) and N-arachidonoylethanolamine (anandamide), which activate cannabinoid receptors CB1 and CB2 in the nervous system and peripheral tissues. This review will focus on the recent efforts to chemically manipulate 2-AG signaling through the development of inhibitors of the 2-AG-synthesizing enzyme diacylglycerol lipase (DAGL) or the 2-AG-degrading enzyme monoacylglycerol lipase (MAGL), and assessing the therapeutic potential of DAGL and MAGL inhibitors in pain, inflammation, degenerative diseases, tissue injury, and cancer.
Collapse
Affiliation(s)
- Rebecca A Kohnz
- Program in Metabolic Biology, University of California, Berkeley, 127 Morgan Hall, Berkeley, CA 94720, USA.
| | | |
Collapse
|
215
|
Galdino G, Romero T, Pinho da Silva JF, Aguiar D, de Paula AM, Cruz J, Parrella C, Piscitelli F, Duarte I, Di Marzo V, Perez A. Acute resistance exercise induces antinociception by activation of the endocannabinoid system in rats. Anesth Analg 2014; 119:702-715. [PMID: 24977916 DOI: 10.1213/ane.0000000000000340] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Resistance exercise (RE) is also known as strength training, and it is performed to increase the strength and mass of muscles, bone strength, and metabolism. RE has been increasingly prescribed for pain relief. However, the endogenous mechanisms underlying this antinociceptive effect are still largely unexplored. Thus, we investigated the involvement of the endocannabinoid system in RE-induced antinociception. METHODS Male Wistar rats were submitted to acute RE in a weight-lifting model. The nociceptive threshold was measured by a mechanical nociceptive test (paw pressure) before and after exercise. To investigate the involvement of cannabinoid receptors and endocannabinoids in RE-induced antinociception, cannabinoid receptor inverse agonists, endocannabinoid metabolizing enzyme inhibitors, and an anandamide reuptake inhibitor were injected before RE. After RE, CB1 cannabinoid receptors were quantified in rat brain tissue by Western blot and immunofluorescence. In addition, endocannabinoid plasma levels were measured by isotope dilution-liquid chromatography mass spectrometry. RESULTS RE-induced antinociception was prevented by preinjection with CB1 and CB2 cannabinoid receptor inverse agonists. By contrast, preadministration of metabolizing enzyme inhibitors and the anandamide reuptake inhibitor prolonged and enhanced this effect. RE also produced an increase in the expression and activation of CB1 cannabinoid receptors in rat brain tissue and in the dorsolateral and ventrolateral periaqueductal regions and an increase in endocannabinoid plasma levels. CONCLUSIONS The present study suggests that a single session of RE activates the endocannabinoid system to induce antinociception.
Collapse
Affiliation(s)
- Giovane Galdino
- From the Department of Pharmacology, Department of Physiology, Institute of Biological Sciences, Department of Physics, and Department of Biochemistry, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; and Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Pozzuoli, Napoli, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
216
|
Ratano P, Everitt BJ, Milton AL. The CB1 receptor antagonist AM251 impairs reconsolidation of pavlovian fear memory in the rat basolateral amygdala. Neuropsychopharmacology 2014; 39:2529-37. [PMID: 24801769 PMCID: PMC4149486 DOI: 10.1038/npp.2014.103] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 04/30/2014] [Accepted: 04/30/2014] [Indexed: 12/18/2022]
Abstract
We have investigated the requirement for signaling at CB1 receptors in the reconsolidation of a previously consolidated auditory fear memory, by infusing the CB1 receptor antagonist AM251, or the FAAH inhibitor URB597, directly into the basolateral amygdala (BLA) in conjunction with memory reactivation. AM251 disrupted memory restabilization, but only when administered after reactivation. URB597 produced a small, transient enhancement of memory restabilization when administered after reactivation. The amnestic effect of AM251 was rescued by coadministration of the GABAA receptor antagonist bicuculline at reactivation, indicating that the disruption of reconsolidation was mediated by altered GABAergic transmission in the BLA. These data show that the endocannabinoid system in the BLA is an important modulator of fear memory reconsolidation and that its effects on memory are mediated by an interaction with the GABAergic system. Thus, targeting the endocannabinoid system may have therapeutic potential to reduce the impact of maladaptive memories in neuropsychiatric disorders such as posttraumatic stress disorder.
Collapse
Affiliation(s)
- Patrizia Ratano
- Behavioural and Clinical Neuroscience Institute, Department of Psychology, University of Cambridge, Cambridge, UK,Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Barry J Everitt
- Behavioural and Clinical Neuroscience Institute, Department of Psychology, University of Cambridge, Cambridge, UK
| | - Amy L Milton
- Behavioural and Clinical Neuroscience Institute, Department of Psychology, University of Cambridge, Cambridge, UK,Department of Psychology, University of Cambridge, Downing Site, Cambridge CB2 3EB, UK, Tel: +44 1223 333593, Fax: +44 1223 333564, E-mail:
| |
Collapse
|
217
|
Rea K, Ford GK, Olango WM, Harhen B, Roche M, Finn DP. Microinjection of 2-arachidonoyl glycerol into the rat ventral hippocampus differentially modulates contextually induced fear, depending on a persistent pain state. Eur J Neurosci 2014; 39:435-43. [PMID: 24494683 DOI: 10.1111/ejn.12452] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 11/09/2013] [Accepted: 11/11/2013] [Indexed: 12/19/2022]
Abstract
The endogenous cannabinoid (endocannabinoid) system plays a key role in the modulation of aversive and nociceptive behaviour. The components of the endocannabinoid system are expressed throughout the hippocampus, a brain region implicated in both conditioned fear and pain. In light of evidence that pain can impact on the expression of fear-related behaviour, and vice versa, we hypothesised that exogenous administration of the endocannabinoid 2-arachidonoyl glycerol (2-AG) into the ventral hippocampus (vHip) would differentially regulate fear responding in the absence vs. the presence of formalin-evoked nociceptive tone. Fear-conditioned rats showed significantly increased freezing and a reduction in formalin-evoked nociceptive behaviour upon re-exposure to a context previously paired with footshock. Bilateral microinjection of 2-AG into the vHip significantly reduced contextually induced freezing in non-formalin-treated rats, and reduced formalin-evoked nociceptive behaviour in non-fear-conditioned rats. In contrast, 2-AG microinjection had no effect on fear responding in formalin-treated rats, and no effect on nociceptive behaviour in fear-conditioned rats. The inhibitory effect of 2-AG on fear-related behaviour, but not pain-related behaviour, was blocked by co-administration of the cannabinoid receptor 1 (CB1) antagonist/inverse agonist rimonabant. Tissue levels of the endocannabinoids N-arachidonoylethanolamide (anandamide, AEA) and 2-AG were similar in the vHip of fear-conditioned rats receiving formalin injection and the vHip of fear-conditioned rats receiving saline injection. However, the levels of AEA and 2-AG were significantly lower in the contralateral ventrolateral periaqueductal grey of formalin-treated fear-conditioned rats than in that of their saline-treated counterparts. These data suggest that 2-AG-CB1 receptor signalling in the vHip has an anti-aversive effect, and that this effect is abolished in the presence of a persistent pain state.
Collapse
Affiliation(s)
- Kieran Rea
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland, University Road, Galway, Ireland; Galway Neuroscience Centre and Centre for Pain Research, NCBES, National University of Ireland, Galway, Ireland
| | | | | | | | | | | |
Collapse
|
218
|
Hu SSJ, Ho YC, Chiou LC. No more pain upon Gq-protein-coupled receptor activation: role of endocannabinoids. Eur J Neurosci 2014; 39:467-84. [PMID: 24494686 DOI: 10.1111/ejn.12475] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Revised: 12/02/2013] [Accepted: 12/05/2013] [Indexed: 01/24/2023]
Abstract
Marijuana has been used to relieve pain for centuries. The analgesic mechanism of its constituents, the cannabinoids, was only revealed after the discovery of cannabinoid receptors (CB1 and CB2) two decades ago. The subsequent identification of the endocannabinoids, anandamide and 2-arachidonoylglycerol (2-AG), and their biosynthetic and degradation enzymes discloses the therapeutic potential of compounds targeting the endocannabinoid system for pain control. Inhibitors of the anandamide and 2-AG degradation enzymes, fatty acid amide hydrolase and monoacylglycerol lipase, respectively, may be superior to direct cannabinoid receptor ligands as endocannabinoids are synthesized on demand and rapidly degraded, focusing action at generating sites. Recently, a promising strategy for pain relief was revealed in the periaqueductal gray (PAG). It is initiated by Gq-protein-coupled receptor (Gq PCR) activation of the phospholipase C-diacylglycerol lipase enzymatic cascade, generating 2-AG that produces inhibition of GABAergic transmission (disinhibition) in the PAG, thereby leading to analgesia. Here, we introduce the antinociceptive properties of exogenous cannabinoids and endocannabinoids, involving their biosynthesis and degradation processes, particularly in the PAG. We also review recent studies disclosing the Gq PCR-phospholipase C-diacylglycerol lipase-2-AG retrograde disinhibition mechanism in the PAG, induced by activating several Gq PCRs, including metabotropic glutamatergic (type 5 metabotropic glutamate receptor), muscarinic acetylcholine (M1/M3), and orexin 1 receptors. Disinhibition mediated by type 5 metabotropic glutamate receptor can be initiated by glutamate transporter inhibitors or indirectly by substance P, neurotensin, cholecystokinin and capsaicin. Finally, the putative role of 2-AG generated after activating the above neurotransmitter receptors in stress-induced analgesia is discussed.
Collapse
Affiliation(s)
- Sherry Shu-Jung Hu
- Department of Psychology, National Cheng Kung University, Tainan, Taiwan
| | | | | |
Collapse
|
219
|
Horváth E, Woodhams SG, Nyilas R, Henstridge CM, Kano M, Sakimura K, Watanabe M, Katona I. Heterogeneous presynaptic distribution of monoacylglycerol lipase, a multipotent regulator of nociceptive circuits in the mouse spinal cord. Eur J Neurosci 2014; 39:419-34. [PMID: 24494682 PMCID: PMC3979158 DOI: 10.1111/ejn.12470] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 11/29/2013] [Accepted: 12/02/2013] [Indexed: 01/10/2023]
Abstract
Monoacylglycerol lipase (MGL) is a multifunctional serine hydrolase, which terminates anti-nociceptive endocannabinoid signaling and promotes pro-nociceptive prostaglandin signaling. Accordingly, both acute nociception and its sensitization in chronic pain models are prevented by systemic or focal spinal inhibition of MGL activity. Despite its analgesic potential, the neurobiological substrates of beneficial MGL blockade have remained unexplored. Therefore, we examined the regional, cellular and subcellular distribution of MGL in spinal circuits involved in nociceptive processing. All immunohistochemical findings obtained with light, confocal or electron microscopy were validated in MGL-knockout mice. Immunoperoxidase staining revealed a highly concentrated accumulation of MGL in the dorsal horn, especially in superficial layers. Further electron microscopic analysis uncovered that the majority of MGL-immunolabeling is found in axon terminals forming either asymmetric glutamatergic or symmetric γ-aminobutyric acid/glycinergic synapses in laminae I/IIo. In line with this presynaptic localization, analysis of double-immunofluorescence staining by confocal microscopy showed that MGL colocalizes with neurochemical markers of peptidergic and non-peptidergic nociceptive terminals, and also with markers of local excitatory or inhibitory interneurons. Interestingly, the ratio of MGL-immunolabeling was highest in calcitonin gene-related peptide-positive peptidergic primary afferents, and the staining intensity of nociceptive terminals was significantly reduced in MGL-knockout mice. These observations highlight the spinal nociceptor synapse as a potential anatomical site for the analgesic effects of MGL blockade. Moreover, the presence of MGL in additional terminal types raises the possibility that MGL may play distinct regulatory roles in synaptic endocannabinoid or prostaglandin signaling according to its different cellular locations in the dorsal horn pain circuitry.
Collapse
Affiliation(s)
- Eszter Horváth
- Momentum Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Szigony utca 43., H-1083, Budapest, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
220
|
Wilson-Poe AR, Lau BK, Vaughan CW. Repeated morphine treatment alters cannabinoid modulation of GABAergic synaptic transmission within the rat periaqueductal grey. Br J Pharmacol 2014; 172:681-90. [PMID: 24916363 DOI: 10.1111/bph.12809] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Revised: 05/29/2014] [Accepted: 06/05/2014] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND AND PURPOSE Cannabinoids and opioids produce antinociception by modulating GABAergic synaptic transmission in a descending analgesic pathway from the midbrain periaqueductal grey (PAG). While chronic opioid treatment produces opioid tolerance, it has recently been shown to enhance cannabinoid-induced antinociception within the PAG. This study examined the effect of repeated opioid treatment on opioid and cannabinoid presynaptic modulation of GABAergic synaptic transmission in PAG. EXPERIMENTAL APPROACH Midbrain PAG slices were prepared from untreated rats, and rats that had undergone repeated morphine or saline pretreatment. Whole-cell voltage-clamp recordings were made from neurons within the ventrolateral PAG. KEY RESULTS In slices from untreated animals, the cannabinoid receptor agonist WIN55212 and the μ receptor agonist DAMGO inhibited electrically evoked GABAA receptor-mediated inhibitory postsynaptic currents (IPSCs) IPSCs in PAG neurons, with IC50 s of 30 and 100 nM respectively. The inhibition of evoked IPSCs produced by WIN55212 (30 nM) and DAMGO (100 nM) was similar in PAG neurons from morphine- and saline-treated animals. The cannabinoid CB1 receptor antagonist AM251 increased the frequency of spontaneous miniature IPSCs in PAG neurons from repeated morphine-, but not saline-treated animals. DAMGO inhibition of evoked IPSCs was enhanced in the presence of AM251 in morphine-, but not saline-treated animals. CONCLUSIONS AND IMPLICATIONS These results indicate that the efficiency of agonist-induced inhibition of GABAergic synaptic transmission is enhanced by morphine treatment, although this is dampened by endocannabinoid-mediated tonic inhibition. Thus, endocannabinoid modulation of synaptic transmission could provide an alternative analgesic approach in a morphine-tolerant state. LINKED ARTICLES This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2.
Collapse
Affiliation(s)
- A R Wilson-Poe
- Pain Management Research Institute, Kolling Institute for Medical Research, Northern Clinical School, The University of Sydney, St Leonards, NSW, Australia
| | | | | |
Collapse
|
221
|
Lau BK, Drew GM, Mitchell VA, Vaughan CW. Endocannabinoid modulation by FAAH and monoacylglycerol lipase within the analgesic circuitry of the periaqueductal grey. Br J Pharmacol 2014; 171:5225-36. [PMID: 25041240 DOI: 10.1111/bph.12839] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 06/19/2014] [Accepted: 06/27/2014] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AND PURPOSE Endogenous cannabinoids (endocannabinoids) in the periaqueductal grey (PAG) play a vital role in mediating stress-induced analgesia. This analgesic effect of endocannabinoids is enhanced by pharmacological inhibition of their degradative enzymes. However, the specific effects of endocannabinoids and the inhibitors of their degradation are largely unknown within this pain-modulating region. EXPERIMENTAL APPROACH In vitro electrophysiological recordings were conducted from PAG neurons in rat midbrain slices. The effects of the major endocannabinoids and their degradation inhibitors on inhibitory GABAergic synaptic transmission were examined. KEY RESULTS Exogenous application of the endocannabinoid, anandamide (AEA), but not 2-arachidonoylglycerol (2-AG), produced a reduction in inhibitory GABAergic transmission in PAG neurons. This AEA-induced suppression of inhibition was enhanced by the fatty acid amide hydrolase (FAAH) inhibitor, URB597, whereas a 2-AG-induced suppression of inhibition was unmasked by the monoacylglycerol lipase (MGL) inhibitor, JZL184. In addition, application of the CB1 receptor antagonist, AM251, facilitated the basal GABAergic transmission in the presence of URB597 and JZL184, which was further enhanced by the dual FAAH/MGL inhibitor, JZL195. CONCLUSIONS AND IMPLICATIONS Our results indicate that AEA and 2-AG act via disinhibition within the PAG, a cellular action consistent with analgesia. These actions of AEA and 2-AG are tightly regulated by their respective degradative enzymes, FAAH and MGL. Furthermore, individual or combined inhibition of FAAH and/or MGL enhanced tonic disinhibition within the PAG. Therefore, the current findings support the therapeutic potential of FAAH and MGL inhibitors as a novel pharmacotherapy for pain.
Collapse
Affiliation(s)
- Benjamin K Lau
- Pain Management Research Institute, Kolling Institute of Medical Research, Northern Clinical School, The University of Sydney at Royal North Shore Hospital, St Leonards, NSW, Australia
| | | | | | | |
Collapse
|
222
|
Alterations in the anandamide metabolism in the development of neuropathic pain. BIOMED RESEARCH INTERNATIONAL 2014; 2014:686908. [PMID: 25276812 PMCID: PMC4167645 DOI: 10.1155/2014/686908] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 07/04/2014] [Accepted: 07/06/2014] [Indexed: 11/18/2022]
Abstract
Endocannabinoids (EC), particularly anandamide (AEA), released constitutively in pain pathways might be accountable for the inhibitory effect on nociceptors. Pathogenesis of neuropathic pain may reflect complex remodeling of the dorsal root ganglia (DRGs) and spinal cord EC system. Multiple pathways involved both in the biosynthesis and degradation of AEA have been suggested. We investigated the local synthesis and degradation features of AEA in DRGs and spinal cord during the development and maintenance of pain in a model of chronic constriction injury (CCI). All AEA synthesis and degradation enzymes are present on the mRNA level in DRGs and lumbar spinal cord of intact as well as CCI-treated animals. Deregulation of EC system components was consistent with development of pain phenotype at days 3, 7, and 14 after CCI. The expression levels of enzymes involved in AEA degradation was significantly upregulated ipsilateral in DRGs and spinal cord at different time points. Expression of enzymes of the alternative, sPLA2-dependent and PLC-dependent, AEA synthesis pathways was elevated in both of the analyzed structures at all time points. Our data have shown an alteration of alternative AEA synthesis and degradation pathways, which might contribute to the variation of AEA levels and neuropathic pain development.
Collapse
|
223
|
McDonough P, McKenna JP, McCreary C, Downer EJ. Neuropathic orofacial pain: cannabinoids as a therapeutic avenue. Int J Biochem Cell Biol 2014; 55:72-8. [PMID: 25150831 DOI: 10.1016/j.biocel.2014.08.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 08/07/2014] [Accepted: 08/09/2014] [Indexed: 01/09/2023]
Abstract
Neuropathic orofacial pain (NOP) exists in several forms including pathologies such as burning mouth syndrome (BMS), persistent idiopathic facial pain (PIFP), trigeminal neuralgia (TN) and postherpetic neuralgia (PHN). BMS and PIFP are classically diagnosed by excluding other facial pain syndromes. TN and PHN are most often diagnosed based on a typical history and presenting pain characteristics. The pathophysiology of some of these conditions is still unclear and hence treatment options tend to vary and include a wide variety of treatments including cognitive behaviour therapy, anti-depressants, anti-convulsants and opioids; however such treatments often have limited efficacy with a great amount of inter-patient variability and poorly tolerated side effects. Analgesia is one the principal therapeutic targets of the cannabinoid system and many studies have demonstrated the efficacy of cannabinoid compounds in the treatment of neuropathic pain. This review will investigate the potential use of cannabinoids in the treatment of symptoms associated with NOP.
Collapse
Affiliation(s)
- Patrick McDonough
- Cork University Dental School and Hospital, University College Cork, Cork, Ireland
| | - Joseph P McKenna
- Cork University Dental School and Hospital, University College Cork, Cork, Ireland
| | - Christine McCreary
- Cork University Dental School and Hospital, University College Cork, Cork, Ireland
| | - Eric J Downer
- Department of Anatomy and Neuroscience, Western Gateway Building, University College Cork, Cork, Ireland.
| |
Collapse
|
224
|
Nithipatikom K, Endsley MP, Pfeiffer AW, Falck JR, Campbell WB. A novel activity of microsomal epoxide hydrolase: metabolism of the endocannabinoid 2-arachidonoylglycerol. J Lipid Res 2014; 55:2093-102. [PMID: 24958911 DOI: 10.1194/jlr.m051284] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Microsomal epoxide hydrolase (EPHX1, EC 3.3.2.9) is a highly abundant α/β-hydrolase enzyme that is known for its catalytical epoxide hydrolase activity. A wide range of EPHX1 functions have been demonstrated including xenobiotic metabolism; however, characterization of its endogenous substrates is limited. In this study, we present evidence that EPHX1 metabolizes the abundant endocannabinoid 2-arachidonoylglycerol (2-AG) to free arachidonic acid (AA) and glycerol. The EPHX1 metabolism of 2-AG was demonstrated using commercially available EPHX1 microsomes as well as PC-3 cells overexpressing EPHX1. Conversely, EPHX1 siRNA markedly reduced the EPHX1 expression and 2-AG metabolism in HepG2 cells and LNCaP cells. A selective EPHX1 inhibitor, 10-hydroxystearamide, inhibited 2-AG metabolism and hydrolysis of a well-known EPHX1 substrate, cis-stilbene oxide. Among the inhibitors studied, a serine hydrolase inhibitor, methoxy-arachidonyl fluorophosphate, was the most potent inhibitor of 2-AG metabolism by EPHX1 microsomes. These results demonstrate that 2-AG is an endogenous substrate for EPHX1, a potential role of EPHX1 in the endocannabinoid signaling and a new AA biosynthetic pathway.
Collapse
Affiliation(s)
- Kasem Nithipatikom
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Michael P Endsley
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Adam W Pfeiffer
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226
| | - John R Falck
- Departments of Biochemistry and Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - William B Campbell
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226
| |
Collapse
|
225
|
Seillier A, Dominguez Aguilar D, Giuffrida A. The dual FAAH/MAGL inhibitor JZL195 has enhanced effects on endocannabinoid transmission and motor behavior in rats as compared to those of the MAGL inhibitor JZL184. Pharmacol Biochem Behav 2014; 124:153-9. [PMID: 24911644 DOI: 10.1016/j.pbb.2014.05.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 05/23/2014] [Accepted: 05/31/2014] [Indexed: 11/19/2022]
Abstract
The biological actions of the endocannabinoids anandamide and 2-arachidonoyl glycerol (2-AG) are terminated by enzymatic hydrolysis of these lipids via fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), respectively. While several selective FAAH inhibitors have been developed and characterized in vitro and in vivo, none of the initial MAGL blockers have shown adequate potency and specificity for in vivo applications. More recently, a selective MAGL inhibitor, JZL184, has been shown to produce a long-lasting elevation of brain 2-AG, as well as cannabinoid-like behavioral responses in mice. However, its effectiveness in rats remains controversial. Indeed, although JZL184 can elicit behavioral responses that are mediated, at least in part, via activation of cannabinoid CB1 receptors, several reports indicate that this compound does not alter 2-AG levels in this species. In this study we compared the behavioral and neurochemical effects of JZL 184 with those of the dual FAAH/MAGL inhibitor JZL195, and showed that systemic administration of the former can selectively elevate brain 2-AG in rats and produce motor suppression through a CB1-independent mechanism. These findings indicate that, despite its lower potency against rat MAGL, JZL184 can be used to enhance 2-AG transmission and elicit behavioral responses in rodents.
Collapse
Affiliation(s)
- Alexandre Seillier
- Department of Pharmacology, Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - David Dominguez Aguilar
- Department of Pharmacology, Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Andrea Giuffrida
- Department of Pharmacology, Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA.
| |
Collapse
|
226
|
Hillard CJ. Stress regulates endocannabinoid-CB1 receptor signaling. Semin Immunol 2014; 26:380-8. [PMID: 24882055 DOI: 10.1016/j.smim.2014.04.001] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Accepted: 04/01/2014] [Indexed: 12/17/2022]
Abstract
The CB1 cannabinoid receptor is a G protein coupled receptor that is widely expressed throughout the brain. The endogenous ligands for the CB1 receptor (endocannabinoids) are N-arachidonylethanolamine and 2-arachidonoylglycerol; together the endocannabinoids and CB1R subserve activity dependent, retrograde inhibition of neurotransmitter release in the brain. Deficiency of CB1 receptor signaling is associated with anhedonia, anxiety, and persistence of negative memories. CB1 receptor-endocannabinoid signaling is activated by stress and functions to buffer or dampen the behavioral and endocrine effects of acute stress. Its role in regulation of neuronal responses is more complex. Chronic variable stress exposure reduces endocannabinoid-CB1 receptor signaling and it is hypothesized that the resultant deficiency in endocannabinoid signaling contributes to the negative consequences of chronic stress. On the other hand, repeated exposure to the same stress can sensitize CB1 receptor signaling, resulting in dampening of the stress response. Data are reviewed that support the hypothesis that CB1 receptor signaling is stress responsive and that maintaining robust endocannabinoid/CB1 receptor signaling provides resilience against the development of stress-related pathologies.
Collapse
Affiliation(s)
- Cecilia J Hillard
- Neuroscience Research Center, Medical College of Wisconsin, United States; Department of Pharmacology and Toxicology, Medical College of Wisconsin, United States.
| |
Collapse
|
227
|
Sorge RE, Martin LJ, Isbester KA, Sotocinal SG, Rosen S, Tuttle AH, Wieskopf JS, Acland EL, Dokova A, Kadoura B, Leger P, Mapplebeck JCS, McPhail M, Delaney A, Wigerblad G, Schumann AP, Quinn T, Frasnelli J, Svensson CI, Sternberg WF, Mogil JS. Olfactory exposure to males, including men, causes stress and related analgesia in rodents. Nat Methods 2014; 11:629-32. [PMID: 24776635 DOI: 10.1038/nmeth.2935] [Citation(s) in RCA: 573] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 03/21/2014] [Indexed: 01/13/2023]
Abstract
We found that exposure of mice and rats to male but not female experimenters produces pain inhibition. Male-related stimuli induced a robust physiological stress response that results in stress-induced analgesia. This effect could be replicated with T-shirts worn by men, bedding material from gonadally intact and unfamiliar male mammals, and presentation of compounds secreted from the human axilla. Experimenter sex can thus affect apparent baseline responses in behavioral testing.
Collapse
Affiliation(s)
- Robert E Sorge
- 1] Department of Psychology, McGill University, Montreal, Quebec, Canada. [2] Department of Psychology, University of Alabama, Birmingham, Alabama, USA. [3]
| | - Loren J Martin
- 1] Department of Psychology, McGill University, Montreal, Quebec, Canada. [2]
| | - Kelsey A Isbester
- Department of Psychology, McGill University, Montreal, Quebec, Canada
| | | | - Sarah Rosen
- Department of Psychology, McGill University, Montreal, Quebec, Canada
| | | | | | - Erinn L Acland
- Department of Psychology, McGill University, Montreal, Quebec, Canada
| | - Anastassia Dokova
- Department of Psychology, McGill University, Montreal, Quebec, Canada
| | - Basil Kadoura
- Department of Psychology, McGill University, Montreal, Quebec, Canada
| | - Philip Leger
- Department of Psychology, McGill University, Montreal, Quebec, Canada
| | | | - Martina McPhail
- Department of Psychology, Haverford College, Haverford, Pennsylvania, USA
| | - Ada Delaney
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Gustaf Wigerblad
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Alan P Schumann
- Department of Psychology, University of Alabama, Birmingham, Alabama, USA
| | - Tammie Quinn
- Department of Psychology, University of Alabama, Birmingham, Alabama, USA
| | - Johannes Frasnelli
- 1] Research Centre, Sacré Coeur Hospital, University of Montreal, Montreal, Quebec, Canada. [2] Centre de Recherche en Neuropsychologie et Cognition (CERNEC), Department of Psychology, University of Montreal, Montreal, Quebec, Canada
| | - Camilla I Svensson
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Wendy F Sternberg
- Department of Psychology, Haverford College, Haverford, Pennsylvania, USA
| | - Jeffrey S Mogil
- 1] Department of Psychology, McGill University, Montreal, Quebec, Canada. [2] Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
228
|
Inhibition of peripheral FAAH depresses activities of bladder mechanosensitive nerve fibers of the rat. J Urol 2014; 192:956-63. [PMID: 24746881 DOI: 10.1016/j.juro.2014.04.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2014] [Indexed: 02/07/2023]
Abstract
PURPOSE FAAH degrades endocannabinoids and fatty acid amides. FAAH inhibition reduces micturition frequency and counteracts bladder overactivity in rats. We studied the effects of the peripherally active selective FAAH inhibitor URB937, and the CB1 and CB2 receptor antagonists rimonabant and SR144528, respectively, on single unit afferent activity of primary bladder afferents in rats. MATERIALS AND METHODS Female Sprague Dawley® rats were anesthetized. Single unit afferent activity of Aδ or C-fibers from the L6 dorsal roots was recorded during bladder filling before and after URB937 administration with or without rimonabant or SR144528. Drugs (1 mg/kg) were given intravenously. FAAH, CB1 and CB2 expression, and expression of the sensory marker CGRP in the L6 dorsal root ganglion were compared by immunofluorescence. RESULTS A total of 102 single afferent fibers (48 Aδ and 54 C-fibers) were isolated from 57 rats. URB937 decreased single unit afferent activity of C-fibers to a mean ± SEM of 78% ± 9% and of Aδ-fibers to a mean of 67% ± 7% while increasing bladder compliance to a mean of 116% ± 3%. The effects of URB937 on single unit afferent activity and bladder compliance were counteracted by rimonabant or SR144528. Rimonabant increased single unit afferent activity of each fiber type but SR144528 affected only Aδ-fiber activity. CGRP positive L6 dorsal root ganglion neurons showed strong FAAH, CB1 and CB2 staining. CONCLUSIONS To our knowledge we report for the first time that inhibiting peripheral FAAH depresses the Aδ and C-fiber activity of primary bladder afferents via CB1 and CB2 receptors. CB antagonists alone exerted facilitatory effects on single unit afferent activity during bladder filling in rats. The endocannabinoid system may be involved in physiological control of micturition as regulators of afferent signals.
Collapse
|
229
|
Experimental cannabinoid 2 receptor-mediated immune modulation in sepsis. Mediators Inflamm 2014; 2014:978678. [PMID: 24803745 PMCID: PMC3997158 DOI: 10.1155/2014/978678] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 02/25/2014] [Accepted: 03/04/2014] [Indexed: 02/06/2023] Open
Abstract
Sepsis is a complex condition that results from a dysregulated immune system in response to a systemic infection. Current treatments lack effectiveness in reducing the incidence and mortality associated with this disease. The endocannabinoid system offers great promise in managing sepsis pathogenesis due to its unique characteristics. The present study explored the effect of modulating the CB2 receptor pathway in an acute sepsis mouse model. Endotoxemia was induced by intravenous injection of lipopolysaccharide (LPS) in mice and intestinal microcirculation was assessed through intravital microscopy. We found that HU308 (CB2 receptor agonist) reduced the number of adherent leukocytes in submucosal venules but did not restore muscular and mucosal villi FCD in endotoxemic mice. AM630 (CB2 receptor antagonist) maintained the level of adherent leukocytes induced by LPS but further reduced muscular and mucosal villi FCD. URB597 (FAAH inhibitor) and JZL184 (MAGL inhibitor) both reduced the number of adherent leukocytes in submucosal venules but did not restore the mucosal villi FCD. Using various compounds we have shown different mechanisms of activating CB2 receptors to reduce leukocyte endothelial interactions in order to prevent further inflammatory damage during sepsis.
Collapse
|
230
|
Fichna J, Sałaga M, Stuart J, Saur D, Sobczak M, Zatorski H, Timmermans JP, Bradshaw HB, Ahn K, Storr MA. Selective inhibition of FAAH produces antidiarrheal and antinociceptive effect mediated by endocannabinoids and cannabinoid-like fatty acid amides. Neurogastroenterol Motil 2014; 26:470-81. [PMID: 24460851 DOI: 10.1111/nmo.12272] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 11/08/2013] [Indexed: 12/21/2022]
Abstract
BACKGROUND The endogenous cannabinoid system (ECS) plays a crucial role in multiple physiological processes in the central nervous system and in the periphery. The discovery that selective cannabinoid (CB) receptor agonists exert a potent inhibitory action on gastrointestinal (GI) motility and pain has placed the ECS in the center of attention as a possible target for the treatment of functional GI diseases. However, side effects of CB agonists prompted the search for novel therapeutic targets. Here, the effect of PF-3845, a potent and selective fatty acid amide hydrolase (FAAH) inhibitor in the GI tract was investigated. METHODS The effect of PF-3845 on GI motility was characterized in vitro and in vivo, using mouse models that mimic physiological and pathophysiological conditions. The antinociceptive action of PF-3845 was evaluated on the basis of behavioral pain models. Endocannabinoid degradation product levels after inhibition of FAAH were quantified using HPLC-MS/MS. KEY RESULTS PF-3845 significantly inhibited mouse colonic motility in vitro and in vivo. Selective inhibition of FAAH reversed hypermotility and reduced pain in mouse models mimicking functional GI disorders. The effects of PF-3845 were mediated by endogenous CBs and non-CB lipophilic compounds via classical (CB1) and atypical CB receptors. CONCLUSIONS & INFERENCES These data expand our understanding of the ECS function and provide a novel framework for the development of future potential treatments of functional GI disorders.
Collapse
Affiliation(s)
- J Fichna
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada; Department of Medicine, Division of Gastroenterology, University of Calgary, Calgary, AB, Canada; Department of Biomolecular Chemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
231
|
den Boon FS, Chameau P, Houthuijs K, Bolijn S, Mastrangelo N, Kruse CG, Maccarrone M, Wadman WJ, Werkman TR. Endocannabinoids produced upon action potential firing evoke a Cl(-) current via type-2 cannabinoid receptors in the medial prefrontal cortex. Pflugers Arch 2014; 466:2257-68. [PMID: 24671573 DOI: 10.1007/s00424-014-1502-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 03/06/2014] [Accepted: 03/12/2014] [Indexed: 12/13/2022]
Abstract
The functional presence of type-2 cannabinoid receptors (CB2Rs) in layer II/III pyramidal neurons of the rat medial prefrontal cortex (mPFC) was recently demonstrated. In the present study, we show that the application of the endocannabinoids (eCBs) 2-arachidonoylglycerol (2-AG) and methanandamide [a stable analog of the eCB anandamide (AEA)] can activate CB2Rs of mPFC layer II/III pyramidal neurons, which subsequently induces a Cl(-) current. In addition, we show that action potential (AP) firing evoked by 20-Hz current injections results in an eCB-mediated opening of Cl(-) channels via CB2R activation. This AP-evoked synthesis of eCBs is dependent on the Ca(2+) influx through N-type voltage-gated calcium channels. Our results indicate that 2-AG is the main eCB involved in this process. Finally, we demonstrate that under physiologically relevant intracellular Cl(-) conditions, 20-Hz AP firing leads to a CB2R-dependent reduction in neuronal excitability. Altogether, our data indicate that eCBs released upon action potential firing can modulate, through CB2R activation, neuronal activity in the mPFC. We discuss how this may be a mechanism to prevent excessive neuronal firing.
Collapse
Affiliation(s)
- Femke S den Boon
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
232
|
McPartland JM, Guy GW, Di Marzo V. Care and feeding of the endocannabinoid system: a systematic review of potential clinical interventions that upregulate the endocannabinoid system. PLoS One 2014; 9:e89566. [PMID: 24622769 PMCID: PMC3951193 DOI: 10.1371/journal.pone.0089566] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Accepted: 01/21/2014] [Indexed: 12/31/2022] Open
Abstract
Background The “classic” endocannabinoid (eCB) system includes the cannabinoid receptors CB1 and CB2, the eCB ligands anandamide (AEA) and 2-arachidonoylglycerol (2-AG), and their metabolic enzymes. An emerging literature documents the “eCB deficiency syndrome” as an etiology in migraine, fibromyalgia, irritable bowel syndrome, psychological disorders, and other conditions. We performed a systematic review of clinical interventions that enhance the eCB system—ways to upregulate cannabinoid receptors, increase ligand synthesis, or inhibit ligand degradation. Methodology/Principal Findings We searched PubMed for clinical trials, observational studies, and preclinical research. Data synthesis was qualitative. Exclusion criteria limited the results to 184 in vitro studies, 102 in vivo animal studies, and 36 human studies. Evidence indicates that several classes of pharmaceuticals upregulate the eCB system, including analgesics (acetaminophen, non-steroidal anti-inflammatory drugs, opioids, glucocorticoids), antidepressants, antipsychotics, anxiolytics, and anticonvulsants. Clinical interventions characterized as “complementary and alternative medicine” also upregulate the eCB system: massage and manipulation, acupuncture, dietary supplements, and herbal medicines. Lifestyle modification (diet, weight control, exercise, and the use of psychoactive substances—alcohol, tobacco, coffee, cannabis) also modulate the eCB system. Conclusions/Significance Few clinical trials have assessed interventions that upregulate the eCB system. Many preclinical studies point to other potential approaches; human trials are needed to explore these promising interventions.
Collapse
Affiliation(s)
- John M. McPartland
- GW Pharmaceuticals, Porton Down Science Park, Salisbury, Wiltshire, United Kingdom
- Department of Family Medicine, University of Vermont, Burlington, Vermont, United States of America
- * E-mail:
| | - Geoffrey W. Guy
- GW Pharmaceuticals, Porton Down Science Park, Salisbury, Wiltshire, United Kingdom
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Istituto di Chimica Biomoleculare, CNR, Via Campi Flegrei, Pozzuoli, Napoli, Italy
| |
Collapse
|
233
|
Lau BK, Vaughan CW. Targeting the endogenous cannabinoid system to treat neuropathic pain. Front Pharmacol 2014; 5:28. [PMID: 24624084 PMCID: PMC3939704 DOI: 10.3389/fphar.2014.00028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 01/19/2014] [Indexed: 01/17/2023] Open
Affiliation(s)
- Benjamin K Lau
- Pain Management Research Institute, Kolling Institute of Medical Research, Northern Clinical School, University of Sydney Sydney, NSW, Australia
| | - Christopher W Vaughan
- Pain Management Research Institute, Kolling Institute of Medical Research, Northern Clinical School, University of Sydney Sydney, NSW, Australia
| |
Collapse
|
234
|
Ignatowska-Jankowska BM, Ghosh S, Crowe MS, Kinsey SG, Niphakis MJ, Abdullah RA, Tao Q, O' Neal ST, Walentiny DM, Wiley JL, Cravatt BF, Lichtman AH. In vivo characterization of the highly selective monoacylglycerol lipase inhibitor KML29: antinociceptive activity without cannabimimetic side effects. Br J Pharmacol 2014; 171:1392-407. [PMID: 23848221 PMCID: PMC3954480 DOI: 10.1111/bph.12298] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 06/14/2013] [Accepted: 07/08/2013] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND AND PURPOSE Since monoacylglycerol lipase (MAGL) has been firmly established as the predominant catabolic enzyme of the endocannabinoid 2-arachidonoylglycerol (2-AG), a great need has emerged for the development of highly selective MAGL inhibitors. Here, we tested the in vivo effects of one such compound, KML29 (1,1,1,3,3,3-hexafluoropropan-2-yl 4-(bis(benzo[d][1,3]dioxol-5-yl)(hydroxy)methyl)piperidine-1-carboxylate). EXPERIMENTAL APPROACH In the present study, we tested KML29 in murine inflammatory (i.e. carrageenan) and sciatic nerve injury pain models, as well as the diclofenac-induced gastric haemorrhage model. KML29 was also evaluated for cannabimimetic effects, including measurements of locomotor activity, body temperature, catalepsy, and cannabinoid interoceptive effects in the drug discrimination paradigm. KEY RESULTS KML29 attenuated carrageenan-induced paw oedema and completely reversed carrageenan-induced mechanical allodynia. These effects underwent tolerance after repeated administration of high-dose KML29, which were accompanied by cannabinoid receptor 1 (CB1 ) receptor desensitization. Acute or repeated KML29 administration increased 2-AG levels and concomitantly reduced arachidonic acid levels, but without elevating anandamide (AEA) levels in the whole brain. Furthermore, KML29 partially reversed allodynia in the sciatic nerve injury model and completely prevented diclofenac-induced gastric haemorrhages. CB1 and CB2 receptors played differential roles in these pharmacological effects of KML29. In contrast, KML29 did not elicit cannabimimetic effects, including catalepsy, hypothermia and hypomotility. Although KML29 did not substitute for Δ(9) -tetrahydrocannabinol (THC) in C57BL/6J mice, it fully and dose-dependantly substituted for AEA in fatty acid amide hydrolase (FAAH) (-/-) mice, consistent with previous work showing that dual FAAH and MAGL inhibition produces THC-like subjective effects. CONCLUSIONS AND IMPLICATIONS These results indicate that KML29, a highly selective MAGL inhibitor, reduces inflammatory and neuropathic nociceptive behaviour without occurrence of cannabimimetic side effects. LINKED ARTICLES This article is part of a themed section on Cannabinoids 2013. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-6.
Collapse
Affiliation(s)
| | - S Ghosh
- Department of Pharmacology and Toxicology, Virginia Commonwealth UniversityRichmond, VA, USA
| | - M S Crowe
- Department of Psychology, West Virginia UniversityMorgantown, WV, USA
| | - S G Kinsey
- Department of Psychology, West Virginia UniversityMorgantown, WV, USA
| | - M J Niphakis
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research InstituteLa Jolla, CA, USA
| | - R A Abdullah
- Department of Pharmacology and Toxicology, Virginia Commonwealth UniversityRichmond, VA, USA
| | - Q Tao
- Department of Pharmacology and Toxicology, Virginia Commonwealth UniversityRichmond, VA, USA
| | - S T O' Neal
- Department of Pharmacology and Toxicology, Virginia Commonwealth UniversityRichmond, VA, USA
| | - D M Walentiny
- Department of Pharmacology and Toxicology, Virginia Commonwealth UniversityRichmond, VA, USA
| | - J L Wiley
- Research Triangle InstituteResearch Triangle Park, NC, USA
| | - B F Cravatt
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research InstituteLa Jolla, CA, USA
| | - A H Lichtman
- Department of Pharmacology and Toxicology, Virginia Commonwealth UniversityRichmond, VA, USA
| |
Collapse
|
235
|
|
236
|
Peripheral gating of pain signals by endogenous lipid mediators. Nat Neurosci 2014; 17:164-74. [PMID: 24473264 DOI: 10.1038/nn.3612] [Citation(s) in RCA: 176] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 11/22/2013] [Indexed: 12/13/2022]
Abstract
Primary sensory afferents and their neighboring host-defense cells are a rich source of lipid-derived mediators that contribute to the sensation of pain caused by tissue damage and inflammation. But an increasing number of lipid molecules have been shown to act in an opposite way, to suppress the inflammatory process, restore homeostasis in damaged tissues and attenuate pain sensitivity by regulating neural pathways that transmit nociceptive signals from the periphery of the body to the CNS. Here we review the molecular and cellular mechanisms that contribute to the modulatory actions of lipid mediators in peripheral nociceptive signaling.
Collapse
|
237
|
Scott SA, Mathews TP, Ivanova PT, Lindsley CW, Brown HA. Chemical modulation of glycerolipid signaling and metabolic pathways. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1841:1060-84. [PMID: 24440821 DOI: 10.1016/j.bbalip.2014.01.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 01/06/2014] [Accepted: 01/07/2014] [Indexed: 01/04/2023]
Abstract
Thirty years ago, glycerolipids captured the attention of biochemical researchers as novel cellular signaling entities. We now recognize that these biomolecules occupy signaling nodes critical to a number of physiological and pathological processes. Thus, glycerolipid-metabolizing enzymes present attractive targets for new therapies. A number of fields-ranging from neuroscience and cancer to diabetes and obesity-have elucidated the signaling properties of glycerolipids. The biochemical literature teems with newly emerging small molecule inhibitors capable of manipulating glycerolipid metabolism and signaling. This ever-expanding pool of chemical modulators appears daunting to those interested in exploiting glycerolipid-signaling pathways in their model system of choice. This review distills the current body of literature surrounding glycerolipid metabolism into a more approachable format, facilitating the application of small molecule inhibitors to novel systems. This article is part of a Special Issue entitled Tools to study lipid functions.
Collapse
Affiliation(s)
- Sarah A Scott
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Thomas P Mathews
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Pavlina T Ivanova
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Craig W Lindsley
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37235, USA
| | - H Alex Brown
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Biochemistry, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37235, USA.
| |
Collapse
|
238
|
Penumarti A, Abdel-Rahman AA. The novel endocannabinoid receptor GPR18 is expressed in the rostral ventrolateral medulla and exerts tonic restraining influence on blood pressure. J Pharmacol Exp Ther 2014; 349:29-38. [PMID: 24431468 DOI: 10.1124/jpet.113.209213] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Systemic administration of the G-protein-coupled receptor 18 (GPR18) agonist abnormal cannabidiol (Abn CBD) lowers blood pressure (BP). Whether GPR18 is expressed in the central nervous system (CNS) and plays a role in BP control is not known despite the abundance of the GPR18 ligand N-arachidonoyl glycine (NAGly) in the CNS. Therefore, we first determined whether GPR18 is expressed in the presympathetic tyrosine hydroxylase (TH) immunoreactive (ir) neurons of the brainstem cardiovascular regulatory nuclei. Second, we investigated the impact of GPR18 activation and blockade on BP and heart rate (HR) and neurochemical modulators of sympathetic activity and BP. Immunofluorescence findings revealed GPR18 expression in TH-ir neurons in the rostral ventrolateral medulla (RVLM). Intra-RVLM GPR18 activation (Abn CBD) and blockade (O-1918, 1,3-dimethoxy-5-methyl-2-[(1R,6R)-3-methyl-6-(1-methylethenyl)-2-,cyclohexen-1-yl]benzene) elicited dose-dependent reductions and elevations in BP, respectively, along with respective increases and decreases in HR in conscious male Sprague-Dawley rats. RVLM GPR18 activation increased neuronal adiponectin (ADN) and NO and reduced reactive oxygen species (ROS) levels, and GPR18 blockade reduced neuronal ADN and increased oxidative stress (i.e., ROS) in the RVLM. Finally, we hypothesized that the negligible hypotensive effect caused by the endogenous GPR18 ligand NAGly could be due to concurrent activation of CB(1)R in the RVLM. Our findings support this hypothesis because NAGly-evoked hypotension was doubled after RVLM CB(1)R blockade (SR141716, rimonabant). These findings are the first to demonstrate GPR18 expression in the RVLM and to suggest a sympathoinhibitory role for this receptor. The findings yield new insight into the role of a novel cannabinoid receptor (GPR18) in central BP control.
Collapse
Affiliation(s)
- Anusha Penumarti
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, North Carolina
| | | |
Collapse
|
239
|
Raehal KM, Bohn LM. β-arrestins: regulatory role and therapeutic potential in opioid and cannabinoid receptor-mediated analgesia. Handb Exp Pharmacol 2014; 219:427-43. [PMID: 24292843 PMCID: PMC4804701 DOI: 10.1007/978-3-642-41199-1_22] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pain is a complex disorder with neurochemical and psychological components contributing to the severity, the persistence, and the difficulty in adequately treating the condition. Opioid and cannabinoids are two classes of analgesics that have been used to treat pain for centuries and are arguably the oldest of "pharmacological" interventions used by man. Unfortunately, they also produce several adverse side effects that can complicate pain management. Opioids and cannabinoids act at G protein-coupled receptors (GPCRs), and much of their effects are mediated by the mu-opioid receptor (MOR) and cannabinoid CB1 receptor (CB1R), respectively. These receptors couple to intracellular second messengers and regulatory proteins to impart their biological effects. In this chapter, we review the role of the intracellular regulatory proteins, β-arrestins, in modulating MOR and CB1R and how they influence the analgesic and side-effect profiles of opioid and cannabinoid drugs in vivo. This review of the literature suggests that the development of opioid and cannabinoid agonists that bias MOR and CB1R toward G protein signaling cascades and away from β-arrestin interactions may provide a novel mechanism by which to produce analgesia with less severe adverse effects.
Collapse
MESH Headings
- Analgesics/adverse effects
- Analgesics/pharmacology
- Analgesics, Opioid/adverse effects
- Analgesics, Opioid/pharmacology
- Animals
- Arrestins/metabolism
- Cannabinoids/adverse effects
- Cannabinoids/pharmacology
- Drug Design
- Humans
- Pain/drug therapy
- Pain/physiopathology
- Receptor, Cannabinoid, CB1/drug effects
- Receptor, Cannabinoid, CB1/metabolism
- Receptors, G-Protein-Coupled/drug effects
- Receptors, G-Protein-Coupled/metabolism
- Receptors, Opioid, mu/drug effects
- Receptors, Opioid, mu/metabolism
- beta-Arrestins
Collapse
Affiliation(s)
- Kirsten M Raehal
- The Scripps Research Institute, 130 Scripps Way #2A2, Jupiter, FL, 33458, USA,
| | | |
Collapse
|
240
|
Chiou LC, Hu SSJ, Ho YC. Targeting the cannabinoid system for pain relief? ACTA ACUST UNITED AC 2013; 51:161-70. [PMID: 24529672 DOI: 10.1016/j.aat.2013.10.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 10/11/2013] [Indexed: 12/15/2022]
Abstract
Marijuana has been used to relieve pain for centuries, but its analgesic mechanism has only been understood during the past two decades. It is mainly mediated by its constituents, cannabinoids, through activating central cannabinoid 1 (CB1) receptors, as well as peripheral CB1 and CB2 receptors. CB2-selective agonists have the benefit of lacking CB1 receptor-mediated CNS side effects. Anandamide and 2-arachidonoylglycerol (2-AG) are two intensively studied endogenous lipid ligands of cannabinoid receptors, termed endocannabinoids, which are synthesized on demand and rapidly degraded. Thus, inhibitors of their degradation enzymes, fatty acid amide hydrolase and monoacylglycerol lipase (MAGL), respectively, may be superior to direct cannabinoid receptor ligands as a promising strategy for pain relief. In addition to the antinociceptive properties of exogenous cannabinoids and endocannabinoids, involving their biosynthesis and degradation processes, we also review recent studies that revealed a novel analgesic mechanism, involving 2-AG in the periaqueductal gray (PAG), a midbrain region for initiating descending pain inhibition. It is initiated by Gq-protein-coupled receptor (GqPCR) activation of the phospholipase C (PLC)-diacylglycerol lipase (DAGL) enzymatic cascade, generating 2-AG that produces inhibition of GABAergic transmission (disinhibition) in the PAG, thereby leading to analgesia. This GqPCR-PLC-DAGL-2-AG retrograde disinhibition mechanism in the PAG can be initiated by activating type 5 metabotropic glutamate receptor (mGluR5), muscarinic acetylcholine (M1/M3), and orexin (OX1) receptors. mGluR5-mediated disinhibition can be initiated by glutamate transporter inhibitors, or indirectly by substance P, neurotensin, cholecystokinin, capsaicin, and AM404, the bioactive metabolite of acetaminophen in the brain. The putative role of 2-AG generated after activating the above neurotransmitter receptors in stress-induced analgesia is also discussed.
Collapse
Affiliation(s)
- Lih-Chu Chiou
- Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Pharmacology, National Taiwan University, Taipei, Taiwan; Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan; Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan.
| | - Sherry Shu-Jung Hu
- Department of Psychology, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Cheng Ho
- Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
241
|
Lisboa S, Magesto A, Aguiar J, Resstel L, Guimarães F. Complex interaction between anandamide and the nitrergic system in the dorsolateral periaqueductal gray to modulate anxiety-like behavior in rats. Neuropharmacology 2013; 75:86-94. [DOI: 10.1016/j.neuropharm.2013.07.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 06/16/2013] [Accepted: 07/16/2013] [Indexed: 10/26/2022]
|
242
|
Abstract
The endocannabinoid (EC) system consists of two main receptors: cannabinoid type 1 receptor cannabinoid receptors are found in both the central nervous system (CNS) and periphery, whereas the cannabinoid type 2 receptor cannabinoid receptor is found principally in the immune system and to a lesser extent in the CNS. The EC family consists of two classes of well characterised ligands; the N-acyl ethanolamines, such as N-arachidonoyl ethanolamide or anandamide (AEA), and the monoacylglycerols, such as 2-arachidonoyl glycerol. The various synthetic and catabolic pathways for these enzymes have been (with the exception of AEA synthesis) elucidated. To date, much work has examined the role of EC in nociceptive processing and the potential of targeting the EC system to produce analgesia. Cannabinoid receptors and ligands are found at almost every level of the pain pathway from peripheral sites, such as peripheral nerves and immune cells, to central integration sites such as the spinal cord, and higher brain regions such as the periaqueductal grey and the rostral ventrolateral medulla associated with descending control of pain. EC have been shown to induce analgesia in preclinical models of acute nociception and chronic pain states. The purpose of this review is to critically evaluate the evidence for the role of EC in the pain pathway and the therapeutic potential of EC to produce analgesia. We also review the present clinical work conducted with EC, and examine whether targeting the EC system might offer a novel target for analgesics, and also potentially disease-modifying interventions for pathophysiological pain states.
Collapse
|
243
|
Desroches J, Charron S, Bouchard JF, Beaulieu P. Endocannabinoids decrease neuropathic pain-related behavior in mice through the activation of one or both peripheral CB₁ and CB₂ receptors. Neuropharmacology 2013; 77:441-52. [PMID: 24148808 DOI: 10.1016/j.neuropharm.2013.10.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 10/05/2013] [Accepted: 10/07/2013] [Indexed: 10/26/2022]
Abstract
The two most studied endocannabinoids are anandamide (AEA), principally catalyzed by fatty-acid amide hydrolase (FAAH), and 2-arachidonoyl glycerol (2-AG), mainly hydrolyzed by monoacylglycerol lipase (MGL). Inhibitors targeting these two enzymes have been described, including URB597 and URB602, respectively. Several recent studies examining the contribution of CB₁ and/or CB₂ receptors on the peripheral antinociceptive effects of AEA, 2-AG, URB597 and URB602 in neuropathic pain conditions using either pharmacological tools or transgenic mice separately have been reported, but the exact mechanism is still uncertain. Mechanical allodynia and thermal hyperalgesia were evaluated in 436 male C57BL/6, cnr1KO and cnr2KO mice in the presence or absence of cannabinoid CB₁ (AM251) or CB₂ (AM630) receptor antagonists in a mouse model of neuropathic pain. Peripheral subcutaneous injections of AEA, 2-AG, WIN55,212-2 (WIN; a CB₁/CB₂ synthetic agonist), URB597 and URB602 significantly decreased mechanical allodynia and thermal hyperalgesia. These effects were inhibited by both cannabinoid antagonists AM251 and AM630 for treatments with 2-AG, WIN and URB602 but only by AM251 for treatments with AEA and URB597 in C57BL/6 mice. Furthermore, the antinociceptive effects for AEA and URB597 were observed in cnr2KO mice but absent in cnr1KO mice, whereas the effects of 2-AG, WIN and URB602 were altered in both of these transgenic mice. Complementary genetic and pharmacological approaches revealed that the anti-hyperalgesic effects of 2-AG and URB602 required both CB₁ and CB₂ receptors, but only CB₂ receptors mediated its anti-allodynic actions. The antinociceptive properties of AEA and URB597 were mediated only by CB₁ receptors.
Collapse
Affiliation(s)
- Julie Desroches
- Department of Pharmacology, Université de Montréal, Montréal, Québec, Canada
| | - Sophie Charron
- Faculty of Medicine, School of Optometry, Université de Montréal, Montréal, Québec, Canada
| | - Jean-François Bouchard
- Faculty of Medicine, School of Optometry, Université de Montréal, Montréal, Québec, Canada
| | - Pierre Beaulieu
- Department of Pharmacology, Université de Montréal, Montréal, Québec, Canada; Department of Anesthesiology, Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
244
|
Peripheral and spinal activation of cannabinoid receptors by joint mobilization alleviates postoperative pain in mice. Neuroscience 2013; 255:110-21. [PMID: 24120553 DOI: 10.1016/j.neuroscience.2013.09.055] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 08/26/2013] [Accepted: 09/28/2013] [Indexed: 11/21/2022]
Abstract
The present study was undertaken to investigate the relative contribution of cannabinoid receptors (CBRs) subtypes and to analyze cannabimimetic mechanisms involved in the inhibition of anandamide (AEA) and 2-arachidonoyl glycerol degradation on the antihyperalgesic effect of ankle joint mobilization (AJM). Mice (25-35g) were subjected to plantar incision (PI) and 24h after surgery animals received the following treatments, AJM for 9min, AEA (10mg/kg, intraperitoneal [i.p.]), WIN 55,212-2 (1.5mg/kg, i.p.), URB937 (0.01-1mg/kg, i.p.; a fatty acid amide hydrolase [FAAH] inhibitor) or JZL184 (0.016-16mg/kg, i.p.; a monoacylglycerol lipase [MAGL] inhibitor). Withdrawal frequency to mechanical stimuli was assessed 24h after PI and at different time intervals after treatments. Receptor specificity was investigated using selective CB1R (AM281) and CB2R (AM630) antagonists. In addition, the effect of the FAAH and MAGL inhibitors on the antihyperalgesic action of AJM was investigated. AJM, AEA, WIN 55,212-2, URB937 and JZL184 decreased mechanical hyperalgesia induced by PI. The antihyperalgesic effect of AJM was reversed by pretreatment with AM281 given by intraperitoneal and intrathecal routes, but not intraplantarly. Additionally, intraperitoneal and intraplantar, but not intrathecal administration of AM630 blocked AJM-induced antihyperalgesia. Interestingly, in mice pretreated with FAAH or the MAGL inhibitor the antihyperalgesic effect of AJM was significantly longer. This article presents data addressing the CBR mechanisms underlying the antihyperalgesic activity of joint mobilization as well as of the endocannabinoid catabolic enzyme inhibitors in the mouse postoperative pain model. Joint mobilization and these enzymes offer potential targets to treat postoperative pain.
Collapse
|
245
|
Abstract
This article reviews the brain structures and neural circuitry underlying the motor system as it pertains to endurance exercise. Some obvious phenomena that occur during endurance racing events that need to be explained neurophysiologically are variable pacing strategies, the end spurt, motivation and the rating of perceived exertion. Understanding the above phenomena physiologically is problematic due to the sheer complexity of obtaining real-time brain measurements during exercise. In those rare instances where brain measurements have been made during exercise, the measurements have usually been limited to the sensory and motor cortices; or the exercise itself was limited to small muscle groups. Without discounting the crucial importance of the primary motor cortex in the execution of voluntary movement, it is surprising that very few exercise studies pay any attention to the complex and dynamic organization of motor action in relation to the subcortical nuclei, given that they are essential for the execution of normal movement patterns. In addition, the findings from laboratory-based exercise performance trials are hampered by the absence of objective measures of the motivational state of subjects. In this review we propose that some of the above phenomena may be explained by distinguishing between voluntary, vigorous and urgent motor behaviours during exercise, given that different CNS structures and neurotransmitters are involved in the execution of these different motor behaviours.
Collapse
|
246
|
Yuan S, Burrell BD. Nonnociceptive afferent activity depresses nocifensive behavior and nociceptive synapses via an endocannabinoid-dependent mechanism. J Neurophysiol 2013; 110:2607-16. [PMID: 24027102 DOI: 10.1152/jn.00170.2013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Previously, low-frequency stimulation (LFS) of a nonnociceptive touch-sensitive neuron has been found to elicit endocannabinoid-dependent long-term depression (eCB-LTD) in nociceptive synapses in the leech central nervous system (CNS) that requires activation of a presynaptic transient receptor potential vanilloid (TRPV)-like receptor by postsynaptically synthesized 2-arachidonoyl glycerol (2-AG). This capacity of nonnociceptive afferent activity to reduce nociceptive signaling resembles gate control of pain, albeit longer lasting in these synaptic experiments. Since eCB-LTD has been observed at a single sensory-motor synapse, this study examines the functional relevance of this mechanism, specifically whether this form of synaptic plasticity has similar effects at the behavioral level in which additional, intersegmental neural circuits are engaged. Experiments were carried out using a semi-intact preparation that permitted both synaptic recordings and monitoring of the leech whole body shortening, a defensive withdrawal reflex that was elicited via intracellular stimulation of a single nociceptive neuron (the N cell). The same LFS of a nonnociceptive afferent that induced eCB-LTD in single synapses also produced an attenuation of the shortening reflex. Similar attenuation of behavior was also observed when 2-AG was applied. LFS-induced behavioral and synaptic depression was blocked by tetrahydrolipstatin (THL), a diacylglycerol lipase inhibitor, and by SB366791, a TRPV1 antagonist. The effects of both THL and SB366791 were observed following either bath application of the drug or intracellular injection into the presynaptic (SB366791) or postsynaptic (THL) neuron. These findings demonstrate a novel, endocannabinoid-based mechanism by which nonnociceptive afferent activity may modulate nocifensive behaviors via action on primary afferent synapses.
Collapse
Affiliation(s)
- Sharleen Yuan
- Center for Brain and Behavior Research, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota
| | | |
Collapse
|
247
|
Involvement of prelimbic medial prefrontal cortex in panic-like elaborated defensive behaviour and innate fear-induced antinociception elicited by GABAA receptor blockade in the dorsomedial and ventromedial hypothalamic nuclei: role of the endocannabinoid CB1 receptor. Int J Neuropsychopharmacol 2013; 16:1781-98. [PMID: 23521775 DOI: 10.1017/s1461145713000163] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
It has been shown that GABAA receptor blockade in the dorsomedial and ventromedial hypothalamic nuclei (DMH and VMH, respectively) induces elaborated defensive behavioural responses accompanied by antinociception, which has been utilized as an experimental model of panic attack. Furthermore, the prelimbic (PL) division of the medial prefrontal cortex (MPFC) has been related to emotional reactions and the processing of nociceptive information. The aim of the present study was to investigate the possible involvement of the PL cortex and the participation of local cannabinoid CB1 receptors in the elaboration of panic-like reactions and in innate fear-induced antinociception. Elaborated fear-induced responses were analysed during a 10-min period in an open-field test arena. Microinjection of the GABAA receptor antagonist bicuculline into the DMH/VMH evoked panic-like behaviour and fear-induced antinociception, which was decreased by microinjection of the non-selective synaptic contact blocker cobalt chloride in the PL cortex. Moreover, microinjection of AM251 (25, 100 or 400 pmol), an endocannabinoid CB1 receptor antagonist, into the PL cortex also attenuated the defensive behavioural responses and the antinociception that follows innate fear behaviour elaborated by DMH/VMH. These data suggest that the PL cortex plays an important role in the organization of elaborated forward escape behaviour and that this cortical area is also involved in the elaboration of innate fear-induced antinociception. Additionally, CB1 receptors in the PL cortex modulate both panic-like behaviours and fear-induced antinociception elicited by disinhibition of the DMH/VMH through microinjection of bicuculline.
Collapse
|
248
|
Piomelli D. More surprises lying ahead. The endocannabinoids keep us guessing. Neuropharmacology 2013; 76 Pt B:228-34. [PMID: 23954677 DOI: 10.1016/j.neuropharm.2013.07.026] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 07/22/2013] [Indexed: 02/02/2023]
Abstract
The objective of this review is to point out some important facts that we don't know about endogenous cannabinoids - lipid-derived signaling molecules that activate CB1 cannabinoid receptors and play key roles in motivation, emotion and energy balance. The first endocannabinoid substance to be discovered, anandamide, was isolated from brain tissue in 1992. Research has shown that this molecule is a bona fide brain neurotransmitter involved in the regulation of stress responses and pain, but the molecular mechanisms that govern its formation and the neural pathways in which it is employed are still unknown. There is a general consensus that enzyme-mediated cleavage, catalyzed by fatty acid amide hydrolase (FAAH), terminates the biological actions of anandamide, but there are many reasons to believe that other as-yet-unidentified proteins are also involved in this process. We have made significant headway in understanding the second arrived in the endocannabinoid family, 2-arachidonoyl-sn-glycerol (2-AG), which was discovered three years after anandamide. Researchers have established some of the key molecular players involved in 2-AG formation and deactivation, localized them to specific synaptic components, and showed that their assembly into a multi-molecular protein complex (termed the '2-AG signalosome') allows 2-AG to act as a retrograde messenger at excitatory synapses of the brain. Basic questions that remain to be answered pertain to the exact molecular composition of the 2-AG signalosome, its regulation by neural activity and its potential role in the actions of drugs of abuse such as Δ(9)-THC and cocaine. This article is part of a Special Issue entitled 'NIDA 40th Anniversary Issue'.
Collapse
Affiliation(s)
- Daniele Piomelli
- Department of Anatomy and Neurobiology, University of California, Irvine, CA 92697-1275, USA; Department of Pharmacology, University of California, Irvine, CA 92697-1275, USA; Department of Drug Discovery and Development, Istituto Italiano di Tecnologia, Genoa 16163, Italy; Department of Biological Chemistry, University of California, Irvine, CA 92697-1275, USA.
| |
Collapse
|
249
|
Laricchiuta D, Centonze D, Petrosini L. Effects of endocannabinoid and endovanilloid systems on aversive memory extinction. Behav Brain Res 2013; 256:101-7. [PMID: 23948212 DOI: 10.1016/j.bbr.2013.08.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 08/01/2013] [Accepted: 08/05/2013] [Indexed: 01/23/2023]
Abstract
In contextual fear conditioning animals have to integrate various elemental stimuli into a coherent representation of the condition and then associate context representation with punishment. Although several studies indicated the modulating role of endocannabinoid system (ECS) on the associative learning, ECS effect on contextual fear conditioning requires further investigations. The present study assessed the effects of the increased endocannabinoid anandamide (AEA) tone on acquisition, retrieval and extinction of the contextual fear conditioning. Given that AEA may bind to cannabinoid type 1 (CB1) receptors as well as to postsynaptic ionotropic Transient Receptor Potential Vanilloid type 1 (TRPV1) channels, particular attention was paid in determining how the increased AEA tone influenced fear responses. Furthermore, it was investigated how the ECS modulated the effects of stress-sensitization on fear response. Thus, mice submitted or not to a social defeat stress protocol were treated with drugs acting on ECS, CB1 receptors or TRPV1 channels and tested in a contextual fear conditioning whose conditioning, retrieval and extinction phases were analyzed. ECS activation influenced the extinction process and contrasted the stress effects on fear memory. Furthermore, CB1 receptor antagonist blocked and TRPV1 channel antagonist promoted short- and long-term extinction. The present study indicates that ECS controls the extinction of aversive memories in the contextual fear conditioning.
Collapse
Affiliation(s)
- Daniela Laricchiuta
- I.R.C.C.S. Santa Lucia Foundation, Via del Fosso di Fiorano 64, 00143, Rome, Italy; Department of Psychology, Faculty of Medicine and Psychology, University "Sapienza" of Rome, via dei Marsi 78, 00185, Rome, Italy.
| | | | | |
Collapse
|
250
|
Wolkers CPB, Barbosa Junior A, Menescal-de-Oliveira L, Hoffmann A. Stress-induced antinociception in fish reversed by naloxone. PLoS One 2013; 8:e71175. [PMID: 23936261 PMCID: PMC3728202 DOI: 10.1371/journal.pone.0071175] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 06/28/2013] [Indexed: 11/23/2022] Open
Abstract
Pain perception in non-mammalian vertebrates such as fish is a controversial issue. We demonstrate that, in the fish Leporinus macrocephalus, an imposed restraint can modulate the behavioral response to a noxious stimulus, specifically the subcutaneous injection of 3% formaldehyde. In the first experiment, formaldehyde was applied immediately after 3 or 5 min of the restraint. Inhibition of the increase in locomotor activity in response to formaldehyde was observed, which suggests a possible restraint-induced antinociception. In the second experiment, the noxious stimulus was applied 0, 5, 10 and 15 min after the restraint, and both 3 and 5 min of restraint promoted short-term antinociception of approximately 5 min. In experiments 3 and 4, an intraperitoneal injection of naloxone (30 mg.kg(-1)) was administered 30 min prior to the restraint. The 3- minute restraint-induced antinociception was blocked by pretreatment with naloxone, but the corresponding 5-minute response was not. One possible explanation for this result is that an opioid and a non-preferential μ-opioid and/or non-opioid mechanism participate in this response modulation. Furthermore, we observed that both the 3- and 5- minutes restraint were severely stressful events for the organism, promoting marked increases in serum cortisol levels. These data indicate that the response to a noxious stimulus can be modulated by an environmental stressor in fish, as is the case in mammals. To our knowledge, this study is the first evidence for the existence of an endogenous antinociceptive system that is activated by an acute standardized stress in fish. Additionally, it characterizes the antinociceptive response induced by stress in terms of its time course and the opioid mediation, providing information for understanding the evolution of nociception modulation.
Collapse
Affiliation(s)
- Carla Patrícia Bejo Wolkers
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | | | | | | |
Collapse
|